WO2021170136A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021170136A1
WO2021170136A1 PCT/CN2021/078432 CN2021078432W WO2021170136A1 WO 2021170136 A1 WO2021170136 A1 WO 2021170136A1 CN 2021078432 W CN2021078432 W CN 2021078432W WO 2021170136 A1 WO2021170136 A1 WO 2021170136A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
information
terminal device
harq process
resource
Prior art date
Application number
PCT/CN2021/078432
Other languages
English (en)
French (fr)
Inventor
娄崇
范强
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21760668.0A priority Critical patent/EP4087168A4/en
Publication of WO2021170136A1 publication Critical patent/WO2021170136A1/zh
Priority to US17/896,175 priority patent/US20230006777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • hybrid automatic repeat request In wireless communication, the transmitted signal has to go through a complicated propagation environment. To ensure the quality of signal transmission, hybrid automatic repeat request (HARQ) is introduced.
  • HARQ hybrid automatic repeat request
  • HARQ is a technology that combines forward error correction (FEC) and automatic repeat request (ARQ) methods.
  • FEC allows the receiving end to correct some errors by adding redundant information, thereby reducing the number of retransmissions; for errors that cannot be corrected by FEC, the receiving end will request the sending end to retransmit data through the ARQ mechanism.
  • the receiving end can use the error detection code to detect whether the received data packet is successfully decoded; if the decoding is successful, the receiving end will send a positive confirmation (acknowledgement, ACK) to the sending end, and the sending end will receive the ACK After that, the next data packet will be sent; if the decoding fails, the receiving end will send a negative acknowledgement (NACK) to the sending end, and the sending end will retransmit the same data after receiving the NACK.
  • ACK positive confirmation
  • NACK negative acknowledgement
  • the embodiments of the present application provide a communication method and device for implementing flexible HARQ feedback, so as to adapt to service requirements of different scenarios, reduce unnecessary HARQ feedback overhead, and reduce power consumption of terminal equipment.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device.
  • the terminal device receives the first information from the network device and determines the HARQ feedback mode according to the first information.
  • the HARQ feedback mode includes ignoring ACK and/or NACK feedback; and, the terminal The device performs feedback processing on the first HARQ process according to the HARQ feedback mode.
  • the HARQ feedback method adopted by the terminal device is controlled by the network device, so that the terminal device can be flexibly controlled to adopt different HARQ feedback methods for different scenarios, which is convenient to adapt to business needs, effectively reduce the power consumption of the terminal device and save air interface resources .
  • the terminal device performs feedback processing on the first HARQ process according to the HARQ feedback mode, including: the HARQ feedback mode includes ignoring the ACK feedback, the terminal device receives the data packet from the first HARQ process, and the data packet If the decoding is successful, no ACK is fed back to the first HARQ process for the data packet; or, the HARQ feedback method includes ignoring NACK feedback, and the terminal device receives a data packet from the first HARQ process, and the data packet decoding fails, then the data packet is decoded.
  • the HARQ feedback mode includes ignoring the ACK feedback
  • the terminal device receives the data packet from the first HARQ process, and the data packet If the decoding is successful, no ACK is fed back to the first HARQ process for the data packet; or, the HARQ feedback method includes ignoring NACK feedback, and the terminal device receives a data packet from the first HARQ process, and the data packet decoding fails, then the data packet is decoded.
  • the packet does not feed back NACK to the first HARQ process; or, if the terminal device does not receive a data packet from the first HARQ process, it does not feed back NACK to the first HARQ process; or, the HARQ feedback method includes ignoring ACK and NACK feedback, and the terminal device For the data packet, no ACK and NACK are fed back to the first HARQ process.
  • the successful decoding of the data packet includes that at least one CBG in the data packet is successfully decoded.
  • feeding back ACK or not feeding back ACK to the data packet means feeding back ACK or not feeding back ACK to the successfully decoded CBG.
  • the decoding failure of the data packet includes: decoding failure of at least one CBG in the data packet.
  • feeding back NACK or not feeding back NACK for the data packet means feeding back NACK or not feeding back NACK for the CBG that fails to decode.
  • the first information includes indication information
  • the indication information is used to indicate the HARQ feedback mode.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource;
  • the terminal device receiving the indication information from the network device includes: the terminal device receives the RRC message from the network device, the RRC message includes the indication information, and the RRC message Used to configure SPS resources; or, the terminal device receives DCI from the network device, the DCI includes indication information, and the DCI is used to activate or reactivate the SPS resource.
  • the first HARQ process belongs to the HARQ process corresponding to the dynamic scheduling resource; the terminal device receives the indication information from the network device, including: the terminal device receives the DCI from the network device, the DCI includes the indication information, and the DCI is used for Scheduling dynamic scheduling resources.
  • the terminal device receiving the indication information from the network device includes: the terminal device receives a first message from the network device, the first message includes the indication information; wherein, the first message is the PDCP layer or the RLC layer or MAC layer or physical layer control messages.
  • the terminal device receiving the instruction information from the network device includes: the terminal device receives a data packet from the network device, the data packet includes the instruction information; wherein the data packet is sent through the first HARQ process.
  • the first HARQ process belongs to the HARQ process corresponding to the first service;
  • the terminal device receiving the indication information from the network device includes: the terminal device receives the RRC message from the network device, the RRC message includes the indication information, RRC The message is used to configure the logical channel corresponding to the first service.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource;
  • the first information includes an RRC message, the RRC message is used to configure the PUCCH resource, and the PUCCH resource is used to carry feedback information of the HARQ process corresponding to the SPS resource;
  • the terminal device determining the HARQ feedback mode according to the first information includes: the terminal device determines the HARQ feedback mode according to whether the configuration information of the PUCCH resource is carried in the RRC message.
  • the first information includes DCI; the terminal device determining the HARQ feedback mode according to the first information includes: determining the HARQ feedback mode according to the format or the scrambling mode of the DCI.
  • the HARQ feedback mode is determined by the DCI format or the scrambling mode, so there is no need to indicate by other additional information, which can effectively save resources.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource, and DCI is used to indicate the activation or reactivation of the SPS resource; or, the first HARQ process belongs to the HARQ process corresponding to the dynamic scheduling resource, and the DCI is used for scheduling Dynamically schedule resources.
  • the first HARQ process belongs to the HARQ process corresponding to the first service; the first information includes preset priority information; the terminal device determines the HARQ feedback mode, including: the terminal device according to the logical channel corresponding to the first service The priority and preset priority information of the, determine the HARQ feedback mode.
  • the method further includes: the terminal device receives second information from the network device, the second information is used to indicate at least one HARQ process applicable to the HARQ feedback mode, and the at least one HARQ process includes the first HARQ process.
  • the embodiments of the present application provide a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device. Taking this method applied to a network device as an example, in this method, the network device determines the HARQ feedback mode and sends first information to the terminal device. The first information is used by the terminal device to determine the HARQ feedback mode; the HARQ feedback mode includes ignoring ACK and / Or NACK.
  • the network device can control the HARQ feedback mode adopted by the terminal device through the first information, thereby enabling flexible HARQ feedback of the terminal device, effectively reducing the power consumption of the terminal device and saving air interface resources.
  • the first information includes indication information
  • the indication information is used to indicate the HARQ feedback mode.
  • the network device sending instruction information to the terminal device includes: the network device sends an RRC message to the terminal device, the RRC message includes the instruction information, and the RRC message is used to configure SPS resources; or, the network device sends to the terminal device DCI, DCI includes indication information, and DCI is used to activate or reactivate SPS resources.
  • the network device sending instruction information to the terminal device includes: the network device sends DCI to the terminal device, the DCI includes the instruction information, and the DCI is used to schedule dynamic scheduling resources.
  • the network device sending instruction information to the terminal device includes: the network device sends a first message to the terminal device, the first message includes the instruction information; where the first message is the PDCP layer or the RLC layer or the MAC layer Or physical layer control messages.
  • the network device sending instruction information to the terminal device includes: the network device sends a data packet to the terminal device, and the data packet includes the instruction information.
  • the network device sending instruction information to the terminal device includes: the network device sends an RRC message to the terminal device, the RRC message includes the instruction information, and the RRC message is used to configure a logical channel corresponding to the first service.
  • the first information includes an RRC message
  • the RRC message is used to configure PUCCH resources
  • the PUCCH resource is used to carry feedback information of the HARQ process corresponding to the SPS resource; when the RRC message does not carry the configuration information of the PUCCH resource, The RRC message is used to indicate the HARQ feedback mode.
  • the first information includes DCI
  • the format or scrambling mode of the DCI is used to indicate the HARQ feedback mode.
  • DCI is used to indicate activation or reactivation of SPS resources; alternatively, DCI is used to schedule dynamic scheduling resources.
  • the first information includes preset priority information.
  • the method further includes: the network device sends second information to the terminal device, where the second information is used to indicate at least one HARQ process to which the HARQ feedback mode is applicable.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device.
  • the terminal device receives configuration information from a network device, and the configuration information is used to configure a first SPS resource and a first HARQ resource corresponding to the first SPS resource; It is determined that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource; it is in the DRX active state in the first time period, and the start time of the first time period is based on the first time period.
  • a SPS resource is determined.
  • the terminal device when the feedback information cannot be sent on the first HARQ resource corresponding to the first SPS resource, the terminal device can be in the DRX active state within the first time period, so as to receive the information indicating the feedback information sent by the network device in time.
  • the DCI of the retransmission resource ensures that the feedback information of the HARQ process corresponding to the first SPS resource can be sent to the network device in time, thereby improving the efficiency of downlink transmission.
  • the method further includes: receiving DCI from the network device, where the DCI is used to indicate a second HARQ resource, and the second HARQ resource is used to carry the feedback information; the The end time of the first time period is the receiving time of the DCI.
  • being in the DRX active state during the first time period includes: entering the DRX active state at the beginning of the first time period, and entering DRX sleep at the end of the first time period state.
  • being in the DRX active state in the first time period includes: starting the timer corresponding to the HARQ process at the beginning of the first time period, and in the first time period Stop the timer at the end time; wherein, when the timer is running, the terminal device is in the DRX active state.
  • the timer is an uplink DRX retransmission timer.
  • the method further includes: determining that the PDSCH is successfully received on the first SPS resource.
  • the start time of the first time period is determined according to the first SPS resource, including: the start time of the first time period is determined according to the first SPS resource The time domain resources occupied by the received PDSCH are determined.
  • the start moment of the first time period is any of the following moments: the start moment of the time domain resources occupied by the PDSCH; the start moment of the time domain resources occupied by the PDSCH The time after the time is shifted by m time units; the end time of the time domain resources occupied by the PDSCH; the end time of the time domain resources occupied by the PDSCH is shifted by n time units; where m, n are Integer.
  • the HARQ feedback mode of the HARQ process is to ignore NACK feedback.
  • determining that HARQ feedback information cannot be sent on the first HARQ resource includes: determining that the first HARQ resource overlaps with a first resource, and the first resource is used to transmit downlink information; Or, it is determined that the first HARQ resource overlaps with the second resource, the second resource is used to transmit uplink information, and the priority of the HARQ feedback information is lower than the priority of the uplink information.
  • the embodiments of the present application provide a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • the network device sends configuration information to a terminal device, where the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource; determine The feedback information of the HARQ process corresponding to the first SPS resource cannot be received on the first HARQ resource; the DCI is sent to the terminal device, where the DCI is used to indicate dynamic scheduling resources, and the dynamic scheduling resources are the same as the There is overlap in the first SPS resources.
  • the network device when it determines that it cannot receive the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource, it can indicate to the terminal device that there is a dynamic scheduling resource that overlaps the first SPS resource; because the network device can Flexible indication of the HARQ resource corresponding to the dynamic scheduling resource can effectively avoid the problem that the terminal device cannot send the feedback information to the network device in time, and improve the efficiency of downlink transmission.
  • the DCI is also used to indicate a third HARQ resource
  • the third HARQ resource is used to carry feedback information of the HARQ process corresponding to the dynamic scheduling resource.
  • determining that the HARQ process feedback information corresponding to the first SPS resource cannot be received on the first HARQ resource includes: determining that the first HARQ resource overlaps with the first resource, so The first resource is used to transmit downlink information; or, it is determined that the first HARQ resource overlaps with the second resource, the second resource is used to transmit uplink information, and the HARQ feedback information has a lower priority than the uplink The priority of the information.
  • the present application provides a communication device.
  • the communication device may be a terminal device or a chip set inside the terminal device.
  • the communication device has the function of implementing the first aspect or the third aspect.
  • the communication device includes a module or unit or means corresponding to the steps involved in the first or third aspect.
  • the function Or the unit or means can be realized by software, or by hardware, and can also be realized by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive Configuration information of the network device; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the first aspect or the third aspect described above.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any of the above-mentioned first or third aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions for realizing the functions related to the first aspect or the third aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the first aspect or the third aspect. method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect or the third aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the first aspect or the third aspect. method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit, and perform any of the above-mentioned first or third aspects.
  • the present application provides a communication device.
  • the communication device may be a network device or a chip set inside the network device.
  • the communication device is capable of implementing the functions related to the second aspect or the fourth aspect.
  • the communication device includes modules or units or means corresponding to the steps related to the second or fourth aspect.
  • the functions or units Or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to communicate with the terminal.
  • the device sends system information; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the second or fourth aspect described above.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any of the above-mentioned second or fourth aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions for realizing the functions related to the second aspect or the fourth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the second aspect or the fourth aspect. method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the second aspect or the fourth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the second aspect or the fourth aspect. method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit, and perform any of the above-mentioned second or fourth aspects.
  • the present application provides a computer-readable storage medium that stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer executes the first aspect or Any possible design method of the second aspect.
  • the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes any one of the possible design methods of the first to fourth aspects.
  • the present application provides a chip including a processor coupled to a memory, and configured to read and execute a software program stored in the memory, so as to implement the first to fourth aspects described above. Any one of the possible design methods.
  • FIG. 1a is a schematic diagram of a possible system architecture to which an embodiment of this application is applicable;
  • FIG. 1b is a schematic diagram of another network architecture to which the embodiments of this application are applicable;
  • FIG. 1c is a schematic diagram of another network architecture to which an embodiment of this application is applicable.
  • 2a is a schematic diagram of downlink data transmission between various layers provided by an embodiment of this application.
  • Figure 2b is a schematic diagram of downlink data transmission between a network device and a terminal device according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of network equipment activating, deactivating, and reactivating SPS resources through DCI according to an embodiment of the application;
  • FIG. 4a is a schematic diagram of using SPS resources to transmit data packets according to an embodiment of the application
  • 4b is a schematic diagram of data packet transmission in scenario 1 provided by an embodiment of the application.
  • 4c is a schematic diagram of data packet transmission in scenario 2 provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a flow corresponding to the communication method provided in the first embodiment of the application.
  • FIG. 6 is a schematic diagram of a process corresponding to the communication method provided in the second embodiment of this application.
  • FIG. 7 is a schematic diagram of a process corresponding to the communication method provided in the third embodiment of this application.
  • FIG. 8 is a schematic diagram of a process corresponding to the communication method provided in the fourth embodiment of this application.
  • FIG. 9 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 5 of this application.
  • FIG. 10 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 6 of this application.
  • FIG. 11 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal device It can be a wireless terminal device that can receive network device scheduling and instruction information.
  • a wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone). phone)), computers and data cards, for example, can be portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • Network equipment It can be a device in a wireless network.
  • a network device can be a radio access network (RAN) node (or device) that connects terminal equipment to the wireless network, and it can also be called a base station.
  • RAN equipment are: new generation Node B (gNodeB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network in 5G communication system Controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B) , Or home Node B, HNB, baseband unit (BBU), or wireless fidelity (Wi-Fi) access point (AP), etc.
  • gNodeB new generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB evolved Node B
  • wireless network in 5G communication system Controller radio network controller
  • RNC radio
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • At least one of A, B, and C includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • FIG. 1a is a schematic diagram of a network architecture to which an embodiment of this application is applicable.
  • the terminal device 130 can access a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, for example, it can communicate with other terminal devices.
  • the wireless network includes a radio access network (RAN) device 110 and a core network (core network, CN) device 120.
  • the RAN device 110 is used to connect the terminal device 130 to the wireless network
  • the CN device 120 is used to Manage terminal equipment and provide a gateway for communication with the external network.
  • the number of devices in the communication system shown in FIG. 1a is only for illustration, and the embodiments of the present application are not limited to this. In actual applications, the communication system may also include more terminal devices 130 and more RAN devices. 110, may also include other devices.
  • the CN may include multiple CN devices 120.
  • the CN device 120 may be an access and mobility management function (AMF) entity, session management A function (session management function, SMF) entity or a user plane function (UPF) entity, etc.
  • AMF access and mobility management function
  • SMF session management A function
  • UPF user plane function
  • the CN device 120 is an UPF entity as an example.
  • the interface between the terminal device 130 and the RAN device 110 may be called a Uu interface or an air interface
  • the interface between the RAN device 110 and the UPF entity may be called an N3 interface.
  • FIG. 1b is a schematic diagram of another network architecture to which an embodiment of this application is applicable.
  • the network architecture includes CN equipment, RAN equipment, and terminal equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated in the baseband device, or partially pulled.
  • the remote part is integrated in the baseband device.
  • the RAN equipment (eNB) includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, such as a remote radio unit (RRU) arranged remotely relative to the BBU .
  • the RAN device may include a CU and a DU, multiple DUs may be centrally controlled by one CU, and the interface between the CU and the DU may be called an F1-U interface.
  • FIG. 1c is a schematic diagram of another network architecture to which an embodiment of this application is applicable.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and implemented by dividing them into different entities, which are respectively the control plane (CP) CU entity ( That is, the CU-CP entity) and the user plane (UP) CU entity (ie, the CU-UP entity).
  • CP control plane
  • UP user plane
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or the CU.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • the radio resource control (RRC) layer or the packet data convergence protocol (packet data convergence protocol, PDCP) layer signaling will eventually be processed as physical layer signaling and sent to the terminal device, or received The signaling of the physical layer is transformed.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency load.
  • the network architecture shown in Figure 1a, Figure 1b, or Figure 1c can be applied to various radio access technology (RAT) communication systems, such as 5G (or called new radio (NR)). ))
  • RAT radio access technology
  • NR new radio
  • the communication system can also be a future communication system.
  • the network architecture and business scenarios described in the embodiments of this application are intended to more clearly illustrate the technical solutions of the embodiments of this application, and do not constitute a limitation on the technical solutions provided in the embodiments of this application. Those of ordinary skill in the art will know that with communication With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the devices in the following embodiments of the present application may be located in terminal equipment or network equipment according to their realized functions.
  • the network device may be a CU, or DU, or a RAN device including CU and DU.
  • the communication between the network device and the terminal device can follow a certain protocol layer structure.
  • the control plane protocol layer structure can include the RRC layer, the PDCP layer, and the wireless link. Functions of protocol layers such as radio link control (RLC) layer, media access control (MAC) layer, and physical layer (PHY); user plane protocol layer structure can include PDCP layer and RLC layer , MAC layer, physical layer and other protocol layer functions; in a possible implementation, the PDCP layer may also include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • a network device may implement the functions of protocol layers such as RRC, PDCP, RLC, and MAC by one node, or may implement the functions of these protocol layers by multiple nodes.
  • the network equipment includes CU and DU
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below PDCP, such as the RLC layer and the MAC layer, etc.
  • the function is set in DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the time delay requirement for processing time are set in the DU, and the functions that do not need to meet the time delay requirement are set in the CU.
  • Data transmission needs to go through the user plane protocol layer, such as through the SDAP layer, PDCP layer, RLC layer, MAC layer, and physical layer.
  • the SDAP layer, PDCP layer, RLC layer The MAC layer and the physical layer can also be collectively referred to as the access layer.
  • the transmission direction of the data it is divided into sending or receiving, and each of the above-mentioned layers is further divided into a sending part and a receiving part.
  • the downward arrow indicates data transmission
  • the upward arrow indicates data reception.
  • the PDCP layer After the PDCP layer obtains data from the upper layer, it transmits the data to the RLC layer and the MAC layer, and then the MAC layer generates a transport block (TB), and then performs wireless transmission through the physical layer. Data is correspondingly encapsulated in each layer.
  • the data received by a certain layer from the upper layer of this layer is regarded as the service data unit (SDU) of this layer, and after layer encapsulation, it becomes the protocol data unit (protocol data unit). unit, PDU), and then passed to the next layer.
  • SDU service data unit
  • PDU protocol data unit
  • the data received by the PDCP layer from the upper layer is called PDCP SDU
  • the data sent by the PDCP layer to the lower layer is called PDCP PDU
  • the data received by the RLC layer from the upper layer is called RLC SDU
  • the data sent by the RLC layer to the lower layer is called RLC PDU.
  • the data received by the MAC layer from the upper layer is called MAC SDU
  • the data sent by the MAC layer to the lower layer is called MAC PDU
  • MAC PDU can also be called TB.
  • the connections between layers are mostly corresponded in the way of channels.
  • the RLC layer and the MAC layer correspond to each other through a logical channel (LCH), and the MAC layer and the physical layer correspond to each other through a transport channel.
  • LCH logical channel
  • the MAC layer and the physical layer correspond to each other through a transport channel.
  • a physical channel which is used to correspond to the other end. The physical layer.
  • the terminal device can also have an application layer and a non-access layer; where the application layer can be used to provide services to applications installed in the terminal device, for example, the downlink data received by the terminal device can be It is transmitted from the physical layer to the application layer in turn, and then provided to the application by the application layer.
  • the non-access layer can be used to forward user data, such as forwarding uplink data received from the application layer to the SDAP layer or forwarding downlink data received from the SDAP layer to the application layer.
  • the MAC layer of the network device may include HARQ entities.
  • One HARQ entity can maintain or manage one or more HARQ processes (HARQ process). ), such as HARQ process 1, HARQ process 2, ..., HARQ process n.
  • Each HARQ process has an independent HARQ buffer (buffer) at the receiving end (ie terminal device), such as HARQ buffer 1, HARQ buffer 2, ..., HARQ buffer n, among which, HARQ buffer 1 can be HARQ of HARQ process 1.
  • Buffer, HARQ buffer 2 may be HARQ buffer of HARQ process 2, and so on.
  • the HARQ process is based on a stop-and-wait protocol to send data, so it can also be called a stop-and-wait process.
  • the stop-and-wait protocol after the sender sends a TB, it stops and waits for the confirmation message; the receiver will confirm the TB (ACK) or negative (NACK).
  • ACK ACK
  • NACK negative
  • the sender stops and waits for confirmation after each transmission the throughput will be very low. Therefore, multiple parallel HARQ processes are used in the LTE communication system and the 5G communication system.
  • the sender can use another HARQ process to continue sending data.
  • These HARQ processes together form a HARQ entity, and the HARQ entity combines a stop-and-wait protocol while allowing continuous data transmission.
  • the HARQ buffer corresponding to each HARQ process can be used to buffer the data packets that have failed to be decoded, so as to soft-combine the received data.
  • the receiving end determines that the received data packet has failed to decode, it will discard the data packet and send a NACK to the sender to request the retransmission of the data packet; considering that the decoding failed data packet may be Contains useful information. If discarded, it may cause these useful information to be discarded.
  • HARQ with soft combining (HARQ with soft combining) can be used, that is, the receiving end can save the received data packets that have failed to decode In the HARQ buffer, it is combined with the subsequent received retransmitted data packets to obtain a data packet that is more reliable than decoding alone (a process of "soft combining"), and then the combined data packet is decoded. If the decoding fails, the process of "request for retransmission and then soft merge" can be repeated.
  • the HARQ process in the network device can deliver the MAC PDU (i.e. TB) to the encoding entity, which is then encoded by the encoding entity, and then the encoded TB is transmitted to the physical layer, and the physical layer is transmitted to the terminal device The physical layer.
  • the HARQ information associated with TB can be transferred from the physical layer to the MAC layer.
  • the HARQ information can include new data indicator (NDI), transport block size (TBS), and redundancy version (redundancy version). , RV), HARQ process ID (HARQ process ID).
  • NDI new data indicator
  • TBS transport block size
  • RV redundancy version
  • HARQ process ID HARQ process ID
  • NDI is used to indicate whether the TB is newly transmitted or retransmitted.
  • Each HARQ process will save an NDI value.
  • the HARQ process identifier is information used to identify the HARQ process.
  • the HARQ process identifier may be the HARQ process number.
  • the physical layer of the terminal device can submit the TB to the MAC layer decoding entity, and the decoding entity can decode it. If the decoding is successful, the HARQ entity of the MAC layer can notify the physical layer to feed back ACK for the HARQ process; If the decoding fails, the HARQ entity of the MAC layer can notify the physical layer to feed back NACK for the HARQ process. In addition, if the terminal device does not receive the TB, the HARQ entity of the MAC layer may also notify the physical layer to feed back NACK for the HARQ process.
  • the network device may send a downlink data packet to the terminal device through a dynamic scheduling resource, or may also send a downlink data packet to the terminal device through a semi-persistent scheduling resource.
  • a network device When a network device schedules an uplink dynamic grant (DG), it can use the downlink control information (DCI) in the physical downlink control channel (PDCCH) to indicate the timing of the scheduled uplink transmission resources.
  • DCI downlink control information
  • Information such as frequency location; it can be understood that the network equipment dynamically schedules resources through DCI scheduling.
  • the network device can notify the terminal device through DCI: receive data in the YYY frequency band at XXX time (downlink); send data in the VVV frequency band at ZZZ time (uplink).
  • the dynamic scheduling resource may be a resource used for downlink transmission, or may also be a resource used for uplink transmission.
  • the dynamic scheduling resource is mainly described as an example of a resource used for downlink transmission.
  • the resources allocated by the network device based on dynamic scheduling are effective once, that is, the resources allocated by the network device to the terminal device through the DG can only be used once.
  • Semi-persistent scheduling refers to downlink static/semi-persistent scheduling.
  • the configured downlink resource allocation (configured downlink assignment) configured by the network device is valid multiple times. For example, assume that the network device is notified by RRC signaling or MAC signaling or physical layer signaling Terminal: Receive data in the YYY frequency band at XXX time, and then receive data in the YYY frequency band at XXX time every period T.
  • the network device may configure SPS resources through RRC messages, which may include the period of SPS resources, the number of HARQ processes that use SPS resources, and other parameters; and, activate or reactivate SPS resources through DCI or MAC layer control messages, Taking the DCI activation or reactivation of the SPS resource as an example, the DCI may include the time-frequency position of the SPS resource, modulation and coding scheme (MCS) and other parameters.
  • MCS modulation and coding scheme
  • FIG. 3 is a schematic diagram of network equipment activating, deactivating, and reactivating SPS resources through DCI. As shown in Figure 3, it includes:
  • the network device configures SPS resources through RRC messages.
  • the network device sends DCI-a to the terminal device.
  • DCI-a is used to indicate the activation of the SPS resource, and DCI-a indicates that the time-frequency position of the SPS resource is position 1.
  • the network device sends DCI-b to the terminal device, and DCI-b is used to indicate the deactivation of SPS resources.
  • the network device sends DCI-c to the terminal device.
  • DCI-c is used to indicate the activation of the SPS resource, and DCI-c indicates that the time-frequency position of the SPS resource is position 2.
  • the network device sends DCI-d to the terminal device.
  • DCI-d is used to indicate to reactivate the SPS resource, and DCI-d indicates that the time-frequency position of the SPS resource is position 3.
  • the HARQ feedback of the terminal device is further studied below.
  • the 5G communication system can support a variety of possible services, such as ultra-reliability and low-latency communication (URLLC) services.
  • URLLC services can be applied to scenarios such as smart grids and smart transportation systems. Since the URLLC service usually has a deterministic cycle and has extremely high requirements for delay and reliability, the downlink transmission of this service can use SPS resources.
  • Figure 4a is a schematic diagram of using SPS resources to transmit data packets (ie, TB).
  • the number of HARQ processes is 5, that is, HARQ process 1 to HARQ process 5 (#1 in Fig. 4a represents that the HARQ process ID corresponding to the SPS resource is HARQ process 1).
  • #1 in Fig. 4a represents that the HARQ process ID corresponding to the SPS resource is HARQ process 1).
  • 7 TBs are continuously transmitted on the SPS resource, and only one TB fails to decode.
  • the terminal device needs to feedback NACK, and the other 6 TBs are decoded successfully.
  • the terminal device needs to feed back ACK.
  • the terminal device can adopt the HARQ feedback mode with only NACK feedback (ie, ignore the ACK feedback), so that a large amount of ACK feedback overhead can be saved, thereby reducing the power consumption of the terminal device.
  • Table 1 it illustrates the feedback behavior of the terminal device when the HARQ feedback mode with only NACK feedback is adopted.
  • the terminal device no longer feeds back ACK when the TB decoding is successful, and feeds back NACK when the TB decoding fails or the TB is not received; accordingly, if the network device receives the NACK feedback, it can determine the corresponding TB transmission If it fails, the retransmission of the TB can be scheduled. If the network device does not receive any feedback, it can be determined that the corresponding TB transmission is successful.
  • the terminal device defaults to adopting the HARQ feedback mode with only NACK feedback for SPS resources, which has certain limitations.
  • this solution is mainly applicable to scenarios where the service period and the SPS period match. Due to the diversity of URLLC business scenarios, there are some other scenarios, such as scenario 1 to scenario 3 described below.
  • the service period of some scenarios is the SPS period.
  • Non-integer multiples for example, the service period is 0.833ms, so that an integer multiple of a time slot cannot be used to configure a matching SPS period.
  • multiple sets of SPS resources can be configured, for example, the period of one SPS resource is 0.8 ms, and the period of another SPS resource is 0.9 ms, so as to meet the demand for delay jitter as much as possible.
  • the data packet arrival interval is 0.833ms, and two sets of SPS resources with different periods are configured.
  • the first set of SPS resources has a period of 0.8ms
  • the HARQ process is HARQ process 1 to HARQ process 5
  • the second set of SPS resource cycles It is 0.9 ms
  • the HARQ process ranges from HARQ process 6 to HARQ process 10.
  • there are TB transmissions in HARQ process 6, HARQ process 2, HARQ process 3, HARQ process 4, HARQ process 9, HARQ process 10, and HARQ process 6 corresponding to SPS and the terminal device can feed back ACK, and in other resources If there is no TB transmission, the terminal device can feedback NACK.
  • the network equipment can be configured with a shorter SPS period, so that when a downstream data packet arrives, it can The data packet is transmitted in time to reduce the transmission delay.
  • adopting this method will cause many configurations of downlink resource allocation without TB transmission, for example, HARQ process 2, HARQ process 3, HARQ process 5, and HARQ process 1 corresponding to HARQ feedback are all NACKs.
  • the data packet arrival interval is less than 0.5ms, which causes HARQ retransmission to no longer meet the delay requirements of this service. Therefore, any HARQ feedback from the terminal device is no longer helpful to the reliability of the service.
  • the embodiments of the present application provide a communication method for implementing flexible HARQ feedback, so as to adapt to service requirements of different scenarios, reduce unnecessary HARQ feedback overhead, and reduce power consumption of terminal devices.
  • the communication method provided by the embodiment of the present application is applicable to the network architecture shown in FIG. 1a as an example.
  • the method can be executed by the first communication device and the second communication device.
  • the first communication device can be the network device in FIG. Device, such as chip or chip system.
  • the second communication device may be the terminal device in FIG. 1a or a communication device capable of supporting the functions required by the terminal device to implement the method, and of course it may also be other communication devices, such as a chip or a chip system.
  • the method is executed by a network device and a terminal device as an example, that is, an example is that the first communication device is a network device and the second communication device is a terminal device.
  • Fig. 5 is a schematic diagram of a process corresponding to the communication method provided by an embodiment of the application, as shown in Fig. 5, including:
  • Step 501 The network device sends the first information to the terminal device.
  • the network device may determine the HARQ feedback mode and the HARQ process applicable to the HARQ feedback mode according to the service requirements of the terminal device, and then send the first information to the terminal device.
  • the service requirements may include one or more of service cycle, delay jitter requirements, delay requirements, and network slicing.
  • the network device may determine that the HARQ feedback mode includes ignoring NACK feedback, and the HARQ process applicable to the HARQ feedback mode may include HARQ processes corresponding to the first set of SPS resources and the second set of SPS resources.
  • the network device may determine that the HARQ feedback mode includes ignoring NACK feedback, and the HARQ process applicable to the HARQ feedback mode may include the HARQ process corresponding to a service with an uncertain period.
  • the network device may determine that the HARQ feedback mode includes ignoring ACK and NACK feedback, and the HARQ process applicable to the HARQ feedback mode may include the HARQ process corresponding to a service with a relatively demanding delay.
  • Step 502 The terminal device receives the first information, and determines the HARQ feedback mode according to the first information.
  • the HARQ feedback mode may include ignoring ACK and/or NACK feedback.
  • the terminal device may determine the HARQ feedback mode according to the first information.
  • the first information may include indication information, and the indication information is used to indicate the HARQ feedback mode; accordingly, the terminal device may determine the HARQ feedback mode according to the indication information.
  • the indication information can be carried in a variety of possible messages, such as RRC messages, PDCP layer control messages, RLC layer control messages, MAC layer control messages, or physical layer control messages; or, the indication information can be carried in data in the bag.
  • RRC messages can be RRC reconfiguration messages, RRC resume (RRC resume) messages, RRC setup (RRC setup) messages, which are not specifically limited;
  • PDCP layer control messages can be PDCP layer control PDUs;
  • RLC layer control messages It can be the control PDU of the RLC layer;
  • the control message of the MAC layer can be MAC CE;
  • the control message of the physical layer can be DCI.
  • the specific position of the indication information in the message is not limited in the embodiment of the present application.
  • the indication information when the indication information is carried in the MAC CE, the indication information can be carried in the packet header or data load of the MAC CE.
  • the indication information when the indication information is carried in a data packet, the indication information may be carried in the header of the data PDU of the PDCP layer or the RLC layer.
  • the indication information in the embodiment of the present application indicates the HARQ feedback manner is not limited.
  • the indication information may include the index value of the HARQ feedback mode. If the index value is 1, it means that the HARQ feedback mode is to ignore ACK feedback; if the index value is 2, it means that the HARQ feedback mode is to ignore NACK feedback; if the index value is 3 , It means that the HARQ feedback mode is to ignore ACK and NACK feedback.
  • the indication information when the indication information is carried in the header of the MAC CE, the header of the MAC CE includes a logical channel ID (LCID) field. The indication information can occupy the LCID field, that is, different HARQ feedback modes can be indicated through the LCID field.
  • LCID logical channel ID
  • LCID X, which means that the HARQ feedback mode is to ignore ACK feedback
  • the first information may include a message
  • the message may be an RRC message or DCI.
  • the terminal device can according to whether the message includes physical uplink control channel (PUCCH) resource configuration information, the format of the message, or the scrambling method of the message (for example, the temporary wireless network used to scramble the message) Identification (radio network temporary identity, RNTI), etc. determine the HARQ feedback mode.
  • PUCCH physical uplink control channel
  • the PUCCH resource can be used to carry feedback information of the HARQ process, such as ACK or NACK.
  • the first information may include preset priority information. Accordingly, the terminal device may determine the HARQ feedback mode according to the priority of the logical channel corresponding to the service and the preset priority information.
  • Step 503 The terminal device determines at least one HARQ process to which the HARQ feedback mode is applicable.
  • At least one HARQ process may include HARQ processes corresponding to SPS resources and/or HARQ processes corresponding to dynamic scheduling resources; or, at least one HARQ process may include HARQ processes corresponding to one or more services.
  • the terminal device may determine at least one HARQ process to which the HARQ feedback method is applicable.
  • Two possible implementations are described here, namely implementation a1 and implementation a2.
  • the network device may send second information to the terminal device, and the second information is used to indicate at least one HARQ process to which the HARQ feedback manner is applicable.
  • the second information may include the HARQ process number of at least one HARQ process applicable to the HARQ feedback mode; further, the terminal device may determine the HARQ process applicable to the HARQ feedback mode according to the second information.
  • the second information may be carried in a variety of possible messages, such as RRC messages.
  • the RRC messages may be RRC reconfiguration messages, RRC recovery messages, and RRC setup messages, which are not specifically limited.
  • the HARQ process applicable to the HARQ feedback mode can be agreed in advance by the agreement. For example, it can be agreed that the HARQ process applicable to the HARQ feedback mode includes all HARQ processes corresponding to SPS resources and/or all HARQ processes corresponding to dynamic scheduling resources; Or, it includes all HARQ processes corresponding to one or more services. In this case, the network device may no longer need to send the second information to the terminal device, thereby effectively saving transmission resources.
  • implementation a1 and implementation a2 can be implemented separately or in combination.
  • the terminal device can be implemented according to The second information determines the HARQ process applicable to the HARQ feedback mode (ie implementation a1); if the network device does not send the second information to the terminal device, the terminal device can determine the HARQ process applicable to the HARQ feedback approach based on the protocol agreement (ie implementation a2) ).
  • Step 504 The terminal device performs feedback processing on at least one HARQ process according to the HARQ feedback mode.
  • At least one HARQ process includes the first HARQ process.
  • the following takes the first HARQ process as an example to describe some possible implementations in which the terminal device performs feedback processing on the first HARQ process according to the HARQ feedback mode.
  • the HARQ feedback mode may include ignoring ACK feedback. If the terminal device receives a data packet from the first HARQ process and the data packet is successfully decoded, it does not feed back ACK to the first HARQ process for the data packet. Optionally, if the terminal device receives a data packet from the first HARQ process and the decoding of the data packet fails, it returns a NACK to the first HARQ process for the data packet; or, if the terminal device does not receive the data packet from the first HARQ process If the data packet is received, NACK is fed back to the first HARQ process.
  • the HARQ feedback mode can also be described as NACK (NACK only) feedback.
  • the HARQ feedback method includes ignoring NACK feedback. If the terminal device receives a data packet from the first HARQ process and the data packet decoding fails, it does not feed back NACK to the first HARQ process for the data packet; or, the terminal device does not If a data packet from the first HARQ process is received, no NACK is fed back to the first HARQ process. Optionally, if the terminal device receives a data packet from the first HARQ process, and the data packet is successfully decoded, it returns an ACK to the first HARQ process for the data packet.
  • the HARQ feedback mode can also be described as ACK only (ACK only) feedback.
  • the HARQ feedback mode includes ignoring ACK and NACK feedback, and the terminal device does not feed back ACK and NACK to the first HARQ process.
  • the terminal device not feeding back ACK and NACK to the first HARQ process may include: if the terminal device receives a data packet from the first HARQ process and the data packet is decoded successfully, it does not feed back the data packet to the first HARQ process ACK; or, if the terminal device receives a data packet from the first HARQ process and fails to decode the data packet, it does not feed back NACK to the first HARQ process for the data packet; or, the terminal device does not receive the data packet from the first HARQ process. For the data packet of the process, no NACK is fed back to the first HARQ process.
  • a TB includes multiple CBs, and one CBG in the TB may include at least one CB in the TB; that is, a CBG is a grouping of multiple CBs in a TB.
  • CBG code block group
  • the HARQ information (such as ACK or NACK) of a TB can include multiple bits, and each bit can correspond to a CBG in the TB, and the value of the bit is used to indicate the bit Whether the corresponding CBG is successfully decoded. If a CBG in the TB is successfully decoded, an ACK is fed back for the CBG, and if the decoding of the other CBG fails, a NACK is fed back for the CBG.
  • the HARQ feedback manner in the embodiments of the present application may refer to the HARQ feedback manner in the HARQ feedback mechanism based on TB transmission, or may also be the HARQ feedback manner in the HARQ feedback mechanism based on CBG transmission, which will be introduced separately below.
  • the HARQ feedback mode in the embodiment of this application is the HARQ feedback mode in the HARQ feedback mechanism based on TB transmission.
  • the decoding of the data packet described in 1 to 3 above succeeds or fails, that is, Refers to TB decoding success or decoding failure.
  • the HARQ feedback method includes skip ACK feedback, which means that if the TB decodes successfully, no ACK is fed back, and if the TB decodes fails, NACK is fed back.
  • the HARQ feedback method includes skip NACK feedback, which means that if the TB decoding fails, no NACK is fed back, and if the TB decodes successfully, ACK is fed back.
  • the HARQ feedback method includes ignoring ACK and NACK feedback, which means that no matter whether TB decoding succeeds or fails, neither NACK nor ACK is fed back, that is, no HARQ feedback is made.
  • the HARQ feedback mode in the embodiment of the present application is the HARQ feedback mode in the HARQ feedback mechanism based on CBG transmission.
  • the successful decoding of the data packets described in such as 1 to 3 may include that at least one CBG in the data packet (ie, TB) is successfully decoded. Feeding back the ACK or not feeding back the ACK for the data packet can be understood as feeding back the ACK or not feeding back the ACK for the successfully decoded CBG in the TB.
  • the decoding failure of the data packet described in such as 1 to 3 may include: decoding failure of at least one CBG in the data packet (ie, TB). Feeding back NACK or not feeding back NACK for the data packet can be understood as feeding back NACK or not feeding back NACK for the CBG that fails to decode in the TB.
  • the HARQ feedback mode includes skip ACK feedback, which means that if at least one CBG in the TB is successfully decoded or all CBGs in the TB are decoded successfully, the ACK of the at least one CBG or all CBGs in the TB is not fed back; if At least one CBG in the TB fails to decode or all CBGs in the TB fails to decode, and NACKs of the at least one CBG or all CBGs in the TB are fed back.
  • the HARQ feedback method includes skip NACK feedback, which means that if at least one CBG in the TB fails to decode or all CBGs in the TB fail to decode, the NACK of the at least one CBG or all CBGs in the TB is not fed back. At least one CBG in the TB is successfully decoded or all CBGs in the TB are successfully decoded, and the ACK of the at least one CBG or all CBGs in the TB is fed back.
  • the HARQ feedback method includes ignoring ACK and NACK feedback, which means that no matter if at least one CBG in the TB is decoded successfully or failed, or no matter if all CBGs in the TB are decoded successfully or failed, the at least one CBG or all CGBs in the TB are not fed back.
  • the NACK of the at least one CBG or all CBGs in the TB is not fed back, that is, no HARQ feedback is performed.
  • the network device carries the instruction information in the data packet
  • two implementations are expanded to describe the implementation b1 and the implementation b2 respectively.
  • the network device may carry indication information in a certain data packet or carry the indication information in some data packets respectively.
  • the indication information is used to indicate the HARQ feedback mode a, and the network device may indicate the applicable HARQ feedback mode through the second information
  • the HARQ process of a further, the terminal device can perform feedback processing on the corresponding HARQ process according to the HARQ feedback mode a.
  • the HARQ process applicable to the HARQ feedback mode a may include the HARQ process for transmitting a certain data packet or certain data packets, and may also include other HARQ processes.
  • the network device can carry indication information in multiple data packets, for example, multiple data packets include data packet 1, data packet 2, and data packet 3.
  • Data packet 1 carries instruction information 1, and instruction information 1 indicates HARQ feedback mode 1.
  • the data packet 2 carries the indication information 2, which indicates the HARQ feedback mode 2;
  • the data packet 3 carries the indication information 3, and the indication information 3 indicates the HARQ feedback mode 3.
  • data packet 1, data packet 2, and data packet 3 may be data packets transmitted through the same HARQ process, or may also be data packets transmitted through different HARQ processes.
  • data packet 1 and data packet 2 are the data packets transmitted by HARQ process 1
  • data packet 3 is the data packet transmitted by HARQ process 2.
  • the terminal device After receiving data packet 1, the terminal device can use the decoding result of data packet 1 and HARQ Feedback mode 1 performs feedback processing on HARQ process 1; after receiving data packet 2, it can perform feedback processing on HARQ process 1 based on the decoding result of data packet 2 and HARQ feedback mode 2; after receiving data packet 3, it can be based on data packet
  • the decoding result of 3 and HARQ feedback mode 3 perform feedback processing on HARQ process 2.
  • the foregoing HARQ feedback mode 1, HARQ feedback mode 2, and HARQ feedback mode 3 may be the same or different.
  • the terminal device may be agreed in advance to feed back NACK or not to feed back NACK in this situation.
  • the network device may not need to indicate the HARQ process to which the HARQ feedback manner is applicable.
  • the network device sends the first information to the terminal device, and the terminal device may determine the HARQ feedback mode according to the first information, and the HARQ feedback mode may include ignoring ACK and/or NACK feedback.
  • the network device can determine the corresponding HARQ feedback mode according to the service requirements of different scenarios, and then instruct the terminal device; that is, the HARQ feedback mode adopted by the terminal device is controlled by the network device, so that it can flexibly target different
  • the scene control terminal equipment adopts different HARQ feedback methods, which is convenient to adapt to service requirements, effectively reduces the power consumption of the terminal equipment and saves air interface resources.
  • Embodiment 1 Based on Embodiment 1, some possible implementations will be described below in conjunction with Embodiment 2 to Embodiment 4.
  • Fig. 6 is a schematic diagram of the process corresponding to the communication method provided in the second embodiment of the application, as shown in Fig. 6, including:
  • Step 601 The network device sends message 1 to the terminal device.
  • Step 602 The terminal device receives the message 1, and determines the HARQ feedback mode according to the message 1.
  • the message 1 may be a message associated with an SPS resource (referred to as SPS resource 1 for ease of description).
  • message 1 is RRC message 1, and RRC message 1 is used to configure SPS resource 1.
  • RRC message 1 may include configuration information of SPS resource 1 and configuration information of PDSCH transmitted on SPS resource 1.
  • the RRC message 1 may include indication information, and the indication information is used to indicate the HARQ feedback mode.
  • the indication information may be included in the configuration information of the SPS resource 1, or may also be included in the configuration information of the PDSCH transmitted by the SPS resource 1.
  • the terminal device may determine the HARQ feedback mode according to the indication information included in the RRC message 1.
  • the indication information may be included in the pdsch-Config information element (That is, the configuration information of the PDSCH) may also be included in the sps-Config cell (ie, the configuration information of the SPS resource 1).
  • message 1 is RRC message 2
  • RRC message 2 is used to configure PUCCH resources
  • PUCCH resources are used to carry feedback information of the HARQ process corresponding to SPS resource 1.
  • the terminal device can determine the HARQ feedback mode according to whether the PUCCH resource configuration information is carried in the RRC message 2.
  • the RRC message 2 indicates the HARQ feedback mode by whether it carries the configuration information of the PUCCH resource; for example, when the RRC message 2 does not carry the configuration information of the PUCCH resource, the indicated HARQ feedback mode includes ignoring ACK and/or NACK feedback ; When the RRC message 2 carries the configuration information of the PUCCH resource, it indicates that the HARQ feedback is normally performed (that is, the ACK is not ignored, and the NACK is not ignored).
  • the message 1 is DCI-1, and DCI-1 is used to activate or reactivate SPS resource 1.
  • DCI-1 may include indication information, and the indication information is used to indicate the HARQ feedback mode.
  • the terminal device can determine the HARQ feedback mode according to the indication information included in the DCI-1.
  • message 1 is DCI-2, and DCI-2 is used to activate or reactivate SPS resource 1.
  • the terminal device may determine the HARQ feedback mode according to the DCI format (DCI format) of DCI-2 or the scrambling mode.
  • DCI-2 indicates the HARQ feedback mode through the adopted format or scrambling mode.
  • DCI format 1 when the format of DCI-2 is DCI format (format) 1, the indicated HARQ feedback mode includes ignoring ACK feedback; when the format of DCI-2 is DCI format 2, the indicated HARQ feedback mode includes ignoring NACK; when DCI When the format of -2 is DCI format 3, the indicated HARQ feedback mode includes ignoring ACK and NACK feedback.
  • DCI format 1, DCI format 2, and DCI format 3 may be formats predefined by the protocol.
  • the indicated HARQ feedback mode includes ignoring ACK feedback; when the scrambling mode of DCI-2 is scrambling using RNTI#2, the indicated HARQ The feedback mode includes ignoring NACK feedback; when the scrambling mode of DCI-2 is scrambling using RNTI#3, the indicated HARQ feedback mode includes ignoring ACK and NACK feedback.
  • RNTI#1, RNTI#2, and RNTI#3 may be RNTI predefined by the protocol.
  • message 1 is a MAC layer control message (or MAC signaling)
  • MAC signaling is used to activate or reactivate SPS resource 1
  • MAC signaling may include indication information, which is used to indicate HARQ feedback Way.
  • the terminal device can determine the HARQ feedback mode according to the indication information included in the MAC signaling.
  • Step 603 The terminal device determines at least one HARQ process to which the HARQ feedback mode is applicable.
  • Step 604 The terminal device performs feedback processing on at least one HARQ process according to the HARQ feedback mode.
  • the terminal device may determine at least one HARQ process to which the HARQ feedback mode is applicable.
  • At least one HARQ process applicable to the HARQ feedback mode can be agreed in advance by the agreement. -1.
  • the HARQ process to which the HARQ feedback mode is applied includes all HARQ processes corresponding to SPS resource 1.
  • the network device may send second information to the terminal device, where the second information is used to indicate at least one HARQ process to which the HARQ feedback mode is applicable.
  • the second information indicates that the HARQ process to which the HARQ feedback mode is applied is all or part of the HARQ process corresponding to SPS resource 1.
  • the network device may configure multiple sets of SPS resources for the terminal device, and the at least one HARQ process indicated by the second information may include part or all of the HARQ processes corresponding to the multiple sets of SPS resources configured by the network device for the terminal device.
  • the network device also configures SPS resource 2 and SPS resource 3 for the terminal device.
  • the HARQ process corresponding to SPS resource 1 includes HARQ process 1 to HARQ process 5, and the HARQ process corresponding to SPS resource 2 Including HARQ process 6 to HARQ process 10, the HARQ process corresponding to SPS resource 3 includes HARQ process 11 to HARQ process 15, then at least one HARQ process may include part or all of HARQ process 1 to HARQ process 15.
  • the second information may be carried in RRC message 1 or RRC message 2, or may also be carried in other possible messages, which is not specifically limited.
  • the network device indicates the HARQ feedback mode applicable to the HARQ process corresponding to the SPS resource 1 through the message associated with the SPS resource 1, so that the corresponding HARQ feedback mode can be indicated for the service transmitted on the specific resource.
  • Fig. 7 is a schematic diagram of a process corresponding to the communication method provided in the third embodiment of the application, as shown in Fig. 7, including:
  • Step 701 The network device sends DCI to the terminal device.
  • the DCI is used to schedule dynamic scheduling resources (for ease of description, it is referred to as resource 1).
  • Step 702 The terminal device receives the DCI, and determines the HARQ feedback mode according to the DCI.
  • the DCI may include indication information, and the indication information is used to indicate the HARQ feedback mode.
  • the terminal device can determine the HARQ feedback mode according to the indication information included in the DCI.
  • the DCI indicates the HARQ feedback mode through the adopted DCI format or scrambling mode.
  • the terminal device can determine the HARQ feedback mode according to the DCI format or the scrambling mode.
  • Step 703 The terminal device determines at least one HARQ process to which the HARQ feedback mode is applicable.
  • Step 704 The terminal device performs feedback processing on at least one HARQ process according to the HARQ feedback mode.
  • the terminal device may determine at least one HARQ process to which the HARQ feedback mode is applicable.
  • the HARQ process for applying the HARQ feedback mode can be agreed in advance by the agreement. For example, it can be agreed that when the network device indicates the HARQ feedback mode through the DCI of the scheduling resource 1, the HARQ process applicable to the HARQ feedback mode includes all HARQ processes corresponding to the resource 1.
  • the network device may send second information to the terminal device, where the second information is used to indicate at least one HARQ process to which the HARQ feedback mode is applicable.
  • the second information indicates that the HARQ process to which the HARQ feedback mode is applied is all or part of the HARQ process corresponding to resource 1.
  • the network device indicates the applicable HARQ feedback mode for the HARQ process corresponding to resource 1 by scheduling the DCI of resource 1, so that the corresponding HARQ feedback mode can be indicated for the service transmitted on the specific resource.
  • Fig. 8 is a schematic diagram of a process corresponding to the communication method provided in the fourth embodiment of the application, as shown in Fig. 8, including:
  • Step 801 The network device sends an RRC message to the terminal device.
  • Step 802 The terminal device receives the RRC message, and determines the HARQ feedback mode according to the RRC message.
  • the RRC message may be a message associated with the first service.
  • the RRC message may be used to configure a logical channel corresponding to the first service.
  • the RRC message may include indication information, and the indication information is used to indicate the HARQ feedback mode.
  • the terminal device can determine the HARQ feedback mode according to the indication information included in the RRC message.
  • the RRC message may include the configuration information of the logical channel, and the indication information may be carried in the configuration information of the logical channel.
  • the RRC message may include preset priority information.
  • the terminal device may determine the HARQ feedback mode according to the priority information and preset priority information of the logical channel corresponding to the first service. For example, when the priority information of the logical channel corresponding to the first service is higher than or equal to the preset priority, the HARQ feedback mode includes ignoring ACK and/or NACK feedback; when the priority information of the logical channel corresponding to the first service is low When the priority is preset, it indicates that HARQ feedback is normally performed.
  • the preset priority information may also be pre-arranged by the protocol.
  • the terminal device does not need to obtain the preset priority information from the network device, thereby saving resource overhead. .
  • Step 803 The terminal device determines at least one HARQ process to which the HARQ feedback mode is applicable.
  • Step 804 The terminal device performs feedback processing on at least one HARQ process according to the HARQ feedback mode.
  • the terminal device may determine at least one HARQ process to which the HARQ feedback mode is applicable.
  • the HARQ process for applying the HARQ feedback mode can be agreed in advance by the agreement. For example, it can be agreed that when the network device instructs the HARQ feedback mode through a message associated with the first service (such as the above-mentioned RRC message), the HARQ process applicable to the HARQ feedback mode includes all HARQ processes corresponding to the first service.
  • the network device may send second information to the terminal device, where the second information is used to indicate at least one HARQ process to which the HARQ feedback mode is applicable.
  • the second information indicates that the HARQ process to which the HARQ feedback mode is applied is all or part of the HARQ process corresponding to the first service.
  • the network device can indicate the HARQ feedback mode of the HARQ process corresponding to the service through the RRC message, so that the corresponding HARQ feedback mode can be used more accurately for the specific service.
  • a discontinuous reception or discontinuous reception (DRX) mechanism is introduced.
  • the DRX mechanism is described below.
  • the terminal device can be in the DRX active state or the DRX dormant state.
  • the terminal device can turn on the receiver to listen to the PDCCH (for example, it can listen to the PDCCH scrambled by various RNTIs),
  • the terminal device can no longer listen to the PDCCH, thereby reducing the power consumption of the terminal device.
  • the terminal device is in the DRX active state, it can also be described as: the terminal device is in the active state, or the terminal device is in the wake-up state, or the terminal device is awake, which is not specifically limited; the terminal device is in the DRX sleep state, which can also be described as: The terminal device is in the dormant state, or the terminal device is in the dormant state, there is no specific limitation.
  • the network device can configure the following parameters for the terminal device:
  • DRX cycle the cycle of discontinuous reception. In each cycle, the terminal device will wake up regularly for a period of time (the terminal device is in the DRX active state during this period) to listen to the PDCCH. There are two DRX cycles: long cycle and short cycle. The long cycle is an integer multiple of the short cycle.
  • (2) drx-onDurationTimer a continuous downlink duration, which represents the time the terminal device stays awake after waking up (that is, the time the terminal device is in the DRX active state); during this time, the terminal device needs to listen to the PDCCH .
  • the timer is started at the beginning of each DRX cycle.
  • drx-InactivityTimer a continuous downlink time period during which the terminal device needs to listen to the PDCCH. The timer can be started or restarted when the terminal device successfully demodulates the PDCCH for scheduling the newly transmitted data (which may be uplink or downlink newly transmitted data) of the terminal device.
  • drx-HARQ-RTT-Timer the smallest retransmission scheduling interval, which is used to indicate how many symbols after the next HARQ retransmission occurs at the earliest.
  • the timer can be divided into an uplink corresponding timer (i.e. drx-HARQ-RTT-TimerUL) and a downlink corresponding timer (i.e. drx-HARQ-RTT-TimerDL).
  • drx-HARQ-RTT-TimerDL is started at the first symbol after the HARQ feedback of the downlink transmission of a HARQ process
  • drx-HARQ-RTT-TimerUL is started at the first symbol after the uplink transmission of a HARQ process (If the uplink transmission is a repetition transmission, it starts at the first symbol after the end of the first transmission).
  • drx-RetransmissionTimer the waiting time for receiving the retransmission schedule. This timer represents the longest time that the terminal device is in the DRX active state and waiting for retransmission of data.
  • the timer can be divided into an uplink corresponding timer (i.e. drx-RetransmissionTimerUL) and a downlink corresponding timer (i.e. drx-RetransmissionTimerDL).
  • the drx-RetransmissionTimerDL is started at the first symbol after the drx-HARQ-RTT-TimerDL timeout of a HARQ process;
  • drx-RetransmissionTimerUL is started at the first symbol after the drx-HARQ-RTT-TimerUL timeout of a HARQ process .
  • drx-shortCycleTimer Short-cycle life cycle. After the timer expires, a long cycle is required. When the short period is configured, the timer is started or restarted in the following two situations: 1) the drx-InactivityTimer expires, and 2) the terminal device receives the DRX command MAC CE. Among them, the DRX command MAC CE is the MAC CE that allows the terminal device to enter the dormant state immediately; after the terminal device receives the control signaling, it can immediately stop the drx-onDurationTimer and drx-InactivityTimer.
  • the network device can also configure other possible parameters for the terminal device, such as drx-SlotOffset and drx-StartOffset.
  • drx-StartOffset is used to determine which subframe the DRX cycle starts from, and drx-SlotOffset is used Start drx-onDurationTimer after a certain time delay from the front boundary of the subframe where the DRX cycle starts.
  • terminal equipment can be maintained according to the following rules: DRX cycle, drx-onDurationTimer, drx-InactivityTimer, drx-shortCycleTimer are maintained by each MAC entity (per MAC entity) , That is, a MAC entity of the terminal device only maintains a set of DRX cycle, as well as drx-onDurationTimer, drx-InactivityTimer, drx-shortCycleTimer, etc.; while drx-HARQ-RTT-Timer and drx-RetransmissionTimer are maintained by each HARQ process, That is, each HARQ process can start/restart the drx-HARQ-RTT-Timer and drx-RetransmissionTimer related to the HARQ process according to conditions.
  • the time the terminal device is in the active state includes: (1) drx-onDurationTimer/drx-InactivityTimer/drx-RetransmissionTimerDL/drx-RetransmissionTimer UL is running; (2) The running time of ra-ContentionResolutionTimer used to receive Msg4 during random access; (3) The time when the terminal device sends a scheduling request (SR) on PUCCH, but the SR is in the suspended state; (4) ) The terminal device successfully received the random access response (RAR) during the collision avoidance random access process, but did not receive the cell radio network temporary identifier (C-RNTI) scrambling The time of the newly transmitted data scheduled by the PDCCH.
  • SR scheduling request
  • C-RNTI cell radio network temporary identifier
  • SPS resources are periodic downlink resources configured by network equipment for terminal equipment. Unlike dynamic scheduling resources (the HARQ resources corresponding to dynamic scheduling resources are dynamically indicated through DCI), the HARQ resources corresponding to SPS resources are also The network device can be configured in a semi-static manner. However, in a time division duplexing (TDD) system, configuring the HARQ resources corresponding to SPS resources in a semi-static manner may result in HARQ resources corresponding to some SPS resources (for example, the first HARQ resource corresponding to the first SPS resource) There is overlap with the downlink resource, so that the terminal device cannot send the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource.
  • TDD time division duplexing
  • the network device dynamically triggers the retransmission of the feedback information. For example, the network device can indicate a new HARQ resource (called the second HARQ resource) to the terminal device through DCI, so that the terminal The device may send feedback information of the HARQ process corresponding to the first SPS resource on the second HARQ resource.
  • the network device can indicate a new HARQ resource (called the second HARQ resource) to the terminal device through DCI, so that the terminal The device may send feedback information of the HARQ process corresponding to the first SPS resource on the second HARQ resource.
  • the terminal device may be in the DRX dormant state for a period of time before and after the first SPS resource, that is, it does not listen to the DCI scheduled by the network device, so that the network device cannot communicate to the terminal through the DCI in time.
  • the device indicates the retransmission resource of the feedback information, and the terminal device cannot send the feedback information of the HARQ process corresponding to the first SPS resource to the network device in time, thereby affecting the efficiency of downlink transmission.
  • an embodiment of the present application provides a communication method for improving the efficiency of downlink transmission.
  • the terminal device may receive configuration information from the network device.
  • the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource.
  • the terminal device may be in the DRX active state in the first time period, so as to receive the DCI (used to indicate the retransmission resource of the feedback information) sent by the network device.
  • DCI used to indicate the retransmission resource of the feedback information
  • FIG. 9 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 5 of this application, as shown in FIG. 9, including:
  • Step 901 The network device sends configuration information to the terminal device, where the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource; accordingly, the terminal device can receive configuration information from the network device.
  • the configuration information may include configuration information 1 and configuration information 2.
  • the configuration information 1 is used to configure the first SPS resource
  • the configuration information 2 is used to configure the first HARQ resource.
  • the specific implementation of configuring the first SPS resource in configuration information 1 can refer to the previous description of SPS resources.
  • a network device can send an RRC message to a terminal device.
  • the RRC message includes configuration information 1, and configuration information 1 can include the period of the SPS resource.
  • one SPS resource may be included in each period, and the first SPS resource may be an SPS resource in a certain period.
  • the specific implementation of configuring the first HARQ resource in configuration information 2 can be adapted to the implementation of configuring the first SPS resource in configuration information 1.
  • the multiple HARQ resources configured in configuration information 2 can be one-to-one with the multiple SPS resources configured in configuration information 1. correspond.
  • the network device may send configuration information 1 and configuration information 2 to the terminal device through the same RRC message, or may also send configuration information 1 and configuration information 2 to the terminal device through different RRC messages, which is not specifically limited.
  • Step 902 The terminal device determines the HARQ feedback mode of the HARQ process corresponding to the first SPS resource. If the HARQ feedback mode of the HARQ process corresponding to the first SPS resource is the first HARQ feedback mode, step S903 is performed, and if the HARQ feedback mode of the HARQ process corresponding to the first SPS resource is the second HARQ feedback mode, step 906 is performed.
  • the first HARQ feedback mode may be the normal HARQ feedback mode.
  • the terminal device receives the data packet from the HARQ process, and the data packet If the decoding is successful, the ACK is fed back to the transmission corresponding to the HARQ process on the corresponding HARQ resource; the terminal device receives the data packet from the HARQ process, and the data packet decoding fails, then the HARQ on the corresponding HARQ resource
  • the transmission corresponding to the process feeds back NACK; or, if the terminal device does not receive the data packet from the HARQ process, it feeds back the NACK for the transmission corresponding to the HARQ process on the corresponding HARQ resource.
  • the second HARQ feedback mode can be ignoring NACK feedback or ACK-only feedback.
  • the terminal device receives data from the HARQ process If the data packet is successfully decoded, then the ACK will be fed back to the transmission of the HARQ process; the terminal device receives the data packet from the HARQ process and the data packet decoding fails, then the HARQ process will not be performed for the transmission of the HARQ process. Feedback, that is, neither ACK nor NACK is fed back; or, if the terminal device does not receive a data packet from the HARQ process, HARQ feedback is not performed for this transmission of the HARQ process.
  • the terminal device can determine whether the HARQ feedback mode of the HARQ process corresponding to the first SPS resource is configured as the second HARQ feedback mode according to the configuration of the network device; if the HARQ feedback mode of the HARQ process corresponding to the first SPS resource If it is not configured as the second HARQ feedback mode, it means that the HARQ feedback mode of the HARQ process corresponding to the first SPS resource is the first HARQ feedback mode.
  • the terminal device may also use the methods described in the first to fourth embodiments above to determine the HARQ feedback mode of the HARQ process corresponding to the first SPS resource.
  • Step 903 The terminal device determines whether it can send feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource. If the terminal device determines that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource, step 904 is executed; if the terminal device determines that the HARQ process corresponding to the first SPS resource can be sent on the first HARQ resource If feedback information is received, step 905 is executed.
  • the terminal device determines that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource, which may include multiple possible situations. For example, the terminal device determines that the first HARQ resource overlaps the first resource, and the first resource is used to transmit downlink information.
  • the first resource is a downlink resource in a TDD system, which means that the first SPS cannot be sent on the first HARQ resource.
  • the feedback information of the HARQ process corresponding to the resource is a downlink resource in a TDD system, which means that the first SPS cannot be sent on the first HARQ resource.
  • the terminal device determines that the first HARQ resource overlaps the second resource, the second resource is used for transmitting uplink information, and the priority of the feedback information of the HARQ process corresponding to the first SPS resource is lower than the priority of the uplink information, then It is illustrated that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource; where the uplink information may be information carried in the PUSCH or information carried in the PUCCH, which is not specifically limited.
  • first HARQ resource there is overlap between the first HARQ resource and the first resource, which may mean that the first HARQ resource completely overlaps or partially overlaps the first resource.
  • first HARQ resource and the second resource which may mean that the first HARQ resource and the second resource completely overlap or partially overlap.
  • Step 904 The terminal device is in the DRX active state in time period 1, so as to receive the DCI sent by the network device.
  • the DCI is used to indicate the second HARQ resource
  • the second HARQ resource is used to carry feedback of the HARQ process corresponding to the first SPS resource.
  • Information, that is, the second HARQ resource is the retransmission resource of the feedback information.
  • the starting time of the time period 1 may be determined according to the first SPS resource.
  • the starting time of time period 1 can be any of the following moments: (1) the starting time of the first SPS resource; (2) the starting time of the first SPS resource shifted by k1 time units; (3) ) The end time of the first SPS resource; (4) The end time of the first SPS resource is shifted by k2 time units.
  • the time unit can be a symbol.
  • k1 and k2 can be positive integers or negative integers, and k1 and k2 can be the same or different.
  • the value of k1 or k2 may be predefined by the protocol, or may also be configured by the network device for the terminal device.
  • the network device may configure the value of k1 or k2 through an RRC message.
  • the start time of the first SPS resource may be the start time of the first symbol occupied by the first SPS resource.
  • the first symbol occupied by the first SPS resource is symbol 2, k1 If it is 1, the time after the start time of the first SPS resource is shifted by k1 time units may be the start time of symbol 3.
  • the terminal device When the terminal device is in the DRX active state, it can listen to the PDCCH. If the terminal device receives the DCI from the network device, which is used to indicate the second HARQ resource, the terminal device can determine the time period 1 according to the receiving time of the DCI. The end time, for example, the end time of time period 1 is the receiving time of the DCI.
  • the terminal device may be in the DRX active state in the time period 1, which will be described below with reference to two examples (example 1 and example 2).
  • Example 1 The terminal device may start timer 1 associated with the HARQ process corresponding to the first SPS resource at the beginning of time period 1, and stop timer 1 at the end of time period 1.
  • timer 1 When Timer 1 is running, the terminal device is in the DRX active state.
  • timer 1 may be a newly introduced timer, or may also be drx-RetransmissionTimerDL.
  • Example 2 The terminal device can enter the DRX active state at the beginning of the time period 1, and enter the DRX sleep state at the end of the time period 1.
  • timer 1 may not be used to restrict whether the terminal device is in the DRX active state.
  • Example 2 if the terminal device is in the DRX sleep state before the start time of time period 1, the terminal device can enter the DRX active state from the DRX sleep state at the start time of time period 1; if the terminal The device is already in the DRX active state before the start time of the time period 1, so the terminal device only needs to keep the DRX active state in the time period 1.
  • the terminal device may enter the DRX dormant state, or may not enter the DRX dormant state; for example, at the end of time period 1, the terminal device can determine whether there are other needs that the terminal device is in DRX activation If it does not exist, the terminal device can enter the DRX sleep state from the DRX active state at the end of the time period 1, and if it exists, the terminal device can continue to maintain the DRX active state. That is to say, in the embodiment of this application, the terminal device is restricted to be in the DRX active state during the time period 1, but there is no restriction on the state of the terminal device outside the time period 1. For example, outside the time period 1, you can refer to the existing Technology to perform.
  • Step 905 The terminal device sends feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource.
  • the terminal device may also start drx-HARQ-RTT-TimerDL. Further, if the drx-RetransmissionTimerDL is in the running state, the terminal device can also stop the drx-RetransmissionTimerDL.
  • Step 906 The terminal device determines whether the PDSCH is successfully received on the first SPS resource; if the terminal device determines that the PDSCH is successfully received on the first SPS resource, execute S907, if the terminal device determines that the PDSCH is not successfully received on the first SPS resource To PDSCH, step 910 is executed.
  • the terminal device determining that the PDSCH is successfully received on the first SPS resource may mean that the terminal device receives the data packet from the HARQ process corresponding to the first SPS resource, and the data packet is successfully decoded.
  • the terminal device determines that the PDSCH is not successfully received on the first SPS resource it may mean that the terminal device receives a data packet from the HARQ process corresponding to the first SPS resource, and the data packet decoding fails; or, the terminal device does not receive the data packet from the HARQ process.
  • the data packet of the HARQ process corresponding to the first SPS resource may mean that the terminal device receives the data packet from the HARQ process corresponding to the first SPS resource, and the data packet is successfully decoded.
  • the network device may send instruction information to the terminal device, the instruction information indicates that the first SPS resource is skipped, and then the terminal device may determine that it has not received the corresponding information from the first SPS resource according to the instruction information.
  • the network device may send instruction information to the terminal device, the instruction information indicates that the first SPS resource is skipped, and then the terminal device may determine that it has not received the corresponding information from the first SPS resource according to the instruction information.
  • Data packets of the HARQ process may be used to the terminal device.
  • Step 907 The terminal device determines whether the HARQ process feedback information corresponding to the first SPS resource can be sent on the first HARQ resource. If the terminal device determines that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource, step 908 is executed; if the terminal device determines that the HARQ process corresponding to the first SPS resource can be sent on the first HARQ resource If feedback information is received, step 909 is executed.
  • the situation in which the terminal device determines that it cannot send the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource may refer to the description in step 903 above.
  • Step 908 The terminal device is in the DRX active state in time period 2 so as to receive the DCI sent by the network device.
  • the DCI is used to indicate the second HARQ resource
  • the second HARQ resource is used to carry feedback of the HARQ process corresponding to the first SPS resource.
  • Information, that is, the second HARQ resource is the retransmission resource of the feedback information.
  • the starting time of the time period 2 may be determined according to the time domain resources occupied by the PDSCH received on the first SPS resource.
  • the starting time of time period 2 can be any of the following times: (1) the starting time of the time domain resources occupied by the PDSCH; (2) the starting time of the time domain resources occupied by the PDSCH shifted by m time units (3) The end time of the time domain resources occupied by the PDSCH; (4) The time after the end time of the time domain resources occupied by the PDSCH is shifted by n time units.
  • the time unit can be a symbol.
  • m and n may be positive or negative integers, and m and n may be the same or different.
  • the value of m or n may be predefined by the protocol, or may also be configured by the network device for the terminal device. For example, the network device may configure the value of m or n through an RRC message.
  • the terminal device When the terminal device is in the DRX active state, it can listen to the PDCCH. If the terminal device receives the DCI from the network device, and the DCI is used to indicate the second HARQ resource, the terminal device can determine the time period 2 according to the receiving time of the DCI. The end time, for example, the end time of the time period 2 is the receiving time of the DCI.
  • the terminal device may be in the DRX active state in the time period 2, which will be described below with reference to two examples (example 1 and example 2).
  • the terminal device may start timer 2 associated with the HARQ process corresponding to the first SPS resource at the beginning of time period 2, and stop timer 2 at the end of time period 2.
  • timer 2 When Timer 2 is running, the terminal device is in the DRX active state.
  • timer 2 may be a newly introduced timer, or may also be drx-RetransmissionTimerDL.
  • Example 2 The terminal device can enter the DRX active state at the beginning of the time period 2 and enter the DRX sleep state at the end of the time period 2.
  • timer 2 may not be used to restrict whether the terminal device is in the DRX active state.
  • Example 2 if the terminal device is in the DRX sleep state before the start time of time period 2, the terminal device can enter the DRX active state from the DRX sleep state at the start time of time period 2; if the terminal If the device is already in the DRX active state before the start time of the time period 2, the terminal device only needs to keep the DRX active state in the time period 2.
  • the terminal device may enter the DRX dormant state, or may not enter the DRX dormant state; for example, at the end of time period 2, the terminal device can determine whether there are other needs that the terminal device is in DRX activation If it does not exist, the terminal device can enter the DRX sleep state from the DRX active state at the end of the time period 2, and if it exists, the terminal device can continue to maintain the DRX active state. That is to say, in the embodiment of the present application, the terminal device is restricted to be in the DRX active state during the time period 2, but there is no restriction on the state of the terminal device outside the time period 2. For example, outside the time period 2, refer to the existing Technology to perform.
  • Step 909 The terminal device sends feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource.
  • the terminal device may also start drx-HARQ-RTT-TimerDL. Further, if the drx-RetransmissionTimerDL is in the running state, the terminal device can also stop the drx-RetransmissionTimerDL.
  • Step 910 the terminal device may not start drx-HARQ-RTT-TimerDL.
  • the terminal device may not stop the drx-RetransmissionTimerDL.
  • the terminal device when the feedback mode of the HARQ process corresponding to the first SPS resource is the first HARQ feedback mode, since the terminal device needs to send feedback information (ACK or NACK) to the network device, when the first SPS resource corresponds to When the first HARQ resource cannot send feedback information, regardless of whether the terminal device successfully receives the PDSCH on the first SPS resource, the terminal device can be in the DRX active state within the time period 1, so as to receive the instructions sent by the network device in time
  • the DCI of the retransmission resource of the feedback information ensures that the feedback information of the HARQ process corresponding to the first SPS resource can be sent to the network device in time, thereby improving the efficiency of downlink transmission.
  • the terminal device When the feedback mode of the HARQ process corresponding to the first SPS resource is the second HARQ feedback mode (NACK feedback is ignored), if the terminal device does not successfully receive the PDSCH on the first SPS resource, the terminal device does not need to feed back NACK, Therefore, even if the feedback information cannot be sent on the first HARQ resource corresponding to the first SPS resource, the terminal device does not need to be in the active state to receive the DCI (retransmission resource used to indicate the feedback information) sent by the network device, which can effectively avoid the terminal The device performs unnecessary operations, reducing the processing complexity and power consumption of the terminal device.
  • NACK feedback NACK feedback is ignored
  • the above content is described for the first HARQ feedback mode or the second HARQ feedback mode of the HARQ process corresponding to the first SPS resource. If the feedback mode of the HARQ process corresponding to the first SPS resource is Other possible HARQ feedback methods can be implemented adaptively with reference to the above.
  • FIG. 10 is a schematic diagram of the process corresponding to the communication method provided in the sixth embodiment of this application, as shown in FIG. 10, including:
  • Step 1001 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource; accordingly, the terminal device can receive configuration information from the network device.
  • step 1001 For the relevant implementation of step 1001, reference may be made to the description of step 901 in the fifth embodiment.
  • Step 1002 The network device determines that it cannot receive the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource.
  • the network device determines that it cannot receive the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource. Feedback information of the HARQ process.
  • the network device determines that it cannot receive the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource, which may include multiple possible situations. For example, the network device determines that the first HARQ resource overlaps the first resource, and the first resource is used to transmit downlink information.
  • the first resource is a downlink resource in a TDD system, which means that the first SPS cannot be received on the first HARQ resource.
  • the feedback information of the HARQ process corresponding to the resource is a downlink resource in a TDD system, which means that the first SPS cannot be received on the first HARQ resource.
  • the network device determines that the first HARQ resource overlaps the second resource, the second resource is used to transmit uplink information, and the priority of the feedback information of the HARQ process corresponding to the first SPS resource is lower than the priority of the uplink information, then It is explained that the feedback information of the HARQ process corresponding to the first SPS resource cannot be received on the first HARQ resource; wherein, the uplink information may be information carried in the PUSCH or information carried in the PUCCH, which is not specifically limited.
  • Step 1003 The network device sends DCI to the terminal device.
  • the DCI is used to indicate the dynamic scheduling resource, and the dynamic scheduling resource overlaps with the first SPS resource; accordingly, the terminal device can receive the DCI.
  • the aforementioned DCI may also indicate a third HARQ resource, and the third HARQ resource is used to carry feedback information of the HARQ process corresponding to the dynamic scheduling resource.
  • the dynamic scheduling resource overlaps with the first SPS resource, which may mean that the dynamic scheduling resource completely overlaps or partially overlaps with the first SPS resource.
  • the terminal device for the terminal device, if the terminal device determines that the dynamic scheduling resource scheduled by the network device overlaps with the SPS resource, the terminal device will process the dynamic scheduling resource instead of the SPS resource. Therefore, in step 1003, after receiving the DCI, the terminal device can receive the PDSCH sent by the network device on the dynamic scheduling resource according to the DCI, and send the feedback of the HARQ process corresponding to the dynamic scheduling resource on the third HARQ resource indicated by the DCI information.
  • the network device when it determines that it cannot receive the feedback information of the HARQ process corresponding to the first SPS resource on the first HARQ resource, it can indicate to the terminal device the dynamic scheduling resource that overlaps the first SPS resource and the dynamic scheduling resource Corresponding HARQ resource; since the network device can flexibly indicate the HARQ resource corresponding to the dynamic scheduling resource, the problem that the terminal device cannot send feedback information to the network device in time can be effectively avoided, and the efficiency of downlink transmission can be improved.
  • Embodiment 2 to Embodiment 4 are some possible implementations based on the description of Embodiment 1, and different embodiments of Embodiment 1 to Embodiment 4 may refer to each other.
  • the DCI in the third embodiment indicates the specific implementation of the HARQ feedback mode through the adopted DCI format or the scrambling method, which can be referred to the second embodiment.
  • step numbers of the flowcharts described in Embodiment 1 to Embodiment 6 are only an example of the execution process, and do not constitute a restriction on the order of execution of the steps.
  • This application implements In the example, there is no strict execution order between steps that have no timing dependence between each other.
  • not all the steps shown in each flowchart are necessary steps, and some steps can be added or deleted on the basis of each flowchart according to actual needs.
  • the communication device may include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 11 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1100 may include: a processing unit 1102 and a communication unit 1103.
  • the processing unit 1102 is used to control and manage the actions of the device 1100.
  • the communication unit 1103 is used to support communication between the apparatus 1100 and other devices.
  • the communication unit 1103 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1100 may further include a storage unit 1101 for storing program codes and/or data of the device 1100.
  • the apparatus 1100 may be the terminal device in any of the foregoing embodiments, or may also be a chip provided in the terminal device.
  • the processing unit 1102 may support the apparatus 1100 to execute the actions of the terminal device in the foregoing method examples.
  • the processing unit 1102 mainly executes the internal actions of the terminal device in the method example, and the communication unit 1103 can support communication between the apparatus 1100 and the network device.
  • the communication unit 1103 may be used to perform step 502 in FIG. 5; the processing unit 1102 may be used to perform step 503 and step 504 in FIG. 5.
  • the communication unit 1103 is configured to receive the first information from the network device; the processing unit 1102 is configured to determine the HARQ feedback mode according to the first information, and the HARQ feedback mode includes ignoring ACK and/or NACK feedback; And according to the HARQ feedback mode, feedback processing is performed on the first HARQ process.
  • the processing unit 1102 is specifically configured to: the HARQ feedback mode includes ignoring ACK feedback. If it is determined that the communication unit 1103 receives a data packet from the first HARQ process and the data packet is successfully decoded, then the first HARQ The process does not feed back ACK.
  • the HARQ feedback method includes ignoring NACK feedback. If it is determined that the communication unit 1103 receives a data packet from the first HARQ process and the data packet decoding fails, then no NACK is fed back to the first HARQ process; or, if it is determined that the communication unit 1103 is not If a data packet from the first HARQ process is received, no NACK is fed back to the first HARQ process.
  • the HARQ feedback mode includes ignoring ACK and NACK feedback, and then not feeding back ACK and NACK for the first HARQ process.
  • the first information includes indication information
  • the indication information is used to indicate the HARQ feedback mode.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource; the communication unit 1103 is further configured to receive an RRC message from the network device, the RRC message includes indication information, and the RRC message is used to configure the SPS resource; or The communication unit 1103 is further configured to receive DCI from the network device, where the DCI includes indication information, and the DCI is used to activate or reactivate the SPS resource.
  • the first HARQ process belongs to the HARQ process corresponding to the dynamic scheduling resource; the communication unit 1103 is further configured to receive the DCI from the network device, where the DCI includes the indication information, and the The DCI is used to schedule the dynamic scheduling resources.
  • the communication unit 1103 is further configured to receive a first message from the network device, where the first message includes the indication information; wherein, the first message is a PDCP layer or an RLC layer Or MAC layer control messages.
  • the communication unit 1103 is further configured to receive a data packet from the network device, the data packet including the indication information; wherein, the data packet is sent through the first HARQ process of.
  • the first HARQ process belongs to the HARQ process corresponding to the first service; the communication unit 1103 is further configured to receive an RRC message from the network device, where the RRC message includes the indication information, The RRC message is used to configure a logical channel corresponding to the first service.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource; the first information includes an RRC message, the RRC message is used to configure PUCCH resources, and the PUCCH resources are used to carry the Feedback information of the HARQ process corresponding to the SPS resource; the processing unit 1102 is further configured to determine the HARQ feedback mode according to whether the configuration information of the PUCCH resource is carried in the RRC message.
  • the first information includes DCI; the processing unit 1102 is further configured to determine the HARQ feedback mode according to the format or scrambling mode of the DCI.
  • the first HARQ process belongs to the HARQ process corresponding to the SPS resource, and the DCI is used to indicate the activation or reactivation of the SPS resource; or, the first HARQ process belongs to the corresponding dynamic scheduling resource In the HARQ process, the DCI is used to schedule the dynamic scheduling resource.
  • the first HARQ process belongs to the HARQ process corresponding to the first service; the first information includes preset priority information; the processing unit 1102 is further configured to: The priority of the logical channel and the preset priority information determine the HARQ feedback mode.
  • the communication unit 1103 is further configured to receive second information from the network device, where the second information is used to indicate at least one HARQ process applicable to the HARQ feedback mode, and the at least one HARQ process
  • the HARQ process includes the first HARQ process.
  • the communication unit 1103 is configured to receive configuration information from a network device, where the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource; the processing unit 1102 uses Therefore, it is determined that the feedback information of the HARQ process corresponding to the first SPS resource cannot be sent on the first HARQ resource; the DRX is activated in the first time period, and the start time of the first time period is based on what The first SPS resource is determined.
  • the communication unit 1103 is further configured to receive DCI from the network device, where the DCI is used to indicate a second HARQ resource, and the second HARQ resource is used to carry the feedback information;
  • the ending time of the first time period is the receiving time of the DCI.
  • the processing unit 1102 is specifically configured to control the terminal device to enter the DRX active state at the beginning of the first time period, and enter the DRX sleep state at the end of the first time period state.
  • the processing unit 1102 is specifically configured to start the timer corresponding to the HARQ process at the beginning of the first time period, and stop the timer at the end of the first time period. Timer; wherein, when the timer is running, the terminal device is in the DRX active state.
  • the timer is an uplink DRX retransmission timer.
  • the processing unit 1102 is further configured to determine that the PDSCH is successfully received on the first SPS resource.
  • the start time of the first time period is determined according to the first SPS resource, including: the start time of the first time period is determined according to the first SPS resource The time domain resources occupied by the received PDSCH are determined.
  • the start moment of the first time period is any of the following moments: the start moment of the time domain resources occupied by the PDSCH; the start moment of the time domain resources occupied by the PDSCH The time after the time is shifted by m time units; the end time of the time domain resources occupied by the PDSCH; the end time of the time domain resources occupied by the PDSCH is shifted by n time units; where m, n are Integer.
  • the HARQ feedback mode of the HARQ process is to ignore NACK feedback.
  • the processing unit 1102 determining that the HARQ feedback information cannot be sent on the first HARQ resource includes: the processing unit 1102 determines that the first HARQ resource overlaps the first resource, and the first resource Used for transmitting downlink information; or, determining that the first HARQ resource overlaps with the second resource, the second resource is used for transmitting uplink information, and the priority of the HARQ feedback information is lower than the priority of the uplink information .
  • the apparatus 1100 may be the network device in any of the foregoing embodiments, or may also be a chip provided in the network device.
  • the processing unit 1102 may support the apparatus 1100 to execute the actions of the network device in the above method examples.
  • the processing unit 1102 mainly executes the internal actions of the network device in the method example, and the communication unit 1103 may support communication between the apparatus 1100 and the terminal device.
  • the communication unit 1103 may be used to perform step 501 in FIG. 5.
  • the processing unit 1102 is configured to determine the HARQ feedback mode, the HARQ feedback mode includes ignoring ACK and/or NACK; the communication unit 1103 is configured to send first information to the terminal device, and the first information is used for The terminal device determines the HARQ feedback mode.
  • the first information includes indication information
  • the indication information is used to indicate the HARQ feedback mode.
  • the communication unit 1103 is further configured to send a first message to the terminal device, where the first message includes indication information; wherein, the first message is an RRC message, a PDCP layer control message, and an RLC layer control message , MAC layer control message or DCI; or, the communication unit 1103 is further configured to send a data packet to the terminal device, and the data packet includes indication information.
  • the RRC message is used to configure SPS resources, or to configure the logical channel corresponding to the first service.
  • DCI is used to activate or reactivate SPS resources, or to schedule dynamic scheduling resources.
  • the first information includes an RRC message
  • the RRC message is used to configure PUCCH resources
  • the PUCCH resource is used to carry feedback information of the HARQ process corresponding to the SPS resource; when the RRC message does not carry the configuration information of the PUCCH resource At this time, the RRC message is used to indicate the HARQ feedback mode.
  • the first information includes DCI
  • the format or scrambling mode of the DCI is used to indicate the HARQ feedback mode.
  • the DCI is used to indicate activation or reactivation of SPS resources; or, the DCI is used to schedule dynamic scheduling resources.
  • the first information includes preset priority information.
  • the communication unit 1103 is further configured to send second information to the terminal device, where the second information is used to indicate at least one HARQ process to which the HARQ feedback mode is applicable.
  • the communication unit 1103 is configured to send configuration information to the terminal device, where the configuration information is used to configure the first SPS resource and the first HARQ resource corresponding to the first SPS resource; the processing unit 1102 is configured to , It is determined that the feedback information of the HARQ process corresponding to the first SPS resource cannot be received on the first HARQ resource; the communication unit 1103 is further configured to send DCI to the terminal device, and the DCI is used to indicate dynamic scheduling of resources , The dynamic scheduling resource overlaps with the first SPS resource.
  • the DCI is also used to indicate a third HARQ resource
  • the third HARQ resource is used to carry feedback information of the HARQ process corresponding to the dynamic scheduling resource.
  • the processing unit 1102 determining that the HARQ process feedback information corresponding to the first SPS resource cannot be received on the first HARQ resource includes: the processing unit 1102 determines that the first HARQ resource and the first HARQ resource A resource overlaps, the first resource is used to transmit downlink information; or, the processing unit 1102 determines that the first HARQ resource overlaps with a second resource, and the second resource is used to transmit uplink information, and the HARQ feedback The priority of the information is lower than the priority of the uplink information.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (central processing unit, CPU), or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 1210, a radio frequency part 1220, and a signal processing part 1230.
  • the antenna 1210 is connected to the radio frequency part 1220.
  • the radio frequency part 1220 receives the information sent by the network device through the antenna 1210, and sends the information sent by the network device to the signal processing part 1230 for processing.
  • the signal processing part 1230 processes the information of the terminal equipment and sends it to the radio frequency part 1220
  • the radio frequency part 1220 processes the information of the terminal equipment and sends it to the network equipment via the antenna 1210.
  • the signal processing part 1230 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal device operating system and application layer; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 1231, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1232 and an interface circuit 1233.
  • the storage element 1232 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 1232, but is stored in a memory outside the modem subsystem, When in use, the modem subsystem is loaded and used.
  • the interface circuit 1233 is used to communicate with other subsystems.
  • the modem subsystem can be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device can also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 11.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the terminal device shown in FIG. 12 can implement various processes involving the terminal device in the method embodiments illustrated in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, and FIG. 10.
  • the operations and/or functions of each module in the terminal device shown in FIG. 12 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1301, a radio frequency device 1302, and a baseband device 1303.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives the information sent by the terminal device through the antenna 1301, and sends the information sent by the terminal device to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information of the terminal device and sends it to the radio frequency device 1302, and the radio frequency device 1302 processes the information of the terminal device and sends it to the terminal device via the antenna 1301.
  • the baseband device 1303 may include one or more processing elements 13031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1303 may also include a storage element 13032 and an interface 13033.
  • the storage element 13032 is used to store programs and data; the interface 13033 is used to exchange information with the radio frequency device 1302.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1303.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1303.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as that described above and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 11.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the network device shown in FIG. 13 can implement various processes involving the network device in the method embodiments illustrated in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, and FIG. 10.
  • the operations and/or functions of the various modules in the network device shown in FIG. 13 are used to implement the corresponding processes in the foregoing method embodiments.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:网络设备向终端设备发送第一信息,进而终端设备可以根据第一信息确定HARQ反馈方式,HARQ反馈方式可以包括忽略ACK和/或NACK反馈。采用该种方式,通过网络设备控制终端设备采用的HARQ反馈方式,从而可以灵活的针对不同场景控制终端设备采用不同的HARQ反馈方式,便于适应业务需求,有效降低终端设备的功耗以及节省空口资源。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年02月28日提交中国专利局、申请号为202010130397.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,以及在2021年02月25日提交中国专利局、申请号为202110215182.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信中,发射信号要经过复杂的传播环境,为保证信号传输质量,引入了混合自动重传请求(hybrid automatic repeat request,HARQ)。
HARQ是一种结合前向纠错(forward error correction,FEC)与自动重传请求(automatic repeat request,ARQ)方法的技术。其中,FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数;对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。具体来说,接收端可以使用检错码,来检测接收到的数据包是否解码成功;如果解码成功,则接收端会发送一个肯定的确认(acknowledgement,ACK)给发送端,发送端收到ACK后,会接着发送下一个数据包;如果解码失败,则接收端会发送一个否定的确认(negative acknowledgement,NACK)给发送端,发送端收到NACK后,会重发相同的数据。
然而,针对于下行传输,终端设备如何进行HARQ反馈,以节省终端设备的功耗,目前仍需进一步的研究。
发明内容
本申请实施例提供一种通信方法及装置,用于实现灵活的HARQ反馈,从而适配不同场景的业务需求,降低不必要的HARQ反馈的开销,降低终端设备的功耗。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备从网络设备接收第一信息,并根据第一信息确定HARQ反馈方式,HARQ反馈方式包括忽略ACK和/或NACK反馈;以及,终端设备根据HARQ反馈方式,对第一HARQ进程进行反馈处理。
采用该种方式,通过网络设备控制终端设备采用的HARQ反馈方式,从而可以灵活的针对不同场景控制终端设备采用不同的HARQ反馈方式,便于适应业务需求,有效降低终端设备的功耗以及节省空口资源。
在一种可能的设计中,终端设备根据HARQ反馈方式,对第一HARQ进程进行反馈处理,包括:HARQ反馈方式包括忽略ACK反馈,终端设备接收到来自第一HARQ进程的数据包,且数据包解码成功,则针对该数据包对第一HARQ进程不反馈ACK;或者, HARQ反馈方式包括忽略NACK反馈,终端设备接收到来自第一HARQ进程的数据包,且数据包解码失败,则针对该数据包对第一HARQ进程不反馈NACK;或者,终端设备未接收到来自第一HARQ进程的数据包,则对第一HARQ进程不反馈NACK;或者,HARQ反馈方式包括忽略ACK和NACK反馈,终端设备针对该数据包对第一HARQ进程不反馈ACK和NACK。
在一种可能的设计中,数据包解码成功,包括:数据包中的至少一个CBG解码成功。此种情形下,对该数据包反馈ACK或不反馈ACK,表示对所述解码成功的CBG反馈ACK或不反馈ACK。
在一种可能的设计中,数据包解码失败,包括:数据包中的至少一个CBG解码失败。此种情形下,对该数据包反馈NACK或不反馈NACK,表示对所述解码失败的CBG反馈NACK或不反馈NACK。
在一种可能的设计中,第一信息包括指示信息,指示信息用于指示HARQ反馈方式。
在一种可能的设计中,第一HARQ进程属于SPS资源对应的HARQ进程;终端设备接收来自网络设备的指示信息,包括:终端设备接收来自网络设备的RRC消息,RRC消息包括指示信息,RRC消息用于配置SPS资源;或者,终端设备接收来自网络设备的DCI,DCI包括指示信息,DCI用于激活或者重新激活SPS资源。
在一种可能的设计中,第一HARQ进程属于动态调度资源对应的HARQ进程;终端设备接收来自网络设备的指示信息,包括:终端设备接收来自网络设备的DCI,DCI包括指示信息,DCI用于调度动态调度资源。
在一种可能的设计中,终端设备接收来自网络设备的指示信息,包括:终端设备接收来自网络设备的第一消息,第一消息包括指示信息;其中,第一消息为PDCP层或RLC层或MAC层或物理层的控制消息。
在一种可能的设计中,终端设备接收来自网络设备的指示信息,包括:终端设备接收来自网络设备的数据包,数据包包括指示信息;其中,数据包是通过第一HARQ进程发送的。
在一种可能的设计中,第一HARQ进程属于第一业务对应的HARQ进程;终端设备接收来自网络设备的指示信息,包括:终端设备接收来自网络设备的RRC消息,RRC消息包括指示信息,RRC消息用于配置第一业务对应的逻辑信道。
在一种可能的设计中,第一HARQ进程属于SPS资源对应的HARQ进程;第一信息包括RRC消息,RRC消息用于配置PUCCH资源,PUCCH资源用于承载SPS资源对应的HARQ进程的反馈信息;终端设备根据第一信息确定HARQ反馈方式,包括:终端设备根据RRC消息中是否携带PUCCH资源的配置信息,确定HARQ反馈方式。
在一种可能的设计中,第一信息包括DCI;终端设备根据第一信息确定HARQ反馈方式,包括:根据DCI的格式或加扰方式,确定HARQ反馈方式。
采用该种方式,通过DCI的格式或加扰方式来确定HARQ反馈方式,从而无需通过其它额外信息来指示,能够有效节省资源。
在一种可能的设计中,第一HARQ进程属于SPS资源对应的HARQ进程,DCI用于指示激活或者重新激活SPS资源;或者,第一HARQ进程属于动态调度资源对应的HARQ进程,DCI用于调度动态调度资源。
在一种可能的设计中,第一HARQ进程属于第一业务对应的HARQ进程;第一信息 包括预设优先级信息;终端设备确定HARQ反馈方式,包括:终端设备根据第一业务对应的逻辑信道的优先级和预设优先级信息,确定HARQ反馈方式。
在一种可能的设计中,该方法还包括:终端设备接收来自网络设备的第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程,至少一个HARQ进程包括第一HARQ进程。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。以该方法应用于网络设备为例,在该方法中,网络设备确定HARQ反馈方式,并向终端设备发送第一信息,第一信息用于终端设备确定HARQ反馈方式;HARQ反馈方式包括忽略ACK和/或NACK。
采用该种方式,网络设备可以通过第一信息来控制终端设备采用的HARQ反馈方式,从而能够实现终端设备灵活的HARQ反馈,有效降低终端设备的功耗以及节省空口资源。
在一种可能的设计中,第一信息包括指示信息,指示信息用于指示HARQ反馈方式。
在一种可能的设计中,网络设备向终端设备发送指示信息,包括:网络设备向终端设备发送RRC消息,RRC消息包括指示信息,RRC消息用于配置SPS资源;或者,网络设备向终端设备发送DCI,DCI包括指示信息,DCI用于激活或者重新激活SPS资源。
在一种可能的设计中,网络设备向终端设备发送指示信息,包括:网络设备向终端设备发送DCI,DCI包括指示信息,DCI用于调度动态调度资源。
在一种可能的设计中,网络设备向终端设备发送指示信息,包括:网络设备向终端设备发送第一消息,第一消息包括指示信息;其中,第一消息为PDCP层或RLC层或MAC层或物理层的控制消息。
在一种可能的设计中,网络设备向终端设备发送指示信息,包括:网络设备向终端设备发送数据包,数据包包括指示信息。
在一种可能的设计中,网络设备向终端设备发送指示信息,包括:网络设备向终端设备发送RRC消息,RRC消息包括指示信息,RRC消息用于配置第一业务对应的逻辑信道。
在一种可能的设计中,第一信息包括RRC消息,RRC消息用于配置PUCCH资源,PUCCH资源用于承载SPS资源对应的HARQ进程的反馈信息;当RRC消息不携带PUCCH资源的配置信息时,RRC消息用于指示HARQ反馈方式。
在一种可能的设计中,第一信息包括DCI,DCI的格式或加扰方式用于指示HARQ反馈方式。
在一种可能的设计中,DCI用于指示激活或者重新激活SPS资源;或者,DCI用于调度动态调度资源。
在一种可能的设计中,第一信息包括预设优先级信息。
在一种可能的设计中,该方法还包括:网络设备向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。
第三方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备接收来自网络设备的配置信息,所述配置信息用于配置第一SPS资源以及所述第一SPS资源对应的第一HARQ资源;确定无法在所述第一HARQ资源上发送所述第一SPS资源对应的HARQ进程的反馈信息;在第一时间段处于DRX激活态,所述第一时间段的起始时刻是根据所述第一SPS资源确定的。
采用上述方法,当无法在第一SPS资源对应的第一HARQ资源发送反馈信息时,终端设备可以在第一时间段内处于DRX激活态,以便于及时接收网络设备发送的用于指示反馈信息的重传资源的DCI,保证第一SPS资源对应的HARQ进程的反馈信息可以及时发送给网络设备,进而提高下行传输的效率。
在一种可能的设计中,所述方法还包括:接收来自所述网络设备的DCI,所述DCI用于指示第二HARQ资源,所述第二HARQ资源用于承载所述反馈信息;所述第一时间段的结束时刻为所述DCI的接收时刻。
在一种可能的设计中,在第一时间段处于DRX激活态,包括:在所述第一时间段的起始时刻进入DRX激活态,以及在所述第一时间段的结束时刻进入DRX休眠态。
在一种可能的设计中,在第一时间段处于DRX激活态,包括:在所述第一时间段的起始时刻启动所述HARQ进程对应的定时器,以及在所述第一时间段的结束时刻停止所述定时器;其中,在所述定时器运行时,所述终端设备处于所述DRX激活态。
在一种可能的设计中,所述定时器为上行DRX重传定时器。
在一种可能的设计中,所述方法还包括:确定在所述第一SPS资源上成功接收到PDSCH。
在一种可能的设计中,所述第一时间段的起始时刻是根据所述第一SPS资源确定的,包括:所述第一时间段的起始时刻是根据在所述第一SPS资源上接收到的PDSCH所占用的时域资源确定的。
在一种可能的设计中,所述第一时间段的起始时刻为以下任一时刻:所述PDSCH所占用的时域资源的起始时刻;所述PDSCH所占用的时域资源的起始时刻平移m个时间单元后的时刻;所述PDSCH所占用的时域资源的结束时刻;所述PDSCH所占用的时域资源的结束时刻平移n个时间单元后的时刻;其中,m、n为整数。
在一种可能的设计中,所述HARQ进程的HARQ反馈方式为忽略NACK反馈。
在一种可能的设计中,确定无法在所述第一HARQ资源上发送HARQ反馈信息,包括:确定所述第一HARQ资源与第一资源存在重叠,所述第一资源用于传输下行信息;或者,确定所述第一HARQ资源与第二资源存在重叠,所述第二资源用于传输上行信息,所述HARQ反馈信息的优先级低于所述上行信息的优先级。
第四方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。以该方法应用于网络设备为例,在该方法中,网络设备向终端设备发送配置信息,所述配置信息用于配置第一SPS资源以及所述第一SPS资源对应的第一HARQ资源;确定无法在所述第一HARQ资源上接收所述第一SPS资源对应的HARQ进程的反馈信息;向所述终端设备发送DCI,所述DCI用于指示动态调度资源,所述动态调度资源与所述第一SPS资源存在重叠。
采用上述方式,当网络设备确定无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息时,可以向终端设备指示与第一SPS资源存在重叠的动态调度资源;由于网络设备可以灵活指示动态调度资源对应的HARQ资源,从而能够有效避免终端设备无法将反馈信息及时发送给网络设备的问题,提高下行传输的效率。
在一种可能的设计中,所述DCI还用于指示第三HARQ资源,所述第三HARQ资源用于承载所述动态调度资源对应的HARQ进程的反馈信息。
在一种可能的设计中,确定无法在所述第一HARQ资源上接收所述第一SPS资源对 应的HARQ进程的反馈信息,包括:确定所述第一HARQ资源与第一资源存在重叠,所述第一资源用于传输下行信息;或者,确定所述第一HARQ资源与第二资源存在重叠,所述第二资源用于传输上行信息,所述HARQ反馈信息的优先级低于所述上行信息的优先级。
第五方面,本申请提供一种通信装置,所述通信装置可以为终端设备或者设置在终端设备内部的芯片。所述通信装置具备实现上述第一方面或第三方面的功能,比如,所述通信装置包括执行上述第一方面或第三方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自网络设备的配置信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面或第三方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面或第三方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第一方面或第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第三方面任意可能的设计或实现方式中的方法。
第六方面,本申请提供一种通信装置,所述通信装置可以为网络设备或者设置在网络设备内部的芯片。所述通信装置具备实现上述第二方面或第四方面涉及的功能,比如,所述通信装置包括执行上述第二方面或第四方面涉及步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送系统信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面或第四方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第二方面或第四方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分 离设置,本申请并不限定。存储器可以保存实现上述第二方面或第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第二方面或第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面或第四方面任意可能的设计或实现方式中的方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第八方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第九方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第四方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1a为本申请实施例适用的一种可能的系统架构示意图;
图1b为本申请实施例适用的又一种网络架构示意图;
图1c为本申请实施例适用的又一种网络架构示意图;
图2a为本申请实施例提供的下行数据在各层间传输示意图;
图2b为本申请实施例提供的网络设备和终端设备之间的下行数据传输示意图;
图3为本申请实施例提供的网络设备通过DCI激活、去激活以及重新激活SPS资源示意图;
图4a为本申请实施例提供的使用SPS资源传输数据包示意图;
图4b为本申请实施例提供的场景一的数据包传输示意图;
图4c为本申请实施例提供的场景二的数据包传输示意图;
图5为本申请实施例一提供的通信方法所对应的流程示意图;
图6为本申请实施例二提供的通信方法所对应的流程示意图;
图7为本申请实施例三提供的通信方法所对应的流程示意图;
图8为本申请实施例四提供的通信方法所对应的流程示意图;
图9为本申请实施例五提供的通信方法所对应的流程示意图;
图10为本申请实施例六提供的通信方法所对应的流程示意图;
图11为本申请实施例中所涉及的装置的可能的示例性框图;
图12为本申请实施例提供的一种终端设备的结构示意图;
图13为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G通信系统中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信系统中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
(3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或” 的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
图1a为本申请实施例适用的一种网络架构示意图。如图1a所示,终端设备130可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括无线接入网(radio access network,RAN)设备110和核心网(core network,CN)设备120,其中RAN设备110用于将终端设备130接入到无线网络,CN设备120用于对终端设备进行管理并提供与外网通信的网关。应理解,图1a所示的通信系统中各个设备的数量仅作为示意,本申请实施例并不限于此,实际应用中在通信系统中还可以包括更多的终端设备130、更多的RAN设备110,还可以包括其它设备。
CN中可以包括多个CN设备120,当图1a所示的网络架构适用于5G通信系统时,CN设备120可以为接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体或用户面功能(user plane function,UPF)实体等,本申请实施例中以CN设备120为UPF实体为例。示例性地,终端设备130和RAN设备110之间的接口可以称为Uu接口或空口,RAN设备110和UPF实体之间的接口可以称为N3接口。
图1b为本申请实施例适用的又一种网络架构示意图。如图1b所示,该网络架构包括CN设备、RAN设备和终端设备。其中,RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。又例如,在一种演进结构中,RAN设备可以包括CU和DU,多个DU可以由一个CU集中控制,CU和DU之间的接口可以称为F1-U接口。
图1c为本申请实施例适用的又一种网络架构示意图。相对于图1b所示的网络架构,图1c中还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面(control plane,CP)CU实体(即CU-CP实体)和用户面(user plane,UP)CU实体(即CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,无线资源控制(radio resource control,RRC)层或分组数据汇聚层协议(packet data convergence protocol,PDCP)层的信令最终会处理为物理层的信令发送给终端设备,或者,由接收到的物理层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
上述图1a、图1b或图1c所示意的网络架构可以适用于各种无线接入技术(radio  access technology,RAT)的通信系统中,例如可以是5G(或者称为新无线(new radio,NR))通信系统,当然也可以是未来的通信系统。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU、或DU、或包括CU和DU的RAN设备。
在上述图1a、图1b或图1c所示意的网络架构中,网络设备和终端设备之间的通信可以遵循一定的协议层结构,例如控制面协议层结构可以包括RRC层、PDCP层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。示例性地,网络设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,若网络设备包括CU和DU,则CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
以网络设备和终端设备之间的数据传输为例,数据传输需要经过用户面协议层,比如经过SDAP层、PDCP层、RLC层、MAC层、物理层,其中,SDAP层、PDCP层、RLC层、MAC层、物理层也可以统称为接入层。根据数据的传输方向分为发送或接收,上述每层又分为发送部分和接收部分。以下行数据传输为例,参见图2a所示为下行数据在各层间传输示意图,图2a中向下的箭头表示数据发送,向上的箭头表示数据接收。PDCP层自上层取得数据后,会将数据传送到RLC层与MAC层,再由MAC层生成传输块(transport block,TB),然后通过物理层进行无线传输。数据在各个层中进行相对应的封装,某一层从该层的上层收到的数据视为该层的服务数据单元(service data unit,SDU),经过层封装后成为协议数据单元(protocol data unit,PDU),再传递给下一个层。例如PDCP层从上层接收到的数据称为PDCP SDU,PDCP层发送到下层的数据称为PDCP PDU;RLC层从上层接收到的数据称为RLC SDU,RLC层发送到下层的数据称为RLC PDU;MAC层从上层接收到的数据称为MAC SDU,MAC层发送到下层的数据称为MAC PDU,MAC PDU也可以称为TB。在协议中,层间的联系大都以通道的方式进行对应。RLC层与MAC层间通过逻辑信道(logical channel,LCH)对应,MAC层与物理层则是通过传输通道(transport channel)对应,物理层以下为物理信道(physical channel),用来对应到另一端的物理层。
根据图2a还可以看出,终端设备还可以具有应用层和非接入层;其中,应用层可以用于向终端设备中所安装的应用程序提供服务,比如,终端设备接收到的下行数据可以由物 理层依次传输到应用层,进而由应用层提供给应用程序。非接入层可以用于转发用户数据,比如将从应用层接收到的上行数据转发给SDAP层或者将从SDAP层接收到的下行数据转发给应用层。
仍以图2a所示的下行数据传输为例,参见图2b所示,网络设备的MAC层中可以包括HARQ实体(HARQ entity),一个HARQ实体可以维护或管理一个或多个HARQ进程(HARQ process),比如HARQ进程1、HARQ进程2、……、HARQ进程n。每个HARQ进程在接收端(即终端设备)均有独立的HARQ缓存(buffer),比如HARQ缓存1、HARQ缓存2、……、HARQ缓存n,其中,HARQ缓存1可以为HARQ进程1的HARQ缓存,HARQ缓存2可以为HARQ进程2的HARQ缓存,以此类推。
其中,HARQ进程基于停等协议(stop-and-wait protocol)来发送数据,因此也可以称为停等进程(stop-and-wait process)。在停等协议中,发送端发送一个TB后,停下来等待确认信息;接收端会对该TB进行肯定(ACK)或否定(NACK)的确认。考虑到发送端每次传输后停下来等待确认,会导致吞吐量很低,因此,LTE通信系统以及5G通信系统中使用多个并行的HARQ进程。当一个HARQ进程在等待确认信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,HARQ实体结合了停等协议,同时允许数据的连续传输。
每个HARQ进程对应的HARQ缓存可用于缓存解码失败的数据包,以便对接收到的数据进行软合并。具体来说,在ARQ机制中,接收端确定接收到的数据包解码失败后,会丢弃该数据包,并向发送端发送NACK,请求重传该数据包;考虑到解码失败的数据包中可能包含了有用的信息,如果丢弃,则可能导致这些有用的信息也被丢弃,因此,可以使用带软合并的HARQ(HARQ with soft combining),即接收端可以将接收到的解码失败的数据包保存在HARQ缓存中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(“软合并”的过程),进而对合并后的数据包进行解码,如果仍然解码失败,则可以重复“请求重传,再进行软合并”的过程。
如图2b所示,网络设备中的HARQ进程可以将MAC PDU(即TB)递交给编码实体,进而由编码实体进行编码,进而将编码后的TB传输给物理层,由物理层传输给终端设备的物理层。示例性地,TB关联HARQ信息,可以从物理层传递给MAC层,HARQ信息可以包括新数据指示(new data indicator,NDI)、传输块大小(transport block size,TBS)、冗余版本(redundancy version,RV)、HARQ进程标识(HARQ process ID)。其中,NDI用于指示TB是新传还是重传,每个HARQ进程会保存一个NDI值,如果同一HARQ进程的NDI值与之前相比发生了变化(NDI toggled),则表示当前传输是一个新传的TB,否则(NDI not toggled)表示当前传输是一个重传的TB。RV用于指示传输所使用的冗余版本,其取值范围为0~3。HARQ进程标识为用于标识HARQ进程的信息,比如HARQ进程标识可以为HARQ进程号。
相应地,终端设备的物理层接收到TB后,可以将TB递交给MAC层解码实体,由解码实体进行解码,若解码成功,则MAC层的HARQ实体可以通知物理层针对该HARQ进程反馈ACK;若解码失败,则MAC层的HARQ实体可以通知物理层针对该HARQ进程反馈NACK。此外,若终端设备未接收到TB,则MAC层的HARQ实体也可以通知物理层针对该HARQ进程反馈NACK。
上述结合图2a和图2b对网络设备和终端设备之间的下行数据传输的过程进行了描述,下面将对下行数据传输所使用的资源进行介绍。
示例性地,网络设备可以通过动态调度资源向终端设备发送下行数据包,或者,也可以通过半静态调度资源向终端设备发送下行数据包。
(1)动态调度资源
网络设备在调度上行动态授权(dynamic grant,DG)时,可以通过物理下行控制信道(physical downlink control channel,PDCCH)中的下行控制信息(downlink control information,DCI)指示被调度的上行传输资源的时频位置等信息;可以理解为,网络设备通过DCI调度动态调度资源。例如,网络设备可通过DCI通知终端设备:在XXX时间YYY频段接收数据(下行);在ZZZ时间VVV频段发送数据(上行)。也就是说,动态调度资源可以为用于下行传输的资源,或者,也可以为用于上行传输的资源,本申请实施例中主要以动态调度资源为用于下行传输的资源为例进行描述。
示例性地,网络设备基于动态调度分配的资源是一次有效的,也就是说,网络设备通过DG为终端设备分配的资源只能使用一次。
(2)半静态调度(semi-persistent scheduling,SPS)资源
半静态调度是指下行静态/半静态调度,网络设备配置的配置下行资源分配(configured downlink assignment)是多次有效的,例如,假设网络设备通过RRC信令或MAC信令或物理层信令通知终端:在XXX时间YYY频段接收数据,之后每隔周期T又可以在XXX时间YYY频段接收数据。
示例性地,网络设备可以通过RRC消息配置SPS资源,RRC消息可以包括SPS资源的周期、使用SPS资源的HARQ进程数目等参数;以及,通过DCI或者MAC层的控制消息激活或者重新激活SPS资源,以DCI激活或者重新激活SPS资源为例,DCI可以包括SPS资源的时频位置、调制与编码方式(modulation and coding scheme,MCS)等参数。
举个例子,参见图3所示,为网络设备通过DCI激活、去激活以及重新激活SPS资源示意图。如图3所示包括:
在T1时刻,网络设备通过RRC消息配置SPS资源。
在T2时刻,网络设备向终端设备发送DCI-a,DCI-a用于指示激活SPS资源,DCI-a指示SPS资源的时频位置为位置1。
在T3时刻,网络设备向终端设备发送DCI-b,DCI-b用于指示去激活SPS资源。
在T4时刻,网络设备向终端设备发送DCI-c,DCI-c用于指示激活SPS资源,DCI-c指示SPS资源的时频位置为位置2。
在T5时刻,网络设备向终端设备发送DCI-d,DCI-d用于指示重新激活SPS资源,DCI-d指示SPS资源的时频位置为位置3。
基于上述网络设备和终端设备之间的下行数据传输的相关描述,下面对终端设备的HARQ反馈作进一步的研究。
5G通信系统可以支持多种可能的业务,比如超高可靠低时延通信(ultra reliability and low latency communication,URLLC)业务,URLLC业务可以应用于智能电网、智能交 通系统等场景中。由于URLLC业务通常具有确定性的周期,并且对时延以及可靠性有极高的需求,因此该业务的下行传输可以使用SPS资源。
图4a为使用SPS资源传输数据包(即TB)示意图。如图4a所示,HARQ进程数目为5,即HARQ进程1至HARQ进程5(图4a中的#1即代表SPS资源对应的HARQ进程ID为HARQ进程1)。由于URLLC业务的传输可靠性较高,因此在一种可能的情形中,在SPS资源上连续传输7个TB,仅有一个TB解码失败,终端设备需要反馈NACK,其它6个TB均解码成功,终端设备需要反馈ACK。
考虑到URLLC业务的可靠性可达到99.999%,因此当无线链路质量较好时,约10万个数据包中可能仅有一个数据包传输失败需要反馈NACK,剩余9万9千多个数据包都需要反馈ACK,从而造成ACK反馈的开销较大。因此,在一种可能的方案中,终端设备可以采用仅有NACK反馈(即忽略ACK反馈)的HARQ反馈方式,从而可以节省大量的ACK反馈开销,进而降低终端设备的功耗。
如表1所示,示意出了采用仅有NACK反馈的HARQ反馈方式时终端设备的反馈行为。
表1:仅有NACK反馈的HARQ反馈方式
DL解码结果 终端设备的HARQ反馈 网络设备的行为
TB解码失败 NACK 调度重传
TB解码成功 - 无进一步行为
未接收到TB NACK 无进一步行为
根据表1可以看出,终端设备在TB解码成功时不再反馈ACK,在TB解码失败或者未接收到TB时反馈NACK;相应地,网络设备若接收到NACK反馈,则可以确定对应的TB传输失败,进而可以调度该TB的重传,网络设备若没有接收到任何反馈,则可以确定对应的TB传输成功。
然而,终端设备针对SPS资源默认采用仅有NACK反馈的HARQ反馈方式这一方案具有一定的局限性,比如该方案主要适用于业务周期与SPS周期相匹配的场景。由于URLLC业务场景的多样性,因此还存在一些其它场景,比如下文所描述的场景1至场景3。
场景1
针对部分智能电网等场景中,差分保护的数据包,除了对时延以及可靠性有较高的要求外,还要求时延抖动在一个较低的范围,因此有些场景的业务周期为SPS周期的非整数倍,例如业务周期为0.833ms,从而无法用一个时隙的整数倍来配置一个匹配的SPS周期。此种情形下,可以配置多套SPS资源,例如一套SPS资源的周期为0.8ms,另一个SPS资源的周期为0.9ms,从而尽可能满足时延抖动的需求。然而,采用该种方式,会造成有些配置下行资源分配上没有TB传输。
如图4b所示,数据包到达间隔为0.833ms,配置两套周期不同的SPS资源,第一套SPS资源周期为0.8ms,HARQ进程为HARQ进程1至HARQ进程5,第二套SPS资源周期为0.9ms,HARQ进程为HARQ进程6至HARQ进程10。在一段时间内,在SPS对应的HARQ进程6、HARQ进程2、HARQ进程3、HARQ进程4、HARQ进程9、HARQ进程10以及HARQ进程6有TB传输,终端设备可以反馈ACK,而在 其它资源上没有TB传输,终端设备可以反馈NACK。在这段时间内,共计13次配置下行资源分配上只有7次有TB传输,当SPS资源配置更多套时,会有更多的配置下行资源分配上没有TB传输,从而会早成较多的NACK反馈。
场景2
针对周期不确定的业务,即数据包到达没有固定周期,如图4c所示,为了保证业务的时延的苛刻要求,网络设备可以配置较短的SPS周期,从而当下行有数据包到达时可以及时将该数据包传输出去,以降低传输时延。然而,采用该种方式,会造成较多的配置下行资源分配上没有TB传输,例如HARQ进程2、HARQ进程3、HARQ进程5以及HARQ进程1对应的HARQ反馈均为NACK。
场景3
针对时延较为苛刻的一些远程控制的工业应用场景,数据包到达的间隔小于0.5ms,从而导致HARQ重传已经不能满足该业务的时延需求。因此,终端设备的任何HARQ反馈对于该业务的可靠性已经没有帮助。
基于此,本申请实施例提供一种通信方法,用于实现灵活的HARQ反馈,从而适配不同场景的业务需求,降低不必要的HARQ反馈的开销,降低终端设备的功耗。
在下文的描述中,将以本申请实施例提供的通信方法适用于图1a所示意的网络架构为例。该方法可由第一通信装置和第二通信装置执行,其中,第一通信装置可以是图1a中的网络设备或者能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是图1a中的终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是网络设备、第二通信装置是终端设备为例。
实施例一
图5为本申请实施例提供的通信方法所对应的流程示意图,如图5所示,包括:
步骤501,网络设备向终端设备发送第一信息。
示例性地,网络设备可以根据终端设备的业务需求,确定HARQ反馈方式以及适用HARQ反馈方式的HARQ进程,进而向终端设备发送第一信息。其中,业务需求可以包括业务周期、时延抖动要求、时延要求、网络切片中的一项或多项。
比如,针对于上述场景1,网络设备可以确定HARQ反馈方式包括忽略NACK反馈,以及适用HARQ反馈方式的HARQ进程可以包括第一套SPS资源和第二套SPS资源对应的HARQ进程。
又比如,针对于上述场景2,网络设备可以确定HARQ反馈方式包括忽略NACK反馈,以及适用HARQ反馈方式的HARQ进程可以包括周期不确定的业务对应的HARQ进程。
又比如,针对于上述场景3,网络设备可以确定HARQ反馈方式包括忽略ACK和NACK反馈,以及适用HARQ反馈方式的HARQ进程可以包括时延较为苛刻的业务对应的HARQ进程。
步骤502,终端设备接收第一信息,根据第一信息确定HARQ反馈方式,HARQ反馈方式可以包括忽略ACK和/或NACK反馈。
示例性地,终端设备根据第一信息确定HARQ反馈方式的方式可以有多种。
在一种可能的实现方式中,第一信息可以包括指示信息,指示信息用于指示HARQ反馈方式;相应地,终端设备可以根据指示信息确定HARQ反馈方式。其中,指示信息可以承载在多种可能的消息中,比如RRC消息、PDCP层的控制消息、RLC层的控制消息、MAC层的控制消息或者物理层的控制消息;或者,指示信息可以承载在数据包中。其中,RRC消息可以为RRC重配置消息、RRC恢复(RRC resume)消息、RRC建立(RRC setup)消息,具体不做限定;PDCP层的控制消息可以为PDCP层的控制PDU;RLC层的控制消息可以为RLC层的控制PDU;MAC层的控制消息可以为MAC CE;物理层的控制消息可以为DCI。
需要说明的是:(1)本申请实施例中对指示信息在消息中的具体位置不做限定。比如,当指示信息承载在MAC CE中时,指示信息可以承载在MAC CE的包头或者数据负荷中。又比如,当指示信息承载在数据包中时,指示信息可以承载在PDCP层或者RLC层的数据PDU的包头中。
(2)本申请实施例指示信息指示HARQ反馈方式的具体方式不做限定。比如,指示信息可以包括HARQ反馈方式的索引值,若索引值为1,则表示HARQ反馈方式为忽略ACK反馈;若索引值为2,则表示HARQ反馈方式为忽略NACK反馈;若索引值为3,则表示HARQ反馈方式为忽略ACK和NACK反馈。又比如,当指示信息承载在MAC CE的包头时,MAC CE的包头包括逻辑信道标识(logical channel ID,LCID)字段,指示信息可以占用LCID字段,即可以通过LCID字段来指示不同的HARQ反馈方式;举个例子,LCID=X,表示HARQ反馈方式为忽略ACK反馈;LCID=Y,表示HARQ反馈方式为忽略NACK反馈;LCID=Z,表示HARQ反馈方式为忽略ACK和NACK反馈。
在又一种可能的实现方式中,第一信息可以包括消息,该消息可以为RRC消息或者DCI。相应地,终端设备可以根据该消息是否包括物理上行控制信道(physical uplink control channel,PUCCH)资源的配置信息、该消息的格式或该消息的加扰方式(例如加扰该消息所用的无线网络临时标识(radio network temporary identity,RNTI))等确定HARQ反馈方式。其中,PUCCH资源可以用于承载HARQ进程的反馈信息,比如ACK或NACK。
在又一种可能的实现方式中,第一信息可以包括预设优先级信息,相应地,终端设备可以根据业务对应的逻辑信道的优先级和预设优先级信息,确定HARQ反馈方式。
步骤503,终端设备确定适用HARQ反馈方式的至少一个HARQ进程。
此处,至少一个HARQ进程可以包括SPS资源对应的HARQ进程和/或动态调度资源对应的HARQ进程;或者,至少一个HARQ进程可以包括一种或多种业务对应的HARQ进程。
示例性地,终端设备确定适用HARQ反馈方式的至少一个HARQ进程的方式可以有多种。此处描述两种可能的实现方式,分别为实现方式a1和实现方式a2。
在实现方式a1中,网络设备可以向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。示例性地,第二信息可以包括适用HARQ反馈方式的至少一个HARQ进程的HARQ进程号;进而,终端设备可以根据第二信息确定适用HARQ反馈方式的HARQ进程。其中,第二信息可以承载在多种可能的消息中,比如RRC消息,RRC消息可以为RRC重配置消息、RRC恢复消息、RRC建立消息,具体不做限定。
在实现方式a2中,可以预先由协议约定适用HARQ反馈方式的HARQ进程,比如可 以约定:适用HARQ反馈方式的HARQ进程包括SPS资源对应的全部HARQ进程和/或动态调度资源对应的全部HARQ进程;或者,包括一种或多种业务对应的全部HARQ进程。此种情形下,网络设备可以无需再向终端设备发送第二信息,从而能够有效节省传输资源。
需要说明的是,上述实现方式a1和实现方式a2可以分别单独实施,或者也可以结合实施,比如结合实施的一种情形为,网络设备若向终端设备发送了第二信息,则终端设备可以根据第二信息确定适用HARQ反馈方式的HARQ进程(即实现方式a1);网络设备若未向终端设备发送第二信息,则终端设备可以基于协议约定确定适用HARQ反馈方式的HARQ进程(即实现方式a2)。
步骤504,终端设备根据HARQ反馈方式,对至少一个HARQ进程进行反馈处理。
示例性地,至少一个HARQ进程包括第一HARQ进程,下面以第一HARQ进程为例,描述终端设备根据HARQ反馈方式对第一HARQ进程进行反馈处理的一些可能的实现。
比如1,HARQ反馈方式可以包括忽略ACK反馈,终端设备若接收到来自第一HARQ进程的数据包,且数据包解码成功,则针对该数据包对第一HARQ进程不反馈ACK。可选地,终端设备若接收到来自第一HARQ进程的数据包,且数据包解码失败,则针对该数据包对第一HARQ进程反馈NACK;或者,终端设备若未接收到来自第一HARQ进程的数据包,则对第一HARQ进程反馈NACK。该HARQ反馈方式也可以描述为仅做NACK(NACK only)反馈。
比如2,HARQ反馈方式包括忽略NACK反馈,终端设备若接收到来自第一HARQ进程的数据包,且数据包解码失败,则针对该数据包对第一HARQ进程不反馈NACK;或者,终端设备未接收到来自第一HARQ进程的数据包,则对第一HARQ进程不反馈NACK。可选地,终端设备若接收到来自第一HARQ进程的数据包,且数据包解码成功,则针对该数据包对第一HARQ进程反馈ACK。该HARQ反馈方式也可以描述为仅做ACK(ACK only)反馈。
比如3,HARQ反馈方式包括忽略ACK和NACK反馈,终端设备对第一HARQ进程不反馈ACK和NACK。其中,终端设备对第一HARQ进程不反馈ACK和NACK,可以包括:终端设备若接收到来自第一HARQ进程的数据包,且数据包解码成功,则针对该数据包对第一HARQ进程不反馈ACK;或者,终端设备若接收到来自第一HARQ进程的数据包,且数据包解码失败,则针对该数据包对第一HARQ进程不反馈NACK;又或者,终端设备未接收到来自第一HARQ进程的数据包,则对第一HARQ进程不反馈NACK。
在一种可能的方案中,HARQ的反馈机制可以有两种,分别是基于TB传输的HARQ反馈机制以及基于编码块组(code block group,CBG)传输的HARQ反馈机制。其中,一个TB中包括多个CB,该TB中的一个CBG可以包括该TB中的至少一个CB;也就是说,CBG为一个TB中多个CB的分组。对于基于TB传输的HARQ反馈机制来说,若该TB解码成功,则反馈ACK,若该TB解码失败或未收到TB,则反馈NACK。对于基于CBG传输的HARQ反馈机制来说,一个TB的HARQ信息(比如ACK或NACK)中可以包括多个比特,每个比特可以对应该TB中的一个CBG,比特的取值用于指示该比特对应的CBG是否解码成功。若该TB中的一个CBG解码成功,则针对该CBG反馈ACK,若另一个CBG解码失败,则针对该CBG反馈NACK。
本申请实施例中的HARQ反馈方式可以是指基于TB传输的HARQ反馈机制中的HARQ反馈方式,或者也可以为基于CBG传输的HARQ反馈机制中的HARQ反馈方式, 下面分别进行介绍。
(1)本申请实施例中的HARQ反馈方式为基于TB传输的HARQ反馈机制中的HARQ反馈方式,此种情形下,上述比如1至比如3中所描述的数据包解码成功或失败,即是指TB解码成功或解码失败。
①HARQ反馈方式包括忽略ACK(skip ACK)反馈,意味着若TB解码成功,不反馈ACK,若TB解码失败,反馈NACK。
②HARQ反馈方式包括忽略NACK(skip NACK)反馈,意味着若TB解码失败,不反馈NACK,若TB解码成功,反馈ACK。
③HARQ反馈方式包括忽略ACK和NACK反馈,意味着无论TB解码成功或者失败,不反馈NACK,也不反馈ACK,即不做任何HARQ反馈。
(2)本申请实施例中的HARQ反馈方式为基于CBG传输的HARQ反馈机制中的HARQ反馈方式。此种情形下,上述比如1至比如3中所描述的数据包解码成功,可以包括:数据包(即TB)中的至少一个CBG解码成功。对该数据包反馈ACK或不反馈ACK,可以理解为,对该TB中解码成功的CBG反馈ACK或不反馈ACK。或者,上述比如1至比如3中所描述的数据包解码失败,可以包括:数据包(即TB)中的至少一个CBG解码失败。对该数据包反馈NACK或不反馈NACK,可以理解为,对该TB中解码失败的CBG反馈NACK或不反馈NACK。
①HARQ反馈方式包括忽略ACK(skip ACK)反馈,意味着若TB中的至少一个CBG解码成功或者TB中的所有CBG均解码成功,不反馈所述至少一个CBG或者TB中的所有CBG的ACK;若TB中的至少一个CBG解码失败或者TB中的所有CBG均解码失败,反馈所述至少一个CBG或者TB中的所有CBG的NACK。
②HARQ反馈方式包括忽略NACK(skip NACK)反馈,意味着若TB中的至少一个CBG解码失败或者TB中的所有CBG均解码失败,不反馈所述至少一个CBG或者TB中的所有CBG的NACK,若TB中的至少一个CBG解码成功或者TB中的所有CBG均解码成功,反馈所述至少一个CBG或者TB中的所有CBG的ACK。
③HARQ反馈方式包括忽略ACK和NACK反馈,意味着无论TB中的至少一个CBG解码成功或者失败,或者无论TB中的全部CBG均解码成功或者失败,不反馈所述至少一个CBG或者TB中的所有CGB的ACK,也不反馈所述至少一个CBG或者TB中的所有CBG的NACK,即不做任何HARQ反馈。
需要说明的是,当网络设备在数据包中携带指示信息时,可能有多种可能的实现,此处展开描述两种实现方式,分别为实现方式b1和实现方式b2。
(1)实现方式b1
网络设备可以在某一数据包中携带指示信息或者在某些数据包中分别携带该指示信息,比如该指示信息用于指示HARQ反馈方式a,以及网络设备可以通过第二信息指示适用HARQ反馈方式a的HARQ进程;进而,终端设备可以根据HARQ反馈方式a对相应的HARQ进程进行反馈处理。
可以理解地,适用HARQ反馈方式a的HARQ进程可以包括传输上述某一数据包或某些数据包的HARQ进程,还可以包括其它HARQ进程。
(2)实现方式b2
网络设备可以在多个数据包中分别携带指示信息,比如多个数据包包括数据包1、数 据包2和数据包3,在数据包1中携带指示信息1,指示信息1指示HARQ反馈方式1;在数据包2中携带指示信息2,指示信息2指示HARQ反馈方式2;在数据包3中携带指示信息3,指示信息3指示HARQ反馈方式3。其中,数据包1、数据包2和数据包3可以为通过同一HARQ进程传输的数据包,或者也可以为通过不同HARQ进程传输的数据包。比如,数据包1、数据包2为HARQ进程1传输的数据包,数据包3为HARQ进程2传输的数据包,则终端设备接收到数据包1后,可以根据数据包1的解码结果和HARQ反馈方式1对HARQ进程1进行反馈处理;接收到数据包2后,可以根据数据包2的解码结果和HARQ反馈方式2对HARQ进程1进行反馈处理;接收到数据包3后,可以根据数据包3的解码结果和HARQ反馈方式3对HARQ进程2进行反馈处理。上述HARQ反馈方式1、HARQ反馈方式2、HARQ反馈方式3可以相同,或者也可以不相同。
示例性地,针对于终端设备未接收到来自HARQ进程1或HARQ进程2的数据包的情形,可以预先约定此种情形下反馈NACK或者不反馈NACK。
示例性地,在实现方式b2中,网络设备可以无需指示适用HARQ反馈方式的HARQ进程。
本申请实施例中,网络设备向终端设备发送第一信息,进而终端设备可以根据第一信息确定HARQ反馈方式,HARQ反馈方式可以包括忽略ACK和/或NACK反馈。采用该种方式,网络设备可以针对不同场景的业务需求,确定相应的HARQ反馈方式,进而指示给终端设备;也就是说,通过网络设备控制终端设备采用的HARQ反馈方式,从而可以灵活的针对不同场景控制终端设备采用不同的HARQ反馈方式,便于适应业务需求,有效降低终端设备的功耗以及节省空口资源。
基于实施例一,下面结合实施例二至实施例四描述一些可能的实现。
实施例二
图6为本申请实施例二提供的通信方法所对应的流程示意图,如图6所示,包括:
步骤601,网络设备向终端设备发送消息1。
步骤602,终端设备接收消息1,并根据消息1确定HARQ反馈方式。
示例性地,消息1可以为SPS资源(为便于描述,称为SPS资源1)关联的消息。
在一个示例中,消息1为RRC消息1,RRC消息1用于配置SPS资源1,比如RRC消息1可以包括SPS资源1的配置信息和在SPS资源1传输的PDSCH的配置信息。RRC消息1可以包括指示信息,指示信息用于指示HARQ反馈方式。比如指示信息可以包含在SPS资源1的配置信息中,或者也可以包含在SPS资源1传输的PDSCH的配置信息。此种情形下,终端设备可以根据RRC消息1包括的指示信息确定HARQ反馈方式。
示例性地,以RRC消息1中携带的下行带宽部分(bandwidth part,BWP)专属配置为例,在BWP-DownlinkDedicated信元(information element,IE)中,指示信息可以包含在pdsch-Config信元(即PDSCH的配置信息),还可以包含在sps-Config信元(即SPS资源1的配置信息)。
Figure PCTCN2021078432-appb-000001
Figure PCTCN2021078432-appb-000002
在又一个示例中,消息1为RRC消息2,RRC消息2用于配置PUCCH资源,PUCCH资源用于承载SPS资源1对应的HARQ进程的反馈信息。此种情形下,终端设备可以根据RRC消息2中是否携带PUCCH资源的配置信息,确定HARQ反馈方式。也就是说,RRC消息2通过是否携带PUCCH资源的配置信息来指示HARQ反馈方式;比如,当RRC消息2中不携带PUCCH资源的配置信息时,指示的HARQ反馈方式包括忽略ACK和/或NACK反馈;当RRC消息2中携带PUCCH资源的配置信息时,指示正常进行HARQ反馈(即不忽略ACK,且不忽略NACK)。
在又一个示例中,消息1为DCI-1,DCI-1用于激活或者重新激活SPS资源1,DCI-1可以包括指示信息,指示信息用于指示HARQ反馈方式。此种情形下,终端设备可以根据DCI-1包括的指示信息确定HARQ反馈方式。
在又一个示例中,消息1为DCI-2,DCI-2用于激活或者重新激活SPS资源1。此种情形下,终端设备可以根据DCI-2的DCI格式(DCI format)或加扰方式来确定HARQ反馈方式。也就是说,DCI-2通过采用的格式或加扰方式来指示HARQ反馈方式。
比如,当DCI-2的格式为DCI格式(format)1时,指示的HARQ反馈方式包括忽略ACK反馈;当DCI-2的格式为DCI格式2时,指示的HARQ反馈方式包括忽略NACK;当DCI-2的格式为DCI格式3时,指示的HARQ反馈方式包括忽略ACK和NACK反馈。其中,DCI格式1、DCI格式2、DCI格式3可以为协议预先定义的格式。
又比如,当DCI-2的加扰方式为采用RNTI#1加扰时,指示的HARQ反馈方式包括忽略ACK反馈;当DCI-2的加扰方式为采用RNTI#2加扰时,指示的HARQ反馈方式包括忽略NACK反馈;当DCI-2的加扰方式为采用RNTI#3加扰时,指示的HARQ反馈方式包括忽略ACK和NACK反馈。其中,RNTI#1、RNTI#2、RNTI#3可以为协议预先定义的RNTI。
在又一个示例中,消息1为MAC层的控制消息(或者说MAC信令),MAC信令用于激活或者重新激活SPS资源1,MAC信令可以包括指示信息,指示信息用于指示HARQ反馈方式。此种情形下,终端设备可以根据MAC信令包括的指示信息确定HARQ反馈方式。
步骤603,终端设备确定适用HARQ反馈方式的至少一个HARQ进程。
步骤604,终端设备根据HARQ反馈方式,对至少一个HARQ进程进行反馈处理。
此处,终端设备确定适用HARQ反馈方式的至少一个HARQ进程可以有多种。
在一种可能的实现方式中,可以预先由协议约定适用HARQ反馈方式的至少一个HARQ进程,比如可以约定:当网络设备通过SPS资源1关联的消息(比如上述RRC消息1、RRC消息2、DCI-1、DCI-2或MAC信令)指示HARQ反馈方式时,适用HARQ反馈方式的HARQ进程包括SPS资源1对应的全部HARQ进程。
在又一种可能的实现方式中,网络设备可以向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。比如,第二信息指示适用HARQ反馈 方式的HARQ进程为SPS资源1对应的全部或部分HARQ进程。又比如,网络设备可以为终端设备配置多套SPS资源,第二信息所指示的至少一个HARQ进程可以包括网络设备为终端设备配置的多套SPS资源对应的部分或全部HARQ进程。举个例子,除上述SPS资源1外,网络设备还为终端设备配置了SPS资源2和SPS资源3,SPS资源1对应的HARQ进程包括HARQ进程1至HARQ进程5,SPS资源2对应的HARQ进程包括HARQ进程6至HARQ进程10,SPS资源3对应的HARQ进程包括HARQ进程11至HARQ进程15,则至少一个HARQ进程可以包括HARQ进程1至HARQ进程15中的部分或全部HARQ进程。
示例性地,第二信息可以承载于RRC消息1或者RRC消息2中,或者也可以承载于其它可能的消息中,具体不做限定。
采用该种方式,网络设备通过SPS资源1关联的消息来指示SPS资源1对应的HARQ进程适用的HARQ反馈方式,从而能够针对于具体资源上传输的业务指示相应的HARQ反馈方式。
实施例三
图7为本申请实施例三提供的通信方法所对应的流程示意图,如图7所示,包括:
步骤701,网络设备向终端设备发送DCI,DCI用于调度动态调度资源(为便于描述,称为资源1)。
步骤702,终端设备接收DCI,并根据DCI确定HARQ反馈方式。
在一个示例中,DCI可以包括指示信息,指示信息用于指示HARQ反馈方式。此种情形下,终端设备可以根据DCI包括的指示信息确定HARQ反馈方式。
在又一个示例中,DCI通过采用的DCI格式或加扰方式来指示HARQ反馈方式。此种情形下,终端设备可以根据DCI的格式或加扰方式来确定HARQ反馈方式。
步骤703,终端设备确定适用HARQ反馈方式的至少一个HARQ进程。
步骤704,终端设备根据HARQ反馈方式,对至少一个HARQ进程进行反馈处理。
此处,终端设备确定适用HARQ反馈方式的至少一个HARQ进程可以有多种。
在一种可能的实现方式中,可以预先由协议约定适用HARQ反馈方式的HARQ进程。比如可以约定:当网络设备通过调度资源1的DCI指示HARQ反馈方式时,适用HARQ反馈方式的HARQ进程包括资源1对应的全部HARQ进程。
在又一种可能的实现方式中,网络设备可以向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。比如,第二信息指示适用HARQ反馈方式的HARQ进程为资源1对应的全部或部分HARQ进程。
采用该种方式,网络设备通过调度资源1的DCI来指示资源1对应的HARQ进程适用的HARQ反馈方式,从而能够针对于具体资源上传输的业务指示相应的HARQ反馈方式。
实施例四
图8为本申请实施例四提供的通信方法所对应的流程示意图,如图8所示,包括:
步骤801,网络设备向终端设备发送RRC消息。
步骤802,终端设备接收RRC消息,并根据RRC消息确定HARQ反馈方式。
示例性地,RRC消息可以为第一业务关联的消息,比如RRC消息可以用于配置第一业务对应的逻辑信道。
在一个示例中,RRC消息可以包括指示信息,指示信息用于指示HARQ反馈方式。此种情形下,终端设备可以根据RRC消息包括的指示信息确定HARQ反馈方式。示例性地,RRC消息可以包括逻辑信道的配置信息,指示信息可以承载在逻辑信道的配置信息中。
在又一个示例中,RRC消息可以包括预设优先级信息。此种情形下,终端设备可以根据第一业务对应的逻辑信道的优先级信息和预设优先级信息确定HARQ反馈方式。比如,当第一业务对应的逻辑信道的优先级信高于或等于预设优先级时,指示HARQ反馈方式包括忽略ACK和/或NACK反馈;当第一业务对应的逻辑信道的优先级信低于预设优先级时,指示正常进行HARQ反馈。
需要说明的是,在其它可能的实施例中,预设优先级信息也可以为协议预先约定的,此种情形下,终端设备无需再从网络设备获取预设优先级信息,从而能够节省资源开销。
步骤803,终端设备确定适用HARQ反馈方式的至少一个HARQ进程。
步骤804,终端设备根据HARQ反馈方式,对至少一个HARQ进程进行反馈处理。
此处,终端设备确定适用HARQ反馈方式的至少一个HARQ进程可以有多种。
在一种可能的实现方式中,可以预先由协议约定适用HARQ反馈方式的HARQ进程。比如可以约定:当网络设备通过第一业务关联的消息(比如上述RRC消息)指示HARQ反馈方式时,适用HARQ反馈方式的HARQ进程包括第一业务对应的全部HARQ进程。
在又一种可能的实现方式中,网络设备可以向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。比如,第二信息指示适用HARQ反馈方式的HARQ进程为第一业务对应的全部或部分HARQ进程。
采用上述方法,网络设备可以通过RRC消息来指示业务对应的HARQ进程的HARQ反馈方式,从而能够更精准地针对具体业务使用对应的HARQ反馈方式。
在终端设备与网络设备之间的空口通信中,为了节省终端设备的功耗,引入了非连续接收或者说不连续接收(discontinuous reception,DRX)机制。
下面对DRX机制进行描述。
在DRX机制下,终端设备可以处于DRX激活态或DRX休眠态,当终端设备处于DRX激活态时,终端设备可以打开接收机来侦听PDCCH(比如可以侦听各类RNTI加扰的PDCCH),而当终端设备处于DRX休眠态时,终端设备可以不再侦听PDCCH,从而减小终端设备的功耗。其中,终端设备处于DRX激活态,也可以描述为:终端设备处于激活态,或者终端设备处于唤醒状态,或者终端设备醒着,具体不做限定;终端设备处于DRX休眠态,也可以描述为:终端设备处于休眠态,或者终端设备处于睡眠状态,具体不做限定。
示例性地,当引入DRX机制后,网络设备可以为终端设备配置如下参数:
(1)DRX cycle:即非连续接收的周期,在每个周期内,终端设备会定时醒过来一段时间(在该段时间内终端设备处于DRX激活态)来侦听PDCCH。DRX cycle有两种:长周期和短周期,长周期是短周期的整数倍。
(2)drx-onDurationTimer:即一段连续的下行时长,其表示终端设备醒来后维持醒着的时间(即终端设备处于DRX激活态的时间);在这段时间内,终端设备需要侦听PDCCH。 该定时器在每个DRX周期的开始时刻启动。
(3)drx-InactivityTimer:即一段连续的下行时长,在这段时间内终端设备需要侦听PDCCH。该定时器可以在终端设备成功解调出用于调度该终端设备的新传数据(可以为上行或下行新传数据)的PDCCH时启动或重启。
(4)drx-HARQ-RTT-Timer:即最小的重传调度间隔,用于指示下一次HARQ重传最早在多少个符号后出现。该定时器可以分为上行对应的定时器(即drx-HARQ-RTT-TimerUL)和下行对应的定时器(即drx-HARQ-RTT-TimerDL)。其中drx-HARQ-RTT-TimerDL在一个HARQ进程的下行传输的HARQ反馈结束后的第一个符号处启动;drx-HARQ-RTT-TimerUL在一个HARQ进程的上行传输后的第一个符号处启动(如果上行传输是重复(repetition)传输,则在第一次传输结束后的第一个符号处启动)。
(5)drx-RetransmissionTimer:即接收重传调度的等待时间,此定时器表示终端设备处于DRX激活态等待重传数据的最长时间。该定时器可以分为上行对应的定时器(即drx-RetransmissionTimerUL)和下行对应的定时器(即drx-RetransmissionTimerDL)。其中drx-RetransmissionTimerDL在一个HARQ进程的drx-HARQ-RTT-TimerDL超时后的第一个符号处启动;drx-RetransmissionTimerUL在一个HARQ进程的drx-HARQ-RTT-TimerUL超时后的第一个符号处启动。
(6)drx-shortCycleTimer:即短周期的生命周期,该定时器超时后,需要使用长周期。在配置了短周期情况下,该定时器在如下两种情况下启动或重启:1)drx-InactivityTimer超时,2)终端设备收到DRX command MAC CE。其中,DRX command MAC CE是让终端设备立即进入休眠态的MAC CE;终端设备收到该控制信令后,可以立刻停止drx-onDurationTimer和drx-InactivityTimer。
除上述所描述的参数外,网络设备还可以为终端设备配置其它可能的参数,比如drx-SlotOffset和drx-StartOffset,drx-StartOffset用于确定DRX cycle从哪一个子帧开始,而drx-SlotOffset用于从DRX cycle开始位置所在子帧的前边界向后推迟一定时间启动drx-onDurationTimer。
对于上述所描述的DRX cycle以及各类定时器,终端设备可以按照如下规则进行维护:DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-shortCycleTimer是由每个MAC实体(per MAC entity)来维护的,即终端设备的一个MAC entity只维护一套DRX cycle,以及drx-onDurationTimer,drx-InactivityTimer,drx-shortCycleTimer等;而drx-HARQ-RTT-Timer和drx-RetransmissionTimer是由每个HARQ进程维护的,即每个HARQ进程根据条件可以启动/重启该HARQ进程相关的drx-HARQ-RTT-Timer和drx-RetransmissionTimer。
在配置DRX cycle后,终端设备处于激活态的时间(即终端设备醒着的时间)包括:(1)drx-onDurationTimer/drx-InactivityTimer/drx-RetransmissionTimerDL/drx-RetransmissionTimerUL处于运行的时间;(2)随机接入过程中用于接收Msg4的ra-ContentionResolutionTimer处于运行的时间;(3)终端设备在PUCCH上发送了一个调度请求(scheduling request,SR),但是该SR处于挂起状态的时间;(4)终端设备在冲突避免的随机接入过程中,成功接收到随机接入响应(random access response,RAR),但是没有收到小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的PDCCH调度的新传数据的时间。
如前文所述,SPS资源是网络设备为终端设备配置的周期性的下行资源,不同于动态调度资源(动态调度资源对应的HARQ资源是通过DCI进行动态指示的),SPS资源对应的HARQ资源也可以是网络设备通过半静态的方式来配置的。但在时分双工(time division duplexing,TDD)系统中,通过半静态方式配置SPS资源对应的HARQ资源,可能会导致部分SPS资源对应的HARQ资源(比如第一SPS资源对应的第一HARQ资源)与下行资源存在重叠,从而导致终端设备无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。为解决这一问题,一种可能的方案为:网络设备动态触发反馈信息的重传,比如网络设备可以通过DCI为终端设备指示一个新的HARQ资源(称为第二HARQ资源),从而使得终端设备可以在第二HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。
然而,如果终端设备被配置了DRX功能,则终端设备在第一SPS资源的前后一段时间可能处于DRX休眠态,即不对网络设备调度的DCI进行侦听,从而使得网络设备无法及时通过DCI向终端设备指示反馈信息的重传资源,终端设备也无法及时向网络设备发送第一SPS资源对应的HARQ进程的反馈信息,进而影响下行传输的效率。
基于此,本申请实施例提供一种通信方法,用于提高下行传输的效率。
下面结合实施例五和实施例六对本申请实施例提供的通信方法进行详细描述。
实施例五
在实施例五中,终端设备可以接收来自网络设备的配置信息,该配置信息用于配置第一SPS资源以及第一SPS资源对应的第一HARQ资源,当终端设备确定无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,终端设备可以在第一时间段处于DRX激活态,以便于接收网络设备发送的DCI(用于指示反馈信息的重传资源)。下面结合图9描述一种可能的实现流程。
图9为本申请实施例五提供的通信方法所对应的流程示意图,如图9所示,包括:
步骤901,网络设备向终端设备发送配置信息,该配置信息用于配置第一SPS资源以及第一SPS资源对应的第一HARQ资源;相应地,终端设备可以接收来自网络设备的配置信息。
示例性地,配置信息可以包括配置信息1和配置信息2,配置信息1用于配置第一SPS资源,配置信息2用于配置第一HARQ资源。其中,配置信息1配置第一SPS资源的具体实现可以参见前文有关SPS资源的描述,比如网络设备可以向终端设备发送RRC消息,RRC消息中包括配置信息1,配置信息1可以包括SPS资源的周期等参数,每一个周期内可以包括一个SPS资源,第一SPS资源可以为某一个周期内的SPS资源。配置信息2配置第一HARQ资源的具体实现可以适应性参照配置信息1配置第一SPS资源的实现,配置信息2所配置的多个HARQ资源可以与配置信息1所配置的多个SPS资源一一对应。
需要说明的是,网络设备可以通过同一RRC消息向终端设备发送配置信息1和配置信息2,或者也可以通过不同RRC消息向终端设备发送配置信息1和配置信息2,具体不做限定。
步骤902,终端设备确定第一SPS资源对应的HARQ进程的HARQ反馈方式。若第一SPS资源对应的HARQ进程的HARQ反馈方式为第一HARQ反馈方式,则执行步骤S903,若第一SPS资源对应的HARQ进程的HARQ反馈方式为第二HARQ反馈方式,则 执行步骤906。
此处,第一HARQ反馈方式可以为正常HARQ反馈方式,当第一SPS资源对应的HARQ进程的HARQ反馈方式为正常HARQ反馈方式时,终端设备接收到来自该HARQ进程的数据包,且数据包解码成功,则在对应的HARQ资源上对该HARQ进程对应的该次传输反馈ACK;终端设备接收到来自该HARQ进程的数据包,且数据包解码失败,则在对应的HARQ资源上对该HARQ进程对应的该次传输反馈NACK;或者,终端设备未接收到来自该HARQ进程的数据包,则在对应的HARQ资源上对该HARQ进程对应的该次传输反馈NACK。
第二HARQ反馈方式可以为忽略NACK反馈或ACK-only反馈,当第一SPS资源对应的HARQ进程的HARQ反馈方式为忽略NACK反馈或ACK-only反馈时,终端设备接收到来自该HARQ进程的数据包,且数据包解码成功,则对该HARQ进程的该次传输反馈ACK;终端设备接收到来自该HARQ进程的数据包,且数据包解码失败,则对该HARQ进程的该次传输不进行HARQ反馈,即既不反馈ACK也不反馈NACK;或者,终端设备未接收到来自该HARQ进程的数据包,则对该HARQ进程的该次传输不进行HARQ反馈。
终端设备确定第一SPS资源对应的HARQ进程的HARQ反馈方式的实现方式可以有多种。在一个示例中,终端设备可以根据网络设备的配置,确定第一SPS资源对应的HARQ进程的HARQ反馈方式是否被配置为第二HARQ反馈方式;若第一SPS资源对应的HARQ进程的HARQ反馈方式未被配置为第二HARQ反馈方式,则说明第一SPS资源对应的HARQ进程的HARQ反馈方式为第一HARQ反馈方式。
此外,终端设备也可以采用上述实施例一至实施例四中所描述的方式来确定第一SPS资源对应的HARQ进程的HARQ反馈方式。
步骤903,终端设备确定是否能够在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。若终端设备确定无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,则执行步骤904;若终端设备确定能够在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,则执行步骤905。
此处,终端设备确定无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,可以包括多种可能的情形。比如,终端设备确定第一HARQ资源与第一资源存在重叠,第一资源用于传输下行信息,比如第一资源为TDD系统中的下行资源,则说明无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。又比如,终端设备确定第一HARQ资源与第二资源存在重叠,第二资源用于传输上行信息,第一SPS资源对应的HARQ进程的反馈信息的优先级低于该上行信息的优先级,则说明无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息;其中,上行信息可以为PUSCH中承载的信息,或者PUCCH中承载的信息,具体不做限定。
需要说明的是,第一HARQ资源与第一资源存在重叠,可以是指,第一HARQ资源与第一资源完全重叠或者部分重叠。第一HARQ资源与第二资源存在重叠,可以是指,第一HARQ资源与第二资源完全重叠或者部分重叠。
步骤904,终端设备在时间段1处于DRX激活态,以便于接收网络设备发送的DCI,该DCI用于指示第二HARQ资源,第二HARQ资源用于承载第一SPS资源对应的HARQ进程的反馈信息,即第二HARQ资源为反馈信息的重传资源。
此处,时间段1的起始时刻可以是根据第一SPS资源确定的。比如,时间段1的起始 时刻可以为以下任一时刻:(1)第一SPS资源的起始时刻;(2)第一SPS资源的起始时刻平移k1个时间单元后的时刻;(3)第一SPS资源的结束时刻;(4)第一SPS资源的结束时刻平移k2个时间单元后的时刻。其中,时间单元可以为符号。k1、k2可以为正整数或负整数,k1和k2可以相同,或者也可以为不相同。k1或k2的取值可以为协议预先定义的,或者也可以是由网络设备为终端设备配置的,比如网络设备可以通过RRC消息来配置k1或k2的取值。示例性地,第一SPS资源的起始时刻可以为第一SPS资源所占用的第一个符号的起始时刻,举个例子,第一SPS资源所占用的第一个符号为符号2,k1为1,则第一SPS资源的起始时刻平移k1个时间单元后的时刻可以为符号3的起始时刻。
当终端设备处于DRX激活态时,可以侦听PDCCH,若终端设备接收到来自网络设备的DCI,该DCI用于指示第二HARQ资源,则终端设备可以根据DCI的接收时刻来确定时间段1的结束时刻,比如时间段1的结束时刻即为DCI的接收时刻。
本申请实施例中,终端设备在时间段1处于DRX激活态的具体实现可以有多种,下面结合两个示例(示例1和示例2)进行描述。
示例1,终端设备可以在时间段1的起始时刻启动第一SPS资源对应的HARQ进程关联的定时器1,以及在时间段1的结束时刻停止定时器1。在定时器1运行时,终端设备处于DRX激活态。其中,定时器1可以为新引入的一个定时器,或者也可以为drx-RetransmissionTimerDL。
示例2,终端设备可以在时间段1的起始时刻进入DRX激活态,以及在时间段1的结束时刻进入DRX休眠态。在该示例中,可以不通过定时器1来约束终端设备是否处于DRX激活态。
需要说明的是,在示例2中,若终端设备在时间段1的起始时刻之前处于DRX休眠态,则终端设备可以在时间段1的起始时刻由DRX休眠态进入DRX激活态;若终端设备在时间段1的起始时刻之前已经处于DRX激活态,则终端设备在时间段1内保持DRX激活态即可。此外,在时间段1的结束时刻,终端设备可以进入DRX休眠态,或者也可以不进入DRX休眠态;比如,在时间段1的结束时刻,终端设备可以判断是否存在其它需要终端设备处于DRX激活态的因素(可以参见前文的描述),若不存在,则终端设备可以在时间段1的结束时刻由DRX激活态进入DRX休眠态,若存在,则终端设备可以继续保持DRX激活态。也就是说,本申请实施例中,是在时间段1内约束终端设备处于DRX激活态,而对时间段1之外终端设备的状态没有限制,比如在时间段1之外,可以参照现有技术来执行。
步骤905,终端设备在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。
示例性地,终端设备在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息后,还可以启动drx-HARQ-RTT-TimerDL。进一步地,若drx-RetransmissionTimerDL处于运行状态,则终端设备还可以停止drx-RetransmissionTimerDL。
步骤906,终端设备确定是否在第一SPS资源上成功接收到PDSCH;若终端设备确定在第一SPS资源上成功接收到PDSCH,则执行S907,若终端设备确定在第一SPS资源上未成功接收到PDSCH,则执行步骤910。
此处,终端设备确定在第一SPS资源上成功接收到PDSCH,可以是指,终端设备接收到来自第一SPS资源对应的HARQ进程的数据包,且数据包解码成功。终端设备确定 在第一SPS资源上未成功接收到PDSCH,可以是指:终端设备接收到来自第一SPS资源对应的HARQ进程的数据包,且数据包解码失败;或者,终端设备未接收到来自第一SPS资源对应的HARQ进程的数据包。作为一种可能的实现,网络设备可以向终端设备发送指示信息,指示信息指示第一SPS资源被跳过(skip),进而终端设备可以根据指示信息,确定未接收到来自第一SPS资源对应的HARQ进程的数据包。
步骤907,终端设备确定是否能够在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。若终端设备确定无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,则执行步骤908;若终端设备确定能够在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息,则执行步骤909。
此处,终端设备确定无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息的情形可以参见上述步骤903中的描述。
步骤908,终端设备在时间段2处于DRX激活态,以便于接收网络设备发送的DCI,该DCI用于指示第二HARQ资源,第二HARQ资源用于承载第一SPS资源对应的HARQ进程的反馈信息,即第二HARQ资源为反馈信息的重传资源。
此处,时间段2的起始时刻可以是根据在第一SPS资源上接收到的PDSCH所占用的时域资源确定的。比如,时间段2的起始时刻可以为以下任一时间:(1)PDSCH所占用的时域资源的起始时刻;(2)PDSCH所占用的时域资源的起始时刻平移m个时间单元后的时刻;(3)PDSCH所占用的时域资源的结束时刻;(4)PDSCH所占用的时域资源的结束时刻平移n个时间单元后的时间。其中,时间单元可以为符号。m、n可以为正整数或负整数,m和n可以相同,或者也可以为不相同。m或n的取值可以为协议预先定义的,或者也可以是由网络设备为终端设备配置的,比如网络设备可以通过RRC消息来配置m或n的取值。
当终端设备处于DRX激活态时,可以侦听PDCCH,若终端设备接收到来自网络设备的DCI,该DCI用于指示第二HARQ资源,则终端设备可以根据DCI的接收时刻来确定时间段2的结束时刻,比如时间段2的结束时刻即为DCI的接收时刻。
本申请实施例中,终端设备在时间段2处于DRX激活态的具体实现可以有多种,下面结合两个示例(示例1和示例2)进行描述。
示例1,终端设备可以在时间段2的起始时刻启动第一SPS资源对应的HARQ进程关联的定时器2,以及在时间段2的结束时刻停止定时器2。在定时器2运行时,终端设备处于DRX激活态。其中,定时器2可以为新引入的一个定时器,或者也可以为drx-RetransmissionTimerDL。
示例2,终端设备可以在时间段2的起始时刻进入DRX激活态,以及在时间段2的结束时刻进入DRX休眠态。在该示例中,可以不通过定时器2来约束终端设备是否处于DRX激活态。
需要说明的是,在示例2中,若终端设备在时间段2的起始时刻之前处于DRX休眠态,则终端设备可以在时间段2的起始时刻由DRX休眠态进入DRX激活态;若终端设备在时间段2的起始时刻之前已经处于DRX激活态,则终端设备在时间段2内保持DRX激活态即可。此外,在时间段2的结束时刻,终端设备可以进入DRX休眠态,或者也可以不进入DRX休眠态;比如,在时间段2的结束时刻,终端设备可以判断是否存在其它需要终端设备处于DRX激活态的因素(可以参见前文的描述),若不存在,则终端设备可以 在时间段2的结束时刻由DRX激活态进入DRX休眠态,若存在,则终端设备可以继续保持DRX激活态。也就是说,本申请实施例中,是在时间段2内约束终端设备处于DRX激活态,而对时间段2之外终端设备的状态没有限制,比如在时间段2之外,可以参照现有技术来执行。
步骤909,终端设备在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。
示例性地,终端设备在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息后,还可以启动drx-HARQ-RTT-TimerDL。进一步地,若drx-RetransmissionTimerDL处于运行状态,则终端设备还可以停止drx-RetransmissionTimerDL。
步骤910,终端设备可以不启动drx-HARQ-RTT-TimerDL。
示例性地,若drx-RetransmissionTimerDL处于运行状态,则终端设备也可以不停止drx-RetransmissionTimerDL。
采用上述方式,当第一SPS资源对应的HARQ进程的反馈方式为第一HARQ反馈方式时,由于终端设备需要向网络设备发送反馈信息(ACK或NACK),因此,当在第一SPS资源对应的第一HARQ资源无法发送反馈信息时,无论终端设备在第一SPS资源上是否成功接收到PDSCH,终端设备均可以在时间段1内处于DRX激活态,以便于及时接收网络设备发送的用于指示反馈信息的重传资源的DCI,保证第一SPS资源对应的HARQ进程的反馈信息可以及时发送给网络设备,进而提高下行传输的效率。而当第一SPS资源对应的HARQ进程的反馈方式为第二HARQ反馈方式(忽略NACK反馈),若终端设备在第一SPS资源上未成功接收到PDSCH,则由于终端设备本就无需反馈NACK,因此,即使无法在第一SPS资源对应的第一HARQ资源发送反馈信息,终端设备也无需处于激活态以接收网络设备发送的DCI(用于指示反馈信息的重传资源),从而能够有效避免终端设备执行不必要的操作,降低终端设备的处理复杂度和功耗。
需要说明的是,上述内容是针对第一SPS资源对应的HARQ进程的反馈方式为第一HARQ反馈方式或第二HARQ反馈方式来进行描述的,若第一SPS资源对应的HARQ进程的反馈方式为其它可能的HARQ反馈方式,则可以适应性参照上文来实施。
实施例六
图10为本申请实施例六提供的通信方法所对应的流程示意图,如图10所示,包括:
步骤1001,网络设备向终端设备发送配置信息,该配置信息用于配置第一SPS资源以及第一SPS资源对应的第一HARQ资源;相应地,终端设备可以接收来自网络设备的配置信息。
示例性地,步骤1001的相关实现可以参见实施例五中步骤901的描述。
步骤1002,网络设备确定无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息。
此处,网络设备确定无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息,也可以描述为,网络设备确定终端设备无法在第一HARQ资源上发送第一SPS资源对应的HARQ进程的反馈信息。
网络设备确定无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息,可以包括多种可能的情形。比如,网络设备确定第一HARQ资源与第一资源存在重 叠,第一资源用于传输下行信息,比如第一资源为TDD系统中的下行资源,则说明无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息。又比如,网络设备确定第一HARQ资源与第二资源存在重叠,第二资源用于传输上行信息,第一SPS资源对应的HARQ进程的反馈信息的优先级低于该上行信息的优先级,则说明无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息;其中,上行信息可以为PUSCH中承载的信息,或者PUCCH中承载的信息,具体不做限定。
步骤1003,网络设备向终端设备发送DCI,该DCI用于指示动态调度资源,动态调度资源与第一SPS资源存在重叠;相应地,终端设备可以接收DCI。
示例性地,上述DCI还可以指示第三HARQ资源,第三HARQ资源用于承载动态调度资源对应的HARQ进程的反馈信息。
示例性地,动态调度资源与第一SPS资源存在重叠,可以是指,动态调度资源与第一SPS资源完全重叠或者部分重叠。
本申请实施例中,对于终端设备来说,若终端设备确定网络设备调度的动态调度资源与SPS资源存在重叠,则终端设备会处理动态调度资源,而不处理SPS资源。因此,步骤1003中,终端设备接收到DCI后,可以根据DCI,在动态调度资源上接收网络设备发送的PDSCH,以及在DCI所指示的第三HARQ资源上发送动态调度资源对应的HARQ进程的反馈信息。
采用上述方式,当网络设备确定无法在第一HARQ资源上接收第一SPS资源对应的HARQ进程的反馈信息时,可以向终端设备指示与第一SPS资源存在重叠的动态调度资源以及该动态调度资源对应的HARQ资源;由于网络设备可以灵活指示动态调度资源对应的HARQ资源,从而能够有效避免终端设备无法将反馈信息及时发送给网络设备的问题,提高下行传输的效率。
需要说明的是:(1)上述实施例二至实施例四为基于实施例一描述的一些可能的实现,实施例一至实施例四的不同实施例之间可以相互参照。比如,实施例三中DCI通过采用的DCI格式或加扰方式来指示HARQ反馈方式的具体实现可以参见实施例二。
(2)实施例一至实施例六所描述的各个流程图(比如图5至图10)的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
上述主要从通信装置之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,通信装置可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以对 应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图11示出了本申请实施例中所涉及的装置的可能的示例性框图。如图11所示,装置1100可以包括:处理单元1102和通信单元1103。处理单元1102用于对装置1100的动作进行控制管理。通信单元1103用于支持装置1100与其他设备的通信。可选地,通信单元1103也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1100还可以包括存储单元1101,用于存储装置1100的程序代码和/或数据。
该装置1100可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中终端设备的动作。或者,处理单元1102主要执行方法示例中的终端设备的内部动作,通信单元1103可以支持装置1100与网络设备之间的通信。例如,通信单元1103可以用于执行图5的步骤502;处理单元1102可以用于执行图5的步骤503和步骤504。
具体地,在一个实施例中,通信单元1103用于,从网络设备接收第一信息;处理单元1102用于,根据第一信息确定HARQ反馈方式,HARQ反馈方式包括忽略ACK和/或NACK反馈;以及根据HARQ反馈方式,对第一HARQ进程进行反馈处理。
在一种可能的设计中,处理单元1102具体用于:HARQ反馈方式包括忽略ACK反馈,若确定通信单元1103接收到来自第一HARQ进程的数据包,且数据包解码成功,则对第一HARQ进程不反馈ACK。或者,HARQ反馈方式包括忽略NACK反馈,若确定通信单元1103接收到来自第一HARQ进程的数据包,且数据包解码失败,则对第一HARQ进程不反馈NACK;或者,若确定通信单元1103未接收到来自第一HARQ进程的数据包,则对第一HARQ进程不反馈NACK。或者,HARQ反馈方式包括忽略ACK和NACK反馈,则对第一HARQ进程不反馈ACK和NACK。
在一种可能的设计中,第一信息包括指示信息,指示信息用于指示HARQ反馈方式。
在一种可能的设计中,第一HARQ进程属于SPS资源对应的HARQ进程;通信单元1103还用于,接收来自网络设备的RRC消息,RRC消息包括指示信息,RRC消息用于配置SPS资源;或者,通信单元1103还用于,接收来自网络设备的DCI,该DCI包括指示信息,该DCI用于激活或者重新激活SPS资源。
在一种可能的设计中,所述第一HARQ进程属于动态调度资源对应的HARQ进程;通信单元1103还用于,接收来自所述网络设备的DCI,所述DCI包括所述指示信息,所述DCI用于调度所述动态调度资源。
在一种可能的设计中,通信单元1103还用于,接收来自所述网络设备的第一消息,所述第一消息包括所述指示信息;其中,所述第一消息为PDCP层或RLC层或MAC层的控制消息。
在一种可能的设计中,通信单元1103还用于,接收来自所述网络设备的数据包,所述数据包包括所述指示信息;其中,所述数据包是通过所述第一HARQ进程发送的。
在一种可能的设计中,所述第一HARQ进程属于第一业务对应的HARQ进程;通信单元1103还用于,接收来自所述网络设备的RRC消息,所述RRC消息包括所述指示信息,所述RRC消息用于配置所述第一业务对应的逻辑信道。
在一种可能的设计中,所述第一HARQ进程属于SPS资源对应的HARQ进程;所述 第一信息包括RRC消息,所述RRC消息用于配置PUCCH资源,所述PUCCH资源用于承载所述SPS资源对应的HARQ进程的反馈信息;处理单元1102还用于,根据所述RRC消息中是否携带所述PUCCH资源的配置信息,确定所述HARQ反馈方式。
在一种可能的设计中,所述第一信息包括DCI;处理单元1102还用于,根据所述DCI的格式或加扰方式,确定HARQ反馈方式。
在一种可能的设计中,所述第一HARQ进程属于SPS资源对应的HARQ进程,所述DCI用于指示激活或者重新激活所述SPS资源;或者,所述第一HARQ进程属于动态调度资源对应的HARQ进程,所述DCI用于调度所述动态调度资源。
在一种可能的设计中,所述第一HARQ进程属于第一业务对应的HARQ进程;所述第一信息包括预设优先级信息;处理单元1102还用于,根据所述第一业务对应的逻辑信道的优先级和预设优先级信息,确定所述HARQ反馈方式。
在一种可能的设计中,通信单元1103还用于,接收来自所述网络设备的第二信息,所述第二信息用于指示适用所述HARQ反馈方式的至少一个HARQ进程,所述至少一个HARQ进程包括所述第一HARQ进程。
在又一个实施例中,通信单元1103用于,接收来自网络设备的配置信息,所述配置信息用于配置第一SPS资源以及所述第一SPS资源对应的第一HARQ资源;处理单元1102用于,确定无法在所述第一HARQ资源上发送所述第一SPS资源对应的HARQ进程的反馈信息;在第一时间段处于DRX激活态,所述第一时间段的起始时刻是根据所述第一SPS资源确定的。
在一种可能的设计中,通信单元1103还用于,接收来自所述网络设备的DCI,所述DCI用于指示第二HARQ资源,所述第二HARQ资源用于承载所述反馈信息;所述第一时间段的结束时刻为所述DCI的接收时刻。
在一种可能的设计中,处理单元1102具体用于,控制所述终端设备在所述第一时间段的起始时刻进入DRX激活态,以及在所述第一时间段的结束时刻进入DRX休眠态。
在一种可能的设计中,处理单元1102具体用于,在所述第一时间段的起始时刻启动所述HARQ进程对应的定时器,以及在所述第一时间段的结束时刻停止所述定时器;其中,在所述定时器运行时,所述终端设备处于所述DRX激活态。
在一种可能的设计中,所述定时器为上行DRX重传定时器。
在一种可能的设计中,处理单元1102还用于,确定在所述第一SPS资源上成功接收到PDSCH。
在一种可能的设计中,所述第一时间段的起始时刻是根据所述第一SPS资源确定的,包括:所述第一时间段的起始时刻是根据在所述第一SPS资源上接收到的PDSCH所占用的时域资源确定的。
在一种可能的设计中,所述第一时间段的起始时刻为以下任一时刻:所述PDSCH所占用的时域资源的起始时刻;所述PDSCH所占用的时域资源的起始时刻平移m个时间单元后的时刻;所述PDSCH所占用的时域资源的结束时刻;所述PDSCH所占用的时域资源的结束时刻平移n个时间单元后的时刻;其中,m、n为整数。
在一种可能的设计中,所述HARQ进程的HARQ反馈方式为忽略NACK反馈。
在一种可能的设计中,处理单元1102确定无法在所述第一HARQ资源上发送HARQ反馈信息,包括:处理单元1102确定所述第一HARQ资源与第一资源存在重叠,所述第 一资源用于传输下行信息;或者,确定所述第一HARQ资源与第二资源存在重叠,所述第二资源用于传输上行信息,所述HARQ反馈信息的优先级低于所述上行信息的优先级。
该装置1100可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中网络设备的动作。或者,处理单元1102主要执行方法示例中的网络设备的内部动作,通信单元1103可以支持装置1100与终端设备之间的通信。例如,通信单元1103可以用于执行图5的步骤501。
具体地,在一个实施例中,处理单元1102用于,确定HARQ反馈方式,HARQ反馈方式包括忽略ACK和/或NACK;通信单元1103用于,向终端设备发送第一信息,第一信息用于终端设备确定HARQ反馈方式。
在一种可能的设计中,第一信息包括指示信息,指示信息用于指示HARQ反馈方式。
在一种可能的设计中,通信单元1103还用于,向终端设备发送第一消息,第一消息包括指示信息;其中,第一消息为RRC消息、PDCP层的控制消息、RLC层的控制消息、MAC层的控制消息或DCI;或者,通信单元1103还用于,向终端设备发送数据包,数据包包括指示信息。
在一种可能的设计中,RRC消息用于配置SPS资源,或者用于配置第一业务对应的逻辑信道。或者,DCI用于激活或者重新激活SPS资源,或者用于调度动态调度资源。
在一种可能的设计中,第一信息包括RRC消息,RRC消息用于配置PUCCH资源,所述PUCCH资源用于承载SPS资源对应的HARQ进程的反馈信息;当RRC消息不携带PUCCH资源的配置信息时,RRC消息用于指示HARQ反馈方式。
在一种可能的设计中,第一信息包括DCI,该DCI的格式或加扰方式用于指示HARQ反馈方式。
在一种可能的设计中,该DCI用于指示激活或者重新激活SPS资源;或者,该DCI用于调度动态调度资源。
在一种可能的设计中,第一信息包括预设优先级信息。
在一种可能的设计中,通信单元1103还用于,向终端设备发送第二信息,第二信息用于指示适用HARQ反馈方式的至少一个HARQ进程。
在又一个实施例中,通信单元1103用于,向终端设备发送配置信息,所述配置信息用于配置第一SPS资源以及所述第一SPS资源对应的第一HARQ资源;处理单元1102用于,确定无法在所述第一HARQ资源上接收所述第一SPS资源对应的HARQ进程的反馈信息;通信单元1103还用于,向所述终端设备发送DCI,所述DCI用于指示动态调度资源,所述动态调度资源与所述第一SPS资源存在重叠。
在一种可能的设计中,所述DCI还用于指示第三HARQ资源,所述第三HARQ资源用于承载所述动态调度资源对应的HARQ进程的反馈信息。
在一种可能的设计中,处理单元1102确定无法在所述第一HARQ资源上接收所述第一SPS资源对应的HARQ进程的反馈信息,包括:处理单元1102确定所述第一HARQ资源与第一资源存在重叠,所述第一资源用于传输下行信息;或者,处理单元1102确定所述第一HARQ资源与第二资源存在重叠,所述第二资源用于传输上行信息,所述HARQ反馈信息的优先级低于所述上行信息的优先级。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理 元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图12,其为本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图12所示,该终端设备包括:天线1210、射频部分1220、信号处理部分1230。天线1210与射频部分1220连接。在下行方向上,射频部分1220通过天线1210接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1230进行处理。在上行方向上,信号处理部分1230对终端设备的信息进行处理,并发送给射频部分1220,射频部分1220对终端设备的信息进行处理后经过天线1210发送给网络设备。
信号处理部分1230可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1231,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1232和接口电路1233。存储元件1232用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1232中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1233用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度 程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图11中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图12所示的终端设备能够实现图5、图6、图7、图8、图9、图10所示意的方法实施例中涉及终端设备的各个过程。图12所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
请参考图13,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图13所示,该网络设备包括:天线1301、射频装置1302、基带装置1303。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对终端设备的信息进行处理,并发送给射频装置1302,射频装置1302对终端设备的信息进行处理后经过天线1301发送给终端设备。
基带装置1303可以包括一个或多个处理元件13031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1303还可以包括存储元件13032和接口13033,存储元件13032用于存储程序和数据;接口13033用于与射频装置1302交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1303,例如,以上用于网络设备的装置可以为基带装置1303上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图11中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图13所示的网络设备能够实现图5、图6、图7、图8、图9、图10所示意的方法实施例中涉及网络设备的各个过程。图13所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产 品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    从网络设备接收第一信息;
    根据所述第一信息确定混合自动重传请求HARQ反馈方式,所述HARQ反馈方式包括忽略ACK和/或NACK反馈;
    根据所述HARQ反馈方式,对第一HARQ进程进行反馈处理。
  2. 根据权利要求1所述的方法,其特征在于,根据所述HARQ反馈方式,对第一HARQ进程进行反馈处理,包括:
    所述HARQ反馈方式包括忽略ACK反馈,接收到来自所述第一HARQ进程的数据包,且数据包解码成功,则对所述第一HARQ进程不反馈ACK;或者,
    所述HARQ反馈方式包括忽略NACK反馈,接收到来自所述第一HARQ进程的数据包,且数据包解码失败,则对所述第一HARQ进程不反馈NACK;或者,未接收到来自所述第一HARQ进程的数据包,则对所述第一HARQ进程不反馈NACK;或者,
    所述HARQ反馈方式包括忽略ACK和NACK反馈,对所述第一HARQ进程不反馈ACK和NACK。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括指示信息,所述指示信息用于指示所述HARQ反馈方式。
  4. 根据权利要求3所述的方法,其特征在于,所述第一HARQ进程属于半静态调度SPS资源对应的HARQ进程;
    所述接收来自网络设备的指示信息,包括:
    接收来自所述网络设备的无线资源控制RRC消息,所述RRC消息包括所述指示信息,所述RRC消息用于配置所述SPS资源;或者,
    接收来自所述网络设备的下行控制信息DCI,所述DCI包括所述指示信息,所述DCI用于激活或者重新激活所述SPS资源。
  5. 根据权利要求3所述的方法,其特征在于,所述第一HARQ进程属于动态调度资源对应的HARQ进程;
    所述接收来自网络设备的指示信息,包括:
    接收来自所述网络设备的DCI,所述DCI包括所述指示信息,所述DCI用于调度所述动态调度资源。
  6. 根据权利要求3所述的方法,其特征在于,所述接收来自网络设备的指示信息,包括:
    接收来自所述网络设备的第一消息,所述第一消息包括所述指示信息;
    其中,所述第一消息为分组数据汇聚层协议PDCP层或无线链路控制RLC层或媒体接入控制MAC层的控制消息。
  7. 根据权利要求3所述的方法,其特征在于,所述接收来自网络设备的指示信息,包括:
    接收来自所述网络设备的数据包,所述数据包包括所述指示信息;
    其中,所述数据包是通过所述第一HARQ进程发送的。
  8. 根据权利要求3所述的方法,其特征在于,所述第一HARQ进程属于第一业务对应 的HARQ进程;
    所述接收来自网络设备的指示信息,包括:
    接收来自所述网络设备的RRC消息,所述RRC消息包括所述指示信息,所述RRC消息用于配置所述第一业务对应的逻辑信道。
  9. 根据权利要求1或2所述的方法,其特征在于,所述第一HARQ进程属于SPS资源对应的HARQ进程;
    所述第一信息包括RRC消息,所述RRC消息用于配置物理上行控制信道PUCCH资源,所述PUCCH资源用于承载所述SPS资源对应的HARQ进程的反馈信息;
    根据所述第一信息确定HARQ反馈方式,包括:
    根据所述RRC消息中是否携带所述PUCCH资源的配置信息,确定所述HARQ反馈方式。
  10. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括DCI;
    根据所述第一信息确定HARQ反馈方式,包括:
    根据所述DCI的格式或加扰方式,确定HARQ反馈方式。
  11. 根据权利要求10所述的方法,其特征在于,所述第一HARQ进程属于SPS资源对应的HARQ进程,所述DCI用于指示激活或者重新激活所述SPS资源;或者,
    所述第一HARQ进程属于动态调度资源对应的HARQ进程,所述DCI用于调度所述动态调度资源。
  12. 根据权利要求1或2所述的方法,其特征在于,所述第一HARQ进程属于第一业务对应的HARQ进程;所述第一信息包括预设优先级信息;
    确定所述HARQ反馈方式,包括:
    根据所述第一业务对应的逻辑信道的优先级和预设优先级信息,确定所述HARQ反馈方式。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信息,所述第二信息用于指示适用所述HARQ反馈方式的至少一个HARQ进程,所述至少一个HARQ进程包括所述第一HARQ进程。
  14. 一种通信方法,其特征在于,所述方法应用于网络设备,所述方法包括:
    确定HARQ反馈方式,所述HARQ反馈方式包括忽略ACK和/或NACK;
    向终端设备发送第一信息,所述第一信息用于所述终端设备确定所述HARQ反馈方式。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息包括指示信息,所述指示信息用于指示所述HARQ反馈方式。
  16. 根据权利要求15所述的方法,其特征在于,向终端设备发送所述指示信息,包括:
    向所述终端设备发送第一消息,所述第一消息包括所述指示信息;其中,所述第一消息为RRC消息、PDCP层的控制消息、RLC层的控制消息、MAC层的控制消息或DCI;或者,
    向所述终端设备发送数据包,所述数据包包括所述指示信息。
  17. 根据权利要求16所述的方法,其特征在于:
    所述RRC消息用于配置SPS资源,或者用于配置第一业务对应的逻辑信道;或者,
    所述DCI用于激活或者重新激活SPS资源,或者用于调度动态调度资源。
  18. 根据权利要求14所述的方法,其特征在于,所述第一信息包括RRC消息,所述 RRC消息用于配置PUCCH资源,所述PUCCH资源用于承载SPS资源对应的HARQ进程的反馈信息;
    当所述RRC消息不携带所述PUCCH资源的配置信息时,所述RRC消息用于指示所述HARQ反馈方式。
  19. 根据权利要求14所述的方法,其特征在于,所述第一信息包括DCI,所述DCI的格式或加扰方式用于指示HARQ反馈方式。
  20. 根据权利要求19所述的方法,其特征在于,所述DCI用于指示激活或者重新激活SPS资源;或者,所述DCI用于调度动态调度资源。
  21. 根据权利要求14所述的方法,其特征在于,所述第一信息包括预设优先级信息。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二信息,所述第二信息用于指示适用所述HARQ反馈方式的至少一个HARQ进程。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述的方法的各步骤的单元。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求14至22中任一项所述的方法的各步骤的单元。
  25. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求1至13中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求14至22中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至13中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求14至22中任一项所述的方法。
  29. 一种通信系统,其特征在于,所述通信系统包括如权利要求23、25或27所述的通信装置和如权利要求24、26或28所述的通信装置。
  30. 一种计算机可读存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至13中任一项所述的方法被执行,或者如权利要求14至22中任一项所述的方法被执行。
  31. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1至13中任一项所述的方法,或者如权利要求14至22中任一项所述方法。
PCT/CN2021/078432 2020-02-28 2021-03-01 一种通信方法及装置 WO2021170136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21760668.0A EP4087168A4 (en) 2020-02-28 2021-03-01 COMMUNICATION METHOD AND DEVICE
US17/896,175 US20230006777A1 (en) 2020-02-28 2022-08-26 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010130397.1 2020-02-28
CN202010130397 2020-02-28
CN202110215182.4A CN113328834A (zh) 2020-02-28 2021-02-25 一种通信方法及装置
CN202110215182.4 2021-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/896,175 Continuation US20230006777A1 (en) 2020-02-28 2022-08-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021170136A1 true WO2021170136A1 (zh) 2021-09-02

Family

ID=77414402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078432 WO2021170136A1 (zh) 2020-02-28 2021-03-01 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230006777A1 (zh)
EP (1) EP4087168A4 (zh)
CN (1) CN113328834A (zh)
WO (1) WO2021170136A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050392A1 (zh) * 2021-09-30 2023-04-06 北京小米移动软件有限公司 混合自动重传请求harq的发送方法、接收方法及装置
CN116995625A (zh) * 2023-08-08 2023-11-03 国网重庆市电力公司 一种基于区域自组网通讯的配电网差动保护方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118104364A (zh) * 2022-01-17 2024-05-28 Oppo广东移动通信有限公司 资源配置方法、终端设备和网络设备
CN116939783A (zh) * 2022-04-08 2023-10-24 北京紫光展锐通信技术有限公司 通信方法及通信装置
WO2023206033A1 (zh) * 2022-04-25 2023-11-02 北京小米移动软件有限公司 混合自动重传请求harq反馈的处理方法及其装置
CN117202373A (zh) * 2022-05-26 2023-12-08 荣耀终端有限公司 通信方法、通信装置和通信系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534527A (zh) * 2015-04-10 2018-01-02 瑞典爱立信有限公司 用于对harq反馈进行压缩的方法和用户设备
CN109565366A (zh) * 2016-08-09 2019-04-02 日本电气株式会社 通信系统
CN109716694A (zh) * 2016-11-04 2019-05-03 华为技术有限公司 Harq-ack反馈信息的传输方法及相关装置
US20190313380A1 (en) * 2018-04-05 2019-10-10 Google Llc Monitoring a Physical Downlink Control Channel for Downlink Control Information
CN110890943A (zh) * 2018-09-07 2020-03-17 维沃移动通信有限公司 确定方法、终端设备及网络设备
CN112399588A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 用于传输混合自动重传请求harq反馈信息的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301670A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 上行控制信息的发送方法及装置
EP3334122B1 (en) * 2015-08-21 2020-10-28 Huawei Technologies Co., Ltd. Information processing method, apparatus, and system
EP3499770B1 (en) * 2017-01-05 2022-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Feedback information transmission method, network device and terminal device
CN108809543B (zh) * 2017-05-05 2021-12-31 华为技术有限公司 用于传输数据的方法和设备
CN116094659A (zh) * 2018-08-09 2023-05-09 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534527A (zh) * 2015-04-10 2018-01-02 瑞典爱立信有限公司 用于对harq反馈进行压缩的方法和用户设备
CN109565366A (zh) * 2016-08-09 2019-04-02 日本电气株式会社 通信系统
CN109716694A (zh) * 2016-11-04 2019-05-03 华为技术有限公司 Harq-ack反馈信息的传输方法及相关装置
US20190313380A1 (en) * 2018-04-05 2019-10-10 Google Llc Monitoring a Physical Downlink Control Channel for Downlink Control Information
CN110890943A (zh) * 2018-09-07 2020-03-17 维沃移动通信有限公司 确定方法、终端设备及网络设备
CN112399588A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 用于传输混合自动重传请求harq反馈信息的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V15.8.0, 11 January 2020 (2020-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 109, XP051860646 *
NOKIA, NOKIA SHANGHAI BELL: "On remaining details of BWPs and CA", 3GPP DRAFT; R1-1808953_BWPS_AND_CA_NOK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516328 *
See also references of EP4087168A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050392A1 (zh) * 2021-09-30 2023-04-06 北京小米移动软件有限公司 混合自动重传请求harq的发送方法、接收方法及装置
CN116995625A (zh) * 2023-08-08 2023-11-03 国网重庆市电力公司 一种基于区域自组网通讯的配电网差动保护方法及系统
CN116995625B (zh) * 2023-08-08 2024-01-30 国网重庆市电力公司 一种基于区域自组网通讯的配电网差动保护方法及系统

Also Published As

Publication number Publication date
EP4087168A1 (en) 2022-11-09
EP4087168A4 (en) 2023-07-05
US20230006777A1 (en) 2023-01-05
CN113328834A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021170136A1 (zh) 一种通信方法及装置
TWI572223B (zh) 在鏈結錨與增幅器網路中之資料重傳技術
EP2543219B1 (en) Method, apparatus and user equipment for use in a mobile communications system comprising a relay node
TWI702815B (zh) 高效混合自動重傳請求運作方法及其使用者設備
TW201310940A (zh) 時分雙工系統中進行軟緩衝區分區的方法和裝置
US11184142B2 (en) Discontinuous reception for carrier aggregation
WO2021197270A1 (zh) 信息传输方法、装置及系统
US20220052796A1 (en) Harq information feedback method and device
JP2023513240A (ja) サイドリンク送信の再送方法及び装置
CN114788204A (zh) Harq进程的状态确定方法、装置及设备
US20230284274A1 (en) Apparatuses, methods, and systems for increasing the transmission reliability for transmissions of a duplication bearer in a shared spectrum
US20230308219A1 (en) Data transmission method, apparatus, and system
WO2021146868A1 (zh) 一种通信方法及装置
US20230047579A1 (en) User equipment and method performed by the same in wireless communication system
WO2019095971A1 (zh) 一种通信方法及设备
WO2022033362A1 (zh) 一种指示信息接收的方法及装置
WO2021227981A1 (zh) 一种信息发送的方法及设备
WO2022077511A1 (zh) 一种通信方法及装置
CN114902637B (zh) 一种数据传输方法及装置
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2021134151A1 (zh) 通信方法及装置
WO2020156002A1 (zh) 通信方法及通信装置
WO2023098464A1 (zh) 数据传输的方法和装置
WO2023165449A1 (zh) 一种通信方法及装置
WO2023134394A1 (zh) 一种非连续接收定时器控制方法、装置、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021760668

Country of ref document: EP

Effective date: 20220803

NENP Non-entry into the national phase

Ref country code: DE