WO2020144795A1 - チョークコイルおよびそれを用いたノイズフィルタ - Google Patents
チョークコイルおよびそれを用いたノイズフィルタ Download PDFInfo
- Publication number
- WO2020144795A1 WO2020144795A1 PCT/JP2019/000462 JP2019000462W WO2020144795A1 WO 2020144795 A1 WO2020144795 A1 WO 2020144795A1 JP 2019000462 W JP2019000462 W JP 2019000462W WO 2020144795 A1 WO2020144795 A1 WO 2020144795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leg
- phase winding
- magnetic flux
- magnetic
- leg portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
Definitions
- the present application relates to a choke coil and a noise filter using the choke coil.
- a noise filter using a choke coil may be installed between the three-phase power supply and the load device.
- This noise filter prevents the electromagnetic noise generated on the load device side from propagating to the three-phase power supply side.
- EMI noise Electro-Magnetic Interference Noise
- This EMI noise becomes conduction noise and flows from the power converter to the three-phase power supply side and ground. If the EMI noise flows to the three-phase power supply side and the ground, it may be adversely affected by being propagated to other electric equipment and causing a malfunction of the electric equipment.
- EMI noise There are two types of EMI noise: normal node noise propagating in the transmission line between the three-phase power supply and the load device, and common mode noise propagating in the transmission line and the ground.
- a dual-mode choke coil is used as a noise filter that reduces both of these noises.
- a conventional dual-mode choke coil includes a first magnetic core having three legs and a first connecting portion and a second connecting portion connecting both ends of the three legs, and each of the three legs. It is provided with a winding of each of the three phases wound around, and a second magnetic core that intersects the first connecting portion and the second connecting portion, respectively (see, for example, Patent Document 1).
- the closed magnetic circuit passing through the first magnetic core has an inductance for normal mode noise
- the closed magnetic circuit passing through the second magnetic core and the three legs has an inductance for common mode noise.
- the conventional dual-mode choke coil power supply currents whose phases differ from each other by 120° flow in the windings of each of the three phases.
- the magnetic flux generated in the three legs on which the windings of the three phases are wound when the power supply current flows passes through each of the three legs, the first connecting portion, and the second connecting portion, and the space.
- the first magnetic core having no gap serves as a magnetic path. Therefore, when the magnetic flux density generated when a large power supply current flows exceeds the maximum magnetic flux density, the first magnetic core is magnetically saturated. When the first magnetic core is magnetically saturated, the magnetic permeability (ease of passage of magnetic flux) of the first magnetic core decreases.
- Normal mode noise and common mode noise are applied in the form of being superimposed on the fundamental frequency component of the power supply current.
- the magnetic flux caused by the current of the normal mode noise forms a magnetic path that passes through the first magnetic core, similarly to the power supply current.
- the magnetic flux caused by the current of the common mode noise forms a magnetic path that passes through the three legs, the first connecting portion, the second connecting portion, and the second magnetic core, similarly to the power supply current.
- the present application has been made in order to solve the problems as described above, and prevents magnetic saturation of the magnetic core even when a large three-phase power supply current flows, thereby reducing noise to a high level with respect to normal mode noise and common mode noise.
- An object is to provide a choke coil having an effect.
- a choke coil according to the present application includes a first magnetic core having a first leg portion, a second leg portion, a third leg portion, and a coupling portion that couples both ends of these three leg portions, and a coupling of the first magnetic core.
- a second magnetic core connecting the parts to each other, a U-phase winding, a V-phase winding, and a W-phase winding are provided.
- the U-phase winding has the first U-phase winding, the second U-phase winding, and the third U-phase winding connected in series, and the V-phase winding is the first V-phase winding.
- Wire, a second V-phase winding and a third V-phase winding are connected in series, and a W-phase winding is formed by connecting a first W-phase winding, a second W-phase winding and a third W-phase winding in series.
- the first leg has the first U-phase winding, the first V-phase winding, and the first W-phase winding sequentially wound from one end to the other end.
- the second leg has a second W-phase winding, a second U-phase winding, and a second V-phase winding wound in order from one end to the other end, and the second leg has a third leg.
- the third V-phase winding, the third W-phase winding, and the third U-phase winding are wound in order from one end to the other end.
- the choke coil of the present application can prevent magnetic saturation of the magnetic core even when a large three-phase power supply current flows, and can exhibit a high noise reduction effect against normal mode noise and common mode noise.
- FIG. 3 is a perspective view of the choke coil according to the first embodiment.
- FIG. 3 is a front view of the magnetic core according to the first embodiment. It is a wiring diagram which shows the connection relation of a 3-phase power supply, a 3-phase coil, and a load. It is a schematic diagram showing the magnetic flux generated in the magnetic core. It is a schematic diagram showing the magnetic flux generated in the magnetic core.
- FIG. 6 is a top view of the choke coil according to the second embodiment. 7 is a side view of the choke coil according to the second embodiment.
- FIG. It is a schematic diagram showing the magnetic flux generated in the magnetic core. It is a schematic diagram showing the magnetic flux generated in the magnetic core. It is a schematic diagram showing the magnetic flux generated in the magnetic core. It is a schematic diagram showing the magnetic flux generated in the magnetic core.
- FIG. 9 is a perspective view of a choke coil according to a third embodiment.
- FIG. 9 is a perspective view of a noise filter according to the fourth embodiment. 9 is an equivalent circuit of the noise filter according to the fourth embodiment.
- FIG. 1 is a perspective view of the choke coil according to the first embodiment.
- the choke coil of the present embodiment is a dual mode choke coil that plays a role of a noise filter against normal mode noise and common mode noise.
- FIG. 2 is a front view of the magnetic core of the choke coil.
- FIG. 3 is a wiring diagram showing a connection relationship between a three-phase coil and a three-phase power supply and a load. For example, a three-phase converter is used as the load. This three-phase converter has a switching element.
- the choke coil 1 of this embodiment has a magnetic core 2 and a coil portion 3.
- the magnetic core 2 has a first leg portion 110, a second leg portion 120, a third leg portion 130, and a connecting portion 140 that connects both ends of these three leg portions.
- One magnetic core 150 is provided.
- the magnetic core 2 also includes a second magnetic core 160 that connects the connecting portions 140 of the first magnetic core 150 to each other.
- the first magnetic core 150 and the second magnetic core 160 form the magnetic core 2.
- the direction in which the first leg 110, the second leg 120, and the third leg 130 are arranged is the x-axis direction, and the longitudinal direction of the leg is the y-axis direction.
- the magnetic core 2 of the present embodiment is made of ferrite which is a magnetic material.
- the coil portion 3 is made of a copper wire that is a conductor. These materials are examples and other materials may be used.
- the coil unit 3 is a three-phase coil composed of a U-phase winding 200, a V-phase winding 210, and a W-phase winding 220, as shown in FIG.
- the coil unit 3 is connected between the three-phase power source 50 and the load 60. Further, U-phase winding 200, V-phase winding 210, and W-phase winding 220 are each divided into three windings connected in series.
- the U-phase winding 200 has a first U-phase winding 201, a second U-phase winding 212 and a third U-phase winding 223 connected in series.
- the V-phase winding 210 includes a first V-phase winding 211, a second V-phase winding 222, and a third V-phase winding 203 connected in series.
- a first W-phase winding 221, a second W-phase winding 202 and a third W-phase winding 213 are connected in series.
- the three windings connected in series may be connected in any order.
- the first leg 110 of the choke coil 1 has a first U-phase winding 201, a first V-phase winding 211, and a first W-phase winding sequentially arranged from one end to the other end.
- the wire 221 is wound.
- a second W-phase winding 202, a second U-phase winding 212, and a second V-phase winding 222 are wound on the second leg 120 in order from one end to the other end.
- a third V-phase winding 203, a third W-phase winding 213, and a third U-phase winding 223 are wound in order from one end to the other end. All of the above-described nine separate windings forming the coil portion 3 are wound in the same direction and have the same number of windings. Further, all the nine windings are connected so that currents flow in the same direction.
- the legs are exposed between the nine separate windings.
- a portion 300a where the first leg 110 is exposed is the first V-phase winding 211 and the first W-phase winding.
- a portion 300d where the first leg 110 is exposed is provided between the line 221 and the line 300.
- the exposed portion 300b of the second leg 120 is the second U-phase winding 212 and the second V-phase winding 212.
- the phase winding 222 and a portion 300e where the second leg 120 is exposed are provided.
- a portion 300c where the third leg portion 130 is exposed is the third W-phase winding 213 and the third U-phase.
- the exposed portions 300a and 300d of the first leg portions and the exposed portions 300b and 300e of the second leg portions are provided at positions facing each other.
- the exposed portions 300b and 300e of the second leg and the exposed portions 300c and 300f of the third leg are provided at positions facing each other.
- FIG. 2 shows the exposed portions 300a and 300d of the magnetic core 2, the exposed portions 300b and 300e of the second leg portion, and the exposed portions 300c and 300f of the third leg portion.
- a gap 400a exists between the exposed portion 300a of the first leg portion and the exposed portion 300b of the second leg portion.
- a gap 400b exists between the exposed portion 300b of the second leg and the exposed portion 300c of the third leg.
- a gap 400c exists between the exposed portion 300d of the first leg portion and the exposed portion 300e of the second leg portion.
- a gap 400d exists between the exposed portion 300e of the second leg portion and the exposed portion 300f of the third leg portion.
- the magnetic core 2 of the present embodiment has a shape in which the portion 300b where the second leg portion is exposed protrudes from the portion 300a where the first leg portion is exposed and the portion 300c where the third leg portion is exposed.
- the portion 300e where the two legs are exposed has a shape protruding with respect to the portion 300d where the first leg is exposed and the portion 300f where the third leg is exposed. With this shape, the gap dimensions of the gaps 400a, 400b, 400c and 400d can be set regardless of the winding size of the coil portion 3.
- only the second leg 120 has a protruding shape, but the exposed portions 300a and 300d of the first leg and the exposed portions 300c and 300f of the third leg also have a protruding shape. May be Further, the exposed portions of the legs do not necessarily have to have a protruding shape.
- the first is that the current of the fundamental frequency component of the power supply current (for example, 50 Hz or 60 Hz which is a commercial frequency component) flows into the magnetic core 2 when it flows through the U-phase winding, the V-phase winding and the W-phase winding. It is the generated magnetic flux distribution.
- the second is that among the harmonic components of the switching frequency of the load (frequency components of 150 kHz or higher whose conduction noise is regulated by the EMI standard), the noise currents of the normal mode components, which differ in phase by 120°, are U-phase wound. This is the magnetic flux distribution generated in the magnetic core 2 when flowing through the wire, the V-phase winding, and the W-phase winding.
- the noise current of the common mode component which is in phase, is the U-phase winding, V It is a magnetic flux distribution generated in the magnetic core 2 when flowing through the phase winding and the W phase winding.
- the EMI standard includes, for example, the CISPR standard (standard defined by the International Commission on Radio Interference).
- FIG. 4 is a schematic diagram showing the magnetic flux generated in the magnetic core 2 when the power supply current flowing through the U-phase winding has the maximum phase.
- the phase of the power supply current flowing through the U-phase winding is the maximum
- the magnitude of the power supply current flowing through the V-phase winding is half that of the U-phase winding, and the flowing directions are opposite.
- the magnitude of the current flowing through the W-phase winding is half that of the U-phase winding, and the flowing direction is opposite.
- Magnitude of the magnetic flux 1201 generated in the portion of the first leg 110 surrounded by the first U-phase winding 201 is 1.0, and the direction of the magnetic flux is upward.
- the magnetic flux 1202 generated in the portion of the second leg 120 surrounded by the second W-phase winding 202 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the magnetic flux 1203 generated in the portion of the third leg 130 surrounded by the third V-phase winding 203 has a magnitude of 0.5 and the magnetic flux is directed downward.
- the magnetic flux 1212 generated in the portion surrounded by the second U-phase winding 212 of the second leg 120 has a magnitude of 1.0, and the direction of the magnetic flux is upward.
- the magnetic flux 1211 generated in the portion of the first leg 110 surrounded by the first V-phase winding 211 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the magnetic flux 1213 generated in the portion of the third leg 130 surrounded by the third W-phase winding 213 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the magnetic flux 1223 generated in the portion of the third leg 130 surrounded by the third U-phase winding 223 has a magnitude of 1.0 and the magnetic flux is directed upward.
- the magnetic flux 1221 generated in the portion of the first leg 110 surrounded by the first W-phase winding 221 has a magnitude of 0.5 and the magnetic flux is directed downward.
- the magnetic flux 1222 generated in the portion of the second leg 120 surrounded by the second V-phase winding 222 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the following describes the overall magnetic flux distribution when the current of the fundamental frequency component of the power supply current flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- the magnetic flux 1201 generated in the portion surrounded by the first U-phase winding 201 has a magnitude of 1.0, and the direction of the magnetic flux is upward.
- the magnetic flux 1211 generated in the portion surrounded by the line 211 has a magnitude of 0.5 and the direction of the magnetic flux is downward, and the magnetic flux 1221 generated in the portion surrounded by the first W-phase winding 221 has a magnitude of 0.
- the direction of the magnetic flux is downward. Since these three magnetic fluxes are added to cancel each other, the magnetic flux penetrating from one end to the other end of the first leg 110 is almost zero.
- the magnetic flux 1202 generated in the portion surrounded by the second W-phase winding 202 has a magnitude of 0.5 and the direction of the magnetic flux is downward, and the magnetic flux 1202 is surrounded by the second U-phase winding 212.
- the magnetic flux 1212 generated in the portion surrounded by the second V-phase winding 222 has a magnitude of 1.0, and the magnetic flux 1222 generated in the portion surrounded by the second V-phase winding 222 has a magnitude of 0.5.
- the direction of is downward.
- the magnetic flux 1203 generated in the portion surrounded by the third V-phase winding 203 has a magnitude of 0.5 and the direction of the magnetic flux is downward, and the magnetic flux 1203 is surrounded by the third W-phase winding 213.
- the magnetic flux 1213 generated in the open portion has a magnitude of 0.5 and the direction of the magnetic flux is downward, and the magnetic flux 1223 generated in the portion surrounded by the third U-phase winding 223 has a magnitude of 1.0 and The direction is upward. Since these three magnetic fluxes are added to cancel each other, the magnetic flux penetrating from one end to the other end of the third leg 130 becomes almost zero.
- the magnetic path of the magnetic flux generated in the magnetic core will be described with reference to FIGS. 2 and 4.
- the magnetic flux 1201, the magnetic flux 1202, and the magnetic flux 1203 are the upper portion of the first magnetic core, the portion surrounded by the first U-phase winding 201 of the connecting portion 140, the first leg 110, and the second W-phase winding of the second leg 120.
- the magnetic flux 1211, the magnetic flux 1212, and the magnetic flux 1213 are the portion surrounded by the first V-phase winding 211 of the first leg 110, the portion surrounded by the second U-phase winding 212 of the second leg 120, A portion of the three-leg portion 130 surrounded by the third W-phase winding 213, a portion 300a where the first leg portion between the first U-phase winding 201 and the first V-phase winding 211 is exposed, and a second W-phase winding 202.
- second U-phase winding 212 between exposed second leg portion 300b, third V-phase winding 203 and third W-phase winding 213 between the third leg portion exposed 300c, first V A portion 300d where the first leg portion between the phase winding 211 and the first W-phase winding 221 is exposed, and a portion where the second leg portion between the second U-phase winding 212 and the second V-phase winding 222 is exposed.
- 300e a portion 300f where the third leg portion between the third W-phase winding 213 and the third U-phase winding 223 is exposed, a portion 300a where the first leg portion is exposed, and a portion 300b where the second leg portion is exposed.
- the magnetic flux 1221, the magnetic flux 1222, and the magnetic flux 1223 are generated by connecting the lower coupling portion 140 of the first magnetic core, the portion surrounded by the first W-phase winding 221 of the first leg 110, and the second V-phase of the second leg 120.
- the portion surrounded by the winding 222, the portion surrounded by the third U-phase winding 223 of the third leg 130, and the first leg between the first V-phase winding 211 and the first W-phase winding 221 are exposed.
- the part 300f where the leg is exposed, the gap 400c between the part 300d where the first leg is exposed and the part 300e where the second leg is exposed, and the part 300e where the second leg is exposed and the third leg are It passes through a closed magnetic circuit constituted by a gap 400d between the exposed portion 300f.
- the power supply current is much larger than the noise currents in common mode and normal mode.
- the conventional choke coil since the magnetic flux due to the power supply current passes through the closed magnetic circuit that does not pass through the gap, a large magnetic flux proportional to the current value of the power supply current is generated.
- the magnetic flux density in the magnetic core increases and exceeds the maximum magnetic flux density, the phenomenon that the magnetic permeability of the magnetic core decreases and the magnetic resistance increases, that is, magnetic saturation occurs.
- the normal mode and common mode noise currents flow superimposed on the power supply current.
- the magnetic flux generated due to the normal mode and common mode noise currents has a low magnetic flux density because a large power supply current flows and the magnetic permeability of the magnetic core is reduced.
- the magnetic flux generated in the magnetic core 2 when the power supply current flowing through the U-phase winding has the maximum phase is at least one of the gaps 400a, 400b, 400c and 400d having high magnetic resistance. Pass one. Therefore, the magnetic flux due to the power supply current has a smaller magnetic flux density than when the magnetic flux does not pass through the gap. As a result, in the choke coil according to the present embodiment, magnetic saturation due to a large power supply current does not occur, and a decrease in magnetic permeability can be avoided.
- the magnetic flux generated in the magnetic core 2 at the phase when the power supply current flowing in the U-phase winding is maximum has been described so far.
- the phases of the currents flowing through the U-phase winding, the V-phase winding, and the W-phase winding differ by 120°, the magnetic flux distribution is different from the case where the phase of the current flowing through the U-phase winding is maximum.
- the magnetic flux generated in the magnetic core 2 in any phase passes through at least one of the high magnetic resistance gaps 400a, 400b, 400c, and 400d. Therefore, in the choke coil according to the present embodiment, magnetic saturation due to a large power supply current does not occur, and a decrease in magnetic permeability can be avoided. As a result, it is possible to avoid a decrease in magnetic permeability with respect to a normal mode noise current and a common mode noise current, which are generated by a harmonic component of a switching frequency of a load, which will be described later.
- the magnetic resistance can be further increased by increasing the gap size of the gaps 400a, 400b, 400c, and 400d, so that the magnetic core is less likely to be magnetically saturated, and a decrease in magnetic permeability can be avoided.
- the direction of the noise current of the normal mode component of the harmonic is the same as the direction of the current of the fundamental frequency of the power supply current. Therefore, the magnetic flux distribution generated by the noise current of the normal mode component is similar to that in FIG. Since the noise current of the normal mode component is smaller than the current of the fundamental frequency component of the power supply current, the magnetic flux generated is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the normal mode component. Therefore, if the gap size of the gaps 400a, 400b, 400c, and 400d is reduced under the condition that the permeability of the power source current due to the fundamental frequency component does not decrease, the magnetic flux generated by the noise current of the normal mode component is reduced. The magnetic resistance can be reduced, and the noise reduction effect can be improved.
- the actual gap size is often set in the range of several mm to several tens of mm.
- the gap is usually formed by a space, the gap may be formed by a material having no magnetism, such as resin or wood, which is not a space. If the gap is made of a material other than the space, it is possible to improve the accuracy of the gap dimension and improve the durability.
- the noise current of the common mode component which has the same phase, flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- the magnetic flux distribution generated in the core 2 will be described. Since the noise current of the common mode component is smaller than the current of the fundamental frequency component of the power supply current, the generated magnetic flux is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the common mode component.
- FIG. 5 is a schematic diagram showing the magnetic flux generated in the magnetic core 2 when the noise current of the common mode component flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- a magnetic flux 1301 is generated in a portion surrounded by the first U-phase winding 201 of the first leg portion 110, a magnetic flux 1301 is generated in a portion surrounded by the first V-phase winding 211, and is surrounded by a first W-phase winding 221.
- the magnetic flux generated in the broken portion is 1321.
- a magnetic flux 1302 is generated in a portion of the second leg 120 surrounded by the second W-phase winding 202, a magnetic flux 1302 is generated in a portion of the second leg 120 surrounded by the second U-phase winding 212, and is surrounded by a second V-phase winding 222.
- the magnetic flux generated in the broken portion is 1322.
- the magnetic flux generated in the portion surrounded by the third V-phase winding 203 of the third leg 130 is surrounded by 1303, the magnetic flux generated in the portion surrounded by the third W-phase winding 213 is surrounded by 1313, and the third U-phase winding 223 is surrounded.
- the magnetic flux generated in the broken portion is 1323.
- the magnetic fluxes 1301, 1302, 1303, 1311, 1312, 1313, 1321, 1322 generated in each winding and All 1323 have the same size, and their magnetic fluxes have the same direction.
- the magnetic path of the magnetic flux generated in the magnetic core will be described with reference to FIGS. 2 and 5.
- the magnetic flux 1301, the magnetic flux 1311, and the magnetic flux 1321 of the first leg portion 110 are all directed upward, and the gaps 400a and 400c between the first leg portion 110 and the second leg portion 120 have high magnetic resistance, so that the magnetic flux is difficult to pass,
- the magnetic flux of the first leg 110 becomes a magnetic flux penetrating from one end to the other end.
- the magnetic flux 1302, the magnetic flux 1312, and the magnetic flux 1322 of the second leg portion 120 are all directed upward, and the gaps 400 a and 400 c between the first leg portion 110 and the second leg portion 120 and the second leg portion 120 and the third leg portion 120 are formed. Since the magnetic resistance is high in the gaps 400b and 400d between the leg portion 130 and the magnetic flux, it is difficult for the magnetic flux to pass through. When these three magnetic fluxes are added, the magnetic flux of the second leg portion 120 penetrates from one end to the other end. It becomes the magnetic flux.
- the magnetic flux 1303, the magnetic flux 1313, and the magnetic flux 1323 of the third leg portion 130 are all directed upward, and the gaps 400b and 400d between the second leg portion 120 and the third leg portion 130 have high magnetic resistance, so the magnetic flux passes through. It is difficult, and when these three magnetic fluxes are added, the magnetic flux of the third leg 130 becomes a magnetic flux penetrating from one end to the other end.
- each leg The magnetic flux penetrating from one end to the other end of each leg reaches the second magnetic core 160 from the leg via one connecting portion 140, and reaches the leg via the other connecting portion.
- a closed magnetic circuit that circulates the magnetic core 2 reaching the portion is formed.
- the magnetic flux generated due to the noise current of the common mode component forms a closed magnetic circuit that circulates in the magnetic core without passing through the gap of the magnetic core, so that the magnetic resistance is reduced.
- the inductance with respect to the magnetic flux generated due to the noise current of the common mode component can be increased, and the noise reduction effect can be improved.
- the choke coil configured in this way, the magnetic core does not undergo magnetic saturation even when a large current component such as the fundamental frequency component of the power supply current flows, and it is possible to suppress a decrease in magnetic permeability of the magnetic core. Therefore, it is possible to avoid a decrease in magnetic permeability with respect to the noise current of the normal mode component and the noise current of the common mode component which are generated by being superimposed on the power supply current.
- the choke coil of the present embodiment prevents magnetic saturation of the magnetic core even when a large three-phase power supply current flows, and exhibits a high noise reduction effect against normal mode noise and common mode noise.
- FIG. 6 is a top view of the choke coil according to the second embodiment.
- FIG. 7 is a side view of the choke coil shown in FIG. 6 viewed from the direction A.
- the choke coil 1 of the present embodiment has a magnetic core 2 and a coil portion 3.
- the magnetic core 2 includes a first leg 2110, a second leg 2120, and a third leg 2130, which are arranged at the positions of the vertices of a triangle.
- the magnetic core 2 connects the first leg 2110 and the second leg 2120 to both ends of the first coupling part 2412, and the second leg 2120 and the third leg 2130 to both ends thereof.
- the fourth leg portion 2512 connected to the first connecting portions 2412 at both ends is provided between the second leg portion 2120 and the second leg portion 2120 at a position between the first leg portion 2110 and the second leg portion 2120.
- the sixth leg portion 2531 connected to the third connecting portion 2431 is provided.
- the first leg 2110, the second leg 2120, the third leg 2130, the first connecting portion 2412, the second connecting portion 2423, and the third connecting portion 2431 constitute a first magnetic core
- the fourth leg portion. 2512, the 5th leg part 2523, and the 6th leg part 2531 comprise the 2nd magnetic core.
- the direction connecting the first leg 2110 and the third leg 2130 is the x-axis direction
- the longitudinal direction of the leg is the y-axis direction.
- the coil unit 3 is similar to the three-phase coil shown in FIG. 3 of the first embodiment, and includes a U-phase winding 200, a V-phase winding 210, and a W-phase winding 220.
- the U-phase winding includes a first U-phase winding 2211, a second U-phase winding 2222, and a third U-phase winding 2233 connected in series.
- a first V-phase winding 2221, a second V-phase winding 2232, and a third V-phase winding 2213 are connected in series as the V-phase winding.
- a first W-phase winding 2231, a second W-phase winding 2212, and a third W-phase winding 2223 are connected in series to the W-phase winding.
- the first leg 2110 has a first U-phase winding 2211, a first V-phase winding 2221 and a first W-phase winding 2231 wound from one end thereof, and the first leg 2110 is provided between each winding. It has an exposed portion 2300.
- the second leg 2120 has a second W-phase winding 2212, a second U-phase winding 2222, and a second V-phase winding 2232 wound from one end, and the second leg 2120 is provided between the windings. It has an exposed portion 2300.
- the third leg 2130 has a third V-phase winding 2213, a third W-phase winding 2223, and a third U-phase winding 2233 wound from one end, and the third leg 2130 is provided between each winding. It has an exposed portion 2300.
- the position where the leg portions of the first leg portion 2110 and the third leg portion 2130 face the exposed portion 2300 has a protruding shape.
- the interval between the protruding portion of the sixth leg portion 2531 and the first leg portion 2110 and the third leg portion 2130 is a gap 2400 that is narrower than the other portions.
- the position where the leg portions of the first leg portion 2110 and the second leg portion 2120 face the exposed portion 2300 has a protruding shape.
- the interval between the protruding portion of the fourth leg portion 2512 and the first leg portion 2110 and the second leg portion 2120 is a gap 2400 that is narrower than the other portions.
- a position facing the exposed portion 2300 of the second leg portion 2120 and the third leg portion 2130 has a protruding shape.
- the interval between the protruding portion of the fifth leg portion 2523 and the second leg portion 2120 and the third leg portion 2130 is a gap 2400 that is narrower than the other portions.
- the first is the magnetic flux distribution generated in the magnetic core 2 when the current of the fundamental frequency component of the power supply current flows.
- the second is a magnetic flux distribution generated in the magnetic core 2 when a noise current of a normal mode component having a phase difference of 120° among the harmonic components of the load switching frequency flows.
- the third is the magnetic flux distribution generated in the magnetic core 2 when the noise current of the common mode component, which is in phase with the harmonic component of the switching frequency of the load, flows.
- FIG. 8, 9 and 10 are schematic diagrams showing the magnetic flux generated in the magnetic core 2 when the power supply current flowing through the U-phase winding is at the maximum phase.
- FIG. 8, FIG. 9 and FIG. 10 are side views seen from the direction A, the direction B and the direction C of FIG. 6, respectively.
- the phase of the power supply current flowing through the U-phase winding is the maximum
- the magnitude of the power supply current flowing through the V-phase winding is half that of the U-phase winding, and the flowing directions are opposite.
- the magnitude of the power supply current flowing through the W-phase winding is half that of the U-phase winding, and the flowing direction is opposite.
- the portion 2300 where the leg portion is exposed is provided with an alphabetic character at the end for each location. Also, with respect to the gap 2400, two letters of the alphabet are added to the end for each position.
- the magnetic flux generated in the portion of the second leg 2120 surrounded by the second U-phase winding 2222 when the power supply current flowing through the U-phase winding has the maximum phase, the magnetic flux generated in the portion of the second leg 2120 surrounded by the second U-phase winding 2222.
- the size of 3222 is 1.0, and the direction of its magnetic flux is upward.
- the magnetic flux 3221 generated in the portion of the first leg 2110 surrounded by the first V-phase winding 2221 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the magnetic flux 3223 generated in the portion of the third leg 2130 surrounded by the third W-phase winding 2223 has a magnitude of 0.5 and the magnetic flux is directed downward.
- the magnetic flux generated in the portion of the third leg 2130 surrounded by the third U-phase winding 2233 when the power supply current flowing through the U-phase winding has the maximum phase, the magnetic flux generated in the portion of the third leg 2130 surrounded by the third U-phase winding 2233.
- the size of 3233 is 1.0, and the direction of its magnetic flux is upward.
- the magnetic flux 3231 generated in the portion of the first leg 2110 surrounded by the first W-phase winding 2231 has a magnitude of 0.5 and the magnetic flux is directed downward.
- the magnetic flux 3232 generated in the portion surrounded by the second V-phase winding 2232 of the second leg 2120 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the following describes the overall magnetic flux distribution when the current of the fundamental frequency component of the power supply current flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- the magnetic flux 3211 generated in the portion surrounded by the first U-phase winding 2211 has a magnitude of 1.0, and the direction of the magnetic flux is upward.
- the magnetic flux 3221 generated in the portion surrounded by the 1V-phase winding 2221 has a magnitude of 0.5 and the direction of the magnetic flux is downward
- the magnetic flux 3231 generated in the portion surrounded by the first W-phase winding 2231 has a magnitude. Is 0.5, the direction of the magnetic flux is downward.
- the magnetic flux 3212 generated in the portion surrounded by the second W-phase winding 2212 has a magnitude of 0.5 and the direction of the magnetic flux is downward.
- the magnitude of the magnetic flux 3222 generated in the portion surrounded by the second U-phase winding 2222 is 1.0, and the direction of the magnetic flux is upward, and the magnetic flux 3232 generated in the portion surrounded by the second V-phase winding 2232 is Has a magnitude of 0.5 and the direction of its magnetic flux is downward. Since these three magnetic fluxes are added to cancel each other, the magnetic flux penetrating from one end to the other end of the second leg 2120 becomes almost zero.
- the magnetic flux 3213 generated in the portion surrounded by the third V-phase winding 2213 has a magnitude of 0.5, and the direction of the magnetic flux is downward.
- the magnetic flux 3223 generated in the portion surrounded by the third W-phase winding 2223 has a magnitude of 0.5 and the direction of the magnetic flux is downward, and the magnetic flux 3233 generated in the portion surrounded by the third U-phase winding 2233 is When the magnitude is 1.0, the direction of the magnetic flux is upward. Since these three magnetic fluxes are added to cancel each other, the magnetic flux penetrating from one end to the other end of the third leg 2130 becomes almost zero. As a result, the magnetic flux penetrating from one end to the other end of the first leg 2110, the second leg 2120, and the third leg 2130 becomes almost zero.
- the magnetic flux 3211, the magnetic flux 3212, and the magnetic flux 3213 are the upper first connecting portion 2412 and the upper third connecting portion. 2431, a portion of the first leg 2110 surrounded by the first U-phase winding 2211, a portion of the second leg 2120 surrounded by the second W-phase winding 2212, and a third V-phase winding 2213 of the third leg 2130. Between the first U-phase winding 2211 and the first V-phase winding 2221, the portion 2300a where the first leg is exposed, and between the second W-phase winding 2212 and the second U-phase winding 2222.
- the magnetic flux 3211 branches into the upper first connecting portion 2412 and the upper third connecting portion 2431.
- the magnetic flux 3222 branches into a path reaching the fourth leg 2512 via the gap 2400ca and a path reaching the fifth leg 2523 via the gap 2400ce.
- the magnetic flux 3233, the magnetic flux 3231, and the magnetic flux 3232 are the lower second connecting portion 2423 and the lower third connecting portion 2423.
- the portion surrounded by the line 2232, the portion 2300b where the first leg portion between the first V-phase winding 2221 and the first W-phase winding 2231 is exposed, the second V-phase winding 2232 and the second W-phase winding 2212 A portion 2300d in which the second leg portion is exposed, a portion 2300f in which the third leg portion is exposed between the third V-phase winding 2213 and the third W-phase winding 2223, a third leg portion and a fifth leg portion 2523, and 2400fd, the gap 2400df between the second leg portion and the fifth leg 2523, the gap 2400bf between the first leg portion and the sixth leg portion 2531, and the gap 2400fb between the third leg portion and the sixth leg portion 2531. It goes through a closed magnetic circuit. It should be noted that the magnetic flux 3233 branches into a path reaching the sixth leg 2531 via the gap 2400fb and a path reaching the fifth leg 2523 via the gap 2400fd.
- the magnetic flux generated in the magnetic core 2 when the power supply current flowing in the U-phase winding has the maximum phase passes through at least one of the gaps 2400 having high magnetic resistance. Therefore, the magnetic flux due to the power supply current has a smaller magnetic flux density than when the magnetic flux does not pass through the gap. As a result, in the choke coil according to the present embodiment, magnetic saturation due to a large power supply current does not occur, and a decrease in magnetic permeability can be avoided.
- the magnetic flux generated in the magnetic core 2 at the phase when the power supply current flowing in the U-phase winding is maximum has been described so far.
- the phases of the currents flowing through the U-phase winding, the V-phase winding, and the W-phase winding differ by 120°, the magnetic flux distribution is different from the case where the phase of the current flowing through the U-phase winding is maximum.
- the magnetic flux generated in the magnetic core 2 at any phase passes through at least one of the gaps 2400 having high magnetic resistance. As a result, in the choke coil according to the present embodiment, magnetic saturation due to a large power supply current does not occur, and a decrease in magnetic permeability can be avoided.
- the magnetic resistance can be further increased by increasing the gap size of the gap 2400, it becomes more difficult for the magnetic core to be magnetically saturated, and a decrease in magnetic permeability can be avoided.
- the direction of the noise current of the normal mode component of the harmonic is the same as the direction of the current of the fundamental frequency of the power supply current. Therefore, the magnetic flux distribution generated by the noise current of the normal mode component is the same as that in FIGS. 8, 9 and 10. Since the noise current of the normal mode component is smaller than the current of the fundamental frequency component of the power supply current, the magnetic flux generated is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the normal mode component. Therefore, the magnetic resistance to the magnetic flux generated by the noise current of the normal mode component can be reduced by reducing the gap size of the gap 2400 under the condition that the permeability of the power source current due to the fundamental frequency component does not decrease. Therefore, it is possible to improve the noise reduction effect.
- the actual gap size is often set in the range of several mm to several tens of mm.
- the gap is usually formed by a space, the gap may be formed by a material having no magnetism, such as resin or wood, which is not a space. If the gap is made of a material other than the space, it is possible to improve the accuracy of the gap dimension and improve the durability.
- the noise current of the common mode component which has the same phase, flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- the magnetic flux distribution generated in the core 2 will be described. Since the noise current of the common mode component is smaller than the current of the fundamental frequency component of the power supply current, the generated magnetic flux is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the common mode component.
- FIG. 11, 12 and 13 are schematic diagrams showing magnetic flux generated in the magnetic core 2 when a noise current of a common mode component flows in the U-phase winding, the V-phase winding and the W-phase winding. .. 11, FIG. 12 and FIG. 13 are side views seen from the direction A, the direction B and the direction C of FIG. 6, respectively.
- the magnetic flux generated in the portion surrounded by the first U-phase winding 2211 of the first leg portion 2110 is 4211
- the magnetic flux generated in the portion surrounded by the first V-phase winding 2221 is 4221
- the first W-phase winding 2231 is generated.
- the magnetic flux generated in the enclosed portion is 4231.
- the magnetic flux generated in the portion surrounded by the second W-phase winding 2212 of the second leg portion 2120 is 4212
- the magnetic flux generated in the portion surrounded by the second U-phase winding 2222 is 4222
- the second V-phase winding 2232 is generated.
- the magnetic flux generated in the enclosed portion is 4232.
- the magnetic flux generated in the portion surrounded by the third V-phase winding 2213 of the third leg portion 2130 is 4213
- the magnetic flux generated in the portion surrounded by the third W-phase winding 2223 is 4223
- the third U-phase winding 2233 is generated.
- the magnetic flux generated in the enclosed portion is 4233. Since the noise currents of the common mode components flowing through the U-phase winding, the V-phase winding, and the W-phase winding are in phase, the magnetic flux generated in each winding has the same magnitude and the same direction.
- the magnetic flux 4211, the magnetic flux 4221 and the magnetic flux 4231 are all upward in the first leg 2110. Magnetic flux is hard to pass through the gaps 2400ae and 2400bf between the first leg 2110 and the sixth leg 2531 and the gaps 2400ac and 2400bd between the first leg 2110 and the fourth leg 2512 because the magnetic resistance is high. As a result, when the magnetic flux 4211, the magnetic flux 4221 and the magnetic flux 4231 are added, the magnetic flux of the first leg 2110 becomes a magnetic flux penetrating from one end to the other end.
- the magnetic flux 4212, the magnetic flux 4222, and the magnetic flux 4232 are all upward. Magnetic flux is hard to pass through the gaps 2400ca and 2400db between the second leg 2120 and the fourth leg 2512 and the gaps 2400ce and 2400df between the second leg 2120 and the fifth leg 2523 because of high magnetic resistance. As a result, when the magnetic flux 4212, the magnetic flux 4222, and the magnetic flux 4232 are added, the magnetic flux of the second leg portion 2120 becomes a magnetic flux penetrating from one end portion to the other end portion.
- the magnetic flux 4213, the magnetic flux 4223, and the magnetic flux 4233 are all upward. Magnetic flux is hard to pass through the gaps 2400ea and 2400fb between the third leg 2130 and the sixth leg 2531 and the gaps 2400ec and 2400fd between the third leg 2130 and the fifth leg 2523 because the magnetic resistance is high. As a result, when the magnetic flux 4213, the magnetic flux 4223, and the magnetic flux 4233 are added, the magnetic flux of the third leg 2130 becomes a magnetic flux penetrating from one end to the other end.
- the magnetic flux penetrating from one end of the first leg 2110 to the other end is a closed magnetic path that passes through two paths.
- the first route is a route from the upper end of the first leg 2110 to the lower end of the first leg 2110 via the upper third connecting portion 2431, the sixth leg 2531 and the lower third connecting portion 2431. (FIG. 11).
- the second route is a route from the upper end of the first leg 2110 to the lower end of the first leg 2110 via the upper first connecting part 2412, the fourth leg 2512, and the lower first connecting part 2412. (FIG. 12).
- the magnetic flux penetrating from one end to the other end of the second leg 2120 is a closed magnetic path that passes through two paths.
- the first route is a route from the upper end of the second leg 2120 to the lower end of the second leg 2120 via the upper first connecting portion 2412, the fourth leg 2512, and the lower first connecting portion 2412. (FIG. 12).
- the second route is a route from the upper end of the second leg 2120 to the lower end of the second leg 2120 via the upper second connecting portion 2423, the fifth leg 2523, and the lower second connecting portion 2423. (FIG. 13).
- the magnetic flux penetrating from one end to the other end of the third leg portion 2130 is a closed magnetic path that passes through two paths.
- the first route is a route from the upper end of the third leg portion 2130 to the lower end of the third leg portion 2130 via the upper third connecting portion 2431, the sixth leg portion 2531 and the lower third connecting portion 2431.
- the second route is a route from the upper end of the third leg portion 2130 to the lower end of the third leg portion 2130 via the upper second connecting portion 2423, the fifth leg portion 2523, and the lower second connecting portion 2423. (FIG. 13).
- the magnetic flux generated due to the noise current of the common mode component forms a closed magnetic circuit that circulates in the magnetic core without passing through the gap of the magnetic core, so that the magnetic resistance is reduced.
- the inductance with respect to the magnetic flux generated due to the noise current of the common mode component can be increased, and the noise reduction effect can be improved.
- the choke coil configured in this way, the magnetic core does not undergo magnetic saturation even when a large current component such as the fundamental frequency component of the power supply current flows, and it is possible to suppress a decrease in magnetic permeability of the magnetic core. Therefore, it is possible to avoid a decrease in magnetic permeability with respect to the noise current of the normal mode component and the noise current of the common mode component which are generated by being superimposed on the power supply current.
- the choke coil of the present embodiment prevents magnetic saturation of the magnetic core even when a large three-phase power supply current flows, and exhibits a high noise reduction effect against normal mode noise and common mode noise.
- FIG. 14 is a perspective view of the choke coil according to the third embodiment.
- the choke coil 1 of the present embodiment has a magnetic core 2 and a coil portion 3.
- the magnetic core 2 includes a first leg portion 2110, a second leg portion 2120, and a third leg portion 2130 that are arranged at the positions of the vertices of a triangle.
- the magnetic core 2 includes the fourth leg 310, the fourth leg 310, the second leg 2120, and the third leg 2130, and the fourth leg 310 and the first leg 2110 and the second leg 2120.
- the 5th connection part 320 which connects the other end part of the 3rd leg part 2130 is provided.
- the fourth connecting portion 310 has a Y-shape having three arms extending from the center to one end of each of the first leg 2110, the second leg 2120 and the third leg 2130.
- the fifth connecting portion 320 has a Y-shape having three arm portions extending from the central portion to the other ends of the first leg portion 2110, the second leg portion 2120 and the third leg portion 2130, respectively. is there.
- the first leg 2110, the second leg 2120, the third leg 2130, the fourth connecting portion 310, and the fifth connecting portion 320 form the first magnetic core 150.
- the magnetic core 2 includes a second magnetic core 160 that connects the central portion of the fourth connecting portion 310 and the central portion of the fifth connecting portion 320.
- the coil unit 3 is similar to the three-phase coil shown in FIG. 3 of the first embodiment and is composed of a U-phase winding, a V-phase winding and a W-phase winding.
- the U-phase winding includes a first U-phase winding 2211, a second U-phase winding 2222, and a third U-phase winding 2233 connected in series.
- a first V-phase winding 2221, a second V-phase winding 2232, and a third V-phase winding 2213 are connected in series as the V-phase winding.
- a first W-phase winding 2231, a second W-phase winding 2212, and a third W-phase winding 2223 are connected in series to the W-phase winding.
- the first leg 2110 has a first U-phase winding 2211, a first V-phase winding 2221 and a first W-phase winding 2231 wound from one end thereof, and the first leg 2110 is provided between each winding. It has an exposed portion 2300.
- the second leg 2120 has a second W-phase winding 2212, a second U-phase winding 2222, and a second V-phase winding 2232 wound from one end, and the second leg 2120 is provided between the windings. It has an exposed portion 2300.
- the third leg 2130 has a third V-phase winding 2213, a third W-phase winding 2223, and a third U-phase winding 2233 wound from one end, and the third leg 2130 is provided between each winding. It has an exposed portion 2300.
- the second magnetic cores 160 at the opposite positions have a protruding shape. Therefore, the gap between the exposed portion 2300 of the first leg 2110 and the second magnetic core 160 is a gap 2400 that is narrower than the other portions. Similarly, the interval between the exposed portion 2300 of the second leg portion 2120 and the exposed portion 2300 of the third leg portion 2130 and the second magnetic core 160 is a gap 2400 that is narrower than the other portions. Has become.
- the first is the magnetic flux distribution generated in the magnetic core 2 when the current of the fundamental frequency component of the power supply current flows.
- the second is a magnetic flux distribution generated in the magnetic core 2 when a noise current of a normal mode component having a phase difference of 120° among the harmonic components of the load switching frequency flows.
- the third is the magnetic flux distribution generated in the magnetic core 2 when the noise current of the common mode component, which is in phase with the harmonic component of the switching frequency of the load, flows.
- the magnetic flux distribution generated in the magnetic core 2 when the current of the fundamental frequency component of the power supply current flows through the U-phase winding, the V-phase winding, and the W-phase winding will be described.
- the magnetic flux penetrating from one end to the other end is It becomes almost zero.
- the magnetic flux generated in the magnetic core 2 when the power supply current flowing in the U-phase winding has the maximum phase passes through at least one of the gaps 2400 having high magnetic resistance. Therefore, the magnetic flux due to the power supply current has a smaller magnetic flux density than when the magnetic flux does not pass through the gap.
- the choke coil of the present embodiment magnetic saturation due to a large power supply current does not occur, and a decrease in magnetic permeability can be avoided.
- the direction of the noise current of the normal mode component of the harmonic is the same as the direction of the current of the fundamental frequency of the power supply current. Therefore, the magnetic flux distribution generated by the noise current of the normal mode component is similar to the magnetic flux distribution generated by the power supply current. Since the noise current of the normal mode component is smaller than the current of the fundamental frequency component of the power supply current, the magnetic flux generated is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the normal mode component. Therefore, the magnetic resistance to the magnetic flux generated by the noise current of the normal mode component can be reduced by reducing the gap size of the gap 2400 under the condition that the permeability of the power source current due to the fundamental frequency component does not decrease. Therefore, it is possible to improve the noise reduction effect.
- the noise current of the common mode component which has the same phase, flows in the U-phase winding, the V-phase winding, and the W-phase winding.
- the magnetic flux distribution generated in the core 2 will be described. Since the noise current of the common mode component is smaller than the current of the fundamental frequency component of the power supply current, the generated magnetic flux is also small. Therefore, the magnetic core is hardly magnetically saturated by the noise current of the common mode component.
- the magnetic flux generated by the noise current of the common mode component is, as in the second embodiment, from one end to the other in each leg of the first leg 2110, the second leg 2120, and the third leg 2130.
- the magnetic flux penetrates up to the end of. This magnetic flux does not pass through the gap 2400 having a high magnetic resistance, but passes through the fourth connecting portion 310, the second magnetic core 160, and the fifth connecting portion 320 from one end portion of each leg portion of each leg portion.
- the closed magnetic circuit returns to the other end.
- the magnetic flux generated due to the noise current of the common mode component forms a closed magnetic circuit that circulates in the magnetic core without passing through the gap of the magnetic core, as in the second embodiment, so that the magnetic resistance decreases. ..
- the inductance with respect to the magnetic flux generated due to the noise current of the common mode component can be increased, and the noise reduction effect can be improved.
- the choke coil configured in this way, the magnetic core does not magnetically saturate even when a large current component such as the fundamental frequency component of the power supply current flows, and the noise current of the normal mode component of the harmonic of the load switching frequency and The inductance can be increased with respect to the noise current of the common mode component.
- the choke coil of the present embodiment prevents magnetic saturation of the magnetic core even when a large three-phase power supply current flows, and has a high noise reduction effect against normal mode noise and common mode noise.
- FIG. 15 is a perspective view of the noise filter according to the fourth embodiment.
- the noise filter according to the present embodiment is a noise filter configured by connecting a capacitance circuit to the choke coil according to the first embodiment.
- the noise filter of the present embodiment includes a first V-phase winding 211 between the first U-phase winding 201 and the first V-phase winding 211 of the choke coil 1 shown in the first embodiment.
- the first W-phase winding 221 and between the first U-phase winding 201 and the first W-phase winding 221, chip capacitors 410, 420, and 430 are connected, respectively.
- FIG. 16 shows an equivalent circuit of the noise filter.
- a chip capacitor 410 which is a capacitance circuit between the U-phase winding 200 and the V-phase winding 210, is a capacitance circuit between the V-phase winding 210 and the W-phase winding 220.
- the chip capacitor 420 is connected between the U-phase winding 200 and the W-phase winding 220, and the chip capacitor 430, which is a capacitance circuit, is connected thereto.
- the chip capacitors 410, 420, 430 are respectively arranged between the first U-phase winding 201 and the first V-phase winding 211, between the first V-phase winding 211 and the first W-phase winding 221, and in the first U-phase.
- the chip capacitors are connected between the winding 201 and the first W-phase winding 221, and these chip capacitors are provided between the U-phase winding 200 and the V-phase winding 210 and between the V-phase winding 210 and the W-phase winding 210. Any position may be provided as long as it is between the wire 220 and between the U-phase winding 200 and the W-phase winding 220.
- the noise filter configured as described above does not cause magnetic saturation of the magnetic core even when a large current component such as the fundamental frequency component of the power supply current flows, and the noise current of the normal mode component of the harmonic of the load switching frequency and The inductance can be increased with respect to the noise current of the common mode component.
- the choke coil of the present embodiment prevents magnetic saturation of the magnetic core even when a large three-phase power supply current flows, and has a high noise reduction effect against normal mode noise and common mode noise.
- the noise filter of this embodiment uses the choke coil of the first embodiment, but the choke coil of the second or third embodiment may be used. Further, the noise filter according to the present embodiment includes three chip capacitors, but any one of them may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Filters And Equalizers (AREA)
- Coils Of Transformers For General Uses (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を有するチョークコイルを提供することを目的とする。 第1脚部(110)、第2脚部(120)および第3脚部(130)並びにこの3本の脚部の両端をそれぞれ連結する連結部(140)を備えた第1磁気コア(150)と、第1磁気コアの連結部同士を接続する第2磁気コア(160)と、U相巻線(200)、V相巻線(210)およびW相巻線(220)とを備えている。第1脚部(110)には、一方の端部から他方の端部に向かって順に第1U相巻線、第1V相巻線および第1W相巻線が巻かれており、第2脚部(120)には、一方の端部から他方の端部に向かって順に第2W相巻線、第2U相巻線および第2V相巻線が巻かれており、第3脚部(130)には、一方の端部から他方の端部に向かって順に第3V相巻線、第3W相巻線および第3U相巻線が巻かれている。
Description
本願は、チョークコイルおよびそれを用いたノイズフィルタに関する。
3相電源と負荷装置との間には、チョークコイルを用いたノイズフィルタが設けられる場合がある。このノイズフィルタは、負荷装置側で発生した電磁ノイズが3相電源側へ伝搬するのを防いでいる。例えば、交流駆動モータを制御する電力変換装置が3相電源に接続されている場合、電力変換装置が有するインバータの高速スイッチング動作に起因するEMIノイズ(Electo-Magnetic Interference Noise)が発生する。このEMIノイズが伝導ノイズとなって電力変換装置から3相電源側およびアースへ流れる。EMIノイズが3相電源側およびアースへ流れると、他の電機機器に伝搬してその電機機器の誤動作の要因になるなどの悪影響を及ぼす可能性がある。
EMIノイズには、3相電源と負荷装置との間の伝送路を伝搬するノーマルノードノイズと、伝送路とアースとの間を伝搬するコモンモードノイズの2種類がある。これら両方のノイズを低減させるノイズフィルタとして、デュアルモードチョークコイルが用いられている。
従来のデュアルモードチョークコイルは、3本の脚部とこの3本の脚部の両端を連結する第1連結部および第2連結部とを有する第1磁気コアと、3本の脚部のそれぞれに巻き回された3相の各相の巻線と、第1連結部および第2連結部にそれぞれ交差する第2磁気コアとを備えている(例えば、特許文献1参照)。このデュアルモードチョークコイルでは、第1磁気コアを通る閉磁路がノーマルモードノイズに対するインダクタンスを有し、第2磁気コアと3本の脚部とを通る閉磁路がコモンモードノイズに対するインダクタンスを有している。
従来のデュアルモードチョークコイルでは、3相の各相の巻線に位相が互いに120°異なる電源電流が流れる。電源電流が流れたときに3相の各相の巻線がそれぞれ巻かれている3つの脚部に発生する磁束は、3つのそれぞれの脚部、第1連結部および第2連結部を通り空間ギャップを有しない第1磁気コアが磁気経路となる。そのため、大きな電源電流が流れたときに発生する磁束密度が最大磁束密度を超えると第1磁気コアが磁気飽和する。第1磁気コアが磁気飽和すると、第1磁気コアの透磁率(磁束の通り易さ)が低下する。
ノーマルモードノイズおよびコモンモードノイズは、電源電流の基本周波数成分に重畳される形で印加される。ノーマルモードノイズの電流に起因する磁束は、電源電流と同様に第1磁気コアを通る磁気経路となる。一方、コモンモードノイズの電流に起因する磁束は、電源電流と同様に3つの脚部、第1連結部、第2連結部および第2磁気コアを通る磁気経路となる。
上述のように、大きな電源電流が流れている状態でノーマルモードノイズおよびコモンモードノイズが重畳された場合、第1磁気コアの透磁率が低下しているので、これらのノイズ電流に起因する磁束は小さくなる。その結果、ノーマルモードノイズおよびコモンモードノイズに対するインダクタンスが低下し、ノイズ低減効果が低下するという問題があった。
本願は、上述のような課題を解決するためになされたもので、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を有するチョークコイルを提供することを目的とする。
本願のチョークコイルは、第1脚部、第2脚部および第3脚部並びにこの3本の脚部の両端をそれぞれ連結する連結部を備えた第1磁気コアと、第1磁気コアの連結部同士を接続する第2磁気コアと、U相巻線、V相巻線およびW相巻線とを備えている。また、本願のチョークコイルにおいては、U相巻線は、第1U相巻線、第2U相巻線および第3U相巻線が直列に接続されており、V相巻線は、第1V相巻線、第2V相巻線および第3V相巻線が直列に接続されており、W相巻線は、第1W相巻線、第2W相巻線および第3W相巻線が直列に接続されている。さらに、本願のチョークコイルにおいては、第1脚部には、一方の端部から他方の端部に向かって順に第1U相巻線、第1V相巻線および第1W相巻線が巻かれており、第2脚部には、一方の端部から他方の端部に向かって順に第2W相巻線、第2U相巻線および第2V相巻線が巻かれており、第3脚部には、一方の端部から他方の端部に向かって順に第3V相巻線、第3W相巻線および第3U相巻線が巻かれている。
本願のチョークコイルは、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を発揮することができる。
以下、本願を実施するための実施の形態に係るチョークコイルおよびノイズフィルタについて、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしく相当部分を示している。
実施の形態1.
図1は、実施の形態1に係るチョークコイルの斜視図である。本実施の形態のチョークコイルは、ノーマルモードノイズおよびコモンモードノイズに対してノイズフィルタの役割を担うデュアルモードチョークコイルである。図2は、チョークコイルの磁気コアの正面図である。図3は、3相のコイルと3相の電源および負荷との接続関係を示す配線図である。負荷としては、例えば3相コンバータなどが用いられる。この3相コンバータはスイッチング素子を有している。
図1は、実施の形態1に係るチョークコイルの斜視図である。本実施の形態のチョークコイルは、ノーマルモードノイズおよびコモンモードノイズに対してノイズフィルタの役割を担うデュアルモードチョークコイルである。図2は、チョークコイルの磁気コアの正面図である。図3は、3相のコイルと3相の電源および負荷との接続関係を示す配線図である。負荷としては、例えば3相コンバータなどが用いられる。この3相コンバータはスイッチング素子を有している。
図1に示すように、本実施の形態のチョークコイル1は、磁気コア2とコイル部3とを有する。磁気コア2は、図2に示すように、第1脚部110、第2脚部120および第3脚部130と、この3本の脚部の両端をそれぞれ連結する連結部140とを有する第1磁気コア150を備えている。また、磁気コア2は、第1磁気コア150の連結部140同士を接続する第2磁気コア160を備えている。第1磁気コア150と第2磁気コア160とで磁気コア2を構成している。図1に示すように、第1脚部110、第2脚部120および第3脚部130が並ぶ方向をx軸方向、脚部の長手方向をy軸方向とする。なお、本実施の形態の磁気コア2は、磁性体であるフェライトで構成されている。また、コイル部3は、導体である銅線で構成されている。これらの素材は例示であって他の素材であってもよい。
コイル部3は、図3に示すように、U相巻線200、V相巻線210およびW相巻線220で構成された3相コイルである。このコイル部3は、3相の電源50と負荷60との間に接続されている。さらに、U相巻線200、V相巻線210およびW相巻線220は、それぞれ直列に接続された3つの巻線に分割されている。
U相巻線200は、第1U相巻線201、第2U相巻線212および第3U相巻線223が直列に接続されている。V相巻線210は、第1V相巻線211、第2V相巻線222および第3V相巻線203が直列に接続されている。W相巻線220は、第1W相巻線221、第2W相巻線202および第3W相巻線213が直列に接続されている。なお、直列に接続された3つの巻線の接続の順番はどのような順番であってもよい。
図1に示すように、チョークコイル1の第1脚部110には、一方の端部から他方の端部に向かって順に第1U相巻線201、第1V相巻線211および第1W相巻線221が巻かれている。また、第2脚部120には、一方の端部から他方の端部に向かって順に第2W相巻線202、第2U相巻線212および第2V相巻線222が巻かれている。さらに、第3脚部130には、一方の端部から他方の端部に向かって順に第3V相巻線203、第3W相巻線213および第3U相巻線223が巻かれている。コイル部3を構成する上述の9つに分かれた巻線は、すべて同一の方向に巻かれており、かつ同一の巻線数である。また、9つに分かれた巻線には、すべて同じ向きに電流が流れるように接続されている。
図1に示すように、9つに分かれた巻線同士の間には脚部が露出する部分が設けられている。第1脚部110に巻かれた第1U相巻線201と第1V相巻線211との間には第1脚部110が露出した部分300aが、第1V相巻線211と第1W相巻線221との間には第1脚部110が露出した部分300dがそれぞれ設けられている。また、第2脚部120に巻かれた第2W相巻線202と第2U相巻線212との間には第2脚部120が露出した部分300bが、第2U相巻線212と第2V相巻線222との間には第2脚部120が露出した部分300eがそれぞれ設けられている。さらに、第3脚部130に巻かれた第3V相巻線203と第3W相巻線213との間には第3脚部130が露出した部分300cが、第3W相巻線213と第3U相巻線223との間には第3脚部130が露出した部分300fがそれぞれ設けられている。図1に示すように、第1脚部が露出した部分300a、300dと第2脚部が露出した部分300b、300eとはそれぞれ対向する位置に設けられている。また、第2脚部が露出した部分300b、300eと第3脚部が露出した部分300c、300fともそれぞれ対向する位置に設けられている。
磁気コア2の第1脚部が露出した部分300a、300d、第2脚部が露出した部分300b、300eおよび第3脚部が露出した部分300c、300fを図2に示している。図2に示すように、第1脚部が露出した部分300aと第2脚部が露出した部分300bとの間には、ギャップ400aが存在する。第2脚部が露出した部分300bと第3脚部が露出した部分300cとの間には、ギャップ400bが存在する。第1脚部が露出した部分300dと第2脚部が露出した部分300eとの間には、ギャップ400cが存在する。第2脚部が露出した部分300eと第3脚部が露出した部分300fとの間には、ギャップ400dが存在する。
本実施の形態の磁気コア2は、第2脚部が露出した部分300bが、第1脚部が露出した部分300aおよび第3脚部が露出した部分300cに対して突出した形状であり、第2脚部が露出した部分300eが、第1脚部が露出した部分300dおよび第3脚部が露出した部分300fに対して突出した形状である。この形状であれば、コイル部3の巻線のサイズに関係なくギャップ400a、400b、400cおよび400dのギャップ寸法を設定することができる。なお、本実施の形態では、第2脚部120のみが突出した形状としたが、第1脚部が露出した部分300aおよび300d、並びに第3脚部が露出した部分300cおよび300fも突出した形状であってもよい。また、脚部が露出した部分は、必ずしも突出した形状である必要もない。
次に、チョークコイル1の動作について説明する。
図3に示した接続関係において、チョークコイル1に電源電流がながれるとき、コイル部3に流れる電流を以下の3つの成分に分けて考え、それぞれの成分で磁気コア2に発生する磁束分布について説明する。
図3に示した接続関係において、チョークコイル1に電源電流がながれるとき、コイル部3に流れる電流を以下の3つの成分に分けて考え、それぞれの成分で磁気コア2に発生する磁束分布について説明する。
1つ目は、電源電流の基本周波数成分(例えば、商用周波数成分である50Hzまたは60Hzなど)の電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布である。2つ目は、負荷のスイッチング周波数の高調波成分(EMI規格で伝導ノイズが規制される150kHz以上の周波数成分)のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流がそれぞれU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布である。3つ目は、負荷のスイッチング周波数の高調波成分(EMI規格で伝導ノイズが規制される150kHz以上の周波数成分)のうち、位相が同相であるコモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布である。なお、EMI規格としては、例えばCISPR規格(国際無線障害特別委員会で定められた規格)などがある。
まず、1つ目の、電源電流の基本周波数成分の電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布を説明する。図4は、U相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束を示した模式図である。U相巻線に流れる電源電流が最大となる位相のとき、V相巻線に流れる電源電流は、大きさはU相巻線の半分であり、流れる方向は逆向きである。また、W相巻線に流れる電流は、大きさはU相巻線の半分であり、流れる方向は逆向きである。
第1脚部110の第1U相巻線201に囲まれた部分に発生する磁束1201の大きさを1.0とし、その磁束の向きを上向きとする。このとき、第2脚部120の第2W相巻線202に囲まれた部分に発生する磁束1202は、大きさが0.5でその磁束の向きは下向きとなる。また、第3脚部130の第3V相巻線203に囲まれた部分に発生する磁束1203は、大きさは0.5でその磁束の向きは下向きとなる。
また、第2脚部120の第2U相巻線212に囲まれた部分に発生する磁束1212は、大きさが1.0でその磁束の向きは上向きとなる。また、第1脚部110の第1V相巻線211に囲まれた部分に発生する磁束1211は、大きさが0.5でその磁束の向きは下向きとなる。さらに、第3脚部130の第3W相巻線213に囲まれた部分に発生する磁束1213は、大きさが0.5でその磁束の向きは下向きとなる。
さらに、第3脚部130の第3U相巻線223に囲まれた部分に発生する磁束1223は、大きさが1.0でその磁束の向きは上向きとなる。また、第1脚部110の第1W相巻線221に囲まれた部分に発生する磁束1221は、大きさが0.5でその磁束の向きは下向きとなる。さらに、第2脚部120の第2V相巻線222に囲まれた部分に発生する磁束1222は、大きさが0.5でその磁束の向きは下向きとなる。
このような電源電流の基本周波数成分の電流がU相巻線、V相巻線およびW相巻線に流れるとき、全体の磁束分布について説明する。
図4に示すように、第1脚部110において、第1U相巻線201に囲まれた部分に発生する磁束1201は大きさが1.0でその磁束の向きは上向きとなり、第1V相巻線211に囲まれた部分に発生する磁束1211は大きさが0.5でその磁束の向きは下向きとなり、第1W相巻線221に囲まれた部分に発生する磁束1221は大きさが0.5でその磁束の向きは下向きとなる。この3つの磁束を加算すると打消し合うので、第1脚部110の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
同様に、第2脚部120において、第2W相巻線202に囲まれた部分に発生する磁束1202は大きさが0.5でその磁束の向きは下向きとなり、第2U相巻線212に囲まれた部分に発生する磁束1212は大きさが1.0でその磁束の向きは上向きとなり、第2V相巻線222に囲まれた部分に発生する磁束1222は大きさが0.5でその磁束の向きは下向きとなる。この3つの磁束を加算すると打消し合うので、第2脚部120の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
さらに、第3脚部130において、第3V相巻線203に囲まれた部分に発生する磁束1203は大きさが0.5でその磁束の向きは下向きとなり、第3W相巻線213に囲まれた部分に発生する磁束1213は大きさが0.5でその磁束の向きは下向きとなり、第3U相巻線223に囲まれた部分に発生する磁束1223は大きさが1.0でその磁束の向きは上向きとなる。この3つの磁束を加算すると打消し合うので、第3脚部130の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
この結果、第1脚部110、第2脚部120および第3脚部130の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
図2および図4を用いて、磁気コア内に発生する磁束の磁路について説明する。
磁束1201、磁束1202および磁束1203は、第1磁気コアの上部の連結部140、第1脚部110の第1U相巻線201で囲まれた部分、第2脚部120の第2W相巻線202で囲まれた部分、第3脚部130の第3V相巻線203で囲まれた部分、第1U相巻線201と第1V相巻線211との間の第1脚部が露出した部分300a、第2W相巻線202と第2U相巻線212との間の第2脚部が露出した部分300b、第3V相巻線203と第3W相巻線213との間の第3脚部が露出した部分300c、第1脚部が露出した部分300aと第2脚部が露出した部分300bとの間のギャップ400a、および第2脚部が露出した部分300bと第3脚部が露出した部分300cとの間のギャップ400bで構成される閉磁路を通る。
磁束1201、磁束1202および磁束1203は、第1磁気コアの上部の連結部140、第1脚部110の第1U相巻線201で囲まれた部分、第2脚部120の第2W相巻線202で囲まれた部分、第3脚部130の第3V相巻線203で囲まれた部分、第1U相巻線201と第1V相巻線211との間の第1脚部が露出した部分300a、第2W相巻線202と第2U相巻線212との間の第2脚部が露出した部分300b、第3V相巻線203と第3W相巻線213との間の第3脚部が露出した部分300c、第1脚部が露出した部分300aと第2脚部が露出した部分300bとの間のギャップ400a、および第2脚部が露出した部分300bと第3脚部が露出した部分300cとの間のギャップ400bで構成される閉磁路を通る。
同様に、磁束1211、磁束1212および磁束1213は、第1脚部110の第1V相巻線211で囲まれた部分、第2脚部120の第2U相巻線212で囲まれた部分、第3脚部130の第3W相巻線213で囲まれた部分、第1U相巻線201と第1V相巻線211との間の第1脚部が露出した部分300a、第2W相巻線202と第2U相巻線212との間の第2脚部が露出した部分300b、第3V相巻線203と第3W相巻線213との間の第3脚部が露出した部分300c、第1V相巻線211と第1W相巻線221との間の第1脚部が露出した部分300d、第2U相巻線212と第2V相巻線222との間の第2脚部が露出した部分300e、第3W相巻線213と第3U相巻線223との間の第3脚部が露出した部分300f、第1脚部が露出した部分300aと第2脚部が露出した部分300bとの間のギャップ400a、第2脚部が露出した部分300bと第3脚部が露出した部分300cとの間のギャップ400b、第1脚部が露出した部分300dと第2脚部が露出した部分300eとの間のギャップ400c、および第2脚部が露出した部分300eと第3脚部が露出した部分300fとの間のギャップ400dで構成される閉磁路を通る。
さらに、磁束1221、磁束1222および磁束1223は、第1磁気コアの下部の連結部140、第1脚部110の第1W相巻線221で囲まれた部分、第2脚部120の第2V相巻線222で囲まれた部分、第3脚部130の第3U相巻線223で囲まれた部分、第1V相巻線211と第1W相巻線221との間の第1脚部が露出した部分300d、第2U相巻線212と第2V相巻線222との間の第2脚部が露出した部分300e、第3W相巻線213と第3U相巻線223との間の第3脚部が露出した部分300f、第1脚部が露出した部分300dと第2脚部が露出した部分300eとの間のギャップ400c、および第2脚部が露出した部分300eと第3脚部が露出した部分300fとの間のギャップ400dで構成される閉磁路を通る。
電源電流はコモンモードおよびノーマルモードのノイズ電流に比べて非常に大きい。従来のチョークコイルでは、電源電流に起因する磁束はギャップを通らない閉磁路を通るので、電源電流の電流値に比例した大きな磁束が発生する。磁気コア内の磁束密度が大きくなり最大磁束密度を超えると磁気コアの透磁率が低下して磁気抵抗が高くなる現象、すなわち磁気飽和が起こる。ノーマルモードおよびコモンモードのノイズ電流は、電源電流に重畳して流れる。従来のチョークコイルでは、ノーマルモードおよびコモンモードのノイズ電流に起因して発生する磁束は、大きな電源電流が流れて磁気コアの透磁率が低下しているため、その磁束密度は小さくなっていた。
本実施の形態のチョークコイルでは、U相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束は、磁気抵抗の高いギャップ400a、400b、400cおよび400dの少なくとも1つを通る。そのため、電源電流に起因する磁束はギャップを通らない場合よりも磁束密度が小さくなる。その結果、本実施の形態のチョークコイルでは、大きな電源電流に起因する磁気飽和が発生せず、透磁率の低下を避けることができる。
なお、これまでU相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束について説明した。U相巻線、V相巻線およびW相巻線に流れる電流の位相が120°ずつ異なる電源電流の場合、U相巻線に流れる電源電流が最大になる位相の場合と磁束分布は異なるが、どのような位相であっても磁気コア2内に発生する磁束は磁気抵抗の高いギャップ400a、400b、400cおよび400dの少なくとも1つを通る。そのため、本実施の形態のチョークコイルでは、大きな電源電流に起因する磁気飽和が発生せず、透磁率の低下を避けることができる。その結果、後述する負荷のスイッチング周波数の高調波成分で発生するノーマルモードのノイズ電流およびコモンモードのノイズ電流に対する透磁率の低下を避けることができる。
なお、ギャップ400a、400b、400cおよび400dのギャップ寸法を大きくすれば磁気抵抗をさらに大きくできるので、磁気コアがさらに磁気飽和しにくくなり、さらに透磁率の低下を避けることができる。
次に、2つ目の、負荷のスイッチング周波数の高調波成分のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流がそれぞれU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。
高調波のノーマルモード成分のノイズ電流の方向は、電源電流の基本周波数の電流の方向と同じである。そのため、このノーマルモード成分のノイズ電流で発生する磁束分布は図4と同様になる。ノーマルモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、ノーマルモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。したがって、電源電流の基本周波数成分の電流による透磁率の低下が発生しない条件の下で、ギャップ400a、400b、400cおよび400dのギャップ寸法を小さくすれば、ノーマルモード成分のノイズ電流で発生する磁束に対する磁気抵抗を小さくすることができ、ノイズ低減効果を向上させることが可能である。
なお、実際のギャップ寸法は、数mmから数10mmの範囲に設定されることが多い。また、通常ギャップは、空間で構成されているが、空間ではなく磁性をもたない樹脂、木材などの材料でギャップを構成してもよい。空間以外の材料でギャップを構成すると、ギャップ寸法の高精度化、耐久性の向上が可能となる。
最後に、3つ目の、負荷のスイッチング周波数の高調波成分のうち、位相が同相であるコモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。なお、コモンモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、コモンモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。
図5は、コモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときの磁気コア2内に発生する磁束を示した模式図である。第1脚部110の第1U相巻線201に囲まれた部分に発生する磁束を1301、第1V相巻線211に囲まれた部分に発生する磁束を1311、第1W相巻線221に囲まれた部分に発生する磁束を1321とする。第2脚部120の第2W相巻線202に囲まれた部分に発生する磁束を1302、第2U相巻線212に囲まれた部分に発生する磁束を1312、第2V相巻線222に囲まれた部分に発生する磁束を1322とする。第3脚部130の第3V相巻線203に囲まれた部分に発生する磁束を1303、第3W相巻線213に囲まれた部分に発生する磁束を1313、第3U相巻線223に囲まれた部分に発生する磁束を1323とする。U相巻線、V相巻線およびW相巻線に流れるコモンモード成分のノイズ電流は同相であるため、各巻線で発生する磁束1301、1302、1303、1311、1312、1313、1321、1322および1323は、すべて同じ大きさでその磁束の向きは同じ向きである。
図2および図5を用いて、磁気コア内に発生する磁束の磁路について説明する。
第1脚部110の磁束1301、磁束1311および磁束1321は全て上向きであり、第1脚部110と第2脚部120との間のギャップ400aおよび400cは磁気抵抗が高いので磁束は通りにくく、この3つの磁束を加算すると第1脚部110の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
第1脚部110の磁束1301、磁束1311および磁束1321は全て上向きであり、第1脚部110と第2脚部120との間のギャップ400aおよび400cは磁気抵抗が高いので磁束は通りにくく、この3つの磁束を加算すると第1脚部110の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
また、第2脚部120の磁束1302、磁束1312および磁束1322は全て上向きであり、第1脚部110と第2脚部120との間のギャップ400a、400cおよび第2脚部120と第3脚部130との間のギャップ400b、400dは磁気抵抗が高いので磁束は通りにくく、この3つの磁束を加算すると第2脚部120の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
さらに、第3脚部130の磁束1303、磁束1313および磁束1323は全て上向きであり、第2脚部120と第3脚部130との間のギャップ400bおよび400dは磁気抵抗が高いので磁束は通りにくく、この3つの磁束を加算すると第3脚部130の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
それぞれの脚部の一方の端部から他方の端部までを貫通する磁束は、脚部から一方の連結部140を経由して第2磁気コア160に至り、他方の連結部を経由して脚部に至る磁気コア2を環流する閉磁路を形成する。
上述のように、コモンモード成分のノイズ電流に起因して発生する磁束は、磁気コアのギャップを経由せず磁気コア内を環流する閉磁路を形成するので、磁気抵抗が小さくなる。その結果、コモンモード成分のノイズ電流に起因して発生する磁束に対するインダクタンスを高くすることができ、ノイズ低減効果を向上させることができる。
このように構成されたチョークコイルは、電源電流の基本周波数成分のように大きな電流成分が流れた場合でも磁気コアが磁気飽和せず、磁気コアの透磁率低下を抑制することができる。そのため、電源電流に重畳して発生するノーマルモード成分のノイズ電流およびコモンモード成分のノイズ電流に対して、透磁率の低下を避けることができる。その結果、本実施の形態のチョークコイルは、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を発揮する。
実施の形態2.
図6は、実施の形態2に係るチョークコイルの上面図である。図7は、図6に示すチョークコイルをA方向から見た側面図である。図6および図7に示すように、本実施の形態のチョークコイル1は、磁気コア2とコイル部3とを有する。磁気コア2は、図6に示すように、三角形の頂点の位置にそれぞれ配置された第1脚部2110、第2脚部2120および第3脚部2130を備えている。また、磁気コア2は、第1脚部2110と第2脚部2120との両端をそれぞれ連結する第1連結部2412、第2脚部2120と第3脚部2130との両端をそれぞれ連結する第2連結部2423、および第3脚部2130と第1脚部2110との両端をそれぞれ連結する第3連結部2431を備えている。さらに、磁気コア2は、第1脚部2110と第2脚部2120との間の位置で、両端の第1連結部2412に接続された第4脚部2512を、第2脚部2120と第3脚部2130との間の位置で、両端の第2連結部2423に接続された第5脚部2523を、および第3脚部2130と第1脚部2110との間の位置で、両端の第3連結部2431に接続された第6脚部2531を備えている。第1脚部2110、第2脚部2120、第3脚部2130、第1連結部2412、第2連結部2423および第3連結部2431で第1磁気コアを構成しており、第4脚部2512、第5脚部2523および第6脚部2531が第2磁気コアを構成している。
なお、図6に示すように、第1脚部2110と第3脚部2130とを結ぶ方向をx軸方向、脚部の長手方向をy軸方向とする。
図6は、実施の形態2に係るチョークコイルの上面図である。図7は、図6に示すチョークコイルをA方向から見た側面図である。図6および図7に示すように、本実施の形態のチョークコイル1は、磁気コア2とコイル部3とを有する。磁気コア2は、図6に示すように、三角形の頂点の位置にそれぞれ配置された第1脚部2110、第2脚部2120および第3脚部2130を備えている。また、磁気コア2は、第1脚部2110と第2脚部2120との両端をそれぞれ連結する第1連結部2412、第2脚部2120と第3脚部2130との両端をそれぞれ連結する第2連結部2423、および第3脚部2130と第1脚部2110との両端をそれぞれ連結する第3連結部2431を備えている。さらに、磁気コア2は、第1脚部2110と第2脚部2120との間の位置で、両端の第1連結部2412に接続された第4脚部2512を、第2脚部2120と第3脚部2130との間の位置で、両端の第2連結部2423に接続された第5脚部2523を、および第3脚部2130と第1脚部2110との間の位置で、両端の第3連結部2431に接続された第6脚部2531を備えている。第1脚部2110、第2脚部2120、第3脚部2130、第1連結部2412、第2連結部2423および第3連結部2431で第1磁気コアを構成しており、第4脚部2512、第5脚部2523および第6脚部2531が第2磁気コアを構成している。
なお、図6に示すように、第1脚部2110と第3脚部2130とを結ぶ方向をx軸方向、脚部の長手方向をy軸方向とする。
コイル部3は、実施の形態1の図3で示した3相コイルと同様であり、U相巻線200、V相巻線210およびW相巻線220で構成されている。U相巻線は、第1U相巻線2211、第2U相巻線2222および第3U相巻線2233が直列に接続されている。V相巻線は、第1V相巻線2221、第2V相巻線2232および第3V相巻線2213が直列に接続されている。W相巻線は、第1W相巻線2231、第2W相巻線2212および第3W相巻線2223が直列に接続されている。
第1脚部2110は、一方の端部から第1U相巻線2211、第1V相巻線2221および第1W相巻線2231が巻かれており、各巻線の間には第1脚部2110が露出した部分2300を有する。第2脚部2120は、一方の端部から第2W相巻線2212、第2U相巻線2222および第2V相巻線2232が巻かれており、各巻線の間には第2脚部2120が露出した部分2300を有する。第3脚部2130は、一方の端部から第3V相巻線2213、第3W相巻線2223および第3U相巻線2233が巻かれており、各巻線の間には第3脚部2130が露出した部分2300を有する。
図7に示すように、第6脚部2531において、第1脚部2110および第3脚部2130の脚部が露出した部分2300と対向する位置は、突出した形状となっている。第6脚部2531の突出した部分と第1脚部2110および第3脚部2130との間隔は、他の部分より狭いギャップ2400となっている。同様に、第4脚部2512において、第1脚部2110および第2脚部2120の脚部が露出した部分2300と対向する位置は、突出した形状となっている。第4脚部2512の突出した部分と第1脚部2110および第2脚部2120との間隔は、他の部分より狭いギャップ2400となっている。また、第5脚部2523において、第2脚部2120および第3脚部2130の脚部が露出した部分2300と対向する位置は、突出した形状となっている。第5脚部2523の突出した部分と第2脚部2120および第3脚部2130との間隔は、他の部分より狭いギャップ2400となっている。
次に、チョークコイル1の動作について説明する。実施の形態1と同様に、図3に示した接続関係において、チョークコイル1に電源電流が流れるとき、コイル部3に流れる電流を以下の3つの成分に分けて考え、それぞれの成分で磁気コア2に発生する磁束分布について説明する。
1つ目は、電源電流の基本周波数成分の電流が流れるときに磁気コア2内に発生する磁束分布である。2つ目は、負荷のスイッチング周波数の高調波成分のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流が流れるときに磁気コア2内に発生する磁束分布である。3つ目は、負荷のスイッチング周波数の高調波成分のうち、位相が同相であるコモンモード成分のノイズ電流が流れるときに磁気コア2内に発生する磁束分布である。
まず、1つ目の、電源電流の基本周波数成分の電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布を説明する。図8、図9および図10は、U相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束を示した模式図である。図8、図9および図10は、それぞれ図6のA方向、B方向およびC方向から見た側面図である。U相巻線に流れる電源電流が最大となる位相のとき、V相巻線に流れる電源電流は、大きさはU相巻線の半分であり、流れる方向は逆向きである。また、W相巻線に流れる電源電流は、大きさはU相巻線の半分であり、流れる方向は逆向きである。
なお、図8、図9および図10において、脚部が露出した部分2300は、その場所毎に末尾にアルファベット1文字を付与している。また、ギャップ2400についても、その場所毎に末尾にアルファベット2文字を付与している。
なお、図8、図9および図10において、脚部が露出した部分2300は、その場所毎に末尾にアルファベット1文字を付与している。また、ギャップ2400についても、その場所毎に末尾にアルファベット2文字を付与している。
図8および図9に示すように、U相巻線に流れる電源電流が最大となる位相のとき、第1脚部2110の第1U相巻線2211に囲まれた部分に発生する磁束3211の大きさを1.0とし、その磁束の向きを上向きとする。このとき、図9および図10に示すように、第2脚部2120の第2W相巻線2212に囲まれた部分に発生する磁束3212は、大きさが0.5でその磁束の向きは下向きとなる。また、図8および図10に示すように、第3脚部2130の第3V相巻線2213に囲まれた部分に発生する磁束3213は、大きさが0.5でその磁束の向きは下向きとなる。
同様に、図9および図10に示すように、U相巻線に流れる電源電流が最大となる位相のとき、第2脚部2120の第2U相巻線2222に囲まれた部分に発生する磁束3222は、大きさが1.0でその磁束の向きは上向きとなる。また、第1脚部2110の第1V相巻線2221に囲まれた部分に発生する磁束3221は、大きさを0.5でその磁束の向きは下向きとなる。さらに、第3脚部2130の第3W相巻線2223に囲まれた部分に発生する磁束3223は、大きさが0.5でその磁束の向きは下向きとなる。
同様に、図8および図10に示すように、U相巻線に流れる電源電流が最大となる位相のとき、第3脚部2130の第3U相巻線2233に囲まれた部分に発生する磁束3233は、大きさが1.0でその磁束の向きは上向きとなる。また、第1脚部2110の第1W相巻線2231に囲まれた部分に発生する磁束3231は、大きさが0.5でその磁束の向きは下向きとなる。さらに、第2脚部2120の第2V相巻線2232に囲まれた部分に発生する磁束3232は、大きさが0.5でその磁束の向きは下向きとなる。
このような電源電流の基本周波数成分の電流がU相巻線、V相巻線およびW相巻線に流れるとき、全体の磁束分布について説明する。
図8および図9に示すように、第1脚部2110において、第1U相巻線2211に囲まれた部分に発生する磁束3211は大きさが1.0でその磁束の向きは上向きとなり、第1V相巻線2221に囲まれた部分に発生する磁束3221は大きさが0.5でその磁束の向きは下向きとなり、第1W相巻線2231に囲まれた部分に発生する磁束3231は大きさが0.5でその磁束の向きは下向きとなる。この3つの磁束を加算すると打消し合うので、第1脚部2110の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
同様に、図9および図10に示すように、第2脚部2120において、第2W相巻線2212に囲まれた部分に発生する磁束3212は大きさが0.5でその磁束の向きは下向きとなり、第2U相巻線2222に囲まれた部分に発生する磁束3222は大きさが1.0でその磁束の向きは上向きとなり、第2V相巻線2232に囲まれた部分に発生する磁束3232は大きさが0.5でその磁束の向きは下向きとなる。この3つの磁束を加算すると打消し合うので、第2脚部2120の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
さらに、図8および図10に示すように、第3脚部2130において、第3V相巻線2213に囲まれた部分に発生する磁束3213は大きさが0.5でその磁束の向きは下向きとなり、第3W相巻線2223に囲まれた部分に発生する磁束3223は大きさが0.5でその磁束の向きは下向きとなり、第3U相巻線2233に囲まれた部分に発生する磁束3233は大きさが1.0でその磁束の向きは上向きとなる。この3つの磁束を加算すると打消し合うので、第3脚部2130の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
この結果、第1脚部2110、第2脚部2120および第3脚部2130の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
この結果、第1脚部2110、第2脚部2120および第3脚部2130の一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。
U相巻線に流れる電源電流が最大となる位相のとき、図8および図9に示すように、磁束3211、磁束3212および磁束3213は、上部の第1連結部2412、上部の第3連結部2431、第1脚部2110の第1U相巻線2211で囲まれた部分、第2脚部2120の第2W相巻線2212で囲まれた部分、第3脚部2130の第3V相巻線2213で囲まれた部分、第1U相巻線2211と第1V相巻線2221との間の第1脚部が露出した部分2300a、第2W相巻線2212と第2U相巻線2222との間の第2脚部が露出した部分2300c、第3V相巻線2213と第3W相巻線2223との間の第2脚部が露出した部分2300e、第1脚部と第6脚部2531とのギャップ2400ae、第3脚部と第6脚部2531とのギャップ2400ea、第2脚部と第4脚部2512とのギャップ2400ca、および第1脚部と第4脚部2512とのギャップ2400acで構成される閉磁路を通る。なお、磁束3211は、上部の第1連結部2412と上部の第3連結部2431とに分岐して通る。
また、U相巻線に流れる電源電流が最大となる位相のとき、図9および図10に示すように、磁束3222、磁束3221および磁束3223は、第1脚部2110の第1V相巻線2221で囲まれた部分、第2脚部2120の第2U相巻線2222で囲まれた部分、第3脚部2130の第3W相巻線2223で囲まれた部分、第1U相巻線2211と第1V相巻線2221との間の第1脚部2110が露出した部分2300a、第2W相巻線2212と第2U相巻線2222との間の第2脚部2120が露出した部分2300c、第3V相巻線2213と第3W相巻線2223との間の第3脚部2130が露出した部分2300e、第1V相巻線2221と第1W相巻線2231との間の第1脚部2110が露出した部分2300b、第2U相巻線2222と第2V相巻線2232との間の第2脚部2120が露出した部分2300d、第3W相巻線2223と第3U相巻線2233との間の第3脚部2130が露出した部分2300f、第2脚部2120と第4脚部2512とのギャップ2400ca、第1脚部2110と第4脚部2512とのギャップ2400ac、第2脚部2120と第4脚部2512とのギャップ2400db、第1脚部2110と第4脚部2512とのギャップ2400bd、第3脚部2130と第5脚部2523とのギャップ2400ec、第2脚部2120と第5脚部2523とのギャップ2400ce、第3脚部2130と第5脚部2523とのギャップ2400fd、および第2脚部2120と第5脚部2523とのギャップ2400dfで構成される閉磁路を通る。なお、磁束3222は、ギャップ2400caを経由して第4脚部2512に至る経路と、ギャップ2400ceを経由して第5脚部2523に至る経路とに分岐して通る。
さらに、U相巻線に流れる電源電流が最大となる位相のとき、図8および図10に示すように、磁束3233、磁束3231および磁束3232は、下部の第2連結部2423、下部の第3連結部2431、第3脚部2130の第3U相巻線2233で囲まれた部分、第1脚部2110の第1W相巻線2231で囲まれた部分、第2脚部2120の第2V相巻線2232で囲まれた部分、第1V相巻線2221と第1W相巻線2231との間の第1脚部が露出した部分2300b、第2V相巻線2232と第2W相巻線2212との間の第2脚部が露出した部分2300d、第3V相巻線2213と第3W相巻線2223との間の第3脚部が露出した部分2300f、第3脚部と第5脚部2523とのギャップ2400fd、第2脚部と第5脚部2523とのギャップ2400df、第1脚部と第6脚部2531とのギャップ2400bf、および第3脚部と第6脚部2531とのギャップ2400fbで構成される閉磁路を通る。なお、磁束3233は、ギャップ2400fbを経由して第6脚部2531に至る経路と、ギャップ2400fdを経由して第5脚部2523に至る経路とに分岐して通る。
上述のように、U相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束は、磁気抵抗の高いギャップ2400の少なくとも1つを通る。そのため、電源電流に起因する磁束はギャップを通らない場合よりも磁束密度が小さくなる。その結果、本実施の形態のチョークコイルでは、大きな電源電流に起因する磁気飽和が発生せず、透磁率の低下を避けることができる。
なお、これまでU相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束について説明した。U相巻線、V相巻線およびW相巻線に流れる電流の位相が120°ずつ異なる電源電流の場合、U相巻線に流れる電源電流が最大になる位相の場合と磁束分布は異なるが、どのような位相であっても磁気コア2内に発生する磁束は磁気抵抗の高いギャップ2400の少なくとも1つを通る。その結果、本実施の形態のチョークコイルでは、大きな電源電流に起因する磁気飽和が発生せず、透磁率の低下を避けることができる。
また、ギャップ2400のギャップ寸法を大きくすれば磁気抵抗がさらに大きくできるので、磁気コアがさらに磁気飽和しにくくなり、さらに透磁率の低下を避けることができる。
次に、2つ目の、負荷のスイッチング周波数の高調波成分のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流がそれぞれU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。
高調波のノーマルモード成分のノイズ電流の方向は、電源電流の基本周波数の電流の方向と同じである。そのため、このノーマルモード成分のノイズ電流で発生する磁束分布は図8、図9および図10と同様になる。ノーマルモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、ノーマルモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。したがって、電源電流の基本周波数成分の電流による透磁率の低下が発生しない条件の下で、ギャップ2400のギャップ寸法を小さくすれば、ノーマルモード成分のノイズ電流で発生する磁束に対する磁気抵抗を小さくすることができ、ノイズ低減効果を向上させることが可能である。
なお、実際のギャップ寸法は、数mmから数10mmの範囲に設定されることが多い。また、通常ギャップは、空間で構成されているが、空間ではなく磁性をもたない樹脂、木材などの材料でギャップを構成してもよい。空間以外の材料でギャップを構成すると、ギャップ寸法の高精度化、耐久性の向上が可能となる。
最後に、3つ目の、負荷のスイッチング周波数の高調波成分のうち、位相が同相であるコモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。なお、コモンモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、コモンモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。
図11、図12および図13は、コモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときの磁気コア2内に発生する磁束を示した模式図である。図11、図12および図13は、それぞれ図6のA方向、B方向およびC方向から見た側面図である。
第1脚部2110の第1U相巻線2211に囲まれた部分に発生する磁束を4211、第1V相巻線2221に囲まれた部分に発生する磁束を4221、および第1W相巻線2231に囲まれた部分に発生する磁束を4231とする。第2脚部2120の第2W相巻線2212に囲まれた部分に発生する磁束を4212、第2U相巻線2222に囲まれた部分に発生する磁束を4222、および第2V相巻線2232に囲まれた部分に発生する磁束を4232とする。第3脚部2130の第3V相巻線2213に囲まれた部分に発生する磁束を4213、第3W相巻線2223に囲まれた部分に発生する磁束を4223、および第3U相巻線2233に囲まれた部分に発生する磁束を4233とする。U相巻線、V相巻線およびW相巻線に流れるコモンモード成分のノイズ電流は同相であるため、各巻線で発生する磁束は、すべて同じ大きさで同じ向きである。
このような磁束が発生した場合、図11および図12に示すように、第1脚部2110では磁束4211、磁束4221および磁束4231は全て上向である。この第1脚部2110と第6脚部2531とのギャップ2400aeおよび2400bf、並びに第1脚部2110と第4脚部2512とのギャップ2400ac、2400bdは磁気抵抗が高いので磁束は通りにくい。その結果、磁束4211、磁束4221および磁束4231を加算すると第1脚部2110の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
また、図12および図13に示すように、第2脚部2120では磁束4212、磁束4222および磁束4232は全て上向である。この第2脚部2120と第4脚部2512とのギャップ2400caおよび2400db、並びに第2脚部2120と第5脚部2523とのギャップ2400ceおよび2400dfは磁気抵抗が高いので磁束は通りにくい。その結果、磁束4212、磁束4222および磁束4232を加算すると第2脚部2120の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
さらに、図11および図13に示すように、第3脚部2130では磁束4213、磁束4223および磁束4233は全て上向である。この第3脚部2130と第6脚部2531とのギャップ2400eaおよび2400fb、並びに第3脚部2130と第5脚部2523とのギャップ2400ecおよび2400fdは磁気抵抗が高いので磁束は通りにくい。その結果、磁束4213、磁束4223および磁束4233を加算すると第3脚部2130の磁束は、一方の端部から他方の端部までを貫通する磁束となる。
図11および図12に示すように、第1脚部2110の一端から他端まで貫通する磁束は、2つの経路を通る閉磁路となる。1つ目の経路は、第1脚部2110の上端から上部の第3連結部2431、第6脚部2531および下部の第3連結部2431を経由して第1脚部2110の下端に戻る経路である(図11)。2つ目の経路は、第1脚部2110の上端から上部の第1連結部2412、第4脚部2512および下部の第1連結部2412を経由して第1脚部2110の下端に戻る経路である(図12)。
また、図12および図13に示すように、第2脚部2120の一端から他端まで貫通する磁束は、2つの経路を通る閉磁路となる。1つ目の経路は、第2脚部2120の上端から上部の第1連結部2412、第4脚部2512および下部の第1連結部2412を経由して第2脚部2120の下端に戻る経路である(図12)。2つ目の経路は、第2脚部2120の上端から上部の第2連結部2423、第5脚部2523および下部の第2連結部2423を経由して第2脚部2120の下端に戻る経路である(図13)。
また、図11および図13に示すように、第3脚部2130の一端から他端まで貫通する磁束は、2つの経路を通る閉磁路となる。1つ目の経路は、第3脚部2130の上端から上部の第3連結部2431、第6脚部2531および下部の第3連結部2431を経由して第3脚部2130の下端に戻る経路である(図11)。2つ目の経路は、第3脚部2130の上端から上部の第2連結部2423、第5脚部2523および下部の第2連結部2423を経由して第3脚部2130の下端に戻る経路である(図13)。
上述のように、コモンモード成分のノイズ電流に起因して発生する磁束は、磁気コアのギャップを通らず磁気コア内を環流する閉磁路を形成するので、磁気抵抗が小さくなる。その結果、コモンモード成分のノイズ電流に起因して発生する磁束に対するインダクタンスを高くすることができ、ノイズ低減効果を向上させることができる。
このように構成されたチョークコイルは、電源電流の基本周波数成分のように大きな電流成分が流れた場合でも磁気コアが磁気飽和せず、磁気コアの透磁率低下を抑制することができる。そのため、電源電流に重畳して発生するノーマルモード成分のノイズ電流およびコモンモード成分のノイズ電流に対して、透磁率の低下を避けることができる。その結果、本実施の形態のチョークコイルは、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を発揮する。
実施の形態3.
図14は、実施の形態3に係るチョークコイルの斜視図である。図14に示すように、本実施の形態のチョークコイル1は、磁気コア2とコイル部3とを有する。磁気コア2は、三角形の頂点の位置にそれぞれ配置された第1脚部2110、第2脚部2120および第3脚部2130を備えている。また、磁気コア2は、第1脚部2110、第2脚部2120および第3脚部2130の一方の端部を連結する第4連結部310、並びに第1脚部2110、第2脚部2120および第3脚部2130の他方の端部を連結する第5連結部320を備えている。第4連結部310は、中央部から第1脚部2110、第2脚部2120および第3脚部2130の一方の端部までそれぞれ延びた3本の腕部を有するY型形状である。同様に、第5連結部320は、中央部から第1脚部2110、第2脚部2120および第3脚部2130の他方の端部までそれぞれ延びた3本の腕部を有するY型形状である。第1脚部2110、第2脚部2120、第3脚部2130、第4連結部310および第5連結部320で第1磁気コア150を構成している。さらに、磁気コア2は、第4連結部310の中央部と第5連結部320の中央部とを接続する第2磁気コア160を備えている。
図14は、実施の形態3に係るチョークコイルの斜視図である。図14に示すように、本実施の形態のチョークコイル1は、磁気コア2とコイル部3とを有する。磁気コア2は、三角形の頂点の位置にそれぞれ配置された第1脚部2110、第2脚部2120および第3脚部2130を備えている。また、磁気コア2は、第1脚部2110、第2脚部2120および第3脚部2130の一方の端部を連結する第4連結部310、並びに第1脚部2110、第2脚部2120および第3脚部2130の他方の端部を連結する第5連結部320を備えている。第4連結部310は、中央部から第1脚部2110、第2脚部2120および第3脚部2130の一方の端部までそれぞれ延びた3本の腕部を有するY型形状である。同様に、第5連結部320は、中央部から第1脚部2110、第2脚部2120および第3脚部2130の他方の端部までそれぞれ延びた3本の腕部を有するY型形状である。第1脚部2110、第2脚部2120、第3脚部2130、第4連結部310および第5連結部320で第1磁気コア150を構成している。さらに、磁気コア2は、第4連結部310の中央部と第5連結部320の中央部とを接続する第2磁気コア160を備えている。
コイル部3は、実施の形態1の図3で示した3相コイルと同様であり、U相巻線、V相巻線およびW相巻線で構成されている。U相巻線は、第1U相巻線2211、第2U相巻線2222および第3U相巻線2233が直列に接続されている。V相巻線は、第1V相巻線2221、第2V相巻線2232および第3V相巻線2213が直列に接続されている。W相巻線は、第1W相巻線2231、第2W相巻線2212および第3W相巻線2223が直列に接続されている。
第1脚部2110は、一方の端部から第1U相巻線2211、第1V相巻線2221および第1W相巻線2231が巻かれており、各巻線の間には第1脚部2110が露出した部分2300を有する。第2脚部2120は、一方の端部から第2W相巻線2212、第2U相巻線2222および第2V相巻線2232が巻かれており、各巻線の間には第2脚部2120が露出した部分2300を有する。第3脚部2130は、一方の端部から第3V相巻線2213、第3W相巻線2223および第3U相巻線2233が巻かれており、各巻線の間には第3脚部2130が露出した部分2300を有する。
図14に示すように、第1脚部2110の脚部が露出した部分2300、第2脚部2120の脚部が露出した部分2300、および第3脚部2130の脚部が露出した部分2300と対向する位置の第2磁気コア160は、突出した形状となっている。そのため、第1脚部2110の脚部が露出した部分2300と第2磁気コア160との間隔は、他の部分より狭いギャップ2400となっている。同様に、第2脚部2120の脚部が露出した部分2300および第3脚部2130の脚部が露出した部分2300と第2磁気コア160との間隔は、それぞれ他の部分より狭いギャップ2400となっている。
次に、チョークコイル1の動作について説明する。実施の形態1と同様に、図3に示した接続関係において、チョークコイル1に電源電流が流れるとき、コイル部3に流れる電流を以下の3つの成分に分けて考え、それぞれの成分で磁気コア2に発生する磁束分布について説明する。
1つ目は、電源電流の基本周波数成分の電流が流れるときに磁気コア2内に発生する磁束分布である。2つ目は、負荷のスイッチング周波数の高調波成分のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流が流れるときに磁気コア2内に発生する磁束分布である。3つ目は、負荷のスイッチング周波数の高調波成分のうち、位相が同相であるコモンモード成分のノイズ電流が流れるときに磁気コア2内に発生する磁束分布である。
まず、1つ目の、電源電流の基本周波数成分の電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布を説明する。この場合、実施の形態2と同様に、第1脚部2110、第2脚部2120および第3脚部2130のそれぞれの脚部において、一方の端部から他方の端部までを貫通する磁束はほとんどゼロとなる。また、実施の形態2と同様に、U相巻線に流れる電源電流が最大となる位相のときに磁気コア2内に発生する磁束は、磁気抵抗の高いギャップ2400の少なくとも1つを通る。そのため、電源電流に起因する磁束はギャップを通らない場合よりも磁束密度が小さくなる。その結果、本実施の形態のチョークコイルでは、大きな電源電流に起因する磁気飽和が発生せず、透磁率の低下を避けることができる。
次に、2つ目の、負荷のスイッチング周波数の高調波成分のうち、位相がそれぞれ120°ずつ異なるノーマルモード成分のノイズ電流がそれぞれU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。
高調波のノーマルモード成分のノイズ電流の方向は、電源電流の基本周波数の電流の方向と同じである。そのため、このノーマルモード成分のノイズ電流で発生する磁束分布は、電源電流にで発生する磁束分布と同様になる。ノーマルモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、ノーマルモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。したがって、電源電流の基本周波数成分の電流による透磁率の低下が発生しない条件の下で、ギャップ2400のギャップ寸法を小さくすれば、ノーマルモード成分のノイズ電流で発生する磁束に対する磁気抵抗を小さくすることができ、ノイズ低減効果を向上させることが可能である。
最後に、3つ目の、負荷のスイッチング周波数の高調波成分のうち、位相が同相であるコモンモード成分のノイズ電流がU相巻線、V相巻線およびW相巻線に流れるときに磁気コア2内に発生する磁束分布について説明する。なお、コモンモード成分のノイズ電流は電源電流の基本周波数成分の電流に比べて小さいので、発生する磁束も小さい。そのため、コモンモード成分のノイズ電流で磁気コアが磁気飽和することはほとんどない。
コモンモード成分のノイズ電流で発生する磁束は、実施の形態2と同様に、第1脚部2110、第2脚部2120および第3脚部2130のそれぞれの脚部において、一方の端部から他方の端部までを貫通する磁束となる。この磁束は、磁気抵抗の高いギャップ2400は通らず、それぞれの脚部の一方の端部から第4連結部310、第2磁気コア160および第5連結部320を経由してそれぞれの脚部の他方の端部に戻る閉磁路となる。
したがって、コモンモード成分のノイズ電流に起因して発生する磁束は、実施の形態2と同様に、磁気コアのギャップを通らず磁気コア内を環流する閉磁路を形成するので、磁気抵抗が小さくなる。その結果、コモンモード成分のノイズ電流に起因して発生する磁束に対するインダクタンスを高くすることができ、ノイズ低減効果を向上させることができる。
このように構成されたチョークコイルは、電源電流の基本周波数成分のように大きな電流成分が流れた場合でも磁気コアが磁気飽和せず、負荷のスイッチング周波数の高調波のノーマルモード成分のノイズ電流およびコモンモード成分のノイズ電流に対しては、インダクタンスを高くできる。その結果、本実施の形態のチョークコイルは、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を有する。
実施の形態4.
図15は、実施の形態4に係るノイズフィルタの斜視図である。本実施の形態のノイズフィルタは、実施の形態1に係るチョークコイルに容量回路を接続してノイズフィルタを構成したものである。図15に示すように、本実施の形態のノイズフィルタは、実施の形態1に示したチョークコイル1の第1U相巻線201と第1V相巻線211との間、第1V相巻線211と第1W相巻線221との間および第1U相巻線201と第1W相巻線221との間にそれぞれチップコンデンサ410、420、430が接続されている。
図15は、実施の形態4に係るノイズフィルタの斜視図である。本実施の形態のノイズフィルタは、実施の形態1に係るチョークコイルに容量回路を接続してノイズフィルタを構成したものである。図15に示すように、本実施の形態のノイズフィルタは、実施の形態1に示したチョークコイル1の第1U相巻線201と第1V相巻線211との間、第1V相巻線211と第1W相巻線221との間および第1U相巻線201と第1W相巻線221との間にそれぞれチップコンデンサ410、420、430が接続されている。
図16は、ノイズフィルタの等価回路である。図16に示すように、U相巻線200とV相巻線210との間に容量回路であるチップコンデンサ410が、V相巻線210とW相巻線220との間に容量回路であるチップコンデンサ420が、U相巻線200とW相巻線220との間に容量回路であるチップコンデンサ430が、それぞれ接続されている。図1ではチップコンデンサ410、420、430は、それぞれ第1U相巻線201と第1V相巻線211との間、第1V相巻線211と第1W相巻線221との間および第1U相巻線201と第1W相巻線221との間に接続されているが、これらのチップコンデンサは、U相巻線200とV相巻線210との間、V相巻線210とW相巻線220との間およびU相巻線200とW相巻線220との間であれば、どこの位置でもよい。
このように構成されたノイズフィルタは、電源電流の基本周波数成分のように大きな電流成分が流れた場合でも磁気コアが磁気飽和せず、負荷のスイッチング周波数の高調波のノーマルモード成分のノイズ電流およびコモンモード成分のノイズ電流に対しては、インダクタンスを高くできる。その結果、本実施の形態のチョークコイルは、大きな3相の電源電流が流れた場合でも磁気コアの磁気飽和を防ぎ、ノーマルモードノイズおよびコモンモードノイズに対して高いノイズ低減効果を有する。
なお、本実施の形態のノイズフィルタは、実施の形態1のチョークコイルを用いたが、実施の形態2または3のチョークコイルを用いてもよい。また、本実施の形態のノイズフィルタは、3つのチップコンデンサを備えているが、どれか1つであってもよい。
本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 チョークコイル、 2 磁気コア、 3 コイル部、 50 電源、 60 負荷、 110 第1脚部、 120 第2脚部、 130 第3脚部、 140 連結部、 150 第1磁気コア、 160 第2磁気コア、 200 U相巻線、 210 V相巻線、 220 W相巻線、 310 第4連結部、 320 第5連結部、 410、420、430 チップコンデンサ、 2110 第1脚部、 2120 第2脚部、 2130 第3脚部。
Claims (7)
- 第1脚部、第2脚部および第3脚部並びにこの3本の脚部の両端をそれぞれ連結する連結部を備えた第1磁気コアと、
前記第1磁気コアの前記連結部同士を接続する第2磁気コアと、
U相巻線、V相巻線およびW相巻線とを備えたチョークコイルであって、
前記U相巻線は、第1U相巻線、第2U相巻線および第3U相巻線が直列に接続されており、
前記V相巻線は、第1V相巻線、第2V相巻線および第3V相巻線が直列に接続されており、
前記W相巻線は、第1W相巻線、第2W相巻線および第3W相巻線が直列に接続されており、
前記第1脚部には、一方の端部から他方の端部に向かって順に前記第1U相巻線、前記第1V相巻線および前記第1W相巻線が巻かれており、
前記第2脚部には、前記一方の端部から前記他方の端部に向かって順に前記第2W相巻線、前記第2U相巻線および前記第2V相巻線が巻かれており、
前記第3脚部には、前記一方の端部から前記他方の端部に向かって順に前記第3V相巻線、前記第3W相巻線および前記第3U相巻線が巻かれている
ことを特徴とするチョークコイル。 - 前記第1脚部に巻かれた前記第1U相巻線と前記第1V相巻線との間、および前記第1V相巻線と前記第1W相巻線との間にはそれぞれ前記第1脚部が露出した部分が設けられ、
前記第2脚部に巻かれた前記第2W相巻線と前記第2U相巻線との間、および前記第2U相巻線と前記第2V相巻線との間にはそれぞれ前記第2脚部が露出した部分が設けられ、
前記第3脚部に巻かれた前記第3V相巻線と前記第3W相巻線との間、および前記第3W相巻線と前記第3U相巻線との間にはそれぞれ前記第3脚部が露出した部分が設けられ、
前記第1脚部が露出した部分、前記第2脚部が露出した部分および前記第3脚部が露出した部分はそれぞれ対向する位置に設けられており、
前記第1脚部、前記第2脚部および前記第3脚部の少なくとも2つの脚部において、
前記脚部が露出した部分における前記2つの脚部の間隔は、前記脚部が露出した部分以外における前記2つの脚部の間隔よりも小さい
ことを特徴とする請求項1に記載のチョークコイル。 - 前記第1脚部、前記第2脚部および前記第3脚部は三角形の頂点の位置にそれぞれ配置されており、
前記連結部は、前記第1脚部と前記第2脚部との両端をそれぞれ接続する第1連結部、前記第2脚部と前記第3脚部との両端をそれぞれ接続する第2連結部および前記第3脚部と前記第1脚部との両端をそれぞれ接続する第3連結部で構成されており、
前記第2磁気コアは、
前記第1脚部と前記第2脚部との間で前記第1連結部同士を接続する第4脚部、前記第2脚部と前記第3脚部との間で前記第2連結部同士を接続する第5脚部、および前記第3脚部と前記第1脚部との間で前記第3連結部同士を接続する第6脚部で構成されている、
ことを特徴とする請求項1に記載のチョークコイル。 - 前記第1脚部に巻かれた前記第1U相巻線と前記第1V相巻線との間、および前記第1V相巻線と前記第1W相巻線との間にはそれぞれ前記第1脚部が露出した部分が設けられ、
前記第2脚部に巻かれた前記第2W相巻線と前記第2U相巻線との間、および前記第2U相巻線と前記第2V相巻線との間にはそれぞれ前記第2脚部が露出した部分が設けられ、
前記第3脚部に巻かれた前記第3V相巻線と前記第3W相巻線との間、および前記第3W相巻線と前記第3U相巻線との間にはそれぞれ前記第3脚部が露出した部分が設けられ、
前記第1脚部が露出した部分における前記第1脚部と前記第4脚部および前記第6脚部との間隔は、前記第1脚部の他の部分における前記第1脚部と前記第4脚部および前記第6脚部との間隔よりも小さく、
前記第2脚部が露出した部分における前記第2脚部と前記第4脚部および前記第5脚部との間隔は、前記第2脚部の他の部分における前記第2脚部と前記第4脚部および前記第5脚部との間隔よりも小さく、
前記第3脚部が露出した部分における前記第3脚部と前記第5脚部および前記第6脚部との間隔は、前記第3脚部の他の部分における前記第3脚部と前記第5脚部および前記第6脚部との間隔よりも小さい
ことを特徴とする請求項3に記載のチョークコイル。 - 前記第1脚部、前記第2脚部および前記第3脚部は三角形の頂点の位置にそれぞれ配置されており、
前記連結部は、中央部から前記第1脚部、前記第2脚部および前記第3脚部の一方の端部までそれぞれ延びた3本の腕部を有する第4連結部と、
中央部から前記第1脚部、前記第2脚部および前記第3脚部の他方の端部までそれぞれ延びた3本の腕部を有する第5連結部とで構成されており、
前記第2磁気コアは、前記第4連結部の中央部と前記第5連結部の中央部とを接続している
ことを特徴とする請求項1に記載のチョークコイル。 - 前記第1脚部に巻かれた前記第1U相巻線と前記第1V相巻線との間、および前記第1V相巻線と前記第1W相巻線との間にはそれぞれ前記第1脚部が露出した部分が設けられ、
前記第2脚部に巻かれた前記第2W相巻線と前記第2U相巻線との間、および前記第2U相巻線と前記第2V相巻線との間にはそれぞれ前記第2脚部が露出した部分が設けられ、
前記第3脚部に巻かれた前記第3V相巻線と前記第3W相巻線との間、および前記第3W相巻線と前記第3U相巻線との間にはそれぞれ前記第3脚部が露出した部分が設けられ、
前記第1脚部が露出した部分、前記第2脚部が露出した部分および前記第3脚部が露出した部分はそれぞれ対向する位置に設けられており、
前記第1脚部、前記第2脚部および前記第3脚部の少なくとも1つの脚部において、
前記脚部が露出した部分における前記脚部と前記第2磁気コアとの間隔は、
前記脚部の他の部分における前記脚部と前記第2磁気コアとの間隔よりも小さい
ことを特徴とする請求項5に記載のチョークコイル。 - 請求項1から6のいずれか1項に記載の前記チョークコイルと、
前記U相巻線、前記V相巻線および前記W相巻線の少なくとも2つの巻線の間に接続された容量回路とを備えたことを特徴とするノイズフィルタ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000462 WO2020144795A1 (ja) | 2019-01-10 | 2019-01-10 | チョークコイルおよびそれを用いたノイズフィルタ |
JP2020565095A JP7126567B2 (ja) | 2019-01-10 | 2019-01-10 | チョークコイルおよびそれを用いたノイズフィルタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000462 WO2020144795A1 (ja) | 2019-01-10 | 2019-01-10 | チョークコイルおよびそれを用いたノイズフィルタ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020144795A1 true WO2020144795A1 (ja) | 2020-07-16 |
Family
ID=71521538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000462 WO2020144795A1 (ja) | 2019-01-10 | 2019-01-10 | チョークコイルおよびそれを用いたノイズフィルタ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7126567B2 (ja) |
WO (1) | WO2020144795A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023210600A1 (ja) * | 2022-04-29 | 2023-11-02 | 株式会社デンソー | フィルタ部品 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11273975A (ja) * | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | コモンモードチョークコイル |
WO2012157053A1 (ja) * | 2011-05-16 | 2012-11-22 | 株式会社日立製作所 | リアクトル装置及びそれを用いた電力変換器 |
JP2015164146A (ja) * | 2014-02-28 | 2015-09-10 | 株式会社高砂製作所 | インダクタ部品 |
WO2017039090A1 (en) * | 2015-09-01 | 2017-03-09 | Seoul National University R&Db Foundation | Power conversion system having filters exploiting the sequence of voltage harmonics |
JP2017084943A (ja) * | 2015-10-27 | 2017-05-18 | Necトーキン株式会社 | チョークコイル |
JP2018535540A (ja) * | 2015-10-16 | 2018-11-29 | エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG | インダクタアセンブリおよびそれを用いる電力供給システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001167948A (ja) * | 1999-12-10 | 2001-06-22 | Tdk Corp | 大電流用コイル、チョークコイル及びラインフィルタ |
JP4404029B2 (ja) * | 2005-08-09 | 2010-01-27 | 三菱電機株式会社 | ノイズフィルタ |
JP2007300700A (ja) * | 2006-04-27 | 2007-11-15 | Sanken Electric Co Ltd | ノイズ低減用リアクトル及びノイズ低減装置 |
-
2019
- 2019-01-10 JP JP2020565095A patent/JP7126567B2/ja active Active
- 2019-01-10 WO PCT/JP2019/000462 patent/WO2020144795A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11273975A (ja) * | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | コモンモードチョークコイル |
WO2012157053A1 (ja) * | 2011-05-16 | 2012-11-22 | 株式会社日立製作所 | リアクトル装置及びそれを用いた電力変換器 |
JP2015164146A (ja) * | 2014-02-28 | 2015-09-10 | 株式会社高砂製作所 | インダクタ部品 |
WO2017039090A1 (en) * | 2015-09-01 | 2017-03-09 | Seoul National University R&Db Foundation | Power conversion system having filters exploiting the sequence of voltage harmonics |
JP2018535540A (ja) * | 2015-10-16 | 2018-11-29 | エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG | インダクタアセンブリおよびそれを用いる電力供給システム |
JP2017084943A (ja) * | 2015-10-27 | 2017-05-18 | Necトーキン株式会社 | チョークコイル |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023210600A1 (ja) * | 2022-04-29 | 2023-11-02 | 株式会社デンソー | フィルタ部品 |
Also Published As
Publication number | Publication date |
---|---|
JP7126567B2 (ja) | 2022-08-26 |
JPWO2020144795A1 (ja) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7902956B2 (en) | Filtering choke arrangement | |
US5083101A (en) | Integrated electromagnetic interference filter | |
TWI430299B (zh) | 集成多相耦合電感器及產生電感之方法 | |
JP2001069762A (ja) | インバータ式駆動装置の漏洩電流低減フィルタ | |
JP6113292B2 (ja) | ノイズフィルタ | |
JP2017123365A (ja) | コイル部品及びこれを備える回路基板 | |
JP6604917B2 (ja) | コモンモードチョークコイル | |
US20170287628A1 (en) | Coil-included terminal block | |
JP2006222387A (ja) | チョークコイル装置 | |
JP2001231268A (ja) | 電力変換装置 | |
WO2020144795A1 (ja) | チョークコイルおよびそれを用いたノイズフィルタ | |
JP6656299B2 (ja) | ノイズフィルタ | |
JP6490355B2 (ja) | リアクトル部品及びリアクトル | |
JPH0613120U (ja) | ノイズ防止チョークコイル | |
JP6625904B2 (ja) | フィルタ装置、及びインバータ装置 | |
JP2020021885A (ja) | トランス | |
CN113841333B (zh) | 噪声滤波器 | |
EP2631920A9 (en) | Integrated common mode and differential mode choke | |
JP2017084943A (ja) | チョークコイル | |
JP2006186620A (ja) | ラインフィルタ | |
JPH05121255A (ja) | ノイズフイルタ | |
JP4627764B2 (ja) | 三相コモンモードチョークコイル | |
WO2023032732A1 (ja) | スイッチング電源装置 | |
JP2019186709A (ja) | 複合フィルタ部品、及び、電力重畳回路 | |
JP6211238B1 (ja) | チョークコイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909509 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020565095 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19909509 Country of ref document: EP Kind code of ref document: A1 |