WO2020144750A1 - アレーアンテナ装置 - Google Patents

アレーアンテナ装置 Download PDF

Info

Publication number
WO2020144750A1
WO2020144750A1 PCT/JP2019/000272 JP2019000272W WO2020144750A1 WO 2020144750 A1 WO2020144750 A1 WO 2020144750A1 JP 2019000272 W JP2019000272 W JP 2019000272W WO 2020144750 A1 WO2020144750 A1 WO 2020144750A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
signal
array antenna
waveguide
antenna device
Prior art date
Application number
PCT/JP2019/000272
Other languages
English (en)
French (fr)
Inventor
成洋 中本
深沢 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/000272 priority Critical patent/WO2020144750A1/ja
Priority to JP2019526622A priority patent/JP6602515B1/ja
Publication of WO2020144750A1 publication Critical patent/WO2020144750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/42Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means using frequency-mixing

Definitions

  • the present invention relates to an array antenna device.
  • An array antenna having a digital beam former configuration (hereinafter referred to as a DBF array antenna) is, for example, an array antenna device used for wireless communication or radar, and can form various beams, and can simultaneously form a plurality of beams. is there.
  • a conventional DBF array antenna generally includes an amplifier, a down converter, and an analog/digital converter (hereinafter, referred to as an A/D converter) for each of a plurality of element antennas that form the array antenna. Therefore, the conventional DBF array antenna generally consumes a large amount of power, has a large antenna volume, and is heavy.
  • the array antenna described in Patent Document 1 includes an amplifier and a two-phase modulation circuit for each of a plurality of element antennas forming the array antenna, and further includes a combining circuit, a down converter, and an A/ It is equipped with a D converter.
  • the plurality of reception signals received by each of the plurality of element antennas, amplified by the amplifier, and phase-modulated by the two-phase modulation circuit are combined by the combining circuit.
  • the down-converter converts the frequency of the combined signal, and the A/D converter converts the analog-converted signal into a digital signal.
  • the number of A/D converters can be reduced by the number of signals multiplexed by the combining circuit.
  • the bi-phase modulation circuit is generally a circuit using a semiconductor element, and a circuit using a semiconductor element usually has a large passage loss (for example, a loss of 3 dB or more).
  • a circuit using a semiconductor element usually has a large passage loss (for example, a loss of 3 dB or more).
  • an amplifier is provided for each element antenna in order to compensate for the deterioration of the signal-to-noise ratio due to the reduction of the received signal power due to the passage loss in the two-phase modulation circuit.
  • the array antenna described in Patent Document 1 has a problem that it is difficult to reduce power consumption because the signal-to-noise ratio deteriorates when the number of amplifiers is reduced.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to obtain an array antenna device capable of realizing low power consumption.
  • the array antenna device has a plurality of radiation structures having mutually different radiation electric field phases, and a switch for switching the radiation structure, and a plurality of elements for outputting a reception signal received by the radiation structure switched by the switches.
  • each of the plurality of element antennas has a plurality of radiation structures having mutually different radiation electric field phases, and a switch for switching the radiation structure, and outputs a reception signal received by the radiation structure with the switches switched.
  • the received signals output from the element antennas become signals having mutually different radiating electric field phases, for example, a two-phase modulated signal. Since the received signal can be subjected to the two-phase modulation by using the low-loss switch, the received signal power can be prevented from being lowered without providing an amplifier for each element antenna. As a result, the number of amplifiers can be reduced while suppressing the deterioration of the signal-to-noise ratio, and low power consumption can be realized.
  • FIG. 3 is a block diagram showing a configuration of an array antenna device according to the first embodiment.
  • 5 is a flowchart showing the operation of the array antenna device according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of an array antenna device according to a second embodiment.
  • FIG. 4A is a perspective view showing a radiation structure according to the second exemplary embodiment.
  • FIG. 4B is a cross-sectional arrow view showing a cross section of the radiation structure according to the second exemplary embodiment taken along line AA of FIG. 4A.
  • FIG. 5A is a perspective view showing a modified example of the radiation structure according to the second exemplary embodiment.
  • FIG. 5B is a diagram showing a modification of the radiation structure according to the second embodiment as viewed from the direction of the arrow in FIG.
  • FIG. 6A is a perspective view showing another modification of the radiation structure according to the second exemplary embodiment.
  • FIG. 6B is a diagram showing another modification of the radiating structure according to the second embodiment as seen from the direction of the arrow in FIG. 6A.
  • FIG. 6 is a block diagram showing a configuration of an array antenna device according to a third embodiment.
  • FIG. 9 is a cross sectional view showing a cross section of the waveguide in the third embodiment taken along line BB in FIG. 7. It is a figure which shows the electric current distribution in the wide wall surface of a waveguide.
  • FIG. 10A is a perspective view showing a modification of the waveguide according to the third embodiment.
  • FIG. 10A is a perspective view showing a modification of the waveguide according to the third embodiment.
  • FIG. 10B is a sectional arrow diagram showing a modified example of the waveguide in the third embodiment, showing a section taken along line CC in FIG. 10A.
  • FIG. 10C is a sectional arrow diagram showing a modified example of the waveguide in the third embodiment, showing a section taken along line DD in FIG. 10A.
  • FIG. 9 is a block diagram showing a configuration of an array antenna device according to a fourth embodiment. 9 is a flowchart showing the operation of the array antenna device according to the fourth embodiment.
  • FIG. 1 is a block diagram showing the configuration of the array antenna apparatus according to the first embodiment.
  • the array antenna device shown in FIG. 1 receives an electromagnetic wave propagating in a space by an array antenna 1.
  • the array antenna 1 has a plurality of element antennas 2 arranged at regular intervals.
  • Each of the plurality of element antennas 2 includes a first radiation structure 3a, a second radiation structure 3b, a first feeding structure portion 4a, a second feeding structure portion 4b, and a switch 5.
  • the first radiating structure 3a is an antenna having the first feeding structure 4a
  • the second radiating structure 3b is an antenna having the second feeding structure 4b
  • the first feeding structure unit 4a is a feeding structure unit that transmits a signal received by the first radiation structure 3a
  • the second feeding structure unit 4b transmits a signal received by the second radiation structure 3b. It is a power feeding structure part for transmitting.
  • the first feeding structure portion 4a and the second feeding structure portion 4b are two feeding structure portions having different radiated electric field phases, and for example, the radiated electric field phase values are different from each other by 180 degrees. That is, the two radiating structures included in the element antenna 2 are two antennas having mutually different radiating electric field phases, and one feeding structure section is provided for each of these antennas.
  • the switch 5 switches between the first radiating structure 3a and the second radiating structure 3b, and is a so-called single-pole double-throw (hereinafter referred to as SPDT) structure switch.
  • SPDT single-pole double-throw
  • the switch 5 of the SPDT structure has a first input terminal to which the first power feeding structure 4a is connected, a second input terminal to which the second power feeding structure 4b is connected, and an output terminal common to both.
  • the high frequency signal received by the first radiating structure 3a is input to the switch 5 from the first input terminal via the first feeding structure section 4a. Is output from the output terminal.
  • the high-frequency signal received by the second radiating structure 3b is input to the switch 5 from the second input terminal via the second feeding structure section 4b. Is output from the output terminal.
  • the array antenna apparatus shown in FIG. 1 includes a combination circuit 6, an amplifier 7, a frequency converter 8, a local oscillator 9, an A/D converter 10, a sequence generation unit 11, a switch control circuit 12, a decoder unit 13 and a beam forming unit 14. Is further provided.
  • the high frequency signal switched by each switch 5 of the plurality of element antennas 2 is output to the synthesis circuit 6.
  • the synthesizing circuit 6 synthesizes the high-frequency signals output from each of the plurality of element antennas 2 forming the array antenna 1, and outputs the synthesized signal to the amplifier 7.
  • the amplifier 7 amplifies the power of the high-frequency signal combined by the combining circuit 6 with a preset gain.
  • the frequency converter 8 uses the local oscillation signal input from the local oscillator 9 to frequency-convert the frequency of the high-frequency signal whose power is amplified by the amplifier 7 into an intermediate frequency band.
  • the local oscillator 9 generates a local oscillation signal having a preset frequency, which is used for frequency conversion of a high frequency signal.
  • the A/D converter 10 is a converter that converts a signal whose frequency has been converted into an intermediate frequency band by the frequency converter 8 into a digital signal.
  • the sequence generation unit 11 generates, for each element antenna 2, sequence information indicating a switching sequence between the first radiating structure 3a and the second radiating structure 3b.
  • the radiating structure switching sequence includes a chronological order of radiating structure switching and a switching interval.
  • the sequence information generated for each element antenna 2 is output from the sequence generation unit 11 to the switch control circuit 12.
  • the sequence generation unit 11 may read the sequence information stored in the storage device and output the read sequence information to the switch control circuit 12.
  • the storage device may be a storage device such as a RAM (Random Access Memory) or a hard disk included in the array antenna device, or may be an external storage device accessible from the array antenna device.
  • the switch control circuit 12 controls switching of the first radiating structure 3a and the second radiating structure 3b by the switch 5 based on the sequence information generated by the sequence generating unit 11. For example, the switch control circuit 12 generates a control signal for controlling the operation of the switch 5 for each element antenna 2 based on the switching sequence indicated by the sequence information. The switch 5 switches between the first radiating structure 3a and the second radiating structure 3b based on the control signal input from the switch control circuit 12.
  • the decoder unit 13 separates the signal received by each of the plurality of element antennas 2 from the digital signal input from the A/D converter 10, based on the sequence information generated by the sequence generation unit 11.
  • the beam forming unit 14 forms a beam signal using the signals separated by the decoder unit 13 for each element antenna 2.
  • the beam forming unit 14 forms beam signals for the number of element antennas 2.
  • the functions of the sequence generation unit 11, the decoder unit 13, and the beam formation unit 14 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the switch control circuit 12 inputs the sequence information from the processing circuit through the network interface.
  • the decoder unit 13 and the beam forming unit 14 may be provided in an external device different from the array antenna device according to the first embodiment. That is, the array antenna device according to the first embodiment can realize low power consumption while maintaining the signal-to-noise ratio even if the array antenna device does not include the decoder unit 13 and the beam forming unit 14. In this case, the array antenna device according to the first embodiment exchanges signals with the decoder unit 13 and the beam forming unit 14 by, for example, communicatively connecting to the external device.
  • FIG. 2 is a flowchart showing the operation of the array antenna apparatus according to the first embodiment.
  • the first radiating structure 3a and the second radiating structure 3b of each of the plurality of element antennas 2 receive the high frequency signal coming from the space (step ST1).
  • the sequence generation unit 11 generates sequence information indicating the switching sequence of the first radiating structure 3a and the second radiating structure 3b for each element antenna 2 (step ST2). For example, the sequence generation unit 11 assigns 1 to the state switched to the first radiating structure 3a by the switch 5, and assigns -1 to the state switched to the second radiating structure 3b by the switch 5, [1 Sequence information in which a switching sequence is expressed by a code string having 1 and -1 as elements such as "-1 1... 1]" is generated.
  • the switching sequence for each of the plurality of element antennas 2 is represented by an orthogonal code that is a code string that is orthogonal to each other, that is, a Walsh-Hadamard code.
  • the switching sequence for each of the four element antennas 2 is [11/11], [1-1-1-1], [1 It is represented by "1-1" and "1-1".
  • the orthogonal code representing the switching sequence has the same code length as the number of element antennas 2.
  • the switch control circuit 12 controls the switch 5 for each element antenna 2 on the basis of the sequence information generated by the sequence generation unit 11, so that the first radiation structure 3 a and the first radiation structure 3 a included in each of the plurality of element antennas 2 are provided.
  • the two radiating structures 3b are sequentially switched (step ST3).
  • the switch 5 uses the first radiating structure 3a, the second radiating structure 3b, the second radiating structure 3b, the second radiating structure 3b, and the Switching is performed for each time Tc in the order of one radiating structure 3a.
  • the input high frequency signals are 180 degrees out of phase with each other. Therefore, the output signal from the switch 5 becomes a high-frequency signal that is subjected to the two-phase modulation by switching the radiation structure.
  • the switch 5 switches between the first radiating structure 3a and the second radiating structure 3b every time Tc within the time Ts, and this switching is repeatedly performed every time Ts.
  • the frequency spectrum of the high-frequency signal bi-phase modulated by switching between the first radiating structure 3a and the second radiating structure 3b is the frequency of the high-frequency signal received by the first radiating structure 3a or the second radiating structure 3b. This is a so-called spread spectrum signal having a wider frequency bandwidth than the spectrum.
  • the synthesis circuit 6 synthesizes the high frequency signals output from each of the plurality of element antennas 2 (step ST4).
  • the synthesizing circuit 6 synthesizes the high-frequency signals output from each of the plurality of element antennas 2 and generates a synthesized signal of the high-frequency signals spectrum-spread by the orthogonal code, that is, a code division multiplexed signal.
  • the amplifier 7 amplifies the power of the high frequency signal synthesized by the synthesis circuit 6, the frequency converter 8 frequency-converts the frequency of the high frequency signal amplified by the amplifier 7 into an intermediate frequency band, and the A/D converter 10 Converts the signal frequency-converted by the frequency converter 8 into a digital signal (step ST5).
  • the combined signal converted into a digital signal by the A/D converter 10 is output to the decoder unit 13.
  • the decoder unit 13 performs despreading processing on the combined signal input from the A/D converter 10 to separate the signals received by each of the plurality of element antennas 2 (step ST6). For example, the decoder unit 13 multiplies the combined signal input from the A/D converter 10 by a code string having 1 and ⁇ 1 that are sequence information as elements, and integrates the multiplied value to obtain the element. As many digital signals as the number of antennas 2 are calculated. Since the switching sequence is represented by orthogonal codes which are orthogonal to each other, the orthogonal code representing the switching sequence set in the switch 5 is received by the element antenna 2 including the switch 5 by multiplying and integrating the combined signal.
  • the obtained signal component is obtained, and the signal component becomes 0 even if the combined signal is multiplied by an orthogonal code different from the switching sequence of the switch 5 and integrated. This corresponds to performing demodulation by performing despreading processing on the code division multiplexed signal. As a result, the signals received by each of the plurality of element antennas 2 are separated from the combined signal.
  • the beam forming unit 14 forms a beam signal using the signals separated from the combined signal by the decoder unit 13 into each of the plurality of element antennas 2 (step ST7).
  • each of the plurality of element antennas 2 has the first radiation structure 3a, the second radiation structure 3b, and the first radiation structure 3a and the second radiation structure 3a. It has a switch 5 for switching to and from the radiating structure 3b, and outputs a reception signal received by the radiating structure switched by the switch 5.
  • the reception signal output from the element antenna 2 becomes a signal which is bi-phase modulated. Since the received signal can be subjected to the two-phase modulation using the low-loss switch 5, even if the amplifier 7 is not provided for each element antenna 2, the decrease in the received signal power can be suppressed.
  • the array antenna device has a beam forming function equivalent to that of the conventional DBF array antenna, and further, the number of amplifiers is reduced by the number of multiplexed signals as compared with the conventional DBF array antenna. it can. Therefore, a low-cost, low-power-consumption, small-sized and lightweight array antenna device can be realized.
  • the switching sequence is represented by an orthogonal code having the same code length as the number of element antennas 2, but the switching sequence may be represented by an orthogonal code having a code length larger than the number of element antennas 2.
  • the same effect as above can be obtained.
  • the switching sequence is represented by a pseudo random code such as an M sequence or a Gold sequence instead of the orthogonal code, the code division multiplexed signal can be demodulated by the despreading process.
  • the array antenna device according to the first embodiment may be configured to perform multi-phase modulation of four or more phases on the received signal.
  • each of the plurality of element antennas 2 is provided with four radiating structures having mutually different radiating electric field phases, and the radiating structure is switched by the switch 5, whereby the received signal can be subjected to quadrature phase modulation.
  • FIG. 3 is a block diagram showing the configuration of the array antenna apparatus according to the second embodiment.
  • the array antenna apparatus shown in FIG. 3 receives electromagnetic waves propagating in space by the array antenna 1A.
  • the array antenna 1A has a plurality of element antennas 2A arranged at regular intervals.
  • Each of the plurality of element antennas 2A includes a radiating structure 15, a first feeding structure 16a, a second feeding structure 16b, and a switch 17. Note that, in FIG. 3, the same components as those in FIG.
  • the radiating structure 15 is an antenna having a point-symmetrical structure at its center, and has a first feeding structure 16a and a second feeding structure 16b.
  • the first feeding structure 16a and the second feeding structure 16b are feeding structures that transmit the high frequency signal received by the radiation structure 15.
  • the radiating structure 15 is a single antenna, and this antenna has a first feeding structure 16a and a second feeding structure 16b at different positions.
  • the connection point between the first feeding structure portion 16a and the radiating structure 15 and the connection point between the second feeding structure portion 16b and the radiating structure 15 are located symmetrically with respect to the center of the radiating structure 15. It is provided.
  • the radiation structure 15 is realized as a single antenna, it has the functions of both a radiation structure having the first feeding structure portion 16a and a radiation structure having the second feeding structure portion 16b.
  • the switch 17 causes the radiation structure 15 to function as a radiation structure having the first feeding structure portion 16a by switching to the first feeding structure portion 16a, and switches to the second feeding structure portion 16b to emit radiation.
  • the structure 15 functions as a radiating structure having the second feeding structure portion 16b. That is, the switch 17 is a switch that switches between the radiating structure having the first feeding structure 16a and the radiating structure having the second feeding structure 16b.
  • the switch 17 is a switch of SPDT structure, and has a first input terminal to which the first power feeding structure portion 16a is connected, a second input terminal to which a second power feeding structure portion 16b is connected, and both. And a common output terminal.
  • the switch 17 when switched to the first feeding structure 16a by the switch 17, the high frequency signal received by the radiation structure 15 is input to the switch 17 from the first input terminal via the first feeding structure 16a. , Is output from the output terminal.
  • the second feeding structure 16b by the switch 17 when switched to the second feeding structure 16b by the switch 17, the high frequency signal received by the radiation structure 15 is input to the switch 17 from the second input terminal via the second feeding structure 16b, It is output from the output terminal.
  • the array antenna apparatus shown in FIG. 3 includes a combination circuit 6, an amplifier 7, a frequency converter 8, a local oscillator 9, an A/D converter 10, a sequence generation unit 18, a switch control circuit 19, a decoder unit 20, and a beam forming unit 21. Is further provided.
  • the sequence generation unit 18 generates sequence information indicating the switching sequence of the radiation structure for each element antenna 2A.
  • the radiating structure switching sequence includes a chronological order of radiating structure switching and a switching interval.
  • the sequence information generated for each element antenna 2A is output from the sequence generation unit 18 to the switch control circuit 19.
  • the sequence generation unit 18 may read the sequence information stored in the storage device and output the read sequence information to the switch control circuit 19.
  • the storage device may be a storage device such as a RAM or a hard disk included in the array antenna device, or may be an external storage device accessible from the array antenna device.
  • the sequence generation unit 18 assigns 1 to the state in which the switch 17 is switched to the radiating structure having the first power feeding structure unit 16a, and the switch 17 switches the second power feeding structure unit 16b.
  • -1 is assigned to the switched state of the radiating structure having, and sequence information in which the switching sequence is represented by a code string having 1 and -1 as elements is generated.
  • the switch control circuit 19 controls switching by the switch 17 based on the sequence information generated by the sequence generation unit 18. For example, the switch control circuit 19 generates a control signal for controlling the operation of the switch 17 for each element antenna 2A based on the switching sequence indicated by the sequence information input from the sequence generation unit 18.
  • the switch 17 switches between a radiating structure having the first feeding structure 16a and a radiating structure having the second feeding structure 16b based on the control signal set by the switch control circuit 19. For example, based on the sequence information in which the switching sequence is represented by the code string [1-1-1-1], the switch 17 includes the first power feeding structure unit 16a, the second power feeding structure unit 16b, and the second power feeding structure unit 16b. 16b and the 1st electric power feeding structure part 16a are changed in order for every time Tc.
  • a high frequency signal received by the radiating structure 15 and input to the switch 17 from the first feeding structure 16a, and a high frequency signal received by the radiating structure 15 and input to the switch 17 through the second feeding structure 16b. are 180 degrees out of phase with each other.
  • the output signal from the switch 17 becomes a high-frequency signal that is bi-phase modulated by switching the radiation structure.
  • Tc which is the switching interval
  • the decoder unit 20 separates the signals received by each of the plurality of element antennas 2A from the digital signals input from the A/D converter 10, based on the sequence information generated by the sequence generation unit 18. .. For example, the decoder unit 20 multiplies the combined signal input from the A/D converter 10 by a code string having 1 and ⁇ 1 which is sequence information as an element, and integrates the combined signal to obtain a signal of the element antenna 2A. Calculate the number of digital signals. Since the switching sequence is represented by orthogonal codes that are orthogonal to each other, the orthogonal code representing the switching sequence set in the switch 17 is received by the element antenna 2A including the switch 17 by multiplying and integrating the combined signal.
  • the beam forming unit 21 forms a beam signal using the signals separated by the decoder unit 20 for each element antenna 2A.
  • the beam forming unit 21 forms beam signals for the number of element antennas 2A.
  • the decoder unit 20 and the beam forming unit 21 may be provided in an external device different from the array antenna device according to the second embodiment. That is, the array antenna apparatus according to the second embodiment can realize low power consumption while maintaining the signal-to-noise ratio even if the array antenna apparatus does not include the decoder section 20 and the beam forming section 21. In this case, the array antenna device according to the second embodiment exchanges signals with the decoder unit 20 and the beam forming unit 21 by, for example, communicatively connecting to the external device.
  • the functions of the sequence generation unit 18, the decoder unit 20, and the beam formation unit 21 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in the memory.
  • the switch control circuit 19 inputs sequence information from the processing circuit through the network interface.
  • FIG. 4A is a perspective view showing the radiating structure 15.
  • FIG. 4B is a cross-sectional view showing a cross section of the radiating structure 15 taken along the line AA of FIG. 4A.
  • the radiating structure 15 can be realized by a rectangular patch antenna as shown in FIGS. 4A and 4B. As shown in FIG. 4B, this patch antenna is a pin-fed patch antenna, and two pins are a first feeding structure 16a and a second feeding structure 16b. As shown in FIG. 4A, the first feeding structure portion 16a and the second feeding structure portion 16b are arranged at positions symmetrical with respect to the center of the patch antenna.
  • the radiating structure 15 may be a circular patch antenna. Further, the radiating structure 15 may be an electromagnetically coupled feed patch antenna. In this case, the 1st electric power feeding structure part 16a and the 2nd electric power feeding structure part 16b are implement
  • FIG. 5A is a perspective view showing a modified example of the radiating structure 15.
  • FIG. 5B is a diagram showing a modification of the radiating structure 15 as seen from the direction of the arrow in FIG. 5A.
  • the radiating structure 15 can be realized by a waveguide aperture antenna as shown in FIGS. 5A and 5B. As shown in FIG. 5B, this waveguide aperture antenna is a probe-fed waveguide aperture antenna, and two probes are a first feeding structure portion 16a and a second feeding structure portion 16b. As shown in FIG. 5B, the first feeding structure portion 16a and the second feeding structure portion 16b are arranged at positions symmetrical with respect to the central axis of the waveguide aperture antenna.
  • a waveguide aperture antenna with a rectangular aperture shape is shown, but the radiating structure 15 may be a waveguide aperture antenna with a circular aperture shape.
  • the radiating structure 15 may also be a waveguide aperture antenna fed by a slot or a waveguide.
  • the first feeding structure 16a and the second feeding structure 16b are realized by slots or waveguides.
  • FIG. 6A is a perspective view showing another modification of the radiating structure 15.
  • FIG. 6B is a diagram showing another modification of the radiating structure 15 as seen from the direction of the arrow in FIG. 6A.
  • the radiating structure 15 can be realized by a horn antenna as shown in FIGS. 6A and 6B. As shown in FIG. 6B, this horn antenna is a probe-powered horn antenna, and two probes are a first power feeding structure 16a and a second power feeding structure 16b. As shown in FIG. 6B, the first feeding structure portion 16a and the second feeding structure portion 16b are arranged at positions symmetrical with respect to the central axis of the horn antenna.
  • the radiating structure 15 may be a horn antenna having a circular opening shape. Further, the radiation structure 15 may be a horn antenna that is fed by a slot or a waveguide. In this case, the first feeding structure 16a and the second feeding structure 16b are realized by slots or waveguides.
  • the radiating structure of each of the plurality of element antennas 2 is a pair of antennas whose electric field radiation patterns have phase values different by 180 degrees from each other. That is, since the two antennas are arranged independently of each other in the element antenna 2, the area occupied by the element antenna 2 is larger than that in the case where the element antenna is composed of a single antenna. For this reason, in a one-dimensional array or a two-dimensional array in which a plurality of element antennas 2 are arranged, the distance between the adjacent element antennas 2 becomes large.
  • the elements are arranged at intervals of about 0.5 to 0.8 times the wavelength at the operating frequency.
  • the antennas are arranged.
  • the element antennas 2 in which the two radiating structures are arranged independently of each other should be arranged at the above intervals. Is difficult.
  • the radiation structure 15 included in each of the plurality of element antennas 2A is a single antenna, and the first power feeding is provided at a position point-symmetric with respect to the center thereof. It has a connection point between the structure portion 16a and the second feeding structure portion 16b. Since the radiation structure 15 is a single antenna, the area occupied by the element antenna 2A is smaller than that of the element antenna 2.
  • the current distribution on the radiating structure 15 or the internal electric field distribution is generally such that the amplitude distribution becomes symmetrical due to the symmetry of the structure, and the phase distribution is a laterally inverted distribution. Become. Therefore, the signal received by the radiating structure 15 is supplied to each of the first feeding structure section 16a and the second feeding structure section 16b that have connection points at positions symmetrical with respect to the center of the radiating structure 15.
  • the signals are transmitted with equal amplitude and opposite phases, that is, signals that are 180 degrees out of phase with each other.
  • the radiation structure 15 is a single antenna
  • the first feeding structure section 16a and the second feeding structure section 16b are of a single antenna. They are arranged at different positions.
  • the single antenna is a circular or rectangular patch antenna
  • the first feeding structure portion 16a and the second feeding structure portion 16b are arranged at positions symmetrical with respect to the center of the patch antenna.
  • the single antenna is a waveguide aperture antenna or a horn antenna
  • the first feeding structure portion 16a and the second feeding structure portion 16b are arranged with respect to the central axis of the waveguide aperture antenna or the horn antenna. Are arranged in a point-symmetrical position.
  • a signal received by the radiating structure 15 has equal amplitude in each of the first feeding structure portion 16a and the second feeding structure portion 16b that have connection points at positions symmetrical with respect to the center of the radiating structure 15. It is transmitted as signals having opposite phases, that is, phases different from each other by 180 degrees.
  • the switch 17 switches between the radiating structure having the first feeding structure 16a and the radiating structure having the second feeding structure 16b, the reception signal output from the element antenna 2A is subjected to the two-phase modulation. It becomes a signal. That is, since the received signal can be subjected to the two-phase modulation by using the switch 17 having a low loss, it is possible to suppress the decrease of the received signal power without providing the amplifier 7 for each element antenna 2A. As a result, the number of amplifiers can be reduced while suppressing the deterioration of the signal-to-noise ratio, and low power consumption can be realized.
  • the array antenna device according to the second embodiment can obtain the same effect as the array antenna device according to the first embodiment, and can reduce the occupied area of the element antenna as compared with the device configuration shown in the first embodiment. , A smaller array antenna device can be realized. Further, since the element antennas can be arranged more densely, it is possible to realize an array antenna device capable of beam scanning in a wider angle direction.
  • the switching sequence is represented by an orthogonal code having the same code length as the number of element antennas 2, but the switching sequence may be represented by an orthogonal code having a code length larger than the number of element antennas 2.
  • the same effect as above can be obtained.
  • the switching sequence is represented by a pseudo random code such as an M sequence or a Gold sequence instead of the orthogonal code, the code division multiplexed signal can be demodulated by the despreading process.
  • the array antenna device according to the second embodiment is configured to perform the multi-phase modulation of four or more phases on the received signal.
  • the array antenna device according to the second embodiment is configured to perform the multi-phase modulation of four or more phases on the received signal.
  • the connection points between the four feeding structures and the radiating structure 15 are arranged at positions symmetrical with respect to the center of the radiating structure 15.
  • FIG. 7 is a block diagram showing the configuration of the array antenna apparatus according to the third embodiment. 7, the same components as those of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • 8 is a cross-sectional view showing a cross section of the waveguide 30 of FIG. 7 taken along the line BB of FIG.
  • the array antenna device shown in FIG. 7 includes an array antenna 1B, an amplifier 7, a frequency converter 8, a local oscillator 9, an A/D converter 10, a sequence generation unit 22, a switch control circuit 23, a decoder unit 24, and a beam forming unit. 25 are provided. Further, the array antenna device shown in FIG. 7 includes the waveguide 30 functioning as the combining circuit shown in FIGS. 1 and 3.
  • the array antenna 1B is configured by arranging a plurality of element antennas 38 on the first wide wall surface 31a of the waveguide 30 at regular intervals.
  • Each of the plurality of element antennas 38 includes a first slot 34, a second slot 35, a first switch 36, and a second switch 37.
  • FIG. 7 shows the case where the waveguide 30 is provided with four element antennas 38, the waveguide 30 may be provided with five or more element antennas 38.
  • the waveguide 30 includes a pair of first wide wall surface 31a and second wide wall surface 31b facing each other, and a pair of first narrow wall surface 32a and second narrow wall surface adjacent to both sides of the wide wall surface in the longitudinal direction. 32b and a pair of first end face 33a and second end face 33b adjacent to both the wide wall surface and the narrow wall surface, and is a rectangular waveguide formed of metal.
  • Each of the first end surface 33a and the second end surface 33b of the waveguide 30 is a short-circuit surface short-circuited by the conductor wall.
  • the first slot 34 and the second slot 35 are radiation structures that receive the electromagnetic waves propagating in the space. Further, the first slot 34 and the second slot 35 are provided on the first wide wall surface 31a which is one of the first wide wall surface 31a and the second wide wall surface 31b of the waveguide 30, Two elongated holes that have the same size as each other and are long in the tube axis direction of the waveguide 30 and are parallel to each other. Each of the longitudinal dimensions of the first slot 34 and the second slot 35 is about half a wavelength of the free space wavelength.
  • the distance between the first slot 34 of the one element antenna 38 and the first slot 34 of the other element antenna 38 is equal to the operating frequency of the waveguide 30. Is one-half of the in-tube wavelength ⁇ at. Similarly, the distance between the second slot 35 of one of the adjacent element antennas 38 and the second slot 35 of the other element antenna 38 is 2 times the guide wavelength ⁇ at the operating frequency of the waveguide 30. It is one-third.
  • first slot 34 and the second slot 35 closest to the first end face 33a are arranged at positions where the distance from the center of the slot to the first end face 33a is 1 ⁇ 4 of the guide wavelength ⁇ . Has been done.
  • first slot 34 and the second slot 35 closest to the second end face 33b are located at positions where the distance from the center of the slot to the second end face 33b is 1 ⁇ 4 of the guide wavelength ⁇ . It is arranged.
  • first slot 34 and the second slot 35 are separated by a center line (for example, line BB in FIG. 7) in the first wide wall surface 31a parallel to the tube axis direction of the waveguide 30. It is provided at the position on one side and the position on the other side.
  • the first slot 34 and the second slot 35 are arranged at positions symmetrical to each other with respect to the center line parallel to the tube axis direction of the waveguide 30 on the first wide wall surface 31a.
  • the element antenna 38 constitutes a so-called standing wave excitation type waveguide slot array.
  • the element antenna 38 can be a so-called traveling-wave excitation type by setting the interval between the adjacent element antennas 38 and the distance between the slot closest to the short-circuit surface and the short-circuit surface arbitrarily. Functions as a wave tube slot.
  • the first switch 36 and the second switch 37 are switches that can be switched between an on state and an off state, and are, for example, high-frequency switches configured by using a PIN diode, a field effect transistor, and a MEMS (Micro Electro Mechanical Systems). is there.
  • the high-frequency switch generally has a passage loss of about 1 dB or less, which is about 2 dB lower than the passage loss of the two-phase modulation circuit.
  • the first switch 36 is provided in the central portion of the first slot 34
  • the second switch 37 is provided in the central portion of the second slot 35.
  • the second switch 37 is synchronized so as to be off.
  • the first slot 34 is in operation as a slot antenna
  • the second switch 37 is in OFF state and the second slot 35 is in inactive state.
  • the second switch 37 is in the ON state
  • the second slot 35 is in operation as a slot antenna, in which case the first switch 36 is in OFF state and the first slot 34 is in inactive state. become.
  • the feeding structure portion 39 is a waveguide feeding structure provided on the second wide wall surface 31b of the waveguide 30.
  • the power feeding structure 39 has an output terminal provided at the center of the second wide wall surface 31b and a power feeding probe 39a inserted inside the waveguide 30, and the output terminal is connected to the amplifier 7. There is.
  • the waveguide 30 functions as the synthesizing circuit shown in FIGS. 1 and 3.
  • the power feeding structure section 39 may be provided at any position on the second wide wall surface 31b of the waveguide 30. Further, the power feeding structure portion 39 may be configured to include a waveguide T branch provided on the second wide wall surface 31b, or may be a short circuit surface (first end surface 33a and second end surface of the waveguide 30). The structure may have an output terminal on the side of 33b).
  • the sequence generation unit 22 generates, for each element antenna 38, sequence information indicating the switching sequence of the radiation structure.
  • the switching sequence of the radiation structure includes, for example, a time-series order of switching between the first switch 36 and the second switch 37 and a switching interval.
  • the sequence information generated for each element antenna 38 is output from the sequence generation unit 22 to the switch control circuit 23.
  • the sequence generation unit 22 may read the sequence information stored in the storage device and output the read sequence information to the switch control circuit 23.
  • the storage device may be a storage device such as a RAM or a hard disk included in the array antenna device, or may be an external storage device accessible from the array antenna device.
  • the first switch 36 is turned on and the first slot 34 receives the high frequency signal, and the second switch 37 is turned off and the second slot 35 receives the high frequency signal.
  • 1 is assigned to the impossible state
  • the second switch 37 is turned on and the second slot 35 receives the high frequency signal
  • the first switch 36 is turned off, so that the first slot 34 cannot receive the high frequency signal.
  • -1 assigning -1 to the state, the sequence information in which the switching sequence is expressed by a code string having 1 and -1 as elements such as [1-1-1... 1] is generated.
  • the switch control circuit 23 controls ON/OFF switching of the first switch 36 and the second switch 37 based on the sequence information generated by the sequence generation unit 22. For example, the switch control circuit 23 generates a control signal for controlling the operation of the first switch 36 and the second switch 37 for each element antenna 38 based on the switching sequence indicated by the sequence information input from the sequence generation unit 22. To do.
  • the first switch 36 is switched to either an on state or an off state based on a control signal set by the switch control circuit 23.
  • the second switch 37 switches to either an on state or an off state based on the control signal set by the switch control circuit 23.
  • the first switch 36 and the second switch 37 are turned on/off based on the sequence information represented by the code sequence [1-1-1-1] as the switching sequence, so that the first slot 34 and the second slot The slot 35, the second slot 35, and the first slot 34 are switched in order of the operation state of the slot antenna every time Tc.
  • the high frequency signal received by the first slot 34 and the high frequency signal received by the second slot 35 are 180 degrees out of phase with each other. Therefore, the output signal from the element antenna 38 becomes a high-frequency signal that is subjected to the two-phase modulation by switching the operating states of the first slot 34 and the second slot 35.
  • the time Tc which is the switching interval between the operation states of the first slot 34 and the second slot 35, is shorter than the duration (corresponding to the signal period) Ts of the information pulse included in the high frequency signal (received signal)
  • the first switch 36 and the second switch 37 switch the operating state of the first slot 34 and the second slot 35 for each time Tc within the time Ts, and this switching is It is repeatedly executed every time Ts.
  • the frequency spectrum of the high-frequency signal that is bi-phase modulated by switching the operating state of the first slot 34 and the second slot 35 is the frequency spectrum of the high-frequency signal received by the first slot 34 or the second slot 35. It becomes a so-called spread spectrum signal that has a wider frequency bandwidth than that of.
  • the decoder unit 24 separates the signals received by each of the plurality of element antennas 38 from the digital signal input from the A/D converter 10, based on the sequence information generated by the sequence generation unit 22. .. For example, the decoder unit 24 multiplies the combined signal input from the A/D converter 10 by a code string having 1 and ⁇ 1 that is sequence information as an element, and integrates the combined signal to obtain the element antenna 38. Calculate the number of digital signals. Since the switching sequence is represented by orthogonal codes that are orthogonal to each other, the first code is obtained by multiplying the composite signal by the orthogonal code that represents the switching sequence set in the first switch 36 and the second switch 37, and integrating the combined signal.
  • the beam forming unit 25 forms a beam signal using the signals separated by the decoder unit 24 for each element antenna 38.
  • the beam forming unit 25 forms beam signals for the number of element antennas 38.
  • the decoder unit 24 and the beam forming unit 25 may be provided in an external device different from the array antenna device according to the third embodiment. That is, the array antenna apparatus according to the third embodiment can realize low power consumption while maintaining the signal-to-noise ratio even if the array antenna apparatus according to the third embodiment does not include the decoder section 24 and the beam forming section 25. In this case, the array antenna apparatus according to the third embodiment exchanges signals with the decoder section 24 and the beam forming section 25, for example, by communicating with the external apparatus.
  • the functions of the sequence generation unit 22, the decoder unit 24, and the beam forming unit 25 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in the memory.
  • the switch control circuit 23 inputs sequence information from the processing circuit through the network interface.
  • the array antenna device according to the third embodiment includes the low-loss waveguide 30 as the signal line of the array antenna and the combining circuit, the decrease in the received signal strength of the plurality of element antennas 38 is suppressed, It is possible to suppress deterioration of the signal-to-noise ratio. Since the passage loss in the signal line is reduced, a highly efficient array antenna device can be realized.
  • FIG. 9 is a diagram showing a current distribution on the first wide wall surface 31 a of the waveguide 30.
  • the first wide wall surface 31a is parallel to the pipe axis direction of the waveguide 30 on the first wide wall surface 31a.
  • the 1st slot 34 and the 2nd slot 35 are provided in the position which interrupts the flow of the electric current in the 1st wide wall surface 31a. Accordingly, the first slot 34 and the second slot 35 can transmit the high frequency signal coming from the space to the inside of the waveguide 30.
  • the current distribution on the first wide wall surface 31a is symmetrical with respect to the center line 100 on the first wide wall surface 31a. Therefore, the high-frequency signal received in the first slot 34 and the high-frequency signal received in the second slot 35 are transmitted to the waveguide 30 as signals having mutually opposite phases, that is, phases different from each other by 180 degrees.
  • the array antenna device may include a waveguide shown below, instead of the waveguide made of only metal.
  • FIG. 10A is a perspective view showing a modification of waveguide 30 in the third exemplary embodiment.
  • FIG. 10B is a sectional arrow diagram showing a modified example of the waveguide 30 in the third embodiment, showing a section taken along line CC in FIG. 10A.
  • FIG. 10C is a sectional arrow diagram showing a modified example of the waveguide 30 in the third embodiment, showing a section taken along line DD in FIG. 10A.
  • the waveguide 30 has a dielectric substrate 40 instead of the first wide wall surface 31a.
  • the dielectric substrate 40 has a conductor surface 41a on the front surface and a conductor surface 41b on the back surface.
  • An array antenna 1C having four element antennas is formed on the dielectric substrate 40.
  • the first slot 42 and the second slot 43 are a pair of slots forming one element antenna.
  • the first slot 42 and the second slot 43 are vias that penetrate the dielectric substrate surface 40 and electrically connect the conductor surface 41a and the conductor surface 41b. Since the surface on which the slot is provided is composed of the dielectric substrate 40, the switch can be mounted more easily than the first wide wall surface 31a made of metal.
  • the waveguide 30 passes through the center line parallel to the tube axis direction on both or either of the pair of wide wall surfaces.
  • It may be a ridge waveguide having a metal wall.
  • the ridge waveguide has a metal wall passing through a center line parallel to the tube axis direction on the first wide wall surface 31a of the waveguide 30.
  • the ridge waveguide may have any or all of the features (1) to (4) below.
  • the plurality of slots are arranged at positions symmetrical to each other with respect to the center line parallel to the tube axis direction on the first wide wall surface 31a.
  • the end face of the ridge waveguide is short-circuited, and the slots are arranged on the first wide wall surface 31a at intervals of 1 ⁇ 2 of the guide wavelength at the operating frequency.
  • the slot closest to the end face on the first wide wall surface 31a is arranged at a position where the distance from the center of the slot to the end face is 1 ⁇ 4 of the guide wavelength.
  • the first wide wall surface 31a of the ridge waveguide is composed of a dielectric substrate 40 having conductor surfaces 41a and 41b on the front and back sides, and the slot is formed on the dielectric substrate 40. It is a via that penetrates and electrically connects the conductor surface 41a and the conductor surface 41b.
  • the array antenna device includes the waveguide 30 functioning as a synthesizing circuit, and the first wide wall surface 31a of the waveguide 30 has the waveguide axis direction of the waveguide 30.
  • a long and parallel first slot 34 and a second slot 35 are formed in the front.
  • the first slot 34 and the second slot 35 are provided at a position on one side and a position on the other side of the first wide wall surface 31a with the center line 100 parallel to the tube axis direction as a boundary.
  • the first switch 36 is arranged at the center of the first slot 34 in the longitudinal direction
  • the second switch 37 is arranged at the center of the second slot 35 in the longitudinal direction.
  • the received signal output from the element antenna 38 is The signal becomes a two-phase modulated signal. Since two-phase modulation can be applied to a received signal by using two switches and slots whose signal phases are different from each other by 180 degrees, reduction in received signal power can be suppressed without providing an amplifier 7 for each element antenna 38. To be As a result, the number of amplifiers can be reduced while suppressing the deterioration of the signal-to-noise ratio, and low power consumption can be realized. Further, the array antenna device according to the third embodiment can realize a highly efficient array antenna device by using the low-loss waveguide 30.
  • the array antenna device that receives the high frequency signal coming from the space is shown, but in the fourth embodiment, the array antenna device that transmits the high frequency signal to the space will be described.
  • FIG. 11 is a block diagram showing the configuration of the array antenna apparatus according to the fourth embodiment.
  • the array antenna device shown in FIG. 11 transmits electromagnetic waves to space by the array antenna 1D.
  • the array antenna 1D has a plurality of element antennas 2B arranged at regular intervals.
  • Each of the plurality of element antennas 2B includes a first radiation structure 3a, a second radiation structure 3b, a first feeding structure portion 4a, a second feeding structure portion 4b, and a switch 5A.
  • the first radiating structure 3a is an antenna having the first feeding structure 4a
  • the second radiating structure 3b is an antenna having the second feeding structure 4b
  • the first feeding structure unit 4a is a feeding structure unit that transmits the transmission signal transmitted from the first radiation structure 3a
  • the second feeding structure unit 4b transmits the transmission signal transmitted from the second radiation structure 3b. It is a power feeding structure part for transmitting.
  • the first feeding structure portion 4a and the second feeding structure portion 4b are two feeding structure portions having mutually different radiated electric field phases, and, for example, the phase values of the electric field radiation pattern are different from each other by 180 degrees. That is, the plurality of radiation structures included in the element antenna 2B are a plurality of antennas having mutually different radiation electric field phases, and one feeding structure section is provided for each of these antennas.
  • the switch 5A switches the first radiating structure 3a and the second radiating structure 3b, and is a switch of SPDT structure.
  • the switch 5A having the SPDT structure has a first output terminal to which the first power feeding structure 4a is connected, a second output terminal to which the second power feeding structure 4b is connected, and an input terminal common to both.
  • the transmission signal input from the input terminal to the switch 5A is output from the first output terminal to the first feeding structure section 4a, and the first feeding structure 4a is fed. It is transmitted from the structure portion 4a to the first radiating structure 3a, and is transmitted from the first radiating structure 3a to the space.
  • the transmission signal input from the input terminal to the switch 5A is output from the second output terminal to the second power feeding structure section 4b, and the second power feeding is performed. It is transmitted from the structure portion 4b to the second radiating structure 3b, and is transmitted from the second radiating structure 3b to the space.
  • the array antenna device shown in FIG. 11 includes a distribution circuit 50, an amplifier 51, a frequency converter 52, a local oscillator 53, a D/A converter 54, a sequence generation unit 55, a switch control circuit 56, an encoder unit 57, and a transmission beam forming unit. 58 is further provided.
  • the distribution circuit 50 distributes the transmission signal input from the amplifier 51 to each of the plurality of element antennas 2B.
  • the amplifier 51 amplifies the power of the transmission signal whose frequency has been converted to the high frequency band by the frequency converter 52, with a preset gain.
  • the frequency converter 52 uses the local oscillation signal input from the local oscillator 53 to convert the frequency of the transmission signal amplified by the D/A converter 54 into an analog signal into a high frequency band.
  • the local oscillator 53 generates a local oscillation signal having a preset frequency, which is used for frequency conversion by the frequency converter 52.
  • the D/A converter 54 is a converter that converts the signal input from the encoder unit 57 into an analog signal.
  • the sequence generation unit 55 generates, for each element antenna 2B, sequence information indicating a switching sequence between the first radiating structure 3a and the second radiating structure 3b.
  • the radiating structure switching sequence includes a chronological order of radiating structure switching and a switching interval.
  • the sequence information generated for each element antenna 2B is output from the sequence generation unit 55 to the switch control circuit 56.
  • the sequence generation unit 55 may read the sequence information stored in the storage device and output the read sequence information to the switch control circuit 56.
  • the storage device may be a storage device such as a RAM or a hard disk included in the array antenna device, or may be an external storage device accessible from the array antenna device.
  • the switch control circuit 56 controls switching of the first radiating structure 3a and the second radiating structure 3b by the switch 5A based on the sequence information generated by the sequence generating unit 55. For example, the switch control circuit 56 generates a control signal for controlling the operation of the switch 5A for each element antenna 2B based on the switching sequence indicated by the sequence information input from the sequence generation unit 55. The switch 5A switches to either the first radiation structure 3a or the second radiation structure 3b based on the control signal input from the switch control circuit 56.
  • the encoder unit 57 generates a transmission signal by using the sequence information generated by the sequence generation unit 55 and the plurality of element signals formed by the transmission beam forming unit 58, and the generated transmission signal is generated by the D/A converter 54. Output to.
  • the transmission beam forming unit 58 forms a plurality of element signals corresponding to each of the plurality of element antennas 2B. For example, the transmission beam forming unit 58 adjusts the amplitude and phase of the signal to be transmitted for each element antenna 2B to form the element signals for the number of the element antennas 2B.
  • the functions of the sequence generation unit 55, the encoder unit 57, and the transmission beam forming unit 58 are realized by a processing circuit.
  • the processing circuit may be dedicated hardware, or may be a CPU that executes a program stored in the memory.
  • the switch control circuit 56 inputs sequence information from the processing circuit through the network interface.
  • the encoder unit 57 and the transmission beam forming unit 58 may be provided in an external device different from the array antenna device according to the fourth embodiment. That is, the array antenna apparatus according to the fourth embodiment can realize low power consumption while maintaining the signal-to-noise ratio even without the encoder unit 57 and the transmission beam forming unit 58. In this case, the array antenna apparatus according to the fourth embodiment communicates with an external apparatus and exchanges signals with the encoder section 57 and the transmission beam forming section 58, for example.
  • FIG. 12 is a flowchart showing the operation of the array antenna apparatus according to the fourth embodiment.
  • the transmission beam forming unit 58 forms an element signal corresponding to each element antenna 2B (step ST1a).
  • the element signal formed for each element antenna 2B by the transmission beam forming section 58 is output to the encoder section 57.
  • the sequence generation unit 55 generates sequence information indicating the switching sequence of the first radiating structure 3a and the second radiating structure 3b for each element antenna 2B (step ST2a). For example, the sequence generation unit 55 assigns 1 to the state switched by the switch 5A to the first radiating structure 3a and -1 to the state switched to the second radiating structure 3b by the switch 5A, [1 Sequence information in which a switching sequence is expressed by a code string having 1 and -1 as elements such as "-1 1... 1]" is generated.
  • the switching sequence for each of the plurality of element antennas 2B is represented by an orthogonal code which is a code string orthogonal to each other.
  • the encoder unit 57 generates a transmission signal using the sequence information and the element signal (step ST3a). For example, the encoder unit 57 multiplies the element signal for each element antenna 2B input from the transmission beam forming unit 58 by a code string having 1 and ⁇ 1 as sequence information as elements, and calculates these multiplication values. Further, the composite operation is performed. Since the code string indicating the switching sequence has a value of ⁇ 1, the element signal is a two-phase modulated signal. When the time Tc which is the switching interval of the radiation structure is shorter than the duration (signal period) Ts of the information pulse included in the high frequency signal (transmission signal), the signal obtained by multiplying the element signal by the code string is the original element signal. The signal is spread spectrum. By further subjecting these multiplication results to a synthesis operation, the signal of the synthesis operation result becomes a so-called code division multiplexed transmission signal.
  • the D/A converter 54 converts the transmission signal generated by the encoder unit 57 into an analog signal
  • the frequency converter 52 converts the transmission signal converted into the analog signal by the D/A converter 54 into a high signal.
  • the frequency is converted into a frequency band, and the amplifier 51 amplifies the power of the signal frequency-converted by the frequency converter 52 (step ST4a).
  • the transmission signal amplified by the amplifier 51 is output to the distribution circuit 50.
  • the distribution circuit 50 distributes the transmission signal input from the amplifier 51 to each of the plurality of element antennas 2B included in the array antenna 1D (step ST5a).
  • the switch control circuit 56 controls the switch 5A for each element antenna 2B based on the sequence information generated by the sequence generation unit 55, and the first radiation structure 3a included in each of the plurality of element antennas 2B.
  • the second radiation structure 3b are sequentially switched (step ST6a).
  • a transmission signal is transmitted to the space from each element antenna 2B (step ST7a).
  • the transmission signal distributed to the switch 5A by the distribution circuit 50 is transmitted to the first radiating structure 3a via the first feeding structure section 4a, It is radiated to the space from one radiating structure 3a.
  • the transmission signal distributed to the switch 5A by the distribution circuit 50 is transmitted to the second radiation structure 3b via the second feeding structure section 4b, The second radiating structure 3b radiates into space.
  • the switch 5A includes the first radiating structure 3a, the second radiating structure 3b, the second radiating structure 3b, and the second radiating structure 3b. Switching is performed for each time Tc in the order of one radiating structure 3a.
  • the generated high frequency signal has a phase difference of 180 degrees. Therefore, the signal that has been subjected to the two-phase modulation by the encoder unit 57 and input to the switch 5A is radiated into space from the first radiation structure 3a or the second radiation structure 3b and demodulated.
  • the encoder unit 57 transmits only the signal component in which the radiation structure has been switched in the same order as the switching sequence used to generate the transmission signal corresponding to the element antenna 2B, and the encoder unit The signal component of which the radiation structure is switched in 57 is 0 in a different order from the switching sequence used to generate the transmission signal corresponding to the element antenna 2B. This corresponds to performing despreading processing on the code division multiplexed signal and demodulating it. Thereby, each signal from the plurality of element antennas 2B can be separated and transmitted.
  • the element antenna 2B including the first radiating structure 3a having the first feeding structure 4a and the second radiating structure 3b having the second feeding structure 4b has been shown.
  • the array antenna device according to the fourth embodiment is not limited to this.
  • the second embodiment The radiation structure 15, the first feeding structure portion 16a, and the second feeding structure portion 16b may be provided.
  • the radiation structure 15 may be the patch antenna shown in FIGS. 4A and 4B and a modification thereof, or the waveguide aperture antenna shown in FIGS. 5A and 5B and a modification thereof, It may be the horn antenna shown in FIGS. 6A and 6B and a modification thereof.
  • the array antenna device may include the waveguide 30 shown in the third embodiment as the distribution circuit 50.
  • the array antenna device may include a modified example of the waveguide shown in FIGS. 10A, 10B, and 10C as a distribution circuit instead of the waveguide 30 shown in FIG. 7.
  • a ridge waveguide may be provided.
  • the ridge waveguide has a metal wall passing through a center line parallel to the tube axis direction on the first wide wall surface 31a of the waveguide 30.
  • the ridge waveguide may have any or all of the features (1) to (4) below.
  • the plurality of slots are arranged at positions symmetrical to each other with respect to the center line parallel to the tube axis direction on the first wide wall surface 31a.
  • the end face of the ridge waveguide is short-circuited, and the slots are arranged on the first wide wall surface 31a at intervals of 1 ⁇ 2 of the guide wavelength at the operating frequency.
  • the slot closest to the end face on the first wide wall surface 31a is arranged at a position where the distance from the center of the slot to the end face is 1 ⁇ 4 of the guide wavelength. Has been done.
  • the first wide wall surface 31a of the ridge waveguide is composed of a dielectric substrate 40 having conductor surfaces 41a and 41b on the front and back sides, and the slot is formed on the dielectric substrate 40. It is a via that penetrates and electrically connects the conductor surface 41a and the conductor surface 41b.
  • each of the plurality of element antennas 2B has the first radiation structure 3a, the second radiation structure 3b, and the first radiation structure 3a and the second radiation structure 3a. It has a switch 5A for switching between the radiation structure 3b and the radiation structure switched by the switch 5A to radiate a transmission signal.
  • the transmission signal transmitted from the element antenna 2B becomes a two-phase modulated signal. Since the transmission signal can be subjected to the two-phase modulation by using the low-loss switch 5A, the reduction of the transmission signal power can be suppressed without providing the amplifier 7 for each element antenna 2B.
  • the array antenna device has a beam forming function equivalent to that of the conventional DBF array antenna, and further has a D/A converter and amplifier corresponding to the number of multiplexed signals as compared with the conventional DBF array antenna. Can reduce the number of Therefore, it is possible to realize a low-cost, low power consumption, small-sized and lightweight array antenna device.
  • the switching sequence may be represented by an orthogonal code having the same code length as the number of element antennas 2B or an orthogonal code having a code length larger than the number of element antennas 2B. In any case, the same effect as above can be obtained. Further, even if the switching sequence is represented by a pseudo random code such as an M sequence or a Gold sequence instead of the orthogonal code, the code division multiplexed signal can be demodulated by the despreading process.
  • the array antenna device according to the fourth embodiment has four phases for the transmission signals.
  • the above polyphase modulation may be performed.
  • the encoder unit 57 performs four-phase modulation on the transmission signal corresponding to each of the plurality of element antennas 2B, and each of the plurality of element antennas 2B is provided with four radiation structures having mutually different radiation electric field phases.
  • the switch 5A may switch the radiation structure to transmit the transmission signal.
  • the array antenna device can realize low power consumption, it can be used for wireless communication or radar.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

複数の素子アンテナ(2)のそれぞれが、第1の放射構造(3a)、第2の放射構造(3b)、および第1の放射構造(3a)と第2の放射構造(3b)とを切り替えるスイッチ(5)を有し、スイッチ(5)が切り替えた放射構造によって受信された受信信号を出力する。

Description

アレーアンテナ装置
 本発明は、アレーアンテナ装置に関する。
 デジタルビームフォーマ構成のアレーアンテナ(以下、DBFアレーアンテナと記載する)は、例えば、無線通信またはレーダに用いられるアレーアンテナ装置であり、様々なビームを形成でき、複数のビームの同時形成も可能である。従来のDBFアレーアンテナは、一般に、アレーアンテナを構成する複数の素子アンテナのそれぞれに対し、増幅器、ダウンコンバータおよびアナログ/デジタル変換器(以下、A/D変換器と記載する)を備えている。このため、従来のDBFアレーアンテナは、一般に、電力消費が多く、アンテナ体積が大きく、重量も重かった。
 一方、例えば、特許文献1に記載されたアレーアンテナは、アレーアンテナを構成する複数の素子アンテナのそれぞれに対して増幅器および二位相変調回路を備えており、さらに、合成回路、ダウンコンバータおよびA/D変換器を備えている。複数の素子アンテナのそれぞれによって受信され、増幅器によって増幅され、二位相変調回路によって位相変調された複数の受信信号は、合成回路によって合成される。合成後の信号は、ダウンコンバータによって周波数変換され、周波数変換後の信号は、A/D変換器によってアナログ信号からデジタル信号に変換される。このように、特許文献1に記載されたアレーアンテナでは、合成回路によって多重化された信号の数だけA/D変換器の数を削減できる。
米国特許第5077562号明細書
 二位相変調回路は、一般に、半導体素子を用いた回路であり、半導体素子を用いた回路は、通常、大きな通過損失(例えば、3dB以上の損失)を有する。特許文献1に記載されたアレーアンテナにおいて、二位相変調回路での通過損失に伴う受信信号電力の低下に起因した信号対雑音比の劣化を補償するため、素子アンテナごとに増幅器を設けている。このように、特許文献1に記載されたアレーアンテナは、増幅器の数を削減すると信号対雑音比が劣化するので、低消費電力化が困難であるという課題があった。
 本発明は上記課題を解決するものであり、低消費電力化を実現することができるアレーアンテナ装置を得ることを目的とする。
 本発明に係るアレーアンテナ装置は、放射電界位相が互いに異なる複数の放射構造と、放射構造を切り替えるスイッチとを有し、スイッチによって切り替えられた放射構造で受信された受信信号を出力する複数の素子アンテナが配列されたアレーアンテナと、放射構造の切り替えシーケンスを示すシーケンス情報を、素子アンテナごとに生成するシーケンス生成部と、シーケンス生成部によって生成されたシーケンス情報に基づいて、スイッチによる放射構造の切り替えを制御するスイッチ制御回路と、複数の素子アンテナから出力された信号を合成する合成回路と、合成回路によって合成された信号を増幅する増幅器と、増幅器によって増幅された信号を周波数変換する周波数変換器と、周波数変換器によって周波数変換された信号をデジタル信号に変換する変換器とを備える。
 本発明によれば、複数の素子アンテナのそれぞれが、放射電界位相が互いに異なる複数の放射構造と、放射構造を切り替えるスイッチとを有し、スイッチが切り替えた放射構造で受信された受信信号を出力する。放射構造の切り替えによって、素子アンテナから出力される受信信号は、放射電界位相が互いに異なる信号となり、例えば、二位相変調された信号となる。低損失なスイッチを用いて受信信号に二位相変調を施すことができるので、素子アンテナごとに増幅器を設けなくても、受信信号電力の低下が抑えられる。これにより、信号対雑音比の劣化を抑制しながら増幅器の数を削減でき、低消費電力化を実現することができる。
実施の形態1に係るアレーアンテナ装置の構成を示すブロック図である。 実施の形態1に係るアレーアンテナ装置の動作を示すフローチャートである。 実施の形態2に係るアレーアンテナ装置の構成を示すブロック図である。 図4Aは、実施の形態2における放射構造を示す斜視図である。図4Bは、実施の形態2における放射構造を図4AのA-A線で切った断面を示す断面矢示図である。 図5Aは、実施の形態2における放射構造の変形例を示す斜視図である。図5Bは、実施の形態2における放射構造の変形例を図5Aの矢印方向からみた様子を示す図である。 図6Aは、実施の形態2における放射構造の別の変形例を示す斜視図である。図6Bは、実施の形態2における放射構造の別の変形例を図6Aの矢印方向からみた様子を示す図である。 実施の形態3に係るアレーアンテナ装置の構成を示すブロック図である。 実施の形態3における導波管を図7のB-B線で切った断面を示す断面矢示図である。 導波管の広壁面における電流分布を示す図である。 図10Aは、実施の形態3における導波管の変形例を示す斜視図である。図10Bは、実施の形態3における導波管の変形例を図10AのC-C線で切った断面を示す断面矢示図である。図10Cは、実施の形態3における導波管の変形例を図10AのD-D線で切った断面を示す断面矢示図である。 実施の形態4に係るアレーアンテナ装置の構成を示すブロック図である。 実施の形態4に係るアレーアンテナ装置の動作を示すフローチャートである。
実施の形態1.
 図1は、実施の形態1に係るアレーアンテナ装置の構成を示すブロック図である。図1に示すアレーアンテナ装置は、空間を伝搬してきた電磁波をアレーアンテナ1によって受信する。アレーアンテナ1には、複数の素子アンテナ2が一定の間隔で配列されている。複数の素子アンテナ2のそれぞれは、第1の放射構造3a、第2の放射構造3b、第1の給電構造部4a、第2の給電構造部4bおよびスイッチ5を備える。
 第1の放射構造3aは、第1の給電構造部4aを有したアンテナであり、第2の放射構造3bは、第2の給電構造部4bを有したアンテナである。第1の給電構造部4aは、第1の放射構造3aで受信された信号を伝送する給電構造部であり、第2の給電構造部4bは、第2の放射構造3bで受信された信号を伝送する給電構造部である。
 第1の給電構造部4aと第2の給電構造部4bは、放射電界位相が互いに異なる2つの給電構造部であり、例えば、放射電界位相値が互いに180度異なっている。すなわち、素子アンテナ2が有する2つの放射構造は、放射電界位相が互いに異なる2つのアンテナであり、給電構造部は、これらのアンテナのそれぞれに1つずつ設けられている。
 スイッチ5は、第1の放射構造3aと第2の放射構造3bとを切り替えるものであり、いわゆる、シングルポールダブルスロー(以下、SPDTと記載する)構造のスイッチである。SPDT構造のスイッチ5は、第1の給電構造部4aが接続された第1の入力端子、第2の給電構造部4bが接続された第2の入力端子および両者に共通の出力端子を有する。
 例えば、スイッチ5によって第1の放射構造3aに切り替えられると、第1の放射構造3aで受信された高周波信号は、第1の給電構造部4aを介して第1の入力端子からスイッチ5に入力され、出力端子から出力される。一方、スイッチ5によって第2の放射構造3bに切り替えられると、第2の放射構造3bで受信された高周波信号は、第2の給電構造部4bを介して第2の入力端子からスイッチ5に入力され、出力端子から出力される。
 図1に示すアレーアンテナ装置は、合成回路6、増幅器7、周波数変換器8、局部発振器9、A/D変換器10、シーケンス生成部11、スイッチ制御回路12、デコーダ部13およびビーム形成部14をさらに備える。複数の素子アンテナ2の各スイッチ5で切り替えられた高周波信号は、合成回路6に出力される。合成回路6は、アレーアンテナ1を構成する複数の素子アンテナ2のそれぞれから出力された高周波信号を合成し、合成した信号を増幅器7に出力する。増幅器7は、合成回路6によって合成された高周波信号の電力を予め設定された利得で増幅する。
 周波数変換器8は、局部発振器9から入力した局部発振信号を用いて、増幅器7によって電力が増幅された高周波信号の周波数を中間周波数帯に周波数変換する。局部発振器9は、高周波信号の周波数変換に用いられる、予め設定された周波数の局部発振信号を発生する。A/D変換器10は、周波数変換器8によって周波数が中間周波数帯に変換された信号をデジタル信号に変換する変換器である。
 シーケンス生成部11は、第1の放射構造3aと第2の放射構造3bとの切り替えシーケンスを示すシーケンス情報を、素子アンテナ2ごとに生成する。放射構造の切り替えシーケンスには、放射構造の切り替えの時系列な順序と切り替え間隔が含まれる。素子アンテナ2ごとに生成されたシーケンス情報は、シーケンス生成部11からスイッチ制御回路12に出力される。
 なお、シーケンス生成部11は、記憶装置に記憶されたシーケンス情報を読み出し、読み出したシーケンス情報をスイッチ制御回路12に出力してもよい。記憶装置は、アレーアンテナ装置が備えるRAM(Random Access Memory)またはハードディスクといった記憶装置であってもよいが、アレーアンテナ装置からアクセス可能な外部記憶装置であってもよい。
 スイッチ制御回路12は、シーケンス生成部11によって生成されたシーケンス情報に基づいて、スイッチ5による第1の放射構造3aと第2の放射構造3bとの切り替えを制御する。例えば、スイッチ制御回路12は、シーケンス情報が示す切り替えシーケンスに基づいて、スイッチ5の動作を制御する制御信号を素子アンテナ2ごとに生成する。スイッチ5は、スイッチ制御回路12から入力した制御信号に基づいて、第1の放射構造3aおよび第2の放射構造3bのいずれかに切り替える。
 デコーダ部13は、シーケンス生成部11によって生成されたシーケンス情報に基づいて、A/D変換器10から入力したデジタル信号から、複数の素子アンテナ2のそれぞれで受信された信号を分離する。ビーム形成部14は、デコーダ部13によって素子アンテナ2ごとに分離された信号を用いて、ビーム信号を形成する。ビーム形成部14によって素子アンテナ2の個数分のビーム信号が形成される。
 シーケンス生成部11、デコーダ部13およびビーム形成部14の機能は、処理回路によって実現される。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。例えば、処理回路とスイッチ制御回路12とが、ネットワークを介して接続された別々の回路である場合、スイッチ制御回路12は、ネットワークインタフェースを通じて処理回路からシーケンス情報を入力する。
 また、デコーダ部13およびビーム形成部14は、実施の形態1に係るアレーアンテナ装置とは別の外部装置が備えてもよい。すなわち、実施の形態1に係るアレーアンテナ装置は、デコーダ部13およびビーム形成部14を備えていなくても、信号対雑音比を維持しながら低消費電力化を実現できる。なお、この場合、実施の形態1に係るアレーアンテナ装置は、例えば、上記外部装置に通信接続してデコーダ部13およびビーム形成部14との間で信号をやり取りする。
 次に動作について説明する。
 図2は、実施の形態1に係るアレーアンテナ装置の動作を示すフローチャートである。
 まず、複数の素子アンテナ2のそれぞれが有する第1の放射構造3aおよび第2の放射構造3bが、空間から到来した高周波信号を受信する(ステップST1)。
 一方、シーケンス生成部11は、第1の放射構造3aと第2の放射構造3bの切り替えシーケンスを示すシーケンス情報を素子アンテナ2ごとに生成する(ステップST2)。例えば、シーケンス生成部11は、スイッチ5によって第1の放射構造3aに切り替えられた状態に1を割り当て、スイッチ5によって第2の放射構造3bに切り替えられた状態に-1を割り当てて、[1 -1 1 ・・・1]のように1と-1を要素とした符号列で切り替えシーケンスが表現されたシーケンス情報を生成する。
 実施の形態1では、複数の素子アンテナ2のそれぞれに対する切り替えシーケンスを、互いに直交した符号列である直交符号、すなわち、Walsh-Hadamard符号で表す。例えば、アレーアンテナ1を構成する素子アンテナ2の数が4つである場合、4つの素子アンテナ2のそれぞれに対する切り替えシーケンスは、[1 1 1 1]、[1 -1 1 -1]、[1 1 -1 -1]および[1 -1 -1 1]で表される。以下の説明では、切り替えシーケンスを表す直交符号が、素子アンテナ2の数と符号長が同じであるものとする。
 スイッチ制御回路12は、シーケンス生成部11によって生成されたシーケンス情報に基づいて、素子アンテナ2ごとのスイッチ5を制御することで、複数の素子アンテナ2のそれぞれが有する第1の放射構造3aと第2の放射構造3bを順次切り替える(ステップST3)。例えば、スイッチ5は、切り替えシーケンスを符号列[1 -1 -1 1]で表したシーケンス情報に基づくと、第1の放射構造3a、第2の放射構造3b、第2の放射構造3b、第1の放射構造3aの順に、時間Tcごとに切り替えを行う。
 第1の放射構造3aによって受信されて第1の給電構造部4aからスイッチ5に入力された高周波信号と第2の放射構造3bによって受信されて第2の給電構造部4bを介してスイッチ5に入力された高周波信号は、互いに180度位相が異なっている。このため、スイッチ5からの出力信号は、放射構造の切り替えによって二位相変調が施された高周波信号となる。
 第1の放射構造3aと第2の放射構造3bとの切り替え間隔である時間Tcが、高周波信号(受信信号)が有する情報パルスの継続時間(信号周期に相当する)Tsよりも短い場合、シーケンス情報に基づいて、スイッチ5が、時間Ts内で、時間Tcごとに第1の放射構造3aと第2の放射構造3bとを切り替え、この切り替えは、時間Tsごとに繰り返し実行される。第1の放射構造3aと第2の放射構造3bとの切り替えによって二位相変調された高周波信号の周波数スペクトルは、第1の放射構造3aまたは第2の放射構造3bによって受信された高周波信号の周波数スペクトラムに比べて広範な周波数帯域幅を有した、いわゆるスペクトル拡散された信号となる。
 続いて、合成回路6は、複数の素子アンテナ2のそれぞれから出力された高周波信号を合成する(ステップST4)。例えば、合成回路6は、複数の素子アンテナ2のそれぞれから出力された高周波信号を合成し、直交符号によってスペクトル拡散された高周波信号の合成信号、すなわち符号分割多重された信号を生成する。
 増幅器7が、合成回路6によって合成された高周波信号の電力を増幅し、周波数変換器8が、増幅器7によって増幅された高周波信号の周波数を中間周波数帯に周波数変換し、A/D変換器10が、周波数変換器8によって周波数変換された信号を、デジタル信号に変換する(ステップST5)。A/D変換器10によってデジタル信号に変換された合成信号は、デコーダ部13に出力される。
 次に、デコーダ部13は、A/D変換器10から入力した合成信号に逆拡散処理を施して、複数の素子アンテナ2のそれぞれに受信された信号に分離する(ステップST6)。例えば、デコーダ部13は、A/D変換器10から入力した合成信号に対し、シーケンス情報である、1と-1を要素とした符号列を乗算し、乗算した値を積分することで、素子アンテナ2の数だけデジタル信号を算出する。切り替えシーケンスは互いに直交する直交符号で表されるため、スイッチ5に設定された切り替えシーケンスを表す直交符号を合成信号に乗算して積分することで、そのスイッチ5を含んだ素子アンテナ2で受信された信号成分のみが得られ、そのスイッチ5での切り替えシーケンスとは異なる直交符号を合成信号に乗算して積分しても信号成分は0となる。これは、符号分割多重された信号に対して逆拡散処理を施して復調することに相当する。これにより、合成信号から、複数の素子アンテナ2のそれぞれに受信された信号が分離される。
 この後、ビーム形成部14は、デコーダ部13によって合成信号から複数の素子アンテナ2のそれぞれに分離された信号を用いて、ビーム信号を形成する(ステップST7)。
 以上のように、実施の形態1に係るアレーアンテナ装置において、複数の素子アンテナ2のそれぞれが、第1の放射構造3a、第2の放射構造3b、および第1の放射構造3aと第2の放射構造3bとを切り替えるスイッチ5を有し、スイッチ5が切り替えた放射構造によって受信された受信信号を出力する。放射電界位相が互いに異なる第1の放射構造3aと第2の放射構造3bとの切り替えによって、素子アンテナ2から出力される受信信号は、二位相変調された信号となる。低損失なスイッチ5を用いて受信信号に二位相変調を施すことができるので、素子アンテナ2ごとに増幅器7を設けなくても、受信信号電力の低下が抑えられる。これにより、信号対雑音比の劣化を抑制しながら増幅器の数を削減できるので、低消費電力化を実現できる。すなわち、実施の形態1に係るアレーアンテナ装置は、従来のDBFアレーアンテナと同等のビーム形成機能を有し、さらに、従来のDBFアレーアンテナに比べて、信号の多重数分だけ増幅器の数を削減できる。このため、低コスト、低消費電力、小型かつ軽量なアレーアンテナ装置を実現できる。
 なお、これまでの説明では、切り替えシーケンスを素子アンテナ2の数と符号長が同じ直交符号で表したが、切り替えシーケンスは、符号長が素子アンテナ2の数よりも大きい直交符号で表してもよく、上記と同様の効果が得られる。さらに、直交符号の代わりに、切り替えシーケンスを、M系列あるいはGold系列といった擬似ランダム符号で表しても、符号分割多重された信号を逆拡散処理によって復調することができる。
 また、これまでの説明では、放射電界位相が互いに異なる第1の放射構造3aと第2の放射構造3bを、スイッチ5を用いて切り替えることで、受信信号に二位相変調を施す場合を示したが、実施の形態1に係るアレーアンテナ装置は、受信信号に4相以上の多相変調を施すように構成されてもよい。例えば、複数の素子アンテナ2のそれぞれに、放射電界位相が互いに異なる4つの放射構造を設け、スイッチ5によって放射構造を切り替えることで、受信信号に四位相変調を施すことが可能である。
実施の形態2.
 図3は、実施の形態2に係るアレーアンテナ装置の構成を示すブロック図である。図3に示すアレーアンテナ装置は、空間を伝搬してきた電磁波をアレーアンテナ1Aによって受信する。アレーアンテナ1Aには、複数の素子アンテナ2Aが一定の間隔で配列されている。複数の素子アンテナ2Aのそれぞれは、放射構造15、第1の給電構造部16a、第2の給電構造部16bおよびスイッチ17を備えている。なお、図3において、図1と同一の構成要素には同一の符号を付して説明を省略する。
 放射構造15は、その中心に点対称な構造を有したアンテナであり、第1の給電構造部16aと第2の給電構造部16bとを有する。第1の給電構造部16aおよび第2の給電構造部16bは、放射構造15で受信された高周波信号を伝送する給電構造である。放射構造15は、単一のアンテナであり、このアンテナは、第1の給電構造部16aおよび第2の給電構造部16bを異なる位置にそれぞれ有する。例えば、第1の給電構造部16aと放射構造15との接続点と、第2の給電構造部16bと放射構造15との接続点とは、放射構造15の中心に対して点対称な位置に設けられる。
 放射構造15は、単一のアンテナとして実現されるが、第1の給電構造部16aを有した放射構造と、第2の給電構造部16bを有した放射構造との両方の機能を有する。
 スイッチ17は、第1の給電構造部16aに切り替えることにより、放射構造15を、第1の給電構造部16aを有した放射構造として機能させ、第2の給電構造部16bに切り替えることにより、放射構造15を、第2の給電構造部16bを有した放射構造として機能させる。すなわち、スイッチ17は、第1の給電構造部16aを有した放射構造と、第2の給電構造部16bを有した放射構造とを切り替えるスイッチである。
 また、スイッチ17はSPDT構造のスイッチであり、第1の給電構造部16aが接続された第1の入力端子と、第2の給電構造部16bが接続された第2の入力端子と、両者に共通の出力端子とを有する。例えば、スイッチ17によって第1の給電構造部16aに切り替えられると、放射構造15で受信された高周波信号は、第1の給電構造部16aを介して、第1の入力端子からスイッチ17に入力され、出力端子から出力される。一方、スイッチ17によって第2の給電構造部16bに切り替えられると、放射構造15で受信された高周波信号は、第2の給電構造部16bを介して第2の入力端子からスイッチ17に入力され、出力端子から出力される。
 図3に示すアレーアンテナ装置は、合成回路6、増幅器7、周波数変換器8、局部発振器9、A/D変換器10、シーケンス生成部18、スイッチ制御回路19、デコーダ部20およびビーム形成部21をさらに備える。シーケンス生成部18は、放射構造の切り替えシーケンスを示すシーケンス情報を素子アンテナ2Aごとに生成する。放射構造の切り替えシーケンスには、放射構造の切り替えの時系列な順序と切り替え間隔が含まれる。素子アンテナ2Aごとに生成されたシーケンス情報は、シーケンス生成部18からスイッチ制御回路19に出力される。
 なお、シーケンス生成部18は、記憶装置に記憶されたシーケンス情報を読み出し、読み出したシーケンス情報をスイッチ制御回路19に出力してもよい。記憶装置は、アレーアンテナ装置が備えるRAMまたはハードディスクといった記憶装置であってもよいが、アレーアンテナ装置からアクセス可能な外部記憶装置であってもよい。
 例えば、シーケンス生成部18は、実施の形態1と同様に、スイッチ17によって第1の給電構造部16aを有する放射構造に切り替えられた状態に1を割り当て、スイッチ17によって第2の給電構造部16bを有する放射構造に切り替えられた状態に-1を割り当てて、1と-1を要素とした符号列で切り替えシーケンスが表現されたシーケンス情報を生成する。
 スイッチ制御回路19は、シーケンス生成部18によって生成されたシーケンス情報に基づいて、スイッチ17による切り替えを制御する。例えば、スイッチ制御回路19は、シーケンス生成部18から入力したシーケンス情報が示す切り替えシーケンスに基づいて、スイッチ17の動作を制御する制御信号を素子アンテナ2Aごとに生成する。
 スイッチ17は、スイッチ制御回路19から設定された制御信号に基づいて、第1の給電構造部16aを有する放射構造と第2の給電構造部16bを有する放射構造とのいずれかに切り替える。例えば、切り替えシーケンスを符号列[1 -1 -1 1]で表したシーケンス情報に基づいて、スイッチ17は、第1の給電構造部16a、第2の給電構造部16b、第2の給電構造部16b、第1の給電構造部16aの順に、時間Tcごとに切り替えを行う。
 放射構造15によって受信されて第1の給電構造部16aからスイッチ17に入力された高周波信号と、放射構造15によって受信されて第2の給電構造部16bを介してスイッチ17に入力された高周波信号は、互いに180度位相が異なる。スイッチ17からの出力信号は、放射構造の切り替えによって二位相変調が施された高周波信号となる。切り替え間隔である時間Tcが、高周波信号(受信信号)が有する情報パルスの継続時間(信号周期)Tsよりも短い場合、二位相変調された高周波信号の周波数スペクトラムは、スペクトル拡散された信号となる。
 デコーダ部20は、シーケンス生成部18によって生成されたシーケンス情報に基づいて、A/D変換器10から入力されたデジタル信号のうちから、複数の素子アンテナ2Aのそれぞれで受信された信号を分離する。例えば、デコーダ部20は、A/D変換器10から入力した合成信号に対して、シーケンス情報である、1と-1を要素とした符号列を乗算して積分することで、素子アンテナ2Aの数だけデジタル信号を算出する。切り替えシーケンスは互いに直交する直交符号で表されるため、スイッチ17に設定された切り替えシーケンスを表す直交符号を合成信号に乗算して積分することで、そのスイッチ17を含む素子アンテナ2Aで受信された信号成分のみが得られ、そのスイッチ17での切り替えシーケンスとは異なる直交符号を合成信号に乗算して積分しても信号成分は0となる。これは、符号分割多重された信号に対して逆拡散処理を施して復調することに相当する。これにより、合成信号から、複数の素子アンテナ2Aのそれぞれに受信された信号が分離される。
 ビーム形成部21は、デコーダ部20によって素子アンテナ2Aごとに分離された信号を用いて、ビーム信号を形成する。ビーム形成部21によって素子アンテナ2Aの個数分のビーム信号が形成される。
 また、デコーダ部20およびビーム形成部21は、実施の形態2に係るアレーアンテナ装置とは別の外部装置が備えてもよい。すなわち、実施の形態2に係るアレーアンテナ装置は、デコーダ部20およびビーム形成部21を備えていなくても、信号対雑音比を維持しながら低消費電力化を実現できる。なお、この場合、実施の形態2に係るアレーアンテナ装置は、例えば、上記外部装置に通信接続してデコーダ部20およびビーム形成部21との間で信号をやり取りする。
 シーケンス生成部18、デコーダ部20およびビーム形成部21の機能は、処理回路によって実現される。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPUであってもよい。例えば、処理回路とスイッチ制御回路19とが、ネットワークを介して接続された別々の回路である場合、スイッチ制御回路19は、ネットワークインタフェースを通じて処理回路からシーケンス情報を入力する。
 図4Aは、放射構造15を示す斜視図である。図4Bは、放射構造15を図4AのA-A線で切った断面を示す断面矢示図である。放射構造15は、図4Aおよび図4Bに示すような、方形のパッチアンテナで実現することができる。このパッチアンテナは、図4Bに示すように、ピン給電のパッチアンテナであり、2つのピンが第1の給電構造部16aおよび第2の給電構造部16bである。図4Aに示すように、第1の給電構造部16aと第2の給電構造部16bとは、パッチアンテナの中心に対して互いに点対称な位置に配置されている。
 図4Aおよび図4Bにおいて、方形のパッチアンテナを示したが、放射構造15は、円形のパッチアンテナであってもよい。また、放射構造15は、電磁結合給電のパッチアンテナであってもよい。この場合、第1の給電構造部16aおよび第2の給電構造部16bは、電磁結合で給電する構造部で実現される。
 図5Aは、放射構造15の変形例を示す斜視図である。図5Bは、放射構造15の変形例を図5Aの矢印方向からみた様子を示す図である。放射構造15は、図5Aおよび図5Bに示すような、導波管開口アンテナで実現することができる。この導波管開口アンテナは、図5Bに示すように、プローブ給電の導波管開口アンテナであり、2つのプローブが第1の給電構造部16aおよび第2の給電構造部16bである。図5Bに示すように、第1の給電構造部16aと第2の給電構造部16bは導波管開口アンテナの中心軸に対して点対称な位置に配置されている。
 開口形状が方形の導波管開口アンテナを示したが、放射構造15は、開口形状が円形の導波管開口アンテナであってもよい。また、放射構造15は、スロットまたは導波管で給電する導波管開口アンテナであってもよい。この場合、第1の給電構造部16aおよび第2の給電構造部16bは、スロットまたは導波管で実現される。
 図6Aは、放射構造15の別の変形例を示す斜視図である。図6Bは、放射構造15の別の変形例を図6Aの矢印方向からみた様子を示す図である。放射構造15は、図6Aおよび図6Bに示すような、ホーンアンテナで実現することができる。このホーンアンテナは、図6Bに示すように、プローブ給電のホーンアンテナであり、2つのプローブが第1の給電構造部16aおよび第2の給電構造部16bである。図6Bに示すように、第1の給電構造部16aと第2の給電構造部16bはホーンアンテナの中心軸に対して点対称な位置に配置されている。
 開口形状が方形のホーンアンテナを示したが、放射構造15は、開口形状が円形のホーンアンテナであってもよい。また、放射構造15は、スロットまたは導波管で給電するホーンアンテナであってもよい。この場合、第1の給電構造部16aおよび第2の給電構造部16bは、スロットまたは導波管で実現される。
 実施の形態1に係るアレーアンテナ装置において、複数の素子アンテナ2のそれぞれが有する放射構造は、電界放射パターンの位相値が互いに180度異なる一対のアンテナであった。すなわち、素子アンテナ2には、2つのアンテナが互いに独立して配置されているので、素子アンテナ2が占有する面積は、素子アンテナが単一のアンテナで構成される場合よりも大きくなる。このため、複数の素子アンテナ2を配列した1次元アレーまたは2次元アレーでは、隣接する素子アンテナ2同士の間隔が広くなってしまう。
 一般に、DBFアレーアンテナでは、一定のビーム走査範囲内でグレーティングローブが発生しない間隔で素子アンテナを配列する必要があり、通常、動作周波数における波長の0.5~0.8倍程度の間隔で素子アンテナが配列されている。例えば、放射構造が、動作周波数における波長の0.3~0.5倍程度の大きさである場合、2つの放射構造が互いに独立して配置された素子アンテナ2は、上記間隔で配列させることが困難である。
 これに対して、実施の形態2に係るアレーアンテナ装置は、複数の素子アンテナ2Aのそれぞれが有する放射構造15が単一のアンテナであり、その中心に対して点対称な位置に第1の給電構造部16aと第2の給電構造部16bとの接続点を有している。放射構造15が単一のアンテナであるので、素子アンテナ2Aが占有する面積は、素子アンテナ2よりも小さい。
 また、放射構造15上の電流分布または内部の電界分布は、放射構造15が基本モードで動作する場合、一般に、構造の対称性から振幅分布は対称となり、位相分布は左右反転したような分布となる。このため、放射構造15の中心に対して点対称な位置に接続点を有する第1の給電構造部16aおよび第2の給電構造部16bのそれぞれには、放射構造15で受信された信号が、等振幅で逆位相、すなわち、互いに180度位相が異なる信号として伝送される。
 以上のように、実施の形態2に係るアレーアンテナ装置において、放射構造15は、単一のアンテナであり、第1の給電構造部16aおよび第2の給電構造部16bは、単一のアンテナの異なる位置にそれぞれ配置されている。例えば、単一のアンテナが、円形または方形のパッチアンテナである場合に、第1の給電構造部16aおよび第2の給電構造部16bは、パッチアンテナの中心に対して互いに点対称な位置に配置されている。また、単一のアンテナが、導波管開口アンテナまたはホーンアンテナである場合、第1の給電構造部16aおよび第2の給電構造部16bは、導波管開口アンテナまたはホーンアンテナの中心軸に対して点対称な位置に配置されている。
 放射構造15の中心に対して点対称な位置に接続点を有する第1の給電構造部16aおよび第2の給電構造部16bのそれぞれには、放射構造15で受信された信号が、等振幅で逆位相、すなわち互いに180度位相が異なる信号として伝送される。
 このように、スイッチ17によって第1の給電構造部16aを有する放射構造と第2の給電構造部16bを有する放射構造が切り替えられると、素子アンテナ2Aから出力される受信信号は、二位相変調された信号となる。すなわち、低損失なスイッチ17を用いて受信信号に対して二位相変調を施すことができるので、素子アンテナ2Aごとに増幅器7を設けなくても、受信信号電力の低下が抑えられる。これにより、信号対雑音比の劣化を抑制しながら増幅器の数を削減でき、低消費電力化を実現することができる。
 実施の形態2に係るアレーアンテナ装置は、実施の形態1に係るアレーアンテナ装置と同様の効果が得られるとともに、実施の形態1に示した装置構成に比べて素子アンテナの占有面積を小さくできるため、より小さなアレーアンテナ装置を実現できる。また、素子アンテナをより密に配置することが可能であるため、より広角方向にビーム走査が可能なアレーアンテナ装置を実現することができる。
 なお、これまでの説明では、切り替えシーケンスを素子アンテナ2の数と符号長が同じ直交符号で表したが、切り替えシーケンスは、符号長が素子アンテナ2の数よりも大きい直交符号で表してもよく、上記と同様の効果が得られる。さらに、直交符号の代わりに、切り替えシーケンスを、M系列あるいはGold系列といった擬似ランダム符号で表しても、符号分割多重された信号を逆拡散処理によって復調することができる。
 また、これまでの説明では、受信信号に二位相変調を施す場合を示したが、実施の形態2に係るアレーアンテナ装置は、受信信号に4相以上の多相変調を施すように構成されてもよい。例えば、複数の素子アンテナ2Aのそれぞれに、放射電界位相が互いに異なる4つの給電構造部を放射構造15に設けて、スイッチ17で切り替えることで、受信信号に四位相変調を施すことが可能である。このとき、4つの給電構造部と放射構造15との接続点は、放射構造15の中心に対して互いに点対称な位置に配置される。
実施の形態3.
 図7は、実施の形態3に係るアレーアンテナ装置の構成を示すブロック図である。図7において、図1と同一の構成要素には同一の符号を付して説明を省略する。図8は、図7の導波管30を図7のB-B線で切った断面を示す断面矢示図である。図7に示したアレーアンテナ装置は、アレーアンテナ1B、増幅器7、周波数変換器8、局部発振器9、A/D変換器10、シーケンス生成部22、スイッチ制御回路23、デコーダ部24およびビーム形成部25を備える。また、図7に示したアレーアンテナ装置は、図1および図3に示した合成回路として機能する導波管30を備える。
 アレーアンテナ1Bは、導波管30の第1の広壁面31aに複数の素子アンテナ38が一定の間隔で配列されて構成されている。複数の素子アンテナ38のそれぞれは、第1のスロット34、第2のスロット35、第1のスイッチ36および第2のスイッチ37を備える。なお、図7では、導波管30に4つの素子アンテナ38を設けた場合を示したが、導波管30に5以上の素子アンテナ38を設けてもよい。
 導波管30は、互いに対向した一対の第1の広壁面31aおよび第2の広壁面31b、これら広壁面の長手方向の両側に隣接した一対の第1の狭壁面32aおよび第2の狭壁面32b、および、広壁面と狭壁面の両方に隣接した一対の第1の端面33aおよび第2の端面33bを有し、金属で形成された矩形導波管である。導波管30における第1の端面33aおよび第2の端面33bのそれぞれは、導体壁によって短絡された短絡面となっている。
 第1のスロット34および第2のスロット35は、空間を伝搬してきた電磁波を受信する放射構造である。また、第1のスロット34および第2のスロット35は、導波管30が有する第1の広壁面31aおよび第2の広壁面31bのうちの一方である第1の広壁面31aに設けられ、互いに同一の寸法で、導波管30の管軸方向に長くかつ互いに平行な2つの細長い穴である。第1のスロット34および第2のスロット35の長手方向の寸法のそれぞれは、自由空間波長の半波長程度の長さである。
 隣り合った素子アンテナ38と素子アンテナ38において、一方の素子アンテナ38が有する第1のスロット34と、他方の素子アンテナ38が有する第1のスロット34との間隔は、導波管30の動作周波数における管内波長λの2分の1である。同様に、隣り合った一方の素子アンテナ38が有する第2のスロット35と、他方の素子アンテナ38が有する第2のスロット35との間隔は、導波管30の動作周波数における管内波長λの2分の1である。
 また、第1の端面33aに最も近い第1のスロット34および第2のスロット35は、当該スロットの中心から第1の端面33aまでの距離が管内波長λの4分の1である位置に配置されている。同様に、第2の端面33bに最も近い第1のスロット34および第2のスロット35は、当該スロットの中心から第2の端面33bまでの距離が管内波長λの4分の1である位置に配置されている。
 また、第1のスロット34および第2のスロット35は、第1の広壁面31aにおける、導波管30の管軸方向に平行な中心線(例えば、図7のB-B線)を境とした一方の側の位置と他方の側の位置とに設けられる。例えば、第1のスロット34および第2のスロット35は、第1の広壁面31aにおける、導波管30の管軸方向に平行な中心線に関して、互いに対称な位置に配置される。これにより、素子アンテナ38は、いわゆる、定在波励振型の導波管スロットアレーを構成する。
 なお、隣り合った素子アンテナ38同士のスロットの間隔、および、短絡面に最も近いスロットと短絡面との距離を、任意に設定することで、素子アンテナ38は、いわゆる、進行波励振型の導波管スロットとして機能する。
 第1のスイッチ36および第2のスイッチ37は、オン状態とオフ状態が切り替えられるスイッチであり、例えば、PINダイオード、電界効果トランジスタおよびMEMS(Micro Electro Mechanical Systems)を用いて構成された高周波スイッチである。当該高周波スイッチは、一般に1dB以下程度の通過損失であり、二位相変調回路の通過損失よりも2dB程度低い。図7に示すように、第1のスイッチ36は、第1のスロット34の中央部に設けられ、第2のスイッチ37は、第2のスロット35の中央部に設けられている。
 複数の素子アンテナ38のそれぞれにおいて、第1のスイッチ36がオン状態であるとき、第2のスイッチ37はオフ状態となるように同期している。例えば、第1のスイッチ36がオン状態であるとき、第1のスロット34はスロットアンテナとして動作状態となり、このとき、第2のスイッチ37はオフ状態となり、第2のスロット35は非動作状態になる。反対に、第2のスイッチ37がオン状態であるとき、第2のスロット35はスロットアンテナとして動作状態となり、このとき、第1のスイッチ36はオフ状態となり、第1のスロット34は非動作状態になる。
 図8に示すように、給電構造部39は、導波管30の第2の広壁面31bに設けられた導波管給電構造である。給電構造部39は、第2の広壁面31bの中心に設けられた出力端子と、導波管30の内部に挿入された給電プローブ39aとを有し、出力端子は、増幅器7に接続されている。これにより、導波管30は、図1および図3に示した合成回路として機能する。
 なお、給電構造部39は、導波管30の第2の広壁面31bにおける任意の位置に設けてもよい。さらに、給電構造部39は、第2の広壁面31bに設けた導波管T分岐を含む構成であってもよいし、導波管30の短絡面(第1の端面33aと第2の端面33b)側に出力端子を有する構造であってもよい。
 シーケンス生成部22は、放射構造の切り替えシーケンスを示すシーケンス情報を素子アンテナ38ごとに生成する。放射構造の切り替えシーケンスには、例えば、第1のスイッチ36と第2のスイッチ37との切り替えの時系列な順序と切り替え間隔が含まれる。素子アンテナ38ごとに生成されたシーケンス情報は、シーケンス生成部22からスイッチ制御回路23に出力される。
 なお、シーケンス生成部22は、記憶装置に記憶されたシーケンス情報を読み出し、読み出したシーケンス情報をスイッチ制御回路23に出力してもよい。記憶装置は、アレーアンテナ装置が備えるRAMまたはハードディスクといった記憶装置であってもよいが、アレーアンテナ装置からアクセス可能な外部記憶装置であってもよい。
 例えば、シーケンス生成部22は、第1のスイッチ36がオンになって第1のスロット34が高周波信号を受信しかつ第2のスイッチ37がオフになって第2のスロット35が高周波信号を受信できない状態に1を割り当て、第2のスイッチ37がオンになって第2のスロット35が高周波信号を受信しかつ第1のスイッチ36がオフになって第1のスロット34が高周波信号を受信できない状態に-1を割り当てて、[1 -1 1 ・・・1]のような1と-1を要素とした符号列で切り替えシーケンスが表現されたシーケンス情報を生成する。
 スイッチ制御回路23は、シーケンス生成部22によって生成されたシーケンス情報に基づいて、第1のスイッチ36および第2のスイッチ37のオンとオフの切り替えを制御する。例えば、スイッチ制御回路23は、シーケンス生成部22から入力したシーケンス情報が示す切り替えシーケンスに基づいて、第1のスイッチ36および第2のスイッチ37の動作を制御する制御信号を素子アンテナ38ごとに生成する。
 第1のスイッチ36は、スイッチ制御回路23から設定された制御信号に基づいて、オンとオフのいずれかの状態に切り替わる。同様に、第2のスイッチ37は、スイッチ制御回路23から設定された制御信号に基づいて、オンとオフのいずれかの状態に切り替わる。例えば、切り替えシーケンスを符号列[1 -1 -1 1]で表したシーケンス情報に基づいて、第1のスイッチ36および第2のスイッチ37がオンオフすることにより、第1のスロット34、第2のスロット35、第2のスロット35、第1のスロット34の順に、時間Tcごとにスロットアンテナの動作状態が切り替わる。
 第1のスロット34によって受信された高周波信号と第2のスロット35によって受信された高周波信号とは、互いに180度位相が異なる。このため、素子アンテナ38からの出力信号は、第1のスロット34と第2のスロット35の動作状態の切り替えによって二位相変調が施された高周波信号となる。第1のスロット34と第2のスロット35との動作状態の切り替え間隔である時間Tcが、高周波信号(受信信号)が有する情報パルスの継続時間(信号周期に相当する)Tsよりも短い場合、シーケンス情報に基づいて、第1のスイッチ36および第2のスイッチ37が、時間Ts内で、時間Tcごとに第1のスロット34と第2のスロット35との動作状態を切り替え、この切り替えは、時間Tsごとに繰り返し実行される。第1のスロット34と第2のスロット35との動作状態の切り替えによって二位相変調された高周波信号の周波数スペクトルは、第1のスロット34あるいは第2のスロット35によって受信された高周波信号の周波数スペクトラムに比べて広範な周波数帯域幅を有した、いわゆるスペクトル拡散された信号となる。
 デコーダ部24は、シーケンス生成部22によって生成されたシーケンス情報に基づいて、A/D変換器10から入力されたデジタル信号のうちから、複数の素子アンテナ38のそれぞれで受信された信号を分離する。例えば、デコーダ部24は、A/D変換器10から入力した合成信号に対して、シーケンス情報である、1と-1を要素とした符号列を乗算して積分することで、素子アンテナ38の数だけデジタル信号を算出する。切り替えシーケンスは互いに直交する直交符号で表されるため、第1のスイッチ36および第2のスイッチ37に設定された切り替えシーケンスを表す直交符号を合成信号に乗算して積分することで、その第1のスイッチ36および第2のスイッチ37を含む素子アンテナ38で受信された信号成分のみが得られ、その第1のスイッチ36および第2のスイッチ37での切り替えシーケンスとは異なる直交符号を合成信号に乗算して積分しても信号成分は0となる。これは、符号分割多重された信号に対して逆拡散処理を施して復調することに相当する。これにより、合成信号から、複数の素子アンテナ38のそれぞれに受信された信号が分離される。
 ビーム形成部25は、デコーダ部24によって素子アンテナ38ごとに分離された信号を用いて、ビーム信号を形成する。ビーム形成部25によって素子アンテナ38の個数分のビーム信号が形成される。
 また、デコーダ部24およびビーム形成部25は、実施の形態3に係るアレーアンテナ装置とは別の外部装置が備えてもよい。すなわち、実施の形態3に係るアレーアンテナ装置は、デコーダ部24およびビーム形成部25を備えていなくても、信号対雑音比を維持しながら低消費電力化を実現できる。なお、この場合、実施の形態3に係るアレーアンテナ装置は、例えば、上記外部装置に通信接続してデコーダ部24およびビーム形成部25との間で信号をやり取りする。
 シーケンス生成部22、デコーダ部24およびビーム形成部25の機能は、処理回路によって実現される。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPUであってもよい。例えば、処理回路とスイッチ制御回路23とが、ネットワークを介して接続された別々の回路である場合、スイッチ制御回路23は、ネットワークインタフェースを通じて処理回路からシーケンス情報を入力する。
 一般に、誘電体基板を用いて形成されたアンテナおよび信号線路は、通過損失が大きいため、アンテナおよび信号線路において信号強度が低下し、信号対雑音比が劣化する傾向がある。これに対し、実施の形態3に係るアレーアンテナ装置は、アレーアンテナおよび合成回路の信号線路として低損失な導波管30を備えるので、複数の素子アンテナ38の受信信号強度の低下が抑制され、信号対雑音比の劣化を抑制することができる。信号線路における通過損失が低減されるため、高効率なアレーアンテナ装置を実現できる。
 図9は、導波管30の第1の広壁面31aにおける電流分布を示す図である。例えば、導波管30が基本モードで動作している場合、図9に示すように、第1の広壁面31aでは、第1の広壁面31aにおける、導波管30の管軸方向に平行な中心線100から外側に向かって電流が流れる、あるいは、電流が外側から中心線100に向かって流れる電流分布となっている。第1のスロット34および第2のスロット35は、第1の広壁面31aにおける電流の流れを遮る位置に設けられる。これにより、第1のスロット34および第2のスロット35は、空間から到来する高周波信号を導波管30の内部に伝送することができる。
 第1の広壁面31aにおける電流分布は、第1の広壁面31aにおける中心線100に関して対称な分布となっている。このため、第1のスロット34で受信された高周波信号と第2のスロット35で受信された高周波信号は、互いに逆位相、すなわち互いに180度位相の異なる信号として導波管30へ伝送される。
 また、実施の形態3に係るアレーアンテナ装置は、金属のみで構成された導波管の代わりに、下記に示す導波管を備えてもよい。
 図10Aは、実施の形態3における導波管30の変形例を示す斜視図である。図10Bは、実施の形態3における導波管30の変形例を図10AのC-C線で切った断面を示す断面矢示図である。図10Cは、実施の形態3における導波管30の変形例を図10AのD-D線で切った断面を示す断面矢示図である。図10A、図10Bおよび図10Cに示すように、導波管30は、第1の広壁面31aの代わりに誘電体基板40を有している。
 誘電体基板40は、図10Bに示すように、表面に導体面41aを有し、裏面に導体面41bを有する。誘電体基板40には、4つの素子アンテナを有するアレーアンテナ1Cが形成されている。第1のスロット42および第2のスロット43は、1つの素子アンテナを構成するスロット対である。第1のスロット42および第2のスロット43は、誘電体基板面40を貫通して、導体面41aと導体面41bとを電気的に接続するビアである。スロットを設ける面を誘電体基板40で構成したので、金属の第1の広壁面31aよりもスイッチの実装が容易である。
 これまでの説明では、導波管30が矩形導波管である場合を示したが、導波管30は、一対の広壁面の両方またはいずれか一方における管軸方向に平行な中心線を通る金属壁を有したリッジ導波管であってもよい。例えば、当該リッジ導波管は、導波管30の第1の広壁面31aにおいて管軸方向に平行な中心線を通る金属壁を有している。また、当該リッジ導波管は、以下の(1)~(4)に示す特徴のいずれかまたは全てを有していてもよい。特徴(1)として、複数のスロットが、第1の広壁面31aにおける管軸方向に平行な中心線に関して互いに対称な位置に配置されている。特徴(2)として、当該リッジ導波管の端面が短絡されており、上記スロットは、動作周波数における管内波長の2分の1の間隔で第1の広壁面31aに配列されている。特徴(3)として、当該リッジ導波管において、第1の広壁面31aにおいて端面に最も近いスロットは、当該スロットの中心から当該端面までの距離が管内波長の4分の1である位置に配置されている。特徴(4)として、当該リッジ導波管の第1の広壁面31aは、表と裏に導体面41a,41bを有した誘電体基板40で構成されており、スロットは、誘電体基板40を貫通して、導体面41aと導体面41bとを電気的に接続するビアである。導波管30が、前述のように構成されたリッジ導波管であっても、上記と同様の効果が得られる。
 以上のように、実施の形態3に係るアレーアンテナ装置は、合成回路として機能する導波管30を備え、導波管30の第1の広壁面31aには、導波管30の管軸方向に長くかつ平行な第1のスロット34および第2のスロット35が形成されている。第1のスロット34および第2のスロット35は、第1の広壁面31aにおける、管軸方向に平行な中心線100を境とした一方の側の位置と他方の側の位置とに設けられる。第1のスイッチ36は、第1のスロット34の長手方向の中央部に配置され、第2のスイッチ37は、第2のスロット35の長手方向の中央部に配置されている。
 このように、第1のスイッチ36および第2のスイッチ37によって第1のスロット34の動作状態と第2のスロット35の動作状態とを切り替えることで、素子アンテナ38から出力される受信信号は、二位相変調された信号となる。信号位相が互いに180度異なる2つのスイッチとスロットを用いて受信信号に対して二位相変調を施すことができるので、素子アンテナ38ごとに増幅器7を設けなくても、受信信号電力の低下が抑えられる。これにより、信号対雑音比の劣化を抑制しながら増幅器の数を削減でき、低消費電力化を実現することができる。また、実施の形態3に係るアレーアンテナ装置は、低損失な導波管30を用いることにより、高効率なアレーアンテナ装置を実現することができる。
実施の形態4.
 実施の形態1から3では、空間から到来した高周波信号を受信するアレーアンテナ装置を示したが、実施の形態4は、空間へ高周波信号を送信するアレーアンテナ装置について説明する。
 図11は、実施の形態4に係るアレーアンテナ装置の構成を示すブロック図である。図11に示すアレーアンテナ装置は、アレーアンテナ1Dによって電磁波を空間へ送信する。アレーアンテナ1Dには、複数の素子アンテナ2Bが一定の間隔で配列されている。複数の素子アンテナ2Bのそれぞれは、第1の放射構造3a、第2の放射構造3b、第1の給電構造部4a、第2の給電構造部4bおよびスイッチ5Aを備える。
 第1の放射構造3aは、第1の給電構造部4aを有したアンテナであり、第2の放射構造3bは、第2の給電構造部4bを有したアンテナである。第1の給電構造部4aは、第1の放射構造3aから送信する送信信号を伝送する給電構造部であり、第2の給電構造部4bは、第2の放射構造3bから送信する送信信号を伝送する給電構造部である。
 第1の給電構造部4aと第2の給電構造部4bは、放射電界位相が互いに異なる2つの給電構造部であり、例えば、電界放射パターンの位相値が互いに180度異なっている。すなわち、素子アンテナ2Bが有する複数の放射構造は、放射電界位相が互いに異なる複数のアンテナであり、給電構造部は、これらのアンテナのそれぞれに1つずつ設けられている。
 スイッチ5Aは、第1の放射構造3aと第2の放射構造3bを切り替えるものであり、SPDT構造のスイッチである。SPDT構造のスイッチ5Aは、第1の給電構造部4aが接続された第1の出力端子、第2の給電構造部4bが接続された第2の出力端子および両者に共通の入力端子を有する。
 例えば、スイッチ5Aによって第1の放射構造3aに切り替えられると、入力端子からスイッチ5Aに入力された送信信号は、第1の出力端子から第1の給電構造部4aに出力され、第1の給電構造部4aから第1の放射構造3aへ伝送されて、第1の放射構造3aから空間へ送信される。一方、スイッチ5Aによって第2の放射構造3bに切り替えられると、入力端子からスイッチ5Aに入力された送信信号は、第2の出力端子から第2の給電構造部4bに出力され、第2の給電構造部4bから第2の放射構造3bへ伝送されて、第2の放射構造3bから空間へ送信される。
 図11に示すアレーアンテナ装置は、分配回路50、増幅器51、周波数変換器52、局部発振器53、D/A変換器54、シーケンス生成部55、スイッチ制御回路56、エンコーダ部57および送信ビーム形成部58を、さらに備える。分配回路50は、増幅器51から入力した送信信号を複数の素子アンテナ2Bのそれぞれに分配する。増幅器51は、周波数変換器52によって周波数を高周波数帯に変換された送信信号の電力を、予め設定された利得で増幅する。
 周波数変換器52は、局部発振器53から入力した局部発振信号を用いて、D/A変換器54によってアナログ信号に増幅された送信信号の周波数を高周波数帯に周波数変換する。局部発振器53は、周波数変換器52による周波数変換に用いられる、予め設定された周波数の局部発振信号を発生する。D/A変換器54は、エンコーダ部57から入力した信号をアナログ信号に変換する変換器である。
 シーケンス生成部55は、第1の放射構造3aと第2の放射構造3bとの切り替えシーケンスを示すシーケンス情報を、素子アンテナ2Bごとに生成する。放射構造の切り替えシーケンスには、放射構造の切り替えの時系列な順序と切り替え間隔が含まれる。素子アンテナ2Bごとに生成されたシーケンス情報は、シーケンス生成部55からスイッチ制御回路56に出力される。
 なお、シーケンス生成部55は、記憶装置に記憶されたシーケンス情報を読み出し、読み出したシーケンス情報をスイッチ制御回路56に出力してもよい。記憶装置は、アレーアンテナ装置が備えるRAMまたはハードディスクといった記憶装置であってもよいが、アレーアンテナ装置からアクセス可能な外部記憶装置であってもよい。
 スイッチ制御回路56は、シーケンス生成部55によって生成されたシーケンス情報に基づいて、スイッチ5Aによる第1の放射構造3aと第2の放射構造3bとの切り替えを制御する。例えば、スイッチ制御回路56は、シーケンス生成部55から入力したシーケンス情報が示す切り替えシーケンスに基づいて、スイッチ5Aの動作を制御する制御信号を、素子アンテナ2Bごとに生成する。スイッチ5Aは、スイッチ制御回路56から入力した制御信号に基づいて、第1の放射構造3aおよび第2の放射構造3bのいずれかに切り替える。
 エンコーダ部57は、シーケンス生成部55によって生成されたシーケンス情報および送信ビーム形成部58によって形成された複数の素子信号を用いて送信信号を生成して、生成した送信信号をD/A変換器54に出力する。送信ビーム形成部58は、複数の素子アンテナ2Bのそれぞれに対応した複数の素子信号を形成する。例えば、送信ビーム形成部58は、送信すべき信号を素子アンテナ2Bごとに振幅および位相を調整することで、素子アンテナ2Bの個数分の素子信号を形成する。
 シーケンス生成部55、エンコーダ部57および送信ビーム形成部58の機能は、処理回路によって実現される。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPUであってもよい。例えば、処理回路とスイッチ制御回路56とが、ネットワークを介して接続された別々の回路である場合、スイッチ制御回路56は、ネットワークインタフェースを通じて処理回路からシーケンス情報を入力する。
 また、エンコーダ部57および送信ビーム形成部58は、実施の形態4に係るアレーアンテナ装置とは別の外部装置が備えてもよい。すなわち、実施の形態4に係るアレーアンテナ装置は、エンコーダ部57および送信ビーム形成部58を備えていなくても、信号対雑音比を維持しながら低消費電力化を実現できる。この場合、実施の形態4に係るアレーアンテナ装置は、例えば、外部装置に通信接続して、エンコーダ部57および送信ビーム形成部58との間で信号をやり取りする。
 次に動作について説明する。
 図12は、実施の形態4に係るアレーアンテナ装置の動作を示すフローチャートである。まず、送信ビーム形成部58が、各素子アンテナ2Bに対応した素子信号を形成する(ステップST1a)。送信ビーム形成部58によって素子アンテナ2Bごとに形成された素子信号は、エンコーダ部57に出力される。
 一方、シーケンス生成部55は、第1の放射構造3aと第2の放射構造3bの切り替えシーケンスを示すシーケンス情報を素子アンテナ2Bごとに生成する(ステップST2a)。例えば、シーケンス生成部55は、スイッチ5Aによって第1の放射構造3aに切り替えられた状態に1を割り当て、スイッチ5Aによって第2の放射構造3bに切り替えられた状態に-1を割り当てて、[1 -1 1 ・・・1]のように1と-1を要素とした符号列で切り替えシーケンスが表現されたシーケンス情報を生成する。実施の形態4では、複数の素子アンテナ2Bのそれぞれに対する切り替えシーケンスを、互いに直交した符号列である直交符号で表す。
 続いて、エンコーダ部57が、シーケンス情報と素子信号を用いて送信信号を生成する(ステップST3a)。例えば、エンコーダ部57は、送信ビーム形成部58から入力した素子アンテナ2Bごとの素子信号に対して、シーケンス情報である、1と-1を要素とした符号列を乗算し、これらの乗算値をさらに合成演算する。切り替えシーケンスを示す符号列は±1の値をとるため、素子信号は二位相変調された信号になる。放射構造の切り替え間隔である時間Tcが、高周波信号(送信信号)が有する情報パルスの継続時間(信号周期)Tsよりも短い場合、素子信号に符号列を乗算した信号は、元の素子信号をスペクトル拡散した信号となる。これらの乗算結果をさらに合成演算することで、合成演算結果の信号は、いわゆる符号分割多重された送信信号となる。
 次に、D/A変換器54は、エンコーダ部57によって生成された送信信号をアナログ信号に変換し、周波数変換器52が、D/A変換器54によってアナログ信号に変換された送信信号を高周波数帯に周波数変換し、増幅器51が、周波数変換器52によって周波数変換された信号の電力を増幅する(ステップST4a)。増幅器51によって増幅された送信信号は、分配回路50に出力される。
 分配回路50は、増幅器51から入力した送信信号を、アレーアンテナ1Dを構成する複数の素子アンテナ2Bのそれぞれに分配する(ステップST5a)。
 次に、スイッチ制御回路56は、シーケンス生成部55によって生成されたシーケンス情報に基づいて、素子アンテナ2Bごとのスイッチ5Aを制御して、複数の素子アンテナ2Bのそれぞれが有する第1の放射構造3aと第2の放射構造3bとを順次切り替える(ステップST6a)。
 この後、各素子アンテナ2Bから空間に送信信号が送信される(ステップST7a)。スイッチ5Aによって第1の放射構造3aに切り替えられた場合、分配回路50によってスイッチ5Aに分配された送信信号は、第1の給電構造部4aを介して第1の放射構造3aに伝送され、第1の放射構造3aから空間へ放射される。スイッチ5Aによって第2の放射構造3bに切り替えられた場合は、分配回路50によってスイッチ5Aに分配された送信信号は、第2の給電構造部4bを介して第2の放射構造3bに伝送され、第2の放射構造3bから空間へ放射される。
 例えば、切り替えシーケンスを符号列[1 -1 -1 1]で表したシーケンス情報に基づいて、スイッチ5Aは、第1の放射構造3a、第2の放射構造3b、第2の放射構造3b、第1の放射構造3aの順に、時間Tcごとに切り替えを行う。スイッチ5Aから第1の給電構造部4aに伝送されて第1の放射構造3aから放射された高周波信号と、スイッチ5Aから第2の給電構造部4bに伝送されて第2の放射構造3bから放射された高周波信号とは、互いに180度位相が異なる。このため、エンコーダ部57によって二位相変調されてスイッチ5Aに入力された信号は、第1の放射構造3aまたは第2の放射構造3bから空間に放射されて復調される。
 シーケンス情報は直交符号であるので、エンコーダ部57が、素子アンテナ2Bに対応した送信信号の生成に用いた切り替えシーケンスと同じ順序で放射構造の切り替えが行われた信号成分のみが送信され、エンコーダ部57が、その素子アンテナ2Bに対応した送信信号の生成に用いた切り替えシーケンスとは異なる順序で放射構造の切り替えが行われた信号成分は0となる。これは、符号分割多重された信号に逆拡散処理を施して復調することに相当する。これにより、複数の素子アンテナ2Bからの各信号を分離して送信することができる。
 これまでの説明では、第1の給電構造部4aを有した第1の放射構造3aと第2の給電構造部4bを有した第2の放射構造3bとを備えた素子アンテナ2Bを示したが、実施の形態4に係るアレーアンテナ装置は、これに限定されるものではない。
 例えば、素子アンテナ2Bが、第1の給電構造部4aを有した第1の放射構造3aと、第2の給電構造部4bを有した第2の放射構造3bとの代わりに、実施の形態2で示した放射構造15、第1の給電構造部16aおよび第2の給電構造部16bを備えてもよい。放射構造15は、図4Aおよび図4Bに示したパッチアンテナおよびその変形例であってもよいし、図5Aおよび図5Bに示した導波管開口アンテナおよびその変形例であってもよいし、図6Aおよび図6Bに示したホーンアンテナおよびその変形例であってもよい。
 また、実施の形態4に係るアレーアンテナ装置は、実施の形態3で示した導波管30を分配回路50として備えてもよい。例えば、図7に示した導波管30の第1のスロット34および第2のスロット35を素子アンテナ2Bとし、図8に示した給電構造部39を増幅器51に接続することにより、導波管30は、分配回路50として機能する。さらに、実施の形態4に係るアレーアンテナ装置は、図7に示した導波管30の代わりに、図10A、図10Bおよび図10Cに示した導波管の変形例を分配回路として備えてもよいし、リッジ導波管を備えてもよい。例えば、当該リッジ導波管は、導波管30の第1の広壁面31aにおいて管軸方向に平行な中心線を通る金属壁を有している。また、当該リッジ導波管は、以下の(1)~(4)に示す特徴のいずれかまたは全てを有していてもよい。特徴(1)として、複数のスロットが、第1の広壁面31aにおける管軸方向に平行な中心線に関して互いに対称な位置に配置されている。特徴(2)として、当該リッジ導波管の端面が短絡されており、上記スロットは、動作周波数における管内波長の2分の1の間隔で第1の広壁面31aに配列されている。特徴(3)として、当該リッジ導波管において、第1の広壁面31aにおいて端面に最も近いスロットは、当該スロットの中心から当該端面までの距離が管内波長の4分の1である位置に配置されている。特徴(4)として、当該リッジ導波管の第1の広壁面31aは、表と裏に導体面41a,41bを有した誘電体基板40で構成されており、スロットは、誘電体基板40を貫通して、導体面41aと導体面41bとを電気的に接続するビアである。
 以上のように、実施の形態4に係るアレーアンテナ装置において、複数の素子アンテナ2Bのそれぞれが、第1の放射構造3a、第2の放射構造3b、および第1の放射構造3aと第2の放射構造3bとを切り替えるスイッチ5Aを有し、スイッチ5Aが切り替えた放射構造から送信信号を放射する。放射電界位相が互いに異なる第1の放射構造3aと第2の放射構造3bとの切り替えによって、素子アンテナ2Bから送信される送信信号は、二位相変調された信号となる。低損失なスイッチ5Aを用いて送信信号に二位相変調を施すことができるので、素子アンテナ2Bごとに増幅器7を設けなくても、送信信号電力の低下が抑えられる。これにより、信号対雑音比を維持しながら増幅器の数を削減することができ、低消費電力化を実現できる。すなわち、実施の形態4に係るアレーアンテナ装置は、従来のDBFアレーアンテナと同等のビーム形成機能を有し、さらに従来のDBFアレーアンテナに比べて信号の多重数分だけD/A変換器および増幅器の数を削減できる。このため、低コスト、低消費電力、小型かつ軽量なアレーアンテナ装置を実現することが可能である。
 なお、切り替えシーケンスは、素子アンテナ2Bの数と符号長が同じ直交符号で表してもよいし、符号長が素子アンテナ2Bの数よりも大きい直交符号で表してもよい。いずれであっても、上記と同様の効果が得られる。さらに、直交符号の代わりに、切り替えシーケンスを、M系列あるいはGold系列といった擬似ランダム符号で表しても、符号分割多重された信号を逆拡散処理によって復調することができる。
 また、これまでの説明では、複数の素子アンテナ2Bのそれぞれに対応する送信信号に対して二位相変調を施す場合を示したが、実施の形態4に係るアレーアンテナ装置は、送信信号に4相以上の多相変調を施してもよい。例えば、エンコーダ部57が、複数の素子アンテナ2Bのそれぞれに対応する送信信号に対して四位相変調を施し、複数の素子アンテナ2Bのそれぞれに、放射電界位相が互いに異なる4つの放射構造を設けて、スイッチ5Aによって放射構造を切り替えて送信信号を送信してもよい。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本発明に係るアレーアンテナ装置は、低消費電力化を実現できるので、無線通信またはレーダに利用可能である。
 1,1A,1B,1C,1D アレーアンテナ、2,2A,2B,38 素子アンテナ、3a 第1の放射構造、3b 第2の放射構造、4a,16a 第1の給電構造部、4b,16b 第2の給電構造部、5,5A,17 スイッチ、6 合成回路、7,51 増幅器、8,52 周波数変換器、9,53 局部発振器、10 A/D変換器、11,18,22,55 シーケンス生成部、12,19,23,56 スイッチ制御回路、13,20,24 デコーダ部、14,21,25 ビーム形成部、15 放射構造、30 導波管、31a 第1の広壁面、31b 第2の広壁面、32a 第1の狭壁面、32b 第2の狭壁面、33a 第1の端面、33b 第2の端面、34 第1のスロット、35 第2のスロット、36 第1のスイッチ、37 第2のスイッチ、39 給電構造部、39a 給電プローブ、40 誘電体基板、41a,41b 導体面、42 第1のスロット、43 第2のスロット、50 分配回路、54 D/A変換器、57 エンコーダ部、58 送信ビーム形成部、100 中心線。

Claims (20)

  1.  放射電界位相が互いに異なる複数の放射構造と、前記放射構造を切り替えるスイッチとを有し、前記スイッチによって切り替えられた前記放射構造で受信された受信信号を出力する複数の素子アンテナが配列されたアレーアンテナと、
     前記放射構造の切り替えシーケンスを示すシーケンス情報を、前記素子アンテナごとに生成するシーケンス生成部と、
     前記シーケンス生成部によって生成されたシーケンス情報に基づいて、前記スイッチによる前記放射構造の切り替えを制御するスイッチ制御回路と、
     複数の前記素子アンテナから出力された信号を合成する合成回路と、
     前記合成回路によって合成された信号を増幅する増幅器と、
     前記増幅器によって増幅された信号を周波数変換する周波数変換器と、
     前記周波数変換器によって周波数変換された信号をデジタル信号に変換する変換器と、
     を備えたことを特徴とするアレーアンテナ装置。
  2.  前記シーケンス生成部によって生成されたシーケンス情報に基づいて、前記変換器から入力したデジタル信号から、複数の前記素子アンテナのそれぞれで受信された信号を分離するデコーダ部と、
     前記デコーダ部によって分離された前記素子アンテナごとの信号を用いて、ビーム信号を形成するビーム形成部と、
     を備えたことを特徴とする請求項1記載のアレーアンテナ装置。
  3.  放射電界位相が互いに異なる複数の放射構造と、前記放射構造を切り替えるスイッチとを有し、前記スイッチによって切り替えられた前記放射構造から送信信号を送信する複数の素子アンテナが配列されたアレーアンテナと、
     前記放射構造の切り替えシーケンスを示すシーケンス情報を、前記素子アンテナごとに生成するシーケンス生成部と、
     前記シーケンス生成部によって生成されたシーケンス情報に基づいて、前記スイッチによる前記放射構造の切り替えを制御するスイッチ制御回路と、
     送信信号をアナログ信号に変換する変換器と、
     前記変換器によってアナログ信号に変換された送信信号を周波数変換する周波数変換器と、
     前記周波数変換器によって周波数変換された送信信号を増幅する増幅器と、
     前記増幅器によって増幅された送信信号を、複数の前記素子アンテナのそれぞれに分配する分配回路と、
     を備えたことを特徴とするアレーアンテナ装置。
  4.  複数の前記素子アンテナのそれぞれに対応した複数の素子信号を形成する送信ビーム形成部と、
     前記シーケンス生成部によって生成されたシーケンス情報および前記送信ビーム形成部によって形成された複数の素子信号を用いて送信信号を生成し、生成した送信信号を前記変換器に出力するエンコーダ部と、
     を備えたことを特徴とする請求項3記載のアレーアンテナ装置。
  5.  前記シーケンス生成部によって生成されるシーケンス情報は、直交符号、M系列およびGold系列のうちのいずれかの符号列で表され、
     前記放射構造の切り替え間隔は、受信信号の情報パルスの継続時間よりも短いこと
     を特徴とする請求項1または請求項2記載のアレーアンテナ装置。
  6.  前記シーケンス生成部によって生成されるシーケンス情報は、直交符号、M系列およびGold系列のうちのいずれかの符号列で表され、
     前記放射構造の切り替え間隔は、送信信号の情報パルスの継続時間よりも短いこと
     を特徴とする請求項3または請求項4記載のアレーアンテナ装置。
  7.  複数の前記放射構造は、2つの前記放射構造であり、
     2つの前記放射構造の放射電界位相の差は、180度であること
     を特徴とする請求項1から請求項6のいずれか1項記載のアレーアンテナ装置。
  8.  複数の前記放射構造は、複数のアンテナであり、
     複数の前記アンテナのそれぞれは、放射電界位相が互いに異なる給電構造部を1つずつ有すること
     を特徴とする請求項1から請求項6のいずれか1項記載のアレーアンテナ装置。
  9.  複数の前記放射構造は、単一のアンテナで構成され、
     単一の前記アンテナは、放射電界位相が互いに異なる複数の給電構造部をそれぞれ異なる位置に有すること
     を特徴とする請求項1から請求項6のいずれか1項記載のアレーアンテナ装置。
  10.  複数の前記放射構造は、放射電界位相が互いに異なる複数のアンテナであり、
     複数の前記アンテナのうち、前記スイッチによって切り替えられた前記アンテナが動作状態となり、前記スイッチによって切り替えられなかった前記アンテナは非動作状態となること
     を特徴とする請求項1、請求項2または請求項5のいずれか1項記載のアレーアンテナ装置。
  11.  複数の前記放射構造は、放射電界位相が互いに異なる複数のアンテナであり、
     複数の前記アンテナのうち、前記スイッチによって切り替えられた前記アンテナが動作状態となり、前記スイッチによって切り替えられなかった前記アンテナは非動作状態となること
     を特徴とする請求項3、請求項4または請求項6のいずれか1項記載のアレーアンテナ装置。
  12.  前記合成回路として機能する、互いに対向した一対の広壁面と、前記広壁面の長手方向の両側に隣接した一対の狭壁面と、一対の前記広壁面および一対の前記狭壁面の両方に隣接した一対の端面とを有した導波管を備え、
     複数の前記アンテナは、一対の前記広壁面のうちの一方に設けられ、前記導波管の管軸方向に長くかつ平行な複数のスロットであり、
     複数の前記スロットは、前記広壁面における、前記管軸方向に平行な中心線を境とした一方の側の位置と他方の側の位置とに設けられ、
     前記スイッチは、前記スロットの長手方向の中央部に配置されていること
     を特徴とする請求項10記載のアレーアンテナ装置。
  13.  前記分配回路として機能する、互いに対向した一対の広壁面と、前記広壁面の長手方向の両側に隣接した一対の狭壁面と、一対の前記広壁面および一対の前記狭壁面の両方に隣接した一対の端面とを有した導波管を備え、
     複数の前記アンテナは、一対の前記広壁面のうちの一方に設けられ、前記導波管の管軸方向に長くかつ平行な複数のスロットであり、
     複数の前記スロットは、前記広壁面における、前記管軸方向に平行な中心線を境とした一方の側の位置と他方の側の位置とに設けられ、
     前記スイッチは、前記スロットの長手方向の中央部に配置されていること
     を特徴とする請求項11記載のアレーアンテナ装置。
  14.  複数の前記スロットは、前記広壁面における、前記管軸方向に平行な中心線に関して、互いに対称な位置に配置されていること
     を特徴とする請求項12または請求項13記載のアレーアンテナ装置。
  15.  前記導波管は、前記端面が短絡されており、
     前記スロットは、前記導波管の動作周波数における管内波長の2分の1の間隔で、前記広壁面に配列され、
     前記広壁面において前記端面に最も近い前記スロットは、当該スロットの中心から当該端面までの距離が前記管内波長の4分の1である位置に配置されていること
     を特徴とする請求項12または請求項13記載のアレーアンテナ装置。
  16.  前記スロットを設ける前記広壁面は、表と裏に導体面を有した誘電体基板で構成され、
     前記スロットは、前記誘電体基板を貫通して、表と裏の導体面を電気的に接続するビアであること
     を特徴とする請求項12または請求項13記載のアレーアンテナ装置。
  17.  前記導波管は、一対の前記広壁面の両方またはいずれか一方における前記管軸方向に平行な中心線を通る金属壁を有したリッジ導波管であること
     を特徴とする請求項12または請求項13記載のアレーアンテナ装置。
  18.  前記導波管は、一対の前記広壁面の両方またはいずれか一方における、前記管軸方向に平行な中心線を通る金属壁を有したリッジ導波管であり、
     複数の前記スロットは、前記広壁面における、前記管軸方向に平行な中心線に関して、互いに対称な位置に配置され、
     前記リッジ導波管は、前記端面が短絡されており、
     前記スロットは、前記導波管の動作周波数における管内波長の2分の1の間隔で、前記広壁面に配列され、
     前記広壁面において前記端面に最も近い前記スロットは、当該スロットの中心から当該端面までの距離が前記管内波長の4分の1である位置に配置されており、
     前記スロットを設ける前記広壁面は、表と裏に導体面を有した誘電体基板で構成され、
     前記スロットは、前記誘電体基板を貫通して、表と裏の導体面を電気的に接続するビアであること
     を特徴とする請求項12または請求項13記載のアレーアンテナ装置。
  19.  単一の前記アンテナは、円形または方形のパッチアンテナであり、
     複数の前記給電構造部のそれぞれは、前記パッチアンテナの中心に対して互いに点対称な位置に配置されていること
     を特徴とする請求項9記載のアレーアンテナ装置。
  20.  単一の前記アンテナは、導波管開口アンテナまたはホーンアンテナであり、
     複数の前記給電構造部のそれぞれは、前記導波管開口アンテナまたは前記ホーンアンテナの中心軸に対して点対称な位置に配置されていること
     を特徴とする請求項9記載のアレーアンテナ装置。
PCT/JP2019/000272 2019-01-09 2019-01-09 アレーアンテナ装置 WO2020144750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/000272 WO2020144750A1 (ja) 2019-01-09 2019-01-09 アレーアンテナ装置
JP2019526622A JP6602515B1 (ja) 2019-01-09 2019-01-09 アレーアンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000272 WO2020144750A1 (ja) 2019-01-09 2019-01-09 アレーアンテナ装置

Publications (1)

Publication Number Publication Date
WO2020144750A1 true WO2020144750A1 (ja) 2020-07-16

Family

ID=68462306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000272 WO2020144750A1 (ja) 2019-01-09 2019-01-09 アレーアンテナ装置

Country Status (2)

Country Link
JP (1) JP6602515B1 (ja)
WO (1) WO2020144750A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514034A (ja) * 1991-06-27 1993-01-22 Nissan Motor Co Ltd 偏波発生器
WO2006112279A1 (ja) * 2005-04-13 2006-10-26 Matsushita Electric Industrial Co., Ltd. アダプティブアンテナ装置及び無線通信装置
JP2011239293A (ja) * 2010-05-12 2011-11-24 Advanced Telecommunication Research Institute International アンテナ装置およびそれを備えた受信機
US20150145740A1 (en) * 2013-11-26 2015-05-28 Lsi Corporation Integrated Frequency Multiplier and Slot Antenna
JP2018004538A (ja) * 2016-07-06 2018-01-11 株式会社東芝 電波誘導装置と電波誘導方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514034A (ja) * 1991-06-27 1993-01-22 Nissan Motor Co Ltd 偏波発生器
WO2006112279A1 (ja) * 2005-04-13 2006-10-26 Matsushita Electric Industrial Co., Ltd. アダプティブアンテナ装置及び無線通信装置
JP2011239293A (ja) * 2010-05-12 2011-11-24 Advanced Telecommunication Research Institute International アンテナ装置およびそれを備えた受信機
US20150145740A1 (en) * 2013-11-26 2015-05-28 Lsi Corporation Integrated Frequency Multiplier and Slot Antenna
JP2018004538A (ja) * 2016-07-06 2018-01-11 株式会社東芝 電波誘導装置と電波誘導方法

Also Published As

Publication number Publication date
JP6602515B1 (ja) 2019-11-06
JPWO2020144750A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
AU2019426474B2 (en) Antenna device and radar device
US10979117B2 (en) Method, system and apparatus for beam forming in a radio frequency transceiver with reduced complexity
JP4379541B2 (ja) アンテナ装置、アレイアンテナ、マルチセクタアンテナ、および高周波送受波装置
US6961026B2 (en) Adaptive antenna unit and terminal equipment
JP5496107B2 (ja) フェーズドアレイアンテナの正確な自動校正
US7352325B1 (en) Phase shifting and combining architecture for phased arrays
JPH11127021A (ja) マルチビームフェーズドアレイアンテナシステム
CN108352607B (zh) 相控阵天线
US8089415B1 (en) Multiband radar feed system and method
JP7195006B2 (ja) ミリ波誘電体導波路によって実現された大口径のスケーラブルなミリ波アレイ
JP3374834B2 (ja) フェーズドアレーレーダのモニタシステム
WO2020144750A1 (ja) アレーアンテナ装置
JP2004112700A (ja) 車載ミリ波レーダアンテナ
KR102235152B1 (ko) Rf 밀리미터파 대역의 신호 크기 및 위상을 캘리브레이션하기 위한 다중 안테나 시스템
US20030095073A1 (en) Switching device for apparatuses for receiving and/or transmitting electromagnetic waves
Jokanovic et al. Advanced antennas for next generation wireless access
EP4167490A1 (en) Analog beamformer used for array antenna and operating method thereof
JP6502218B2 (ja) 送受信モジュールおよびアクティブフェーズドアレーアンテナ
Holzman A different perspective on taper efficiency for array antennas
JP2006025412A (ja) アンテナ装置
JP2003152422A (ja) アレイアンテナ装置
Fang et al. 1-Dimensional Wide Scanning Gap Waveguide Based Slot Array Antenna using Decoupling Technique for 100 GHz Applications
US12040545B2 (en) Multi-function scalable antenna array
JP2005236590A (ja) アンテナ装置及び該アンテナ装置を備えた移動体通信装置
JP6578603B2 (ja) 電磁界発生装置及び電磁界発生方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526622

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908175

Country of ref document: EP

Kind code of ref document: A1