WO2020145491A1 - 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물 - Google Patents

내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물 Download PDF

Info

Publication number
WO2020145491A1
WO2020145491A1 PCT/KR2019/013906 KR2019013906W WO2020145491A1 WO 2020145491 A1 WO2020145491 A1 WO 2020145491A1 KR 2019013906 W KR2019013906 W KR 2019013906W WO 2020145491 A1 WO2020145491 A1 WO 2020145491A1
Authority
WO
WIPO (PCT)
Prior art keywords
tendon
composition
treatment
prp
rich plasma
Prior art date
Application number
PCT/KR2019/013906
Other languages
English (en)
French (fr)
Inventor
조현철
이승연
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to US17/422,266 priority Critical patent/US20220088153A1/en
Publication of WO2020145491A1 publication Critical patent/WO2020145491A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/58Reptiles
    • A61K35/583Snakes; Lizards, e.g. chameleons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4806Hydrolases (3) acting on peptide bonds (3.4) from animals other than mammals, e.g. snakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • the present invention relates to a pharmaceutical composition for preventing or treating musculoskeletal damage and diseases having an intrinsic cell proliferation effect in the bone marrow, and more specifically, the pharmaceutical composition of the present invention proliferates the endogenous cells in the bone marrow and enhances the function of the musculoskeletal system. It can be used to prevent or treat damage and disease.
  • the musculoskeletal system refers to nerves, tendons (muscles), muscles, bones, ligaments, and cartilage plates (spine bones).Repetitive movements, improper working posture, use of excessive force, physical contact with sharp surfaces, vibration and temperature, Due to factors such as overuse, trauma, and increased age, diseases appear in the neck, shoulders, waist, arms and legs of the nerves, muscles, and surrounding body tissues due to damage, degeneration, and deformation.
  • tendons and ligaments are fibrous soft tissues, and collagen is a major component, and each of them has a different point of attachment to bones, bones, bones, and muscles. Do.
  • the tendon (tendon) and ligaments are relatively short in supply of blood flow than other tissues in the human body, and the number of cells compared to the substrate is small and the matrix cells are also highly differentiated cells. Even if it does, it is reported that the function does not fully recover as before.
  • the number of intrinsic cells is further reduced in older people, where musculoskeletal disorders are predominant, and in the case of chronic diseases such as osteoarthritis, the proliferation power of intrinsic cells is remarkably low. It has the disadvantage of not being able to exert.
  • stem cells are lost to the microfracture site after treatment with hyaluronic acid or by adding a collagen III/I membrane after surgery such as microfracture to maintain more stem cells in the lesion.
  • Treatments for autologous matrix induced chondrogenesis (AMIC) have been developed. However, it has not yet shown such a result, and rather, a problem in which an inflammatory reaction is induced has been found.
  • the present inventors made great efforts to discover new therapeutic agents for musculoskeletal disorders using platelet rich plasma (PRP) as an active ingredient.
  • PRP platelet rich plasma
  • a pharmaceutical composition including platelet-rich plasma (PRP), batroxobin, calcium, and tranexamic acid was devised, and when it was injected into the affected area, the intrinsic cells proliferated and symptoms were relieved and treated by the patient.
  • PRP platelet rich plasma
  • an object of the present invention is to provide a pharmaceutical composition for preventing or treating musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for preventing or treating musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • Another object of the present invention is to provide a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • Another object of the present invention is to provide a method for treating musculoskeletal disorders in which the composition is administered to humans or animals other than humans.
  • Another object of the present invention is to provide a novel use of a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid for the manufacture of a medicament for musculoskeletal disorders or a medicament for animals.
  • PRP platelet rich plasma
  • batroxobin a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid for the manufacture of a medicament for musculoskeletal disorders or a medicament for animals.
  • Another object of the present invention is a musculoskeletal disorder characterized in that it comprises platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients, and is used to proliferate the internal growth of intrinsic cells in the musculoskeletal system. It is to provide a composition and an adjuvant for treatment pretreatment.
  • PRP platelet-rich plasma
  • batroxobin a musculoskeletal disorder characterized in that it comprises platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients, and is used to proliferate the internal growth of intrinsic cells in the musculoskeletal system. It is to provide a composition and an adjuvant for treatment pretreatment.
  • Another object of the present invention is to provide a method for preparing a pharmaceutical composition for preventing or treating the musculoskeletal disorders.
  • the present invention provides a pharmaceutical composition for preventing or treating diseases of the musculoskeletal system, including platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for preventing or treating diseases of the musculoskeletal system, including platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid as active ingredients.
  • the mixed weight ratio of the platelet-rich plasma (PRP), bartroxine, calcium, and tranexamic acid may be 10-20:1-4:1:1-3.
  • the platelet-rich plasma may be autologous or allogeneic.
  • the platelet rich plasma may be 200 ⁇ 5,000 ⁇ 10 3 platelets / ml concentration.
  • the pharmaceutical composition may be a gel-type injection agent injected into the affected area.
  • the affected part may be a bone- tendon junction or a bone-ligament junction.
  • the affected part may be an intraosseous passage formed through multiple channeling.
  • the musculoskeletal disorders include muscle disease, tendon disease, cartilage disease, joint disease, ligament disease, nerve, muscle, tendon, ligament, bone, cartilage, cartilage plate (murmur), and joint damage. It may be any one or more selected from the group consisting of diseases induced by degeneration.
  • the musculoskeletal disorders include Achilles tendon disease, patellar tendon disease, lateral epicondylitis, medial epicondylitis, plantar fasciitis, rotator cuff tendon disease, tendonitis, tendinitis, tendinitis, hayitis, tendon damage, Tensile tendon, tendon rupture, tendon laceration, tendon detachment, cruciate ligament injury, ankle ligament injury, collateral ligament injury, ligament rupture, ligament sprain, chondromalacia, osteoarthritis, deformable arthrosis, chondroplastic dysplasia, degenerative arthritis, rheumatoid arthritis, osteomalacia , Fibrous osteomyelitis and aplastic bone disease may be any one or more selected from the group consisting of.
  • the pharmaceutical composition may be to promote the proliferation of endogenous cells.
  • Another object of the present invention is to provide a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • Another object of the present invention is to provide a method for treating musculoskeletal disorders in which a composition comprising platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid is administered to humans or animals other than humans.
  • a composition comprising platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid is administered to humans or animals other than humans.
  • PRP platelet rich plasma
  • Another object of the present invention is to provide a novel use of a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid for the manufacture of a medicament for musculoskeletal disorders or a medicament for animals.
  • PRP platelet rich plasma
  • batroxobin a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid for the manufacture of a medicament for musculoskeletal disorders or a medicament for animals.
  • the present invention is characterized in that it contains platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients, and is used to proliferate endogenous cells in the bone marrow of the musculoskeletal system.
  • PRP platelet-rich plasma
  • batroxobin a binder protein
  • calcium and tranexamic acid active ingredients
  • the present invention is characterized in that it contains platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients, and is used to proliferate endogenous cells in the bone marrow of the musculoskeletal system.
  • PRP platelet-rich plasma
  • batroxobin a protein-rich plasma
  • calcium and tranexamic acid as active ingredients, and is used to proliferate endogenous cells in the bone marrow of the musculoskeletal system.
  • the present invention provides a method of manufacturing a pharmaceutical composition for the prevention or treatment of musculoskeletal disorders, comprising the step of mixing platelet-rich plasma (PRP), batroxobin, calcium, and tranexamic acid.
  • PRP platelet-rich plasma
  • the platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid may be mixed in a weight ratio of 10-20:1-4:1:1-3.
  • the present invention provides a pharmaceutical composition for preventing or treating musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for preventing or treating musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • the present invention comprises platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients, and is used to propagate intrinsic cell growth in the musculoskeletal system.
  • PRP platelet rich plasma
  • batroxobin a composition for pretreatment of disease treatment
  • calcium and tranexamic acid as active ingredients, and is used to propagate intrinsic cell growth in the musculoskeletal system.
  • a composition for pretreatment of disease treatment preferably a composition for pretreatment of musculoskeletal restorative surgery.
  • composition of the present invention is a safe material that exhibits an effective therapeutic effect even if the number of intrinsic cells is small against musculoskeletal disorders caused by various causes, and in vivo for patients with rotator cuff tendon rupture. )
  • efficacy of rotator cuff tendon which can be used as a therapeutic agent for diseases such as musculoskeletal system damage or rupture.
  • Example 1 is a result of analyzing the fibroblast-colon formation unit (CFU-F assay) of bone marrow taken from patients before and after administration of the composition prepared in Example 1.
  • CFU-F assay fibroblast-colon formation unit
  • Example 2 is a result of fibroblast-colon formation unit analysis (CFU-F assay) before (P0) passage of cells isolated from bone marrow collected from a patient before and after administration of the composition of Example 1.
  • CFU-F assay fibroblast-colon formation unit analysis
  • FIG. 3 shows the results of fibroblast-colon formation unit analysis (CFU-F assay) after passage of cells isolated from bone marrow collected from a patient before and after administration of the composition of Example 1 (P1).
  • CFU-F assay fibroblast-colon formation unit analysis
  • Example 4 shows the surgical procedure of rotator cuff restoration using the composition of Example 1 and multiple channeling.
  • 5A is a rotator cuff magnetic resonance image (MRI) of a normal patient.
  • MRI magnetic resonance image
  • 5B is a rotator cuff magnetic resonance image (MRI) of a patient before surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, and a red arrow indicates a portion where rotator cuff is not observed due to rotator cuff tear It shows.
  • MRI magnetic resonance image
  • 5c is a rotator cuff magnetic resonance image (MRI) of a patient immediately after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, and the red arrow shows the passage of the surgical site formed by multiple channeling will be.
  • MRI magnetic resonance image
  • 6A is a rotator cuff magnetic resonance image (MRI) of a normal patient.
  • MRI magnetic resonance image
  • FIG. 6B is a rotator cuff magnetic resonance image (MRI) of a patient before surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, and rotator cuff was not observed due to rotator cuff tear.
  • MRI magnetic resonance image
  • FIG. 6C shows that the rotator cuff was regenerated as a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention.
  • MRI magnetic resonance image
  • FIG. 7A is a rotator cuff magnetic resonance imaging (MRI) of a patient with a medium size Rotator cuff tear before surgery.
  • MRI magnetic resonance imaging
  • Example 7B is a rotator cuff magnetic resonance image (MRI) of a patient immediately after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention.
  • MRI magnetic resonance image
  • Figure 7c is a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery of rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, it can be seen that the rotator cuff muscles have been regenerated. .
  • MRI magnetic resonance image
  • MRI magnetic resonance imaging
  • Figure 8c is a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, it can be seen that the rotator cuff muscles have been regenerated. .
  • MRI magnetic resonance image
  • FIG. 9A is a magnetic resonance imaging (MRI) of rotator cuff muscles of a patient with a large size of rotator cuff tear before surgery.
  • MRI magnetic resonance imaging
  • Figure 9b is a magnetic resonance image (MRI) of the patient's rotator cuff muscles after 1 year after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, the rotator cuff muscles are effectively regenerated Was confirmed.
  • MRI magnetic resonance image
  • FIG. 10 is a view schematically showing a process for measuring the chemotaxis of stem cells through a Boyden chamber analysis method.
  • FIG. 11 is a view schematically showing a process for measuring the chemotaxis of stem cells through the agarose chemotaxis analysis method.
  • Example 12 is a result of analyzing the composition of Example 1, antibiotics, G-CSF, SDF-1 ⁇ and IL-1 ⁇ on each stem cell, followed by Boyden chamber assay.
  • Example 13 is a result of analyzing the composition of Example 1, antibiotics, G-CSF, SDF-1 ⁇ and IL-1 ⁇ on each stem cell, followed by analysis using an agarose chemotaxis assay.
  • the present invention provides a pharmaceutical composition for preventing or treating musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for preventing or treating musculoskeletal disorders
  • calcium a pharmaceutical composition for preventing or treating musculoskeletal disorders
  • tranexamic acid as active ingredients.
  • the present inventors tried to find a substance that can be safely prescribed to exhibit an effective therapeutic effect even though there are few intrinsic cells against damage or diseases of the musculoskeletal system due to various causes.
  • platelet rich plasma PRP
  • batroxobin By using calcium and tranexamic acid as active ingredients, it was confirmed that the effect is very excellent in treating musculoskeletal disorders by restoring the proliferation and function of intrinsic cells without loss or loss of cells present in the lesion site.
  • the term “intrinsic cell” refers to cells present in the bone marrow of the lesion site, and includes stem cells, differentiated cells, cells between stem cells and differentiated cells, and preferably mainly. It may mean stem cells inherent in the bone marrow.
  • the term “musculoskeletal disorder” prophylactic or therapeutic activity refers to the activity of preventing, improving or treating diseases of the musculoskeletal system caused by damage or injury to the musculoskeletal system. Specifically alleviating the condition in which the subject is being treated, delaying its progression, accelerating its healing, improving its healing response or restoring the condition, alleviating pain associated with the damaged musculoskeletal system, increasing the range of motion of the affected joint, and It means to induce desirable clinical or therapeutic effects, such as restoring the proliferation and function of intrinsic cells, particularly stem cells, present at the recovery site.
  • the musculoskeletal disorders are nerves, Muscle, tendon, ligament, bone, cartilage, cartilage plate And degenerative or intractable diseases caused by damage or degeneration of joints and surrounding body tissues, and the like.
  • musculoskeletal disorders are caused by repetitive activities and unnatural postures in the young and middle ages, which are the main players of economic activity, but most of them have strong characteristics of degenerative diseases due to aging. And the disease is often accompanied by pain during work or rest depending on the condition.
  • the muscle disease may be a muscular dystrophy, for example, muscular atrophy, myopathy, muscle injury, muscular dystrophy, myasthenia, sarcopenia, Myoneural conductive disease, dermatomyositis, diabetic amyotrophy, nerve injury, amyotrophic lateral sclerosis (ALS), cachexia, degenerative muscle It includes, but is not limited to, any one or more selected from the group consisting of degenerative muscle diseases.
  • the tendon disease refers to a disease that is caused by injury, excessive exercise, infection by bacteria, or damage caused by other diseases, which is a fibrous tissue that connects muscle and bone.
  • the tendon is the patellar tendon, the tibialis anterior tendon, the Achilles tendon, the hamstring tendon, the semi tendon tendon tendon, the Park tendon tendon, the adductor tendon tendon, the adductor tendon tendon, the supraspinatus tendon, the submuscular tendon, the scapula tendon tendon, and the tendon tendon tendon (rotator cuff tendon complex) ), various flexor tendon and extensor tendons, quadriceps tendon, and posterior tibialis tendon of the limbs and limb joints, including the intestinal and extensor extensor tendons and the urinary and vertebral flexor tendons, and the like.
  • the tendon may be any one or more selected from the group consisting of a patellar tendon, a tibialis tendon tendon, an Achilles tendon, a hamstring tendon, a semi tendon tendon tendon, a tendon tendon tendon, an adductor tendon tendon, and an adductor tendon tendon.
  • the tendon tendon, submaxillary tendon, subscapularis tendon, wish muscle tendon (rotator cuff complex), flexor tendon, femoral muscle tendon, posterior tibialis tendon tendon, and quadriceps tendon tendon It can be one or more.
  • the tendon disease is Achilles tendon disease, patellar tendon disease, lateral epicondylitis, medial epicondylitis, plantar fasciitis, rotator cuff tendon disease, tendonitis, tendinitis, tendinitis, haysitis, tendon damage, tendon injury, tendon rupture, tendon It includes, but is not limited to, any one or more selected from the group consisting of thermal and dry peeling.
  • Ligaments to which the pharmaceutical composition of the present invention can be applied are not particularly limited as long as they are a common category in the art, for example, the occlusal bone and the occipital sealing ligament, the scapula and brachial ligament
  • the joint disease may be any one or more selected from the group consisting of degenerative arthritis, rheumatoid arthritis, fractures, damage to muscle tissue, plantar fasciitis, humeritis, calcifying myositis, non-union of fractures, and joint damage due to trauma.
  • the musculoskeletal disorders may include other neurological, muscular, tendon, ligament, bone, cartilage, cartilage plates (murine bones), and diseases induced due to joint damage and degeneration.
  • the composition of the present invention shows the efficacy of treatment of a rotator cuff tendon in an in vivo experiment on a patient with a rotator cuff tendon rupture, and a year after administration of the composition, (1) Pain was reduced, (2) the range of motion was improved, (3) muscle strength, and (4) six types of commonly used shoulder joints had significantly increased functional scores. 7).
  • the mixed weight ratio of the platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid of the present invention is 10-20:1-4:1:1-3. If some of the four components of the present invention are not included, a problem that a time required for gelation or shrinkage becomes long may occur.
  • the composition having the above-described problem is injected into a living body, it is not possible to induce recruitment or homing and proliferation of intrinsic stem cells, but rather, there is a concern to promote the loss of intrinsic cells, particularly stem cells. It is most preferred that the composition essentially comprises platelet-rich plasma, calcium, batroxobin and tranexamic acid.
  • the composition comprising platelet-rich plasma, calcium, batroxobin, and tranexamic acid according to the present invention as an active ingredient, as well as gelation and contraction, proliferation and function recovery of endogenous cells, including the secretion period of platelet-derived growth factors
  • the platelet-derived growth factor was secreted for a long period of time (1-14 days) in the experimental example described below as selected, and since then, a relatively high concentration of platelet-derived growth factor was secreted, but Bartlock When sorbine and tranexamic acid were not mixed, a significantly small amount of platelet-derived growth factor was secreted, and the secretion amount was rapidly decreased from 7 days, and it was confirmed that measurement was impossible from 10 days or only a very small concentration was detected. . That is, when some of the four components of the present invention are not included, the secretion period of the platelet-derived growth factor is significantly shortened by 2 times or more, so it may be difficult to achieve a
  • composition of the present invention is most preferred that the mixed volume ratio of calcium and batroxobin or tranexamic acid is 1:2, which is a mixture of calcium and batroxobin in 1:2, 2:2, and 1:4.
  • the 1:2 composition can be confirmed through the results showing the best effect in endogenous cell proliferation including stem cells (Experimental Example 4).
  • Platelet rich plasma which is an active ingredient of the pharmaceutical composition of the present invention, is not particularly limited as long as it is manufactured in a manner commonly used in the art, and in the present invention, a plateletpheresis system is a standard and consistent method. system with a leukoreduction set; COBE Spectra LRS Turbo, Caridian BCT, Lakewood, Colorado).
  • the platelet rich plasma may be autologous or allogeneic, and specifically, the platelet rich plasma is a plasma containing a lot of platelets in the plasma, and the lower portion of the plasma separated from whole blood using centrifugation. Platelets are the most abundant.
  • the platelet-rich plasma can be obtained by collecting whole blood from autologous or allogeneic species, followed by primary centrifugation with an ultra-high-speed centrifuge, and recovering the supernatant thereof. Centrifugation may be additionally performed according to the required concentration of the platelet-rich plasma. Since the platelet rich plasma (PRP) is preferably used at a concentration of 200 to 5,000 x 10 3 platelets/microL, when using concentrated platelet rich plasma, it is preferable to dilute it to fall within the category of the concentration.
  • PRP platelet rich plasma
  • the extracted platelet-rich plasma is a physically concentrated platelet, and the platelet-derived healing growth factors that substantially promote the proliferation and functional recovery of endogenous cells are not activated.
  • activation of platelets In order to activate and secrete large amounts of platelet-derived growth factors present in platelets, activation of platelets must be preceded.
  • the composition of the present invention is Barthoxobin and tranexamic acid, excluding calcium, must be included, and if any one of the above components is omitted or used alone, there is a problem that gelation or contraction does not occur, or the time required for gelation or contraction increases. Can occur.
  • active factors such as calcium chloride, thrombin, collagen, serotonin, adenosine diphosphate (ADP) and acetylcholine (ACH)
  • the composition of the present invention is Barthoxobin and tranexamic acid, excluding calcium, must be included, and if any one of the above components is omitted or used alone, there is a problem that gelation or contraction does not occur, or the time required for gelation or contraction increases. Can occur.
  • the composition having the above-described problem is injected into a living body, it is not possible to induce recruitment or homing and proliferation of the endogenous stem cells, but rather, there is a fear of promoting the loss of the endogen
  • the formulation form of the composition of the present invention is a gel, and may be a gel-like injection injected into the affected area.
  • the composition of the present invention may be applied to a desired site through a syringe and a needle or an insertion tube, and the composition of the present invention may be a bone- tendon junction or a bone-ligament junction when applied to the affected area. That is, the position in which the composition of the present invention is administered should be surgically prepared, and may be performed through a process such as penetration, crushing, or piercing in the affected area, and preferably, an intraoral hole formed through multiple channeling in the affected area. Or it may be a passage.
  • compositions comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid. it means. Since the composition according to the present invention does not have side effects on the human body even when administered in an excessive amount, the upper limits of the amount of platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid included in the composition of the present invention are selected by those skilled in the art within an appropriate range. It can be done.
  • Suitable dosages of the pharmaceutical compositions of the present invention vary by factors such as the patient's age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion, and response sensitization, and usually a skilled physician desires Effective dosages for treatment or prevention can be easily determined and prescribed. According to a preferred embodiment of the present invention, the dosage of the pharmaceutical composition of the present invention is 0.001-100 mg/kg once.
  • the present invention provides a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • PRP platelet rich plasma
  • batroxobin a pharmaceutical composition for animals other than humans for the prevention or treatment of musculoskeletal disorders, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid as active ingredients.
  • the present invention provides a novel use of a composition comprising platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid for the manufacture of a medicament for the prevention or treatment of musculoskeletal disorders, or an animal medicament.
  • PRP platelet rich plasma
  • batroxobin a composition comprising platelet rich plasma (PRP), batroxobin, calcium, and tranexamic acid for the manufacture of a medicament for the prevention or treatment of musculoskeletal disorders, or an animal medicament.
  • Another object of the present invention is a method for treating musculoskeletal disorders, comprising administering a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid to a human or an animal other than a human in a therapeutically effective amount.
  • PRP platelet rich plasma
  • batroxobin a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid
  • composition according to the present inventors can safely be prescribed to exhibit an effective therapeutic effect even when there are almost no intrinsic cells against damage or diseases of the musculoskeletal system, platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid
  • PRP platelet rich plasma
  • batroxobin a protein containing a chimpanzee
  • calcium and tranexamic acid By using as an active ingredient, it can be usefully used to treat and prevent musculoskeletal disorders by restoring the proliferation and function of intrinsic cells without loss or loss of cells present in the lesion site.
  • the musculoskeletal disorders include nerves, muscles, tendons, ligaments, bones, cartilage, cartilage plaques (joint bones), joints and surrounding body tissues, and degenerative or intractable diseases induced by their damage or degeneration. , It is not particularly limited thereto, and more specific details will be referred to the description of the pharmaceutical composition.
  • the formulation form of the composition of the present invention is a gel, and may be a gel-like injection injected into the affected area.
  • the composition of the present invention may be applied to a desired site through a syringe and a needle or an insertion tube, and the composition of the present invention may be a bone- tendon junction or a bone-ligament junction when applied to the affected area. That is, the position in which the composition of the present invention is administered should be surgically prepared, and may be performed through a process such as penetration, crushing, or piercing in the affected area, and preferably, an intraoral hole formed through multiple channeling in the affected area. Or it may be a passage.
  • the amount of the pharmaceutical, veterinary pharmaceutical composition or veterinary medicine used may vary depending on the age, sex, and weight of the patient or the animal to be treated, and above all, the condition of the individual to be treated, a specific category or type of the disease to be treated, and administration The route will depend on the nature of the therapeutic agent used.
  • the pharmaceutical, veterinary pharmaceutical composition or veterinary pharmaceutical is appropriately selected according to the absorption of the active ingredient in the body, the rate of excretion, the age and weight of the patient or the animal to be treated, the sex and condition, and the severity of the disease to be treated. It is preferable to administer it at 0.001-100 mg/kg once.
  • the unit dosage form formulated in this way can be administered several times at regular time intervals as necessary.
  • the pharmaceutical, veterinary pharmaceutical composition or veterinary pharmaceutical may be administered individually as a prophylactic or therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with a conventional therapeutic agent.
  • the method of treating the musculoskeletal disorder is to administer the composition parenterally to humans, or to animals other than humans, particularly mammals, for example, parenterally administering the composition to a desired site through a syringe and a needle or an insertion tube.
  • the affected area may be a bone- tendon junction or a bone-ligament junction. That is, the position in which the composition of the present invention is administered should be surgically prepared, and may be performed through a process such as penetration, crushing, or piercing in the affected area, and preferably, an intraoral hole formed through multiple channeling in the affected area. Or it may be a passage.
  • the dosage, administration method, and frequency of administration for the treatment may refer to the dosage, administration method, and frequency of administration of the pharmaceutical composition, medicine, pharmaceutical composition for animals, or pharmaceutical for animals.
  • the present invention includes platelet-rich plasma (PRP), batroxobin, calcium, and tranexamic acid as active ingredients, and is used to proliferate intrinsic cells in the musculoskeletal system. It is possible to provide a composition for pretreatment and an auxiliary agent.
  • The'treatment for the treatment of musculoskeletal disorders' includes drug administration, treatment or surgery to treat the musculoskeletal disorders, and the treatment for treating the musculoskeletal disorders is not particularly limited, but preferably a procedure or surgery for restoring the musculoskeletal disorders. It may be, most preferably musculoskeletal reconstruction.
  • the present invention is to perform the surgery for the treatment of musculoskeletal disorders so as to open the above problems, to maximize the therapeutic effect of the patient or reduce the treatment period to the maximum even if the content of intrinsic cells inherent in the affected area is low. It can, and to increase the success rate of the procedure or surgery, to reduce the likelihood of recurrence after treatment, relates to a composition for the pretreatment or auxiliary of the procedure or surgery to restore the musculoskeletal system. Most preferably, it may be a composition for pretreatment or auxiliary treatment of tendon or ligament restoration.
  • the composition for pretreatment of musculoskeletal disorders for the treatment of musculoskeletal disorders includes platelet rich plasma (PRP), barthoxobin, calcium and tranexamic acid, and Rapidly maximizes and continuously maintains the proliferation and recovery of intrinsic cells in affected areas (tendons or ligaments, or joints of bones) with significantly low concentrations, making treatment using its regenerative mechanism safe, simple, and efficient
  • PRP platelet rich plasma
  • barthoxobin calcium and tranexamic acid
  • the musculoskeletal surgery or musculoskeletal restorative surgery includes general surgery to treat and restore degenerative or refractory diseases induced by muscle, tendon, ligament, cartilage, joints, and surrounding body tissues, or damage or degeneration.
  • tendon or ligament reconstruction arthroscopic reconstruction, minimal incision reconstruction, local tendon dislocation, local tendon replacement, tendon transfer, phototomy muscle transfer, joint sac transfer, joint replacement surgery, half replacement, reverse shoulder replacement, ligament replacement It may be any one or more selected from the group consisting of reconstruction, acroplasty, hip arthroplasty, and femur fracture surgery.
  • the present invention may provide a treatment method comprising administering a composition of the present invention to a patient before or after receiving surgery or restoration for the treatment of musculoskeletal disorders. It can be administered in combination with or before receiving surgery or restoration to treat musculoskeletal disorders.
  • the surgery or restoration or treatment for the treatment of diseases of the musculoskeletal system are nerves, muscles, tendons, ligaments, cartilage, cartilage plates (furrows), joints and surrounding body tissues, or attached or reattached procedures, but are not particularly limited thereto.
  • composition of the present invention may be injected into the affected area, and the affected area may be one or more minute holes or passages near the junction that joins the tendon or ligament formed through multiple channeling (or microfracture) procedures, and the procedure
  • the composition of the present invention may be administered through a hole or passage formed through.
  • the present invention provides a method of manufacturing a pharmaceutical composition for the prevention or treatment of musculoskeletal disorders, comprising the step of mixing platelet-rich plasma (PRP), batroxobin, calcium, and tranexamic acid,
  • the platelet-rich plasma (PRP), batroxobin, calcium and tranexamic acid are preferably mixed in a weight ratio of 10-20:1-4:1:1-3.
  • the present invention provides a kit for treating diseases of the musculoskeletal system, including platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid.
  • PRP platelet rich plasma
  • batroxobin a member of the musculoskeletal system
  • calcium a member of the musculoskeletal system
  • tranexamic acid a member of the musculoskeletal system
  • the composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid includes platelet rich plasma in a predetermined concentration.
  • concentration of platelet-rich plasma may be determined in advance depending on the characteristics of the musculoskeletal damage and disease being treated.
  • the kit may further include a syringe.
  • the syringe is a composition comprising platelet rich plasma (PRP), batroxobin, calcium and tranexamic acid for application to the surgical site, for example, the musculoskeletal system (muscle, tendon, ligament, cartilage, joints and surrounding body tissue) Infusion or administration can be facilitated.
  • the kit may also include instructions for use.
  • Platelet rich plasma was isolated using a plateletpheresis system with a leukoreduction set (COBE Spectra LRS Turbo, Caridian BCT, Lakewood, Colorado). The platelet concentration was 1,400 x 10 3 per microliter, and an anticoagulant was used as an ACD-A solution.
  • platelet-rich plasma isolated through the above-described procedure was concentrated and stored at a concentration of 5,000 ⁇ 10 3 platelets/microL. Diluted to the required concentration according to the experiment was used.
  • hepatitis B and C tests Prior to use in the experiment, hepatitis B and C tests, human immunodeficiency virus tests and syphilis tests were performed to evaluate the safety of the recovered allogeneic platelet-rich plasma.
  • the purpose of this study was to analyze the gelation characteristics according to the mixing ratio of the composition containing platelet-rich plasma, calcium, batroxobin, and tranexamic acid.
  • Platelet-rich plasma was used that was collected and stored from Preparation Example 1, and was specifically diluted to a concentration of 1,000 to 1,400 x 10 3 platelets/microL.
  • Calcium (Ca) is a calcium gluconic acid purchased from Choongwae Pharmaceutical.
  • Batroxobin (BTX) was purchased by boat lopazero and Hallym Pharm.
  • Tranexamic acid (TXA) was purchased from Daehan Pharm.
  • Thrombin (THRB) was purchased from Deyeon Pharmaceutical as a thrombin freeze-dried powder, and a solution diluted to a concentration of 166.67 IU was used.
  • Platelet-rich plasma, calcium, batroxobin and tranexamic acid were mixed in various volumes as in Table 1 to prepare compositions of Examples and Comparative Examples.
  • Hyaluronic acid was purchased from LG Life Sciences.
  • Example 1 2 0.2 0.1 0.23 - - Example 2 2 0.2 0.2 0.24 - - Example 3 2 0.4 0.1 0.25 - - Example 4 2 0.4 0.2 0.26 - - Example 5 2 One 0.1 0.31 - - Example 6 2 One 0.2 0.32 - - Comparative Example 1 2 0.2 0 0 - - Comparative Example 2 2 0.2 0 0.22 - - Comparative Example 3 2 0.2 0.1 0 - - Comparative Example 4 2 0.2 0.2 0 - - Comparative Example 5 2 0.4 0 0 - - Comparative Example 6 2 0.4 0.1 0 - - Comparative Example 7 2 0.4 0.2 0 - - Comparative Example 8 2 0.4 0 0.24 - - Comparative Example 9 2 One 0 0.31 - - Example 6 2 One 0.2 0.32 - - Comparative Example 1 2 0.2 0 0 - - Comparative Example 2 2 0.2 0 0.22 - - Comparative
  • Platelet-rich plasma recovered from Preparation Example 1, whole blood and platelet depletion plasma (PPP) were separated, and the whole was analyzed using an automated blood cell analyzer (XE-2100, Sysmex Corp, Kobe, Japan).
  • Table 2 shows the average platelet, erythrocyte, and leukocyte concentrations of platelet-rich plasma measured by performing complete blood counts. Data are expressed as mean ⁇ standard deviation.
  • Platelet concentration ( ⁇ 10 3 / ⁇ l) Red blood cell concentration ( ⁇ 10 6 / ⁇ l) Leukocyte concentration ( ⁇ 10 6 / ⁇ l) Fibrinogen concentration (mg/dl) whole blood 207.33 ⁇ 14.22 4.80 ⁇ 0.39 7.64 ⁇ 2.06 244.95 ⁇ 61.57 Platelet-rich plasma 1,050.00 ⁇ 234.80 0.18 ⁇ 0.07 0.03 ⁇ 0.03 258.18 ⁇ 58.86 Platelet deprivation plasma 4.75 ⁇ 2.22 0.00 ⁇ 0.00 0.01 ⁇ 0.00 236.10 ⁇ 82.22
  • the average platelet, erythrocyte and leukocyte concentrations of platelet-rich plasma are 1,050.00 ⁇ 234.80 ⁇ 10 3 / ⁇ l, 0.18 ⁇ 0.07 ⁇ 10 6 / ⁇ l, and 0.03 ⁇ 0.03 ⁇ 10 6 / ⁇ l, respectively. It was confirmed.
  • compositions comprising platelet rich plasma, calcium, batroxobin and tranexamic acid prepared from Examples 1-6 and Comparative Examples 1-16.
  • Table 3 shows the gelation time and contraction time of the composition.
  • the gelation time is a measurement of the time from the time of preparation of the composition to the formation of a gel
  • the contraction time is the measurement of the time from the time of manufacture of the composition until the gel is contracted.
  • Example 1 2 0.2 0.1 0.23 - 4.5 ⁇ 1.0 23.8 ⁇ 4.8
  • Example 2 2 0.2 0.2 0.24 - 7.3 ⁇ 1.5 17.0 ⁇ 1.2
  • Example 3 2 0.4 0.1 0.25 - 5.3 ⁇ 1.0 23.8 ⁇ 4.8
  • Example 4 2 0.4 0.2 0.26 - 3.8 ⁇ 0.5 18.0 ⁇ 1.6
  • Example 5 One 0.1 0.31 - 3.3 ⁇ 1.0 24.5 ⁇ 3.3
  • Example 3 2 0.2 0.1 0 - 4.5 ⁇ 1.0 20.3 ⁇ 7.1
  • na means that no shrinkage occurred during the measurement period.
  • composition prepared by mixing only bartroxine in platelet-rich plasma (PRP) (Comparative Examples 1, 5, 9) formed a gel-like formulation, but the contraction rate was significantly more than 6 times that of the composition of Example 1-5. It was confirmed that it did not slow down or contract.
  • compositions of Comparative Examples 3, 4, 6, 7, 11, and 12 were prepared by mixing only barthoxine and calcium in platelet-rich plasma (PRP), and both gelation and shrinkage were equivalent to those of Examples 1-5. Level. However, in later experiments, it can be confirmed that the secretion or expression of blood-derived growth factors is small or significantly lower in stem cell (intrinsic cell) proliferation and function recovery.
  • PRP platelet-rich plasma
  • the composition having the above-described problem is injected into a living body, it is not possible to induce recruitment or homing and proliferation of intrinsic stem cells, but rather, there is a fear of promoting the loss of stem cells (endogenous cells).
  • the composition consists of platelet-rich plasma, calcium, batroxobin and tranexamic acid, most preferably mixed within the above-mentioned range.
  • the concentration of platelet-derived growth factor (Human PDGF-AB ELISA, ELH-PDGF-2; RayBiotech, Norcross, Georgia, USA) is a wash-out method considering the situation in which growth factors are washed and removed by body fluids in the human body. It was shown in Table 4 by measuring the platelet-derived growth factor concentration (ng/ml) according to the enzyme-linked immunosorbent assay (ELISA) method. At this time, a negative control was used that contained 2 ml of platelet-rich plasma recovered from Preparation Example 1.
  • Example 1 (PRP+Ca+BTX+TXA) Comparative Example 3 (PRP+Ca+BTX) Comparative Example 14 (PRP+Ca+THRB) Comparative Example 13 (PRP+Ca) Negative control (PRP only) 1 day 1.44 1.75 0.42 0.57 1.18 P 0.02 0.02 0.001 0.009 2 days 1.65 2.04 1.22 1.07 1.9 P 0.104 0.314 0.039 0.069 5 days 1.95 1.96 0.82 0.5 0.42 P 0.036 0.032 0.144 0.65 7 days 0.99 1.25 0.11 0.5 0.54 P 0.068 0.071 0.02 0.008 10 days 0.85 1.34 0 0.49 0.3 P 0.084 0.04 0.047 0.103 14 days 0.68 1.68 0 0.51 0.34 P 0.015 0.069 0.026 0.04
  • P value is the difference for negative control concentration
  • compositions prepared from Example 1 and Comparative Example 3 secreted significantly more platelet-derived growth factors for a longer period of time (1-14 days) than the negative control group, and thereafter had a relatively high concentration of platelet-derived growth factors compared to the negative control group. Secretion was confirmed.
  • the gelation time and the contraction time are short, and the composition is formed with sufficient gel (Examples 1-3, Comparative Examples 3-4, 6, 13-15, 17, 18) Stem cell proliferation ability was compared.
  • the non-gelled composition was injected into the lesion site in vivo, it was excluded because it had a problem of being unable to stay in the lesion site, absorbed, disintegrated, or lost.
  • stem cells The proliferation ability of stem cells was analyzed as follows. First, bone marrow-derived stem cells were dispensed at a density of 5X10 2 cells/cm 2 at the bottom of a 24-well culture dish, and 10% fetal bovine serum and antibiotics (HyClone, Thermo Fisher Scientific Inc., Waltham) for 24 hours. , MA, USA). After preparing the composition by the wash out method for each time point as in Examples 1-3 and Comparative Examples 3-4, 6, 13-15, 17, 18, the cells were treated at each time point with 10% of the medium volume. Did. When processing the composition was used LG DMEM medium containing 2% fetal bovine serum and antibiotics.
  • the negative control was used to contain 2 ml of platelet-rich plasma recovered from Preparation Example 1, and the positive control was used to contain 2 ml of 2% fetal bovine serum. Culture medium was changed every 3 days. The proliferation of stem cells was measured using WST colorimetric analysis method (Easy Cytox, Daeil Lab Service) on the 2nd, 5th, 7th and 14th days after treatment. All experiments were repeated 3 times, and the results are shown in Table 5.
  • the data in Table 5 is calculated by calculating the fold-change for the measured value of the 0 day positive control.
  • the positive control group showed a value of 1.33 or higher from day 2, whereas the negative control group administered only with platelet-rich plasma decreased stem cell proliferation on day 2, but increased from day 5.
  • compositions of Comparative Examples 18 and 19 to which hyaluronic acid and calcium were added exhibited significantly lower stem cell proliferation than the negative control.
  • compositions prepared from Examples 1 to 3 significantly increased the proliferation of stem cells compared to the positive control group and the negative control group.
  • the composition of Example 1 in which the mixed volume ratio of batroxobin and calcium was 2:1 was the most stem cell. It was confirmed that the increase of the proliferation of. Specifically, it can be seen that the composition of Example 1 increased 1.7 times on the 5th day, increased 1.92 times on the 7th day, and increased 1.36 times on the 14th day.
  • compositions of Comparative Examples 3, 4, and 6 were tranexamic acid-excluded compositions, and showed significantly lower stem cell proliferative capacity than each of the examples mixed at the same mixing ratio.
  • a mixed volume ratio of calcium and batroxobin or tranexamic acid is 1:2.
  • a composition of 1:2 shows the best effect among the mixtures of calcium and batroxobin in 1:2, 2:2, and 1:4.
  • a mixed volume ratio of calcium and barthoxobin is most preferably 1:2.
  • a composition comprising platelet-rich plasma, calcium, batroxobin, and tranexamic acid prepared from Example 1 was administered into the proximal humerus, to determine whether it is possible to enhance proliferation and function of endogenous cells in the bone marrow.
  • a patient who is scheduled for proximal humeral surgery is seated on a chair, and the upper arm to be operated is rotated slightly in the direction of the patient's abdomen, and then the site to be injected and an ultrasound transducer are used as a betadine solution
  • the sterilized ultrasound gel was applied to the probe, and then placed on the proximal region of the humerus, and then the field of view of the large nodule was secured.
  • the 18G spinal needle was approached from the outside of the proximal humerus, pierced the cortical bone, and then inserted into the proximal humerus.
  • the fibroblast-colonization unit of bone marrow stem cells collected from the patient was analyzed to analyze the effects of proliferation and function enhancement of endogenous cells.
  • Fibroblast-colonization unit analysis was performed as follows. First, before administering the composition of Example 1, bone marrow (control) was collected at the lesion site, and 3 to 7 days after administration to the lesion site, bone marrow at the lesion site (test group) and bone marrow at the normal site ( Control group). Bone marrow mononuclear cells were separated from the bone marrow, and FIG. 1 (Table 6) was 2 ⁇ 10 4 cells/cm 2 and FIG. 2 (Table 7, P0) was 1 ⁇ 10 5 cells/cm 2, respectively. Dispense into 6-well culture dish. After 14 days, CFU-F analysis was performed immediately without subculture. FIG. 3 (Table 7, P1) was passaged once and dispensed into a 6-well culture dish at a density of 1 ⁇ 10 2 cells/cm 2 , and CFU-F analysis was performed after 14 days.
  • CFU-F analysis was performed by the following method.
  • the cells were washed with DPBS (Dulbecco's phosphate buffered saline), fixed with 4% paraformaldehyde, and stained with 0.1% crystal violet solution for 1 hour. When staining was completed, washing was performed with running water and cell colonies were observed. 50 or more fibroblast-shaped cell colonies are defined as fibroblast-colon forming units, and the number and size of fibroblast-colon forming units are measured and are shown in Table 6 and FIG. 1. Data are expressed as mean ⁇ standard deviation.
  • Example 1 is a result of analyzing the fibroblast-colon formation unit (CFU-F assay) of bone marrow taken from patients before and after administration of the composition prepared in Example 1.
  • CFU-F assay fibroblast-colon formation unit
  • the size of the fibroblast-colonized unit was 5.37 ⁇ 0.72 ⁇ , and in the experimental group, it increased by 1.58 times to 8.49 ⁇ 0.75 mm2.
  • Figure 2 is the result of the analysis of the fibroblast-colon formation unit (CFU-F assay) of the bone marrow collected from the patient before and after administration of the composition of Example 1 before the passage (P0)
  • Figure 3 is passage After (P1) is the result of analyzing the fibroblast-colon forming unit (CFU-F assay) of bone marrow collected from the patient before and after administration of the composition of Example 1.
  • the average frequency of fibroblast-colon units before and after passage of the composition of Example 1 prior to passage (P0) was 39.67 (per 1/2,520.8 divided bone marrow stem cells), respectively. 71.67 (per 1 / 1,395.3 divided bone marrow stem cells). After administration, it was confirmed that the increase was 1.81 times.
  • the average frequency of fibroblast-colon units before and after administration of the composition of Example 1 was 60.33 (1/1.66 per divided bone marrow stem cell), respectively, and 73.33 per 100,000 cells. (Per 1/136 aliquoted bone marrow stem cells). After administration, it was confirmed that the increase was 1.22 times.
  • the size of the fibroblast-colonial unit was also confirmed to increase 1.58 times after administration of the composition of Example 1.
  • administration of the composition of Example 1 according to the present invention into the bone marrow is effective in enhancing proliferation and function of endogenous cells of the bone marrow.
  • the effect persisted even after passage. That is, it can be seen that the composition of Example 1 of the present invention shows a long-term effect rather than a one-time short-term effect on endogenous cells.
  • Example 1 To investigate the effect on the results of rotator cuff restoration when the composition of Example 1 was injected into the humeral bone marrow prior to treatment in rotator cuff disease.
  • Rotator cuff reconstruction was performed under lateral decutibus under general anesthesia. The patient was visited for rotator cuff disease, and the composition of Example 1 was injected into the head and intersegment of the humerus 5 days before rotator cuff surgery. By performing multiple channeling on the rotator cuff attachment, rotator cuff restoration was performed by promoting stem cell access to the rotator cuff attachment.
  • multiple channeling As a communication route between the bone marrow of the proximal humerus and the rotator cuff attachment, multiple channeling, a type of bone marrow stimulation procedure, was used. Multiple channeling was performed centering on the proximal humeral region of the proximal humerus using a previously reported method. Through the channel, it creates a passage through which the medullary canal of the humerus and the rotator cuff attachment in the large nodule are connected. Rather than using a short and thick auger, using a long and thin auger-shaped punch is more preferable because it can form a connection passage more reliably and also reduces the risk of fracture.
  • Channeling can be performed on both the large nodule region and the region requiring healing and regeneration while rotating the upper arm inward and outward.
  • the distance between the channels is about 4-5 mm, and the depth of the channels is 10 mm or more.
  • marrow droplets rising from the bone marrow can be confirmed.
  • conventional rotator cuff repair was performed. Each surgical procedure is shown in FIG. 4.
  • Clinical results were measured using (1) pain, (2) range of motion, (3) muscle strength, and (4) six commonly used shoulder joint function scores.
  • the 8 patients for conducting this clinical evaluation are as follows. Magnetic resonance imaging was performed in 6 patients (75%), the average age was 60 years old, 5 men and 3 women. The average symptom duration was 20 months. Three were rotator cuff tears, and five were full-thick ruptures (1, 3, and 1, respectively).
  • the range of motion of the joint was measured using an protractor, active anterior flexion, abduction, external rotation, and internal rotation. Muscle strength was measured using an electronic measuring instrument (CHS, CAS, Korea) in the supraspinatus, subscapularis, and subscapularis, and the results are shown in Table 10.
  • CHS electronic measuring instrument
  • the average muscle strength of the supraspinatus was 5.50 ⁇ 7.07 pounds prior to performing multiple channeling & rotator cuff reconstruction administration with the composition of Example 1 according to the present invention, and 2.9 times at 16.00 ⁇ 4.81 pounds after surgery. Increased.
  • the average muscle strength of the submuscular muscle increased 2.2 times, and the average muscle strength of the subscapular muscle increased 1.9 times.
  • the administration of the composition prepared in Example 1 of the present invention significantly restores the muscle strength of the supraspinatus, subfascia, and subscapularis.
  • the function of the shoulder joint was evaluated using the American Society of Shoulder and Shoulders (ASES score), the Constant score, the UCLA score, the brachial-joint-hand failure score (DASH), and the shoulder pain and disability index (SPADI). , Shown in Table 12.
  • ASES score American Society of Shoulder and Shoulders
  • Constant score the Constant score
  • UCLA score the Constant score
  • DASH brachial-joint-hand failure score
  • SPADI shoulder pain and disability index
  • Example 1 As shown in Table 12, after performing multiple channeling & rotator cuff restorations in which the composition of Example 1 according to the present invention was administered, the shoulder function (ASES score, the Constant score), It was confirmed that UCLA score, brachial-joint-hand disorder score (DASH), and shoulder pain and disability index (SPADI) were significantly increased.
  • UCLA score brachial-joint-hand disorder score
  • SPADI shoulder pain and disability index
  • FIG. 5A is a rotator cuff magnetic resonance image (MRI) of a normal patient
  • FIG. 5B is a rotator cuff magnetic resonance image (MRI) of a patient before surgery to perform rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention.
  • the red arrow indicates the part where rotator cuff is not observed due to rotator cuff tear
  • 5c is a rotator cuff magnetic resonance image (MRI) of a patient immediately after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, and the red arrow shows the passage of the surgical site formed by multiple channeling will be.
  • Figure 5d is a rotator cuff magnetic resonance imaging (MRI) of a patient after 1 year after surgery for rotator cuff reconstruction using the composition of Example 1 and multiple channeling according to the present invention, and the red arrow shows the reconstructed rotator cuff tendon. Notation.
  • MRI magnetic resonance imaging
  • the muscular state of the rotator muscle was evaluated by measuring fat infiltration and muscle atrophy in the outermost cross section where the scapular spine meets the oligodendum of the T1-emphasized oblique plane of the magnetic resonance image. Fat infiltration was evaluated by the Gutalia rating, and the muscular atrophy was evaluated using the tangent sine and the supraspinatal cross-sectional area, and the results are shown in Table 14.
  • FIG. 6A is a rotator cuff magnetic resonance image (MRI) of a normal patient
  • FIG. 6B is a rotator cuff magnetic resonance image (MRI) of a patient before surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention.
  • MRI rotator cuff magnetic resonance image
  • FIG. 6c is a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, it can be seen that rotator cuff muscles are regenerated. .
  • Ji Ji-yoon was rated as Gutalier. Before surgery, it was graded 3, 2, 1 and 1 in the supraspinatus, subscapularis, subscapularis, and extensor muscles, respectively, but it was confirmed that 2, 2, 1, and 1 improved after 1 year from surgery. In the case of muscular dystrophy evaluation using a tangent signal, it was grade 2 before surgery, but improved to grade 1 after 1 year from surgery. The cross-sectional area of the supraspinatus was 298.9 mm 2 before surgery, but improved to 326.3 mm 1 year after surgery.
  • the composition comprising platelet-rich plasma, calcium, batroxobin, and tranexamic acid of the present invention has an activity of effectively enhancing intrinsic cell proliferation in the bone marrow in rotator cuff surgery, and damage to the musculoskeletal system such as tendons and ligaments. It was confirmed that it has efficacy as a therapeutic agent for treating diseases.
  • Rotator cuff reconstruction was performed in patients with medium-sized rotator cuff tear of medium size (Fig. 7) and in patients with large-sized rotator cuff tear of medium size (Fig. 8). In doing so, it was intended to analyze the effect on the results when multiple channeling in which the composition of Example 1 was injected into the humeral bone marrow before implementation.
  • Rotator cuff reconstruction was performed under lateral decutibus under general anesthesia. This study was performed on patients who had rotator cuff disease, and rotator cuff restoration using multiple channeling was performed as follows. First, systematic exploratory arthroscopy was performed in the systemic glenohumeral joint and subacromial space, and appropriate treatment was performed if necessary. The worn-out parts were removed from the rotator cuff tear site, and the anteroposterior and lateral size of the rupture, the number of affected guns, and the visual grade of the gun were recorded.
  • Tendons including superior capsulotomy, coracohumeral ligament release, and medialization of the supraspinatus insertion, if the rupture tendon excursion is not large mobilization).
  • Soft tissue was removed from the rotator cuff attachment of the large nodule, and removal of the calcified fibrocartilage layer was performed to a minimum.
  • multiple channeling As a communication route between the bone marrow of the proximal humerus and the rotator cuff attachment, multiple channeling, a type of bone marrow stimulation procedure, was used. Multiple channeling was performed centering on the proximal humeral region of the proximal humerus using a previously reported method. Through the channel, it creates a passage through which the medullary canal of the humerus and the rotator cuff attachment in the large nodule are connected. Rather than using a short and thick auger, using a long and thin auger-shaped punch is more preferable because it can form a connection passage more reliably and also reduces the risk of fracture.
  • Channeling can be performed on both the large nodule region and the region requiring healing and regeneration while rotating the upper arm inward and outward.
  • the distance between the channels is about 4-5 mm, and the depth of the channels is 10 mm or more.
  • FIG. 7A is a rotator cuff magnetic resonance image (MRI) of a patient with a medium size rotator cuff tear before surgery
  • FIG. 7B shows multiple channeling with the composition of Example 1 according to the present invention. It is a patient's rotator cuff magnetic resonance imaging (MRI) immediately after surgery.
  • Figure 7c is a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery of rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, it can be seen that the rotator cuff muscles have been regenerated. .
  • Figure 8a is a rotator cuff magnetic resonance image (MRI) of a patient with a large size of rotator cuff tear (Rotator cuff tear of massive size) before surgery
  • Figure 8b is a multiple channel and the composition of Example 1 according to the present invention It is a patient's rotator cuff magnetic resonance imaging (MRI) immediately after surgery
  • Figure 8c is a rotator cuff magnetic resonance image (MRI) of a patient 1 year after surgery for rotator cuff restoration using the composition of Example 1 and multiple channeling according to the present invention, it can be seen that the rotator cuff muscles have been regenerated. .
  • FIG. 9A is a magnetic resonance imaging (MRI) of the rotator cuff muscles of a patient with a large size of rotator cuff tear before surgery
  • FIG. 9B is a composition of Example 1 according to the present invention.
  • a magnetic resonance imaging (MRI) of the patient's rotator cuff muscles after 1 year after surgery to perform rotator cuff restoration using multiple channeling confirmed that the rotator cuff muscles were effectively regenerated.
  • the composition comprising platelet-rich plasma, calcium, batroxobin, and tranexamic acid of the present invention effectively promotes endorotar cell proliferation in bone marrow by effectively promoting rotator cuff disease of various sizes. It was confirmed that it has an effect of increasing. That is, it was confirmed that the composition of the present invention is effective as a therapeutic agent for treating musculoskeletal damage and diseases such as tendon and ligament and as an auxiliary treatment agent for musculoskeletal restorative surgery.
  • the chemotaxis of stem cells of the composition prepared from Example 1 was evaluated by the following two methods. 10 is a view schematically showing the process of measuring the chemotaxis of stem cells through the Boyden chamber analysis method, Figure 11 is a schematic diagram showing the process of measuring the chemotaxis of stem cells through the agarose chemotaxis analysis method It is a drawing.
  • Example 1 x 10 4 bone marrow stem cells were dispensed into the upper insert portion of the transwell, and cultured in LG DMEM medium containing antibiotics (HyClone, Thermo Fisher Scientific Inc., Waltham, MA, USA) for 24 hours. After 24 hours, the composition of Example 1 was treated with 10% of the medium volume by a wash-out method in DMEM medium containing antibiotics on the underside of the transwell. At this time, LG DMEM without FBS was used as a negative control, and G-CSF 100 ng/ml, SDF-1 ⁇ 100 ng/ml, and IL-1 ⁇ 100 ng/ml were used as positive controls for chemotaxis. .
  • Example 12 is a result of analyzing the composition of Example 1, antibiotics, G-CSF, SDF-1 ⁇ and IL-1 ⁇ on each stem cell, followed by Boyden chamber assay.
  • agarose gel was prepared in a 6-well plate, and then 3 holes were drilled in each well so that the interval was 5 mm with a 5 mm skin biopsy punch.
  • 1 X 10 4 bone marrow stem cells were dispensed into LG DMEM medium containing 10% FBS and antibiotics in the center to allow attachment for 5 hours. After 5 hours, LG DMEM medium containing only antibiotic was replaced, LG DMEM medium containing only antibiotic as a control was added to the left hole, and wash-out was performed on DMEM medium containing antibiotic in the right hole. The composition of 1 was treated with 50% of the medium volume.
  • G-CSF 100ng/ml, SDF-1 ⁇ 100ng/ml, and IL-1 ⁇ 100ng/ml were compared. After 72 hours, fixed with 4% paraformaldehyde, stained with DAPI, and observed with a fluorescence microscope. Cells moved to the left and right were photographed using a fluorescence microscope. In this case, the number of cells was counted and quantified only when they moved 100 um or more based on each end of the hole, and shown in Table 15. All experiments were repeated 3 times.
  • Example 13 is a result of analyzing the composition of Example 1, antibiotics, G-CSF, SDF-1 ⁇ and IL-1 ⁇ on each stem cell, followed by analysis using an agarose chemotaxis assay.
  • Example 1 As shown in FIG. 13 and Table 16, it was confirmed that 9.36-fold more stem cells migrated toward the treated composition of Example 1 than the control group. This is significantly higher than the positive control group (3.94 times, 4.67 times, 3.14 times). That is, it can be seen that the composition (Example 1) of the present invention is more than twice as good as the stem cell recruitment ability than the positive control group.
  • mice used bilateral knee joints of 12-week-old Spraque-Dawley rats (Core Lab Inc., Seoul, Korea) with an average weight of 350 g. The surgical procedure was performed while the rat was anesthetized. Both the lower limbs of the rats were sterilized with a betadine solution, and the patella was tilted outward using the medial approach of the knee joint to expose the cartilage of the femur.
  • An animal model of a cartilage defect in which a 2 mm diameter rounded entire cartilage defect was induced at a point 2 mm above the interproximal incision of the femoral patella was prepared using a 2 mm and 1 mm diameter drill.
  • the cartilage defect animal model was divided into 3 groups.
  • Group 1 injury group
  • Group 2 microfracture group
  • Group 3 the composition treatment group of Example 1 made a hole by inserting a 23-gauge spinal needle into the femur 5 days before the entire cartilage injury, and removed 50 ⁇ L of bone marrow existing in the hole and the composition of Example 1 (50 ⁇ L) After slowly injecting, the entire cartilage was damaged and microfracture was performed.
  • microfracture was performed using a thin Kirschner-steel wire with a diameter of 0.2 mm and a depth of 3 mm.
  • the cartilage regeneration effect in each group was evaluated using the naked eye and a microscope.
  • ICRS evaluation system of the International Cartilage Repair Society (ICRS).
  • the ICRS evaluation system is evaluated with the following three parameters. (1) Degree of defect repair, (2) Integration to border zone, (3) Macroscopic appearance. The highest score was 12 points, and the lowest score was 0.
  • O'Driscoll evaluation system To histologically evaluate the regenerated tissue on the tissue surface, an O'Driscoll evaluation system and an International Cartilage Repair Society (ICRS) II evaluation system were used. The O'Driscoll evaluation system is systematically evaluated with 9 parameters. (1) Cell morphology, (2) Matrix staining, (3) surface regularity, (4) structural integrity, (5) cartilage thickness ), (6) Bonding to the adjacent cartilage, (7) Hypocellulartiy (8) Chondrocyte clustering, and (9) Degenerative changes of adjacent cartilage ( Freedom from degenerative changes in adjacent cartilage). The sum total was evaluated as 24 points and the lowest as 0.
  • ICRS International Cartilage Repair Society
  • the ICRS II evaluation system is systematically evaluated with the following 14 parameters.
  • the highest score of each parameter was 100, the lowest score was 0, and the highest score was 1400 points and the lowest score was evaluated as 0 points.
  • Each value was expressed as the mean ⁇ S.D. It was expressed through the nonparametric multiple comparison Mann-Whitney test.
  • FIG. 14 is a photograph of 2 and 4 weeks after surgery, and images of damaged groups of the 2nd and 3rd groups.
  • Table 17 shows the results of visual evaluation according to the International Cartilage Repair Society (ICRS) ICRS evaluation system. The scores of the three parameters were summed and expressed as the mean ⁇ SD (standard deviation), and the sum was evaluated as 12 points and the lowest point was 0.
  • ICRS International Cartilage Repair Society
  • Visual inspection 1 group (damage group) 2 groups (microfracture group) 3 groups (composition treatment group of Example 1) P value 2 weeks 2.6 ⁇ 1.7 4.0 ⁇ 1.6 5.0 ⁇ 0.8 0.352 4 weeks 5.2 ⁇ 2.7 8.8 ⁇ 1.7 9.1 ⁇ 2.2 0.574
  • Figure 15 is a photograph of the tissue surface harvested from each group Safranin-O / Fast green staining and taken with an optical microscope.
  • Table 18 shows the results of evaluation according to the O'Driscoll evaluation system from FIG. 15. The scores of the nine parameters were summed and expressed as the mean ⁇ SD (standard deviation).
  • Figure 15 is a photograph of the tissue surface harvested from each group Safranin-O / Fast green staining and taken with an optical microscope.
  • Table 19 shows the results of evaluation according to the ICRS II evaluation system from FIG. 15. The scores of 14 parameters were summed and expressed as the mean ⁇ SD (standard deviation). The highest score was 1400 points and the lowest score was evaluated as 0 points.
  • ICRSII 1 group (damage group) 2 groups (microfracture group) 3 groups (composition treatment group of Example 1) P value 2 weeks 529.3 ⁇ 71.4 674.2 ⁇ 151.5 888.8 ⁇ 142.2 0.067 4 weeks 860.0 ⁇ 93.1 952.5 ⁇ 59.7 1103.8 ⁇ 98.6 0.001
  • P 0.020 (group 2), ⁇ 0.001 (group 3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 골수 내 내재성 세포 증식 효과를 갖는 근골격계의 질환 예방 또는 치료용 약학 조성물에 관한 것이다. 보다 상세하게는 본 발명의 약학 조성물은 골수 내에서 내재성 세포를 증식시키고 기능을 강화시킴으로써 근골격계 질환의 치료용도로 사용될 수 있다.

Description

내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물
본 발명은 골수 내 내재성 세포 증식 효과를 갖는 근골격계 손상과 질환 예방 또는 치료용 약학 조성물에 관한 것으로서, 보다 상세하게는 본 발명의 약학 조성물은 골수 내에서 내재성 세포를 증식시키고 기능을 강화시킴으로써 근골격계 손상과 질환을 예방하거나 치료하는 용도로 사용될 수 있다.
근골격계는 신경, 건(힘줄), 근육, 골, 인대, 연골판(물렁뼈) 등을 통틀어 일컫는 것으로, 반복적인 동작, 부적절한 작업자세, 무리한 힘의 사용, 날카로운 면과의 신체접촉, 진동 및 온도, 과사용, 외상 및 연령의 증가 등의 요인으로 인해 손상, 퇴행 및 변형으로 목, 어깨, 허리, 팔·다리의 신경·근육 및 그 주변 신체조직 등에 질환이 나타나게 된다.
이 중에서 건(tendon)이나 인대(ligament)는 섬유성 연부조직으로, 콜라겐을 주요 구성성분으로 하며, 각각 뼈와 뼈, 뼈와 근육으로 부착점만 다를 뿐 기계적 물성뿐만 아니라 구조적인 면이 매우 흡사하다.
상기 건(힘줄)과 인대는 혈류의 공급이 인체의 다른 조직보다 상대적으로 부족하며, 기질 대비 세포의 수가 적고 기질 세포 또한 매우 분화된 세포로, 한번 손상되면 재생되는데 상당한 시간이 소요되고, 설사 재생된다고 하더라도 손상되기 이전과 같이 기능이 완전히 회복되지 못하는 것으로 보고되고 있다.
미국에서는 어깨부위의 건(힘줄) 손상과 이와 관련된 질환으로 인해, 약 70조($7 billion)의 사회 경제적 비용이 소모되고 있다. 이 중에서도 회전근개 질환이 가장 흔한 원인으로, 연간 450만회의 병원 방문과 약 300,000회의 수술이 행하여지고 있으며, 수술로 인한 비용만 30조($3 billion)에 도달하였다. 회전근개 질환 중에서도 가장 대표적인 수술은 견봉 성형술(subacromial decompression)인데, 이는 무릎 반월상 연골 수술(meniscal surgery), 무릎 인공 관절 치환술(TKR) 보다 더 많이 행해지고 있으며, 근골격계 전체 수술 중 2위로, 2010년대에는 더 크게 증가할 것으로 예상되고 있다.
현재 회전근개 질환을 비롯한 근골격계 질환을 치료하는 방법들은 대부분, 원인은 그대로 두고 드러난 증상만을 치료하는 대증적 치료들이다. 즉 초기에 휴식, 소염제 및 스테로이드제 등을 이용하여 염증을 가라앉히는 데에 초점을 맞추고, 추후 파열이 발생하면 수술적 치료를 진행한다.
이러한 치료방법은 최소한 4가지 이상의 명확한 문제점을 갖는다. 우선 건 질환에서는 흔히 말하는 '건염'이라는 말에도 불구하고, 통상적인 염증 세포가 거의 발견되지 않는다. 따라서, 소염제나 스테로이드제의 처방이 효과가 거의 없을 수 있다. 또한, 대증적 치료 방법은 아직도 명확하지 않은 건 질환의 근본적 원인을 해결하지 못하기에, 만성적인 건 질환에서는 거의 효과를 나타내지 못하고 있다는 것이다. 추후 파열이 발생하여 수술을 한다고 해도, 이 역시 근본 원인에 대한 치료가 아닌 임시적 방편에 불과하다는 것이다. 최종적으로 회전근개 복원술은 임상결과는 비교적 양호하지만, 수술 1-2년이 경과한 후에는 약 27~94%의 재파열을 나타난다는 것이다.
상술한 문제점과 한계점을 극복하기 위하여, 다양한 생물학적 치료 방법이 개발되고 있고, 그 중 외재(exogenous) 또는 내재성(endogenous) 줄기세포를 이용한 치료법도 많은 연구자들에 의하여 연구되고 있다. 하지만, 외재성 또는 내재성 줄기세포를 이용한 치료법의 공통적인 문제 중 하나는 병변에 충분한 숫자의 줄기세포를 공급하기가 어렵다는 것이다. 즉, 신체내 자연적인 상태에서 골수내에 존재하는 줄기세포의 수가 현저히 작기 때문에 효율적인 치료가 이루어질 수 없으며, 다발성 채널링(multiple channeling)이나 미세골절술(microfracture) 과 같은 골수 자극 시술법(bone marrow stimulation procedure)을 시행하더라도 병변으로 이동하는 줄기세포의 수가 역시 매우 낮아 치료 효과가 크지 않을 수 있으며, 이는 현재로서는 극복하기 매우 어려운 문제점이다.
게다가 근골격계 질환이 주로 발생하는 고령에서는 줄기세포와 같은 내재성 세포의 숫자가 더욱 감소되고, 골관절염 등의 만성질환일 경우에는 특히나 내재성 세포의 증식력이 현저히 낮기 때문에, 기존의 근골격계 치료가 제대로 효과를 발휘하지 못한다는 단점이 있다.
이러한 문제점과 단점을 보완하기 위하여, 병변에 줄기세포를 더 유지하고자 미세골절술과 같은 수술을 시행한 후, 히알루론산을 처리하거나, 콜라겐 III/I 막을 추가하여 미세골절부위로 줄기세포가 손실되거나 흩어지지 않도록(autologous matrix induced chondrogenesis, AMIC)하는 치료법들이 개발된바 있다. 그러나 아직까지 이렇다 할 결과를 나타내지 못하고 있고, 오히려 염증반응이 유발되는 문제점이 발견되었다.
이외에도 성장인자가 함유된 콜라겐막이나 중층 지지체를 사용하여 건 또는 인대 질환을 치료하는 방법이 공지되었지만, 실질적으로 줄기세포의 손실이나 유실을 얼마나 억제할지 입증되지 않았으며, 가능하다고 하더라도 원래 병변 부위의 골수에서는 줄기세포의 수가 너무 작기 때문에, 그 효과가 크지 않다는 단점이 있다. 따라서 새로운 치료법의 발굴의 필요성이 대두되었다.
상기와 같은 문제점을 해결하고, 근골격계 질환을 치료하기 위한 새로운 치료제를 개발하기 위해서는 우선 내재성 세포 자체를 증가시켜야하는데, 종래 치료법들은 내재성 세포를 활용하거나, 내재성 세포의 유실을 방지하기 위한 조성물들이 대부분이므로, 병변에서는 줄기세포와 같은 내재성 세포의 수가 거의 없다는 점을 고려한다면 치료효과 또는 적용 질환이 매우 제한적이기 때문에 기존에 사용해오던 치료전략으로는 한계가 있다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명자들은 혈소판풍부혈장(PRP)을 유효성분으로 하는 새로운 근골격계 질환 치료제를 발굴하고자 예의 노력을 하였다. 그 결과, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 약학 조성물을 고안하였고, 이를 환부에 주입시 내재성 세포가 증식되고 환자로부터 증상이 완화 및 치료됨을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환 예방 또는 치료용 약학 조성물을 제공하는데 있다.
본 발명의 다른 목적은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환 예방 또는 치료를 위한 인간을 제외한 동물용 약학 조성물을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 인간, 또는 인간을 제외한 동물에게 상기 조성물을 투여하는 근골격계 질환 치료방법을 제공하는 것이다.
본 발명의 또 다른 목적은 근골격계 질환용 의약, 또는 동물용 의약 제조를 위한 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물의 신규 용도를 제공하는 것이다.
본 발명의 또 다른 목적은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계에서 내재성 세포의 내성장을 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 질환 치료 전처리용 조성물과 보조제를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 근골격계 질환 예방 또는 치료용 약학 조성물의 제조방법을 제공하는데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명은 상기 목적을 달성하기 위하여, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명의 일 실시예에 의하면, 상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산의 혼합 중량비가 10-20 : 1-4 : 1 : 1-3일 수 있다.
본 발명의 일 실시예에 의하면, 상기 혈소판풍부혈장(PRP)은 자가 또는 동종유래일 수 있다.
본 발명의 일 실시예에 의하면, 상기 혈소판풍부혈장(PRP)는 200~5,000 × 103 platelets/㎖ 농도일 수 있다.
본 발명의 일 실시예에 의하면, 상기 약학 조성물은 환부에 주사되는 겔형의 주사제일 수 있다.
본 발명의 일 실시예에 의하면, 상기 환부가 골-건 접합부 또는 골-인대 접합부일 수 있다.
본 발명의 일 실시예에 의하면, 상기 환부가 다발성 채널링을 통해 형성된 골내 통로일 수 있다.
본 발명의 일 실시예에 의하면, 상기 근골격계 질환은 근육 질환, 건 질환, 연골질환, 관절 질환, 인대 질환, 신경, 근육, 건, 인대, 골, 연골, 연골판(물렁뼈), 관절의 손상과 변성으로 인해 유도된 질환으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 의하면, 상기 근골격계 질환은 아킬레스 건 질환, 슬개건 질환, 외측 상과염, 내측 상과염 , 족저 근막염, 회전근개 건 질환, 건활막염, 건병증, 건염, 건초염, 건 손상, 건 좌상, 건 파열, 건 열상, 건 박리, 십자인대 손상, 족관절 인대 손상, 측부인대 손상, 인대 파열, 인대 염좌, 연골연화증, 골관절염, 변형성 관절증, 연골형성이상증, 퇴행성 관절염, 류마티스성 관절염, 골연화증, 섬유성 골염 및 무형성 골질환로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 의하면, 상기 약학 조성물은 내재성 세포의 증식을 촉진하는 것일 수 있다.
본 발명의 다른 목적은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환 예방 또는 치료를 위한 인간을 제외한 동물용 약학 조성물을 제공한다.
본 발명의 또 다른 목적은 인간, 또는 인간을 제외한 동물에게 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물을 투여하는 근골격계 질환 치료방법을 제공한다.
본 발명의 또 다른 목적은 근골격계 질환용 의약, 또는 동물용 의약 제조를 위한 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물의 신규 용도를 제공한다.
본 발명은 상기 목적을 달성하기 위하여, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계의 골수내에 내재성 세포를 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 복원술 전처리용 조성물을 제공한다.
본 발명은 상기 목적을 달성하기 위하여, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계의 골수내에 내재성 세포를 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 복원술 보조제를 제공한다.
본 발명은 상기 목적을 달성하기 위하여, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 혼합하는 단계를 포함하는 근골격계 질환의 예방 또는 치료용 약학 조성물의 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산은 10-20 : 1-4 : 1 : 1-3의 중량비로 혼합되는 것일 수 있다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(i) 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계질환 예방 또는 치료용 약학 조성물을 제공한다.
(ii) 또한, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계에서의 내재성 세포 내성장을 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 질환 치료 전처리용 조성물, 바람직하게는 근골격계 복원술 전처리용 조성물을 제공한다.
(iii) 본 발명의 조성물은 다양한 원인에 기인한 근골격계 질환에 대해 내재성 세포의 수가 거의 없음에도 효과적인 치료효과를 나타내도록 안전한 물질로, 회전근개 건이 파열된 환자를 대상으로 한 인 비보(in vivo) 실험에서 회전근개 건 치료 효능을 나타낸 바, 이를 이용하여 근골격계 손상이나 파열 등과 같은 질환 치료제로서 유용하게 활용될 수 있다.
도 1은 실시예 1로부터 제조된 조성물을 투여하기 전과, 후 환자로부터 채취한 골수의 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이다.
도 2는 실시예 1의 조성물을 투여하기 전과 투여한 후 환자로부터 채취한 골수에서 분리된 세포의 계대배양을 하기 전(P0) 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이다.
도 3은 실시예 1의 조성물을 투여하기 전과 투여한 후 환자로부터 채취한 골수에서 분리된 세포의 계대배양을 한 후(P1) 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이다.
도 4는 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술의 수술 과정을 나타낸다.
도 5a는 정상 환자의 회전근개 자기공명영상(MRI)이다.
도 5b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하기 전, 환자의 회전근개 자기공명영상(MRI)으로, 빨간 화살표는 회전근개 파열로 회전근개가 관찰되지 않는 부위를 나타낸 것이다.
도 5c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이고, 빨간 화살표는 다발성 채널링으로 형성된 수술부위의 통로를 나타낸 것이다.
도 5d는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하고 1년이 지난 후, 환자의 회전근개 자기공명영상(MRI)이고, 빨간 화살표는 재생된 회전근개를 표기한다.
도 6a는 정상 환자의 회전근개 자기공명영상(MRI)이다.
도 6b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하기 전, 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 파열로 회전근개가 관찰되지 않았다.
도 6c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개가 재생되었음을 알 수 있다.
도 7a는 수술전, 중간 크기의 회전근개 질환(Rotator cuff tear of medium size)을 갖는 환자의 회전근개 자기공명영상(MRI)이다.
도 7b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이다.
도 7c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육이 재생되었음을 알 수 있다.
도 8a는 수술전, 거대한 크기의 회전근개 질환(Rotator cuff tear of massive size)을 갖는 환자의 회전근개 자기공명영상(MRI)이다.
도 8b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이다.
도 8c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육이 재생되었음을 알 수 있다.
도 9a는 수술전, 거대한 크기의 회전근개 질환(Rotator cuff tear of massive size)을 갖는 환자의 회전근개 근육에 대한 자기공명영상(MRI)이다.
도9b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 근육에 대한 자기공명영상(MRI)으로, 회전근개 근육이 효과적으로 재생되었음을 확인하였다.
도 10은 보이든 챔버 분석 방법을 통해 줄기세포의 화학주성을 측정하는 과정을 개략적으로 나타낸 도면이다.
도 11은 아가로스 화학주성 분석 방법을 통해 줄기세포의 화학주성을 측정하는 과정을 개략적으로 나타낸 도면이다.
도 12는 각 줄기세포에 실시예 1의 조성물, 항생제, G-CSF, SDF-1α 및 IL-1β를 처리한 후, 보이든 챔버 분석법(Boyden chamber assay)으로 분석한 결과이다.
도 13은 각 줄기세포에 실시예 1의 조성물, 항생제, G-CSF, SDF-1α 및 IL-1β를 처리한 후, 아가로스 화학주성 분석법(Agarose chemotaxis assay)으로 분석한 결과이다.
도 14는 수술 2, 4주 후, 수확된 2 그룹과 3 그룹의 손상 부위를 촬영한 사진이다.
도 15는 각 그룹으로부터 수확한 조직 표면을 Safranin-O/Fast green 염색하고 광학현미경으로 촬영한 사진이다.
본 발명의 일 양태에 따르면, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환 예방 또는 치료용 약학 조성물을 제공한다.
본 발명자들은 다양한 원인에 기인한 근골격계의 손상이나 질환에 대해 내재성 세포의 수가 거의 없음에도 효과적인 치료효과를 나타내도록 안전하게 처방할 수 있는 물질을 찾고자 노력한 결과 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 함으로써, 병변부위에 존재하는 세포의 손실이나 유실없이 내재성 세포의 증식과 기능을 회복시켜 근골격계 질환을 치료하는데 그 효과가 매우 우수함을 확인하였다.
본 명세서에서, 용어 "내재성 세포"는 병변부위의 골수 내에 존재하는 세포들을 통틀어 의미하는 것으로, 줄기세포, 분화된 세포, 줄기세포와 분화된 세포 사이의 세포 등을 포함하며, 바람직하게는 주로 골수 내에 내재되어 있는 줄기세포들을 의미하는 것일 수 있다.
본 명세서에서, 용어 "근골격계 질환"의 예방 또는 치료 활성은 근골격계의 손상이나 다침으로부터 유발된 근골격계의 질환을 예방, 개선 또는 치료의 활성을 의미한다. 구체적으로 개체가 치료되는 병상을 완화, 그 진행을 지연, 그 치유를 가속, 그 치유 반응을 개선하거나 병상을 회복시키거나, 손상된 근골격계와 관련된 통증의 완화, 이환된 관절의 동작 범위의 증가, 및 복구 부위에 존재하는 내재성 세포 특히 줄기세포의 증식 및 기능을 회복시키는 등의 바람직한 임상 또는 치료 효과를 유발하는 것을 의미한다.
상기 근골격계 질환은 신경, 근육, 건, 인대, 골, 연골, 연골판(물렁뼈), 관절 및 그 주변 신체 조직 등에 나타내는 손상이나, 이들의 손상이나 변성으로 인해 유도된 퇴행성 혹은 난치성 질환을 포함하는 것으로, 특별히 이에 한정되지 않는다.
이러한 근골격계 질환은 경제활동의 주역인 청, 장년층에서 반복적인 활동과 부자연스러운 자세의 지속에 따라 발생되기도 하지만, 대부분 노령화에 따른 퇴행성 질환의 성격이 강하다. 그리고 상기 질환은 상태에 따라 작업 중 또는 휴식 시에 통증을 동반하는 경우가 많다.
상기 근육 질환은 근위축성 질환일 수 있으며, 예를 들면 근위축증(muscular atrophy), 근질환(myopathy), 근육 손상(muscular injury), 근이영양증(muscular dystrophy), 근무력증(myasthenia), 근육감소증(sarcopenia), 근신경 전도성 질병(myoneural conductive disease), 피부 근육염(dermatomyositis), 당뇨병성 근위축증(diabetic amyotrophy), 신경 손상(nerve injury), 근위축성 측삭 경화증(amyotrophic lateral sclerosis, ALS), 악액질(cachexia), 퇴행성 근육질환(degenerative muscle diseases)로 이루어지는 군에서 선택되는 어느 하나 이상을 포함하나, 이에 한정되지 않는다.
상기 건 질환은 근육과 뼈를 연결하는 섬유성 조직인 건이 상해나 과도한 운동 또는 세균에 의해 감염되거나 다른 질환들에 의해 손상되어 유발된 질환을 통칭하는 의미한다.
상기 건(힘줄)은 슬개건, 전경골근건, 아킬레스건, 햄스트링 건, 반건양근 건, 박근 건, 외전근 건, 내전근 건, 극상근 건, 극하근 건, 견갑하근건, 소원근건 (회전근개 복합체), 장 및 단요수근신근 건과 요 및 척 수근굴근 건 등을 포함하는 사지 및 사지 관절의 각종 굴근 건 및 신전 건, 대퇴사두근 건, 및 후경골근 건으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 일부 실시예에 따르면 상기 건은 슬개건, 전경골근 건, 아킬레스건, 햄스트링 건, 반건양근 건, 박근 건, 외전근 건, 및 내전근 건으로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있다. 또한 또 다른 실시예에 따르면 상기 건은 극상근 건, 극하근 건, 견갑하근 건, 소원근건(회전근개 복합체), 굴근 건, 대퇴직근 건, 후경골근 건, 및 대퇴 사두근 건으로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있다.
바람직하게 상기 건 질환은 아킬레스 건 질환, 슬개건 질환, 외측 상과염, 내측 상과염 , 족저 근막염, 회전근개 건 질환, 건활막염, 건병증, 건염, 건초염, 건 손상, 건 좌상, 건 파열, 건 열상 및 건 박리로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하나, 이에 한정되지 않는다.
본 발명의 약학 조성물이 적용 가능한 인대는 당해 분야에서 통상적인 범주라면 특별히 이에 제한되지 않으나, 예를 들면 오구쇄골 및 오구견봉인대, 견갑와상완인대, 전방 십자인대, 외측 측부 인대, 후방 십자인대, 내측 측부 인대, 전십자인대, 꼬리 십자인대, 윤상갑상 인대, 치주 인대, 수정체의 현수 인대, 전방 천장 인대, 후방 천장 인대, 엉치결절 인대, 엉치가시 인대, 하방 치골 인대, 사지 관절의 내외측 측부인대, 상방치골 인대, 현수 인대(예를 들어, 음경 또는 유방), 장측 요수근 인대, 배측 요수근 인대, 척골측 측부 인대 및 요골측 측부 인대, 삼각인대 및 전거비인대 등의 족근관절부 인대 등으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
상기 연골 질환은 연골 조직의 손상으로부터 유래한 연골 질환일 수 있고, 구체적으로 연골연화증, 골관절염, 변형성 관절증, 연골형성이상증, 퇴행성 관절염, 류마티스성 관절염, 골연화증, 섬유성 골염 및 무형성 골질환으로 구성되는 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않는다.
상기 관절 질환은 퇴행성 관절염, 류마티스성 관절염, 골절, 근육조직의 손상, 족저근막염, 상완골외과염, 석회화근염, 골절의 불유합 및 외상에 의한 관절손상으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
상기 근골격계 질환은 이외 신경, 근육, 건, 인대, 골, 연골, 연골판(물렁뼈), 관절의 손상과 변성으로 인해 유도된 질환을 포함할 수 있다.
본 발명의 실시예에 따르면, 본 발명의 조성물은 회전근개 건이 파열된 환자를 대상으로 한 인 비보(in vivo) 실험에서 회전근개 건 치료 효능을 나타내고, 상기 조성물을 투여하고 1년이 지난 후, (1) 동통이 감소하고 (2) 관절 운동 범위가 개선되었으며, (3) 근력, 그리고 (4) 6종류의 흔하게 사용되는 견관절의 기능 점수가 유의하게 증가하는, 치료 효과를 나타내었다(실험예 7).
본 발명의 상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산의 혼합 중량비가 10-20 : 1-4 : 1 : 1-3인 것이 바람직하다. 본 발명의 4가지 구성요소 중 일부를 포함하지 않을 경우에는 겔화 또는 수축에 소요되는 시간이 길어지게 되는 문제가 발생할 수 있다. 상술한 문제를 갖는 조성물을 생체 내에 주입할 경우 내재 줄기 세포의 동원(recruitment or homing) 및 증식(proliferation)을 유도할 수 없고, 오히려 내재성 세포 특히 줄기세포의 유실을 촉진할 염려가 있으므로, 상기 조성물은 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 필수적으로 포함하는 것이 가장 바람직하다.
구체적으로 본 발명에 따른 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 유효성분으로 하는 조성물은 겔화, 수축여부 뿐만 아니라, 혈소판 유래 성장인자의 분비기간을 비롯하여 내재성 세포의 증식 및 기능회복 정도 등의 다양한 치료효과들을 살펴본 결과, 선택된 것으로 후술하는 실험예에서 혈소판 유래 성장 인자를 장기간(1~14일)동안 분비하였고, 그 이후로도 상대적으로 높은 농도의 혈소판 유래 성장 인자를 분비하였으나, 바트록소빈과 트라넥사믹산이 혼합되지 않을 경우에는 현저히 작은 양의 혈소판 유래 성장 인자를 분비하였으며, 7일부터 분비량이 급격히 감소하여, 10일부터는 측정이 불가하거나 매우 미량의 농도만이 검출되는 것을 확인하였다. 즉 본 발명의 4가지 구성요소 중 일부를 포함하지 않을 경우에는 혈소판 유래 성장 인자의 분비기간이 2배 이상 현저히 짧아지므로 충분한 치료효과를 달성하기 어렵다는 단점이 있을 수 있다.
예를 들어, 바트록소빈과 트라넥사믹산이 포함되지 않은 경우, 나머지 구성요소가 본 발명의 조성물과 동일한 혼합비율로 혼합될지라도, 혈소판 유래 성장인자의 분비 농도가 낮고, 단기간 동안만 분비되는 것을 확인하였다(실험예 3).
종래 겔 제제에서와 같이, 혈소판풍부혈장과 히알루론산 또는 트롬빈이 혼합되어 조성물을 형성하는 경우에는, 칼슘이 존재한다고 하더라도 본원발명의 조성물에 비해 내재성 세포의 증식능이 현저히 낮고, 충분한 내재성 세포의 증식능을 확보하는데 소요되는 시간이 14일 이상 오래 소요된다는 문제점이 있었다(실험예 4).
또한 본 발명의 조성물은 칼슘과 바트록소빈 또는 트라넥사믹산의 혼합부피비가 1:2인 것이 가장 바람직한데, 이는 칼슘과 바트록소빈을 1:2, 2:2, 1:4로 혼합한 것 중에서 1:2인 조성물이 줄기세포 등을 포함하는 내재성 세포 증식에서 가장 우수한 효과를 나타내는 결과를 통해서 확인할 수 있다(실험예 4).
본 발명의 약학 조성물의 유효성분인 혈소판풍부혈장(PRP)은 당해 분야에서 통상적으로 사용되는 방식으로 제조된 것이라면 특별히 이에 제한되지 않고, 본 발명에서는 표준적이고, 일관성있는 방법인 혈소판 성분 채집 시스템 (plateletpheresis system with a leukoreduction set; COBE Spectra LRS Turbo, Caridian BCT, Lakewood, Colorado)를 이용하여 분리하였다.
구체적으로 상기 혈소판풍부혈장(Platelet Rich Plasma, PRP)은 자가 또는 동종유래인 것일 수 있고, 구체적으로 혈소판풍부혈장은 혈장 내에 혈소판이 많이 함유된 혈장으로 원심분리를 이용하여 전혈로부터 분리된 혈장 하단부의 혈소판이 가장 풍부하게 함유된 것이다. 상기 혈소판풍부혈장은 자가 또는 동종으로부터 전혈을 채취한 후, 초고속 원심분리기로 1차 원심분리하고, 이의 상층액을 회수하여 얻을 수 있다. 상기 혈소판풍부혈장의 필요한 농도에 따라 추가적으로 원심분리를 행할 수 있다. 상기 혈소판풍부혈장(PRP)는 200~5,000 x 103 platelets/microL 농도인 것을 사용하는 것이 바람직하므로, 농축된 혈소판풍부혈장을 사용할 경우에는 상기 농도의 범주에 속하도록 희석하여 사용하는 것이 바람직하다.
상기 추출한 혈소판풍부혈장은 물리적으로 혈소판을 농축시킨 것으로, 실질적으로 내재성 세포의 증식 및 기능 회복을 증진시키는 혈소판 유래 치유 성장인자들은 활성화되지 않은 것이다. 혈소판 내에 존재하는 다량의 혈소판 유래 성장인자들의 활성화 및 분비를 위해서는 혈소판의 활성화가 선행되어야 한다. 일반적으로 혈소판풍부혈장의 혈소판을 활성화시키기 위해서는 염화칼슘, 트롬빈, 콜라겐, 세로토닌, 아데노신 이인산염(ADP) 및 아세틸콜린(ACH) 등과 같은 활성인자들이 사용되어 왔으나, 앞서 설명한 바와 같이 본 발명의 조성물은 상기 칼슘을 제외한 바트록소빈 및 트라넥사믹산을 반드시 포함하고 있어야 하며, 상기 구성성분 중에서 어느 하나라도 생략하거나 단독으로 사용될 경우에는 겔화 또는 수축되지 않거나, 겔화 또는 수축에 소요되는 시간이 길어지게 되는 문제가 발생할 수 있다. 상술한 문제를 갖는 조성물을 생체 내에 주입할 경우 내재 줄기 세포의 동원(recruitment or homing) 및 증식(proliferation)을 유도할 수 없고, 오히려 내재성 세포의 유실을 촉진할 염려가 있다.
본 발명의 조성물의 제제 형태는 겔형이고, 환부에 주사되는 겔형의 주사제일 수 있다. 구체적으로 본 발명의 조성물은 주사기 및 바늘 또는 삽입관을 통해 목적하는 부위에 적용될 수 있고, 상기 본 발명의 조성물은 환부에 적용함에 있어서 상기 환부는 골-건 접합부 또는 골-인대 접합부일 수 있다. 즉, 본 발명의 조성물이 투여되는 위치는 외과적으로 준비되어야 하며, 상기 환부에 관통, 파쇄 또는 뚫기와 같은 과정을 통해 수행된 것일 수 있고, 바람직하게는 상기 환부에 다발성 채널링을 통해 형성된 골내 구멍 또는 통로일 수 있다.
본 발명에서 용어 "약제학적 유효량" 또는 "치료학적 유효량"은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물의 효능 또는 활성을 달성하는 데 충분한 양을 포함하는 것을 의미한다. 본 발명에 따른 조성물은 과량 투여하여도 인체에 부작용이 없으므로 본 발명의 조성물에 포함된 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산의 양적 상한은 당업자가 적절한 범위 내에서 선택하여 실시할 수 있다.
본 발명의 약학 조성물의 적합한 투여량은 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약학 조성물의 투여량은 1회 0.001-100 ㎎/㎏이다.
또한, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환 예방 또는 치료를 위한 인간을 제외한 동물용 약학 조성물을 제공한다.
또한 본 발명은 근골격계 질환의 예방 또는 치료용 의약, 또는 동물용 의약 제조를 위한 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물의 신규 용도를 제공한다.
본 발명의 또 다른 목적은 인간, 또는 인간을 제외한 동물에게 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물을 치료학적 유효량으로 투여하는 단계를 포함하는 근골격계 질환 치료방법을 제공한다.
본 발명자에 따른 조성물은 근골격계의 손상이나 질환에 대해 내재성 세포의 수가 거의 없음에도 효과적인 치료효과를 나타내도록 안전하게 처방할 수 있는 것으로, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 함으로써, 병변부위에 존재하는 세포의 손실이나 유실없이 내재성 세포의 증식과 기능을 회복시켜 근골격계 질환을 치료 및 예방하는데 유용하게 사용될 수 있다.
상기 근골격계 질환은 신경, 근육, 건, 인대, 골, 연골, 연골판(물렁뼈), 관절 및 그 주변 신체 조직 등에 나타내는 손상이나, 이들의 손상이나 변성으로 인해 유도된 퇴행성 혹은 난치성 질환을 포함하는 것으로, 특별히 이에 한정되지 않으며, 보다 구체적인 사항은 약학 조성물에 대한 설명을 참고하기로 한다.
상기 ‘의약’, ‘동물용 약학 조성물’ 또는 ‘동물용 의약’은 겔화, 수축여부 뿐만 아니라 혈소판 유래 성장인자의 분비기간을 비롯하여 내재성 세포의 증식 및 기능회복 정도 등의 다양한 치료효과들을 살펴보았고, 그 결과 선택된 것으로 본 발명의 4가지 구성요소 중 일부를 포함하지 않을 경우에는 혈소판 유래 성장 인자의 분비기간이 2배 이상 현저히 짧아지므로 충분한 치료효과를 달성하기 어렵다는 단점이 있을 수 있다.
본 발명의 조성물의 제제 형태는 겔형이고, 환부에 주사되는 겔형의 주사제일 수 있다. 구체적으로 본 발명의 조성물은 주사기 및 바늘 또는 삽입관을 통해 목적하는 부위에 적용될 수 있고, 상기 본 발명의 조성물은 환부에 적용함에 있어서 상기 환부는 골-건 접합부 또는 골-인대 접합부일 수 있다. 즉, 본 발명의 조성물이 투여되는 위치는 외과적으로 준비되어야 하며, 상기 환부에 관통, 파쇄 또는 뚫기와 같은 과정을 통해 수행된 것일 수 있고, 바람직하게는 상기 환부에 다발성 채널링을 통해 형성된 골내 구멍 또는 통로일 수 있다.
상기 의약, 동물용 약학 조성물 또는 동물용 의약의 사용량은 환자 또는 치료대상 동물의 나이, 성별, 체중에 따라 달라질 수 있으며, 무엇보다도, 치료대상 개체의 상태, 치료 대상 질환의 특정한 카테고리 또는 종류, 투여 경로, 사용되는 치료제의 속성에 의존적일 것이다.
상기 의약, 동물용 약학 조성물 또는 동물용 의약은 체내에서 활성성분의 흡수도, 배설속도, 환자 또는 치료대상 동물의 연령 및 체중, 성별 및 상태, 치료할 질병의 중증정도 등에 따라 적절히 선택되나, 일반적으로 1회 0.001-100 ㎎/㎏으로 투여하는 것이 바람직하다. 이렇게 제형화 된 단위 투여형 제제는 필요에 따라 일정시간 간격으로 수회 투여할 수 있다.
상기 의약, 동물용 약학 조성물 또는 동물용 의약은 개별적으로 예방제 또는 치료제로서 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다.
상기 근골격계 질환의 치료방법은 인간, 또는 인간을 제외한 동물, 특히 포유동물에게 상기 조성물을 비경구 투여하는 것으로, 예를 들어 주사기 및 바늘 또는 삽입관을 통해 목적하는 부위에 상기 조성물을 비경구 투여하는 것이다. 상기 본 발명의 조성물은 환부에 적용함에 있어서 상기 환부는 골-건 접합부 또는 골-인대 접합부일 수 있다. 즉, 본 발명의 조성물이 투여되는 위치는 외과적으로 준비되어야 하며, 상기 환부에 관통, 파쇄 또는 뚫기와 같은 과정을 통해 수행된 것일 수 있고, 바람직하게는 상기 환부에 다발성 채널링을 통해 형성된 골내 구멍 또는 통로일 수 있다.
상기 치료를 위한 투여량, 투여 방법 및 투여 횟수는 상기 약학 조성물, 의약, 동물용 약학 조성물 또는 동물용 의약의 투여량, 투여 방법 및 투여 횟수를 참고할 수 있다.
또한, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계에서의 내재성 세포를 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 질환 치료를 위한 치료의 전처리용 조성물과 보조제를 제공할 수 있다. 상기 '근골격계 질환 치료를 위한 치료'는 근골격계 질환을 치료하기 위한 약물투여, 시술 또는 수술을 포함하고, 상기 근골격계 질환을 치료하기 위한 치료는 특별히 제한되지 않으나, 바람직하게는 근골격계 복원을 위한 시술이나 수술일 수 있으며, 가장 바람직하게는 근골격계 복원술일 수 있다.
근골격계 질환을 치료하기 위하여 다양한 수술방법들이 개발되어 있는데, 환자가 급성기 환자이거나, 고령이거나, 고령이 아니더라도 환부에 위치한 골수 내에 존재하는 내재성 세포의 양이 너무 작다면 근골격계의 손상과 질환을 예방 또는 치료하는데 충분히 공급할 수 있는 혈소판 유래 성장 인자를 발현 및 분비하지 못하므로, 시술에 제한되거나 시술을 받더라도 치료효과가 크지 않다는 문제점이 있다. 이러한 단점을 보완하기 위하여 내재성 세포 또는 혈소판풍부혈장을 투여하는 치료방법이 개발되었지만, 내재성 세포나 혈소판풍부혈장이 환부에 고정되지 못하고 체내로 흡수되거나 다른 곳으로 흘러가버리기 때문에 치료에 필요한 충분한 기간동안 혈소판 유래 성장인자를 제공하지 못하므로, 이를 통해 실질적으로 근골격계 질환을 치료하는데 성공한 사례가 없는 것으로 알려져 있다.
상기 단점을 보완하고자 상기 내재성 세포 또는 혈소판풍부혈장에 히알루론산 또는 트롬빈 등의 담체를 첨가한 기술들이 공지되었으나, 이 역시 뚜렷한 결과를 나타내지 못하였으며, 일부는 오히려 염증반응이 유발되는 등 나쁜 예후를 나타내었다.
앞으로의 현대사회가 점차 고령화되어 감에 따라, 내재되어 있는 내재성 줄기세포의 함량이 낮아 근골격계 질환 발생시 시술이나 수술이 어렵거나, 수술을 진행하더라도 예후가 좋지않은 환자들이 증가해가고 있다. 이에 상술한 문제점들을 해결하면서도 장기간의 치료동안 충분한 농도의 혈소판 유래 성장인자를 제공함으로써, 환부로부터 내재성 세포의 증식 및 기능 회복을 도모하여, 환부에 존재하는 내재성 세포의 함량과는 상관없이 근골격계 질환에 대한 시술의 치료 효과를 증진시킬 수 있는 새로운 치료제 혹은 치료방법의 개발이 시급한 실정이다.
본 발명은 상기와 같은 문제점을 개설할 수 있도록, 근골격계 질환 치료를 위한 수술을 수행함에 있어, 환부에 내재되어 있는 내재성 세포의 함량이 낮아도 환자의 치료효과를 최대화하거나, 치료기간을 최대한으로 줄일 수 있고, 시술 또는 수술 성공율을 높이며, 치료 후 재발가능성을 낮추도록, 근골격계 복원을 위한 시술이나 수술의 전처리용 또는 보조용 조성물에 관한 것이다. 가장 바람직하게는 건 또는 인대 복원술의 전처리용 또는 보조용 조성물일 수 있다.
상기 근골격계 질환 치료를 위한 근골격계 복원술 전처리용 조성물, 근골격계 손상 치료를 위한 근골격계 복원술 전처리용 조성물 또는 이의 보조제는 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하며, 내재성 세포의 농도가 현저히 낮은 환부(건 또는 인대, 또는 이와 뼈의 접합부)에서 내재성 세포의 증식, 기능 회복을 신속히 극대화하고, 지속적으로 유지시켜, 이의 재생기전을 이용한 치료를 안전하고, 간단하며, 효율적으로 할 수 있고, 근골격계 질환의 경우 상기 조성물을 시술 전 미리투여 하여 시술에 의한 내재성 세포의 농도를 개선하여 건 또는 인대 질환을 효과적으로 치료할 수 있음을 다양한 실험을 통해 확인하였다.
상기 근골격계 수술 또는 근골격계 복원술은 근육, 건, 인대, 연골, 관절 및 그 주변 신체 조직 등에 나타내는 손상이나, 이들의 손상이나 변성으로 인해 유도된 퇴행성 혹은 난치성 질환을 치료 및 복원하기 위한 통상의 수술들을 포함하며, 예를 들어 건 또는 인대의 복원술, 관절경적 복원술, 최소절개 복원술, 국소 건 전위술, 국소 건 대치술, 건 이전술, 광배근 이전술, 관절낭 이동술, 관절 대치 성형술, 반치환술, 역견관절 치환술, 인대 재건술, 견봉성형술, 고관절 반치환술 및 대퇴골 골절 수술로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
구체적으로 상기 조성물의 환부로 적용함에 있어서, 본 발명은 근골격계 질환 치료를 위한 수술 또는 복원술을 받기 이전 또는 받은 이후 환자에게 본 발명의 조성물을 투여하는 단계를 포함하는 치료방법을 제공할 수 있는데, 바람직하게는 근골격계 질환 치료를 위한 수술이나 복원술을 받기 이전이나 혹은 받는 중에 병용 투여될 수 있다. 상기 근골격계 질환 치료를 위한 수술 또는 복원술 또는 시술은 신경, 근육, 건, 인대, 연골, 연골판(물렁뼈), 관절 및 그 주변 신체 조직에 대한 부착 또는 재부착 시술들로, 특별히 이에 제한되지 않으나, 바람직하게는 회전근개 복원술, 회전근개 개방성 수복술, 회전근개 최소 개방성 수복술, 관절경하 수복술 등이 있다.
구체적으로 본 발명의 조성물은 환부에 주사될 수 있고, 상기 환부는 다발성 채널링(또는 미세골절술) 시술을 통해 형성된 건 또는 인대와 접합하는 접합부 부근의 하나 이상의 미세한 구멍 또는 통로일 수 있고, 상기 시술을 통해 형성된 구멍이나 통로로 본 발명의 조성물이 투여될 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 혼합하는 단계를 포함하는 근골격계 질환의 예방 또는 치료용 약학 조성물의 제조방법을 제공하며, 상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산은 10-20 : 1-4 : 1 : 1-3의 중량비로 혼합되는 것이 바람직하다.
본 발명의 또 다른 양태에 따르면, 본 발명은 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 근골격계 질환을 치료하기 위한 키트를 제공한다.
상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물은 소정 농도의 혈소판풍부혈장을 포함한다. 혈소판풍부혈장의 농도는 치료되는 근골격계 손상과 질환의 특성에 따라 미리 결정될 수 있다.
상기 키트는 주사기를 더 포함할 수 있다. 상기 주사기는 수술 부위, 예를 들어 근골격계(근육, 건, 인대, 연골, 관절 및 그 주변 신체 조직)에 적용을 위해 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물의 주입 또는 투여를 용이하게 할 수 있다. 키트는 또한 사용 지시서를 포함할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
<제조예 1> 혈소판 풍부 혈장(PRP)의 제조
혈소판 풍부 혈장(PRP)은 혈소판 성분 채집 시스템(plateletpheresis system with a leukoreduction set; COBE Spectra LRS Turbo, Caridian BCT, Lakewood, Colorado)를 이용하여 분리하였다. 혈소판의 농도는 마이크로 리터당 1,400 x 103개였고, 항응고제는 ACD-A 용액을 사용하였다. 임상실험을 위하여 상술한 과정을 통해 분리한 혈소판 풍부 혈장을 5,000 × 103 platelets/microL의 농도로 농축하여 보관하였다. 실험에 따라 필요한 농도로 희석하여 사용하였다.
실험에 사용하기에 앞서, 상기 회수한 동종 혈소판 풍부 혈장의 안전성 평가를 위하여 B형 및 C형 간염 검사, 인간 면역 결핍 바이러스 검사 및 매독 검사를 수행하였다.
<실시예 및 비교예> 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물의 제조
혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물의 혼합비율에 따른 젤화 특성을 분석하고자 하였다.
혈소판 풍부 혈장은 제조예 1로부터 회수하여 보관하던 것을 사용하였고, 구체적으로 1,000~1,400 x 103 platelets/microL 농도로 희석하여 사용하였다. 칼슘(Ca)은 칼슘 글루콘산으로 중외제약으로부터 구매하였다. 바트록소빈(BTX)은 보트로파제로, 한림제약으로 구입하였다. 트라넥사믹산(TXA)은 대한약품으로부터 구매하였다. 트롬빈(THRB)은 트롬빈동결건조분말로 이연제약으로부터 구매하였고, 166.67 IU의 농도로 희석한 용액을 사용하였다. 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 표 1에서와 같이 다양한 부피로 혼합하여 실시예와 비교예의 조성물을 제조하였다. 히알루론산은 LG생명과학으로부터 구입하였다.
구분 혈소판풍부혈장(㎖) 바트록소빈(㎖) 칼슘(㎖) 트라넥사믹산(㎖) 트롬빈(㎖) 히알루론산(㎖)
실시예 1 2 0.2 0.1 0.23 - -
실시예 2 2 0.2 0.2 0.24 - -
실시예 3 2 0.4 0.1 0.25 - -
실시예 4 2 0.4 0.2 0.26 - -
실시예 5 2 1 0.1 0.31 - -
실시예 6 2 1 0.2 0.32 - -
비교예 1 2 0.2 0 0 - -
비교예 2 2 0.2 0 0.22 - -
비교예 3 2 0.2 0.1 0 - -
비교예 4 2 0.2 0.2 0 - -
비교예 5 2 0.4 0 0 - -
비교예 6 2 0.4 0.1 0 - -
비교예 7 2 0.4 0.2 0 - -
비교예 8 2 0.4 0 0.24 - -
비교예 9 2 1 0 0 - -
비교예 10 2 1 0 0.3 - -
비교예 11 2 1 0.1 0 - -
비교예 12 2 1 0.2 0 - -
비교예 13 2 0 0.2 0 - -
비교예 14 2 0 0.2 0.22 - -
비교예 15 2 0 0.2 0 166.67 IU -
비교예 16 2(혈소판 궁핍 혈장) 0.2 0.2 0 - -
비교예 17 2 0 0 0 - 2
비교예 18 2 0 0.2 0 - 2
<실험예 1> 제조예 1로부터 회수한 혈소판 풍부 혈장(PRP)의 특성 분석
제조예 1로부터 회수한 혈소판 풍부 혈장(PRP)과 전혈(whole blood)과 혈소판 궁핍 혈장(PPP)을 분리하고, 이를 전자동형 혈구 분석기(XE-2100, Sysmex Corp, Kobe, Japan)를 이용하여 전체 혈구 측정(complete blood counts)을 시행하여 측정된 혈소판 풍부 혈장의 평균 혈소판, 적혈구 및 백혈구의 농도를 표 2에 나타내었다. 데이터는 평균 ± 표준편차로 표기하였다.
구분 혈소판 농도 (×103/㎕) 적혈구 농도 (×106/㎕) 백혈구 농도(×106/㎕) 피브리노겐 농도(㎎/㎗)
전혈 207.33±14.22 4.80±0.39 7.64±2.06 244.95±61.57
혈소판 풍부 혈장 1,050.00±234.80 0.18±0.07 0.03±0.03 258.18±58.86
혈소판 궁핍 혈장 4.75±2.22 0.00±0.00 0.01±0.00 236.10±82.22
표 2에 나타난 바와 같이, 혈소판 풍부 혈장의 평균 혈소판, 적혈구 및 백혈구의 농도는 각각 1,050.00 ± 234.80 × 103/㎕, 0.18 ± 0.07 × 106/㎕, 0.03 × 0 .03 × 106/㎕인 것으로 확인되었다.
<실험예 2> 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물의 겔화 특성 분석
실시예 1 내지 6 및 비교예 1 내지 16으로부터 제조된 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물들의 젤화 특성을 분석하고자 하였다. 상기 조성물의 젤화시간(gelation time), 수축시간(contraction time)을 측정하여 표 3에 나타내었다. 상기 겔화시간은 조성물의 제조시점부터 젤이 형성될 때까지의 시간을 측정한 것이고, 상기 수축시간(contraction time)은 조성물의 제조시점부터 젤이 수축될 때까지의 시간을 측정한 것이다.
구분 혈소판풍부혈장(㎖) 바트록소빈(㎖) 칼슘(㎖) 트라넥사믹산(㎖) 트롬빈(㎖) 겔화시간(분) 수축시간(분)
실시예 1 2 0.2 0.1 0.23 - 4.5±1.0 23.8±4.8
실시예 2 2 0.2 0.2 0.24 - 7.3±1.5 17.0±1.2
실시예 3 2 0.4 0.1 0.25 - 5.3±1.0 23.8±4.8
실시예 4 2 0.4 0.2 0.26 - 3.8±0.5 18.0±1.6
실시예 5 2 1 0.1 0.31 - 3.3±1.0 24.5±3.3
실시예 6 2 1 0.2 0.32 - 3.3±1.0 17.8±2.1
비교예 1 2 0.2 0 0 - 4.7±1.2 108.0±41.6
비교예 2 2 0.2 0 0.22 - 5.3±2.3 108.0±41.6
비교예 3 2 0.2 0.1 0 - 4.5±1.0 20.3±7.1
비교예 4 2 0.2 0.2 0 - 7.8±2.4 14.8±1.5
비교예 5 2 0.4 0 0 - 3.8±1.3 na
비교예 6 2 0.4 0.1 0 - 5.3±1.0 18.8±7.8
비교예 7 2 0.4 0.2 0 - 5.3±1.0 15.5±2.5
비교예 8 2 0.4 0 0.24 - 3.8±1.3 na
비교예 9 2 1 0 0 - 2.3±0.5 na
비교예 10 2 1 0 0.3 - 3.8±2.9 na
비교예 11 2 1 0.1 0 - 4.8±2.2 22.0±3.6
비교예 12 2 1 0.2 0 - 2.8±1.0 15.5±2.5
비교예 13 2 0 0.2 0 - 20.0±12.0 35.0±7.1
비교예 14 2 0 0.2 0.22 - 16.5±10.2 31.5±5.0
비교예 15 2 0 0.2 0 166.67 IU 2.3±1.3 15.5±6.6
비교예 16 2(혈소판 궁핍 혈장) 0.2 0.2 0 - 24.5±13.7 na
*) na는 측정기간 동안 수축이 발생하지 않은 것을 의미한다.
표 3에 나타난 바와 같이, 실시예 1 내지 6, 비교예 1 내지 16으로부터 제조된 조성물의 겔화시간과 수축시간을 비교하였다.
혈소판 풍부 혈장(PRP)에 바트록소빈만 혼합하여 제조된 조성물(비교예 1, 5, 9)은 겔형의 제제를 형성하기는 하였으나 수축속도가 실시예 1-5의 조성물에 비해 6 배 이상 현저히 느려지거나, 수축되지 않는 것을 확인하였다.
이에 반해 혈소판 풍부 혈장(PRP)에 칼슘만 혼합될 경우(비교예 13)에는 겔화되는데 소요되는 시간과 수축에 소요되는 시간이 모두 1.25 내지 5배 이상 지연되고 있음을 확인하였다.
비교예 1, 2, 5, 8, 9, 10에서와 같이 칼슘이 혼합되지 않은 조성물은 수축이 제대로 이뤄지지 않거나 수축에 소요되는 시간이 100 분 이상이 걸렸다. 또한 비교예 13, 14의 조성물은 바트록소빈이 혼합되지 않은 것으로, 겔화속도가 유의하게 느려졌고 수축속도 또한 다소 감소하였다.
비교예 3, 4, 6, 7, 11, 12의 조성물은 혈소판 풍부 혈장(PRP)에 바트록소빈과 칼슘만이 혼합되어 제조된 것으로, 겔화 및 수축이 모두 실시예 1-5의 조성물과 동등한 수준임을 확인하였다. 그러나 추후 실험에서 혈소한 유래 성장인자의 분비나 발현량이 적거나 줄기세포(내재성 세포) 증식과 기능 회복에 유의적으로 낮은 효과를 나타냄을 확인할 수 있다.
종합하면, 본 발명의 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산의 구성성분 중 일부를 포함하지 않을 경우에는 겔화 및 수축되지 않거나, 겔화 또는 수축에 소요되는 시간이 현저히 길어지게 되는 문제가 발생할 수 있다. 상술한 문제를 갖는 조성물을 생체 내에 주입할 경우 내재 줄기 세포의 동원(recruitment or homing) 및 증식(proliferation)을 유도할 수 없고, 오히려 줄기세포(내재성 세포)의 유실을 촉진할 염려가 있으므로, 상기 조성물은 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산으로 구성되고, 상술한 범위 내에서 혼합되는 것이 가장 바람직하다.
<실험예 3> 시간에 따른 혈소판 유래 성장인자 분비
혈소판 유래 성장 인자(Human PDGF-AB ELISA, ELH-PDGF-2; RayBiotech, Norcross, Georgia, USA)의 농도는 실제 인체 내에서 체액에 의하여 성장 인자가 씻겨 제거되는 상황을 고려하여, wash-out 방법을 이용하여 enzyme-linked immunosorbent assay(ELISA) 방법에 따라 혈소판 유래 성장 인자 농도(ng/㎖)를 측정하여 표 4에 나타내었다. 이때, 음성 대조군은 제조예 1로부터 회수한 혈소판 풍부 혈장 2 ㎖를 포함하는 것을 사용하였다.
농도 (ng/㎖) 실시예 1(PRP+Ca+BTX+TXA) 비교예 3(PRP+Ca+BTX) 비교예 14(PRP+Ca+THRB) 비교예 13(PRP+Ca) 음성 대조군(PRP 단독)
1일 1.44 1.75 0.42 0.57 1.18
P 0.02 0.02 0.001 0.009  
2일 1.65 2.04 1.22 1.07 1.9
P 0.104 0.314 0.039 0.069  
5일 1.95 1.96 0.82 0.5 0.42
P 0.036 0.032 0.144 0.65  
7일 0.99 1.25 0.11 0.5 0.54
P 0.068 0.071 0.02 0.008  
10일 0.85 1.34 0 0.49 0.3
P 0.084 0.04 0.047 0.103  
14일 0.68 1.68 0 0.51 0.34
P 0.015 0.069 0.026 0.04  
P 값은 음성 대조군 농도에 대한 차이
실시예 1 및 비교예 3으로부터 제조된 조성물은 음성 대조군보다 유의하게 많은 혈소판 유래 성장 인자를 장기간(1~14일)동안 분비하였고, 그 이후로도 음성 대조군에 비해 상대적으로 높은 농도의 혈소판 유래 성장 인자를 분비함을 확인하였다.
반면, 바트록소빈과 트라넥사믹산이 혼합되지 않은 비교예 14, 13으로부터 제조된 조성물은 음성 대조군에 비해 현저히 작은 양의 혈소판 유래 성장 인자를 분비하였으며, 특히, 7일부터 분비량이 급격히 감소하여, 10일부터는 측정이 불가하거나 매우 미량의 농도만이 검출될 뿐이였다.
<실험예 4> 줄기세포 증식능
앞선 실험예 2를 통해 확인된 조성물 중에서, 겔화시간과 수축시간이 짧고, 충분한 겔 형성이 이루어진 조성물(실시예 1-3, 비교예 3-4, 6, 13-15, 17, 18)에 대하여 줄기세포 증식능을 비교하였다. 겔화되지 않은 조성물은 생체내에 병변부위에 주입할 경우, 병변부위에 머무르지 못하고 흡수되거나, 와해되거나 유실되어 버리는 문제가 있으므로, 제외하였다.
줄기세포의 증식능은 다음과 같이 분석하였다. 우선 24-well 배양 접시의 바닥에 5X102 cells/㎠의 밀도로 골수 유래 줄기세포를 분주하고, 24시간 동안 10% 소태아혈청(fetal bovine serum)과 항생제(HyClone, Thermo Fisher Scientific Inc., Waltham, MA, USA)가 함유된 LG DMEM 배지에서 배양하였다. 실시예 1-3, 비교예 3-4, 6, 13-15, 17, 18와 같이 각 time point별로 wash out 방법으로 조성물을 제조한 후, 배지 부피의 10%로 각 time point에 세포에 처리하였다. 조성물을 처리할 때는 2% 소태아혈청과 항생제가 포함된 LG DMEM 배지를 사용하였다. 이때, 음성 대조군은 제조예 1로부터 회수한 혈소판 풍부 혈장 2 ㎖를 포함하는 것을 사용하였고, 양성 대조군은 2% 소태아혈청(fetal bovine serum) 2 ㎖를 포함하는 것으로 사용하였다. 배양 배지는 매 3일마다 교환하였다. 줄기세포의 증식은 처리 후 2, 5, 7 및 14일째에 WST colorimetric 분석방법(이지사이톡스, 대일랩서비스)을 이용하여 측정하였다. 모든 실험은 3회 반복수행하였고, 결과는 표 5에 나타내었다.
표 5에서의 데이터는 0 일차 양성 대조군의 측정치에 대한 배수 변화 (fold-change)를 계산하여 나타낸 것이다.
배수변화구분 0일 2일 P 5일 P 7일 P 14일 P
앙성 대조군(2% FBS) 1.00 1.33 2.47 3.19 5.84
음성 대조군(PRP 단독) 1.00 0.91 0.002 2.29 0.583 3.30 0.787 5.97 0.837
실시예 1(PRP+Ca+BTX+TXA) 1.00 1.46 0.251 4.20 0.000 6.11 0.000 8.26 0.028
실시예 2(PRP+Ca+BTX+TXA) 1.00 1.37 0.555 3.63 0.000 4.78 0.002 6.98 0.110
실시예 3(PRP+Ca+BTX+TXA) 1.00 1.38 0.528 3.84 0.000 4.68 0.009 7.23 0.095
비교예 3(PRP+Ca+BTX) 1.00 1.45 0.246 4.08 0.000 5.42 0.000 7.92 0.024
비교예 4(PRP+Ca+BTX) 1.00 1.42 0.349 3.76 0.000 4.67 0.000 6.87 0.130
비교예 6(PRP+Ca+BTX) 1.00 1.32 0.943 3.68 0.000 4.37 0.002 7.15 0.092
비교예 13(PRP+Ca) 1.00 1.33 0.786 3.66 0.001 3.93 0.016 7.54 0.049
비교예 14(PRP+Ca+TXA) 1.00 1.39 0.381 3.70 0.000 5.16 0.000 7.66 0.011
비교예 15(PRP+Ca+THRB) 1.00 1.40 0.307 4.11 0.000 4.48 0.001 6.57 0.612
비교예 17(PRP+Hyaluronic acid) 1.00 1.27 0.281 2.50 0.729 3.41 0.032 5.85 0.984
비교예 18(PRP+Ca+Hyaluronic acid) 1.00 1.34 0.793 2.92 0.015 4.01 0.005 6.45 0.416
표 5에 나타난 바와 같이, 양성 대조군은 2일째부터 1.33 이상의 수치를 나타내는데 반해, 혈소판 풍부 혈장만을 단독으로 투여한 음성 대조군은 2일째에서는 줄기세포의 증식이 오히려 감소되었다가 5일째부터 증가하였다.
히알루론산과 칼슘이 첨가된 비교예 18, 19의 조성물은 음성 대조군보다 현저히 낮은 줄기세포 증식을 나타내었다.
실시예 1 내지 3으로부터 제조된 조성물은 양성 대조군과 음성 대조군에 비해 유의하게 줄기세포의 증식이 증가하였으며, 특히 바트록소빈과 칼슘의 혼합부피비가 2:1인 실시예 1의 조성물이 가장 줄기세포의 증식을 증가시켰음을 확인하였다. 구체적으로 실시예 1의 조성물은 5일째에는 1.7배 증가하였고 7일째에는 1.92배 증가하였으며, 14일째에는 1.36배 증가하였음을 알 수 있다.
비교예 3, 4, 6의 조성물은 실시예 1-3의 조성물과 달리 트라넥사믹산이 제외된 조성물로, 동일한 혼합비율로 혼합된 각각의 실시예보다 유의적으로 낮은 줄기세포 증식능을 나타내었다.
즉, 칼슘과 바트록소빈 또는 칼슘과 트라넥사믹산이 포함된 조성물에서는 대조군에 비해 높은 줄기세포 증식능을 갖는 것으로 확인되었으나, 칼슘이 존재하더라도 히알루론산 또는 트롬빈과 혼합될 경우에는 줄기세포 증식능이 저하되는 것을 알 수 있다.
또한, 칼슘과 바트록소빈 또는 트라넥사믹산의 혼합부피비가 1:2일 때 가장 우수한 효과를 나타내고 있음을 알 수 있다. 특히 칼슘과 바트록소빈을 1:2, 2:2, 1:4로 혼합한 것 중에서 1:2인 조성물(실시예 1, 비교예 3)가 가장 우수한 효과를 나타내고 있으므로, 이는 실시예와 비교예가 동일한 양상을 나타내는 바, 줄기세포 증식에서 우수한 효과를 위해서는 칼슘과 바트록소빈의 혼합부피비가 1:2이 가장 바람직함을 알 수 있다.
<실험예 6> 골수 내 투여를 통한 내재성 줄기세포(내재성 세포) 증식 효능 분석
1) 임상실험(근위부 상완골내 투여)
실시예 1로부터 제조된 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물을 근위부 상완골 내에 투여하여, 골수의 내재성 세포의 증식과 기능을 강화 시킬 수 있는지 확인하고자 하였고, 이를 위해 내재성 세포 중 하나인 골수 줄기세포의 증식능을 다음의 방법으로 수행하였다. 우선 3 내지 14일후 근위부 상완골 수술이 예정되어 있는 환자를 의자에 앉게 한 후, 수술할 상완을 환자의 복부 방향으로 약간 정도 내회전 시킨 후, 주입하려는 부위와 초음파 탐촉자(transducer)를 베타딘 용액 등으로 소독하고, 멸균된 초음파용 젤을 탐촉자에 바른 후, 상완골 근위부위에 갖다댄 다음, 대결절 부위의 시야를 확보하였다. 18G 척추 바늘을 근위 상완골의 외측에서부터 접근시켜, 피질골을 뚫은 후 근위 상완골 내로 집어넣었다. 약 4-5 ㎖의 골수를 먼저 뽑아내어, 실시예 1으로부터 제조된 조성물 2-5 ㎖ 내외 정도가 주입될 수 있는 공간을 확보한 후, 주입하였다. 이때, 실시예 1의 조성물을 투여하기 전에 병변 부위에서 골수를 채취하여 대조군으로 사용하였다.
2) 섬유모세포-집락 형성 단위 분석(Colony-forming unit fibroblast(CFU-F) assay)
상기 환자로부터 채취한 골수 줄기세포의 섬유모세포-집락 형성 단위를 분석하여 내재성 세포의 증식과 기능 강화 효과를 분석하고자 하였다.
섬유모세포-집락 형성 단위 분석은 다음과 같이 수행하였다. 먼저, 실시예 1의 조성물을 투여하기 전에 병변 부위에서 골수(대조군)를 채취하였고, 병변 부위에 투여한 후 3일 ~ 7일 후 병변부위에서의 골수(시험군)와 정상 부위에서의 골수 (비교군)를 채취하였다. 상기 골수로부터 골수 단핵 세포(bone marrow mononuclear cells)을 분리하고, 도 1(표 6)은 2×104 cells/㎠, 도 2(표 7, P0)는 1×105 cells/㎠ 밀도로 각각 6-well 배양 접시에 분주하였다. 14일 후에 계대배양하지 않고 바로 CFU-F 분석을 수행하였다. 도 3(표 7, P1)은 1회 계대배양하여 1x102 cells/㎠ 밀도로 6-well 배양 접시에 분주하고, 14일 후에 CFU-F 분석을 수행하였다.
CFU-F 분석은 다음과 같은 방법으로 수행되었다. 상기 세포들을 DPBS(Dulbecco's phosphate buffered saline)로 세척하고, 4% 파라포름알데하이드로 고정한 다음, 0.1% 크리스탈 바이올렛 용액으로 1시간동안 염색하였다. 염색이 완료되면 흐르는 물로 세척하고, 세포집락을 관찰하였다. 50개 이상의 섬유모세포 모양의 세포집락을 섬유모세포-집락 형성 단위로 정의하고, 섬유모세포-집락 형성 단위의 개수와 크기를 측정하여 표 6 및 도 1에 나타내었다. 데이터는 평균 ± 표준 편차로 표기하였다.
도 1은 실시예 1로부터 제조된 조성물을 투여하기 전과, 후 환자로부터 채취한 골수의 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이다.
대조군(affected_before injection) 비교군(contralateral normal_W/O PRP injection) 실험군(Affected_w/ PRP injection) P 값
개수 11.33 ± 4.16 14.66 ± 3.51 32.33 ± 1.15 0.007
크기(㎟) 4.42 ± 0.56 5.37 ± 0.72 8.49 ± 0.75 0.001
표 6에 나타난 바와 같이, 근위 상완골에 본 발명에 따른 조성물(실시예 1)을 주입하기 전에는 섬유모세포-집락 단위의 평균 빈도가 14.66개(1 / 1,364.3개의 분주된 골수 줄기 세포당)이었다. 이에 반해 실시예 1로부터 제조된 조성물을 주입한 후에는 평균 빈도가 32.33개(1 / 618.6 개의 분주된 골수 줄기 세포당)로 2.2배 증가하였다. 비교군에서는 11.33개(1 / 1,765.2 개의 분주된 골수 줄기 세포당)의 빈도를 나타냈고, 이는 대조군과 유사한 빈도임을 확인하였다.
대조군에서 섬유모세포-집락 단위의 크기는 5.37 ± 0.72 ㎟이었고, 실험군에서는 8.49 ± 0.75 ㎟로 1.58배 증가하였다. 비교군에서의 크기는 4.42 ± 0.56 ㎟로 대조군과 그 크기가 유사하였다(P = 0.238).
<실험예 7> 골수줄기세포의 계대배양에 따른 내재성 세포 증식 효능 분석
실시예 1로부터 제조된 조성물의 골수 줄기 세포의 한 세대 이후에서의 영향을 분석하기 위하여 1차 계대배양하기 전(P0)과 후(P1)의 섬유모세포-집락 단위 실험을 실험예 6의 방법으로 수행하여, 그 결과를 표 7과 도 2 및 3에 나타내었다. 데이터는 평균 ± 표준 편차로 표기하였고, 계대배양하지 않은 골수 줄기 세포는 P0로, 1차 계대 배양한 골수 줄기 세포는 P1로 표기하였다.
도 2는 계대배양을 하기 전(P0) 실시예 1의 조성물을 투여하기 전과 투여한 후 환자로부터 채취한 골수의 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이고, 도 3은 계대배양을 한 후(P1) 실시예 1의 조성물을 투여하기 전과 투여한 후 환자로부터 채취한 골수의 섬유모세포-집락 형성 단위 분석(CFU-F assay)결과이다.
구분 실시예 1의 조성물을 투여하기 전(-) 실시예 1의 조성물을 투여한 후(+) P 값
P0 개수 39.67 ± 6.11 71.67 ± 3.21 0.016
크기(㎟) 5.24 ± 0.34 8.29 ± 0.63 0.013
P1 개수 60.33 ± 5.51 73.33 ± 4.04 0.014
크기(㎟) 5.45 ± 0.92 6.39 ± 0.61 0.256
표 7에 나타난 바와 같이 계대배양을 하기 전(P0) 실시예 1의 조성물을 투여하기 전과 투여한 후의 섬유모세포-집락 단위의 평균 빈도는 각각 39.67개(1 / 2,520.8 분주된 골수 줄기 세포당), 71.67개(1 / 1,395.3 분주된 골수 줄기 세포당)였다. 투여한 후 1.81배 더 증가함을 확인하였다.
1차 계대배양한 후(P1) 실시예 1의 조성물을 투여하기 전과 투여한 후의 섬유모세포-집락 단위의 평균 빈도는 각각 60.33개(1 / 1.66 분주된 골수 줄기 세포당), 100,000 세포당 73.33개(1 / 1.36 분주된 골수 줄기 세포당)였다. 투여한 후 1.22배 더 증가함을 확인하였다.
섬유모세포-집락 단위의 크기 역시, 실시예 1의 조성물을 투여한 후 1.58배 증가하였음을 확인하였다. 이를 통해 본 발명에 따른 실시예 1의 조성물을 골수내로 투여하는 것이 골수의 내재성 세포에 대한 증식 및 기능을 강화시키는데 효과가 있음을 알 수 있다. 또한, 계대 배양 후에도 효과가 지속됨을 확인하였다. 즉 본 발명의 실시예 1의 조성물은 내재성 세포에 대한 일회성 단기간의 효과가 아닌 장기간의 효과를 나타냄을 알 수 있다.
<실험예 7> 임상평가
회전근개 질환에서 치료 전 실시예 1의 조성물을 상완골 골수내에 주입하였을 때 회전근개 복원술의 결과에 대한 영향을 분석하고자 하였다.
1) 다발성 채널링을 이용한 회전근개 복원술
회전근개 복원술은 전신 마취하에 측와위(lateral decutibus)에서 시행하였다. 회전근개 질환으로 내원한 환자를 대상으로 하였으며, 회전근개 수술 5일전 이환된 상완골의 골두와 골간단에 실시예 1의 조성물을 주입하였다. 회전근개 부착부에 다발성 채널링을 시행하여 골두와 골간단 골수의 줄기세포가 회전근개 부착부로의 접근을 촉진하여 회전근개 복원술을 시행하였다.
구체적으로 견갑와 상완관절(Systemic glenohumeral joint)과 견봉하 공간(subacromial space)에서 체계적인 탐색적 관절경술을 시행하였고, 필요한 경우 적절한 치료를 시행하였다. 회전근개 파열 부위에서 닳아서 해어져 있는 부분을 제거하고, 파열의 전후방 및 내외측 크기, 이환된 건의 개수, 육안적 건 등급을 기록하였다. 파열 건의 가동 범위(excursion)이 크지 않으면, 상방 관절낭 절개술(superior capsulotomy), 오구상완 인대 유리술(coracohumeral ligament release) 및 극상건 부착부 내측이동술(medialization of the supraspinatus insertion) 등을 포함하는 건 이동술(tendon mobilization)을 시행하였다. 대결절의 회전근개 부착부에서는 연부 조직을 제거하였고, 석회화 섬유연골층(calcified fibrocartilage layer)의 제거는 최소한으로 시행하였다.
근위 상완골의 골수와 회전근개 부착부 사이의 교통 통로(communication route)는 골수 자극 시술법(bone marrow stimulation procedure)의 한 종류인 다발성 채널링(multiple channeling)을 이용하였다. 다발성 채널링은 이전에 보고된 방법을 이용하여 근위 상완골의 대결절 부위를 중심으로 시행하였다.직경 1.9 ~ 2.1 ㎜의 골 펀치(bone punch)를 이용하여 대결절의 관절 연골경계에서부터 외측 능선 부위까지 여러 개의 채널을 뚫어, 상완골의 골수강과 대결절에서의 회전근개 부착부위가 서로 연결될 수 있는 통로를 만든다. 짧고 굵은 송곳을 이용하는 것보다, 길고 얇은 송곳형태의 펀치를 이용하는 것이 연결 통로를 보다 더 확실하게 형성할 수 있을 뿐더러, 골절의 위험도 감소하여 더 바람직하다. 채널링은 상완을 내회전 및 외회전 시키면서 대결절 부위 뿐 아니라, 치유 및 재생이 필요한 부위에 모두 시행가능하다. 통상적으로 채널사이의 간격은 약 4-5 ㎜정도이고, 채널의 깊이는 10 ㎜ 이상으로 하였다. 채널링을 하면, 골수로부터 올라오는 골수방울(marrow droplet)을 확인할 수 있다. 다발성 채널링 후 통상적인 회전근개 봉합술을 이어서 시행하였다. 상기의 각각의 수술과정은 도 4에 나타내었다.
2) 임상적 및 구조적 결과의 평가
임상적 및 구조적 결과의 평가를 위하여 발열, 오한, 소양감(pruritis), 호흡 곤란(dyspnea), 두드러기(urticaria) 및 발진(rash) 등의 면역반응과 관련된 증상 및 징후를 관찰하였다. 또한 주사 부위에서 홍반(erythema), 종창(swelling) 및 비정상적인 분비(abnormal discharge) 등의 유무를 관찰하였다.
치료 전과 치료 후 3, 6, 및 12 개월후에 표준화된 결과 평가치를 이용하여 환자의 임상상태를 분석하였다. 임상 결과 측정은 (1) 동통, (2) 관절 운동 범위, (3) 근력, 그리고 (4) 6종류의 흔하게 사용되는 견관절의 기능 점수를 사용하였다.
3) 통계 분석.
명목 척도(Nominal value) 및 서열 척도(ordinal value)는 피어슨 카이 제곱 검사로 검증하였다. 척도치(scale value)는 독립 t 검증을 이용하여 비교하였다. 치료 전후의 동통, 관절 운동 범위, 근력 및 기능 점수는 수술 전 상태를 고려한 공분산 분석(analysis of covariance) 을 이용하여 분석하였다. 통계적 유의성은 P < 0.05 로 판단하였다.
4) 환자의 인구 통계학적 특성
연구에 참여한 환자의 인구 통계학적 특성은 표 8에 정리하였다.
변수 총 8명
평균 연령(년) 60.1 ± 11.3
성별(남:여) 5:3
우세수(예:아니오) 4:4
증상 발현 기간(개월) 20.6 ± 28.5
증상 악화 기간(개월) 2.6 ± 2.5
Cofield 유형(부분:소:중:대:광범위) 3 : 0 : 1 : 3 : 1
Boileau 유형(부분:I:I:II:IV) 3 : 1 : 0 : 1 : 3
1 열 : 2 열 2 : 6
견봉성형술(예:아니오) 4 : 4
표 8에 나타난 바와 같이, 본 임상평가를 진행하기 위한 환자 8명은 다음과 같다. 자기 공명 영상은 6명(75%)에서 시행하였고, 평균 연령은 60세였으며, 5명이 남자, 3명이 여자였다. 평균 증상 기간은 20 개월이었다. 3명은 회전근개 부분 파열 환자이었으며, 5명은 전층 파열 환자였다(중, 대 및 광범위 파열 각각 1, 3, 및 1명).
상기 8명의 환자들을 대상으로 임상실험을 진행하였고, 수술을 진행한 후 12개월이상 관찰하였으며, 상기 기간동안 본 발명의 실시예 1로부터 제조된 조성물의 투여에 따른 전신 및 국소 이상 반응은 없음을 확인하였다.
5) 동통 분석
본 발명의 실시예 1로부터 제조된 조성물의 투여하는 다발성 채널링 및 회전근개 복원술 수술을 수행한 후, 동통을 측정하였다. 구체적으로 동통은 휴식할 때, 움직일 때, 그리고 야간에서의 통증을 10 ㎝의 시각 유사 점수(visual analog scale)를 이용하여 평가하였다. 위 3가지 동통 점수를 평균하여 평균 동통 점수도 계산하였다. 추가적으로, 가장 심한 동통 점수를 측정하였고, 그 결과를 표 9에 나타내었다.
변수 치료 전 3 개월 6 개월 1 년
휴식시 동통 수치 3.25±1.75 3.63±2.56 2.00±1.83 0.00±0.00
P값 - 0.670 0.025 0.046
움직임시 동통 수치 5.07±1.29 5.38±2.04 3.04±2.22 0.08±0.17
P값 - 0.933 0.072 0.001
야간 동통 수치 4.88±2.23 4.50±1.41 2.57±2.76 0.25±0.50
P값 - 0.685 0.052 0.010
동통 평균 수치 4.37±1.56 4.50±1.75 2.54±2.23 0.11±0.22
P값 - 0.869 0.042 0.008
최악의 동통 수치 6.13±1.73 5.88±2.03 3.86±2.54 0.25±0.50
P값 - 0.749 0.028 0.007
표 9에 나타난 바와 같이, 본 발명에 따른 실시예 1의 조성물을 투여하는 다발성 채널링 및 회전근개 복원술을 시행 한 후, 모든 동통 측정치가 점진적으로 감소하였으며, 수술 전에 비해 유의하게 낮은 수준까지 감소하였음을 알 수 있다. 특히 수술하고 1년이 지난 후, 휴식 시 동통, 움직임시 동통, 야간 동통, 평균 동통 및 최악의 동통은 수술 전 대비 전혀 고통이 나타나지 않거나 10~20배 이상 크게 감소하였음을 알 수 있다.
6) 관절 운동 범위 분석
관절 운동 범위는 각도기를 이용하여, 능동적 전방 굴곡, 외전, 외회전, 및 내회전을 측정하였다. 근력은 극상근, 극하근, 그리고 견갑하근에서 전자 측정 기구(CHS, CAS, 대한민국)을 이용하여 측정하였고, 그 결과는 표 10에 나타내었다.
변수 치료 전 3 개월 6 개월 1 년
전방 굴곡, 도 수치 135.62±45.85 115.63±36.30 143.57±17.01 156.25±14.93
P값 - 0.271 0.482 0.297
외전, 도 수치 140.63±50.46 107.50±41.14 142.86±25.14 163.75±12.50
P값 - 0.128 0.720 0.311
외회전, 도 수치 44.38±14.74 23.75±13.82 30.71±12.05 46.25±14.36
P값 - 0.003 0.028 1.000
내회선, 척추레벨 수치 10.00±2.88 5.75±3.92 7.71±3.50 10.25±1.26
P값 - 0.006 0.280 0.236
표 10에 나타난 바와 같이 전방 굴곡, 외전, 외회전 및 내회전은 수술 전과 비교하였을 때, 감소하거나 악화되지 않았음을 알 수 있다.
7) 근력 분석
변수 치료 전 3 개월 6 개월 1 년
극상근, 파운드 수치 5.50±7.07 3.00±3.05 8.66±5.58 16.00±4.81
P값 - 0.463 0.360 0.178
극하근, 파운드 수치 6.45±3.77 5.12±1.49 9.83±5.45 14.45±4.31
P값 - 0.240 0.511 0.348
견갑하근, 파운드 수치 11.15±6.59 9.03±5.17 14.20±5.61 21.15±0.435
P값 - 0.572 0.367 0.435
표 11에 나타난 바와 같이 극상근의 평균 근력은, 본 발명에 따른 실시예 1의 조성물을 투여한 다발성 채널링&회전근개 복원술을 수행하기 전에는 5.50 ± 7.07 파운드였고, 수술 후에는 16.00 ± 4.81 파운드로 2.9 배 증가하였다. 극하근의 평균 근력은 2.2 배 증가하였고, 견갑하근의 평균 근력은 1.9 배 증가하였다. 이를 통해 본 발명의 실시예 1로부터 제조된 조성물의 투여를 통해 극상근, 극하근, 견갑하근의 근력을 유의성 있게 회복시키는 것을 알 수 있다.
8) 견관절 기능 평가
견관절의 기능은 미국 견주관절학회 점수(ASES score), 콘스탄트 점수(the Constant score), UCLA 점수, 상완-견관절-수부 장애 점수(DASH), 그리고 견관절 동통 및 장애 인덱스(SPADI)를 이용하여 평가하여, 표 12에 나타내었다.
변수 치료 전 3 개월 6 개월 1 년
미국 견주관절학회 점수 수치 50.12±19.12 49.38±20.41 74.44±21.97 96.94±4.19
P값 - 0.674 0.032 0.018
콘스탄트 점수 수치 49.69±19.08 40.25±18.19 64.66±14.00 86.75±7.76
P값 - 0.230 0.106 0.049
UCLA 점수 수치 17.13±5.089 18.75±7.07 27.29±5.02 34.00±1.41
P값 - 0.568 0.008 0.003
상완-견관절-수부 장애 점수 수치 31.67±13.07 41.15±19.21 18.45±15.51 0.83±1.67
P값 - 0.142 0.030 0.009
견관절 동통 및 장애 인덱스 수치 45.34±19.81 50.19±19.62 25.28±22.09 1.69±2.89
P값 - 0.611 0.045 0.013
표 12에 나타난 바와 같이, 본 발명에 따른 실시예 1의 조성물을 투여한 다발성 채널링&회전근개 복원술을 수행하고 나서 견관절 기능(미국 견주관절학회 점수(ASES score), 콘스탄트 점수(the Constant score), UCLA 점수, 상완-견관절-수부 장애 점수 DASH), 그리고 견관절 동통 및 장애 인덱스(SPADI))이 유의성 있게 증가하였음을 확인하였다.
9) 구조적 연속성 평가
구조적 연속성(structural integrity) 평가를 위하여, 수술 12개월 후에 자기 공명 영상 검사(Achieva 3.0 T, Philips Medical System, 네델란드)를 시행하였다. 구조적 연속성은 수가야 등의 분류 체계를 이용하였다. 수가야 제1~3형은 치유(healing)으로, 그리고 제4~5형은 재파열(retear)로 판단하여, 표 13에 나타내었다.
도 5a는 정상 환자의 회전근개 자기공명영상(MRI)이고, 도 5b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하기 전, 환자의 회전근개 자기공명영상(MRI)으로, 빨간 화살표는 회전근개 파열로 회전근개가 관찰되지 않는 부위를 나타낸 것이다. 도 5c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이고, 빨간 화살표는 다발성 채널링으로 형성된 수술부위의 통로를 나타낸 것이다. 도 5d는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하고 1년이 지난 후, 환자의 회전근개 자기공명영상(MRI)이고, 빨간 화살표는 재생된 회전근개 건을 표기한다.
치유 재파열
개수 5 1
백분율 83.3% 16.7%
도 5 및 표 13에 나타난 바와 같이, 실시에 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 받은 6명의 환자 중에서, 1년이 지났을 때 5명에서 회전근개가 치유(healing) 되었음을 확인하였다(83.3%).
구체적으로 실시예 1로부터 제조된 조성물을 수술 전 약 3~14일에 근위 상완골로 주입하기 위하여, 골수 자극 시술법(bone marrow stimulating procedure)의 하나인 다발성 채널링을 시행하여 투여하고, 1년동안 지켜보았다. 그 결과 중파열의 크기의 회전근개 복원술 뿐만 아니라, 광범위 파열의 복원술에서도 회전근개가 완전하게 치유되었음을 확인하였다. 특히, 광범위하게 파열된 회전근개의 환자는 회전근개 복원술시 파열단(torn end)의 가동성(mobility)이 부족하여 회전근개를 완전하게 복원시키지 못하였음에도, 재생된 회전근개 조직이 관찰되었다.
10) 회전근개 근육의 상태 평가
회전근의 근육 상태는 자기 공명 영상의 T1 강조 사시상면의 오구돌기와 견갑골극(scapular spine)이 만나는 가장 외측 단면에서 지방 침윤(fatty infiltration)과 근위축(muscle atrophy)을 측정하여 평가하였다. 지방 침윤은 구딸리에 등급으로 평가하였으며, 근위축은 탄젠트 사인과 극상근 단면적을 이용하여 평가하였고, 그 결과는 표 14에 나타내었다.
도 6a는 정상 환자의 회전근개 자기공명영상(MRI)이고, 도 6b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술하기 전, 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육, 특히 극상근, 극하근 및 견갑하근에 근위측과 지방변성(침윤)이 관찰된다. 도 6c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육이 재생되었음을 알 수 있다.
변수 수술전(%) 1년(%) P값
Goutallier_SS G0 3 3.90% 3 3.90%
G1 23 29.87% 24 31.17%
G2 26 33.77% 35 45.45%
G3 8 10.39% 10 12.99%
G4 17 22.08% 5 6.49% 0.087
Goutallier_IS G0 8 10.39% 6 7.79%
G1 39 50.65% 43 55.84%
G2 22 28.57% 21 27.27%
G3 3 3.90% 1 1.30%
G4 5 6.49% 6 7.79% 0.81
Goutallier_SSC G0 21 27.27% 13 16.88%
G1 44 57.14% 45 58.44%
G2 9 11.69% 13 16.88%
G3 2 2.60% 4 5.19%
G4 1 1.30% 2 2.60% 0.46
Tangent G1 41 53.25% 56 72.73%
G2 29 37.66% 14 18.18%
G3 7 9.09% 7 9.09% 0.023
Occupation ratio G1 29 37.66% 35 45.45%
G2 31 40.26% 36 46.75%
G3 17 22.08% 6 7.79% 0.045
도 6 및 표 14에 나타난 바와 같이, 일부의 환자에서는 수술 후 회전근개의 지방 침윤과 근위축이 호전되었음을 확인할 수 있다. 지방침윤은 구딸리에 등급으로 평가하였다. 수술전에는 극상근, 극하근, 견갑하근, 및 소원근에서 각각 3, 2, 1 및 1 등급이였으나, 수술하고 1년이 지난 후에는 2, 2, 1, 및 1로 호전되었음을 확인하였다. 탄젠트 신호를 이용한 근위축 평가의 경우, 수술전에는 2 등급이였으나, 수술하고 1년이 지난후에는 1 등급으로 호전되었다. 극상근의 단면적은 수술 전에는 298.9 ㎟였으나, 수술하고 1년이 지난 후에는 326.3 ㎟로 호전되었다.
상기 결과를 통해 본원발명의 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물은 회전근개 수술에서 골수내 내재성 세포 증식을 효과적으로 증진시키는 활성이 있어 건, 인대와 같은 근골격계 손상과 질환을 치료하는 치료제로서 효능이 있음을 확인하였다.
<실험예 8> 다발성 채널링을 이용한 회전근개 복원술 전, 후의 임상평가
중간 크기의 회전근개 질환(Rotator cuff tear of medium size)을 갖는 환자(도 7)와 거대한 크기의 회전근개 질환(Rotator cuff tear of massive size)을 갖는 환자(도 8)에, 회전근개 복원술을 시행하면서, 시행 전 실시예 1의 조성물을 상완골 골수내에 주입하는 다발성 채널링을 수행하였을 때의 결과에 대한 영향을 분석하고자 하였다.
1) 다발성 채널링을 이용한 회전근개 복원술
회전근개 복원술은 전신 마취하에 측와위(lateral decutibus)에서 시행하였다. 회전근개 질환으로 내원한 환자를 대상으로 하였으며, 다발성 채널링을 이용한 회전근개 복원술을 다음과 같이 시행하였다. 우선 견갑와 상완관절(Systemic glenohumeral joint)과 견봉하 공간(subacromial space)에서 체계적인 탐색적 관절경술을 시행하였고, 필요한 경우 적절한 치료를 시행하였다. 회전근개 파열 부위에서 닳아서 해어져 있는 부분을 제거하고, 파열의 전후방 및 내외측 크기, 이환된 건의 개수, 육안적 건 등급을 기록하였다. 파열 건의 가동 범위(excursion)이 크지 않으면, 상방 관절낭 절개술(superior capsulotomy), 오구상완 인대 유리술(coracohumeral ligament release) 및 극상건 부착부 내측이동술(medialization of the supraspinatus insertion) 등을 포함하는 건 이동술(tendon mobilization)을 시행하였다. 대결절의 회전근개 부착부에서는 연부 조직을 제거하였고, 석회화 섬유연골층(calcified fibrocartilage layer)의 제거는 최소한으로 시행하였다.
근위 상완골의 골수와 회전근개 부착부 사이의 교통 통로(communication route)는 골수 자극 시술법(bone marrow stimulation procedure)의 한 종류인 다발성 채널링(multiple channeling)을 이용하였다. 다발성 채널링은 이전에 보고된 방법을 이용하여 근위 상완골의 대결절 부위를 중심으로 시행하였다.직경 1.9 ~ 2.1 ㎜의 골 펀치(bone punch)를 이용하여 대결절의 관절 연골경계에서부터 외측 능선 부위까지 여러 개의 채널을 뚫어, 상완골의 골수강과 대결절에서의 회전근개 부착부위가 서로 연결될 수 있는 통로를 만든다. 짧고 굵은 송곳을 이용하는 것보다, 길고 얇은 송곳형태의 펀치를 이용하는 것이 연결 통로를 보다 더 확실하게 형성할 수 있을 뿐더러, 골절의 위험도 감소하여 더 바람직하다. 채널링은 상완을 내회전 및 외회전 시키면서 대결절 부위 뿐 아니라, 치유 및 재생이 필요한 부위에 모두 시행가능하다. 통상적으로 채널사이의 간격은 약 4-5 ㎜정도이고, 채널의 깊이는 10 ㎜ 이상으로 하였다. 채널링을 하면, 골수로부터 올라오는 골수방울(marrow droplet)을 확인할 수 있다. 다발성 채널링을 통해 형성된 채널에 실시예 1의 조성물을 주입하고, 통상적인 회전근개 봉합술을 이어서 시행하였다.
2) 임상평가
도 7a는 수술전, 중간 크기의 회전근개 질환(Rotator cuff tear of medium size)을 갖는 환자의 회전근개 자기공명영상(MRI)이고, 도 7b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이다. 도 7c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육이 재생되었음을 알 수 있다.
도 8a는 수술전, 거대한 크기의 회전근개 질환(Rotator cuff tear of massive size)을 갖는 환자의 회전근개 자기공명영상(MRI)이고, 도 8b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 직후, 환자의 회전근개 자기공명영상(MRI)이다. 도 8c는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 자기공명영상(MRI)으로, 회전근개 근육이 재생되었음을 알 수 있다.
도 9a는 수술전, 거대한 크기의 회전근개 질환(Rotator cuff tear of massive size)을 갖는 환자의 회전근개 근육에 대한 자기공명영상(MRI)이고, 도9b는 본 발명에 따른 실시예 1의 조성물과 다발성 채널링을 이용한 회전근개 복원술을 수술한 후 1년이 지났을 때 환자의 회전근개 근육에 대한 자기공명영상(MRI)으로, 회전근개 근육이 효과적으로 재생되었음을 확인하였다.
상기 결과를 통해 본원발명의 혈소판 풍부 혈장, 칼슘, 바트록소빈 및 트라넥사믹산을 포함하는 조성물은 다양한 크기의 회전근개 질환에 대하여, 골수내 내재성 세포 증식을 효과적으로 증진시킴으로써, 회전근개 복원술의 성공률을 높이는 효과를 가지고 있음을 확인하였다. 즉 본원발명의 조성물은 건, 인대와 같은 근골격계 손상과 질환을 치료하는 치료제와 근골격계 복원술의 보조치료제로서 효능이 있음을 확인하였다.
<실험예 10> 줄기세포의 화학주성(chemotaxis)에 대한 효과
실시예 1로부터 제조된 조성물의 줄기세포의 화학주성을 하기 2가지 방법으로 평가하였다. 도 10은 보이든 챔버 분석 방법을 통해 줄기세포의 화학주성을 측정하는 과정을 개략적으로 나타낸 도면이고, 도 11은 아가로스 화학주성 분석 방법을 통해 줄기세포의 화학주성을 측정하는 과정을 개략적으로 나타낸 도면이다.
1) 보이든 챔버 분석법(Boyden chamber assay)
1 × 104 골수 줄기세포를 transwell의 위쪽 insert 부분에 분주하고, 24시간 동안 항생제(HyClone, Thermo Fisher Scientific Inc., Waltham, MA, USA)가 함유된 LG DMEM 배지에서 배양하였다. 24시간 후 transwell의 아랫면에 항생제가 함유된 DMEM 배지에 워시아웃(wash-out)방법으로 실시예 1의 조성물을 배지 부피의 10%로 처리하였다. 이때 음성 대조군으로 FBS가 포함되어 있지 않은 LG DMEM을 사용하였고, 화학주성의 양성 대조군으로 G-CSF 100 ng/ml, SDF-1α 100 ng/ml, IL-1β 100 ng/ml을 사용하여 비교하였다. Insert의 윗면에서 아랫면으로 이동한 세포를 측정하기 위하여 24시간 후에 면봉으로 insert 윗면에 있는 세포를 제거하였고 아랫면에 있는 세포만 남도록 하였다. 4% 파라포름알데하이드(paraformaldehyde)로 고정한 후, 크리스탈바이올렛으로 염색하여 현미경상에서 관찰한 후에 촬영하였다. 또한 아랫면으로 이동한 세포를 정량화하기 위하여 아세트산으로 크리스탈바이올렛을 녹여 OD540을 측정하여 표 15에 나타내었다. 모든 실험은 3회 반복하였다.
도 12는 각 줄기세포에 실시예 1의 조성물, 항생제, G-CSF, SDF-1α 및 IL-1β를 처리한 후, 보이든 챔버 분석법(Boyden chamber assay)으로 분석한 결과이다.
구분 이동한 세포수 P 값
대조군(항생제) 100.00 ± 0.00 -
실시예 1 416.41 ± 226.08 0.019
양성 대조군 G-CSF 415.01 ± 338.54 0.072
SDF-1α 365.28 ± 280.55 0.015
IL-1β 358.85 ± 271.58 0.010
도 12 및 표 15에 나타난 바와 같이, 아랫면으로 이동한 골수 줄기세포 수를 비교하였을 때, 실시예 1의 조성물을 처리한 경우가 대조군 대비 4.16 배 더 많았음을 확인하였다(P = 0.0187). 이는 양성대조군(4.15 배, 3.65 배, 3.59 배)과 동등하거나 더 우수한 수치이다. 즉 본 발명의 조성물(실시예 1)이 양성대조군보다 줄기세포의 동원(recruitment) 능력도 우수함을 알 수 있다.
2) 아가로스 화학주성 분석법(Agarose chemotaxis assay)
우선, 0.8% 아가로스 겔을 6 웰 플레이트에 제조한 후, 각 웰에 5 mm 피부 생검 펀치(skin biopsy punch)로 간격이 5 mm가 되도록 구멍을 3개 뚫어주었다. 1 X 104 골수 줄기세포를 중앙에 10% FBS와 항생제가 포함된 LG DMEM 배지에 분주하여 5시간 동안 부착할 수 있는 시간을 두었다. 5 시간 후에 항생제만 포함된 LG DMEM 배지로 교체하고, 왼쪽 구멍에 대조군으로 항생제만 포함된 LG DMEM 배지를 첨가하였고, 오른쪽 구멍에 항생제가 함유된 DMEM 배지에 워시아웃(wash-out) 방법으로 실시에 1의 조성물을 배지 부피의 50%로 처리하였다. 또한 화학주성의 양성 대조군으로 G-CSF 100ng/ml, SDF-1α 100ng/ml, IL-1β 100ng/ml을 처리하여 비교하였다. 72시간 후에 4% 파라포름알데하이드로 고정한 후, DAPI로 염색하여 형광 현미경으로 관찰하였다. 형광 현미경을 사용하여 왼쪽과 오른쪽으로 이동한 세포를 각각 촬영하였다. 이때 구멍의 각각 끝부분을 기준으로 100 um 이상 이동한 경우만 세포수를 세어 정량화하여 표 15에 나타내었다. 모든 실험은 3회 반복하였다.
도 13은 각 줄기세포에 실시예 1의 조성물, 항생제, G-CSF, SDF-1α 및 IL-1β를 처리한 후, 아가로스 화학주성 분석법(Agarose chemotaxis assay)으로 분석한 결과이다.
구분 이동한 세포수 P 값
대조군(항생제) 100.00 ± 0.00 -
실시예 1 935.94 ± 469.63 0.000
양성 대조군 G-CSF 393.76 ± 280.52 0.014
SDF-1α 466.68 ± 348.04 0.021
IL-1β 314.13 ± 220.72 0.063
도 13 및 표 16에 나타난 바와 같이, 대조군 대비 실시예 1의 조성물을 처리한 쪽으로 9.36 배 더 많은 줄기세포가 이동하였음을 확인하였다. 이는 양성대조군(3.94 배, 4.67 배, 3.14 배)보다 현저히 우수한 수치이다. 즉 본 발명의 조성물(실시예 1)이 양성대조군보다 줄기세포의 동원(recruitment) 능력도 2 배 이상 우수함을 알 수 있다.
<실험예 11> 연골 결손 동물모델에서의 효과
1) 연골결손 동물모델
실험동물은 몸무게가 평균 350g인 12주령 Spraque-Dawley 랫드(Core Lab Inc., Seoul, Korea)의 양측 슬관절을 사용하였다. 수술 과정은 랫드를 마취시킨 상태에서 수행되었다. 랫드의 양 하지를 베타딘 용액으로 소독하고, 슬관절의 내측 도달법을 이용하여 슬개골을 외측으로 젖힌 후 대퇴골의 연골을 노출시켰다. 2 mm와 1 mm 지름의 드릴을 이용하여 대퇴-슬개구의 과간 절흔 상부 2 mm되는 지점에 직경 2 mm의 둥근 모양의 전층 연골 결손이 유도된 연골결손 동물모델을 제조하였다.
상기 연골결손 동물모델은 3 그룹으로 나뉘었다. 1 그룹(손상 그룹)은 전층(full-thickness) 연골 손상을 가진 음성 대조군이었다. 2 그룹(미세골절술 그룹)은 전층 연골 손상 후, 미세골절술 시술하여 혈괴(blood clot) 형성을 유도하였다. 3 그룹(실시예 1의 조성물 처리그룹)은 전층 연골 손상 5일 전, 대퇴과 내에 23 게이지 척추바늘을 삽입하여 구멍을 만들고, 구멍 내에 존재하는 골수를 50 μL 제거하고 실시예 1의 조성물(50μL)을 서서히 주입한 다음, 전층 연골 손상시키고 미세골절술을 시술하였다.
이때, 미세골절술은 0.2 mm 지름, 3 mm 깊이의 얇은 Kirschner-강선을 이용하여 시행하였다.
2) 각 그룹에서의 연골재생 효과 분석
각 그룹에서 연골재생 효과는 육안 및 현미경을 사용하여 평가하였다.
수술 후 2, 4주에 각 그룹의 동물모델은 희생되었다. 희생 후 즉시, 랫드의 슬관절(실험부위)을 내측 관절 도달법으로 노출시켰다. 슬관절의 연골에 손상이 가지 않게 조심스럽게 주위 연부조직을 제거한 후에 국제 연골재생학회(International Cartilage Repair Society; ICRS) ICRS 평가 시스템에 따라 육안적으로 평가하였다. ICRS 평가 시스템은 하기 3개의 파라미터로 평가된다. (1) 결손 회복 정도(Degree of defect repair), (2) 경계 구역의 통합성(Integration to border zone), (3) 육안적 외관(Macroscopic appearance). 합산 최고점은 12점, 최저점은 0으로 하여 평가하였다.
상술한 과정을 통해 얻은 각 그룹의 표본(연골)을 10% 중성 포르말린에 3일간 고정하고 탈석회용액(decalcifying agent, Calci-Clear Rapid; National Diagnostics, Atlanta, GA, USA)으로 탈석회화 과정을 거친 후, 파라핀에 포매하여 4 mm의 두께로 절제하여 조직 표본을 만들었다. 글리코스아미노글리칸 존재 여부를 확인하기 위하여 Safranin-O/Fast green 염색을 하여 광학 현미경에서 관찰하였다.
상기 조직 표면에서 재생 조직에 대하여 조직학적으로 평가하기 위하여 O'Driscoll 평가 시스템과 국제 연골재생학회(International Cartilage Repair Society; ICRS) II 평가 시스템을 사용하였다. O'Driscoll 평가 시스템은 9개의 파라미터로 체계적으로 평가된다. (1) 세포 형태(Cell morphology), (2) 매트릭스-염색(Matrix staining), (3) 표면 규칙성(surface regularity), (4) 구조적 안정성(structural integrity), (5) 연골의 두께(Thickness), (6) 인접 연골과의 통합성(Bonding to the adjacent cartilage), (7) 저세포성(Hypocellulartiy) (8) 연골세포 집락형성(Chondrocyte clustering), 및 (9) 인접 연골의 퇴행성 변화(Freedom from degenerative changes in adjacent cartilage). 합산 최고점은 24점, 최저점은 0으로 하여 평가하였다.
상기 ICRS II 평가 시스템은 다음 14개의 파라미터로 체계적으로 평가된다. (1) 조직 형태(Tissue morphology), (2) 매트릭스-염색(Matrix staining), (3) 세포 형태(Cell morphology), (4) 연골세포 집락형성(Chondrocyte clustering), (5) 표면 구성(Surface architecture), (6) 기저 안정성(Basal integration), (7) 타이드마크 형성(Formation of a tidemark), (8) 연골하골 이상 및 골수의 섬유화(Subchondral bone abnormalities, marrow fibrosis), (9) 염증(Inflammation), (10) 비정상 석회화(Abnormal calcification, ossification), (11) 혈관 형성(Vascularization), (12) 표면 및 천부 평가(Surface/superficial assessment), (13) 중간층 및 심부 평가(Mid/Deep zone assessment), 및 (14) 전체 평가(Overall assessment). 각각의 파라미터의 최고점은 100이고, 최저점은 0이며, 총합의 최고점은 1400점, 최저점은 0점으로 하여 평가하였다. 각 값은 평균±S.D로 표시하였으며, 비모수적인 다중비교인 Mann-Whitney 검정법을 통해 나타내었다.
3) 분석결과(육안평가)
도 14는 수술 2, 4주 후, 수확된 2 그룹과 3 그룹의 손상 부위를 촬영한 사진이다. 표 17은 국제 연골재생학회(International Cartilage Repair Society; ICRS) ICRS 평가 시스템에 따라 육안적으로 평가한 결과이다. 이는 3개의 파라미터의 점수를 합산하여 평균±SD(표준편차)로서 표시한 것으로, 합산 최고점은 12점, 최저점은 0으로 하여 평가하였다.
육안검사 1 그룹(손상 그룹) 2 그룹(미세골절술 그룹) 3 그룹(실시에 1의 조성물 처리그룹) P 값
2주 2.6 ± 1.7 4.0 ± 1.6 5.0 ± 0.8 0.352
4주 5.2 ± 2.7 8.8 ± 1.7 9.1 ± 2.2 0.574
도 14에 나타난 바와 같이 수술 2주 후에서는, 각 그룹 모두에서 붉은 색의 육아 조직(granulation tissue)으로 보이는 재생 조직이 결손 부위에서 관절되었으며, 육안으로 2 그룹 및 3 그룹 사이에서 큰 차이는 관찰할 수 없었다.
수술 4주 후에서는, 2 그룹과 3 그룹 모두의 결손 부위에서 흰색의 재생 조직이 관찰되었으며, 3 그룹에서 약간 더 매끄럽고, 주변과의 연결이 좋아 보였으나, 육안으로는 유의미한 큰 차이를 확인할 수 없었다.
표 17에 나타난 바와 같이, 국제 연골재생학회(ICRS)에 따른 평가 결과, 수술 2주 후에는 2 그룹(미세골절술 그룹)은 4.0 ± 1.6이였고, 3 그룹(실시예 1의 조성물 처리그룹)은 5.0 ± 0.8이였다(P = 0.352). 수술 4주 후에는 2 그룹(미세골절술 그룹)은 8.8 ± 1.7, 3 그룹(실시예 1의 조성물 처리그룹)은 9.1 ± 2.2로 연골 재생이 이루어진 것을 확인할 수 있었으나, 두 군간에는 유의한 차이는 없었다.
4) 분석결과(O'Driscoll 시스템 평가)
도 15는 각 그룹으로부터 수확한 조직 표면을 Safranin-O/Fast green 염색하고 광학현미경으로 촬영한 사진이다. 표 18은 도 15로부터 O'Driscoll 평가 시스템에 따라 평가한 결과이다. 이는 9개의 파라미터의 점수를 합산하여 평균 ± SD(표준편차)로서 표시한 것으로, 합산 최고점은 24점, 최저점은 0으로 하여 평가하였다.
O’Driscoll 1 그룹(손상 그룹) 2 그룹(미세골절술 그룹) 3 그룹(실시에 1의 조성물 처리그룹) P 값
2주 7.9 ± 1.6 10.5 ± 2.1 14.3 ± 2.9 0.114
4주 11.1 ± 2.7 15.1 ± 2.5 19.3 ± 2.3 0.003
표 18에 나타난 바와 같이, 수술 후 2 주에 측정한 결과 2 그룹은 10.5 ± 2.1이였고, 3 그룹은 14.3 ± 2.9인 것으로 확인되었다(P = 0.114).
수술 4주 후에는 2 그룹은 15.1 ± 2.5, 3 그룹은 19.3 ± 2.3인 것으로 확인되었다. 2 그룹 모두 시간이 지날수록 유의한 호전을 보였으며, 2 그룹과 3 그룹간에도 유의한 차이가 나타남을 확인하였다(P = 0.003).
3 그룹이 2 그룹에 비하여 1 그룹(손상 그룹) 대비 유의미한 정도가 더 높은 것을 확인하였다(각각 2주 : P = 0.035(2그룹), 0.006(3그룹); 4주: P = 0.003(2그룹), <0.001(3그룹))
4) 분석결과(ICRS II 시스템 평가)
도 15는 각 그룹으로부터 수확한 조직 표면을 Safranin-O/Fast green 염색하고 광학현미경으로 촬영한 사진이다. 표 19는 도 15로부터 ICRS II 평가 시스템에 따라 평가한 결과이다. 이는 14개의 파라미터의 점수를 합산하여 평균 ± SD(표준편차)로서 표시한 것으로, 총합의 최고점은 1400점, 최저점은 0점으로 하여 평가하였다
ICRSII 1 그룹(손상 그룹) 2 그룹(미세골절술 그룹) 3 그룹(실시에 1의 조성물 처리그룹) P 값
2주 529.3 ± 71.4 674.2 ± 151.5 888.8 ± 142.2 0.067
4주 860.0 ± 93.1 952.5 ± 59.7 1103.8 ± 98.6 0.001
표 19에 나타난 바와 같이, 수술 후 2 주에 측정한 결과 2 그룹은 674.2 ± 151.5이였고, 3 그룹은 888.8 ± 142.2인 것으로 확인되었다(P = 0.067).
수술 4주 후에는 2 그룹은 952.5 ± 59.7, 3 그룹은 1103.8 ± 98.6인 것으로 확인되었다. 2 그룹 모두 시간이 지날수록 유의한 호전을 보였으며, 2 그룹과 3 그룹간에도 유의한 차이가 나타남을 확인하였다(P = 0.001).
3 그룹이 2 그룹에 비하여 유의미한 정도의 호전을 나타낸 것을 확인하였다(4주: P = 0.020(2그룹), <0.001(3그룹)). 결과적으로 육안으로 미세골절술만 수행한 경우(2 그룹)와 본발명의 조성물을 처리한 그룹(3 그룹) 간의 유의적인 차이가 거의 관찰되지 않았으나, 조직학적으로 3 그룹이 현저히 연골재생에 호전을 유도하고 있음을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (16)

  1. 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  2. 제 1 항에 있어서,
    상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산의 혼합 중량비가 10-20 : 1-4 : 1 : 1-3인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  3. 제 1 항에 있어서,
    상기 혈소판풍부혈장(PRP)은 자가 또는 동종유래인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  4. 제 1 항에 있어서,
    상기 혈소판풍부혈장(PRP)는 200~5,000 × 103 platelets/㎖ 농도인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  5. 제 1 항에 있어서,
    상기 약학 조성물은 환부에 주사되는 겔형의 주사제인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  6. 제 5 항에 있어서,
    상기 환부가 골-건 접합부 또는 골-인대 접합부인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  7. 제 5 항에 있어서,
    상기 환부가 다발성 채널링을 통해 형성된 골내 통로인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  8. 제 1 항에 있어서,
    상기 근골격계 질환은 근육 질환, 건 질환, 연골질환, 관절 질환, 인대 질환, 신경, 근육, 건, 인대, 골, 연골, 연골판(물렁뼈), 관절의 손상과 변성으로 인해 유도된 질환으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  9. 제 1 항에 있어서,
    상기 근골격계 질환은 아킬레스 건 질환, 슬개건 질환, 외측 상과염, 내측 상과염 , 족저 근막염, 회전근개 건 질환, 건활막염, 건병증, 건염, 건초염, 건 손상, 건 좌상, 건 파열, 건 열상, 건 박리, 십자인대 손상, 족관절 인대 손상, 측부인대 손상, 인대 파열, 인대 염좌, 연골연화증, 골관절염, 변형성 관절증, 연골형성이상증, 퇴행성 관절염, 류마티스성 관절염, 골연화증, 섬유성 골염 및 무형성 골질환로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  10. 제 1 항에 있어서,
    상기 약학 조성물은 내재성 세포의 증식을 촉진하는 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물.
  11. 근골격계 질환의 예방 또는 치료용 의약 제조를 위한, 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하는 조성물의 용도.
  12. 인간, 또는 인간을 제외한 동물에게 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 포함하는 조성물을 치료학적 유효량으로 투여하는 단계를 포함하는 근골격계 질환 치료방법.
  13. 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계의 골수내에 내재성 세포를 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 복원술 전처리용 조성물.
  14. 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 유효성분으로 포함하고, 근골격계의 골수내에 내재성 세포를 증식시키기 위해 사용되는 것을 특징으로 하는 근골격계 복원술 보조제.
  15. 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산을 혼합하는 단계를 포함하는 근골격계 질환의 예방 또는 치료용 약학 조성물의 제조방법.
  16. 제 15 항에 있어서,
    상기 혈소판풍부혈장(PRP), 바트록소빈, 칼슘 및 트라넥사믹산은 10-20 : 1-4 : 1 : 1-3의 중량비로 혼합되는 것을 특징으로 하는 근골격계 질환의 예방 또는 치료용 약학 조성물의 제조방법.
PCT/KR2019/013906 2019-01-11 2019-10-22 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물 WO2020145491A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/422,266 US20220088153A1 (en) 2019-01-11 2019-10-22 Pharmaceutical composition using endogenous cells for preventing or treating musculoskeletal disorders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0003742 2019-01-11
KR1020190003742A KR102207694B1 (ko) 2019-01-11 2019-01-11 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물

Publications (1)

Publication Number Publication Date
WO2020145491A1 true WO2020145491A1 (ko) 2020-07-16

Family

ID=71520782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013906 WO2020145491A1 (ko) 2019-01-11 2019-10-22 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물

Country Status (3)

Country Link
US (1) US20220088153A1 (ko)
KR (1) KR102207694B1 (ko)
WO (1) WO2020145491A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453914B1 (ko) 2021-03-08 2022-11-07 (주)오성내츄럴바이오 근골격계 염증 및 통증 질환 완화 또는 치료용 생약 복합재 조성물, 이를 포함하는 한방 약침액, 이를 포함하는 주사제
US20240075001A1 (en) * 2022-05-24 2024-03-07 Darren Rubin Methods to reduce hemorrhage and mortality on the battlefield and applications for trauma patients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038616B1 (ko) * 2011-03-16 2011-06-03 박재우 뼈 및 연골 질환의 치료, 예방, 또는 완화용 약제학적 조성물
KR20130133612A (ko) * 2012-05-29 2013-12-09 서울대학교산학협력단 PRP(Platelet-Rich Plasma)를 유효성분으로 포함하는 세포 부착능 및 귀소능 증진용 조성물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871673B1 (ko) 2016-07-29 2018-06-27 주식회사 파마리서치프로덕트 핵산 및 키토산을 포함하는 회전근개 파열 수복용 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038616B1 (ko) * 2011-03-16 2011-06-03 박재우 뼈 및 연골 질환의 치료, 예방, 또는 완화용 약제학적 조성물
KR20130133612A (ko) * 2012-05-29 2013-12-09 서울대학교산학협력단 PRP(Platelet-Rich Plasma)를 유효성분으로 포함하는 세포 부착능 및 귀소능 증진용 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EVA RUBIO-AZPEITIA,, PELLO SANCHEZ, DIEGO DELGADO,ISABEL ANDIA: "Adult cells combined with platelet-rich plasma for tendon healing: cell source options", THE ORTHOPAEDIC JOURNAL OF SPORTS MEDICINE, vol. 5, no. 2, 24 February 2017 (2017-02-24), pages 1 - 11, XP055724850, ISSN: 2325-9671, DOI: 10.1177/2325967117690846 *
FRANCESCA SALAMANNA, VERONESI FRANCESCA, MAGLIO MELANIA, DELLA BELLA ELENA, SARTORI MARIA, FINI MILENA: "New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook", BIOMED RESEARCH INTERNATIONAL, vol. 2015, 5 May 2015 (2015-05-05), pages 1 - 25, XP055724842, ISSN: 2314-6133, DOI: 10.1155/2015/846045 *
FRANCESCO MARRA, FREDERICA ROSSO , MATTEO BRUYYONE , DAVIDE EDOARDO BONASAI , FEDERICO DETTONI , ROBERTO ROSSI: "Use of tranexamic acid in total knee arthroplasty", JOINTS, vol. 4, no. 4, 31 December 2016 (2016-12-31), pages 202 - 213, XP055724846, DOI: 10.11138/jts/2016.4.4.202 *

Also Published As

Publication number Publication date
KR20200087452A (ko) 2020-07-21
US20220088153A1 (en) 2022-03-24
KR102207694B1 (ko) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2020145491A1 (ko) 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물
JONES et al. GUEPAR knee arthroplasty results and late complications
WO2018026198A1 (ko) 연골 재생용 조성물 및 이의 제조방법
WO2012067437A2 (ko) 간 절제를 위한 간 부피 증가용 조성물
WO2019083281A2 (ko) 신규한 근골격계 줄기세포
WO2011118954A9 (ko) 사람 하비갑개 유래 중간엽 기질세포로부터 연골, 골, 신경세포 또는 지방세포를 분화시키는 방법
Huang et al. Current tissue engineering approaches for cartilage regeneration
WO2018117573A1 (ko) 신경능선줄기세포의 다층세포시트 및 이의 제조방법
WO2012124873A1 (ko) 뼈 및 연골 질환의 치료, 예방, 또는 완화용 약제학적 조성물
WO2020004893A1 (ko) 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도
WO2019216623A1 (ko) 당뇨병 및 비만 치료용 면역관용 세포 백신 및 인슐린 분비 세포의 제조 방법
WO2021137674A1 (ko) 조직 재생용 조성물
WO2018008941A1 (ko) 연골 무세포 파쇄물 및 줄기세포를 포함하는 연골분화 촉진용 복합체 및 그의 용도
ERDÉLYI Reconstruction of ankylosed finger joints by means of transplantation of joints from the foot
Gatskiy et al. Choosing the target wisely: Partial tibial nerve transfer to extensor digitorum motor branches with simultaneous posterior tibial tendon transfer. could this be a way to improve functional outcome and gait biomechanics?
WO2020091463A1 (ko) 분리된 미토콘드리아를 포함하는 건병증 예방 또는 치료용 약학 조성물
WO2023027317A1 (ko) 편도 중간엽 줄기세포 유래 엑소좀을 포함하는 근육 감소 관련 질환 치료용 조성물
WO2016126122A2 (ko) 연골세포로 분화되고 있는 줄기세포로부터 추출된 엑소좀을 포함하는 연골세포 분화 유도 또는 연골조직 재생용 조성물
WO2022239909A1 (ko) 시프로플록사신에 의한 줄기세포의 연골전구세포로의 유도 및 연골세포로의 분화
WO2022015106A1 (ko) 종양괴사인자-자극된 유전자 6을 발현하는 중간엽 줄기세포를 포함하는 골관절염의 예방 또는 치료용 조성물
WO2019078587A1 (ko) 닭 골수 유래 골·연골전구세포 배양액을 유효성분으로 포함하는 골 생성 촉진 또는 연골 분화 유도용 조성물
KR102281136B1 (ko) 내재성 세포를 이용한 근골격계 손상과 질환 예방 또는 치료용 약학 조성물
WO2018038582A1 (ko) 골재생 또는 골형성 촉진용 펩타이드 및 그 용도
WO2020067774A1 (ko) 활액막 유래 중간엽 줄기세포 및 그의 용도
Nielsen et al. Total condylar knee arthroplasty: a report of 2-year follow-up on 247 cases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909064

Country of ref document: EP

Kind code of ref document: A1