WO2021134151A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2021134151A1
WO2021134151A1 PCT/CN2019/129736 CN2019129736W WO2021134151A1 WO 2021134151 A1 WO2021134151 A1 WO 2021134151A1 CN 2019129736 W CN2019129736 W CN 2019129736W WO 2021134151 A1 WO2021134151 A1 WO 2021134151A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
harq process
transmission
configuration
terminal
Prior art date
Application number
PCT/CN2019/129736
Other languages
English (en)
French (fr)
Inventor
酉春华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/129736 priority Critical patent/WO2021134151A1/zh
Priority to CN201980102615.6A priority patent/CN114762392B/zh
Publication of WO2021134151A1 publication Critical patent/WO2021134151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device using configuration authorization.
  • terminals can send data to network devices through scheduled resources and non-scheduled resources.
  • Scheduling resources can also be called scheduling grants or dynamic grants (DG). They can be resources allocated to the terminal by the network device when it learns that the terminal has a need to send data. For example, the network device allocates resources to the terminal at the request of the terminal. Or, when the terminal fails to transmit data, the network device allocates resources for the terminal to retransmit data.
  • Non-scheduled resources also called non-scheduled authorization, configuration resources, or configuration authorization, are usually pre-configured by network equipment to the terminal. When the terminal has data to be transmitted, the non-scheduled resource can be used for transmission without the need to transmit to the network device. Request to allocate resources for the terminal. Compared with scheduling resources, non-scheduled resources can reduce interaction procedures, thereby saving scheduling delays and improving data transmission efficiency, and thus more and more applications are obtained.
  • the terminal uses non-scheduled resources to send data to the network device, it provides the non-scheduled resources and the associated hybrid automatic repeat request (HARQ) information to the HARQ entity so that non-scheduled resources can be used on the corresponding HARQ process.
  • Uplink transmission After sending the data, the terminal uses the HARQ process to perform the next transmission after receiving the feedback of the data. If the feedback of the data is a negative acknowledgement (NACK), the data is retransmitted.
  • NACK negative acknowledgement
  • retransmission data is transmitted through resources scheduled by network equipment, and as technology evolves, it is hoped that non-scheduled resources can also be used for retransmission. Therefore, it is necessary to solve the problems faced when non-scheduled resources are used for retransmission.
  • the embodiment of the present application provides a communication method, in order to improve the transmission efficiency when the configuration authorization is used for transmission.
  • a communication method in which a terminal receives a configuration parameter from a network device, the configuration parameter is used to indicate a timer duration, and the timer duration is the minimum duration before the terminal expects to receive downlink feedback information.
  • the terminal performs configuration authorization transmission on the first hybrid automatic repeat request (HARQ) process, and should configure the authorization transmission to start the first timer of the first HARQ process, and the first timer has a timer duration indicated by the configuration parameter.
  • HARQ hybrid automatic repeat request
  • the network device generates a configuration parameter and sends the configuration parameter to the terminal, where the configuration parameter is used to indicate the timer duration, and the timer duration is the minimum duration before the terminal expects to receive the downlink feedback information.
  • the terminal can maintain the first timer for the HARQ process used to configure the authorization as the minimum duration before the terminal expects to receive downlink feedback information, and start the first timer when the configuration authorization transmission is performed on the HARQ process.
  • the first timer Since the first timer should be started when the authorized transmission is configured, after the uplink transmission and the minimum time period before the terminal expects to receive the downlink feedback information, the feedback for the configured authorized transmission (that is, the feedback of the HARQ process) may arrive, Therefore, if feedback of the HARQ process is received during the running of the timer, it means that the feedback is invalid. Therefore, the terminal can determine whether the feedback is valid according to this, thereby reducing the possibility of feedback misjudgment and improving communication efficiency.
  • the terminal may also start the second timer of the first HARQ process, where the duration of the second timer is configured by the network device. During the running of the second timer, the terminal will not automatically perform the configuration authorization retransmission on the first HARQ process.
  • the terminal should be configured to authorize transmission, and the second timer of the first HARQ process can be stopped or not started.
  • the terminal receives downlink feedback information, the downlink feedback information includes the feedback of the first HARQ process; then when the downlink feedback information is received during the operation of the second timer of the first HARQ process , The terminal determines that the feedback of the first HARQ process is valid; or, when receiving downlink feedback information while the second timer of the first HARQ process is not running, the terminal determines that the feedback of the first HARQ process is invalid or ignores the feedback of the first HARQ process Feedback.
  • the terminal may stop the third timer, where the third timer should be started by the uplink initial transmission of the first HARQ process.
  • the duration of the third timer is configured by the network device. And when the third timer is running, the terminal does not perform configuration authorization initial transmission on the first HARQ process.
  • the terminal should configure authorized transmission, start the second timer of the first HARQ process, and stop the second timer of the first HARQ process when the first timer stops running.
  • the duration of the second timer is configured by the network device. During the running of the second timer, the terminal will not automatically perform the configuration authorization retransmission on the first HARQ process.
  • the terminal receives downlink feedback information, the downlink feedback information includes the feedback of the first HARQ process; then, when the downlink feedback information is received while the first timer of the first HARQ process is not running When the terminal determines that the feedback of the first HARQ process is valid; or, when the downlink feedback information is received during the operation of the first timer of the first HARQ process, the terminal determines that the feedback of the first HARQ process is invalid or ignores the first HARQ process feedback of.
  • the terminal may stop the third timer, where the third timer should be started by the uplink initial transmission of the first HARQ process.
  • the duration of the third timer is configured by the network device. And when the third timer is running, the terminal does not perform configuration authorization initial transmission on the first HARQ process.
  • the terminal may stop the first timer and/or the second timer of the first HARQ process in any of the following situations:
  • deactivation command is used to deactivate configuration authorization
  • the third timer of the first HARQ process expires, where the third timer should be started by the uplink initial transmission of the first HARQ process.
  • a communication method including: a terminal receives activation or deactivation signaling from a network device, where the activation or deactivation signaling is used to indicate activation or deactivation of configuration authorization, and the configuration authorization is used for HARQ Process; and the reception of signaling should be activated or deactivated, and the running timer of the first HARQ process should be stopped.
  • the last transmission of the first HARQ process is the transmission authorized by the configuration.
  • the HARQ process can be used for the next configuration authorized transmission as soon as possible without waiting for the timer to run to stop, thereby improving the transmission efficiency.
  • the timer in the running state includes at least one of the following timers:
  • the first timer, the first timer should be started according to the configuration authorization of the first HARQ process
  • the second timer, the second timer should be started when the transmission is authorized by the configuration of the first HARQ process or when the first timer expires;
  • the third timer, the third timer should be started by the uplink initial transmission of the first HARQ process.
  • the terminal may also clear the buffer of the first HARQ process. In this way, it is possible to prepare for the next configuration authorization transmission, reduce the transmission of useless data, and thereby improve the transmission efficiency.
  • a communication method including: a terminal uses a scheduling authorization to send first uplink data to a network device on a first HARQ process, and receiving feedback information from the network device indicating that the first uplink data is correctly received; and The terminal uses the configuration authorization to send the second uplink data on the first HARQ process.
  • the terminal can use the configuration authorization on the same HARQ process to start the next transmission as soon as possible, regardless of whether the configuration authorization timer is in the running state. Improve the efficiency of data transmission.
  • the terminal can determine that when the new data indication (NDI) corresponding to the first HARQ process is reversed, it uses the configuration authorization to send the second uplink data on the first HARQ process.
  • NDI new data indication
  • the terminal may stop the configuration grant timer of the first HARQ process by instructing the reception of the feedback information that the first uplink data is correctly received.
  • the configuration authorization when the activation or deactivation of the configuration authorization is involved, the configuration authorization is a type 2 configuration authorization.
  • the configuration authorizations can also be other types of configuration authorizations.
  • a communication device which includes units or means for executing each step of any one of the above aspects.
  • a communication device including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute the method provided in any one of the above aspects.
  • the processor includes one or more.
  • a communication device including a processor, configured to call a program stored in a memory to execute the method provided in any one of the above aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • a computer program is provided.
  • the program is called by a processor, the method provided by any one of the above aspects is executed.
  • a computer-readable storage medium including a program.
  • the program is called by a processor, the method provided in any one of the above aspects is executed.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of another network architecture provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a HARQ feedback scenario provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a repetition transmission scenario provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another HARQ feedback scenario provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another HARQ feedback scenario provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of yet another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • a terminal also known as user equipment (UE), mobile station (MS), or mobile terminal (MT) is a device that provides data connectivity to users. For example, it has Handheld devices or in-vehicle devices with wireless connection capabilities.
  • terminals are: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality ( Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids.
  • Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • a network device is a device in a wireless network, for example, a RAN node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) , NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home eNodeB, or home Node B), base band unit (BBU), Or wireless fidelity (Wi-Fi) access point (AP), etc.
  • the network device may be a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the application.
  • the terminal 130 accesses a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other terminals through the wireless network.
  • the wireless network includes a radio access network (RAN) 110 and a core network (CN) 120.
  • the RAN110 is used to connect the terminal 130 to the wireless network
  • the CN120 is used to manage the terminal and provide communication with the external network. Gateway.
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, and can also be integrated into the baseband device, or part of it.
  • the radio frequency device includes a remote radio unit (RRU), the baseband device includes a BBU, and the RRU is arranged remotely relative to the BBU.
  • RRU remote radio unit
  • the control plane protocol layer structure may include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the RAN device can include a centralized unit (CU) and a distributed unit (DU), Multiple DUs can be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the time delay requirements for processing time are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation. They are the control plane CU entity (CU-CP entity). ) And the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation and transparently transmit to the terminal or CU without analyzing the signaling.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal, or converted from received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU may also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in a terminal or a network device according to their realized functions.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the terminal can send data to the network device through scheduled resources and non-scheduled resources.
  • Scheduling resources can also be called scheduling authorizations, which can be resources allocated to the terminal by the network device when it learns that the terminal has a need to send data, such as resources allocated to the terminal at the request of the terminal, or when the terminal fails to transmit data, the network device Resources allocated to the terminal for retransmission of data.
  • the terminal sends a scheduling request to the network device, and the network device should allocate resources to the terminal for the scheduling request so that the terminal can perform uplink transmission; in addition, the terminal can send a buffer status report to the network device ( buffer status report, BSR), the network device allocates resources to the terminal according to the BSR, so that the terminal can perform uplink transmission.
  • BSR buffer status report
  • Non-scheduled resources also called non-scheduled authorization, configuration resources, or configuration authorization, are usually pre-configured by network equipment to the terminal. When the terminal has data to be transmitted, the non-scheduled resource can be used for transmission without the need to transmit to the network device. Request to allocate resources for the terminal. Compared with scheduling resources, non-scheduled resources can reduce interaction procedures, thereby saving scheduling delays and improving data transmission efficiency. In the following, non-scheduled resources are referred to as configuration authorization.
  • the configuration authorization is usually a periodic resource, which is configured to the terminal by the network device.
  • the network device can configure the configuration authorization to the terminal through high-level signaling, for example, send the configuration authorization parameters to the terminal through a radio resource control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • type 1 configuration authorization after the type 1 configuration authorization parameters are configured to the terminal through the RRC message, the terminal can use the type 1 configuration authorization; for type 2 configuration authorization, part of the configuration authorization parameters are configured to the terminal through the RRC message.
  • the type 2 configuration authorization can be used, that is, the type 2 configuration authorization can be used by the terminal after being activated through the physical layer signaling.
  • type 2 configuration authorization is deactivated through physical layer signaling.
  • the configuration authorization is used for uplink transmission, so it can be called the configuration uplink authorization.
  • the configuration message for configuring authorization is an RRC message
  • the RRC message includes an information element ConfiguredGrantConfig
  • the information element ConfiguredGrantConfig includes parameters for configuring authorization, that is, parameters used for uplink transmission using the configuration authorization.
  • the cell ConfiguredGrantConfig can include parameters such as period and HARQ process number, and can also include other parameters, such as power control, number of repetitions (repK), and repeated redundancy version (repK-RV )Wait.
  • this cell also includes time domain resources, frequency domain resources, and modulation and coding scheme (modulation and coding scheme, MCS) parameters; for type 2 configuration authorization, this cell is not configured with frequency domain Parameters such as resources and MCS are sent to the terminal through downlink control information (DCI), and the terminal can use type 2 configuration authorization after receiving the DCI.
  • DCI downlink control information
  • the network device can configure the HARQ process for configuring authorization for the terminal, that is, it can use the HARQ process for configuring authorization (it does not limit whether the HARQ process can use scheduling authorization), and also configure a timer parameter for the terminal (which can be called timing According to the timer parameter P1), the terminal maintains a timer (may be referred to as timer T1) for each configured HARQ process according to the timer parameter.
  • the timer parameter P1 is called, for example, configuredGrantTimer, which indicates the duration of the timer T1 maintained by the terminal for each HARQ process; the timer T1 is called, for example, the configured grant timer, and its duration is based on the timer parameter. P1 is determined.
  • the terminal when the timer T1 of a HARQ process is running, the terminal does not use the configuration authorization to perform the initial transmission on the HARQ process, that is, when the timer is not running, the terminal can use the configuration authorization to perform the initial transmission on the HARQ process.
  • the terminal uses non-scheduled resources to send data to the network device, it provides the non-scheduled resources and the associated hybrid automatic repeat request (HARQ) information to the HARQ entity so that non-scheduled resources can be used on the corresponding HARQ process.
  • HARQ hybrid automatic repeat request
  • Uplink transmission After sending the data, the terminal uses the HARQ process to perform the next transmission after receiving the HARQ feedback of the data. If the HARQ feedback of the data is NACK, the data is retransmitted.
  • unlicensed spectrum (or called shared spectrum) is introduced to improve data throughput.
  • unlicensed spectrum can be used for multiple air interface technologies, such as some or all of the following air interface technologies: WiFi, new radio operating in unlicensed spectrum (NR-U) , LTE license assisted access (licensed assisted access, LAA), and MuLTEfire.
  • WiFi new radio operating in unlicensed spectrum
  • NR-U new radio operating in unlicensed spectrum
  • LAA LTE license assisted access
  • MuLTEfire a listen before talk (LBT) mechanism is introduced, that is, the terminal performs a channel access process before data transmission.
  • LBT listen before talk
  • the terminal can continue to use the configuration authorization to transmit the data.
  • the LBT is successful, the terminal transmits data, and the network device sends HARQ feedback to the terminal according to the reception of the data.
  • the HARQ feedback is an acknowledgement (ACK); the network device fails to receive the data successfully
  • the HARQ feedback is NACK, the terminal can use the configuration authorization to retransmit.
  • the channel access process is a clear channel assessment (CCA) process, which can be based on a fixed duration or energy detection based on a fallback mechanism to determine whether the channel is idle or busy, and then perform data when the channel is determined to be idle. transmission.
  • CCA clear channel assessment
  • the network device can feed back the transmission status of the data on the HARQ process through DCI, that is, send HARQ feedback.
  • the network device may configure multiple HARQ processes for configuring authorization for the terminal.
  • the HARQ feedback (referred to as feedback) of these HARQ processes may be sent in the form of a bitmap.
  • the network device is configured with HARQ processes 1-4 to configure authorization, and the feedback of these HARQ processes is carried in DCI.
  • the DCI includes downlink feedback information (DFI), and the DFI includes HARQ feedback information.
  • the information includes feedback of HARQ processes 1-4, and is presented in the form of HARQ bitmaps.
  • the HARQ bitmap includes multiple bits, and each bit corresponds to a HARQ process.
  • the value of the bit is used to indicate the feedback of the corresponding HARQ process.
  • the value of the bit is 1, which indicates the corresponding HARQ process.
  • the feedback is ACK, and the value is 0, which means that the feedback of the corresponding HARQ process is NACK; the reverse is also possible, that is, the bit value is 1, which means that the feedback of the corresponding HARQ process is NACK, and the value is 0, which means the corresponding The feedback of the HARQ process is ACK.
  • DFI may also include other information, such as one or more of the following information: uplink or downlink flag, carrier indicator field (used for cross-carrier scheduling), and transmit power control (TPC) commands, etc.
  • uplink or downlink flag used for cross-carrier scheduling
  • TPC transmit power control
  • the network device can also configure another timer parameter for the terminal (relative to the above timer parameter P1, called timer parameter P2), the terminal is configured for each configuration It is used to configure the authorized HARQ process and maintain a timer (relative to the above timer T1, called timer T2).
  • the timer parameter P2 is called, for example, cg-RetransmissionTimer, which indicates the duration of the timer T2 maintained by the terminal for each HARQ process; the timer T2 is called, for example, the configuration authorization retransmission timer (CG retransmission Timer, CGR timer), which The duration is determined according to the timer parameter P2.
  • the terminal when the timer T2 of a HARQ process is running, the terminal does not automatically use the configuration authorization to retransmit on the HARQ process, that is, when the timer is not running, the terminal can automatically use the configuration authorization to retransmit on the HARQ process.
  • Timer T1 is used to restrict new transmissions on the corresponding HARQ process
  • timer T2 is used to restrict retransmissions on the corresponding HARQ process.
  • New transmissions and retransmissions refer to new transmissions and retransmissions authorized by configuration, that is, timing
  • the timer T1 and the timer T2 do not limit the use of the scheduling authorization on the corresponding HARQ process.
  • Configuration authorization transmission can include configuration authorization new transmission or retransmission, or can include configuration authorization new transmission and retransmission.
  • Configuration authorization transmission refers to the transmission using configuration authorization. Therefore, the terminal can maintain the timer T1 and/or the timer T2 for a configured HARQ process.
  • the timer T1 on a HARQ process should be started for a new transmission on the HARQ process, that is, when the terminal performs a new transmission on the HARQ process, it starts the timer T1 of the HARQ process.
  • the new transmission here can include the configuration to authorize the new transmission. It can also include scheduling authorization for new transmissions, that is, new transmissions using scheduling authorization.
  • the timer T2 on a HARQ process should be started or restarted when the configuration on the HARQ process authorizes new transmission, or should be started or restarted when the configuration on the HARQ process authorizes retransmission; that is, the terminal is configured on the HARQ process to authorize new transmission Or during retransmission, start or restart the timer T2 of the HARQ process.
  • the terminal During the operation of the timer T2, the terminal expects to receive the feedback of the HARQ process sent by the network device, or expects to receive the new transmission or retransmission sent by the network device Scheduling authorization.
  • the terminal receives the HARQ process feedback sent by the network device as ACK, it stops the timer T2.
  • the terminal authorizes the configuration to send data to the network device.
  • the data reaches the network device after a certain transmission delay.
  • the network device receives the data and tries to decode the data. If the decoding is correct, the network device correctly receives the data and generates a feedback ACK. ; Decoding error means that the network device does not receive the data correctly and generates a feedback NACK.
  • This process requires a certain processing delay, and sending the feedback ACK or NACK to the terminal also requires a certain transmission delay. In the above processing process, the effects of transmission delay and processing delay are not considered, which may cause the terminal to receive incorrect HARQ feedback, and then perform subsequent processing based on the incorrect HARQ feedback, resulting in a decrease in transmission efficiency.
  • FIG. 4 is a schematic diagram of a HARQ feedback scenario provided by an embodiment of the application.
  • the network equipment configuration terminal can use the configuration authorization to transmit on HARQ process 1 and HARQ process 2.
  • the terminal uses the configuration authorization to send the first data on HARQ process 1, and starts The CGR timer of HARQ process 1; and then in slot 2, the HARQ process 2 uses the configuration authorization to send the second data, and the CGR timer of HARQ process 2 is started.
  • the terminal receives HARQ feedback information.
  • the HARQ feedback information is presented in the form of the bitmap described above, including the corresponding bits of HARQ process 1 and HARQ process 2 (and may also include the bits of other HARQ processes.
  • the feedback on each HARQ process should arrive at the terminal only after the total delay of the transmission delay and the processing delay, and the total delay is denoted as T.
  • the network device originally sent the DFI for HARQ 1 feedback, but there are HARQ process 2 bits in the DFI, so there will be a HARQ process 2 feedback that will be parsed by the terminal, and the HARQ process 2
  • the feedback is actually invalid, and subsequent operations performed by the terminal according to the invalid feedback will result in a decrease in transmission efficiency, for example, a transmission error or a waste of transmission resources.
  • the terminal parses that the feedback of HARQ process 2 is ACK, but in fact the data on HARQ process 2 is not received correctly by the network device, the data will be lost; when the terminal parses that the feedback of HARQ process 2 is NACK In fact, when the data on HARQ process 2 is correctly received by the network device, the terminal performs unnecessary retransmission.
  • the embodiment of the present application maintains a timer (relative to the above timers T1 and T2, referred to as timer T3) for the HARQ process configured by the network device for configuring authorization.
  • the duration of the timer T3 is the minimum duration before the terminal expects to receive downlink feedback information.
  • the timer of a HARQ process should be started by the configuration authorized transmission on the HARQ process.
  • the feedback of the HARQ process received by the terminal is invalid; or, during the period when the timer T3 is not running, the feedback of the HARQ process received by the terminal may be valid; or, use the timer T3 Affects the start of the above timer T2, so that the HARQ process feedback received by the terminal is valid during the running period of the timer T2.
  • FIG. 5 is a schematic diagram of a communication method provided by an embodiment of this application. As shown in FIG. 5, the method includes:
  • the network device generates configuration parameters (hereinafter referred to as first configuration parameters), and sends the first configuration parameters to the terminal; correspondingly, the terminal receives the first configuration parameters from the network device.
  • the first configuration parameter is used to indicate a timer duration (hereinafter referred to as the first timer duration), and the first timer duration is the minimum duration before the terminal expects to receive downlink feedback information;
  • the terminal performs configuration authorization transmission on the first HARQ process, that is, the terminal uses the configuration authorization to perform uplink transmission on the first HARQ process, that is, the terminal uses the configuration authorization on the first HARQ process to send data to the network device;
  • the configuration authorization transmission includes configuration authorization new transmission or configuration authorization retransmission.
  • the network device receives the data sent by the terminal. Further, the network device generates feedback of the first HARQ process according to the decoding situation of the data, and sends the feedback of the first HARQ process to the terminal, for example, correctly decodes the data and generates feedback ACK; otherwise, generates feedback NACK.
  • the terminal should configure the first timer (timer T3) to start the first HARQ process for authorized transmission. That is, when the terminal uses the configuration authorization to perform uplink transmission on the first HARQ process, the first timer is started.
  • the first timer has the timer duration indicated by the above first configuration parameter.
  • the terminal may receive downlink feedback information, and the downlink feedback information includes the HARQ feedback of multiple HARQ processes, and the HARQ feedback for the first HARQ process should be invalid. As for whether the HARQ feedback of other HARQ processes is valid, it is judged according to the running status of their respective first timers. During the operation of the timer, the terminal may not receive downlink feedback information, which is not limited in the embodiment of the present application.
  • the terminal maintains the first timer for the HARQ process for configuring authorization, which is the minimum duration before the terminal expects to receive downlink feedback information, and when the configuration authorization transmission is performed on the HARQ process, Start the first timer. Since the first timer should be started when the authorized transmission is configured, after the uplink transmission and the minimum time period before the terminal expects to receive the downlink feedback information, the feedback for the configured authorized transmission (that is, the feedback of the HARQ process) may arrive, Therefore, if feedback of the HARQ process is received during the running of the timer, it means that the feedback is invalid. Therefore, the terminal can determine whether the feedback is valid according to this, thereby reducing the possibility of feedback misjudgment and improving communication efficiency.
  • the first configuration parameter may be sent to the terminal through an RRC message.
  • the RRC message includes the information element ConfiguredGrantConfig
  • the information element ConfiguredGrantConfig includes the first configuration parameter in addition to the configuration authorization parameter. That is, the network device carries the first configuration parameter in the configuration information element of the configuration authorization, that is, the configuration authorization and the configuration of the first timer are completed at the same time, saving signaling.
  • An example of the cell ConfiguredGrantConfig is given below. Among them, cg-RTT-Timer is the first configuration parameter.
  • the first configuration parameter and the configuration authorization parameter may also be sent through different configuration messages.
  • the terminal may determine a HARQ process in the HARQ process configured by the network device, that is, the first HARQ process, to be used for this uplink transmission. For example, the network device configures 4 HARQ processes for the terminal, so that the terminal can use the configuration authorization to perform uplink transmission in the HARQ process 0-3.
  • the HARQ process configured by the network device is called the HARQ process resource pool.
  • the terminal selects a HARQ process (for example, HARQ process 1) from the HARQ process resource pool as the first HARQ process for this transmission.
  • the first timer can be called configuration grant-round trip time (RTT)-timer (cg-RTT-timer), and its duration is the minimum duration before the terminal expects to receive downlink feedback information. Specifically, it can It is the minimum length of time before the MAC entity of the terminal expects to receive the downlink feedback information. In other words, the first timer duration is the time from when the terminal sends data to the HARQ feedback that can receive the data at the earliest.
  • the length of the first timer can also be called configuration authorization-round trip time (cg-RTT), which can be determined according to the transmission delay and processing delay, where the transmission delay includes the transmission delay of the terminal sending data to the network device and the network device.
  • cg-RTT configuration authorization-round trip time
  • the transmission delay includes the transmission delay of the terminal sending data to the network device and the network device
  • the transmission delay of sending the feedback of the data, and the processing delay includes the delay of the network device from receiving the data to generating the feedback of the data.
  • the downlink feedback information in the minimum time period before the terminal expects to receive the downlink feedback information is a general reference, and does not specifically refer to the downlink feedback of uplink transmission on which HARQ process, for example, it does not specifically refer to the configuration authorized transmission in step S520 feedback of.
  • the terminal maintains the first timer for the HARQ process configured to configure authorization for each network device.
  • the network device can configure only one first configuration parameter.
  • the terminal independently maintains the first timer of the same duration for each HARQ process used for configuration authorization, and the first timer of each HARQ process is started independently
  • each HARQ process is started according to the configuration authorization transmission on each HARQ process. Therefore, each HARQ process does not mistake the HARQ process feedback received during the running period of the first timer as valid feedback, thereby reducing feedback errors. The possibility of judgment.
  • the configuration of the first timers of all HARQ processes can be realized through one configuration parameter, which can save air interface resources and simplify the configuration process.
  • the network device may independently configure the first configuration parameter for each HARQ process, and the terminal independently maintains the first timer of the HARQ process according to the first configuration parameter of each HARQ process.
  • the terminal should start the first timer of the HARQ process according to the configuration authorization transmission of the HARQ process, and the first timer can be started in the first time unit after the configuration authorization transmission. If the repetition function is configured, the terminal starts the first timer in the first time unit after the first repetition of the configuration authorized transmission ends.
  • the time unit is, for example, a time slot, an orthogonal frequency division multiplexing (OFDM) symbol or a subframe.
  • the configuration authorization transmission refers to the uplink transmission performed by the configuration authorization, for example, physical uplink shared channel (PUSCH) transmission, that is, the terminal can perform the first transmission after the first repetition of PUSCH transmission.
  • PUSCH physical uplink shared channel
  • the first timer of a HARQ process is started in a time unit, and the PUSCH transmission is a transmission performed on the HARQ process using configuration authorization.
  • Repetition is a technology introduced to improve transmission reliability.
  • Repetition refers to a transmission method in which a data packet is repeatedly sent multiple times. This transmission method can be understood as a blind retransmission, that is, retransmission without waiting for feedback.
  • the repetition times of repetition may be configured by the network device to the terminal. For example, the network device sends indication information for indicating the repetition times to the terminal through an RRC message, and the indication information may be carried in a configuration message for configuration authorization, such as the information element ConfiguredGrantConfig.
  • the first repetition refers to the first transmission among multiple transmissions of a data packet.
  • the terminal device may perform the first repetition (or called the first transmission or new transmission) in any repetition resource.
  • the terminal device The first timer is started at the first time unit after the time unit of the resource started for the first repetition.
  • FIG. 6 is a schematic diagram of a repetition transmission scenario provided by an embodiment of the application.
  • a box represents a bundle, including multiple configuration authorization resources for repetition.
  • resources 1-4 are taken as an example. Any one of resources 1-4 is implemented before If the LBT is successful, the resource can be used for the first repetition, and the first timer is started at the first time unit after the time unit of the resource. For example, if the LBT is successfully achieved before resource 3, the first timer is started in the first time unit after the time unit of resource 3.
  • the first timer When the terminal maintains the first timer for the configured HARQ process, the first timer should be started according to the configuration authorized transmission on the HARQ process, and during the running of the first timer, the feedback of the HARQ process received by the terminal is invalid; Or, during the period when the first timer is not running, the HARQ process feedback received by the terminal may be valid; or, the first timer may be used to influence the start of the above timer T2 (hereinafter referred to as the second timer) , The feedback of the HARQ process received by the terminal during the running period of the second timer is valid.
  • the first timer is used to influence the start of the second timer, and the HARQ process feedback received by the terminal is valid during the running period of the second timer.
  • FIG. 7 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in FIG. 7, the method includes the above steps S510-S530, and also includes:
  • the duration of the second timer is configured by the network device. For details, please refer to the configuration of the timer T2 above.
  • the terminal can start the second timer of a HARQ process in the first time unit after the expiration of the first timer of the HARQ process.
  • the time unit is the same as that described above, for example, a time slot, orthogonal frequency division multiplexing ( orthogonal frequency division multiplexing, OFDM) symbols, or subframes.
  • the second timer is the above timer T2, which is the configuration authorized retransmission timer (CGR timer); the operation of the second timer provides that the terminal does not automatically configure authorized retransmission on the HARQ process where the second timer is located. During the running period of the second timer of a HARQ process, the terminal does not automatically perform the configuration authorization retransmission on the HARQ process.
  • T2 is the configuration authorized retransmission timer (CGR timer)
  • CGR timer configuration authorized retransmission timer
  • the duration of the second timer is a duration after the authorized transmission of the configuration on a HARQ process. Within this duration, the terminal will not automatically retransmit the authorized configuration on the HARQ process, that is, the terminal will not automatically retransmit the HARQ process. That is, when the second timer is not running, the terminal can use the configuration authorization to perform retransmission on the HARQ process.
  • the configuration authorization transmission refers to the transmission performed by the configuration authorization, including the initial transmission or retransmission of the configuration authorization.
  • the second timer of a HARQ process should be started according to the configuration authorized transmission (including new transmission or retransmission) on this HARQ process.
  • the second timer should not be started for the configuration authorized transmission (including new transmission or retransmission) on the HARQ process, but is started when the first timer expires.
  • the authorized transmission should be configured at this time, and the second timer should be stopped.
  • the terminal should authorize transmission according to the configuration in step S520 above, and may not start the second timer of the first HARQ process; or, when the second timer of the first HARQ process is in the running state, the above steps should be performed
  • the configuration authorization transmission in S520 stops the second timer.
  • the terminal device If the terminal device receives the downlink feedback information, it can judge whether the feedback of the HARQ process in the downlink feedback information is valid according to whether the time of receiving the downlink feedback information is within the running period of the second timer of a HARQ process.
  • the above method may also include:
  • S550 The terminal receives the downlink feedback information sent by the network device.
  • S560 The terminal determines whether the feedback in the downlink feedback information is valid.
  • the downlink feedback information may include feedback of at least one HARQ process.
  • the terminal independently maintains the second timer of each HARQ process.
  • the feedback of the HARQ process in the downlink feedback information is valid; when the downlink feedback information When received outside the running period of the second timer of a HARQ process (that is, received during the non-running period), the feedback of the HARQ process in the downlink feedback information is invalid, or the terminal ignores the feedback of the HARQ process.
  • the downlink feedback information includes the feedback of the first HARQ process above.
  • the terminal determines that the feedback of the first HARQ process is valid; when it is outside the running period of the second timer
  • the terminal determines that the feedback of the first HARQ process is invalid or ignores the feedback of the first HARQ process.
  • the second timer is running, it means that the second timer has not timed out or is stopped.
  • the terminal independently maintains the first timer and the second timer of each HARQ process, when the downlink feedback information includes feedback of multiple HARQ processes, the feedback of these HARQ processes may be partly valid and partly invalid.
  • FIG. 8 is a schematic diagram of another HARQ feedback scenario provided by an embodiment of the application.
  • the first timer of HARQ process 1 should be started by the configuration authorized transmission on HARQ process 1, and when the first timer of HARQ process 1 expires, the second timer of HARQ process 1 is started.
  • Timer; the first timer of HARQ process 2 should be started by the authorization transmission of the configuration on HARQ process 2, and when the first timer of HARQ process 2 expires, the second timer of HARQ process 2 is started.
  • the terminal receives the downlink feedback information, the downlink feedback information includes HARQ feedback information, and the HARQ feedback information includes the feedback of HARQ process 1 and the feedback of HARQ process 2.
  • the downlink feedback information is received during the running period of the second timer of HARQ process 1 and during the non-running period of the second timer of HARQ process 2. Therefore, the feedback of HARQ process 1 is valid and the feedback of HARQ process 2 is invalid. It can be seen that, compared to FIG. 4, the embodiment of the present application can effectively reduce the possibility of misjudgment of feedback information and improve communication efficiency.
  • the first timer is directly used to determine whether the feedback of the HARQ process is valid.
  • the HARQ process feedback received by the terminal during the non-running period of the first timer is valid.
  • the HARQ process feedback received during the running of the first timer is invalid or the terminal ignores the HARQ process feedback.
  • the start condition of the above second timer may not be changed, that is, when the terminal performs configuration authorization transmission (including initial transmission or retransmission) on a HARQ process, the second timer is started. That is, the second timer of a HARQ process should be started according to the configuration authorized transmission (including initial transmission or retransmission) on the HARQ process.
  • FIG. 9 is a schematic diagram of another communication method provided by an embodiment of this application. As shown in Figure 9, in addition to the above steps S510-S530, the method also includes the following steps:
  • S910 The terminal receives the downlink feedback information sent by the network device.
  • S920 The terminal determines whether the feedback in the downlink feedback information is valid.
  • the downlink feedback information may include feedback of at least one HARQ process.
  • the terminal independently maintains the first timer of each HARQ process.
  • the feedback of the HARQ process in the downlink feedback information is invalid or the terminal ignores the feedback of the HARQ process;
  • the downlink feedback information is received outside the running period of the first timer of a HARQ process (that is, the downlink feedback information is When the first timer of a HARQ process is not running)
  • the feedback of the HARQ process in the downlink feedback information is valid.
  • the downlink feedback information includes the above feedback of the first HARQ process.
  • the terminal determines that the feedback of the first HARQ process is invalid or ignores the feedback of the first HARQ process;
  • the terminal determines that the feedback of the first HARQ process is valid.
  • the first timer is running, it means that the first timer has not timed out or is stopped.
  • the start condition of the second timer does not change. Therefore, the configuration of a HARQ process authorizes transmission, and the terminal can also start the second timer of the HARQ process.
  • the second timer is stopped, so that The HARQ process is used as soon as possible for the next configuration authorization retransmission to further improve transmission efficiency.
  • the above step S530 also includes starting the second timer of the first HARQ process, and the above method also includes:
  • the duration of the second timer and the behavior of the terminal during the running period of the second timer are the same as those in the above embodiments, and will not be repeated here.
  • FIG. 10 is a schematic diagram of another HARQ feedback scenario provided by an embodiment of the application.
  • the first timer of HARQ process 1 should be started by the configuration authorized transmission on HARQ process 1; the first timer of HARQ process 2 should be started by the configuration authorized transmission on HARQ process 2.
  • the terminal receives the downlink feedback information, the downlink feedback information includes HARQ feedback information, and the HARQ feedback information includes the feedback of HARQ process 1 and the feedback of HARQ process 2.
  • the downlink feedback information is outside the running period of the first timer of HARQ process 1, and is received within the first timer period of HARQ process 2, therefore, the feedback of HARQ process 1 is valid, and the feedback of HARQ process 2 is invalid . It can be seen that, compared to FIG. 4, the embodiment of the present application can effectively reduce the possibility of misjudgment of feedback information and improve communication efficiency.
  • the timer T1 (herein, referred to as the third timer) is started in response to the uplink transmission of a HARQ process.
  • the third timer of the HARQ process The timer will start.
  • the third timer of the HARQ process can be stopped Device. So that the HARQ process can be used for the next initial transmission as soon as possible. That is, the above method further includes: stopping the third timer when the feedback of the first HARQ process is valid and ACK.
  • the description of the third timer is the same as the above timer T1, and will not be repeated here.
  • the first timer after the first timer is started, it stops when its duration expires.
  • the first timer may also stop running in any of the following situations, that is, the stopping timing of the first timer includes one or more of the following:
  • the HARQ feedback transmitted by the configuration authorization can be considered invalid by the network device, so the timer running on the HARQ process can be stopped for faster Use this HARQ process for the next data transmission.
  • the running timer includes at least one of a first timer, a second timer, and a third timer.
  • the terminal when it receives the deactivation command sent by the network device, it can stop the timers running on all HARQ processes.
  • an activated configuration authorization that is, multiple configuration authorizations are in a usable state at a time
  • the scheduling authorization is used for uplink transmission of a HARQ process. If the first timer of the HARQ process is running, the first timer of the HARQ process can be stopped.
  • the scheduling authorization is sent through a physical downlink control channel (PDCCH) scrambled by a cell radio network temporary identifier (C-RNTI), and the terminal uses the C-RNTI to receive the PDCCH to obtain the scheduling authorization.
  • the above method may further include: receiving a scheduling authorization for the first HARQ process; and receiving the scheduling authorization should stop the first timer of the first HARQ process.
  • the terminal receives the uplink grant, if the uplink grant is used for the C-RNTI of the MAC entity, and the identified HARQ process is used to configure the grant, then if the first timer corresponding to the HARQ process is running, stop the Corresponds to the first timer of the HARQ process.
  • the HARQ entity For an uplink grant (scheduling grant or configuration grant), the HARQ entity identifies the HARQ process associated with this uplink grant, so the identified HARQ process is the HARQ process determined by the terminal for this uplink grant.
  • the reception of the scheduling authorization indicates that the network device can schedule a new transmission, so the timer running due to the previous transmission can be stopped to improve the data transmission efficiency and reduce the impact between the scheduling authorization transmission and the configuration authorization transmission.
  • the timer T1 of a HARQ process in order to distinguish the first timer and the second timer, it can be called the third timer
  • the above method may further include: when the third timer of the first HARQ process expires, stopping the second timer of the first HARQ process, where the third timer should be started by the uplink initial transmission of the first HARQ process.
  • the third timer can be started in response to the uplink transmission in S520.
  • the third timer can be the authorization timer configured above. For detailed description, please refer to the above embodiments, and will not be repeated here.
  • the configuration authorization timer of a HARQ process expires, indicating that the current data packet of the HARQ process does not need to be transmitted anymore. At this time, the first timer is stopped, so that the next data transmission (new transmission) can be carried out faster, so, further Improve data transmission efficiency.
  • the second timer may also include a stop timing similar to the above first timer, that is, replace the first timer in the description of the stop timing with the second timer.
  • the embodiment of the present application may stop the first timer, stop the second timer, or stop the first timer and the second timer at any of the above stop timings.
  • the network device can configure multiple configuration authorizations for the terminal, and there can be more than one (that is, multiple) configuration authorizations in a usable state (or activated state).
  • a usable state or activated state.
  • type 1 configuration authorization when the terminal receives the configuration message of this type 1 configuration authorization, the type 1 configuration authorization is in a usable state; for type 2 configuration authorization, the terminal After receiving the configuration message of the type 2 configuration authorization, when the activation signaling of the type 2 configuration authorization is received, the type 2 configuration authorization is in an activated state, that is, a usable state.
  • the multiple configuration authorizations in the usable state may include type 1 configuration authorization, type 2 configuration authorization, or both type 1 configuration authorization and type 2 configuration authorization.
  • CG configuration authorization
  • the embodiment of the present application takes the above problem into consideration.
  • the running timer is stopped. In this way, the HARQ process can be used for the next configuration authorization transmission as soon as possible, where the configuration authorization transmission refers to the transmission performed by using the configuration authorization.
  • FIG. 11 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in Figure 11, the method includes the following steps:
  • the network device sends activation or deactivation signaling to the terminal, where the activation signaling is used to indicate the activation type 2 configuration authorization, and the deactivation signaling is used to indicate the deactivation type 2 configuration authorization, and the type 2 configuration authorization is used for the first configuration authorization.
  • activation signaling is used to indicate the activation type 2 configuration authorization
  • deactivation signaling is used to indicate the deactivation type 2 configuration authorization
  • type 2 configuration authorization is used for the first configuration authorization.
  • the terminal receives the activation or deactivation signaling from the network device.
  • the first HARQ process may include one or more.
  • S112 The terminal stops the running timer of the first HARQ process, where the last transmission of the first HARQ process is a transmission authorized by using the type 2 configuration.
  • Type 2 configuration authorization can be used for one or more HARQ processes.
  • the timer in the running state includes one or more of the first timer, the second timer, and the third timer (configuration authorization timer).
  • the descriptions of the first timer, the second timer, and the third timer are the same as those described above, and will not be repeated here.
  • the network device may send a configuration message to the terminal.
  • the configuration message includes a configuration information element used to configure type 2 configuration authorization.
  • the network device can send activation signaling to the terminal to instruct the terminal to activate the type 2 configuration authorization.
  • the network device can send deactivation signaling to the terminal to instruct the terminal to deactivate the type 2 configuration authorization.
  • the network device can configure multiple HARQ processes for configuration authorization, and these configuration authorizations share these HARQ processes.
  • These HARQ processes are It is the HARQ process resource pool.
  • the network device may also be configured with a HARQ process for configuring authorization. Therefore, the HARQ process resource pool may include one HARQ process or multiple HARQ processes, which is not limited in this application.
  • the terminal can have multiple configuration authorizations in the usable state at the same time, so when a type 2 configuration authorization is activated or deactivated, because the running timer of a HARQ process stops running, the HARQ process can be as fast as possible It is used for the next configuration authorization transmission, so the utilization of configuration authorization is improved, and the transmission efficiency is improved.
  • the terminal receives the configuration message and activation signaling of the type 2 configuration authorization from the network device, and then uses the activated type 2 configuration authorization to perform the configuration authorization transmission. After that, the type 2 configuration authorization was deactivated again. In the above step S111, the type 2 configuration authorization is activated again. Since the last transmission of the first HARQ process was a transmission using this type 2 configuration authorization, the first HARQ process is not occupied by other configuration authorizations, so stop A timer running on the first HARQ process, so that the first HARQ process can be used for the next configuration authorization transmission as soon as possible.
  • the terminal receives the activation signaling through the PDCCH, that is, the content of the PDCCH indicates the activation of the type 2 configuration authorization.
  • the last transmission of the first HARQ process was a transmission using this type 2 configuration authorization, which means that for the first HARQ process, the configuration authorization last submitted to the HARQ entity was the type 2 configuration authorization. Therefore, the steps shown in Figure 11 can be expressed as when the content of the PDCCH indicates the activation of type 2 configuration authorization, and for the first HARQ process, the configuration authorization submitted to the HARQ entity last time was the type 2 configuration authorization, then stop Timer running on the first HARQ process.
  • the terminal determines whether other configuration authorizations are in a usable state. This other configuration authorization shares the HARQ process resource pool with the type 2 configuration authorization currently to be activated.
  • the first HARQ process in the HARQ process resource pool is occupied by the other configuration authorizations (that is, the last transmission on the first HARQ process was performed using other configuration authorizations)
  • the first HARQ process The timer of a HARQ process is not suitable to be stopped, otherwise, the timer of the first HARQ process is stopped, which can reduce the packet loss rate of transmission authorized by other configurations, so that the first HARQ process can be used for the next configuration as soon as possible Authorize transmission to improve transmission efficiency.
  • the terminal before the above step S111, the terminal receives the configuration message and activation signaling of the type 2 configuration authorization from the network device, and then uses the activated type 2 configuration authorization to perform the configuration authorization transmission.
  • the type 2 configuration authorization is deactivated. Since the last transmission of the first HARQ process was a transmission using this type 2 configuration authorization, the first HARQ process is not occupied by other configuration authorizations, so stop A timer running on the first HARQ process, so that the first HARQ process can be used for the next configuration authorization transmission as soon as possible.
  • the terminal receives the deactivation signaling through the PDCCH, that is, the content of the PDCCH indicates the deactivation of the type 2 configuration authorization.
  • the last transmission of the first HARQ process was a transmission using this type 2 configuration authorization, which means that for the first HARQ process, the configuration authorization last submitted to the HARQ entity was the type 2 configuration authorization. Therefore, the steps shown in Figure 11 can be expressed as when the content of the PDCCH indicates the deactivation of type 2 configuration authorization, and for the first HARQ process, the configuration authorization submitted to the HARQ entity last time was the type 2 configuration authorization, then Stop the timer running on the first HARQ process.
  • the terminal determines whether a certain HARQ process is occupied by the type 2 configuration authorization. If there is, such as the first HARQ process, stop the first HARQ process.
  • the timer enables the first HARQ process to be used for the next configuration authorized transmission as soon as possible, so as to improve transmission efficiency.
  • the packet loss rate of transmissions authorized by other configurations can be reduced.
  • the above method further includes step S113: the terminal clears the buffer of the first HARQ process.
  • the HARQ process is not used to configure authorization for new transmission.
  • the timer T1 should be started by the uplink initial transmission on the HARQ process, and the uplink initial transmission may include the initial transmission of the configuration authorization, and may also include the initial transmission of the scheduling authorization. Therefore, the timer T1 limits the time during which HARQ cannot be used for uplink initial transmission.
  • the embodiment of the present application hopes to minimize the time during which the HARQ process cannot be used for new transmission, thereby improving transmission efficiency. Therefore, another communication method is provided. In this method, when the timer T1 is started due to scheduling authorization, if an ACK is received, the HARQ process can be used to perform the next initial transmission.
  • FIG. 12 is a schematic diagram of another communication method provided by an embodiment of the application. As shown in Figure 12, the method includes the following steps:
  • the network device sends a scheduling authorization to the terminal; correspondingly, the terminal receives the scheduling authorization from the network device.
  • S122 The terminal sends the first uplink data to the network device on the first HARQ process by using the scheduling authorization.
  • the network device receives the first uplink data sent by the terminal, and sends feedback information to the terminal according to the reception of the first uplink data. For example, when receiving correctly, ACK is sent; when receiving incorrectly, NACK is fed back. Correspondingly, the terminal receives feedback information from the network device.
  • the transmission of the first uplink data and the second uplink data is the initial transmission, and the first uplink data is transmitted using scheduling authorization, and the second uplink data is transmitted using configuration authorization.
  • the terminal can use the configuration authorization on the same HARQ process to start the next transmission as soon as possible, which improves the efficiency of data transmission.
  • NDI new data indicator
  • the configuration grant timer of the first HARQ process can be stopped, so that the first HARQ process can be used for the next initial transmission as soon as possible.
  • the scheduling authorization or configuration authorization is delivered to the HARQ entity, so that the HARQ entity transmits on the corresponding HARQ process according to the scheduling authorization or configuration authorization. Therefore, the above method can be described as: For the same HARQ process, when the uplink authorization submitted to the HARQ entity last time was not configured uplink authorization (ie scheduling authorization) and the lower layer indicates ACK for the same HARQ process, then the HARQ process is considered The NDI bit of has been inverted, and the configuration uplink grant and the associated HARQ information will be delivered to the HARQ entity. In this way, the HARQ entity can perform initial transmission.
  • the lower layer refers to the protocol layer below the protocol layer currently being processed. For example, if the current protocol layer is the MAC layer, the lower layer is the physical layer.
  • the timer in the embodiment of the present application can be implemented in the form of software, or can be implemented in the form of hardware. There is no restriction here.
  • the embodiment of the present application also provides a device for implementing any of the above methods.
  • a device is provided that includes a unit (or means) for implementing each step performed by the terminal in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step performed by the network device in any of the above methods.
  • FIG. 13 is a schematic diagram of a communication device according to an embodiment of the application.
  • the device is used in a terminal, and is used to execute any method in the embodiments shown in FIG. 5 to FIG. 10.
  • the apparatus 1300 includes a receiving unit 1310, a sending unit 1320, and a timer control unit 1330.
  • the receiving unit 1310 is configured to receive a first configuration parameter from a network device, and the first configuration parameter is used to indicate the first configuration parameter.
  • Timer duration, the first timer duration is the minimum duration before the terminal expects to receive the downlink feedback information.
  • the sending unit 1320 is configured to perform configuration authorization transmission on the first HARQ process.
  • the timer control unit 1330 is configured to configure the authorized transmission to start the first timer of the first HARQ process, and the first timer has the first timer duration indicated by the first configuration parameter.
  • the receiving unit 1310 is configured to receive from the network device any information sent by the network device in the above method embodiments to the terminal, and the sending unit 1320 is configured to send any one of the transmissions performed by the terminal in the above method embodiment to the network device.
  • the timer control unit 1330 also has the function of controlling a timer in any of the above method embodiments. For example, when the first timer expires, the second timer of the first HARQ process should be started; the authorized transmission should be configured to stop or not start the second timer of the first HARQ process; when the feedback of the first HARQ process is valid and To acknowledge the ACK, stop the third timer; configure authorized transmission, start the second timer of the first HARQ process, and stop the second timer of the first HARQ process when the first timer stops running; or In any of the situations described in the above embodiments, the first timer and/or the second timer of the first HARQ process are stopped. I will not go into details here.
  • the apparatus 1300 may further include a determining unit 1340, configured to determine whether the feedback of the first HARQ process is valid.
  • the specific determination method is the same as the above method embodiment, and will not be detailed here.
  • FIG. 14 is a schematic diagram of another communication device provided by an embodiment of this application.
  • the device is used in a terminal, and is used to execute the method in the embodiment shown in FIG. 11.
  • the device 1400 includes a receiving unit 1410 and a timer control unit 1420.
  • the receiving unit 1410 is configured to receive activation or deactivation signaling from a network device, the activation or deactivation signaling is used to indicate activation or deactivation of configuration authorization, where the configuration authorization is used for the first HARQ process;
  • the timer control unit 1420 is used To stop the running timer of the first HARQ process, where the last transmission of the first HARQ process is a transmission authorized by the configuration.
  • the timer in the running state includes at least one of a first timer, a second timer, and a third timer.
  • the description of these timers is the same as in the above method embodiment, and will not be repeated.
  • the apparatus 1400 may further include an emptying unit 1430, configured to empty the buffer of the first HARQ process.
  • FIG. 15 is a schematic diagram of another communication device provided by an embodiment of the application.
  • the device is used in a terminal and used to execute the method in the embodiment shown in FIG. 12.
  • the device 1500 includes a sending unit 1510 and a receiving unit 1520.
  • the sending unit 1510 is configured to send any transmission performed by the terminal in the above method embodiment to the network device.
  • the receiving unit 1520 is configured to receive, from the network device, the information sent to the terminal by any network device in the above method embodiments.
  • the sending unit 1510 is configured to use the scheduling authorization to send the first uplink data to the network device on the first HARQ process; the receiving unit 1520 receives feedback information from the network device indicating that the first uplink data is correctly received; the sending unit 1510 is also configured to The second uplink data is sent using the configuration authorization on the first HARQ process.
  • the apparatus 1500 may further include a determining unit 1530, configured to determine that the NDI corresponding to the first HARQ process is reversed.
  • the sending unit 1510 uses the configuration authorization to send the second uplink data on the first HARQ process.
  • the apparatus 1500 may further include a timer control unit 1540, which is used to receive feedback information indicating that the first uplink data is correctly received, and to stop the configuration grant timer of the first HARQ process.
  • a timer control unit 1540 which is used to receive feedback information indicating that the first uplink data is correctly received, and to stop the configuration grant timer of the first HARQ process.
  • FIG. 16 is a schematic diagram of another communication device provided by an embodiment of this application.
  • the device is used in network equipment, and is used to execute any method in the embodiments shown in FIG. 5 to FIG. 10.
  • the device 1600 includes a generating unit 1610 and a sending unit 1620.
  • the generating unit 1610 is used to generate a first configuration parameter.
  • the first configuration parameter is used to indicate a first timer duration, and the first timer duration is a terminal It is expected that the minimum time period before the downlink feedback information is received; the sending unit 1620 is configured to send the first configuration parameter to the terminal.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called by a certain processing element of the device and executed Features.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 17 is a schematic structural diagram of a terminal provided in an embodiment of the application. It may be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes: an antenna 1710, a radio frequency part 1720, and a signal processing part 1730.
  • the antenna 1710 is connected to the radio frequency part 1720.
  • the radio frequency part 1720 receives the information sent by the network device through the antenna 1710, and sends the information sent by the network device to the signal processing part 1730 for processing.
  • the signal processing part 1730 processes the terminal information and sends it to the radio frequency part 1720
  • the radio frequency part 1720 processes the terminal information and sends it to the network device via the antenna 1710.
  • the signal processing part 1730 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal operating system and the application layer; in addition, it may also include Other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 1731, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1732 and an interface circuit 1733.
  • the storage element 1732 is used to store data and programs, but the program used to execute the method executed by the terminal in the above method may not be stored in the storage element 1732, but stored in a memory outside the modem subsystem, using When the modem subsystem is loaded and used.
  • the interface circuit 1733 is used to communicate with other subsystems.
  • the above device for the terminal may be located in the modem subsystem, the modem subsystem may be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute any of the methods performed by the above terminal In each step, the interface circuit is used to communicate with other devices.
  • the unit for the terminal to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above The method executed by the terminal in the method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit that the terminal implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, such as : One or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal that implement the steps in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and storage element can be integrated in the chip, and the above terminal execution method can be implemented by the processing element calling the stored program of the storage element; or, at least one integrated circuit can be integrated in the chip for realizing the above terminal execution Or, can be combined with the above implementations, the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a terminal may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal are executed in a manner; of course, part or all of the steps executed by the terminal may be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1810, a radio frequency device 1820, and a baseband device 1830.
  • the antenna 1810 is connected to the radio frequency device 1820.
  • the radio frequency device 1820 receives the information sent by the terminal through the antenna 1810, and sends the information sent by the terminal to the baseband device 1830 for processing.
  • the baseband device 1830 processes the terminal information and sends it to the radio frequency device 1820, and the radio frequency device 1820 processes the terminal information and sends it to the terminal via the antenna 1810.
  • the baseband device 1830 may include one or more processing elements 1831, for example, including a main control CPU and other integrated circuits.
  • the baseband device 1830 may also include a storage element 1831 and an interface 1833.
  • the storage element 1832 is used to store programs and data; the interface 1833 is used to exchange information with the radio frequency device 1820.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above device for network equipment may be located in the baseband device 1830.
  • the above device for network equipment may be a chip on the baseband device 1830.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • “a plurality of” refers to two or more.
  • “And/or” describes the association relationship of the associated object, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • a and/or B which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • “a device” means to one or more such devices.
  • At least one (at least one of)" means one or any combination of subsequent associated objects, for example, "at least one of A, B and C" includes A, B, C, AB, AC, BC, or ABC. Determining Y based on X does not mean determining Y based only on X, but also based on X and other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

为了提高配置授权用于传输时的传输效率,提高一种通信方法。在该方法中,终端从网络设备接收配置参数,该配置参数用于指示定时器时长,该定时器时长为终端期望接收到下行反馈信息之前的最小时长。终端在第一混合自动重传请求(HARQ)进程上进行配置授权传输,且应该配置授权传输启动第一HARQ进程的第一定时器,第一定时器具有配置参数指示的定时器时长。由于一个HARQ进程的第一定时器应配置授权传输而启动,该上行传输之后到终端期望接收到下行反馈信息之前的最小时长之后,针对该配置授权传输的反馈才有可能到达,因此如果在该定时器运行期间收到了该HARQ进程的反馈,则说明该反馈是无效的,因此终端可以根据据此确定反馈是否有效,进而降低反馈误判的可能性,提高了通信效率。

Description

通信方法及装置 技术领域
本申请实施例涉及通信技术领域,特别是涉及一种利用配置授权的通信方法及装置。
背景技术
在无线通信技术中,终端可以通过调度资源和非调度资源向网络设备发送数据。调度资源又可以称为调度授权或动态授权(dynamic grant,DG),可以是网络设备在获知终端有发送数据的需求时为终端分配的资源,例如网络设备应终端的请求为终端分配的资源,或者,在终端传输数据失败时,网络设备为终端分配的用于重传数据的资源。非调度资源,又可以称为非调度授权、配置资源或配置授权,通常是网络设备预先配置给终端,当终端有数据需要传输时,可以利用该非调度资源进行传输,而不需要向网络设备请求为终端分配资源。非调度资源相对于调度资源,可以减少交互流程,从而可以节约调度时延,提高数据传输效率,因此获得了越来越多的应用。
终端采用非调度资源向网络设备发送数据时,将非调度资源和关联的混合自动重传请求(hybrid automatic repeat request,HARQ)信息提供给HARQ实体,以便在相应的HARQ进程上采用非调度资源进行上行传输。终端在发送数据之后,在收到该数据的反馈后,再采用该HARQ进程进行下一次传输。如果该数据的反馈为否定应答(negative acknowledgement,NACK),则重传该数据。在现有技术中,重传数据通过网络设备调度的资源进行传输,而随着技术的演进,希望非调度资源也可以用于重传。因此,需要解决非调度资源用于重传时所面临的问题。
发明内容
本申请实施例提供一种通信方法,以期提高配置授权用于传输时的传输效率。
第一方面,提供一种通信方法,在该方法中,终端从网络设备接收配置参数,该配置参数用于指示定时器时长,该定时器时长为终端期望接收到下行反馈信息之前的最小时长。终端在第一混合自动重传请求(HARQ)进程上进行配置授权传输,且应该配置授权传输启动第一HARQ进程的第一定时器,第一定时器具有配置参数指示的定时器时长。
相应的,网络设备生成配置参数,并向终端发送该配置参数,其中配置参数用于指示定时器时长,定时器时长为终端期望接收到下行反馈信息之前的最小时长。
在第一方面中,终端针对用于配置授权的HARQ进程可以维护时长为终端期望接收到下行反馈信息之前的最小时长第一定时器,且在该HARQ进程上进行了配置授权传输时,启动该第一定时器。由于第一定时器应配置授权传输而启动,该上行传输之后到终端期望接收到下行反馈信息之前的最小时长之后,针对该配置授权传输的反馈(即该HARQ进程的反馈)才有可能到达,因此如果在该定时器运行期间收到了该 HARQ进程的反馈,则说明该反馈是无效的,因此终端可以根据据此确定反馈是否有效,进而降低反馈误判的可能性,提高了通信效率。
在第一方面提供的方法中,当第一定时器到期时,终端还可以启动第一HARQ进程的第二定时器,其中第二定时器的时长由网络设备配置。第二定时器运行期间,终端不会自动进行第一HARQ进程上的配置授权重传。
在第一方面提供的方法中,终端应配置授权传输,可以停止或不启动第一HARQ进程的第二定时器。
在第一方面提供的方法中,如果终端接收到收下行反馈信息,该下行反馈信息包括第一HARQ进程的反馈;那么在第一HARQ进程的第二定时器运行期间收到该下行反馈信息时,终端确定第一HARQ进程的反馈有效;或者,在第一HARQ进程的第二定时器未运行期间收到下行反馈信息时,终端确定该第一HARQ进程的反馈无效或忽略第一HARQ进程的反馈。
进一步的,当第一HARQ进程的反馈有效且为肯定应答(ACK)时,终端可以停止第三定时器,其中第三定时器应第一HARQ进程的上行初传启动。该第三定时器的时长由网络设备配置。且该第三定时器运行时,终端不在第一HARQ进程上进行配置授权初传。
在第一方面提供的方法中,终端应配置授权传输,启动第一HARQ进程的第二定时器,且在第一定时器停止运行时,停止第一HARQ进程的第二定时器。其中第二定时器的时长由网络设备配置。第二定时器运行期间,终端不会自动进行第一HARQ进程上的配置授权重传。
在第一方面提供的方法中,如果终端接收下行反馈信息,该下行反馈信息包括第一HARQ进程的反馈;那么,当下行反馈信息在第一HARQ进程的第一定时器未运行期间被收到时,终端确定第一HARQ进程的反馈有效;或者,当下行反馈信息在第一HARQ进程的第一定时器运行期间被收到时,终端确定第一HARQ进程的反馈无效或忽略第一HARQ进程的反馈。
进一步的,当第一HARQ进程的反馈有效且为ACK时,终端可以停止第三定时器,其中第三定时器应第一HARQ进程的上行初传启动。该第三定时器的时长由网络设备配置。且该第三定时器运行时,终端不在第一HARQ进程上进行配置授权初传。
在第一方面提供的方法中,终端可以应以下任一种情况停止第一HARQ进程的第一定时器和/或第二定时器:
去激活命令的接收,去激活命令用于去激活配置授权;
用于第一HARQ进程的调度授权的接收;
第一HARQ进程的第三定时器到期,其中,第三定时器应第一HARQ进程的上行初传启动。
第二方面,提供一种通信方法,包括:终端从网络设备接收激活或去激活信令,其中,该激活或去激活信令用于指示激活或去激活配置授权,所述配置授权用于HARQ进程;且应该激活或去激活信令的接收,停止第一HARQ进程的处于运行状态的定时器,其中第一HARQ进程的上一次传输为利用该配置授权的传输。
在第二方面提供的方法中,在激活或去激活配置授权时,如果该配置授权用于的 HARQ进程上有正在运行的定时器,则停止正在运行的定时器。如此,可以使得该HARQ进程尽快用于下一次配置授权传输,而无需等待定时器运行至停止,从而可以提升传输效率。
在第二方面提供的方法中,处于运行状态的定时器包括至少一个以下定时器:
第一定时器,第一定时器应第一HARQ进程的配置授权传输启动;
第二定时器,第二定时器应第一HARQ进程的配置授权传输启动或在第一定时器到期时启动;
第三定时器,第三定时器应第一HARQ进程的上行初传启动。
在第二方面提供的方法中,终端还可以清空第一HARQ进程的缓存。如此,可以为下一次配置授权传输做好准备,减少无用数据的传输,进而提高传输效率。
第三方面,提供一种通信方法,包括:终端用调度授权在第一HARQ进程上向网络设备发送第一上行数据,且从网络设备接收指示该第一上行数据被正确接收的反馈信息;进而终端在该第一HARQ进程上利用配置授权发送第二上行数据。
在第三方面提供的方法中,在利用调度授权进行初传且传输成功之后,无论配置授权定时器是否处于运行状态,终端可以在相同的HARQ进程上利用配置授权尽快开始下一次传输,如此,提高了数据传输效率。
在第三方面提供的方法中,终端可以确定第一HARQ进程对应的新数据指示(NDI)发生反转时,在第一HARQ进程上利用配置授权发送第二上行数据。
在第三方面提供的方法中,终端可以应指示该第一上行数据被正确接收的反馈信息的接收,停止第一HARQ进程的配置授权定时器。
以上各方面的方法中,涉及到配置授权的激活或去激活时,该配置授权为类型2配置授权。当有其它类型配置授权可以被激活或去激活时,该配置授权也可以为其它类型配置授权。
第四方面,提供一种通信装置,包括用于执行以上各个方面中任一种实现方式的各个步骤的单元或手段(means)。
第五方面,提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上各个方面中任一种实现方式提供的方法。该处理器包括一个或多个。
第六方面,提供一种通信装置,包括处理器,用于调用存储器中存储的程序,以以执行以上各个方面中任一种实现方式提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第七方面,提供一种计算机程序,该程序在被处理器调用时,以上各个方面中任一种实现方式提供的方法被执行。
第八方面,提供一种计算机可读存储介质,包括程序,该程序在被处理器调用时,以上各个方面中任一种实现方式提供的方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种网络架构的示意图;
图3为本申请实施例提供的另一种网络架构的示意图;
图4为本申请实施例提供的一种HARQ反馈场景的示意图;
图5为本申请实施例提供的一种通信方法的示意图;
图6为本申请实施例提供的一种repetition传输的场景示意图;
图7为为本申请实施例提供的另一种通信方法的示意图;
图8为本申请实施例提供的另一种HARQ反馈场景的示意图;
图9为本申请实施例提供的又一种通信方法的示意图;
图10为本申请实施例提供的又一种HARQ反馈场景的示意图;
图11为本申请实施例所提供的又一种通信方法的示意图;
图12为本申请实施例提供的又一种通信方法的示意图;
图13为本申请实施例提供的一种通信装置的示意图;
图14为本申请实施例提供的另一种通信装置的示意图;
图15为本申请实施例提供的又一种通信装置的示意图;
图16为本申请实施例提供的又一种通信装置的示意图;
图17为本申请实施例提供的一种终端的结构示意图;
图18为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其它实施例,都属于本申请保护的范围。
本申请的实施例中:
终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、或移动终端(mobile terminal,MT)等,是一种向用户提供数据连通性的设备,例如,具有无线连接功能的手持式设备或车载设备等。目前,终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
网络设备是无线网络中的设备,例如将终端接入到无线网络的RAN节点。目前,RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home eNodeB,或home Node B)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。在一种网络结构中,网络设备可以为集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN 设备。
请参考图1,其为本申请实施例提供的一种通信系统的示意图。如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括无线接入网(radio access network,RAN)110和核心网(CN)120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端进行管理并提供与外网通信的网关。
请参考图2,其为本申请实施例提供的一种网络架构的示意图。如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,射频装置包括射频拉远单元(remote radio unit,RRU),基带装置包括BBU,RRU相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构 下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
终端可以通过调度资源和非调度资源向网络设备发送数据。调度资源又可以称为调度授权,可以是网络设备在获知终端有发送数据的需求时为终端分配的资源,例如应终端的请求为终端分配的资源,或者,在终端传输数据失败时,网络设备为终端分配的用于重传数据的资源。以应终端的请求为终端分配的资源为例,终端向网络设备发送调度请求,网络设备应该调度请求为终端分配资源,以便终端进行上行传输;此外,终端可以向网络设备发送缓冲区状态报告(buffer status report,BSR),网络设备根据该BSR为终端分配资源,以便终端进行上行传输。非调度资源,又可以称为非调度授权、配置资源或配置授权,通常是网络设备预先配置给终端,当终端有数据需要传输时,可以利用该非调度资源进行传输,而不需要向网络设备请求为终端分配资源。非调度资源相对于调度资源,可以减少交互流程,从而可以节约调度时延,提高数据传输效率。以下将非调度资源称为配置授权。
配置授权通常为周期性资源,由网络设备配置给终端。目前,有两种类型的配置授权(configured grant),分别为类型1配置授权(configured grant type 1)和类型2配置授权(configured grant type 2)。网络设备可以通过高层信令将配置授权配置给终端,例如通过无线资源控制(radio resource control,RRC)消息向终端发送配置授权的参数。对于类型1配置授权,类型1配置授权的参数通过RRC消息配置给终端后,终端即可以使用该类型1配置授权;对于类型2配置授权,部分配置授权的参数通过RRC消息配置给终端,终端在收到物理层信令中的其它参数后,才可以使用该类型2配置授权,即类型2配置授权通过物理层信令激活后,终端才可以使用。此外,类型2配置授权通过物理层信令去激活。
该配置授权用于上行传输,因此有可以称为配置上行授权。
在一种示例中,配置授权的配置消息为RRC消息,该RRC消息包括信元ConfiguredGrantConfig,该信元ConfiguredGrantConfig包括配置授权的参数,即使用配置授权进行上行传输所用的参数。对于类型1和类型2配置授权,该信元ConfiguredGrantConfig均可以包括周期和HARQ进程数等参数,还可以包括其它参数,例如功控、重复次数(repK)、和重复的冗余版本(repK-RV)等。此外,对于类型1配置授权,该信元还包括时域资源,频域资源,和调制和编码方案(modulation and coding scheme,MCS)等参数;对于类型2配置授权,该信元没有配置频域资源和MCS等参数,这些参数是通过下行控制信息(downlink control information,DCI)发送给终端,终端收到该DCI后即可以使用类型2配置授权。
网络设备可以为终端配置用于配置授权的HARQ进程,即可以使用配置授权的HARQ进程(并不限制该HARQ进程是否可以使用调度授权),且还为终端配置一个 定时器参数(可以称为定时器参数P1),终端根据该定时器参数针对每个配置的HARQ进程维护一个定时器(可以称为定时器T1)。该定时器参数P1例如称为configuredGrantTimer,其指示了终端针对每个HARQ进程维护的定时器T1的时长;该定时器T1例如称为配置授权定时器(configured grant timer),其时长根据定时器参数P1确定。且在一个HARQ进程的定时器T1运行期间终端不使用配置授权在该HARQ进程上进行初传,即该定时器未运行时,终端才可以使用配置授权在该HARQ进程上进行初传。
终端采用非调度资源向网络设备发送数据时,将非调度资源和关联的混合自动重传请求(hybrid automatic repeat request,HARQ)信息提供给HARQ实体,以便在相应的HARQ进程上采用非调度资源进行上行传输。终端在发送数据之后,在收到该数据的HARQ反馈后,再采用该HARQ进程进行下一次传输。如果该数据的HARQ反馈为NACK,则重传该数据。
配置授权起初用于新传,不用于重传,而随着技术的演进,希望配置授权也可以用于重传。例如,在频谱资源有限的情况下,引入非授权频谱(或称为共享频谱)来提升数据吞吐量。非授权频谱作为一种共享的频谱资源,可以为多种空口技术使用,例如以下空口技术中的部分或全部:WiFi,非授权频谱的新无线操作(new radio operating in unlicensed spectrum,NR-U),LTE许可协助接入(licensed assisted access,LAA),和MuLTEfire。为了让不同空口技术在非授权频谱上共存,引入了先听后说(listen before talk,LBT)机制,即终端在进行数据传输之前,进行信道接入过程,如果信道接入过程通过(LBT成功),那么数据传输可以进行,如果信道接入过程未通过(LBT失败),那么数据传输就不能进行。当LBT失败引起数据无法传输时,终端可以继续使用配置授权传输该数据。当LBT成功时,终端传输数据,网络设备根据该数据的接收情况向终端发送HARQ反馈,网络设备成功接收该数据时,HARQ反馈为肯定应答(acknowledgement,ACK);网络设备未能成功接收该数据时,HARQ反馈为NACK,此时,终端可以使用配置授权进行重传。其中,信道接入过程是一个空闲信道评估(clear channel assessment,CCA)过程,可以基于固定时长或者基于回退机制的能量检测,来确定信道空闲或者忙碌,在确定信道空闲的情况下再进行数据传输。
配置授权用于重传时,针对配置的HARQ进程,网络设备可以通过DCI反馈该HARQ进程上数据的传输状态,即发送HARQ反馈。网络设备可以为终端配置多个用于配置授权的HARQ进程,为了节省空口开销,可以通过位图(bitmap)的形式发送这些HARQ进程的HARQ反馈(简称反馈)。例如,网络设备配置了HARQ进程1-4用于配置授权,这些HARQ进程的反馈承载于DCI中,该DCI包括下行反馈信息(downlink feedback information,DFI),该DFI包括HARQ反馈信息,该HARQ反馈信息包括HARQ进程1-4的反馈,且以HARQ位图的形式呈现。该HARQ位图包括多个比特位,每个比特位对应一个HARQ进程,该比特位的取值用于指示对应的HARQ进程的反馈,例如,比特位取值为1,表示对应的HARQ进程的反馈为ACK,取值为0,表示对应的HARQ进程的反馈为NACK;反之亦可,即,比特位取值为1,表示对应的HARQ进程的反馈为NACK,取值为0,表示对应的HARQ进程的反馈为 ACK。以网络设备配置4个HARQ进程为例,假设HARQ位图为1101,则表示,HARQ进程1的反馈为ACK,HARQ进程2的反馈为ACK,HARQ进程3的反馈为NACK,HARQ进程4的反馈为ACK。DFI中还可以包括其它信息,例如以下信息中的一个或多个:上行或下行的标志,载波指示域(用于跨载波调度),和传输功率控制(transmit power control,TPC)命令等,本申请对HARQ反馈信息以外的信息不做限定。
此外,针对网络设备配置的用于配置授权的HARQ进程,网络设备还可以为终端配置另一个定时器参数(相对以上定时器参数P1,称之为定时器参数P2),终端针对每个配置的用于配置授权的HARQ进程,维护一个定时器(相对以上定时器T1,称之为定时器T2)。定时器参数P2例如称为cg-RetransmissionTimer,其指示了终端针对每个HARQ进程维护的定时器T2的时长;定时器T2例如称为配置授权重传定时器(CG retransmission Timer,CGR timer),其时长根据定时器参数P2确定。且在一个HARQ进程的定时器T2运行期间终端不自动使用配置授权在该HARQ进程上进行重传,即该定时器未运行时,终端才可以自动使用配置授权在该HARQ进程上进行重传。
定时器T1用于限制对应HARQ进程上的新传,定时器T2用于限制对应HARQ进程上的重传,新传和重传是指利用配置授权的新传和重传,也就是说,定时器T1和定时器T2并不限制调度授权在对应HARQ进程上的使用。此外,针对一个HARQ进程,可以配置其用于配置授权,即该HARQ进程上可以进行配置授权传输,配置授权传输可以包括配置授权新传或重传,或可以包括配置授权新传和重传,配置授权传输是指利用配置授权进行的传输。因此,终端针对一个配置的HARQ进程可以维护定时器T1和/或定时器T2。
一个HARQ进程上的定时器T1应该HARQ进程上的新传而启动,即终端在该HARQ进程上进行新传时,启动该HARQ进程的定时器T1,这里的新传可以包括配置授权新传,也可以包括调度授权新传,即利用调度授权进行的新传。一个HARQ进程上的定时器T2应该HARQ进程上的配置授权新传而启动或重启,或,应该HARQ进程上的配置授权重传而启动或重启;即终端在该HARQ进程上进行配置授权新传或重传时,启动或重启该HARQ进程的定时器T2,在定时器T2运行期间,终端期望接收网络设备发送的该HARQ进程的反馈,或期望接收网络设备发送的用于新传或重传的调度授权。当终端接收到网络设备发送的该HARQ进程的反馈为ACK时,停止定时器T2。
终端通过配置授权向网络设备发送数据,该数据经过一定的传输时延才会到达网络设备,网络设备接收到该数据,并尝试解码该数据,解码正确则网络设备正确接收该数据,产生反馈ACK;解码错误则网络设备未正确接收该数据,产生反馈NACK,该过程需要一定的处理时延,而将反馈ACK或NACK发送给终端,也需要一定的传输时延。而以上处理过程中,并没有考虑到传输时延和处理时延的影响,从而可能导致终端接收错误的HARQ反馈,进而根据错误的HARQ反馈进行后续处理,导致传输效率下降。
例如,请参考图4,其为本申请实施例提供的一种HARQ反馈场景的示意图。如图4所示,网络设备配置终端在HARQ进程1和HARQ进程2上可以利用配置授权进行传输,在时隙(slot)0,终端在HARQ进程1上利用配置授权发送第一数据,且启 动HARQ进程1的CGR timer;而后在slot 2,在HARQ进程2上利用配置授权发送第二数据,且启动HARQ进程2的CGR timer。在slot 3,终端接收HARQ反馈信息。该HARQ反馈信息以以上所描述的位图的形式呈现,包括HARQ进程1和HARQ进程2的对应的比特位(还可以包括其它HARQ进程的比特位,为了方便描述,这里仅以HARQ进程1和进程2为例)。考虑到传输时延和网络设备的处理时延,每个HARQ进程上的反馈应该在该传输时延和处理时延的总时延之后才会到达终端,将该总时延记为T。如图所示网络设备本来是针对HARQ进行1的反馈而发送DFI,但是在DFI中有HARQ进程2的比特位,因此会有个HARQ进程2的反馈被终端解析到,而该HARQ进程2的反馈实际上是无效的,终端根据该无效的反馈所执行的后续操作便会导致传输效率下降,例如,导致传输错误或传输资源浪费。例如,当终端解析出HARQ进程2的反馈为ACK,而实际上HARQ进程2上的数据并没有被网络设备正确接收时,会导致该数据的丢失;当终端解析出HARQ进程2的反馈为NACK,而实际上HARQ进程2上的数据被网络设备正确接收时,终端进行了不必要的重传。
本申请实施例考虑到以上问题,针对网络设备配置的用于配置授权的HARQ进程,终端维护一个定时器(相对以上定时器T1和T2,称之为定时器T3)。该定时器T3的时长是终端期望接收到下行反馈信息之前的最小时长。一个HARQ进程的定时器应该HARQ进程上的配置授权传输而启动。在该定时器T3运行期间,终端接收到的该HARQ进程的反馈无效;或者,在该定时器T3未运行期间,终端接收到的该HARQ进程的反馈才可能有效;或者,利用该定时器T3影响以上定时器T2的启动,从而在定时器T2的运行期间内终端接收到的该HARQ进程的反馈有效。
下面结合附图进行描述:
请参考图5,其为本申请实施例提供的一种通信方法的示意图,如图5所示,该方法包括:
S510:网络设备生成配置参数(以下称为第一配置参数),且向终端发送第一配置参数;相应的,终端从网络设备接收第一配置参数。该第一配置参数用于指示一个定时器时长(以下称为第一定时器时长),该第一定时器时长是终端期望接收到下行反馈信息之前的最小时长;
S520:终端在第一HARQ进程上进行配置授权传输,即,终端使用配置授权在第一HARQ进程上进行上行传输,也就是说,终端在第一HARQ进程上使用配置授权向网络设备发送数据;该配置授权传输包括配置授权新传或配置授权重传。
相应的,网络设备接收终端发送的数据。进一步的,网络设备根据该数据的解码情况生成第一HARQ进程的反馈,并向终端发送第一HARQ进程的反馈,例如,正确解码该数据,生成反馈ACK,否则,生成反馈NACK。
S530:终端应以上配置授权传输启动第一HARQ进程的第一定时器(定时器T3)。即,当终端在第一HARQ进程上采用配置授权进行上行传输时,启动第一定时器。该第一定时器具有以上第一配置参数指示的定时器时长。
在定时器运行期间,终端可能会收到下行反馈信息,且下行反馈信息包括了多个HARQ进程的HARQ反馈,而针对第一HARQ进程的HARQ反馈应该是无效的。至于其它HARQ进程的HARQ反馈是否有效,根据其各自的第一定时器运行情况来判断。 在定时器运行期间,终端也可能不会收到下行反馈信息,本申请实施例不做限制。
可见,在以上实施例中,终端针对用于配置授权的HARQ进程维护了时长为终端期望接收到下行反馈信息之前的最小时长第一定时器,且在该HARQ进程上进行了配置授权传输时,启动该第一定时器。由于第一定时器应配置授权传输而启动,该上行传输之后到终端期望接收到下行反馈信息之前的最小时长之后,针对该配置授权传输的反馈(即该HARQ进程的反馈)才有可能到达,因此如果在该定时器运行期间收到了该HARQ进程的反馈,则说明该反馈是无效的,因此终端可以根据据此确定反馈是否有效,进而降低反馈误判的可能性,提高了通信效率。
在以上步骤S510中,第一配置参数可以通过RRC消息发送给终端。可选的,该RRC消息包括信元ConfiguredGrantConfig,该信元ConfiguredGrantConfig除了包括配置授权的参数之外,还包括第一配置参数。即,网络设备在配置授权的配置信元携带第一配置参数,即同时完成配置授权和第一定时器的配置,节省信令。以下给出了信元ConfiguredGrantConfig的一个示例。其中,cg-RTT-Timer为第一配置参数。
ConfiguredGrantConfig information element
Figure PCTCN2019129736-appb-000001
Figure PCTCN2019129736-appb-000002
Figure PCTCN2019129736-appb-000003
Figure PCTCN2019129736-appb-000004
以上仅为举例,可选的,也可以通过不同的配置消息发送第一配置参数和配置授权的参数。
在以上步骤S520中,终端在进行配置授权传输之前,可以在网络设备配置的HARQ进程中确定一个HARQ进程,即第一HARQ进程,用于本次上行传输。例如,网络设备为终端配置了4个HARQ进程,从而终端可以在HARQ进程0-3使用配置授权进行上行传输。将网络设备配置的HARQ进程称为HARQ进程资源池。在利用配置授权进行传输之前,终端从HARQ进程资源池中选择一个HARQ进程(例如HARQ进程1)作为第一HARQ进程,用于本次传输。
第一定时器可以称为配置授权-往返时间(round trip time,RTT)-定时器(cg-RTT-timer),其时长是终端期望接收到下行反馈信息之前的最小时长,具体而言,可以是终端的MAC实体望接收到下行反馈信息之前的最小时长。或者说,该第一定时器时长是从终端发送数据到最早能接收到该数据的HARQ反馈的时间。第一定时器的时长又可以称为配置授权-往返时间(cg-RTT),可以根据传输时延和处理时延确定,其中传输时延包括终端向网络设备发送数据的传输时延和网络设备发送该数据的反馈的传输时延,处理时延包括网络设备从接收到数据到生成该数据的反馈的时延。以上名称仅为举例,并非用于限制第一定时器。
此外,终端期望接收到下行反馈信息之前的最小时长中的下行反馈信息是泛指,并不特指哪个HARQ进程上的上行传输的下行反馈,例如并不特指针对步骤S520中的配置授权传输的反馈。
在以上步骤S530中,终端针对每个网络设备配置的用于配置授权的HARQ进程,维护第一定时器。网络设备可以仅配置一个第一配置参数,终端根据该第一配置参数,针对每个用于配置授权的HARQ进程独立维护相同时长的第一定时器,各个HARQ进程的第一定时器的启动独立进行,例如,应各HARQ进程上的配置授权传输而启动,因此每个HARQ进程都不会将第一定时器运行期间内收到的该HARQ进程的反馈错误地当成有效反馈,从而降低反馈误判的可能性。此外,对于配置多个用于配置授权的HARQ进程的情况下,通过一个配置参数实现所有HARQ进程的第一定时器的配置,可以节省空口资源,简化配置流程。
可选的,网络设备可以针对每个HARQ进程独立的配置第一配置参数,终端根据每个HARQ进程的第一配置参数,独立维护该HARQ进程的第一定时器,。
此外,终端应一个HARQ进程的配置授权传输启动该HARQ进程的第一定时器,可以在该配置授权传输之后的第一个时间单元内,启动该第一定时器。如果配置了重复(repetition)功能,终端在该配置授权传输的第一次重复结束之后的第一个时间单元内,启动该第一定时器。该时间单元例如为时隙,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号或子帧。该配置授权传输是指利用配置授权进行的上行传输,例如为物理上行共享信道(physical uplink shared channel,PUSCH)传输, 也就是说,终端可以在PUSCH传输的第一次重复结束之后的第一个时间单元内启动一个HARQ进程的第一定时器,PUSCH传输是在该HARQ进程上利用配置授权所进行的传输。repetition是为了提高传输可靠性而引入的技术,repetition是指一个数据包被重复发送多次的传输方式,这种传输方式可以理解为一种盲重传,即不需要等待反馈的重传。repetition的重复次数可以由网络设备配置给终端,例如网络设备通过RRC消息向终端发送用于指示重复次数的指示信息,该指示信息可以携带在配置授权的配置消息中,例如信元ConfiguredGrantConfig中。第一次重复是指数据包多次传输中的第一次传输。
对于灵活初传的场景,终端设备在任意一个repetition的资源,都可能进行第一次重复(或称为第一次传输或新传),不管采用哪个repetition的资源进行第一次重复,终端设备在该第一次重复开始的资源的时间单元之后的第一个时间单元,启动第一定时器。例如,请参考图6,其为本申请实施例提供的一种repetition传输的场景示意图。如图6所示,一个方框代表一个捆束(bundle),包括用于repetition的多个配置授权资源,在此以资源1-4为例,资源1-4中任一个资源之前先实现了LBT成功,则可以利用该资源进行第一次重复,则在该资源的时间单元之后的第一个时间单元,启动第一定时器。例如,资源3之前首先实现了LBT成功,则在资源3的时间单元之后的第一个时间单元,启动第一定时器。
终端针对配置的HARQ进程维护第一定时器时,该第一定时器应HARQ进程上的配置授权传输而启动,且在该第一定时器运行期间,终端接收到的该HARQ进程的反馈无效;或者,在该第一定时器未运行期间,终端接收到的该HARQ进程的反馈才可能有效;或者,可以利用该第一定时器影响以上定时器T2(以下称为第二定时器)的启动,在第二定时器的运行期间内终端接收到的该HARQ进程的反馈有效。
下面结合附图,描述几种维护方式。
第一种方式中,利用第一定时器影响第二定时器的启动,且在第二定时器的运行期间内终端接收到的该HARQ进程的反馈有效。
请参考图7,其为本申请实施例提供的另一种通信方法的示意图,如图7所示,该方法除了包括以上步骤S510-S530之外,还包括:
S540:当第一定时器到期时,启动第一HARQ进程的第二定时器。
第二定时器的时长由网络设备配置,具体可以参照以上定时器T2的配置。
终端可以在一个HARQ进程的第一定时器到期之后的第一个时间单元内,启动该HARQ进程的第二定时器,时间单元同以上描述,例如为时隙,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或子帧。
其中第二定时器为以上定时器T2,即配置授权重传定时器(CGR timer);第二定时器的运行提供了终端不自动在第二定时器所在的进行HARQ进程上进行配置授权重传的时长,即一个HARQ进程的第二定时器运行期间,终端不自动进行该HARQ进程上的配置授权重传。
第二定时器的时长为一个HARQ进程上的配置授权传输后的一个时长,该时长内终端不会自动进行该HARQ进程上的配置授权重传,即终端不会自动重传该HARQ进程。也就是说,即该第二定时器未运行时,终端才可以使用配置授权在该HARQ进程 上进行重传。其中配置授权传输是指利用配置授权所进行的传输,包括配置授权初传或重传。
目前,一个HARQ进程的第二定时器应此HARQ进程上的配置授权传输(包括新传或重传)启动。而本实施例中,该第二定时器不应此HARQ进程上的配置授权传输(包括新传或重传)而启动,而在第一定时器到期时启动。此外,如果在HARQ进程的配置授权传输之前,第二定时器已经处于运行状态,此时可以应该配置授权传输,停止第二定时器。即,在以上方法中,终端应以上步骤S520中的配置授权传输,可以不启动第一HARQ进程的第二定时器;或者,第一HARQ进程的第二定时器处于运行状态时,应以上步骤S520中的配置授权传输,停止第二定时器。
如果终端设备收到下行反馈信息,则可以根据接收该下行反馈信息的时间是否位于一个HARQ进程的第二定时器的运行期间,来判断下行反馈信息中该HARQ进程的反馈是否有效。此时,以上方法还可以包括:
S550:终端接收网络设备发送的下行反馈信息。
S560:终端确定下行反馈信息中的反馈是否有效。
下行反馈信息可以包括至少一个HARQ进程的反馈。终端独立维护每个HARQ进程的第二定时器,当下行反馈信息在一个HARQ进程的第二定时器运行期间被收到,则该下行反馈信息中的该HARQ进程的反馈有效;当下行反馈信息在一个HARQ进程的第二定时器运行期间之外被收到(即未运行期间被收到)时,则该下行反馈信息中的该HARQ进程的反馈无效,或终端忽略该HARQ进程的反馈。例如,下行反馈信息包括以上第一HARQ进程的反馈,当在第二定时器运行期间内收到下行反馈信息时,终端确定第一HARQ进程的反馈有效;当在第二定时器运行期间之外收到下行反馈信息时,终端确定第一HARQ进程的反馈无效或忽略第一HARQ进程的反馈。其中第二定时器在运行期间是指该第二定时器没有超时或被停止。
由于终端独立维护每个HARQ进程的第一定时器和第二定时器,因此下行反馈信息包括多个HARQ进程的反馈时,这些HARQ进程的反馈可以部分有效,部分无效。
下面结合图4和图8,图8为本申请实施例提供的另一种HARQ反馈场景的示意图。相对于图4,在图8中,HARQ进程1的第一定时器应HARQ进程1上的配置授权传输启动,且在HARQ进程1的第一定时器到期时,启动HARQ进程1的第二定时器;HARQ进程2的第一定时器应HARQ进程2上的配置授权传输启动,且在HARQ进程2的第一定时器到期时,启动HARQ进程2的第二定时器。终端接收下行反馈信息,该下行反馈信息包括HARQ反馈信息,HARQ反馈信息包括HARQ进程1的反馈和HARQ进程2的反馈。该下行反馈信息在HARQ进程1的第二定时器运行期间,且在HARQ进程2的第二定时器未运行期间被收到,因此,HARQ进程1的反馈有效,HARQ进程2的反馈无效。可见,相对于图4,本申请实施例可以有效的降低反馈信息误判的可能性,提高通信效率。
第二种方式中,直接利用第一定时器确定HARQ进程的反馈是否有效。终端在第一定时器非运行期间收到的HARQ进程的反馈是有效的。相应的,在第一定时器运行期间收到的HARQ进程的反馈是无效的或者终端忽略该HARQ进程的反馈。
此时,可以不改变以上第二定时器的启动条件,也就是说,当终端在一个HARQ 进程上进行配置授权传输(包括初传或重传)时,启动第二定时器。即,一个HARQ进程的第二定时器即应该HARQ进程上的配置授权传输(包括初传或重传)而启动。
下面结合图9进行描述,图9为本申请实施例提供的又一种通信方法的示意图。如图9所示,该方法除了包括以上步骤S510-S530之外,还包括以下步骤:
S910:终端接收网络设备发送的下行反馈信息。
S920:终端确定下行反馈信息中的反馈是否有效。
下行反馈信息可以包括至少一个HARQ进程的反馈。终端独立维护每个HARQ进程的第一定时器,当下行反馈信息在一个HARQ进程的第一定时器运行期间被收到(即下行反馈信息在一个HARQ进程的第一定时器运行时被收到),则该下行反馈信息中的该HARQ进程的反馈无效或终端忽略该HARQ进程的反馈;当下行反馈信息在一个HARQ进程的第一定时器运行期间之外被收到(即下行反馈信息在一个HARQ进程的第一定时器未运行时被收到),则该下行反馈信息中的该HARQ进程的反馈有效。例如,下行反馈信息包括以上第一HARQ进程的反馈,当在第一定时器运行期间内收到下行反馈信息时,终端确定第一HARQ进程的反馈无效或忽略第一HARQ进程的反馈;当在第一定时器运行期间之外收到下行反馈信息时,终端确定第一HARQ进程的反馈有效。其中第一定时器在运行期间是指该第一定时器没有超时或被停止。
第二定时器的启动条件不改变,因此一个HARQ进程的配置授权传输,终端还可以启动该HARQ进程的第二定时器,此外,在第一定时器停止运行时,停止第二定时器,使得该HARQ进程尽快用于下一次配置授权重传,以进一步提供传输效率。此时,以上步骤S530中还包括启动第一HARQ进程的第二定时器,且以上方法还包括:
S930:当第一HARQ进程的第一定时器停止运行时,停止第一HARQ进程的第二定时器。
关于第二定时器时长,以及该第二定时器运行期间内终端的行为同以上实施例,在此不再赘述。
下面结合图4和图10,图10为本申请实施例提供的又一种HARQ反馈场景的示意图。相对于图4,在图10中,HARQ进程1的第一定时器应HARQ进程1上的配置授权传输启动;HARQ进程2的第一定时器应HARQ进程2上的配置授权传输启动。终端接收下行反馈信息,该下行反馈信息包括HARQ反馈信息,HARQ反馈信息包括HARQ进程1的反馈和HARQ进程2的反馈。该下行反馈信息在HARQ进程1的第一定时器运行期间之外,且在HARQ进程2的第一定时器期间之内被收到,因此,HARQ进程1的反馈有效,HARQ进程2的反馈无效。可见,相对于图4,本申请实施例可以有效的降低反馈信息误判的可能性,提高通信效率。
可选的,定时器T1(在此,称为第三定时器)应一个HARQ进程的上行传输而启动,例如,当以上步骤S520中进行的是配置授权出初传时,该HARQ进程的第三定时器会启动。以上第一种方式和第二种方式中,当一个HARQ进程的反馈有效,且该反馈为AKC时,如果该该HARQ进程的第三定时器还在运行,可以停止该HARQ进程的第三定时器。以便该HARQ进程可以尽快用于下一次初传。即,以上方法还包括:当第一HARQ进程的反馈有效且为ACK时,停止第三定时器。关于第三定时器的描述同以上定时器T1,在此不再赘述。
可选的,第一定时器启动之后,在运行到其时长到期时而停止。第一定时器还可以在以下任一种情况下停止运行,即第一定时器的停止时机包括以下一种或多种:
第一:应去激活配置授权的去激活命令而停止。
对于类型2配置授权,当该类型2配置授权被去激活时,针对该配置授权传输的HARQ反馈,网络设备可以认为是无效的,所以可以停止该HARQ进程上运行的定时器,以便更快的使用这个HARQ process进行下一次数据传输。运行的定时器包括第一定时器、第二定时器和第三定时器中的至少一个。
对于只有一个激活的配置授权(即一个时间仅有一个配置授权处于可以使用状态)的场景下,终端接收到网络设备发送的去激活命令时,可以停止所有HARQ进程上运行的定时器,对于多个激活的配置授权(即一个时间有多个配置授权处于可以使用状态)的场景,可以参见后续实施例。
第二、当终端接收到来自网络设备的调度授权,该调度授权用于一个HARQ进程的上行传输,如果该HARQ进程的第一定时器正在运行,则可以停止该HARQ进程的第一定时器。该调度授权通过小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)发送,终端利用C-RNTI接收该PDCCH,得到调度授权。此时,以上方法还可以包括:接收用于第一HARQ进程的调度授权;应该调度授权的接收,停止第一HARQ进程的第一定时器。也就是说,终端接收上行授权,如果该上行授权是用于MAC实体的C-RNTI的,且标识的HARQ进程用于配置授权,则如果对应HARQ进程的第一定时器在运行,则停止该对应HARQ进程的第一定时器。对于上行授权(调度授权或配置授权),HARQ实体标识与这个上行授权关联的HARQ进程,因此标识的HARQ进程即为终端确定的用于这个上行授权的HARQ进程。调度授权的接收说明网络设备可以调度新的传输,因此因之前传输而运行的定时器可以停止,以提高数据传输效率,减少调度授权传输和配置授权传输之间的影响。第三、一个HARQ进程的定时器T1(为了区别第一定时器和第二定时器,可以称为第三定时器)到期时,如果该HARQ进程的第一定时器在运行,则可以停止该HARQ进程的第一定时器。此时,以上方法还可以包括:当第一HARQ进程的第三定时器到期时,停止第一HARQ进程的第二定时器,其中第三定时器应第一HARQ进程的上行初传启动。以上步骤S520的传输为初传时,可以应S520中的上行传输启动第三定时器。第三定时器可以为以上配置授权定时器,详细描述参见以上实施例,在此不再赘述。
一个HARQ进程的配置授权定时器到期,说明该HARQ进程的当前数据包不需要再传输了,这个时候停止第一定时器,以便更快的进行下次数据传输(新传),如此,进一步提高数据传输效率。
类似的,第二定时器启动之后,在运行到其时长到期时而停止。第二定时器还可以包括与以上第一定时器类似的停止时机,即将以上停止时机的描述中的第一定时器替换为第二定时器即可。
本申请实施例可以在以上任一停止时机,停止第一定时器,或停止第二定时器,或停止第一定时器和第二定时器。
网络设备可以为终端配置多个配置授权,且可以有多于一个(即多个)配置授权 处于可以使用状态(或激活状态)的场景。参见以上关于类型1和类型2配置授权的描述,对于类型1配置授权,当终端接收到该类型1配置授权的配置消息时,类型1配置授权即处于可以使用状态;对于类型2配置授权,终端接收到该类型2配置授权的配置消息之后,在收到类型2配置授权的激活信令时,类型2配置授权处于激活状态,即可以使用状态。多个处于可以使用状态的配置授权可以包括类型1配置授权,类型2配置授权,或者既包括类型1配置授权也包括类型2配置授权。
当一个HARQ进程上进行了配置授权(CG)传输,即利用配置授权进行了上行传输之后,会有该HARQ进程的定时器应该配置授权传输而启动,具体哪个或哪些定时器会启动,可以参见以上实施例中的第一定时器、第二定时器和第三定时器的描述。该HARQ进程的定时器的运行可能影响多个配置授权的使用效率,使得传输效率下降。
本申请实施例考虑到以上问题,在激活或去激活类型2配置授权时,如果该类型2配置授权用于的HARQ进程上有正在运行的定时器,则停止正在运行的定时器。如此,可以使得该HARQ进程尽快用于下一次配置授权传输,其中配置授权传输是指利用配置授权所进行的传输。
请参考图11,其为本申请实施例所提供的又一种通信方法的示意图。如图11所示,该方法包括如下步骤:
S111:网络设备向终端发送激活或去激活信令,其中激活信令用于指示激活类型2配置授权,去激活信令用于指示去激活类型2配置授权,该类型2配置授权用于第一混合自动重传请求HARQ进程;
相应的,终端从网络设备接收该激活或去激活信令。该第一HARQ进程可以包括一个或多个。
S112:终端停止第一HARQ进程的处于运行状态的定时器,其中第一HARQ进程的上一次传输为利用所述类型2配置授权的传输。
类型2配置授权可以用于一个或多个HARQ进程,当用于多个HARQ进程时,其中,可能有一个或多于一个HARQ进程的定时器处于运行状态,即具有处于运行状态的定时器的第一HARQ进程有一个或多于一个,本申请实施例不做限制。
此外,处于运行状态的定时器包括第一定时器、第二定时器、第三定时器(配置授权定时器)中的一个或多个。第一定时器、第二定时器、第三定时器的描述同以上描述,在此不再赘述。
网络设备可以向终端发送配置消息,该配置消息包括用于配置类型2配置授权的配置信元,该信元的内容可以参照以上实施例的描述,在此不再赘述。而后网络设备可以向终端发送激活信令,以指示终端激活类型2配置授权。该类型2配置授权不需要再继续使用时,网络设备可以向终端发送去激活信令,以指示终端去激活类型2配置授权。
由于可以有多个配置授权处于可以使用状态,且这些配置授权可以共享HARQ进程资源池,即网络设备可以配置多个HARQ进程用于配置授权,而这些配置授权共享这些HARQ进程,这些HARQ进程即为HARQ进程资源池。可选的,网络设备也可以配置一个HARQ进程用于配置授权。因此,HARQ进程资源池可以包括一个HARQ进程,也包括多个HARQ进程,本申请不做限制。
当终端可以同时有多个配置授权处于可以使用状态时,因此当一个类型2配置授权被激活或去激活时,由于一个HARQ进程的处于运行状态的定时器停止了运行,因此该HARQ进程可以尽快用于下一次配置授权传输,因此提高了配置授权利用率,进而提升了传输效率。
下面分别描述激活和去激活场景。
在激活场景中,在以上步骤S111之前,终端从网络设备接收类型2配置授权的配置消息和激活信令,而后利用该激活的类型2配置授权进行了配置授权传输,之后,该类型2配置授权又被去激活。在以上步骤S111中,该类型2配置授权再次被激活,由于第一HARQ进程的上一次传输是利用该类型2配置授权所进行的传输,则第一HARQ进程未被其它配置授权占用,则停止第一HARQ进程上运行的定时器,从而使得第一HARQ进程尽快用于下一次配置授权传输。
终端通过PDCCH接收该激活信令,即PDCCH的内容指示了类型2配置授权的激活。第一HARQ进程的上一次传输为利用该类型2配置授权的传输,是指对于第一HARQ进程,上一次递交给HARQ实体的配置授权是该类型2配置授权。因此,图11所示的步骤即可以表示为当PDCCH的内容指示了类型2配置授权的激活,且对于第一HARQ进程,上一次递交给HARQ实体的配置授权是该类型2配置授权,则停止第一HARQ进程上运行的定时器。
可见,当终端接收到一个类型2配置授权的激活信令时,终端确定是否有其它配置授权是处于可以使用状态的,该其它配置授权与当前要激活的类型2配置授权共享HARQ进程资源池,如果有其它配置授权是激活的,并且HARQ进程资源池中的的第一HARQ进程被该其它配置授权占用(即第一HARQ进程上的上一次传输是利用其它配置授权进行的)时,该第一HARQ进程的定时器就不适合停止,反之,则停止第一HARQ进程的定时器,如此可以降低利用其它配置授权的传输的丢包率前提下,使得第一HARQ进程尽快用于下一次配置授权传输,以提高传输效率。
在去激活场景中,在以上步骤S111之前,终端从网络设备接收类型2配置授权的配置消息和激活信令,而后利用该激活的类型2配置授权进行了配置授权传输。在以上步骤S111中,该类型2配置授权被去激活,由于第一HARQ进程的上一次传输是利用该类型2配置授权所进行的传输,则第一HARQ进程未被其它配置授权占用,则停止第一HARQ进程上运行的定时器,从而使得第一HARQ进程尽快用于下一次配置授权传输。
终端通过PDCCH接收该去激活信令,即PDCCH的内容指示了类型2配置授权的去激活。第一HARQ进程的上一次传输为利用该类型2配置授权的传输,是指对于第一HARQ进程,上一次递交给HARQ实体的配置授权是该类型2配置授权。因此,图11所示的步骤即可以表示为当PDCCH的内容指示了类型2配置授权的去激活,且对于第一HARQ进程,上一次递交给HARQ实体的配置授权是该类型2配置授权,则停止第一HARQ进程上运行的定时器。
可见,当终端接收到一个类型2配置授权的去激活信令时,终端确定是否有某个HARQ进程被该类型2配置授权占用,如果有,例如第一HARQ进程,则停止第一HARQ进程的定时器,使得第一HARQ进程尽快用于下一次配置授权传输,以提高传 输效率。此外,由于被其它配置授权占用的HARQ进程不会被停止定时器,从而可以降低利用其它配置授权的传输的丢包率。
如果第一HARQ进程的缓存中因上一次传输还未收到ACK,而缓存了上一次传输的数据,在停止第一HARQ进程的定时器之后,当第一HARQ进程用于下一次传输时,可能会继续传输其缓存的数据,而上一次传输因为定时器的停止已经结束,当前缓存的数据的传输是无用的,导致传输效率下降,因此可以在停止了第一HARQ进程的定时器时,清空第一HARQ进程的缓存,为下一次配置授权传输做好准备,减少无用数据的传输,进而提高传输效率。此时,以上方法还包括步骤S113:终端清空第一HARQ进程的缓存。
在以上实施例中已经描述到,在一个HARQ进程的定时器T1运行期间,该HARQ进程不用于配置授权新传。定时器T1应该HARQ进程上的上行初传而启动,该上行初传可以包括配置授权初传,也可以包括调度授权初传。因此定时器T1限制了HARQ不能用于上行初传的时间,本申请实施例希望尽量减少HARQ进程不能用于新传的时间,从而提升传输效率。因此,提供了另一种通信方法。在该方法中,当定时器T1因为调度授权出传启动时,如果收到ACK,则可以利用该HARQ进程进行下一次初传。
请参考图12,其为本申请实施例提供的又一种通信方法的示意图。如图12所示,该方法包括如下步骤:
S121:网络设备向终端发送调度授权;相应的,终端接收来自网络设备的调度授权。
S122:终端利用调度授权在第一HARQ进程上向网络设备发送第一上行数据。
S123:网络设备接收终端发送的第一上行数据,并根据该第一上行数据的接收情况向终端发送反馈信息。例如,正确接收时,发送ACK;错误接收时,反馈NACK。相应的,终端从网络设备接收反馈信息。
S124:当反馈信息为ACK时,即终端从网络设备接收指示第一上行数据被正确接收的反馈信息时,终端在第一HARQ进程上利用配置授权发送第二上行数据。
其中第一上行数据和第二上行数的发送为初传,且第一上行数据利用调度授权发送,第二上行数据利用配置授权发送。如此,在利用调度授权进行初传且传输成功之后,无论配置授权定时器是否处于运行状态,终端可以在相同的HARQ进程上利用配置授权尽快开始下一次传输,如此,提高了数据传输效率。
在利用配置授权发送第二上行数据的过程中,可以确定第一HARQ进程对应的新数据指示(new data indicator,NDI)是否发生反转,在NDI发生反转时,发送第二上行数据。
可选的,在接收到ACK时,可以停止第一HARQ进程的配置授权定时器,如此该第一HARQ进程可以尽快用于下一次初传。
在数据传输的过程中,将调度授权或配置授权递交给HARQ实体,以便该HARQ实体根据调度授权或配置授权在相应的HARQ进程上进行传输。因此,以上方法可以描述为:对于同一个HARQ进程,当上一次递交给HARQ实体的上行授权不是配置上行授权(即调度授权)并且低层为该同一个HARQ进程指示了ACK,则考虑该HARQ 进程的NDI比特已经反转,并将配置上行授权和相关联的HARQ信息递交给HARQ实体。如此,该HARQ实体可以进行初传。低层是指执行当前处理的协议层以下的协议层,例如当前协议层为MAC层,则低层为物理层。
本申请实施例中的定时器可以通过软件的形式实现,也可以通过硬件的形式实现。在此不做限制。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
例如,请参考图13,其为本申请实施例提供的一种通信装置的示意图。该装置用于终端,用于执行图5至图10所示实施例中任一种方法。如图13所示,该装置1300包括接收单元1310,发送单元1320和定时器控制单元1330,其中,接收单元1310用于从网络设备接收第一配置参数,该第一配置参数用于指示第一定时器时长,第一定时器时长为终端期望接收到下行反馈信息之前的最小时长。发送单元1320用于在第一HARQ进程上进行配置授权传输。定时器控制单元1330用于应配置授权传输启动第一HARQ进程的第一定时器,该第一定时器具有第一配置参数指示的第一定时器时长。
接收单元1310用于从网络设备接收以上方法实施例中任一种网络设备发送给终端的信息,发送单元1320用于向网络设备发送以上方法实施例中终端进行的任一种传输。
定时器控制单元1330还具有以上方法实施例中的任一种控制定时器的功能。例如,当第一定时器到期时,启动第一HARQ进程的第二定时器;应配置授权传输,停止或不启动第一HARQ进程的第二定时器;当第一HARQ进程的反馈有效且为肯定应答ACK时,停止第三定时器;应配置授权传输,启动第一HARQ进程的第二定时器,且当第一定时器停止运行时,停止第一HARQ进程的第二定时器;或者在以上实施例描述的任一种情况下,停止第一HARQ进程的第一定时器和/或第二定时器。在此,不再详述。
该装置1300还可以包括确定单元1340,用于确定第一HARQ进程的反馈是否有效。具体确定方法同以上方法实施例,在此不再详述。
再如,请参考图14,其为本申请实施例提供的另一种通信装置的示意图。该装置用于终端,用于执行图11所示实施例中的方法。如图14所示,该装置1400包括接收单元1410和定时器控制单元1420。接收单元1410用于从网络设备接收激活或去激活信令,该激活或去激活信令用于指示激活或去激活配置授权,其中,配置授权用于第一HARQ进程;定时器控制单元1420用于停止第一HARQ进程的处于运行状态的定时器,其中第一HARQ进程的上一次传输为利用该配置授权的传输。
处于运行状态的定时器包括第一定时器,第二定时器和第三定时器中的至少一种。关于这些定时器的描述同以上方法实施例,不再赘述。
该装置1400还可以包括清空单元1430,用于清空第一HARQ进程的缓存。
再如,请参考图15,其为本申请实施例提供的又一种通信装置的示意图。该装置用于终端,用于执行图12所示实施例中的方法。如图15所示,该装置1500包括发送单元1510和接收单元1520。发送单元1510用于向网络设备发送以上方法实施例中终 端进行的任一种传输。接收单元1520用于从网络设备接收以上方法实施例中任一种网络设备发送给终端的信息。例如,发送单元1510用于利用调度授权在第一HARQ进程上向网络设备发送第一上行数据;接收单元1520从网络设备接收指示第一上行数据被正确接收的反馈信息;发送单元1510还用于在第一HARQ进程上利用配置授权发送第二上行数据。
该装置1500还可以包括确定单元1530,用于确定第一HARQ进程对应的NDI发生反转。发送单元1510在确定单元1530确定NDI发生反转时,在第一HARQ进程上利用配置授权发送第二上行数据。
该装置1500还可以包括定时器控制单元1540,用于应指示第一上行数据被正确接收的反馈信息的接收,停止第一HARQ进程的配置授权定时器。
例如,请参考图16,其为本申请实施例提供的又一种通信装置的示意图。该装置用于网络设备,用于执行图5至图10所示实施例中任一种方法。如图16所示,该装置1600包括生成单元1610和发送单元1620,生成单元1610用于生成第一配置参数,该第一配置参数用于指示第一定时器时长,第一定时器时长为终端期望接收到下行反馈信息之前的最小时长;发送单元1620用于向终端发送第一配置参数。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图17,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图17所示,该终端包括:天线1710、射频部分1720、信号处理部分1730。天线1710与射频部分1720连接。在下行方向上,射频部分1720通过天线1710接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1730进行处理。在上行方向上,信号处理部分1730对终端 的信息进行处理,并发送给射频部分1720,射频部分1720对终端的信息进行处理后经过天线1710发送给网络设备。
信号处理部分1730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件1731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1732和接口电路1733。存储元件1732用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件1732中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1733用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图18,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图18所示,该网络设备包括:天线1810、射频装置 1820、基带装置1830。天线1810与射频装置1820连接。在上行方向上,射频装置1820通过天线1810接收终端发送的信息,将终端发送的信息发送给基带装置1830进行处理。在下行方向上,基带装置1830对终端的信息进行处理,并发送给射频装置1820,射频装置1820对终端的信息进行处理后经过天线1810发送给终端。
基带装置1830可以包括一个或多个处理元件1831,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1830还可以包括存储元件1831和接口1833,存储元件1832用于存储程序和数据;接口1833用于与射频装置1820交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1830,例如,以上用于网络设备的装置可以为基带装置1830上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
此外,本申请实施例中,“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。 再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。根据X确定Y并不意味着仅仅根据X确定Y,还可以根据X和其它信息确定Y。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,由终端执行,其特征在于,包括:
    从网络设备接收配置参数,所述配置参数用于指示定时器时长,所述定时器时长为终端期望接收到下行反馈信息之前的最小时长;
    在第一混合自动重传请求HARQ进程上进行配置授权传输;
    应所述配置授权传输启动所述第一HARQ进程的第一定时器,所述第一定时器具有所述定时器时长。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当所述第一定时器到期时,启动所述第一HARQ进程的第二定时器,其中所述第二定时器的时长由网络设备配置。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    应所述配置授权传输,停止或不启动所述第一HARQ进程的第二定时器。
  4. 根据权利要求2或3所述的方法,其特征在于,还包括:
    接收下行反馈信息,所述下行反馈信息包括所述第一HARQ进程的反馈;
    当在所述第一HARQ进程的第二定时器运行期间收到所述下行反馈信息,确定所述第一HARQ进程的反馈有效;或者,
    当在所述第一HARQ进程的第二定时器未运行期间收到所述下行反馈信息,确定所述第一HARQ进程的反馈无效或忽略所述第一HARQ进程的反馈。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    当所述第一HARQ进程的反馈有效且为肯定应答ACK时,停止第三定时器,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    应所述配置授权传输,启动所述第一HARQ进程的第二定时器,其中所述第二定时器的时长由网络设备配置;
    当所述第一定时器停止运行时,停止所述第一HARQ进程的第二定时器。
  7. 根据权利要求1或6所述的方法,其特征在于,还包括:
    接收下行反馈信息,所述下行反馈信息包括所述第一HARQ进程的反馈;
    当所述下行反馈信息在所述第一HARQ进程的第一定时器未运行期间被收到,确定所述第一HARQ进程的反馈有效;或者,
    当所述下行反馈信息在所述第一HARQ进程的第一定时器运行期间被收到,确定所述第一HARQ进程的反馈无效或忽略所述第一HARQ进程的反馈。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    当所述第一HARQ进程的反馈有效且为肯定应答ACK时,停止第三定时器,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,在以下至少一种情况,停止所述第一HARQ进程的第一定时器:
    接收去激活命令,所述去激活命令用于去激活所述配置授权;
    接收用于所述第一HARQ进程的调度授权;和
    所述第一HARQ进程的第三定时器到期,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  10. 根据权利要求2至6任一项所述的方法,其特征在于,在以下至少一种情况,停止所述第一HARQ进程的第二定时器:
    接收去激活命令,所述去激活命令用于去激活所述配置授权;
    接收用于所述第一HARQ进程的调度授权;和
    所述第一HARQ进程的第三定时器到期,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  11. 一种通信方法,其特征在于,包括:
    网络设备生成配置参数,所述配置参数用于指示定时器时长,所述定时器时长为终端期望接收到下行反馈信息之前的最小时长;
    所述网络设备向所述终端发送所述配置参数。
  12. 一种通信方法,由终端执行,其特征在于,包括:
    从网络设备接收激活或去激活信令,所述激活或去激活信令用于指示激活或去激活配置授权,所述配置授权用于第一混合自动重传请求HARQ进程;
    停止所述第一HARQ进程的处于运行状态的定时器,其中所述第一HARQ进程的上一次传输为利用所述配置授权的传输。
  13. 根据权利要求12所述的方法,其特征在于,所述处于运行状态的定时器包括至少一个以下定时器:
    第一定时器,所述第一定时器应所述第一HARQ进程的配置授权传输启动;
    第二定时器,所述第二定时器应所述第一HARQ进程的配置授权传输启动或在所述第一定时器到期时启动;
    第三定时器,所述第三定时器应所述第一HARQ进程的上行初传启动。
  14. 根据权利要求13所述的方法,其特征在于,所述第一定时器、第二定时器和第三定时器的时长由网络设备配置。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,还包括:
    清空所述第一HARQ进程的缓存。
  16. 一种通信方法,由终端执行,其特征在于,包括:
    利用调度授权在第一混合自动重传请求HARQ进程上向网络设备发送第一上行数据;
    从所述网络设备接收指示所述第一上行数据被正确接收的反馈信息;
    在所述第一HARQ进程上利用配置授权发送第二上行数据。
  17. 根据权利要求16所述的方法,其特征在于,在所述第一HARQ进程上利用配置授权发送第二上行数据,包括:
    确定所述第一HARQ进程对应的新数据指示NDI发生反转;
    在所述第一HARQ进程上利用配置授权发送所述第二上行数据。
  18. 根据权利要求16或17的方法,其特征在于,还包括:
    应所述反馈信息的接收,停止所述第一HARQ进程的配置授权定时器。
  19. 一种通信装置,其特征在于,包括:
    接收单元,用于从网络设备接收配置参数,所述配置参数用于指示定时器时长,所述定时器时长为终端期望接收到下行反馈信息之前的最小时长;
    发送单元,用于在第一混合自动重传请求HARQ进程上进行配置授权传输;
    定时器控制单元,用于应所述配置授权传输启动所述第一HARQ进程的第一定时器,所述第一定时器具有所述定时器时长。
  20. 根据权利要求19所述的装置,其特征在于,所述定时器控制单元还用于:
    当所述第一定时器到期时,启动所述第一HARQ进程的第二定时器,其中所述第二定时器的时长由网络设备配置。
  21. 根据权利要求20所述的装置,其特征在于,所述定时器控制单元还用于:
    应所述配置授权传输,停止或不启动所述第一HARQ进程的第二定时器。
  22. 根据权利要求20或21所述的装置,其特征在于,所述接收单元还用于接收下行反馈信息,所述下行反馈信息包括所述第一HARQ进程的反馈,且所述装置还包括确定单元,所述确定单元用于:
    当在所述第一HARQ进程的第二定时器运行期间收到所述下行反馈信息,确定所述第一HARQ进程的反馈有效;或者,
    当在所述第一HARQ进程的第二定时器未运行期间收到所述下行反馈信息,确定所述第一HARQ进程的反馈无效或忽略所述第一HARQ进程的反馈。
  23. 根据权利要求22所述的装置,其特征在于,所述定时器控制单元还用于:
    当所述第一HARQ进程的反馈有效且为肯定应答ACK时,停止第三定时器,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  24. 根据权利要求19所述的装置,其特征在于,所述定时器控制单元还用于:
    应所述配置授权传输,启动所述第一HARQ进程的第二定时器,其中所述第二定时器的时长由网络设备配置;
    当所述第一定时器停止运行时,停止所述第一HARQ进程的第二定时器。
  25. 根据权利要求19或24所述的装置,其特征在于,所述接收单元还用于接收下行反馈信息,所述下行反馈信息包括所述第一HARQ进程的反馈,且所述装置还包括确定单元,所述确定单元用于:
    当所述下行反馈信息在所述第一HARQ进程的第一定时器未运行期间被收到,确定所述第一HARQ进程的反馈有效;或者,
    当所述下行反馈信息在所述第一HARQ进程的第一定时器运行期间被收到,确定所述第一HARQ进程的反馈无效或忽略所述第一HARQ进程的反馈。
  26. 根据权利要求25所述的装置,其特征在于,所述定时器控制单元还用于:
    当所述第一HARQ进程的反馈有效且为肯定应答ACK时,停止第三定时器,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  27. 根据权利要求19至26任一项所述的装置,其特征在于,在以下至少一种情况,所述定时器控制单元停止所述第一HARQ进程的第一定时器:
    所述接收单元接收去激活命令,所述去激活命令用于去激活所述配置授权;
    所述接收单元接收用于所述第一HARQ进程的调度授权;和
    所述第一HARQ进程的第三定时器到期,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  28. 根据权利要求20至24任一项所述的装置,其特征在于,在以下至少一种情况,所述定时器控制单元停止所述第一HARQ进程的第二定时器:
    所述接收单元接收去激活命令,所述去激活命令用于去激活所述配置授权;
    所述接收单元接收用于所述第一HARQ进程的调度授权;和
    所述第一HARQ进程的第三定时器到期,其中所述第三定时器应所述第一HARQ进程的上行初传启动。
  29. 一种通信装置,其特征在于,包括:
    接收单元,用于从网络设备接收激活或去激活信令,所述激活或去激活信令用于指示激活或去激活配置授权,所述配置授权用于第一混合自动重传请求HARQ进程;
    定时器控制单元,用于停止所述第一HARQ进程的处于运行状态的定时器,其中所述第一HARQ进程的上一次传输为利用所述配置授权的传输。
  30. 根据权利要求29所述的装置,其特征在于,所述处于运行状态的定时器包括至少一个以下定时器:
    第一定时器,所述第一定时器应所述第一HARQ进程的配置授权传输启动;
    第二定时器,所述第二定时器应所述第一HARQ进程的配置授权传输启动或在所述第一定时器到期时启动;
    第三定时器,所述第三定时器应所述第一HARQ进程的上行初传启动。
  31. 根据权利要求30所述的装置,其特征在于,所述第一定时器、第二定时器和第三定时器的时长由网络设备配置。
  32. 根据权利要求29至31任一项所述的装置,其特征在于,还包括:
    清空单元,用于清空所述第一HARQ进程的缓存。
  33. 一种通信装置,其特征在于,包括:
    发送单元,用于利用调度授权在第一混合自动重传请求HARQ进程上向网络设备发送第一上行数据;
    接收单元,从所述网络设备接收指示所述第一上行数据被正确接收的反馈信息;
    所述发送单元还用于在所述第一HARQ进程上利用配置授权发送第二上行数据。
  34. 根据权利要求33所述的装置,其特征在于,还包括:
    确定单元,用于确定所述第一HARQ进程对应的新数据指示NDI发生反转;
    所述发送单元用于在所述确定单元确定NDI发生反转时,在所述第一HARQ进程上利用配置授权发送所述第二上行数据。
  35. 根据权利要求33或34的装置,其特征在于,还包括:
    定时器控制单元,用于应所述反馈信息的接收,停止所述第一HARQ进程的配置授权定时器。
  36. 一种通信装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求1至18任一项所述的方法。
  37. 一种通信装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求1至18任一项所述的方法。
  38. 一种终端,其特征在于,包括如权利要求19至37任一项所述的通信装置。
  39. 一种通信装置,其特征在于,包括:
    生成单元,用于生成配置参数,所述配置参数用于指示定时器时长,所述定时器时长为终端期望接收到下行反馈信息之前的最小时长;
    发送单元,用于向所述终端发送所述配置参数。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至18任一项所述的方法被执行。
  41. 一种计算机程序,其特征在于,当所述程序被处理器调用时,权利要求1至18任一项所述的方法被执行。
PCT/CN2019/129736 2019-12-30 2019-12-30 通信方法及装置 WO2021134151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/129736 WO2021134151A1 (zh) 2019-12-30 2019-12-30 通信方法及装置
CN201980102615.6A CN114762392B (zh) 2019-12-30 2019-12-30 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129736 WO2021134151A1 (zh) 2019-12-30 2019-12-30 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021134151A1 true WO2021134151A1 (zh) 2021-07-08

Family

ID=76685791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129736 WO2021134151A1 (zh) 2019-12-30 2019-12-30 通信方法及装置

Country Status (2)

Country Link
CN (1) CN114762392B (zh)
WO (1) WO2021134151A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702812A (zh) * 2009-11-03 2010-05-05 北京邮电大学 一种非连续接收控制方法及装置
CN101777972A (zh) * 2009-01-09 2010-07-14 大唐移动通信设备有限公司 重复ack/nack机制下数据接收方法、装置及系统
US20140185558A1 (en) * 2009-09-04 2014-07-03 Lg Electronics Inc. Method of controlling a monitoring operation of physical downlink channel in wireless communication system
CN107688760A (zh) * 2016-08-05 2018-02-13 李明 一种数据通讯方法及数据通讯系统
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备
US20190044639A1 (en) * 2016-02-02 2019-02-07 Sharp Kabushiki Kaisha Terminal apparatus and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
CN107548159B (zh) * 2016-06-28 2020-06-23 宏达国际电子股份有限公司 处理上行链路传输的装置及方法
US10602567B2 (en) * 2016-08-12 2020-03-24 Motorola Mobility Llc Methods, devices, and systems for discontinuous reception for a shortened transmission time interval and processing time
CN113300820A (zh) * 2017-01-04 2021-08-24 华为技术有限公司 无线通信的方法和设备
US10721755B2 (en) * 2017-06-15 2020-07-21 Ofinno, Llc Grant free for large data size
PL3714655T3 (pl) * 2017-11-22 2023-07-10 FG Innovation Company Limited Operacje nieciągłego odbioru pomiędzy wieloma częściami szerokości pasma
CN110035543B (zh) * 2018-01-11 2022-11-18 华为技术有限公司 上行资源的使用方法及装置
WO2019213895A1 (en) * 2018-05-10 2019-11-14 Nokia Shanghai Bell Co., Ltd. Monitoring pdcch for uplink harq-ack feedback
US11071139B2 (en) * 2018-07-13 2021-07-20 Apple Inc. Techniques in configured grant uplink transmission in new radio (NR) systems operating in unlicensed spectrum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777972A (zh) * 2009-01-09 2010-07-14 大唐移动通信设备有限公司 重复ack/nack机制下数据接收方法、装置及系统
US20140185558A1 (en) * 2009-09-04 2014-07-03 Lg Electronics Inc. Method of controlling a monitoring operation of physical downlink channel in wireless communication system
CN101702812A (zh) * 2009-11-03 2010-05-05 北京邮电大学 一种非连续接收控制方法及装置
US20190044639A1 (en) * 2016-02-02 2019-02-07 Sharp Kabushiki Kaisha Terminal apparatus and method
CN107688760A (zh) * 2016-08-05 2018-02-13 李明 一种数据通讯方法及数据通讯系统
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Running 38.321 CR for NR_L1enh_URLLC", 3GPP DRAFT; R2-1916354, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20191118 - 20191122, 14 December 2019 (2019-12-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051840022 *

Also Published As

Publication number Publication date
CN114762392A (zh) 2022-07-15
CN114762392B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US20200274654A1 (en) Autonomously triggering retransmission of data
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US10594447B2 (en) Data transmission method, terminal, and ran device
JP6940121B2 (ja) データ伝送方法、機器およびシステム
WO2019174499A1 (zh) 下行、上行传输方法、装置及基站、终端、存储介质
WO2017166213A1 (zh) 一种数据传输方法及装置
CN111865508B (zh) 一种通信方法及通信装置
WO2019192516A1 (zh) 一种传输数据的方法、装置和系统
WO2011082675A1 (zh) 调度请求的方法、装置及系统
US20090168708A1 (en) Techniques for maintaining quality of service for connections in wireless communication systems
WO2021170136A1 (zh) 一种通信方法及装置
WO2018010497A1 (zh) 一种混合自动重传请求进程处理方法、设备及通信系统
WO2020029840A1 (zh) 一种混合自动重传请求传输方法和装置
WO2017075854A1 (zh) 信息传输的方法、终端和基站
KR20150075222A (ko) 교차 캐리어 스케줄링 제어 방법 및 장치
JP2022533337A (ja) アップリンク送信のための方法、端末デバイス、およびネットワークノード
WO2012097724A1 (zh) 半静态调度方法、用户设备及网络设备
US20230081816A1 (en) HARQ Process Based Data Transmission Method and Terminal
WO2018121643A1 (zh) 一种数据传输方法、装置及系统
WO2022021412A1 (zh) Cg配置方法、装置、设备及介质
WO2021159272A1 (zh) 通信方法、装置、设备及可读存储介质
WO2021134151A1 (zh) 通信方法及装置
WO2017075857A1 (zh) 信息传输的方法、终端和基站
US20160127104A1 (en) Message transmission in an unlicensed spectrum
WO2021035541A1 (zh) 一种数据传输方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958669

Country of ref document: EP

Kind code of ref document: A1