WO2020143809A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020143809A1
WO2020143809A1 PCT/CN2020/071543 CN2020071543W WO2020143809A1 WO 2020143809 A1 WO2020143809 A1 WO 2020143809A1 CN 2020071543 W CN2020071543 W CN 2020071543W WO 2020143809 A1 WO2020143809 A1 WO 2020143809A1
Authority
WO
WIPO (PCT)
Prior art keywords
time period
sleep
terminal device
information
pdcch
Prior art date
Application number
PCT/CN2020/071543
Other languages
English (en)
French (fr)
Inventor
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738619.4A priority Critical patent/EP3905794A4/en
Publication of WO2020143809A1 publication Critical patent/WO2020143809A1/zh
Priority to US17/371,654 priority patent/US20210345248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • the terminal device monitors the physical downlink control channel (physical downlink control channel, PDCCH), which can be used to indicate the time-frequency resources of the physical downlink shared channel (physical downlink shared channel, PDSCH), and so on.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • GTS Go-To-Sleep
  • the present application provides a communication method and device to reduce the delay of certain data scheduling while saving power consumption in a terminal device.
  • a communication method is provided.
  • the terminal device sends the first information to the network device during the sleep time period.
  • the first information may be a scheduling request or a negative response NACK.
  • the terminal device monitors the physical downlink control channel PDCCH during the first time period within the sleep time period.
  • the terminal device in the sleep state may send the first information.
  • a communication method in a second aspect, sends sleep instruction information to the terminal device.
  • the sleep indication information may instruct the terminal device to enter a sleep state.
  • the network device receives the first information from the terminal device.
  • the network device further sends the first physical downlink control channel PDCCH corresponding to the first information to the terminal device.
  • the terminal device in the sleep state can enter the awake state when it needs to send the scheduling request or NACK, and can receive the physical downlink control channel scheduling resources for the scheduling request or NACK within the sleep time period, without It is necessary to wait for the end of the sleep time period to receive the physical downlink control channel, thereby realizing the physical downlink control corresponding to the scheduling request corresponding to the physical downlink control channel corresponding to the scheduling request or the downlink retransmission data corresponding to the NACK while saving the power consumption of the terminal device
  • the channel is received as early as possible, reducing the delay of the physical downlink control channel.
  • the first time period may be: a time period from the next symbol of the last symbol occupied by the first information to the end of the sleep time period; or from the first information The time slot starting from the next time slot to the end of the sleep time period; or from the next symbol of the last symbol occupied by the first information to the sleep time period, all The time period when the terminal device detects the first PDCCH from the network device; or from the next time slot of the time slot occupied by the first information, to the time period during which the The time period of the first PDCCH of the network device.
  • the terminal device after sending the first message, the end of the entire sleep time period, the terminal device enters the awake state, and no longer enters the sleep state, which can ensure that data scheduling will not be delayed; or after sending the first message Afterwards, if the data scheduling instruction from the network device is received during the sleep time period, it will continue to enter the sleep state to save power consumption of the terminal device.
  • the first information may be NACK
  • the first time period may be a time period from the end of the third time period to the end of the sleep time period, where the third time period
  • the duration of the third time period is semi-statically configured by radio resource control RRC signaling, and each downlink HARQ process may have its own corresponding third Time period timer.
  • a possible name for the third time period is HARQ round trip time.
  • the first information may be a scheduling request
  • the first time period may be from the end of the fourth time period to within the sleep time period
  • the terminal device detects that the The time period of the first PDCCH of the network device, wherein the fourth time period is a time period starting from the end of the last symbol for sending the scheduling request, and the duration of the fourth time period is signaled by RRC Semi-statically configured.
  • a possible name for the fourth time period is the round-trip time of the scheduling request.
  • the first information may be the NACK, and the NACK corresponds to the HARQ process of the first hybrid automatic repeat request.
  • the first time period may be: the time period from the start of the downlink retransmission timer to the end of the sleep time period; or the time period of the downlink retransmission timer; or the time from the start of the downlink retransmission timer, to The time period during which the first PDCCH from the network device is detected.
  • the first time period starts from the start of the downlink retransmission timer and ends at the sleep time period.
  • the terminal device enters the awake state and no longer enters the sleep state. Ensure that the data scheduling will not be delayed; or when the terminal device is configured for discontinuous reception, the first time period starts from the downlink retransmission timer, if the data scheduling from the network device is received during the sleep time period Instruct or stop the downlink retransmission timer to continue to sleep to save power consumption of the terminal device.
  • the first information may be the NACK, where the NACK corresponds to a first HARQ process, and the first PDCCH carries a retransmission scheduling indication of the first HARQ process.
  • the method further includes: the terminal device receives a second PDCCH for scheduling a physical downlink shared channel PDSCH, where the PDSCH corresponds to the first HARQ process.
  • the sending of the first information by the terminal device to the network device includes: in the case where the terminal device fails to decode the PDSCH, the terminal device sends the NACK to the network device.
  • the terminal device wakes up in time and sends a NACK to the network device, ensuring timely scheduling.
  • the terminal device is in the sleep state for a second period of time before the downlink retransmission timer starts to count, the second period of time is a period of time for a downlink HARQ round-trip time timer, the The downlink retransmission timer and the downlink HARQ round-trip time timer correspond to the first HARQ process.
  • the terminal device is in a sleep state for a second period before the downlink retransmission timer starts to count, and power consumption of the terminal device can be saved as much as possible.
  • the sleep time period is greater than or equal to a threshold.
  • the above solution is implemented when the sleep time period is greater than or equal to the threshold. For a larger sleep time period, frequent sending of the sleep indication information can be avoided to save the resource overhead of sending the sleep indication information, but the scheduling delay caused by the larger sleep time period is longer.
  • the above solution avoids the influence of longer scheduling delay on scheduling request and downlink retransmission.
  • the method before the terminal device sends the first information to the network device during the sleep period, the method further includes: the terminal device receives sleep indication information from the network device, and the sleep indication information is used To instruct the terminal device to enter a sleep state.
  • the terminal device when it does not perform data scheduling, it enters a sleep state, which can save power consumption of the terminal device.
  • the method further includes the terminal device starting a sleep timer after receiving the instruction to enter sleep from the network device.
  • the time duration of the sleep timer may be equal to the sleep time period.
  • a timer is used to count the sleep time period.
  • the method further includes: the terminal device sends first information to the network device and turns off the sleep timer.
  • the sleep timer is turned off, and the terminal device enters the awake state.
  • the terminal device if the end time of the first time period is before the end time of the sleep time period, the terminal device from the end time of the first time period to the end time of the sleep time period Is sleeping.
  • the terminal device when the terminal device does not perform data scheduling during the sleep time period, the terminal device enters the sleep state, which can save power consumption of the terminal device.
  • the network device sending the first PDCCH corresponding to the first information to the terminal device includes: the network device sending the first PDCCH to the terminal device during the sleep period, Alternatively, the network device sends the first PDCCH to the terminal device after the sleep time period.
  • the first information is the NACK
  • the NACK corresponds to a first HARQ process
  • the first PDCCH carries a retransmission scheduling indication of the first HARQ process.
  • the method before the network device receives the first information from the terminal device, the method further includes: the network device sending a second PDCCH for scheduling PDSCH to the terminal device.
  • the PDSCH corresponds to the first HARQ process.
  • the receiving of the first information from the terminal device by the network device includes: if the terminal device fails to decode the PDSCH, the network device receives the NACK.
  • a communication device which can implement the communication method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device may be a chip (such as a communication chip) or a terminal device.
  • the above method can be implemented by software, hardware, or executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform the corresponding function in the above communication method.
  • the memory is used for coupling with a processor, which stores necessary programs (instructions) and/or data of the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit or module that performs the corresponding action in the above method.
  • the device includes:
  • the transceiver unit is configured to send the first information to the network device during the sleep time period, where the first information is a scheduling request or a negative response NACK;
  • the processing unit is configured to monitor the physical downlink control channel PDCCH during the first time period of the sleep time period after the transceiver unit sends the first information.
  • a processor and a transceiver are included.
  • the processor is coupled to the transceiver.
  • the processor is used to execute a computer program or instruction to control the transceiver to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver may be a transceiver, a transceiver circuit or an input-output interface.
  • the transceiver is a transceiver circuit or an input-output interface.
  • the structure of the communication device includes a processor; the processor is configured to support the device to perform the corresponding function in the above communication method.
  • the communication device may be a chip system, or may be a terminal device or a network device.
  • the structure of the communication device includes a processor, and the processor is used to couple with the memory, read instructions in the memory, and implement the above method according to the instructions.
  • the structure of the communication device includes a transceiver, which is used to implement the foregoing communication method.
  • the transceiver When the communication device is a chip, the transceiver may be an input-output unit, such as an input-output circuit or a communication interface. When the communication device is user equipment, the transceiver may be a transmitter/receiver or a transmitter/receiver.
  • a communication device which can implement the communication method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a network device, and the above method may be implemented through software, hardware, or executing corresponding software through hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform the corresponding function in the above communication method.
  • the memory is used to couple with the processor, which stores necessary programs (instructions) and data of the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit module that performs corresponding actions in the above method.
  • the device includes:
  • a transceiver unit configured to send sleep instruction information to a terminal device, where the sleep instruction information is used to instruct the terminal device to enter a sleep state
  • the transceiver unit is further configured to receive the first information from the terminal device after the transceiver sends sleep indication information to the terminal device and the terminal device is within the sleep time period;
  • the transceiver unit is further configured to send the first physical downlink control channel PDCCH corresponding to the first information to the terminal device.
  • a processor and a transceiver are included.
  • the processor is coupled to the transceiver.
  • the processor is used to execute a computer program or instruction to control the transceiver to receive and receive information. Send; when the processor executes the computer program or instruction, the processor is also used to implement the above method.
  • the transceiver may be a transceiver, a transceiver circuit or an input-output interface.
  • the transceiver is a transceiver circuit or an input-output interface.
  • the structure of the communication device includes a processor; the processor is configured to support the device to perform the corresponding function in the above communication method.
  • the structure of the communication device includes a processor, and the processor is used to couple with the memory, read instructions in the memory, and implement the above method according to the instructions.
  • the structure of the communication device includes a transceiver, which is used to implement the foregoing communication method.
  • the transceiver When the communication device is a chip, the transceiver may be an input-output unit, such as an input-output circuit or a communication interface.
  • the transceiver When the communication apparatus is a network device, the transceiver may be a transmitter/receiver (also referred to as a transmitter/receiver).
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the above-mentioned first aspect or second aspect is realized. The method described.
  • a computer program product containing instructions, which when executed on a computer, causes the computer to execute the method described in the first aspect or the second aspect.
  • a communication system including the communication devices in the third and fourth aspects.
  • Figure 1 is an example of using GTS technology to save power consumption of terminal equipment
  • FIG. 2 is a schematic diagram of network devices that need to perform data scheduling on terminal devices during a sleep period, and scheduling delays are generated;
  • FIG. 3 is a schematic diagram of a communication system involved in this application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a terminal device sending a NACK after entering a sleep state
  • FIG. 7 is a schematic diagram of a terminal device configured with DRX to send a NACK after entering a sleep state
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a terminal device sending a scheduling request after entering a sleep state
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a simplified terminal device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a simplified network device provided by an embodiment of the present application.
  • FIG. 1 shows an example of using GTS technology to save power consumption of terminal equipment.
  • the base station for example, gNB
  • the GTS signal may be sent through a PDCCH in a certain format, such as some existing downlink control information (DCI) format or a new DCI format. Or a newly designed physical layer signal or channel.
  • DCI downlink control information
  • GTS duration can be pre-defined by the protocol, or can be semi-statically configured by gNB for the terminal equipment, and can be one or more values (one value only requires the GTS signal to carry 1 bit of indication information, and multiple values require the GTS to carry more (1 bit of indication information).
  • the terminal device When the terminal device receives the GTS signal, it will skip the PDCCH monitoring for the GTS duration according to the instructions.
  • the power consumption saved by the terminal device comes from the power consumption that does not perform PDCCH monitoring during GTS duration, compared to the power consumption that does PDCCH monitoring during GTS duration.
  • the "PDCCH-only” state refers to the state where the terminal device monitors the PDCCH but does not detect any grant, and the corresponding power consumption is mainly the power consumption for PDCCH monitoring;
  • the "PDCCH+PDSCH” state refers to the terminal The device has detected the downlink data (PDSCH), and the corresponding power consumption includes PDCCH monitoring and PDSCH reception;
  • the status of "GTSsignal” means that the terminal device detects the GTS signal sent by gNB, and then the terminal device will skip the GTSduration time according to the instructions.
  • the PDCCH of the segment is monitored, so the power consumption is small during this period. It is generally believed that the power consumption for GTS signal detection is not greater than the power consumption for PDCCH detection.
  • the L1 dynamic indication of GTS brings benefits in terms of saving power consumption of terminal equipment and increases scheduling delay.
  • the maximum scheduling delay can be GTS duration.
  • the longer the GTS duration the greater the power consumption savings, but the greater the corresponding scheduling delay. Therefore, if the GTS duration is set to be longer for more power saving gains, it may cause greater scheduling delay; and if the GTS duration is reduced according to the lower scheduling delay requirements, it will result in savings
  • the power consumption becomes smaller (that is, the gain is sacrificed at the expense of power consumption), and the resource overhead for sending GTS signals may be increased because the GTS signals need to be sent more frequently.
  • Embodiments of the present application provide a communication method and apparatus.
  • a terminal device can receive a physical downlink control channel that schedules resources for the scheduling request or NACK within a sleep time period without waiting.
  • the physical downlink control channel is received only after the end of the sleep period, thereby realizing the power consumption of the terminal device and ensuring that the physical downlink control channel corresponding to the scheduling request or the downlink downlink retransmission data corresponding to the NACK scheduling corresponds to the physical downlink control channel as early as possible
  • the delay of the physical downlink control channel is reduced.
  • FIG. 3 shows a schematic diagram of a communication system involved in this application.
  • the communication system may include at least one network device 100 (only one is shown) and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • the network device 100 may be any device having a wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (5G) communication system, base station or network equipment in future communication system, access node in WiFi system, wireless relay Nodes, wireless backhaul nodes, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a small station, a transmission reference point (TRP), or the like.
  • the embodiments of the present application do not limit the specific technology and the specific device form adopted by the network device.
  • Terminal device 200 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as ships, etc.; it can also be deployed in the air, such as aircraft , Balloons and satellites are fine.
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • VR virtual reality
  • AR augmented reality
  • Terminal equipment may sometimes be called user equipment (user equipment (UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile device, terminal (terminal), wireless communication device, UE Agent or UE device, etc.
  • UE user equipment
  • UE unit mobile station
  • mobile station mobile station
  • remote station remote terminal equipment
  • mobile device terminal
  • terminal wireless communication device
  • UE Agent wireless communication device
  • the sleep state may mean that the type of PDCCH that the terminal device in the sleep state does not need to monitor includes at least one of the following types:
  • PDCCH corresponding to cell RNTI (cell-RNTI, C-RNTI), PDCCH corresponding to bearer configuration scheduling RNTI (configured scheduling-RNTI, CS-RNTI), PDCCH corresponding to bearer interrupt RNTI (interruption-RNTI, INT-RNTI), bearer Slot format identifier RNTI (slot format indicator-RNTI, SFI-RNTI) corresponding PDCCH, carrying semi-persistent channel state information RNTI (semi-persistent channel state information), SP-CSI-RNTI) corresponding PDCCH, carrying PUCCH transmission power control PDCCH corresponding to RNTI (transmit power control-PUCCH-RNTI, TPC-PUCCH-RNTI), bearer PUSCH transmission power control PDCCH corresponding to RNTI (transmit power) control-PUSCH-RNTI (TPC-PUSCH-RNTI), bearer transmission power control- Sounding reference signal-RNTI (transmission power control-sounding reference signal-RNTI, TPC-SRS-RN
  • the PDCCH corresponding to the RNTI may refer to scrambling the cyclic redundancy check (CRC) bits of the DCI carried by the PDCCH with the RNTI.
  • CRC cyclic redundancy check
  • the terminal device in the sleep state does not monitor at least one type of PDCCH among the above types, but may monitor other types of PDCCH. It may also not monitor all types of PDCCHs mentioned above, but may monitor other types of PDCCHs. The terminal device in the sleep state may not monitor all PDCCHs.
  • the sleep state also includes that the terminal device does not receive PDSCH in the sleep state.
  • the awake state means that the terminal device is in the awake state when it is not in the sleep state.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application, which may be applied to the above-mentioned communication system. among them:
  • the network device sends sleep instruction information to the terminal device, and the terminal device receives the sleep instruction information.
  • the sleep indication information may instruct the terminal device to enter a sleep state.
  • the sleep indication information may be a GTS signal, or the sleep indication information is a signal carried in GTS signaling.
  • the sleep indication information includes indication information of a sleep period, and the indication information is used to instruct the terminal device to enter a sleep state within the sleep period.
  • the sleep time period may be GTS duration.
  • the network device sends a radio resource control (radio resource control (RRC) message to the terminal device, of course, other messages.
  • RRC radio resource control
  • the RRC message includes one or more GTS durations. Therefore, one or more GTS durations can be configured for the terminal device through the RRC message.
  • the one or more GTS durations may be the number of slots, the number of symbols, or a combination of the two, or may be an absolute time length (such as milliseconds).
  • the above instruction information may indicate one of the GTS durations.
  • the gNB sends a GTS signal or signaling to the UE, instructing the UE not to perform the above type of PDCCH monitoring (hereinafter referred to as no PDCCH monitoring or PDCCH monitoring) within one of the configured GTS durations; the UE receives the GTS signal or Signaling, and starting from the next symbol of the last symbol receiving the GTS signal or signaling, or from the next slot of the slot receiving the GTS signal or signaling, without monitoring the PDCCH.
  • no PDCCH monitoring or PDCCH monitoring the above type of PDCCH monitoring
  • the terminal device After receiving the sleep instruction information, the terminal device enters the sleep state.
  • the power consumption is low, so that the power consumption of the terminal device can be saved.
  • the terminal device enters the sleep state, and the terminal device may not receive other information or data except for receiving the PDCCH from the network device; or the terminal device may receive any information or data from the network device after entering the sleep state. No restrictions here.
  • the terminal device sends the first information to the network device during the sleep period.
  • the first information may be a scheduling request (SR) or a negative acknowledgement (non-acknowledgement, NACK).
  • SR scheduling request
  • NACK negative acknowledgement
  • the network device receives the first information from the terminal device when the terminal device is in the sleep period.
  • the network device before the terminal device receives the sleep indication information, the network device sends a physical downlink shared channel (PDSCH) to the terminal device.
  • PDSCH physical downlink shared channel
  • the terminal device receives the sleep indication information and the terminal device enters Sleep state, or the terminal device receives the sleep instruction information, the terminal device enters the sleep state, and receives the PDSCH, but the terminal device fails to receive or decode the PDSCH, the terminal device needs to send a NACK to the network device; for example, in another scenario
  • a physical uplink shared channel (PUSCH) needs to be sent to the network device.
  • the network device Before sending the PUSCH, the network device needs to be scheduled and the SR needs to be sent to the network device.
  • the terminal device enters the sleep state, that is, the terminal device is still in the sleep period, the terminal device enters the awake state, and sends the first information to the network device.
  • the first information is SR or NACK.
  • the terminal device After sending the first information, the terminal device monitors the physical downlink control channel during the first time period of the sleep time period.
  • the terminal device After sending the first information, the terminal device needs to receive the scheduling information of the network device, that is, it needs to monitor the PDCCH. Specifically, after sending the first information, the terminal device monitors the PDCCH during the first time period within the sleep time period.
  • the gNB sends a PDCCH (DL grant) to the UE.
  • the PDCCH indicates the time-frequency resource of the PDSCH, the corresponding HARQ process ID, and the PUCCH resource used to feed back the HARQ-ACK corresponding to the PDSCH.
  • the gNB sends a PDCCH to the UE, and the PDCCH includes feedback information of the scheduling request.
  • the network device sends the first PDCCH corresponding to the first information to the terminal device.
  • the network device may send the first PDCCH to the terminal device within the sleep time period, or send the first PDCCH to the terminal device after the sleep time period. Therefore, the network device can send the physical downlink control channel for the scheduling request or the NACK scheduling resource within the sleep time period, without waiting for the sleep time period to end before sending the physical downlink control channel, thereby saving At the same time as power consumption, it is ensured that the physical downlink control channel corresponding to the scheduling request or the physical downlink control channel corresponding to the downlink retransmission data scheduling corresponding to the NACK is received as soon as possible, which reduces the transmission delay of the physical downlink control channel.
  • the first time period is:
  • the first PDCCH carries a retransmission scheduling indication of the first HARQ process.
  • the terminal device may detect the first PDCCH during the sleep time period, or may detect the first PDCCH after the sleep time period ends.
  • the time when the first PDCCH is detected may refer to a successfully decoded PDCCH candidate (PDCCH candidate). If the first time period in the above embodiment is the case where the first PDCCH from the network device is detected, the end of the first time period may refer to the time when the first PDCCH is successfully decoded. The subsequent embodiment is the same for the case where the PDCCH from the network device is detected in the time period.
  • the terminal device may monitor the PDCCH for scheduling resources for other requests within the first time period.
  • the terminal device after sending the first message, the end of the entire sleep time period, the terminal device can enter the wake-up state, and no longer enter the sleep state, thereby ensuring that data scheduling will not be delayed; or the terminal device is sending After the first information, if the data scheduling instruction from the network device is received within the sleep time period, it continues to enter the sleep state to save power consumption of the terminal device.
  • the first information is the NACK
  • the first time period is:
  • the time period from when the downlink retransmission timer starts to when the first PDCCH from the network device is detected.
  • the first time period starts from the start of the downlink retransmission timer and ends at the sleep time period.
  • the terminal device enters the awake state and no longer enters the sleep state. Ensure that the data scheduling will not be delayed; or when the terminal device is configured for discontinuous reception, the first time period starts from the downlink retransmission timer, if the data scheduling from the network device is received during the sleep time period Instruct or stop the downlink retransmission timer to continue to sleep to save power consumption of the terminal device.
  • the method further includes: during the sleep time period, and before sending the first information, the terminal device is in a sleep state. This can save power consumption of the terminal device.
  • a terminal device in a sleep state when a terminal device in a sleep state needs to send a scheduling request or a NACK, it can receive a physical downlink control channel scheduling resources for the scheduling request or a NACK within a sleep period, There is no need to wait for the end of the sleep time period to receive the physical downlink control channel, thereby saving power consumption of the terminal device and ensuring that the physical downlink control channel corresponding to the scheduling request or the downlink retransmission data corresponding to the NACK schedule the corresponding physical The downlink control channel is received as soon as possible, which reduces the delay of the physical downlink control channel.
  • scenario (1) if the terminal device fails to receive or decode PDSCH, it needs to send NACK to the network device; in scenario (2), if the terminal device wants to send PUSCH to the network device, it needs to send to the network The device sends an SR.
  • the embodiments of the present application stipulate the rules different from the conventional GTS.
  • the terminal device can break the rule of "skip PDCCH monitoring during GTS duration" when GTS signal or signaling indication is detected, and still do PDCCH monitoring.
  • FIG. 5 is a schematic flowchart of another communication method according to an embodiment of the present application. among them:
  • the network device sends a second PDCCH for scheduling the PDSCH to the terminal device, where the PDSCH corresponds to the first HARQ process.
  • the terminal device receives the second PDCCH for scheduling the PDSCH.
  • the network device sends a second PDCCH to the terminal device, where the second PDCCH is used to schedule the PDSCH.
  • the network device also sends an RRC message to the terminal device to configure the terminal device with PDSCH time domain resource parameters and PUCCH resources for feeding back HARSCH-ACK of the PDSCH.
  • the network device sends the PDSCH to the terminal device on the indicated PDSCH time domain resource.
  • the network device sends a PDSCH to the terminal device.
  • the terminal device receives the PDSCH.
  • the network device sends sleep indication information to the terminal device.
  • the terminal device receives the sleep instruction information.
  • the sleep instruction information may instruct the terminal device to enter a sleep state.
  • the network device instructs the terminal device not to monitor the PDCCH for a period of GTS duration through a GTS signal or signaling, that is, indicates that the terminal device enters the sleep state.
  • the terminal device enters the sleep state.
  • this step reference may be made to step S401 in the embodiment shown in FIG. 4, and details are not described herein again.
  • sequence of S502 and S503 is not limited, that is, the network device may send the PDSCH before sending the sleep indication information; or it may send the PDSCH after sending the sleep indication information.
  • the terminal device After receiving the sleep instruction information, the terminal device starts a sleep timer and enters a sleep state.
  • the terminal device counts the sleep time period through a sleep initiator, that is, the length of the sleep timer is equal to the sleep time period.
  • the terminal device sends a NACK to the network device.
  • the network device receives the NACK.
  • the NACK corresponds to the first HARQ process.
  • the terminal device receives the PDSCH and decodes it. If the UE receives and decodes the PDSCH correctly, the UE feeds back an ACK on the PUCCH resource indicated by the PDCCH for feeding back HARQ-ACK, and keeps not monitoring the PDCCH until the GTS duration ends. Alternatively, the terminal device may feed back an ACK after the GTS period ends.
  • the terminal device may not comply with the GTS instruction after feeding back NACK.
  • PDCCH monitoring can be performed according to the following implementation methods:
  • the terminal device sends a NACK after entering the sleep state, and the terminal device starts from the next symbol of the last symbol occupied by NACK (t 1 shown in FIG. 6 ), or From the next slot of the slot occupied by NACK (t 1a shown in FIG. 6 ), or from the end of the third time period (t 1b shown in FIG. 6 ), until the end of the GTS duration, the PDCCH is performed monitor.
  • the third time period starts from the end of the last symbol for sending NACK.
  • the duration of the third time period is semi-statically configured by RRC signaling, and each downlink HARQ process may have its own corresponding third time period timer.
  • One possible name for the third time period is HARQ round trip time.
  • the terminal device starts from the next symbol of the last symbol occupied by NACK (t 2 shown in FIG. 6 ), or starts from the next slot of the slot occupied by NACK ( As shown in t 2a shown in FIG. 6 ), or starting from the end of the third time period (t 2b shown in FIG. 6 ), PDCCH monitoring is performed until the first PDCCH of the HARQ process corresponding to the NACK is detected.
  • the first PDCCH carries the retransmission scheduling indication of the first HARQ process.
  • the terminal device After sending the NACK, the terminal device monitors the physical downlink control channel during the first time period of the sleep time period.
  • the terminal device may also turn off the sleep timer.
  • the terminal device After the terminal device sends the NACK, it needs to monitor the first PDCCH in the first time period within the sleep time period.
  • the sleep timer is turned off, and the terminal device enters the awake state.
  • the terminal device may not turn off the sleep timer when sending a NACK.
  • the sleep timer counts the entire sleep time period, and the terminal device starts another timer to count the first time period. .
  • the network device sends the first PDCCH corresponding to the NACK to the terminal device.
  • the network device may send the first PDCCH to the terminal device within the sleep time period, or send the first PDCCH to the terminal device after the sleep time period.
  • the network device can send the physical downlink control channel for the NACK scheduling resource during the sleep time period, without waiting for the sleep time period to end before sending the physical downlink control channel, thereby saving the power of the terminal device At the same time of consumption, it is ensured that the physical downlink control channel corresponding to the downlink retransmission data scheduling corresponding to the NACK is received as early as possible, which reduces the transmission delay of the physical downlink control channel.
  • the above rule is established when the GTS duration is greater than or equal to the first threshold.
  • the first threshold may be pre-configured or pre-defined. That is, the above solution is implemented when the sleep time period is greater than or equal to the first threshold, which can avoid sending the sleep indication information frequently, so as to save the resource overhead of sending the sleep indication information.
  • the terminal device determines that the GTS duration is greater than or equal to the first threshold, the terminal device, after sending the NACK, monitors the physical downlink control channel during the first time period within the sleep time period.
  • the gNB can schedule the PDSCH retransmission of the HARQ process that needs to be retransmitted within the "non-observance of GTS" time range, reducing the retransmission delay.
  • FIG. 7 a schematic diagram of a terminal device configured with DRX sends a NACK after entering a sleep state.
  • the terminal device is configured with DRX parameters, and the first time period is the time period from the start of the downlink retransmission timer to the end of the sleep time period; or the downlink retransmission timing The time period of the device; or the time period from when the downlink retransmission timer starts to when the first PDCCH from the network device is received.
  • the gNB sends the UE an RRC message carrying an information element (IE)—DRX-Config, and configures the UE to include a downlink HARQ round-trip time timer (drx-HARQ-RTT-TimerDL) and downlink retransmission DRX parameters including timer (drx-RetransmissionTimerDL) parameters, etc.
  • IE information element
  • DRX-Config an information element
  • drx-HARQ-RTT-TimerDL downlink HARQ round-trip time timer
  • drx-RetransmissionTimerDL timerx-RetransmissionTimerDL
  • a terminal device configured with DRX parameters fails to receive or decode a PDSCH, and after sending a NACK, it can perform PDCCH monitoring according to the following implementation methods:
  • the downlink retransmission timer of the HARQ process corresponding to the NACK starts to count until the GTS duration ends, and the PDCCH is monitored (t 1 shown in FIG. 7 ).
  • the PDCCH is monitored (t 3 shown in FIG. 7) within the time period of the downlink retransmission timer of the HARQ process corresponding to the NACK.
  • the downlink retransmission timer of the HARQ process corresponding to the NACK starts to count, and when the first PDCCH of the HARQ process corresponding to the NACK is detected, PDCCH monitoring is performed (t shown in FIG. 7) 2 ).
  • the downlink retransmission timer and the downlink HARQ round-trip time timer correspond to the above-mentioned first HARQ process.
  • the above rule is established when the GTS duration is greater than or equal to the second threshold.
  • the second threshold may be pre-configured or pre-defined. That is, the above solution is implemented when the sleep time period is greater than or equal to the second threshold, which can avoid sending the sleep indication information frequently, so as to save the resource overhead of sending the sleep indication information.
  • the gNB can schedule the PDSCH retransmission of the HARQ process that needs to be retransmitted within the time range of "non-compliance with GTS", which reduces the retransmission delay.
  • FIG. 8 is a schematic flowchart of another communication method according to an embodiment of the present application. among them:
  • the network device sends sleep instruction information to the terminal device.
  • the terminal device receives the sleep instruction information.
  • the sleep indication information may instruct the terminal device to enter a sleep state.
  • step S401 in the embodiment shown in FIG. 4 or step S503 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the terminal device After receiving the sleep instruction information, the terminal device starts a sleep timer and enters a sleep state.
  • the time duration of the sleep timer is equal to the sleep time period.
  • the network device sends a GTS signal or signaling to the terminal device, instructing the terminal device not to monitor the PDCCH within one of the configured GTS duration.
  • the UE receives the GTS and starts from the next symbol that receives the last symbol of the GTS, or starts from the next slot of the slot that receives the GTS, and does not monitor the PDCCH.
  • this step reference may be made to step S504 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the network device sends a physical uplink control channel (physical uplink control channel, PUCCH) resource for SR to the terminal device.
  • PUCCH physical uplink control channel
  • the network device configures the UE with one or more GTS durations, and a set of PUCCH resources for SR.
  • the terminal device in the sleep state sends a scheduling request to the network device during the sleep time period.
  • the terminal device may also turn off the sleep timer.
  • the network device receives the scheduling request.
  • the terminal equipment has uplink data to send. Then, the terminal device sends the SR on one resource in the configured set of SR resources.
  • the terminal device After sending the scheduling request, the terminal device monitors the physical downlink control channel during the first time period of the sleep time period.
  • the terminal device may perform PDCCH monitoring according to the following implementation manner:
  • the terminal device starts from the next symbol of the last symbol occupied by the SR (t 1 shown in FIG. 9) until the GTS duration ends, and performs PDCCH monitoring.
  • PDCCH monitoring is performed from the next slot of the slot occupied by the SR (t 2 shown in FIG. 9) until the GTS duration ends.
  • the fourth time period starts from the end of the last symbol occupied by the SR.
  • the duration of the fourth time period is semi-statically configured by RRC signaling.
  • a possible name for the fourth time period is the round-trip time of the scheduling request.
  • the network device sends the first PDCCH corresponding to the scheduling request to the terminal device.
  • step S405 in the embodiment shown in FIG. 4 or step S507 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the terminal device is at the end of the first time period to the end time of the sleep time period. Sleep state. In this way, the power consumption of the terminal device can be saved as much as possible.
  • the above rule is established when the GTS duration is greater than or equal to the third threshold.
  • the third threshold may be pre-configured or pre-defined.
  • the PUSCH required by the UE must be scheduled until the GTS duration ends, otherwise the UE cannot detect the PDCCH indicating the PUSCH, and the SR delay is large.
  • the GTS duration is greater than a certain threshold, so that the impact on the SR scheduling delay is too large, gNB can schedule the PUSCH required by the UE within the time range shown in Figure 9 to reduce the SR delay.
  • This embodiment provides an apparatus for implementing the above method embodiments. It should be noted that, for specific details in this embodiment, reference may be made to the description above, and details are not described in this embodiment.
  • an embodiment of the present application further provides a communication device 1000, which can be used to implement the above-described communication methods shown in FIGS. 4, 5, and 8. in.
  • the communication device 1000 may be the terminal device 200 shown in FIG. 3, or may be a component (for example, a chip) applied to the terminal device 200.
  • the communication device 1000 includes a transceiver 101 and a processor 102. among them:
  • the transceiver 101 is configured to send first information to a network device during a sleep period, where the first information is a scheduling request or a negative response NACK;
  • the processor 102 is configured to monitor the physical downlink control channel PDCCH during the first time period within the sleep time period after the transceiver sends the first information.
  • the first information is the NACK
  • the NACK corresponds to a first HARQ process
  • the first PDCCH carries a retransmission scheduling indication of the first HARQ process
  • the transceiver 101 is further configured to receive a second PDCCH for scheduling a PDSCH, where the PDSCH corresponds to the first HARQ process;
  • the transceiver 101 is further configured to send the NACK to the network device if the terminal device fails to decode the PDSCH.
  • the transceiver 101 is further configured to receive sleep indication information from the network device, and the sleep indication information is used to instruct the terminal device to enter the sleep state.
  • the processor 102 is further configured to start a sleep timer after the transceiver receives the sleep entry indication information from the network device, and the length of the sleep timer is equal to The sleep time period.
  • the transceiver 101 is also used to send the first information to the network device;
  • the processor 102 is also used to turn off the sleep timer.
  • transceiver 101 and processor 102 can be directly obtained by directly referring to the relevant description of the terminal device in the method embodiments shown in FIG. 4, FIG. 5, and FIG. 8.
  • transceiver may be an integrated device with a transceiver function, or may be composed of an independent receiver with a receiving function and a transmitter with a sending function, which is logically called a “transceiver” .
  • an embodiment of the present application also provides a communication device 1100, which can be applied to the above-mentioned communication methods shown in FIGS. 4, 5, and 8. in.
  • the communication device 1100 may be the network device 100 shown in FIG. 3, or may be a component (for example, a chip) applied to the network device 100.
  • the communication device 1100 includes: a transceiver 111. among them:
  • the device 1100 includes:
  • the transceiver 111 is configured to send sleep instruction information to a terminal device, where the sleep instruction information is used to instruct the terminal device to enter a sleep state;
  • the transceiver 111 is further configured to receive the first information from the terminal device after the transceiver sends sleep instruction information to the terminal device and the terminal device is within the sleep time period;
  • the transceiver 111 is further configured to send the first physical downlink control channel PDCCH corresponding to the first information to the terminal device.
  • the transceiver 111 is further configured to send the first PDCCH to the terminal device during the sleep time period, or send the first PDCCH to the terminal device after the sleep time period The first PDCCH.
  • the first information is the NACK
  • the NACK corresponds to a first HARQ process
  • the first PDCCH carries a retransmission scheduling indication of the first HARQ process
  • the transceiver unit 111 is further configured to send a second PDCCH for scheduling a PDSCH to the terminal device, where the PDSCH corresponds to the first HARQ process;
  • the transceiver unit 111 is further configured to receive the NACK when the terminal device fails to decode the PDSCH.
  • transceiver 111 can be directly obtained by directly referring to the relevant description of the network device in the method embodiments shown in FIG. 4, FIG. 5, and FIG. 8, which will not be repeated here.
  • transceiver may be an integrated device with a transceiver function, or may be composed of an independent receiver with a receiving function and a transmitter with a sending function, which is logically called a “transceiver” .
  • An embodiment of the present application further provides a communication device, which is used to execute the above communication method.
  • a communication device which is used to execute the above communication method.
  • Some or all of the above communication methods may be implemented by hardware or software.
  • the communication device may be a chip or an integrated circuit during specific implementation.
  • the communication device when part or all of the communication method in the above embodiment is implemented by software, the communication device includes: a memory for storing a program; a processor for executing the program stored in the memory, when the program is executed, Therefore, the communication device can respectively implement the communication methods provided by the terminal device and the network device in the embodiments shown in FIG. 4, FIG. 5, and FIG. 8.
  • the above memory may be a physically independent unit, or may be integrated with the processor.
  • the memory can also be used to store data.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through a circuit/wire to read and execute the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field programmable logic gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard disk drive (HDD) or solid-state drive (SSD); storage can also include a combination of the above types of storage.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD Hard disk drive
  • SSD solid-state drive
  • FIG. 12 shows a simplified structural diagram of a terminal device. It is easy to understand and convenient to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as a receiving unit and a sending unit of a terminal device (also collectively referred to as a transceiver unit), and a processor with a processing function can be regarded as a processing unit of the terminal device .
  • the terminal device includes a transceiving unit 121 and a processing unit 122.
  • the transceiver unit 121 may also be referred to as a receiver/transmitter (transmitter), a receiver/transmitter, a receiver/transmitter circuit, or the like.
  • the processing unit 122 may also be referred to as a processor, processing board, processing module, processing device, or the like.
  • the transceiver unit 121 is used to implement the function of the transceiver unit 101 in the embodiment shown in FIG. 10, and the processing unit 122 is used to implement the function of the processing unit 102 in the embodiment shown in FIG.
  • the transceiver unit 121 is used to perform the functions of the terminal devices in steps S401 and S403 in the embodiment shown in FIG. 4; and the processing unit 122 is used to perform step S402 in the embodiment shown in FIG. And S404.
  • the transceiving unit 121 is used to perform the functions of the terminal devices in steps S501 to S503 and S505 in the embodiment shown in FIG. 5; and the processing unit 122 is used to execute the function in the embodiment shown in FIG. Steps S504 and S506.
  • the transceiver unit 121 is used to perform the functions of the terminal devices in steps S801 and S803 in the embodiment shown in FIG. 8; and the processing unit 122 is used to perform the steps in the embodiment shown in FIG. S802 and S804.
  • FIG. 13 shows a simplified structural diagram of a network device.
  • the network equipment includes a radio frequency signal transceiving and converting part and a part 132, and the radio frequency signal transceiving and converting part includes a transceiving unit 131 part.
  • the RF signal transceiving and conversion part is mainly used for RF signal transceiving and the conversion of the RF signal and the baseband signal; the 132 part is mainly used for baseband processing and controlling network equipment.
  • the transceiver unit 131 may also be referred to as a receiver/transmitter (transmitter), a receiver/transmitter, a receiver/transmitter circuit, or the like.
  • Part 132 is usually the control center of the network device, which can be generally referred to as a processing unit, and is used to control the source network device to perform the steps performed by the network device in FIGS. 4, 5, and 8 described above.
  • the transceiver unit 131 can be used to implement the functions of the sending unit 111 and the receiving unit 112 in the embodiment shown in FIG. 11.
  • Part 132 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processors are used to read and execute programs in the memory to implement baseband processing functions and network devices. control. If there are multiple boards, each board can be interconnected to increase processing power. As an optional embodiment, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processes at the same time. Device.
  • the transceiver unit 131 is used to perform the function of the network device in steps S401 and S403 in the embodiment shown in FIG. 4; the part 132 is used to perform the function of step S405 in the embodiment shown in FIG. .
  • the transceiver unit 131 is used to perform steps S501 to S503 and the function of the network device in S505 in the embodiment shown in FIG. 5; part 132 is used to perform the steps in the embodiment shown in FIG. 5 S507.
  • the transceiver unit 131 is used to perform the functions of the network devices in steps S801 and S803 in the embodiment shown in FIG. 8; the part 132 is used to perform step S805 in the embodiment shown in FIG. Features.
  • Embodiments of the present application also provide a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the method described in the above aspects is implemented.
  • Embodiments of the present application also provide a computer program product containing instructions, which when executed on a computer, causes the computer to execute the methods described in the above aspects.
  • An embodiment of the present application further provides a communication system, including the above-mentioned communication device.
  • the disclosed system, device, and method may be implemented in other ways.
  • the division of the unit is only a division of logical functions. In actual implementation, there may be other divisions. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored, or not carried out.
  • the displayed or discussed mutual coupling, direct coupling, or communication connection may be indirect coupling or communication connection through some interfaces, devices, or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be transferred from a website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another A website site, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available media may be read-only memory (ROM), or random access memory (RAM), or magnetic media, such as floppy disks, hard disks, magnetic tapes, magnetic disks, or optical media, such as, Digital versatile disc (DVD), or semiconductor media, for example, solid state disk (SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。本申请实施例中,处于睡眠状态的终端设备可以在需要发送调度请求或NACK时,进入唤醒状态,能够在睡眠时间段内即可接收为该调度请求或NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才接收该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证调度请求对应的上行数据调度对应的物理下行控制信道或NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的延时。

Description

通信方法及装置
本申请要求于2019年1月11日提交中国国家知识产权局,申请号为201910027928.1、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
终端设备监听物理下行控制信道(physical downlink control channel,PDCCH),该PDCCH可以用于指示物理下行共享信道(physical downlink shared channel,PDSCH)的时频资源等。然而有统计显示,现有长期演进(long term evolution,LTE)网络中,终端设备所做的大部分PDCCH监听都是没有检测到任何指示的,且这些没有任何指示的PDCCH监听贡献了相当大的终端设备的耗电。因此,需要考虑如何降低终端设备的功耗。降低终端设备的功耗的一个方向是如何减少物理下行控制信道监听(PDCCH monitoring),同时不对调度带来过大的影响,例如过多增加调度时延等。
目前减少PDCCH监听的一种技术是动态指示终端设备跳过PDCCH监听,又称为进入睡眠(Go-To-Sleep,GTS)技术,即用GTS信号或信令指示终端设备跳过一段时间的PDCCH监听。
然而,在采用GTS技术之后,存在某些数据调度的延时增加的问题。
发明内容
本申请提供一种通信方法及装置,以在终端设备节省功耗的同时,减小某些数据调度的延时。
第一方面,提供了一种通信方法。所述方法中,终端设备在睡眠时间段内向网络设备发送第一信息。该第一信息可以为调度请求或否定应答NACK。该终端设备发送所述第一信息后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道PDCCH。
可选的,可以是处于睡眠状态的终端设备发送该第一信息。
第二方面,提供一种通信方法。该方法中,网络设备向终端设备发送睡眠指示信息。该睡眠指示信息可以指示所述终端设备进入睡眠状态。进一步的,网络设备在向终端设备发送睡眠指示信息后,且在睡眠时间段内时,接收来自所述终端设备的第一信息。网络设备进一步向所述终端设备发送所述第一信息对应的第一物理下行控制信道PDCCH。
在该方面中,处于睡眠状态的终端设备可以在需要发送调度请求或NACK时,进入唤醒状态,能够在睡眠时间段内即可接收为该调度请求或NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才接收该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证调度请求对应的物理下行控制信道或NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的延时。
在一种实现方式中,该第一时间段可以为:从所述第一信息占用的最后一个符号的下一个符号开始,到所述睡眠时间段结束的时间段;或从所述第一信息占用的时隙的下一个时隙开始,到所述睡眠时间段结束的时间段;或从所述第一信息占用的最后一个符号的下一个符号开始,到在所述睡眠时间段内,所述终端设备检测到来自所述网络设备的第一PDCCH的时间段;或从所述第一信息占用的时隙的下一个时隙开始,到在所述睡眠时间段内,检测到来自所述网络设备的第一PDCCH的时间段。
在该实现方式中,在发送完第一信息后,到整个睡眠时间段结束,终端设备进入唤醒状态,不再进入睡眠状态,可以保证数据调度不会被延时;或者在发送完第一信息后,如果在睡眠时间段内,接收到来自网络设备的数据调度指示,则继续进入睡眠状态,以节省终端设备的功耗。
在另一个实现方式中,该第一信息可以为NACK,该第一时间段可以为从第三时间段结束时开始,到所述睡眠时间段结束的时间段,其中,所述第三时间段为从发送所述NACK的最后一个符号结束时开始的一个时间段,所述第三时间段的时长是由无线资源控制RRC信令半静态配置的,各个下行HARQ进程可以有各自对应的第三时间段计时器。第三时间段的一种可能的名称为HARQ往返时间。
在又一个实现方式中,该第一信息可以为调度请求,该第一时间段可以为从第四时间段结束时开始,到在所述睡眠时间段内,所述终端设备检测到来自所述网络设备的第一PDCCH的时间段,其中,所述第四时间段为从发送所述调度请求的最后一个符号结束时开始的一个时间段,所述第四时间段的时长是由RRC信令半静态配置的。第四时间段的一种可能的名称为调度请求往返时间。
在又一个实现方式中,该第一信息可以为所述NACK,该NACK对应第一混合自动重传请求HARQ进程。该第一时间段可以是:从下行重传计时器开始计时,到所述睡眠时间段结束的时间段;或下行重传计时器的计时时间段;或从下行重传计时器开始计时,到检测到来自所述网络设备的第一PDCCH的时间段。
在该实现方式中,当终端设备配置了非连续接收,则第一时间段为从下行重传计时器开始计时开始,到睡眠时间段结束,终端设备进入唤醒状态,不再进入睡眠状态,可以保证数据调度不会被延时;或者当终端设备配置了非连续接收,则第一时间段为从下行重传计时器开始计时开始,如果在睡眠时间段内,接收到来自网络设备的数据调度指示或者下行重传计时器停止计时,则继续进入睡眠状态,以节省终端设备的功耗。
在又一个实现方式中,该第一信息可以为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示。其中,所述终端设备向网络设备发送第一信息之前,所述方法还包括:所述终端设备接收用于调度物理下行共享信道PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程。进一步的,所述终端设备向网络设备发送第一信息,包括:在所述终端设备译码所述PDSCH失败的情况下,所述终端设备向网络设备发送所述NACK。
在该实现方式中,为重传调度场景下,终端设备及时唤醒,发送NACK给网络设备,保证了及时调度。
在又一个实现方式中,所述终端设备在下行重传计时器开始计时前的第二时间段处于 所述睡眠状态,所述第二时间段为下行HARQ往返时间计时器计时时间段,所述下行重传计时器和所述下行HARQ往返时间计时器对应第一HARQ进程。
在该实现方式中,在终端设备在下行重传计时器开始计时前的第二时间段处于睡眠状态,可以尽量地节省终端设备的功耗。
在又一个实现方式中,所述睡眠时间段大于或等于阈值。
在该实现方式中,上述方案是在睡眠时间段大于或等于阈值时实施。对于较大的睡眠时间段,可以避免频繁地发送睡眠指示信息,以节省发送睡眠指示信息的资源开销,但较大的睡眠时间段带来的调度时延更长。上述方案避免了更长的调度时延对调度请求和下行重传的影响。
在又一个实现方式中,所述终端设备在睡眠时间段内向网络设备发送第一信息之前,该方法还包括:所述终端设备接收来自所述网络设备的睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入睡眠状态。
在该实现方式中,终端设备在不进行数据调度时,进入睡眠状态,可以节省终端设备的功耗。
在又一个实现方式中,该方法还包括:该终端设备接收到来自所述网络设备的进入睡眠指示信息后,所述终端设备启动睡眠定时器。其中,所述睡眠定时器的计时时间长度可以等于所述睡眠时间段。
在该实现方式中,在终端设备进入睡眠状态起,采用定时器对睡眠时间段进行计时。
在又一个实现方式中,该方法还包括:所述终端设备向网络设备发送第一信息并且关闭所述睡眠定时器。
在该实现方式中,终端设备在发送第一信息后,即关闭睡眠定时器,终端设备进入唤醒状态。
在又一个实现方式中,如果所述第一时间段的结束时刻在所述睡眠时间段的结束时刻之前,所述终端设备在所述第一时间段结束时刻到所述睡眠时间段的结束时刻处于睡眠状态。
在该实现方式中,在睡眠时间段内,且终端设备未进行数据调度时,终端设备进入睡眠状态,可以节省终端设备的功耗。
在又一个实现方式中,该网络设备向所述终端设备发送所述第一信息对应的第一PDCCH,包括:在所述睡眠时间段内网络设备向所述终端设备发送所述第一PDCCH,或者,在所述睡眠时间段之后网络设备向所述终端设备发送所述第一PDCCH。
在又一个实现方式中,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示。其中,该网络设备接收来自所述终端设备的第一信息之前,该方法还包括:所述网络设备向所述终端设备发送用于调度PDSCH的第二PDCCH。其中,所述PDSCH对应所述第一HARQ进程。进一步地,所述网络设备接收来自所述终端设备的第一信息,包括:在所述终端设备译码所述PDSCH失败的情况下,所述网络设备接收来自所述NACK。
第三方面,提供了一种通信装置,可以实现上述第一方面或第一方面的任一种可能的实现方式中的通信方法。例如所述通信装置可以是芯片(如通信芯片等)或者终端设备。 可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中相应动作的单元或者模块。
其中,所述装置包括:
收发单元,用于在睡眠时间段内向网络设备发送第一信息,所述第一信息为调度请求或否定应答NACK;
处理单元,用于在所述收发单元发送所述第一信息后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道PDCCH。
在又一种可能的实现方式中,包括处理器和收发器,所述处理器与所述收发器耦合,所述处理器用于执行计算机程序或指令,以控制所述收发器进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发器可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发器为收发电路或输入输出接口。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。该通信装置可以是芯片系统,也可以是终端设备或网络设备。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述方法。
在又一种可能的实现方式中,所述通信装置的结构中包括收发器,用于实现上述通信方法。
当所述通信装置为芯片时,收发器可以是输入输出单元,比如输入输出电路或者通信接口。当所述通信装置为用户设备时,收发器可以是发射/接收器或发射/接收机。
第四方面,提供了一种通信装置,可以实现上述第二方面或第二方面的任一种可能的实现方式中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中的相应动作的单元模块。
其中,所述装置包括:
收发单元,用于向终端设备发送睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入睡眠状态;
所述收发单元还用于,在所述收发器向终端设备发送睡眠指示信息后,且所述终端设备处于睡眠时间段内时,接收来自所述终端设备的第一信息;
所述收发单元还用于,向所述终端设备发送所述第一信息对应的第一物理下行控制信道PDCCH。
在又一种可能的实现方式中,包括处理器和收发器,所述处理器与所述收发器耦合,所述处理器用于执行计算机程序或指令,以控制所述收发器进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发器可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发器为收发电路或输入输出接口。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。
在又一种可能的实现方式中,所述通信装置的结构中包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述方法。
在又一种可能的实现方式中,所述通信装置的结构中包括收发器,用于实现上述通信方法。
当所述通信装置为芯片时,收发器可以是输入输出单元,比如输入输出电路或者通信接口。当所述通信装置为网络设备时,收发器可以是发送/接收器(也可以称为发送/接收机)。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述第一方面或第二方面所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第七方面,提供了一种通信系统,包括上述第三方面和第四方面中的通信装置。
附图说明
图1为采用GTS技术节省终端设备功耗的一个示例;
图2为睡眠时间段内网络设备需要对终端设备进行数据调度,产生调度时延的示意图;
图3为本申请涉及的一种通信系统的示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为终端设备在进入睡眠状态后发送NACK的示意图;
图7为配置了DRX的终端设备在进入睡眠状态后发送NACK的示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为终端设备在进入睡眠状态后发送调度请求的示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的一种简化的终端设备的结构示意图;
图13为本申请实施例提供的一种简化的网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
如图1所示的是采用GTS技术节省终端设备功耗的一个示例。基站(例如gNB)通过信令或物理层信号(例如是GTS信号或信令),指示终端设备跳过一段时间段为进入睡眠时间段(GTS duration)的PDCCH监听。例如,GTS信号可以通过某种特定格式的PDCCH发送,例如某种现有的下行控制信息(downlink control information,DCI)格式或新的DCI格式。或者新设计的物理层信号或信道。其中,GTS duration可以由协议预定义,或者由gNB为终端设备半静态配置,可以为一个或多个值(一个值只需要GTS信号携带1比特的指示信息,而多个值则需要GTS携带多于1比特的指示信息)。当终端设备收到GTS信号后,会根据指示跳过时间段为GTS duration的PDCCH监听。通过采用该技术,终端设备所节省的功耗即来自于GTS duration期间不做PDCCH监听的功耗,相对于GTS duration期间做PDCCH监听的功耗的差。
在图1中,“PDCCH-only”的状态是指终端设备做PDCCH监听但没有检测到任何grant的状态,对应的功耗主要是PDCCH监听的功耗;“PDCCH+PDSCH”的状态是指终端设备检测到了下行数据(PDSCH),对应的功耗包括PDCCH监听与PDSCH的接收;“GTS signal”的状态是指终端设备检测到gNB发送的GTS信号,然后终端设备会按照指示跳过GTS duration时间段的PDCCH监听,因此这段时间段内功耗较小。一般认为,GTS信号的检测功耗不大于PDCCH检测功耗。
GTS的L1动态指示,在节省终端设备功耗方面带来好处的同时,增加了调度时延。如图2所示,如果在GTS duration期间有下行或上行数据需要调度,则必须等到所指示的GTS duration结束后才可以调度,因此调度时延最大可以为GTS duration。一般来说,GTS duration越长,带来的功耗节省越大,但相应的调度时延也会越大。因此,如果为了更多的功耗节省增益而将GTS duration设置得较长,则可能造成更大的调度时延;而如果按照低的调度时延要求来减小GTS duration,则会导致节省的功耗变小(即牺牲功耗节省增益),且可能会因为需要更频繁的发送GTS信号而增大用于发送GTS信号的资源开销。
本申请实施例提供一种通信方法及装置,终端设备可以在需要发送调度请求或NACK时,在睡眠时间段内即可接收为该调度请求或NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才接收该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证调度请求对应的物理下行控制信道或NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的延时。
图3给出了本申请涉及的一种通信系统的示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和 具体设备形态不做限定。
终端设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
睡眠状态可以是指,处于睡眠状态的终端设备不需要监听的PDCCH的类型包括如下类型中的至少一种:
小区RNTI(cell-RNTI,C-RNTI)对应的PDCCH、承载配置调度RNTI(configured scheduling-RNTI,CS-RNTI)对应的PDCCH、承载中断RNTI(interruption-RNTI,INT-RNTI)对应的PDCCH、承载时隙格式标识RNTI(slot format indicator-RNTI,SFI-RNTI)对应的PDCCH、承载半永久性信道状态信息RNTI(semi-persistent channel state information,SP-CSI-RNTI)对应的PDCCH、承载PUCCH发送功率控制RNTI(transmit power control-PUCCH-RNTI,TPC-PUCCH-RNTI)对应的PDCCH、承载PUSCH发送功率控制RNTI(transmit power control-PUSCH-RNTI,TPC-PUSCH-RNTI)对应的PDCCH、承载发送功率控制-探测参考信号-RNTI(transmission power control-sounding reference signal-RNTI,TPC-SRS-RNTI)对应的PDCCH。
上文中,RNTI对应的PDCCH可以是指,用RNTI加扰PDCCH承载的DCI的循环冗余校验(cyclic redundancy check,CRC)比特。
处于睡眠状态的终端设备不监听上述类型的中的至少一种类型的PDCCH,但是可以监听其他类型的PDCCH。也可以是不监听上述所有类型的PDCCH,但是可以监听其他类型的PDCCH。处于睡眠状态的终端设备也可以是所有PDCCH都不监听。
睡眠状态还包括:终端设备在睡眠状态下不做PDSCH接收。
唤醒状态是指,终端设备不处于睡眠状态时,则处于唤醒状态。
图4为本申请实施例提供的一种通信方法的流程示意图,可应用于上述通信系统中。其中:
S401、网络设备向终端设备发送睡眠指示信息,终端设备接收该睡眠指示信息。
所述睡眠指示信息可以指示所述终端设备进入睡眠状态。
可选地,该睡眠指示信息可以为GTS信号,或者该睡眠指示信息为携带在GTS信令中的信号。
可选地,该睡眠指示信息包括睡眠时间段的指示信息,该指示信息用于指示终端设备在该睡眠时间段内进入睡眠状态。在本实施例中,睡眠时间段可以是GTS duration。具体实现中,网络设备向终端设备发送无线资源控制(radio resource control,RRC)消息,当然还可以是其它消息。该RRC消息包括一个或多个GTS duration。从而可以通过该RRC消息为终端设备配置一个或多个GTS duration。可选的,该一个或多个GTS duration可以是时隙(slot)个数、符号个数或二者的组合,也可以是绝对时间长度(比如毫秒)。上述指示信息可以指示其中一个GTS duration。gNB向UE发送GTS信号或信令,指示UE在配置的其中一个GTS duration时间段内,不做上述类型的PDCCH监听(下文简称不做PDCCH监听或,不监听PDCCH);UE接收到GTS信号或信令,并从接收GTS信号或信令的最后一个符号的下一个符号开始,或者从接收GTS信号或信令的slot的下一个slot开始,不监听PDCCH。
S402、终端设备接收到睡眠指示信息后,进入睡眠状态。
终端设备进入睡眠状态后,功耗较低,从而可以节省终端设备的功耗。
本申请中,终端设备进入睡眠状态,终端设备可以除接收来自网络设备的PDCCH之外,不接收其它信息或数据;或者终端设备进入睡眠状态后,也可以接收来自网络设备的任何信息或数据。在此不作限制。
S403、所述终端设备在睡眠时间段内向网络设备发送第一信息。该第一信息可以为调度请求(scheduling request,SR)或否定应答(non-acknowledgement,NACK)。
相应地,所述网络设备在所述终端设备处于睡眠时间段内时,接收来自所述终端设备的第一信息。
例如,在一种场景中,终端设备在接收到睡眠指示信息之前,网络设备向终端设备发送物理下行共享信道(physical downlink shared channel,PDSCH),之后,终端设备接收到睡眠指示信息,终端设备进入睡眠状态,或者终端设备接收到睡眠指示信息,终端设备进入睡眠状态,并接收到PDSCH,但终端设备接收或译码PDSCH失败,终端设备需要向网络设备发送NACK;又例如,在另一种场景中,终端设备需要向网络设备发送物理上行共享信道(physical uplink shared channel,PUSCH),在发送PUSCH前需要网络设备进行调度,需要向网络设备发送SR。则终端设备进入在睡眠状态后,即终端设备仍处于睡眠时间段内,终端设备进入唤醒状态,向网络设备发送第一信息。该第一信息为SR或NACK。
S404、所述终端设备发送第一信息后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道。
终端设备发送第一信息后,需要接收网络设备的调度信息,即需要监听PDCCH。具体地,终端设备发送第一信息后,在睡眠时间段内的第一时间段内,监听PDCCH。
例如,在上述重传场景,gNB向UE发送PDCCH(DL grant),该PDCCH指示PDSCH的时频资源、对应的HARQ进程ID,以及用于反馈该PDSCH对应的HARQ-ACK的PUCCH资源。又例如,在上述发送SR的场景,gNB向UE发送PDCCH,该PDCCH包括调度请 求的反馈信息。
S405、所述网络设备向所述终端设备发送所述第一信息对应的第一PDCCH。
可选地,网络设备接收到终端设备发送的第一信息后,可以在睡眠时间段内向该终端设备发送第一PDCCH,或者,在睡眠时间段之后向该终端设备发送第一PDCCH。从而网络设备能够在睡眠时间段内即可发送为该调度请求或NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才发送该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证调度请求对应的物理下行控制信道或NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的发送延时。
在一个实现方式中,所述第一时间段为:
从所述第一信息占用的最后一个符号的下一个符号开始,到所述睡眠时间段结束的时间段;或
从所述第一信息占用的时隙的下一个时隙开始,到所述睡眠时间段结束的时间段;或
从所述第一信息占用的最后一个符号的下一个符号开始,到在所述睡眠时间段内,检测到来自所述网络设备的第一PDCCH的时间段;或
从所述第一信息占用的时隙的下一个时隙开始,到在所述睡眠时间段内,检测到来自所述网络设备的第一PDCCH的时间段。
可选地,所述第一PDCCH承载第一HARQ进程的重传调度指示。可选地,终端设备可能在该睡眠时间段内检测到该第一PDCCH,也可能在睡眠时间段结束后检测到该第一PDCCH。
本申请实施例中,检测到第一PDCCH的时间可以是指成功译码的PDCCH候选(PDCCH candidate)。上述实施例中的第一时间段如果是检测到来自所述网络设备的第一PDCCH的情况,该第一时间段的结束,可以是指成功译码第一PDCCH的时间。后续实施例中对于时间段中的检测到来自所述网络设备的PDCCH的情况均如此。
可选地,终端设备可能在该第一时间段内,监听到为其它请求调度资源的PDCCH。
在该实现方式中,在发送完第一信息后,到整个睡眠时间段结束,终端设备可以进入唤醒状态,不再进入睡眠状态,从而可以保证数据调度不会被延时;或者终端设备在发送第一信息后,如果在睡眠时间段内,接收到来自网络设备的数据调度指示,则继续进入睡眠状态,以节省终端设备的功耗。
在另一个实现方式中,当终端设备被配置了非连续接收(discontinuous reception,DRX)时,所述第一信息为所述NACK,所述第一时间段为:
从下行重传计时器开始计时,到所述睡眠时间段结束的时间段;或
下行重传计时器的计时时间段;或
从下行重传计时器开始计时,到检测到来自所述网络设备的第一PDCCH的时间段。
在该实现方式中,当终端设备配置了非连续接收,则第一时间段为从下行重传计时器开始计时开始,到睡眠时间段结束,终端设备进入唤醒状态,不再进入睡眠状态,可以保证数据调度不会被延时;或者当终端设备配置了非连续接收,则第一时间段为从下行重传计时器开始计时开始,如果在睡眠时间段内,接收到来自网络设备的数据调度指示或者下行重传计时器停止计时,则继续进入睡眠状态,以节省终端设备的功耗。
可选地,所述方法还包括:在所述睡眠时间段内,以及在发送所述第一信息之前,所述终端设备处于睡眠状态。这样可以节省终端设备的功耗。
根据本申请实施例提供的一种通信方法,处于睡眠状态的终端设备可以在需要发送调度请求或NACK时,在睡眠时间段内即可接收为该调度请求或NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才接收该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证调度请求对应的物理下行控制信道或NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的延时。
具体地,上述实施例所示的方法可应用于以下几种场景:
(1)PDSCH混合自动重传(hybrid automatic repeat request,HARQ)重传的调度;
(2)SR pending情况下PUSCH的调度。
在第(1)种场景中,如果终端设备接收或译码PDSCH失败,则需要向网络设备发送NACK;在第(2)种场景中,如果终端设备要向网络设备发送PUSCH,则需要向网络设备发送SR。
本申请实施例规定了区别于常规的GTS规则。概括的讲,终端设备在等待这两类调度的情况下,可以打破检测到GTS信号或信令指示情况下的“跳过GTS duration时间段的PDCCH监听”的规则,而仍然做PDCCH监听。
下面根据具体的数据调度场景,分别对上述实施例所示的通信方法进行进一步详细的描述:
请参阅图5,为本申请实施例提供的另一种通信方法的流程示意图。其中:
S501、网络设备向终端设备发送用于调度PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程。
相应地,终端设备接收用于调度PDSCH的第二PDCCH。
网络设备向终端设备发送第二PDCCH,该第二PDCCH用于调度PDSCH。
可选地,网络设备还向终端设备发送RRC消息,为终端设备配置PDSCH时域资源参数和用于反馈PDSCH的HARQ-ACK的PUCCH资源。
网络设备在指示的PDSCH时域资源上向终端设备发送PDSCH。
S502、所述网络设备向所述终端设备发送PDSCH。
相应地,终端设备接收该PDSCH。
S503、所述网络设备向所述终端设备发送睡眠指示信息。终端设备接收该睡眠指示信息。
其中,该睡眠指示信息可以指示所述终端设备进入睡眠状态。
网络设备通过GTS信号或信令指示终端设备在一段时间段为GTS duration的时间内不做PDCCH监听,即指示终端设备进入睡眠状态。终端设备进入睡眠状态。该步骤的具体实现可参考图4所示实施例的步骤S401,在此不再赘述。
需要说明的是,S502和S503的顺序不作限定,即网络设备可以在发送睡眠指示信息之前,发送PDSCH;也可以在发送睡眠指示信息之后,发送PDSCH。
S504、所述终端设备接收到所述睡眠指示信息后,启动睡眠定时器,并进入睡眠状态。
终端设备通过睡眠启动器来对睡眠时间段进行计时,即所述睡眠定时器的计时时间长 度等于所述睡眠时间段。
S505、在睡眠时间段内,且在所述终端设备译码所述PDSCH失败的情况下,所述终端设备向网络设备发送NACK。
相应地,所述网络设备接收所述NACK。其中,该NACK对应第一HARQ进程。
终端设备接收该PDSCH并译码。如果UE接收并译码PDSCH正确,则UE在PDCCH指示的用于反馈HARQ-ACK的PUCCH资源上反馈ACK,且保持不监听PDCCH直到GTS duration结束。可选地,终端设备可以在GTS duration结束后反馈ACK。
如果终端设备在接收到GTS信号或者信令之后,下行HARQ进程中有任意进程(例如第一HARQ进程)的PDSCH译码出错(即译码不能通过PDSCH的循环冗余校验(cyclic redundancy check,CRC)),且尚未收到重传调度指示,则终端设备反馈NACK后可以不遵守GTS指示。
具体可以根据如下几种实现方式进行PDCCH监听:
在一个实现方式中,如图6所示的终端设备在进入睡眠状态后发送NACK的示意图,终端设备从NACK占用的最后一个符号的下一个符号开始(如图6所示的t 1),或者从NACK占用的slot的下一个slot开始(如图6所示的t 1a),或者从第三时间段结束时开始(如图6所示的t 1b),直到该GTS duration结束,都进行PDCCH监听。其中,该第三时间段从发送NACK的最后一个符号结束时开始。该第三时间段的时长由RRC信令半静态配置,各个下行HARQ进程可以有各自对应的第三时间段计时器。第三时间段的一种可能的名称为HARQ往返时间。
在另一个实现方式中,如图6所示,终端设备从NACK占用的最后一个符号的下一个符号开始(如图6所示的t 2),或者从NACK占用的slot的下一个slot开始(如图6所示的t 2a),或者从第三时间段结束时开始(如图6所示的t 2b),直到检测到该NACK所对应的HARQ进程的第一PDCCH,都进行PDCCH监听。其中,所述第一PDCCH承载第一HARQ进程的重传调度指示。
S506、所述终端设备发送所述NACK后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道。
可选的,本步骤终端设备还可以关闭所述睡眠定时器。
终端设备发送NACK后,在睡眠时间段内的第一时间段内,需要监听第一PDCCH。
终端设备在发送NACK时,关闭睡眠定时器,终端设备进入唤醒状态。
可选地,终端设备在发送NACK时,也可以不关闭睡眠定时器,此时,该睡眠定时器对整个睡眠时间段进行计时,而终端设备启动另一个计时器,对第一时间段进行计时。
S507、所述网络设备向所述终端设备发送所述NACK对应的第一PDCCH。
可选地,网络设备接收到终端设备发送的第一信息后,可以在睡眠时间段内向该终端设备发送第一PDCCH,或者,在睡眠时间段之后向该终端设备发送第一PDCCH。相应的,网络设备能够在睡眠时间段内即可发送为该NACK调度资源的物理下行控制信道,而不需要等睡眠时间段结束才发送该物理下行控制信道,从而实现了在节省终端设备的功耗的同时,保证NACK对应的下行重传数据调度对应的物理下行控制信道尽早接收到,降低了物理下行控制信道的发送延时。
可选地,上述规则在GTS duration大于或等于第一阈值的情况下成立。该第一阈值可以是预先配置或预先定义的。即上述方案是在睡眠时间段大于或等于第一阈值时实施,可以避免频繁地发送睡眠指示信息,以节省发送睡眠指示信息的资源开销。
即,终端设备确定GTS duration大于或等于第一阈值,则所述终端设备在发送所述NACK后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道。
现有技术必须等到GTS duration结束才能调度重传,否则UE无法检测到指示重传的PDCCH,重传时延较大。在该实施例中,gNB可以在“不遵守GTS”时间范围内调度所需要重传的HARQ进程的PDSCH重传,减小了重传时延。
如图7所示的配置了DRX的终端设备在进入睡眠状态后发送NACK的示意图。与图5所示实施例不同的是,该终端设备被配置了DRX参数,第一时间段为从下行重传计时器开始计时,到所述睡眠时间段结束的时间段;或下行重传计时器的计时时间段;或从下行重传计时器开始计时,到接收到来自所述网络设备的第一PDCCH的时间段。
具体地,gNB通过给UE发送携带了消息元素(information element,IE)——DRX-Config的RRC消息,为UE配置包括下行HARQ往返时间计时器(drx-HARQ-RTT-TimerDL)、下行重传计时器(drx-RetransmissionTimerDL)参数等在内的DRX参数。可选的,如果gNB为UE配置了DRX参数,则gNB在UE的DRX的激活时间(active time)期间向UE发送PDCCH。
被配置了DRX参数的终端设备在接收或译码PDSCH失败时,并在发送NACK后,可以根据如下几种实现方式进行PDCCH监听:
在一个实现方式中,从该NACK所对应的HARQ进程的下行重传计时器开始计时,直到该GTS duration结束,监听PDCCH(如图7所示的t 1)。
在另一个实现方式中,在该NACK所对应的HARQ进程的下行重传计时器计时时间段内,监听PDCCH(如图7所示的t 3)。
在又一个实现方式中,从该NACK所对应的HARQ进程的下行重传计时器开始计时,到检测到该NACK所对应的HARQ进程的第一PDCCH,进行PDCCH监听(如图7所示的t 2)。
在该实施例中,下行重传计时器和下行HARQ往返时间计时器对应上述的第一HARQ进程。
可选地,上述规则在GTS duration大于或等于第二阈值的情况下成立。该第二阈值可以是预先配置或预先定义的。即上述方案是在睡眠时间段大于或等于第二阈值时实施,可以避免频繁地发送睡眠指示信息,以节省发送睡眠指示信息的资源开销。
现有技术必须等到GTS duration结束才能调度重传,否则UE无法检测到指示重传的PDCCH,重传时延较大。在该实施例中,gNB可以在“不遵守GTS”时间范围内调度所述需要重传的HARQ进程的PDSCH重传,减小了重传时延。
请参阅图8,为本申请实施例提供的又一种通信方法的流程示意图。其中:
S801、网络设备向终端设备发送睡眠指示信息。终端设备接收该睡眠指示信息。
所述睡眠指示信息可以指示所述终端设备进入睡眠状态。
该步骤的具体实现可参考图4所示实施例的步骤S401,或者图5所示实施例的步骤 S503,在此不再赘述。
S802、所述终端设备接收到所述睡眠指示信息后,启动睡眠定时器,并进入睡眠状态。
所述睡眠定时器的计时时间长度等于所述睡眠时间段。
网络设备向终端设备发送GTS信号或信令,指示终端设备在配置的其中一个GTS duration时间段内,不做PDCCH监听。UE接收到GTS,并从接收GTS的最后一个符号的下一个符号开始,或者从接收到GTS的slot的下一个slot开始,不监听PDCCH。该步骤的具体实现可参考图5所示实施例的步骤S504,在此不再赘述。
可选地,在S801之前,网络设备向终端设备发送用于SR的物理上行控制信道(physical uplink control channel,PUCCH)资源。
可选地,网络设备通过给UE发送RRC消息,为UE配置一个或多个GTS duration,以及一组用于SR的PUCCH资源。
S803、处于睡眠状态的终端设备在睡眠时间段内向网络设备发送调度请求。
本步骤中,终端设备还可以关闭所述睡眠定时器。
相应地,网络设备接收该调度请求。
终端设备有上行数据需要发送。则终端设备在配置的一组SR资源中的一个资源上发送SR。
S804、发送所述调度请求后,所述终端设备在所述睡眠时间段内的第一时间段内,监听物理下行控制信道。
如图9所示的终端设备在进入睡眠状态后发送调度请求的示意图,终端设备可以根据如下实现方式进行PDCCH监听:
在一个实现方式中,终端设备从SR占用的最后一个符号的下一个符号开始(如图9所示的t 1),直到GTS duration结束,进行PDCCH监听。
在另一个实现方式中,从SR占用的slot的下一个slot开始(如图9所示的t 2),直到GTS duration结束,进行PDCCH监听。
在另一个实现方式中,从第四时间段结束时开始(如图9所示的t 3),直到GTS duration结束,进行PDCCH监听。其中,该第四时间段从SR占用的最后一个符号的结束时开始。该第四时间段的时长由RRC信令半静态配置。第四时间段的一种可能的名称为调度请求往返时间。
S805、所述网络设备向所述终端设备发送所述调度请求对应的第一PDCCH。
该步骤的具体实现可参考图4所示实施例的步骤S405,或者图5所示实施例的步骤S507,在此不再赘述。
可选地,如果所述第一时间段的结束时刻在所述睡眠时间段的结束时刻之前,所述终端设备在所述第一时间段结束时刻到所述睡眠时间段的结束时刻处于所述睡眠状态。这样可以尽量地节省终端设备的功耗。
可选地,上述规则在GTS duration大于或等于第三阈值的情况下成立。该第三阈值可以是预先配置或预先定义的。
现有技术必须等到GTS duration结束才能调度UE所需的PUSCH,否则UE无法检测到指示PUSCH的PDCCH,SR时延较大。当GTS duration大于某个阈值,以至于对SR调 度时延的影响过大的情况下,gNB可以在图9所示的t时间范围内调度UE所需的PUSCH,减小了SR时延。
本实施例提供了用于实现上述方法实施例的装置。需要说明的是,该实施例中的具体细节可以参照上文中的描述,本实施例不再赘述。
基于上述实施例中的通信方法的同一构思,如图10所示,本申请实施例还提供一种通信装置1000,该通信装置可用于实现上述图4、图5、图8所示的通信方法中。该通信装置1000可以是如图3所示的终端设备200,也可以是应用于该终端设备200的一个部件(例如芯片)。该通信装置1000包括收发器101和处理器102。其中:
收发器101,用于在睡眠时间段内向网络设备发送第一信息,所述第一信息为调度请求或否定应答NACK;
处理器102,用于在所述收发器送所述第一信息后,在所述睡眠时间段内的第一时间段内,监听物理下行控制信道PDCCH。
在一个实现方式中,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
所述收发器101还用于,接收用于调度PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
所述收发器101还用于,在所述终端设备译码所述PDSCH失败的情况下,向网络设备发送所述NACK。
在又一个实现方式中,所述收发器101还用于,接收来自所述网络设备的睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入所述睡眠状态。
在又一个实现方式中,所述处理器102还用于,在所述收发器接收到来自所述网络设备的进入睡眠指示信息后,启动睡眠定时器,所述睡眠定时器的计时时间长度等于所述睡眠时间段。
在又一个实现方式中,所述收发器101还用于,向网络设备发送第一信息;
所述处理器102还用于,关闭所述睡眠定时器。
有关上述收发器101和处理器102更详细的描述可以直接参考上述图4、图5、图8所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
需要说明的是,上述收发器可以是集成的、具有收发功能的器件,也可以是由独立的、分别具有接收功能的接收器和具有发送功能的发射器组成,逻辑上称为“收发器”。
基于上述实施例中的通信方法的同一构思,如图11所示,本申请实施例还提供一种通信装置1100,该通信装置可应用于上述图4、图5、图8所示的通信方法中。该通信装置1100可以是如图3所示的网络设备100,也可以是应用于该网络设备100的一个部件(例如芯片)。该通信装置1100包括:收发器111。其中:
所述装置1100包括:
收发器111,用于向终端设备发送睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入睡眠状态;
所述收发器111还用于,在所述收发器向终端设备发送睡眠指示信息后,且所述终端设备处于睡眠时间段内时,接收来自所述终端设备的第一信息;
所述收发器111还用于,向所述终端设备发送所述第一信息对应的第一物理下行控制信道PDCCH。
在一个实现方式中,所述收发器111还用于,在所述睡眠时间段内向所述终端设备发送所述第一PDCCH,或者,在所述睡眠时间段之后向所述终端设备发送所述第一PDCCH。
在又一个实现方式中,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
所述收发单元111还用于,向所述终端设备发送用于调度PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
所述收发单元111还用于,在所述终端设备译码所述PDSCH失败的情况下,接收所述NACK。
有关上述收发器111更详细的描述可以直接参考上述图4、图5、图8中所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
需要说明的是,上述收发器可以是集成的、具有收发功能的器件,也可以是由独立的、分别具有接收功能的接收器和具有发送功能的发射器组成,逻辑上称为“收发器”。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以分别实现上述图4、图5、图8所示实施例中终端设备和网络设备提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。该存储器也可以用于存储数据。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
可以理解的是,上述各个通信装置实施例中的单元也可以称为模块。
图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元121和处理单元122。收发单元121也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。处理单元122也可以称为处理器,处理单板,处理模块、处理装置等。该收发单元121用于实现图10所示实施例中收发单元101的功能,处理单元122用于实现图10所示实施例中处理单元102的功能。
例如,在一个实施例中,收发单元121用于执行图4所示实施例中的步骤S401、S403中的终端设备的功能;以及处理单元122用于执行图4所示实施例中的步骤S402和S404。
又例如,在一个实施例中,收发单元121用于执行图5所示实施例中的步骤S501~S503以及S505中终端设备的功能;以及处理单元122用于执行图5所示实施例中的步骤S504和S506。
又例如,在一个实施例中,收发单元121用于执行图8所示实施例中的步骤S801、S803中的终端设备的功能;以及处理单元122用于执行图8所示实施例中的步骤S802和S804。
图13示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及132部分,该射频信号收发及转换部分又包括收发单元131部分。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;132部分主要用于基带处理,对网络设备进行控制等。收发单元131也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。132部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制源网络设备执行上述图4、图5、图8中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。收发单元131可用于实现图11所示实施例中发送单元111和接收单元112的功能。
132部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多 个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,收发单元131用于执行图4所示实施例中的步骤S401、S403中的网络设备的功能;132部分用于执行图4所示实施例中的步骤S405的功能。
又例如,在另一个实施例中,收发单元131用于执行图5所示实施例中的步骤S501~S503以及S505中网络设备的功能;132部分用于执行图5所示实施例中的步骤S507。
又例如,在一个实施例中,收发单元131用于执行图8所示实施例中的步骤S801、S803中的网络设备的功能;132部分用于执行图8所示实施例中的步骤S805的功能。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例还提供了一种通信系统,包括上述的通信装置。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (36)

  1. 一种通信方法,其特征在于,包括:在睡眠时间段内向网络设备发送第一信息,所述第一信息为调度请求或否定应答NACK;
    发送所述第一信息后,在第一时间段内,监听物理下行控制信道PDCCH。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间段为:
    从所述第一信息占用的最后一个符号的下一个符号开始,到所述睡眠时间段结束的时间段;或
    从所述第一信息占用的时隙的下一个时隙开始,到所述睡眠时间段结束的时间段。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息为所述NACK,所述NACK对应第一混合自动重传请求HARQ进程;
    所述第一时间段是:从下行重传计时器开始计时,到所述睡眠时间段结束的时间段。
  4. 如权利要求1所述的方法,其特征在于,所述第一时间段为:
    从所述第一信息占用的最后一个符号的下一个符号开始,到在所述睡眠时间段内,所述终端设备检测到来自所述网络设备的第一PDCCH的时间段;或
    从所述第一信息占用的时隙的下一个时隙开始,到在所述睡眠时间段内,检测到来自所述网络设备的第一PDCCH的时间段。
  5. 如权利要求1所述的方法,其特征在于,所述第一信息为所述NACK,所述NACK对应第一混合自动重传请求HARQ进程;
    所述第一时间段是:
    下行重传计时器的计时时间段;或
    从下行重传计时器开始计时,到检测到来自所述网络设备的第一PDCCH的时间段。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
    所述终端设备向网络设备发送第一信息之前,还包括:
    所述终端设备接收用于调度物理下行共享信道PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
    所述终端设备向网络设备发送第一信息,包括:
    在所述终端设备译码所述PDSCH失败的情况下,所述终端设备向网络设备发送所述NACK。
  7. 如权利要求3或5所述的方法,其特征在于,所述终端设备在下行重传计时器开始计时前的第二时间段处于所述睡眠状态,所述第二时间段为下行HARQ往返时间计时器计时时间段,所述下行重传计时器和所述下行HARQ往返时间计时器对应第一HARQ进程。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述睡眠时间段大于或等于阈值。
  9. 如权利要求1~8任一项所述的方法,其特征在于,所述终端设备在睡眠时间段内向网络设备发送第一信息之前,还包括:
    所述终端设备接收来自所述网络设备的睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入所述睡眠状态。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    接收到来自所述网络设备的进入睡眠指示信息后,所述终端设备启动睡眠定时器,所述睡眠定时器的计时时间长度等于所述睡眠时间段。
  11. 如权利要求10所述的方法,其特征在于,还包括:
    所述终端设备向网络设备发送第一信息并且关闭所述睡眠定时器。
  12. 如权利要求4或5所述的方法,其特征在于,
    如果所述第一时间段的结束时刻在所述睡眠时间段的结束时刻之前,所述终端设备在所述第一时间段结束时刻到所述睡眠时间段的结束时刻处于睡眠状态。
  13. 一种通信方法,其特征在于,包括:
    向终端设备发送睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入睡眠状态;
    在向终端设备发送睡眠指示信息后,且所述终端设备处于睡眠时间段内时,接收来自所述终端设备的第一信息;
    向所述终端设备发送所述第一信息对应的第一物理下行控制信道PDCCH。
  14. 如权利要求13所述的方法,其特征在于,所述向所述终端设备发送所述第一信息对应的第一PDCCH,包括:
    在所述睡眠时间段内向所述终端设备发送所述第一PDCCH,或者,在所述睡眠时间段之后向所述终端设备发送所述第一PDCCH。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
    所述网络设备接收来自所述终端设备的第一信息之前,还包括:
    所述网络设备向所述终端设备发送用于调度PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
    所述网络设备接收来自所述终端设备的第一信息,包括:
    在所述终端设备译码所述PDSCH失败的情况下,所述网络设备接收所述NACK。
  16. 一种通信装置,其特征在于,包括:
    收发器,用于在睡眠时间段内向网络设备发送第一信息,所述第一信息为调度请求或否定应答NACK;
    处理器,用于在所述收发器发送所述第一信息后,在第一时间段内,监听物理下行控制信道PDCCH。
  17. 如权利要求16所述的装置,其特征在于,所述第一时间段为:
    从所述第一信息占用的最后一个符号的下一个符号开始,到所述睡眠时间段结束的时间段;或
    从所述第一信息占用的时隙的下一个时隙开始,到所述睡眠时间段结束的时间段。
  18. 如权利要求16或17所述的装置,其特征在于,所述第一信息为所述NACK,所 述NACK对应第一混合自动重传请求HARQ进程;
    所述第一时间段是:从下行重传计时器开始计时,到所述睡眠时间段结束的时间段。
  19. 如权利要求16所述的装置,其特征在于,所述第一时间段为:
    从所述第一信息占用的最后一个符号的下一个符号开始,到在所述睡眠时间段内,所述处理器检测到来自所述网络设备的第一PDCCH的时间段;或
    从所述第一信息占用的时隙的下一个时隙开始,到在所述睡眠时间段内,所述处理器检测到来自所述网络设备的第一PDCCH的时间段。
  20. 如权利要求16所述的装置,其特征在于,所述第一信息为所述NACK,所述NACK对应第一混合自动重传请求HARQ进程;
    所述第一时间段是:
    下行重传计时器的计时时间段;或
    从下行重传计时器开始计时,到检测到来自所述网络设备的第一PDCCH的时间段。
  21. 如权利要求16~20任一项所述的装置,其特征在于,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
    所述收发器还用于,接收用于调度物理下行共享信道PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
    所述收发器还用于,在所述处理器译码所述PDSCH失败的情况下,向网络设备发送所述NACK。
  22. 如权利要求18或20所述的装置,其特征在于,所述装置为所述终端设备或所述装置为所述终端设备中的部件,所述终端设备在下行重传计时器开始计时前的第二时间段处于所述睡眠状态,所述第二时间段为下行HARQ往返时间计时器计时时间段,所述下行重传计时器和所述下行HARQ往返时间计时器对应第一HARQ进程。
  23. 如权利要求16~22任一项所述的装置,其特征在于,所述睡眠时间段大于或等于阈值。
  24. 如权利要求16~23任一项所述的装置,其特征在于:
    所述收发器还用于,接收来自所述网络设备的睡眠指示信息,所述睡眠指示信息用于指示进入所述睡眠状态。
  25. 如权利要求24所述的装置,其特征在于:
    所述处理器还用于,所述收发器接收到来自所述网络设备的进入睡眠指示信息后,启动睡眠定时器,所述睡眠定时器的计时时间长度等于所述睡眠时间段。
  26. 如权利要求25所述的装置,其特征在于:
    所述收发器还用于,向网络设备发送第一信息;
    所述处理器还用于,关闭所述睡眠定时器。
  27. 如权利要求19或20所述的装置,其特征在于,所述装置为所述终端设备或所述装置为所述终端设备中的部件,如果所述第一时间段的结束时刻在所述睡眠时间段的结束时刻之前,所述终端设备在所述第一时间段结束时刻到所述睡眠时间段的结束时刻处于睡眠状态。
  28. 一种通信装置,其特征在于,包括:
    收发器,用于向终端设备发送睡眠指示信息,所述睡眠指示信息用于指示所述终端设备进入睡眠状态;
    所述收发器还用于,在所述收发器向终端设备发送睡眠指示信息后,且所述终端设备处于睡眠时间段内时,接收来自所述终端设备的第一信息;
    所述收发器还用于,向所述终端设备发送所述第一信息对应的第一物理下行控制信道PDCCH。
  29. 如权利要求28所述的装置,其特征在于:
    所述收发器还用于,在所述睡眠时间段内向所述终端设备发送所述第一PDCCH,或者,在所述睡眠时间段之后向所述终端设备发送所述第一PDCCH。
  30. 如权利要求28或29所述的装置,其特征在于,所述第一信息为所述NACK,所述NACK对应第一HARQ进程,所述第一PDCCH承载所述第一HARQ进程的重传调度指示,其中,
    所述收发器还用于,向所述终端设备发送用于调度PDSCH的第二PDCCH,其中,所述PDSCH对应所述第一HARQ进程;
    所述收发器还用于,在所述终端设备译码所述PDSCH失败的情况下,接收所述NACK。
  31. 一种通信装置,包括处理器,用于实现权利要求1~12任一项所述的通信方法。
  32. 一种通信装置,包括处理器,用于实现权利要求13~15任一项所述的通信方法。
  33. 一种计算机程序产品,用于当在计算设备上执行时,实现如权利要求1~12任一项所述的方法或者13~15中任一项所述的方法。
  34. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1~12任一项所述的方法或者13~15中任一项所述的方法。
  35. 一种通信装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1~12中任一项所述的方法。
  36. 一种通信装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求13~15中任一项所述的方法。
PCT/CN2020/071543 2019-01-11 2020-01-10 通信方法及装置 WO2020143809A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738619.4A EP3905794A4 (en) 2019-01-11 2020-01-10 COMMUNICATION METHOD AND DEVICE
US17/371,654 US20210345248A1 (en) 2019-01-11 2021-07-09 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910027928.1 2019-01-11
CN201910027928.1A CN111436094A (zh) 2019-01-11 2019-01-11 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,654 Continuation US20210345248A1 (en) 2019-01-11 2021-07-09 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143809A1 true WO2020143809A1 (zh) 2020-07-16

Family

ID=71521426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071543 WO2020143809A1 (zh) 2019-01-11 2020-01-10 通信方法及装置

Country Status (4)

Country Link
US (1) US20210345248A1 (zh)
EP (1) EP3905794A4 (zh)
CN (1) CN111436094A (zh)
WO (1) WO2020143809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885688A (zh) * 2020-07-30 2020-11-03 北京神州数码云科信息技术有限公司 一种基于低延时技术的工业物联网中的工业监控数据的传输方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564167B2 (en) * 2019-04-01 2023-01-24 Apple Inc. Configurable power saving signal with multiple functionalities in 5G NR
WO2020219984A1 (en) * 2019-04-25 2020-10-29 Lutron Technology Company Llc Control device having a secondary radio for waking up a primary radio
CN116114316A (zh) * 2020-08-14 2023-05-12 株式会社Ntt都科摩 终端、基站以及监视方法
WO2022126482A1 (zh) * 2020-12-17 2022-06-23 Oppo广东移动通信有限公司 一种控制信道检测方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155654A (zh) * 2010-10-12 2013-06-12 瑞典爱立信有限公司 用于接收器的微休眠模式控制
CN108307406A (zh) * 2016-09-30 2018-07-20 电信科学技术研究院 一种非连续接收的方法及相关装置
WO2018213152A1 (en) * 2017-05-15 2018-11-22 Qualcomm Incorporated Synchronization channel for a wake-up receiver (wur) in a communication device
US20180351659A1 (en) * 2017-06-02 2018-12-06 Apple Inc. Methods, Systems and Apparatus for Mitigating Wireless Connection Degradation Due To Wireless Charging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421148B (zh) * 2010-09-28 2016-03-30 华为技术有限公司 一种控制多种通信系统实现通信的方法和用户设备
US20140086110A1 (en) * 2012-09-27 2014-03-27 Lg Electronics Inc. Method for counting timer for retransmission in wireless communication system and apparatus therefor
TWI568295B (zh) * 2013-09-30 2017-01-21 蘋果公司 用於低頻寬應用程式之延遲及附帶重傳
EP3334217B1 (en) * 2015-09-10 2021-11-10 Huawei Technologies Co., Ltd. Data transmission method, terminal and ran device
EP3226456B1 (en) * 2016-04-01 2020-06-03 Panasonic Intellectual Property Corporation of America Asynchronous retransmission protocol
PT3432660T (pt) * 2016-04-01 2021-06-03 Huawei Tech Co Ltd Método de agendamento de recurso e equipamento de utilizador

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155654A (zh) * 2010-10-12 2013-06-12 瑞典爱立信有限公司 用于接收器的微休眠模式控制
CN108307406A (zh) * 2016-09-30 2018-07-20 电信科学技术研究院 一种非连续接收的方法及相关装置
WO2018213152A1 (en) * 2017-05-15 2018-11-22 Qualcomm Incorporated Synchronization channel for a wake-up receiver (wur) in a communication device
US20180351659A1 (en) * 2017-06-02 2018-12-06 Apple Inc. Methods, Systems and Apparatus for Mitigating Wireless Connection Degradation Due To Wireless Charging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "PDCCH Monitoring during Adaptive UL Retransmission Grants", 3GPP TSG-RAN WG2 #79 R2-124070, 17 August 2012 (2012-08-17), XP050665784, DOI: 20200326095003A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885688A (zh) * 2020-07-30 2020-11-03 北京神州数码云科信息技术有限公司 一种基于低延时技术的工业物联网中的工业监控数据的传输方法及系统

Also Published As

Publication number Publication date
EP3905794A4 (en) 2022-03-09
CN111436094A (zh) 2020-07-21
US20210345248A1 (en) 2021-11-04
EP3905794A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2020143809A1 (zh) 通信方法及装置
WO2021013144A1 (zh) 通信方法及装置
KR102301474B1 (ko) Lte 라이센스 지원형 액세스 동작에서의 drx 핸들링
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US10594447B2 (en) Data transmission method, terminal, and ran device
TWI603646B (zh) 用於上行鏈路下行鏈路重組態的不連續接收操作
JP6174249B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2021023076A1 (zh) 一种通信方法及装置
WO2021170136A1 (zh) 一种通信方法及装置
WO2020135181A1 (zh) Dci的传输方法、终端和网络侧设备
WO2020063782A1 (zh) 一种通信方法及装置
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
US20230300743A1 (en) Indication information validation method and apparatus, terminal, and readable storage medium
US9686816B2 (en) Pause signals for full-duplex wireless networks
WO2019218806A1 (zh) 一种降低sar值的方法及装置、计算机存储介质
WO2019096129A1 (zh) 一种波束配置方法和装置
WO2020200187A1 (zh) 通信方法及装置
US20230318755A1 (en) Communication processing method and apparatus and communication device
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2020143751A1 (zh) 通信方法和通信装置
WO2023098574A1 (zh) 一种传输指示方法及通信装置
WO2022222879A1 (zh) Pdsch传输、接收方法、装置及通信设备
WO2023030037A1 (zh) 信息监听的方法和装置
WO2024032596A1 (zh) 一种数据传输的方法及通信装置
WO2024032222A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738619

Country of ref document: EP

Effective date: 20210728