WO2018010497A1 - 一种混合自动重传请求进程处理方法、设备及通信系统 - Google Patents

一种混合自动重传请求进程处理方法、设备及通信系统 Download PDF

Info

Publication number
WO2018010497A1
WO2018010497A1 PCT/CN2017/085932 CN2017085932W WO2018010497A1 WO 2018010497 A1 WO2018010497 A1 WO 2018010497A1 CN 2017085932 W CN2017085932 W CN 2017085932W WO 2018010497 A1 WO2018010497 A1 WO 2018010497A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq process
uplink
target
terminal
scheduled
Prior art date
Application number
PCT/CN2017/085932
Other languages
English (en)
French (fr)
Inventor
王建中
Original Assignee
深圳市金立通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金立通信设备有限公司 filed Critical 深圳市金立通信设备有限公司
Publication of WO2018010497A1 publication Critical patent/WO2018010497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the Licensed Assisted Access (LAA) system can use unlicensed spectrum (such as 5 GHz spectrum) with the help of licensed spectrum in Long Term Evolution (LTE) systems.
  • LTE Long Term Evolution
  • the LAA system uses the Listen Before Talk (LBT) mechanism on the unlicensed spectrum.
  • LBT Listen Before Talk
  • the introduction of the LBT mechanism makes the distribution of uplink and downlink subframes in the LAA system no longer fixed.
  • a Hybrid Automatic Repeat Request (HARQ) process is classified into synchronous HARQ and asynchronous HARQ.
  • the HARQ process has a one-to-one correspondence with the subframe, and in the asynchronous HARQ process, the HARQ process does not have a one-to-one correspondence with the subframe, and needs to explicitly indicate the allocation to a certain subframe.
  • HARQ process In the LTE system, the uplink generally uses a synchronous HARQ process.
  • the embodiment of the invention provides a method, a device and a communication system for processing a hybrid automatic repeat request process, which can allocate an HARQ process to an uplink subframe with an unstable distribution location.
  • a first aspect of the embodiments of the present invention provides a hybrid automatic repeat request process processing method, which is applied to a base station, and includes:
  • a target HARQ process set from a plurality of hybrid automatic repeat request HARQ process sets, where the target HARQ process set includes an uplink HARQ process allocated for the uplink subframe scheduled by the terminal.
  • the uplink HARQ process in the target HARQ process set is unoccupied, and the scheduled uplink subframe has a corresponding relationship with the uplink HARQ process in the target HARQ process set.
  • a second aspect of the embodiments of the present invention provides a hybrid automatic repeat request process processing method, which is applied to a terminal, and includes:
  • an HARQ process is performed on the scheduled uplink subframe by using an uplink HARQ process allocated for the scheduled uplink subframe.
  • a third aspect of the embodiment of the present invention discloses a base station, including:
  • a determining unit configured to determine, in a process of performing uplink scheduling on the terminal, a target HARQ process set from a plurality of hybrid automatic repeat request HARQ process sets, where the target HARQ process set includes an uplink subframe scheduled for the terminal
  • the uplink HARQ process in the target HARQ process set is unoccupied, and the scheduled uplink subframe has a corresponding relationship with the uplink HARQ process in the target HARQ process set;
  • An extracting unit configured to extract a set number of the target HARQ process set
  • a sending unit configured to send, to the terminal, a set number of the target HARQ process set.
  • a fourth aspect of the embodiment of the present invention discloses a terminal, including:
  • a receiving unit configured to receive, in a process of uplink scheduling by the base station, the set number of the target hybrid automatic repeat request HARQ process set sent by the base station;
  • a determining unit configured to determine, according to the set number of the target HARQ process set, an uplink HARQ process allocated in the target HARQ process set for the uplink subframe scheduled by the terminal;
  • an execution unit configured to perform an HARQ process on the scheduled uplink subframe by using an uplink HARQ process allocated for the scheduled uplink subframe for each of the scheduled uplink subframes.
  • a fifth aspect of the embodiments of the present invention discloses a communication system, including the base station according to the third aspect and the terminal according to the fourth aspect.
  • the base station may perform multiple uplinks in the process of performing uplink scheduling on the terminal. Determining a target HARQ process set in the set of HARQ processes, the target HARQ process set includes an uplink HARQ process allocated for the uplink subframe scheduled by the terminal, and the uplink HARQ process in the target HARQ process set is unoccupied.
  • the scheduled uplink subframe has a corresponding relationship with the uplink HARQ process in the target HARQ process set; further, the base station extracts the set number of the target HARQ process set, and sends the set number of the target HARQ process set to the terminal, and the terminal receives the target.
  • the terminal may determine the uplink HARQ process allocated by the base station for the uplink subframe scheduled by the terminal, and the terminal may perform the HARQ process by using the allocated uplink HARQ process on each scheduled subframe.
  • the base station determines the target HARQ process set for the terminal, that is, allocates an uplink HARQ process to the uplink subframe that is scheduled by the terminal, and implements an uplink asynchronous HARQ process, thereby implementing an uplink asynchronous HARQ process.
  • the HARQ process can be allocated for an uplink subframe whose distribution position is not fixed.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for processing a hybrid automatic repeat request process according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another hybrid automatic repeat request process processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another hybrid automatic repeat request process processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a method, a device and a communication system for processing a hybrid automatic retransmission request process, which can allocate an HARQ process to an uplink subframe whose distribution position is not fixed. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system according to an embodiment of the present invention.
  • the communication system includes a base station and a terminal.
  • the base station that is, the public mobile communication base station, is a form of a radio station, and refers to a radio transceiver station that performs information transmission between the terminal and the terminal through a mobile communication switching center in a certain radio coverage area.
  • the base station described in this document may have different functions and corresponding network configurations in different network scenarios, which is not limited by the present invention.
  • the base station may mainly include a base transceiver station BTS and a base station controller BSC, and in other network scenarios, the base station may also be referred to as NODE B or Evolved Node B.
  • the base station referred to throughout this document may also be The distributed base station BBU or the macro base station RRU is not limited by the present invention.
  • Terminals may include, but are not limited to, smart phones, notebook computers, personal computers (PCs), personal digital assistants (PDAs), mobile Internet devices (MIDs), smart wearable devices (such as smart watches). , Smart bracelets and other types of terminals.
  • PCs personal computers
  • PDAs personal digital assistants
  • MIDs mobile Internet devices
  • smart wearable devices such as smart watches
  • Smart bracelets Smart bracelets and other types of terminals.
  • FIG. 1 it will be understood by those skilled in the art that although only one terminal is shown in FIG. 1, it does not constitute a limitation of the embodiment of the present invention, and may include more terminals than illustrated.
  • E-UTRA 3D Generation Partnership Project
  • UMTS Universal Mobile Telecommunications System
  • E-UTRA evolved Universal Mobile Telecommunications System Terrestrial
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • LTE Long Term Evolution
  • the terminal receives downlink data and sends the corresponding uplink and downlink resources according to the indication of the physical downlink control channel (Physical Downlink Control Channel; PDCCH) delivered by the base station.
  • PDCCH Physical Downlink Control Channel
  • the number of Hybrid Automatic Repeat Request (HARQ) processes is 8, the uplink adopts synchronous adaptive or non-adaptive retransmission, and the downlink adopts asynchronous adaptive retransmission.
  • the maximum number of HARQ processes is 15.
  • Digital information is usually grouped in blocks or packets.
  • Successful reception of data blocks can be detected by the receiver by using, for example, a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the unsuccessful reception of a block can be ignored by the receiver in some cases or systems.
  • the receiver terminal or base station
  • the base station sends a corresponding uplink resource indication (UL grant) in the PDCCH resource in subframe 0 for uplink subframe scheduling.
  • the terminal obtains the resource location of the uplink transmission and the corresponding transmission configuration indication information.
  • the terminal may send the required uplink service data on the corresponding resource of the fourth subframe after receiving the subframe of the PDCCH.
  • the base station can determine whether the data packet is correct by using a CRC check.
  • the base station sends the indication information indicating whether the data packet is correct.
  • the base station If the packet is incorrect, the base station is in the subframe carrying the error message.
  • the retransmission UL grant of the retransmission data packet is simultaneously carried on the PDCCH channel.
  • the terminal performs new data transmission according to the corresponding retransmission PDCCH information, until receiving an acknowledgement (ACK) indication sent by the base station, or abandoning the retransmission of the existing data packet after reaching the maximum number of data retransmissions.
  • the base station sends a hybrid automatic retransmission process number of the currently scheduled subframe in each multi-subframe scheduling to the terminal through the PDCCH. If the new transmission packet of the hybrid automatic retransmission process number corresponding to the current scheduling subframe is successfully scheduled, the feedback information is positive information, otherwise it is negative information.
  • the terminal For the downlink data transmission, after receiving the data packet sent by the base station, the terminal needs to feed back the corresponding uplink ACK or negative acknowledgement (Non-Acknowledgment; NAK) information, and the existing uplink ACK/NAK sequence number and terminal.
  • NAK negative acknowledgement
  • the terminal may send ACK/NAK information in the corresponding uplink transmission resource according to the PDCCH transmission location.
  • the communication system shown in FIG. 1 has a hybrid automatic repeat request process processing function. It should be noted that the communication system shown in FIG. 1 is applicable to a system in which the distribution positions of uplink and downlink subframes are not fixed.
  • a Licensed Assisted Access (LAA) system that uses unlicensed spectrum (such as 5 GHz spectrum) with the help of licensed spectrum in a Long Term Evolution (LTE) system, the LAA system Use the Listen Before Talk (LBT) mechanism on the unlicensed spectrum.
  • LBT Listen Before Talk
  • the unlicensed spectrum also called unlicensed carrier refers to the spectrum (or carrier) that can be directly used without authorization under the relevant regulations (radio control) of government departments (such as the National Radio Management Committee).
  • Deterministic which makes the actual uplink and downlink subframe distribution in the LAA system different from the uplink and downlink subframe distribution in the LTE system, that is, the distribution position of the uplink and downlink subframes in the LAA system is not fixed.
  • the actual location of the uplink subframe cannot be predicted, so it is even more difficult to determine the hybrid automatic weight corresponding to each subframe.
  • the Hybrid Automatic Repeat Request (HARQ) process number is not suitable for assigning a fixed HARQ process ID to the uplink subframe. Therefore, the uplink asynchronous HARQ process needs to be considered.
  • CCA Clear Channel Assessment
  • the UE detects whether other devices are transmitting data on the target channel. If the target channel is occupied by other devices, the device may continue to listen when the next listening period comes, or may not listen according to the indication; if the channel resource is idle, the UE may immediately occupy the target channel.
  • the channel occupation time is a fixed value, which is the time length of the last symbol of the uplink subframe configured by the SRS configuration information. Considering the conversion process of the UE reporting the channel detection on the SRS, the channel can be set before the next channel detection location. Set a silent time.
  • a random number L may be generated as the backoff time, and the target channel is continuously monitored during the backoff time. If the target channel is detected to be in the idle state, the backoff time ends and the UE is at the same time. The target channel can be occupied for SRS reporting. If the UE detects that the channel state is non-idle (e.g., has been occupied by other UEs), then the device cannot occupy the channel during this period, then the UE can wait until the fixed position of the next cycle to continue detecting.
  • the initial detection is triggered. If the UE initially detects that the target channel is in an idle state, the target channel can be occupied, and the channel occupancy time T is pre-configured by the base station; if the UE initially detects that the target channel state is not idle, a delay period can be generated (defer period) Time, if a target channel is detected to be busy during the deferred cycle time, then a deferred cycle time continues to be generated. The UE may occupy the target channel after detecting that the channel state is idle after the L times detection time, and occupy the target channel time as T.
  • the terminal may send an uplink scheduling request to the base station.
  • the base station may perform the uplink scheduling process on the terminal, and may request the HARQ process from multiple hybrid automatic retransmissions. Determining, in the set, a target HARQ process set, where the target HARQ process set includes an uplink HARQ process allocated for an uplink subframe scheduled by the terminal, the target HARQ The uplink HARQ process in the process set is unoccupied, and the scheduled uplink subframe has a corresponding relationship with the uplink HARQ process in the target HARQ process set; further, the base station extracts the set number of the target HARQ process set, and sends the set number to the terminal.
  • the set number of the target HARQ process set after the terminal receives the set number of the target HARQ process set, the terminal may determine the uplink HARQ process allocated by the base station for the uplink subframe scheduled by the terminal, and the terminal may be in each of the scheduled sub-frames.
  • the HARQ process is performed on the frame using an uplink HARQ process allocated for the scheduled uplink subframe.
  • the base station allocates an uplink HARQ process to the uplink subframe that is scheduled by the terminal, that is, implements an uplink asynchronous HARQ process, and thus may be an uplink subframe with an unstable distribution location. Assign the HARQ process.
  • FIG. 2 is a schematic flowchart of a method for processing a hybrid automatic repeat request process according to an embodiment of the present invention. The method is applied to a base station. As shown in FIG. 2, the method may include the following steps.
  • the base station determines the target HARQ process set from the multiple hybrid automatic repeat request HARQ process sets.
  • the foregoing process of performing uplink scheduling on a terminal may be performing uplink scheduling on a non-licensed spectrum.
  • Hybrid Automatic Repeat Request is a technology formed by combining forward error correction coding (FEC) and automatic retransmission request (ARQ).
  • FEC forward error correction coding
  • ARQ automatic retransmission request
  • the receiver saves the received data in the case of decoding failure, and sends a HARQ request to the sender for requesting the sender to retransmit the data, and the receiver combines the retransmitted data with the previously received data and then decodes the data. .
  • the N candidate candidate hybrid automatic repeat request HARQ process sets ⁇ S 1 , S 2 , . . . , S N ⁇ are specified in the communication system shown in FIG. 1 , wherein the sets may be A collection of all HARQ process numbers that are randomly divided, or a set that is pre-defined by the manufacturer.
  • Each HARQ process set contains m HARQ process numbers, such as ⁇ 1, 2..., m ⁇ .
  • the HARQ process set S 1 may be set to ⁇ 0, 1, 2, 3 ⁇ , that is, the assignable HARQ process in the HARQ process set S 1 is HARQ process 0, HARQ process 1, HARQ process 2, and HARQ process 3.
  • N is a positive integer
  • m is a positive integer.
  • the number of the HARQ processes included in each HARQ process set does not exceed the maximum number of HARQ processes specified by the system, such as 16.
  • the HARQ process ID in each HARQ process set may be continuous or discontinuous.
  • the number of HARQ processes included in each HARQ process set may be different to accommodate multi-subframe scheduling of different subframe numbers, for example, the HARQ process set S1 is ⁇ 0, 1, 2, 3 ⁇ , and the HARQ process The set S1 includes four HARQ processes, the HARQ process set S2 is ⁇ 1, 4, 6 ⁇ , and the HARQ process set S2 includes three HARQ processes, and if the number of scheduled subframes is four, Then, the HARQ process set S1 can be selected. If the number of scheduled subframes is three, the HARQ process set S2 can be selected.
  • the communication system shown in FIG. 1 may further specify a corresponding allocation rule for each HARQ process set, that is, a correspondence between a HARQ process included in each HARQ process set and a subframe in which the terminal is scheduled.
  • a corresponding allocation rule for each HARQ process set that is, a correspondence between a HARQ process included in each HARQ process set and a subframe in which the terminal is scheduled.
  • the correspondence relationship is a unique assignment with a certainty.
  • the HARQ process set S2 is ⁇ 1, 4, 6 ⁇
  • the scheduled subframes are three (such as subframe 1, subframe 2, and subframe 3)
  • the S2 corresponding allocation rule is according to the HARQ process.
  • the number is assigned to the scheduled subframes from small to large.
  • the allocation rule corresponding to S2 the HARQ process 1 is assigned to the subframe 1
  • the HARQ process 4 is allocated to the subframe 2
  • the HARQ process 6 is assigned to the subframe 3.
  • the terminal before the step 201, when the terminal needs to send data to the base station, the terminal sends an uplink scheduling request to the base station, and after receiving the uplink scheduling request, the base station performs uplink scheduling on the terminal, and the base station is more
  • the hybrid automatic repeat request HARQ process set determines the target HARQ process set.
  • the target HARQ process set includes an uplink HARQ process allocated for the uplink subframe scheduled by the terminal, and the uplink HARQ process in the target HARQ process set is unoccupied, and the scheduled uplink subframe and the uplink in the target HARQ process set are not occupied.
  • the HARQ process has a corresponding relationship system.
  • the manner in which the base station determines the target HARQ process set from the multiple hybrid automatic repeat request HARQ process set may include the following steps:
  • the base station receives the uplink scheduling request sent by the terminal in advance, and in step 11), in the process of performing uplink scheduling on the terminal, the base station may determine the terminal according to a scheduling algorithm (such as a proportional fair algorithm).
  • a scheduling algorithm such as a proportional fair algorithm
  • the base station may first select a HARQ process set that matches the number of uplink HARQ processes and the number of subframes of the scheduled uplink subframe from a plurality of hybrid automatic repeat request HARQ process sets, and further, And selecting, from the matched set of HARQ processes, the set of HARQ processes that are not occupied by the uplink HARQ process; or, optionally, the base station may select the uplink HARQ process from the multiple hybrid automatic repeat request HARQ process sets to be unoccupied.
  • the set of HARQ processes further, in the set of HARQ processes that are not occupied from the uplink HARQ process, select a HARQ process set whose number of uplink HARQ processes matches the number of subframes of the scheduled uplink subframe.
  • the number of uplink HARQ processes matches the number of subframes of the scheduled uplink subframes, and the number of uplink HARQ processes is equal to the number of subframes of the scheduled uplink subframes; or
  • the number of uplink HARQ processes matches the number of subframes of the scheduled uplink subframes.
  • the difference between the number of uplink HARQ processes and the number of subframes of the scheduled uplink subframe is less than a preset number threshold.
  • the number of uplink HARQ processes is set to three HARQ process sets, and if there is no number of HARQ processes. For the set of three HARQ processes, it is also possible to select a set of four HARQ processes with an uplink HARQ process.
  • the number of subframes of the scheduled uplink subframe is equal to the number of uplink HARQ processes included in the target HARQ process set, or the number of subframes of the scheduled uplink subframe is smaller than the target HARQ.
  • the number of uplink HARQ processes included in the process set For each scheduled uplink subframe, one scheduled uplink subframe can only be uniquely assigned an uplink HARQ process.
  • the base station can determine the target HARQ process set based on the number of subframes of the uplink subframe in which the terminal is scheduled, that is, the uplink HARQ process can be flexibly allocated for the scheduled uplink subframes of different subframes, thereby improving System uplink performance, such as the speed of data transmission in the system.
  • the base station extracts a set number of the target HARQ process set.
  • the base station may extract the set number of the target HARQ process set.
  • the base station sends, to the terminal, a set number of the target HARQ process set.
  • the set number of the target HARQ process set sent by the base station to the terminal includes:
  • the set number of the target HARQ process set is transmitted to the terminal in the downlink control information DCI through the physical downlink control channel PDCCH.
  • the terminal may determine the uplink HARQ process included in the target HARQ process set according to the set number of the target HARQ process set, and then use the target HARQ process on the scheduled uplink subframe.
  • the uplink HARQ process included in the set is used to perform the HARQ process, that is, the uplink asynchronous HARQ process is implemented.
  • the base station only needs to send the set number of the target HARQ process set in the downlink control information DCI, instead of all the uplink HARQ processes included in the target HARQ process set, which is beneficial to save resources of the communication system, thereby effectively controlling The signaling overhead of the communication system.
  • the base station may indicate the set of HARQ process numbers allocated by the terminal through the HPN field (4 bits) in the DCI format 0/4.
  • the base station determines the target HARQ process set for the terminal, that is, allocates the upper uti line HARQ process to the uplink subframe that the terminal is scheduled, and implements An uplink asynchronous HARQ process, so that an HARQ process can be allocated for an uplink subframe whose distribution position is not fixed.
  • FIG. 3 is a schematic flowchart of another method for processing a hybrid automatic repeat request process according to an embodiment of the present invention, where the method is applied to a terminal, as shown in FIG. Including the following steps.
  • the terminal receives the set number of the target hybrid automatic repeat request HARQ process set sent by the base station.
  • the foregoing process of performing uplink scheduling on a terminal may be performing uplink scheduling on a non-licensed spectrum.
  • the base station may determine the target HARQ process set from the multiple hybrid automatic repeat request HARQ process set according to the number of subframes of the uplink subframe that needs to be scheduled, and further In the process of the uplink scheduling of the terminal by the base station, the base station sends the set number of the target HARQ process set to the terminal in the downlink control information DCI through the physical downlink control channel PDCCH, so that the terminal can receive the target HARQ sent by the base station.
  • the collection of process collections is numbered. Specifically, the terminal may accept the set of HARQ process numbers allocated by the base station through the HPN field (4 bits) in the DCI format 0/4.
  • the number of the HARQ processes included in the target HARQ process set does not exceed the maximum number of HARQ processes specified by the system.
  • the terminal determines, according to the set number of the target HARQ process set, the uplink HARQ process allocated in the target HARQ process set for the uplink subframe scheduled by the terminal.
  • the terminal since the HARQ process included in each HARQ process set specified in the system is transparent to the base station and the terminal, after receiving the set number of the target HARQ process set, the terminal may The set number of the target HARQ process set is queried from the system to determine an uplink HARQ process allocated in the target HARQ process set for the uplink subframe scheduled by the terminal.
  • the terminal For each scheduled uplink subframe, the terminal performs an HARQ process by using an uplink HARQ process allocated for the scheduled uplink subframe on the scheduled uplink subframe.
  • the method further includes:
  • the target allocation rule specifies a correspondence between an uplink HARQ process included in the target HARQ process set and the scheduled uplink subframe,
  • Step 303 specifically includes: for each scheduled uplink subframe, according to a target allocation rule, The HARQ process is performed on the scheduled uplink subframe using an uplink HARQ process that matches the target allocation rule.
  • the target allocation rule is to allocate the scheduled uplink subframes according to the HARQ process number from small to large, the target HARQ process set is ⁇ 1, 4, 6 ⁇ , and the scheduled uplink subframes are three (eg, In subframe 1, subframe 2, and subframe 3), according to the target allocation rule, subframe 1 is assigned HARQ process 1, subframe 2 is assigned HARQ process 4, and subframe 3 is assigned HARQ process 6.
  • the terminal may receive the set number of the target hybrid automatic repeat request HARQ process set sent by the base station, and according to the set of the target HARQ process set.
  • the uplink HARQ process allocated for the uplink subframe scheduled by the terminal in the target HARQ process set is determined, and the allocated uplink HARQ process is used on the scheduled uplink subframe, thereby implementing the uplink asynchronous HARQ process.
  • FIG. 4 is a schematic flowchart of another method for processing a hybrid automatic repeat request process according to an embodiment of the present invention. The method is described on both sides of a base station and a terminal. Or as described in FIG. 3, details are not described herein again. As shown in FIG. 4, the method can include the following steps.
  • the terminal sends an uplink scheduling request to the base station.
  • the terminal when the data needs to be sent to the base station, the terminal is triggered to send an uplink scheduling request to the base station, where the uplink scheduling request is used to request the base station to allocate uplink resources for the uplink subframe that the terminal is scheduled.
  • the base station determines the target HARQ process set from the multiple hybrid automatic repeat request HARQ process sets.
  • the base station extracts a set number of the target HARQ process set.
  • the base station sends, to the terminal, a set number of the target HARQ process set.
  • the terminal determines, according to the set number of the target HARQ process set, the uplink HARQ process allocated in the target HARQ process set for the uplink subframe scheduled by the terminal.
  • the terminal may be based on the set number of the target HARQ process set.
  • the terminal determines an uplink HARQ process allocated in the target HARQ process set for the uplink subframe scheduled by the terminal.
  • the terminal For each scheduled uplink subframe, the terminal performs an HARQ process by using an uplink HARQ process allocated for the scheduled uplink subframe on the scheduled uplink subframe.
  • the terminal may send an uplink scheduling request to the base station.
  • the base station may perform the uplink scheduling process on the terminal, and may request the HARQ process from multiple hybrid automatic retransmissions. Determining, in the set, a target HARQ process set, where the target HARQ process set includes an uplink HARQ process allocated for the uplink subframe scheduled by the terminal, and the uplink HARQ process in the target HARQ process set is unoccupied, the scheduled uplink subframe Corresponding relationship with the uplink HARQ process in the HARQ process set; further, the base station extracts the set number of the target HARQ process set, and sends the set number of the target HARQ process set to the terminal, after the terminal receives the set number of the target HARQ process set
  • the terminal can determine the uplink HARQ process allocated by the base station for the uplink subframe scheduled by the terminal, and the terminal can perform the HARQ process by using the uplink HARQ process allocated for
  • the base station allocates an uplink HARQ process to the uplink subframe in which the terminal is scheduled, that is, the uplink asynchronous HARQ process is implemented, so that the HARQ process can be allocated for the uplink subframe with the fixed distribution location, and the HARQ process is also improved. System performance.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention, where the base station shown in FIG. 5 is configured to perform the hybrid automatic repeat request process processing method described in FIG. 2 or FIG.
  • the base station 500 can include:
  • a determining unit 501 configured to determine, in a process of performing uplink scheduling on the terminal, a target HARQ process set from a plurality of hybrid automatic repeat request HARQ process sets, where the target HARQ process set includes an uplink sub-scheduled for the terminal An uplink HARQ process of the frame allocation, an uplink HARQ process in the target HARQ process set is unoccupied, and the scheduled uplink subframe has a corresponding relationship with an uplink HARQ process in the target HARQ process set;
  • the extracting unit 502 is configured to extract a set number of the target HARQ process set
  • the sending unit 503 is configured to send, to the terminal, a set number of the target HARQ process set.
  • the manner in which the sending unit 503 sends the set number of the target HARQ process set to the terminal is specifically:
  • the determining unit 501 may include:
  • the determining subunit 5011 is configured to determine, in the process of performing uplink scheduling on the terminal, the uplink subframe that is scheduled by the terminal;
  • the selecting sub-unit 5012 is configured to select, from the plurality of hybrid automatic repeat request HARQ process sets, the HARQ process that matches the number of uplink subframes of the scheduled uplink subframe and the uplink HARQ process is unoccupied. set;
  • the determining subunit 5011 is further configured to determine the selected HARQ process set as the target HARQ process set.
  • the number of the uplink HARQ processes is matched with the number of subframes of the scheduled uplink subframe, and the number of the uplink HARQ processes is equal to the number of subframes of the scheduled uplink subframe; or
  • the number of the uplink HARQ processes is matched with the number of subframes of the scheduled uplink subframes, and the difference between the number of the uplink HARQ processes and the number of subframes of the scheduled uplink subframe is less than a preset threshold. .
  • the number of the HARQ processes included in each of the HARQ process sets does not exceed the maximum number of HARQ processes specified by the system.
  • the base station 500 of FIG. 5 in the process of performing uplink scheduling on the terminal, the base station determines a target HARQ process set for the terminal, that is, allocates an uplink HARQ process to the uplink subframe to which the terminal is scheduled, and implements an uplink asynchronous HARQ process. Therefore, the HARQ process can be allocated for the uplink subframe whose distribution position is not fixed.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present invention, where the terminal shown in FIG. 6 is used to execute the processing method of the hybrid automatic repeat request process described in FIG. 3 or FIG.
  • the terminal 600 can include:
  • the receiving unit 601 is configured to receive, in the process of uplink scheduling by the base station, the set number of the target hybrid automatic repeat request HARQ process set sent by the base station;
  • the receiving unit 601 is specifically configured to: when the base station performs uplink scheduling for the terminal, receive a target hybrid automatic repeat request sent by the base station by using a physical downlink control channel PDCCH in the downlink control information DCI.
  • the collection number of the HARQ process collection is specifically configured to: when the base station performs uplink scheduling for the terminal, receive a target hybrid automatic repeat request sent by the base station by using a physical downlink control channel PDCCH in the downlink control information DCI.
  • the number of the HARQ processes included in the target HARQ process set does not exceed the maximum HARQ process threshold specified by the system.
  • a determining unit 602 configured to determine, according to the set number of the target HARQ process set, an uplink HARQ process allocated in the target HARQ process set for the scheduled uplink subframe;
  • the executing unit 603 is configured to perform an HARQ process on the scheduled uplink subframe by using an uplink HARQ process allocated for the scheduled uplink subframe for each of the scheduled uplink subframes.
  • the terminal 600 shown in FIG. 6 may further include:
  • the querying unit 604 is configured to determine, after the determining, the determining, by the determining unit 602, the uplink HARQ process that is allocated to the scheduled uplink subframe in the target HARQ process set, according to the set number of the target HARQ process set, from the HARQ process. And corresponding to the target allocation rule corresponding to the target HARQ process set, where the target allocation rule specifies a correspondence between the uplink HARQ process included in the target HARQ process set and the scheduled uplink subframe. relationship;
  • the executing unit 603 is specifically configured to: use, for each of the scheduled uplink subframes, an uplink HARQ process that matches the target allocation rule on the scheduled uplink subframe according to the target allocation rule. To perform the HARQ process.
  • the terminal in the process of performing uplink scheduling by the base station for the terminal, may receive the set number of the target hybrid automatic repeat request HARQ process set sent by the base station, and determine according to the set number of the target HARQ process set.
  • the uplink HARQ process allocated for the uplink subframe scheduled by the terminal in the target HARQ process set, and then the allocated uplink HARQ process is used on the scheduled uplink subframe, thereby implementing the uplink asynchronous HARQ process.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention, where the base station shown in FIG. 7 is configured to perform the hybrid automatic repeat request process processing method described in FIG. 2 or FIG.
  • the base station 700 can include a processor 701, a transmitter 702, and a memory 703, which can communicate over one or more buses 704.
  • the structure of the base station shown in FIG. 7 does not constitute a limitation of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more or less components than those shown in FIG. 7, or a combination thereof. Some components, or different component arrangements.
  • the processor 701 is a control center of the base station, and connects various parts of the entire base station by using various interfaces and lines, by running or executing programs and/or modules stored in the memory 703, and calling data stored in the memory 703. To perform various functions and processing data of the base station.
  • the processor 701 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 701 may include only a central processing unit (CPU), or may be a CPU, a digital signal processor (DSP), or a graphics processing unit (GPU). And a combination of various control chips.
  • the CPU may be a single operation core, and may also include multiple operation cores.
  • the memory 703 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 703 can also optionally be at least one storage device located remotely from the aforementioned processor 701.
  • the processor 701 is configured to invoke a program stored in the memory 703, and perform the following operations:
  • a target HARQ process set from a plurality of hybrid automatic repeat request HARQ process sets, where the target HARQ process set includes an uplink HARQ process allocated for the uplink subframe scheduled by the terminal.
  • the uplink HARQ process in the target HARQ process set is unoccupied, and the scheduled uplink subframe has a corresponding relationship with the uplink HARQ process in the target HARQ process set.
  • the set number of the target HARQ process set is transmitted to the terminal by the transmitter 702.
  • the determining, by the processor 701, the target HARQ process set from the multiple hybrid automatic repeat request HARQ process set includes:
  • the selected HARQ process set is determined as the target HARQ process set.
  • the number of the uplink HARQ processes is matched with the number of subframes of the scheduled uplink subframe, and the number of the uplink HARQ processes is equal to the number of subframes of the scheduled uplink subframe;
  • the number of the uplink HARQ processes is matched with the number of subframes of the scheduled uplink subframes, and the difference between the number of the uplink HARQ processes and the number of subframes of the scheduled uplink subframe is less than a preset threshold. .
  • the sending, by the processor 701, the set number of the target HARQ process set to the terminal by using the transmitter 702 includes:
  • the number of the HARQ processes included in each of the HARQ process sets does not exceed the maximum number of HARQ processes specified by the system.
  • the base station 700 shown in FIG. 7 in the process of performing uplink scheduling on the terminal, the base station determines a target HARQ process set for the terminal, that is, allocates an uplink HARQ process to the uplink subframe to which the terminal is scheduled, and implements an uplink asynchronous HARQ process. Therefore, the HARQ process can be allocated for the uplink subframe whose distribution position is not fixed.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present invention, where the terminal shown in FIG. 8 is used to execute the hybrid automatic repeat request process processing method described in FIG. 3 or FIG.
  • the terminal 800 may include: a processor 801, a receiver 802, and a memory 803. These components can communicate over one or more buses 804.
  • the structure of the terminal shown in FIG. 8 does not constitute a limitation of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more or less components than those shown in FIG. 8, or a combination thereof. Some components, or different component arrangements.
  • the terminal may include, but is not limited to, a smart phone, a notebook computer, a personal computer (PC), a personal digital assistant (PDA), and a mobile internet device (Mobile Internet Device). , MID), smart wearable devices (such as smart watches, smart bracelets) and other terminals.
  • the processor 801 is a control center of the terminal, and connects various parts of the entire terminal by using various interfaces and lines, by running or executing programs and/or modules stored in the memory 803, and calling data stored in the memory 803. To perform various functions of the terminal and process data.
  • the processor 801 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs having the same function or different functions.
  • the processor 801 may include only a central processing unit (CPU), or may be a CPU, a digital signal processor (DSP), or a graphics processing unit (GPU). And a combination of various control chips.
  • the CPU may be a single operation core, and may also include multiple operation cores.
  • the memory 803 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 803 can also optionally be at least one storage device located remotely from the aforementioned processor 801.
  • the processor 801 is configured to invoke a program stored in the memory 803, and perform the following operations:
  • an HARQ process is performed on the scheduled uplink subframe by using an uplink HARQ process allocated for the scheduled uplink subframe.
  • the processor 801 determines, according to the set number of the target HARQ process set, an uplink HARQ input allocated to the scheduled uplink subframe in the target HARQ process set. After the process, the processor 801 is further configured to call a program stored in the memory 803, and perform the following operations:
  • the performing, by the processor 801, the performing the HARQ process by using the uplink HARQ process allocated for the scheduled uplink subframe on the scheduled uplink subframe for each of the scheduled uplink subframes includes:
  • an HARQ process is performed on the scheduled uplink subframe by using an uplink HARQ process that matches the target allocation rule according to the target allocation rule.
  • the manner in which the processor 801 receives, by the receiver 802, the set number of the target hybrid automatic repeat request HARQ process set sent by the base station in the process of the uplink scheduling of the terminal by the base station 801 is specifically:
  • the base station receives the set number of the target hybrid automatic repeat request HARQ process set sent by the base station through the physical downlink control channel PDCCH in the downlink control information DCI.
  • the number of the HARQ processes included in the target HARQ process set does not exceed the maximum HARQ process threshold specified by the system.
  • the terminal in the process of performing uplink scheduling by the base station for the terminal, may receive the set number of the target hybrid automatic repeat request HARQ process set sent by the base station, and according to the set number of the target HARQ process set, The uplink HARQ process allocated for the uplink subframe scheduled by the terminal in the target HARQ process set is determined, and then the allocated uplink HARQ process is used on the scheduled uplink subframe, thereby implementing the uplink asynchronous HARQ process.
  • FIG. 9 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system 900 may include a base station 901 and a terminal 902.
  • the base station 901 may be as described in FIG. 5 and FIG. Base station
  • terminal 902 can be the terminal described in FIG. 6 or 8.
  • the base station 901 can be used to perform the hybrid automatic repeat request process processing method described in FIG. 2 or FIG. 4, specifically For the process, please refer to the related description, and the terminal 902 can be used to perform the hybrid automatic repeat request process processing method described in FIG. 3 or FIG. 4 .
  • FIG. 3 or FIG. 4 For details, refer to the related description, and details are not described herein again.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种混合自动重传请求进程处理方法、设备及通信系统。其中,该方法包括:在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;提取所述目标HARQ进程集合的集合编号;向所述终端发送所述目标HARQ进程集合的集合编号。实施本发明实施例可以为分布位置不固定的上行子帧分配HARQ进程。

Description

一种混合自动重传请求进程处理方法、设备及通信系统 背景技术
授权辅助接入(Licensed Assisted Access,LAA)系统可以借助长期演进(Long Term Evolution,LTE)系统中授权频谱的帮助来使用未授权频谱(如5GHz频谱)。LAA系统在非授权频谱上使用先听后说(Listen Before Talk,LBT)机制,而LBT机制的引入,使得LAA系统中上下行子帧的分布位置不再固定。
通常,混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)过程分为同步HARQ和异步HARQ。在同步HARQ过程中,HARQ进程与子帧存在是一一对应的对应关系,而在异步HARQ过程中,HARQ进程与子帧不具有一一对应关系,需要显式地指示分配给某个子帧的HARQ进程。在LTE系统中,上行一般使用同步HARQ过程。
然而,在LAA系统中,由于上下行子帧的分布位置是不固定的,无法预知LAA系统上行子帧实际存在的位置,因此更无法确定每个上行子帧对应的HARQ进程,也意味着很难为每个上行子帧分配一个固定的HARQ进程。可见,如何为分布位置不固定的上行子帧分配HARQ进程是一个亟待解决的技术课题。
发明内容
本发明实施例提供了一种混合自动重传请求进程处理方法、设备及通信系统,可以为分布位置不固定的上行子帧分配HARQ进程。
本发明实施例第一方面提供了一种混合自动重传请求进程处理方法,应用于基站,包括:
在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
提取所述目标HARQ进程集合的集合编号;
向所述终端发送所述目标HARQ进程集合的集合编号。
本发明实施例第二方面提供了一种混合自动重传请求进程处理方法,应用于终端,包括:
在基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程;
针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
本发明实施例第三方面公开了一种基站,包括:
确定单元,用于在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
提取单元,用于提取所述目标HARQ进程集合的集合编号;
发送单元,用于向所述终端发送所述目标HARQ进程集合的集合编号。
本发明实施例第四方面公开了一种终端,包括:
接收单元,用于在基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
确定单元,用于根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程;
执行单元,用于针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
本发明实施例第五方面公开了一种通信系统,包括第三方面所述的基站以及第四方面所述的终端。
本发明实施例中,基站在对终端进行上行调度的过程中,可以从多个混合 自动重传请求HARQ进程集合中确定目标HARQ进程集合,该目标HARQ进程集合包括为终端被调度的上行子帧分配的上行HARQ进程,该目标HARQ进程集合中的上行HARQ进程均未被占用,该被调度的上行子帧与目标HARQ进程集合中的上行HARQ进程具有对应关系;进一步地,基站提取目标HARQ进程集合的集合编号,并向终端发送目标HARQ进程集合的集合编号,终端接收到该目标HARQ进程集合的集合编号之后,终端就可以确定基站为终端被调度的上行子帧分配的上行HARQ进程,进而终端就可以在被调度的各个子帧上使用分配的上行HARQ进程来执行HARQ过程。可见,通过本发明实施例,在对终端进行上行调度的过程中,基站为终端确定目标HARQ进程集合,即为终端被调度的上行子帧分配了上行HARQ进程,实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种通信系统的网络架构示意图;
图2是本发明实施例公开的一种混合自动重传请求进程处理方法的流程示意图;
图3是本发明实施例公开的另一种混合自动重传请求进程处理方法的流程示意图;
图4是本发明实施例公开的另一种混合自动重传请求进程处理方法的流程示意图;
图5是本发明实施例公开的一种基站的结构示意图;
图6是本发明实施例公开的一种终端的结构示意图;
图7是本发明实施例公开的另一种基站的结构示意图;
图8是本发明实施例公开的另一种终端的结构示意图;
图9是本发明实施例公开的一种通信系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种混合自动重传请求进程处理方法、设备及通信系统,可以为分布位置不固定的上行子帧分配HARQ进程。以下分别进行详细说明。
为了更好的理解本发明实施例公开的一种混合自动重传请求进程处理方法,下面先对本发明实施例适用的网络架构示意图进行描述。
请参阅图1,图1是本发明实施例公开的一种通信系统的网络架构示意图。如图1所示,该通信系统包括基站以及终端。其中,基站,即公用移动通信基站,是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与终端之间进行信息传递的无线电收发信电台。本文通篇所说的基站,在不同的网络场景下可具有不同的功能及相应的网络配置,本发明对此并不做限定。例如某些网络场景下,基站可主要包括基站收发台BTS和基站控制器BSC,而在另外一些网络场景中,基站也可称NODE B或者Evolved Node B,本文通篇所说的基站也可以是分布式基站BBU或宏基站RRU,本发明对此并不做限定。终端可以包括但不限于智能手机、笔记本电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、 智能手环)等各类终端。另外,本领域的技术人员可以理解,虽然图1中只示出了一个终端,但并不构成对本发明实施例的限定,可以包括比图示更多的终端。
需要说明的是,在现有的第三代系统合作项目(3rd Generation Partnership Project;简称:3GPP)演进的通用移动通信系统(Universal Mobile Telecommunications System;简称:UMTS)陆地无线接入(Evolved-UMTS Terrestrial Radio Access;简称:E-UTRA)系统中支持频分双工(Frequency Division Duplexing;简称:FDD)和时分双工(Time Division Duplexing;简称:TDD)两种模式。在长期演进计划(Long Term Evolution;简称:LTE)系统中,终端根据基站下发的物理下行控制信道(Physical Downlink Control Channel;简称:PDCCH)的指示,在对应的上下行资源接收下行数据、发送上行数据。在LTE FDD系统中,最大混合自动重传(Hybrid Automatic Repeat Request;简称:HARQ)进程数为8,上行采用同步自适应或非自适应重传,下行采用非同步自适应重传。在LTE TDD系统中,最大HARQ进程数为15。
为了提高数字通信系统的性能,使用重传协议来进行数据的重传是有益的。数字信息通常被以块或数据包进行分组。数据块的成功接收可以由接收机通过使用例如循环冗余校验(CRC)来检测。块的非成功接收可以在一些情况中或系统中被接收机忽略。在其它情况或系统中,接收机(终端或者基站)可以使用例如ACK/NACK来将块的接收结果通知发射机(基站或者终端),其中ACK(确认应答)表示块被成功地接收,并且NACK(否定应答)表示块没有被成功接收。
一般示例性的,对于上行数据传输,基站在子帧0在PDCCH资源内发送相应的上行资源指示(UL grant)进行上行子帧调度。终端接收PDCCH后,获得上行传输的资源位置和相应的传输配置指示信息。根据LTE协议中规定的定时关系,终端可以在接收到PDCCH的子帧后的第4个子帧的相应资源上发送其所需要的上行业务数据。基站接收终端上发的数据包后通过CRC校验可以判断数据包是否正确。在终端发送上行数据后的第4个子帧,基站下发该数据包的是否正确的指示信息。如果数据包错误,基站在承载错误信息的子帧的 PDCCH信道上同时承载重传数据包的重传UL grant。终端则根据相应的重传PDCCH信息进行新的数据上发,直到接收到基站发出的确认应答(Acknowledgment;简称:ACK)指示,或达到数据最大重传次数后放弃重传现有数据包。例如,基站通过PDCCH向终端下发每次多子帧调度中当前调度的子帧的混合自动重传进程号。如果对当前调度子帧对应的混合自动重传进程号的新传数据包调度成功,则反馈信息为肯定信息,否则为否定信息。
一般示例性的,对于下行数据传输,终端接收基站发送的数据包后,需要反馈相应的上行ACK或否定应答(Non-Acknowledgment;简称:NAK)信息,现有的上行ACK/NAK的序号与终端相对应的PDCCH传输位置之间存在映射关系。终端可以根据PDCCH传输位置,在相应的上行传输资源发送ACK/NAK信息。
其中,图1所示的通信系统具备混合自动重传请求进程处理功能。需要说明的是,图1所示的通信系统适用于上下行子帧的分布位置不固定的系统中。举例来说,授权辅助接入(Licensed Assisted Access,LAA)系统,该LAA系统借助长期演进(Long Term Evolution,LTE)系统中授权频谱的帮助来使用未授权频谱(如5GHz频谱),该LAA系统在非授权频谱上使用先听后说(Listen Before Talk,LBT)机制。需要说明的是,非授权频谱(也称非授权载波)是指在满足政府部门(如国家无线电管理委员会)有关规定(无线电管制)下,不需要授权就能直接使用的频谱(或载波)。在我们的日常生活中,微波炉、遥控玩具飞机、无线鼠标、无线键盘、高保真无线上网(WirelessFidelity;以下简称WiFi;WiFi基于电子电气工程师协会IEEE802.11系列协议,如802.11a/b/g/n/ac等)、授权载波辅助接入的LTE(以下简称LAA)等都使用了非授权载波。由于LAA系统引入LBT机制,在进行数据发送之前,要先监听信道的状态是否空闲,如果信道空闲则进行数据信息和控制信息的发送,否则不进行传输,这会导致传输是否发生具有一定的不确定性,这使得LAA系统中实际的上下行子帧分布不同于LTE系统中的上下行子帧分布,即LAA系统中上下行子帧的分布位置不在固定。在LAA系统中,由于下行子帧和上行子帧分布的不确定性,无法预知上行子帧实际存在的位置,因此更无法确定每个子帧对应的混合自动重 传请求(Hybrid Automatic Repeat Request,HARQ)进程号,因此为上行子帧分配固定的HARQ进程号已不合适,故需要考虑上行异步HARQ过程。
信道监听的过程也称之为空闲信道评估(ClearChannelAssessment,简称为CCA)。示例性的,假设一个基站测量到信道的功率不低于-62dBm,则该站点认为信道是繁忙的;低于-62dBm则该站点认为信道是空闲的。
作为监听信道的状态是否空闲的一种示例性的方式,具体的,UE检测周围是否有其它设备正在目标信道发送数据。如果该目标某信道已被其它设备占用,可以在下一监听周期到来时继续监听,也可以根据指示不再监听;若监听到信道资源空闲,该UE可以立即占用该目标信道。信道占用时间是一个固定值,该固定值即为SRS配置信息配置的上行子帧的最后一个符号的时间长度,考虑到UE在SRS上报到信道检测的转换过程,可以在下一信道检测位置前设定一个静默时间。优选的,若监听到信道资源空闲,可以生成一个随机数L作为退避时间,在这个退避时间内,继续监听目标信道,若检测到L次目标信道处于空闲状态,则退避时间结束,同时该UE就可以占用该目标信道进行SRS上报。如果UE检测到信道状态为非空闲(例如已被其它UE占用),则在这个周期内设备不能占用信道,则该UE可以等到下一个周期的固定位置继续检测。
作为监听信道的状态是否空闲的另一种示例性的方式,具体的,当UE需要上报SRS的时候,触发初始检测。若UE初始检测到目标信道处于空闲状态,即可占用该目标信道,并由基站预先配置一个信道占用时间T;若UE初始检测到目标信道状态为非空闲,则可生成一个推迟周期(defer period)时间,如果在推迟周期时间还是检测到目标信道忙,则继续生成一个推迟周期时间。UE在L次检测时间检测到信道状态为空闲之后可以占用目标信道,占用目标信道时间为T。
在图1所示的网络架构中,终端可以向基站发送上行调度请求,基站接收到该上行调度请求之后,基站在对终端进行上行调度的过程中,可以从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,该目标HARQ进程集合包括为终端被调度的上行子帧分配的上行HARQ进程,该目标HARQ 进程集合中的上行HARQ进程均未被占用,该被调度的上行子帧与目标HARQ进程集合中的上行HARQ进程具有对应关系;进一步地,基站提取目标HARQ进程集合的集合编号,并向终端发送目标HARQ进程集合的集合编号,终端接收到该目标HARQ进程集合的集合编号之后,终端就可以确定基站为终端被调度的上行子帧分配的上行HARQ进程,进而终端就可以在被调度的各个子帧上使用为被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
可见,实施图1所描述的网络架构,在上行调度中,基站为终端被调度的上行子帧分配了上行HARQ进程,即实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程。
基于图1所示的网络架构,本发明实施例公开了一种混合自动重传请求进程处理方法。请参见图2,图2是本发明实施例公开的一种混合自动重传请求进程处理方法的流程示意图,其中,该方法应用于基站,如图2所示,该方法可以包括以下步骤。
201、在对终端进行上行调度的过程中,基站从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合。
示例性的,上述在对终端进行上行调度的过程可以是在非授权频谱上对终端进行上行调度。
其中,混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)是一种将前向纠错编码(FEC)和自动重传请求(ARQ)相结合而形成的技术。接收方在解码失败的情况下,保存接收到的数据,并向发送方发送HARQ请求,用于请求发送方重传数据,接收方将重传的数据和先前接收到的数据进行合并后再解码。
本发明实施例中,图1所示的通信系统中规定出N个候选的可分配的混合自动重传请求HARQ进程集合{S1,S2,…,SN},其中,这些集合可以是对所有HARQ进程号随机划分的集合,或者由厂家自行预先定义的集合。每个HARQ进程集合中包含m个HARQ进程号,如{1,2…,m}。例如,HARQ进程集合S1可设置为{0,1,2,3},即HARQ进程集合S1中可分配的HARQ 进程为HARQ进程0,HARQ进程1,HARQ进程2,HARQ进程3。其中,N为正整数,m为正整数。其中,每个HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值,比如16。
此外,每个HARQ进程集合中的HARQ进程号可以连续,也可以不连续,比如:HARQ进程集合S1中的HARQ进程号可设置为连续的,比如S1={0,1,2,3},HARQ进程集合S2中的HARQ进程号可设置为不连续的,比如S2={1,4,6}。每个HARQ进程集合包括的HARQ进程的数量可以不同,以适应不同子帧数的多子帧(multi-subframe)调度,比如:HARQ进程集合S1为{0,1,2,3},HARQ进程集合S1包括的HARQ进程的数量为4个,HARQ进程集合S2为{1,4,6},HARQ进程集合S2包括的HARQ进程的数量为3个,若被调度的子帧数为4个,则可以选择HARQ进程集合S1,若被调度的子帧数为3个,则可以选择HARQ进程集合S2。
另外,图1所示的通信系统还可以为每个HARQ进程集合规定出相应的分配规则,即每个HARQ进程集合包括的HARQ进程与终端被调度的子帧之间的对应关系。需要说明的是,该对应关系为唯一分配具有确定性的对应关系。举例来说,HARQ进程集合S2为{1,4,6},被调度的子帧为3个(如子帧1、子帧2以及子帧3),该S2对应的分配规则为按照HARQ进程号从小到大依次为被调度的子帧进行分配,则根据S2对应的分配规则,将为子帧1分配HARQ进程1,为子帧2分配HARQ进程4,为子帧3分配HARQ进程6。
需要说明的是,图1所示的通信系统预先所做的所有规定对基站和终端来说是透明的,即基站和终端均获知所有的HARQ进程集合以及每个HARQ进程集合包括的HARQ进程。
本发明实施例中,在步骤201之前,当终端需要向基站发送数据时,终端向基站发送上行调度请求,基站接收到该上行调度请求之后,在对终端进行上行调度的过程中,基站从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合。该目标HARQ进程集合包括为终端被调度的上行子帧分配的上行HARQ进程,该目标HARQ进程集合中的上行HARQ进程均未被占用,该被调度的上行子帧与目标HARQ进程集合中的上行HARQ进程具有对应关 系。
具体的,在对终端进行上行调度的过程中,基站从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合的方式具体可以包括以下步骤:
11)在对终端进行上行调度的过程中,确定终端被调度的上行子帧;
12)从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与被调度的上行子帧的子帧数匹配且上行HARQ进程均未被占用的HARQ进程集合;
13)将被选择的HARQ进程集合确定作为目标HARQ进程集合。
在该可选的实施方式中,基站预先接收到终端发送的上行调度请求,步骤11)中,在对终端进行上行调度的过程中,基站就可以根据调度算法(如比例公平算法)来确定终端被调度的上行子帧。步骤12)中,可选的,基站可以先从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与被调度的上行子帧的子帧数匹配的HARQ进程集合,进一步地,再从匹配的HARQ进程集合中选择上行HARQ进程均未被占用的HARQ进程集合;或者,可选的,基站可以先从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程均未被占用的HARQ进程集合,进一步地,在从上行HARQ进程均未被占用的HARQ进程集合中选择上行HARQ进程的数量与被调度的上行子帧的子帧数匹配的HARQ进程集合。
其中,上行HARQ进程的数量与被调度的上行子帧的子帧数匹配为上行HARQ进程的数量与被调度的上行子帧的子帧数相等;或
上行HARQ进程的数量与被调度的上行子帧的子帧数匹配为上行HARQ进程的数量与被调度的上行子帧的子帧数的差值小于预设数量阈值。
举例来说,假设被调度的上行子帧的子帧数为3个,预设数量阈值为2,则优先选择上行HARQ进程的数量为3个的HARQ进程集合,另外,如果没有HARQ进程的数量为3个的HARQ进程集合,还可以选择上行HARQ进程的数量为4个的HARQ进程集合。
其中,无论被调度的上行子帧的子帧数与目标HARQ进程集合包括的上行HARQ进程的数量是相等,还是被调度的上行子帧的子帧数小于目标HARQ 进程集合包括的上行HARQ进程的数量,针对每个被调度的上行子帧,一个被调度的上行子帧仅且只能唯一确定地被分配一个上行HARQ进程。
通过这种方式,基站可以基于终端被调度的上行子帧的子帧数,确定目标HARQ进程集合,即可以为不同子帧数的被调度的上行子帧灵活地分配上行HARQ进程,从而可以提高系统上行性能,比如系统中数据传输的速率加快。
202、基站提取目标HARQ进程集合的集合编号。
本发明实施例中,基站在确定目标HARQ进程集合之后,基站就可以提取目标HARQ进程集合的集合编号。
203、基站向终端发送目标HARQ进程集合的集合编号。
具体的,基站向终端发送目标HARQ进程集合的集合编号包括:
通过物理下行控制信道PDCCH,在下行控制信息DCI中将目标HARQ进程集合的集合编号发送给终端。
这样,有利于终端接收到目标HARQ进程集合的集合编号后,就可以根据目标HARQ进程集合的集合编号确定目标HARQ进程集合包括的上行HARQ进程,进而在被调度的上行子帧上使用目标HARQ进程集合包括的上行HARQ进程来执行HARQ过程,即实现了上行异步HARQ过程。
本发明实施例中,基站只需要在下行控制信息DCI中发送目标HARQ进程集合的集合编号,而不是目标HARQ进程集合包括的所有上行HARQ进程,这样有利于节省通信系统的资源,从而有效控制了通信系统的信令开销。具体的,基站可以通过DCI format 0/4中的HPN字段(4bit)来指示终端分配的HARQ进程号的集合。
可见,在图2所描述的方法流程中,在对终端进行上行调度的过程中,基站为终端确定目标HARQ进程集合,即为终端被调度的上行子帧分配了上uti行HARQ进程,实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程。
请参见图3,图3是本发明实施例公开的另一种混合自动重传请求进程处理方法的流程示意图,其中,该方法应用于终端,如图3所示,该方法可以包 括以下步骤。
301、在基站为终端进行上行调度的过程中,终端接收基站发送的目标混合自动重传请求HARQ进程集合的集合编号。
示例性的,上述在对终端进行上行调度的过程可以是在非授权频谱上对终端进行上行调度。
本发明实施例中,基站接收到终端发送的上行调度请求之后,就可以根据需要被调度的上行子帧的子帧数从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,进一步地,在基站为终端进行上行调度的过程中,基站通过物理下行控制信道PDCCH,在下行控制信息DCI中向终端发送目标HARQ进程集合的集合编号,这样,终端就可以接收到基站发送的目标HARQ进程集合的集合编号了。具体的,终端可以通过DCI format 0/4中的HPN字段(4bit)来接受基站分配的HARQ进程号的集合。
其中,目标HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
302、根据目标HARQ进程集合的集合编号,终端确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程。
本发明实施例中,由于系统中规定的每个HARQ进程集合包括的HARQ进程对基站和终端来说是可获知透明的,故终端在接收到目标HARQ进程集合的集合编号之后,终端就可以根据目标HARQ进程集合的集合编号,从系统中查询以确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程。
303、针对每个被调度的上行子帧,终端在被调度的上行子帧上使用为被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
作为一种可选的实施方式,在步骤302之后,所述方法还包括:
从HARQ进程集合与分配规则的对应关系中,查询目标HARQ进程集合对应的目标分配规则。其中,目标分配规则规定目标HARQ进程集合包括的上行HARQ进程与被调度的上行子帧之间的对应关系,
步骤303具体包括:针对每个被调度的上行子帧,根据目标分配规则,在 被调度的上行子帧上使用与目标分配规则匹配的上行HARQ进程来执行HARQ过程。
举例来说,目标分配规则为按照HARQ进程号从小到大依次为被调度的上行子帧进行分配,目标HARQ进程集合为{1,4,6},被调度的上行子帧为3个(如子帧1、子帧2以及子帧3),则根据目标分配规则,将为子帧1分配HARQ进程1,为子帧2分配HARQ进程4,为子帧3分配HARQ进程6。
可见,在图3所描述的方法流程中,在基站为终端进行上行调度的过程中,终端可以接收基站发送的目标混合自动重传请求HARQ进程集合的集合编号,并根据目标HARQ进程集合的集合编号,确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程,进而在被调度的上行子帧上使用被分配的上行HARQ进程,从而实现了上行异步HARQ过程。
请参见图4,图4是本发明实施例公开的另一种混合自动重传请求进程处理方法的流程示意图,其中,该方法是从基站和终端两侧进行描述的,具体可以参照上述图2或图3中所描述的,在此不再赘述。如图4所示,该方法可以包括以下步骤。
401、终端向基站发送上行调度请求。
本发明实施例中,当需要向基站发送数据时,将会触发终端向基站发送上行调度请求,该上行调度请求用于请求基站为终端被调度的上行子帧分配上行资源。
402、在对终端进行上行调度的过程中,基站从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合。
403、基站提取目标HARQ进程集合的集合编号。
404、基站向终端发送目标HARQ进程集合的集合编号。
405、根据目标HARQ进程集合的集合编号,终端确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程。
本发明实施例中,终端接收到基站发送的目标混合自动重传请求HARQ进程集合的集合编号之后,终端就可以根据目标HARQ进程集合的集合编号, 终端确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程。
406、针对每个被调度的上行子帧,终端在被调度的上行子帧上使用为被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
在图4所描述的方法流程中,终端可以向基站发送上行调度请求,基站接收到该上行调度请求之后,基站在对终端进行上行调度的过程中,可以从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,该目标HARQ进程集合包括为终端被调度的上行子帧分配的上行HARQ进程,该目标HARQ进程集合中的上行HARQ进程均未被占用,该被调度的上行子帧与HARQ进程集合中的上行HARQ进程具有对应关系;进一步地,基站提取目标HARQ进程集合的集合编号,并向终端发送目标HARQ进程集合的集合编号,终端接收到该目标HARQ进程集合的集合编号之后,终端就可以确定基站为终端被调度的上行子帧分配的上行HARQ进程,进而终端就可以在被调度的各个子帧上使用为被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。可见,在上行调度中,基站为终端被调度的上行子帧分配了上行HARQ进程,即实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程,同时,也提高了系统的性能。
请参见图5,图5是本发明实施例公开的一种基站的结构示意图,其中,图5所示的基站用于执行图2或图4所描述的混合自动重传请求进程处理方法的部分或全部步骤,具体请参照图2或图4中的相关描述,在此不再赘述。如图5所示,该基站500可以包括:
确定单元501,用于在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
提取单元502,用于提取所述目标HARQ进程集合的集合编号;
发送单元503,用于向所述终端发送所述目标HARQ进程集合的集合编号。
其中,所述发送单元503向所述终端发送所述目标HARQ进程集合的集合编号的方式具体为:
通过物理下行控制信道PDCCH,在下行控制信息DCI中将所述目标HARQ进程集合的集合编号发送给所述终端。
作为一种可选的实施方式,确定单元501可以包括:
确定子单元5011,用于在对终端进行上行调度的过程中,确定所述终端被调度的上行子帧;
选择子单元5012,用于从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配且上行HARQ进程均未被占用的HARQ进程集合;
所述确定子单元5011,还用于将被选择的HARQ进程集合确定作为目标HARQ进程集合。
其中,所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数相等;或
所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数的差值小于预设数量阈值。
其中,每个所述HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
在图5所述的基站500中,在对终端进行上行调度的过程中,基站为终端确定目标HARQ进程集合,即为终端被调度的上行子帧分配了上行HARQ进程,实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程。
请参见图6,图6是本发明实施例公开的一种终端的结构示意图,其中,图6所示的终端用于执行图3或图4所描述的混合自动重传请求进程处理方法的部分或全部步骤,具体请参照图3或图4中的相关描述,在此不再赘述。如 图6所示,该终端600可以包括:
接收单元601,用于在所述基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
可选的,所述接收单元601具体用于在基站为所述终端进行上行调度的过程中,接收所述基站通过物理下行控制信道PDCCH,在下行控制信息DCI中发送的目标混合自动重传请求HARQ进程集合的集合编号。
其中,所述目标HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
确定单元602,用于根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述被调度的上行子帧分配的上行HARQ进程;
执行单元603,用于针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
作为一种可选的实施方式,图6所示的终端600还可以包括:
查询单元604,用于在所述确定单元602根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述被调度的上行子帧分配的上行HARQ进程之后,从HARQ进程集合与分配规则的对应关系中,查询所述目标HARQ进程集合对应的目标分配规则,所述目标分配规则规定所述目标HARQ进程集合包括的上行HARQ进程与被调度的上行子帧之间的对应关系;
所述执行单元603,具体用于针对每个所述被调度的上行子帧,根据所述目标分配规则,在所述被调度的上行子帧上使用与所述目标分配规则匹配的上行HARQ进程来执行HARQ过程。
在图6所述的终端中,在基站为终端进行上行调度的过程中,终端可以接收基站发送的目标混合自动重传请求HARQ进程集合的集合编号,并根据目标HARQ进程集合的集合编号,确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程,进而在被调度的上行子帧上使用被分配的上行HARQ进程,从而实现了上行异步HARQ过程。
请参见图7,图7是本发明实施例公开的另一种基站的结构示意图,其中,图7所示的基站用于执行图2或图4所描述的混合自动重传请求进程处理方法的部分或全部步骤,具体请参照图2或图4中的相关描述,在此不再赘述。如图7所示,该基站700可以包括:处理器701、发送器702以及存储器703,这些组件可以通过一条或多条总线704进行通信。图7示出的基站的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图7示出的更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,处理器701为基站的控制中心,利用各种接口和线路连接整个基站的各个部分,通过运行或执行存储在存储器703内的程序和/或模块,以及调用存储在存储器703内的数据,以执行基站的各种功能和处理数据。处理器701可以由集成电路(Integrated Circuit,简称IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器701可以仅包括中央处理器(Central Processing Unit,简称CPU),也可以是CPU、数字信号处理器(digital signal processor,简称DSP)、图形处理器(Graphic Processing Unit,简称GPU)及各种控制芯片的组合。在本发明实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
存储器703可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器703可选的还可以是至少一个位于远离前述处理器701的存储装置。
具体的,处理器701用于调用存储器703存储的程序,执行以下操作:
在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
提取所述目标HARQ进程集合的集合编号;
通过发送器702向所述终端发送所述目标HARQ进程集合的集合编号。
可选的,所述处理器701在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合包括:
在对终端进行上行调度的过程中,确定所述终端被调度的上行子帧;
从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配且上行HARQ进程均未被占用的HARQ进程集合;
将被选择的HARQ进程集合确定作为目标HARQ进程集合。
可选的,所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数相等;或
所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数的差值小于预设数量阈值。
可选的,所述处理器701通过发送器702向所述终端发送所述目标HARQ进程集合的集合编号包括:
通过物理下行控制信道PDCCH,在下行控制信息DCI中将所述目标HARQ进程集合的集合编号发送给所述终端。
其中,每个所述HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
在图7所示的基站700中,在对终端进行上行调度的过程中,基站为终端确定目标HARQ进程集合,即为终端被调度的上行子帧分配了上行HARQ进程,实现了上行异步HARQ过程,从而可以为分布位置不固定的上行子帧分配HARQ进程。
请参见图8,图8是本发明实施例公开的另一种终端的结构示意图,其中,图8所示的终端用于执行图3或图4所描述的混合自动重传请求进程处理方法的部分或全部步骤,具体请参照图3或图4中的相关描述,在此不再赘述。如图8所示,该终端800可以包括:处理器801、接收器802以及存储器803, 这些组件可以通过一条或多条总线804进行通信。图8示出的终端的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图8示出的更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端在物理形态上可以包括但不限于智能手机、笔记本电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、智能手环)等各类终端。
其中,处理器801为终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器803内的程序和/或模块,以及调用存储在存储器803内的数据,以执行终端的各种功能和处理数据。处理器801可以由集成电路(Integrated Circuit,简称IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器801可以仅包括中央处理器(Central Processing Unit,简称CPU),也可以是CPU、数字信号处理器(digital signal processor,简称DSP)、图形处理器(Graphic Processing Unit,简称GPU)及各种控制芯片的组合。在本发明实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
存储器803可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器803可选的还可以是至少一个位于远离前述处理器801的存储装置。
具体的,所述处理器801用于调用存储器803存储的程序,执行以下操作:
在基站为所述终端进行上行调度的过程中,通过接收器802接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述被调度的上行子帧分配的上行HARQ进程;
针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
可选的,所述处理器801根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述被调度的上行子帧分配的上行HARQ进 程之后,所述处理器801还用于调用存储器803存储的程序,执行以下操作:
从HARQ进程集合与分配规则的对应关系中,查询所述目标HARQ进程集合对应的目标分配规则,所述目标分配规则规定目标HARQ进程集合包括的HARQ进程与所述被调度的上行子帧之间的对应关系;
其中,所述处理器801针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程包括:
针对每个所述被调度的上行子帧,根据所述目标分配规则,在所述被调度的上行子帧上使用与所述目标分配规则匹配的上行HARQ进程来执行HARQ过程。
可选的,所述处理器801在基站为所述终端进行上行调度的过程中,通过接收器802接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号的方式具体为:
在基站为所述终端进行上行调度的过程中,接收所述基站通过物理下行控制信道PDCCH,在下行控制信息DCI中发送的目标混合自动重传请求HARQ进程集合的集合编号。
其中,所述目标HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
在图8所述的终端800中,在基站为终端进行上行调度的过程中,终端可以接收基站发送的目标混合自动重传请求HARQ进程集合的集合编号,并根据目标HARQ进程集合的集合编号,确定目标HARQ进程集合中为终端被调度的上行子帧分配的上行HARQ进程,进而在被调度的上行子帧上使用被分配的上行HARQ进程,从而实现了上行异步HARQ过程。
请参见图9,图9是本发明实施例公开的一种通信系统的结构示意图,其中,该通信系统900可以包括基站901和终端902,该基站901可以为图5以及图7中所描述的基站,终端902可以为图6或图8中所描述的终端。基站901可以用于执行图2或图4所描述的混合自动重传请求进程处理方法,具体 过程请参见相关描述,在此不再赘述,终端902可以用于执行图3或图4所描述的混合自动重传请求进程处理方法,具体过程请参见相关描述,在此不再赘述.
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (19)

  1. 一种混合自动重传请求进程处理方法,应用于基站,其特征在于,包括:
    在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
    提取所述目标HARQ进程集合的集合编号;
    向所述终端发送所述目标HARQ进程集合的集合编号。
  2. 根据权利要求1所述的方法,其特征在于,所述在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合包括:
    在对终端进行上行调度的过程中,确定所述终端被调度的上行子帧;
    从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配且上行HARQ进程均未被占用的HARQ进程集合;
    将被选择的HARQ进程集合确定作为目标HARQ进程集合。
  3. 根据权利要求2所述的方法,其特征在于,所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数相等;或
    所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数的差值小于预设数量阈值。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述向所述终端发送所述目标HARQ进程集合的集合编号包括:
    通过物理下行控制信道PDCCH,在下行控制信息DCI中将所述目标HARQ进程集合的集合编号发送给所述终端。
  5. 根据权利要求1~3任一项所述的方法,其特征在于,每个所述HARQ 进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
  6. 一种混合自动重传请求进程处理方法,应用于终端,其特征在于,包括:
    在基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
    根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程;
    针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程之后,所述方法还包括:
    从HARQ进程集合与分配规则的对应关系中,查询所述目标HARQ进程集合对应的目标分配规则,所述目标分配规则规定所述目标HARQ进程集合包括的上行HARQ进程与所述被调度的上行子帧之间的对应关系;
    所述针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程包括:
    针对每个所述被调度的上行子帧,根据所述目标分配规则,在所述被调度的上行子帧上使用与所述目标分配规则匹配的上行HARQ进程来执行HARQ过程。
  8. 根据权利要求6或7所述的方法,其特征在于,所述在基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号包括:
    在基站为所述终端进行上行调度的过程中,接收所述基站通过物理下行控制信道PDCCH,在下行控制信息DCI中发送的目标混合自动重传请求HARQ进程集合的集合编号。
  9. 根据权利要求6或7所述的方法,其特征在于,所述目标HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
  10. 一种基站,其特征在于,包括:
    确定单元,用于在对终端进行上行调度的过程中,从多个混合自动重传请求HARQ进程集合中确定目标HARQ进程集合,所述目标HARQ进程集合包括为所述终端被调度的上行子帧分配的上行HARQ进程,所述目标HARQ进程集合中的上行HARQ进程均未被占用,所述被调度的上行子帧与所述目标HARQ进程集合中的上行HARQ进程具有对应关系;
    提取单元,用于提取所述目标HARQ进程集合的集合编号;
    发送单元,用于向所述终端发送所述目标HARQ进程集合的集合编号。
  11. 根据权利要求10所述的基站,其特征在于,所述确定单元包括:
    确定子单元,用于在对终端进行上行调度的过程中,确定所述终端被调度的上行子帧;
    选择子单元,用于从多个混合自动重传请求HARQ进程集合中选择上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配且上行HARQ进程均未被占用的HARQ进程集合;
    所述确定子单元,还用于将被选择的HARQ进程集合确定作为目标HARQ进程集合。
  12. 根据权利要求11所述的基站,其特征在于,所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数相等;或
    所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数匹配为所述上行HARQ进程的数量与所述被调度的上行子帧的子帧数的差值小于预设数量阈值。
  13. 根据权利要求10~12任一项所述的基站,其特征在于,所述发送单元向所述终端发送所述目标HARQ进程集合的集合编号的方式具体为:
    通过物理下行控制信道PDCCH,在下行控制信息DCI中将所述目标HARQ进程集合的集合编号发送给所述终端。
  14. 根据权利要求10~12任一项所述的基站,其特征在于,每个所述HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
  15. 一种终端,其特征在于,包括:
    接收单元,用于在基站为所述终端进行上行调度的过程中,接收所述基站发送的目标混合自动重传请求HARQ进程集合的集合编号;
    确定单元,用于根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程;
    执行单元,用于针对每个所述被调度的上行子帧,在所述被调度的上行子帧上使用为所述被调度的上行子帧分配的上行HARQ进程来执行HARQ过程。
  16. 根据权利要求15所述的终端,其特征在于,所述终端还包括:
    查询单元,用于在所述确定单元根据所述目标HARQ进程集合的集合编号,确定所述目标HARQ进程集合中为所述终端被调度的上行子帧分配的上行HARQ进程之后,从HARQ进程集合与分配规则的对应关系中,查询所述目标HARQ进程集合对应的目标分配规则,所述目标分配规则规定所述目标HARQ进程集合包括的上行HARQ进程与所述被调度的上行子帧之间的对应关系;
    所述执行单元,具体用于针对每个所述被调度的上行子帧,根据所述目标分配规则,在所述被调度的上行子帧上使用与所述目标分配规则匹配的上行HARQ进程来执行HARQ过程。
  17. 根据权利要求15或16所述的终端,其特征在于,所述接收单元具体用于在基站为所述终端进行上行调度的过程中,接收所述基站通过物理下行控制信道PDCCH,在下行控制信息DCI中发送的目标混合自动重传请求HARQ进程集合的集合编号。
  18. 根据权利要求15或16所述的终端,其特征在于,所述目标HARQ进程集合中包括的HARQ进程的数量不超过系统规定的最大HARQ进程数量阈值。
  19. 一种通信系统,其特征在于,包括如权利要求10~14任一项所述的基站以及15~18任一项所述的终端。
PCT/CN2017/085932 2016-07-15 2017-05-25 一种混合自动重传请求进程处理方法、设备及通信系统 WO2018010497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610560307.6 2016-07-15
CN201610560307.6A CN106130702A (zh) 2016-07-15 2016-07-15 一种混合自动重传请求进程处理方法、设备及通信系统

Publications (1)

Publication Number Publication Date
WO2018010497A1 true WO2018010497A1 (zh) 2018-01-18

Family

ID=57283300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085932 WO2018010497A1 (zh) 2016-07-15 2017-05-25 一种混合自动重传请求进程处理方法、设备及通信系统

Country Status (2)

Country Link
CN (1) CN106130702A (zh)
WO (1) WO2018010497A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130702A (zh) * 2016-07-15 2016-11-16 深圳市金立通信设备有限公司 一种混合自动重传请求进程处理方法、设备及通信系统
JP2019004320A (ja) * 2017-06-15 2019-01-10 シャープ株式会社 基地局装置、端末装置およびその通信方法
WO2019090745A1 (zh) 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 Harq编号确定方法、网络设备、终端和计算机存储介质
CN110831190B (zh) * 2018-08-10 2023-04-14 北京紫光展锐通信技术有限公司 上行免调度数据传输方法及装置、存储介质、用户设备
EP3876451A4 (en) 2018-10-31 2021-10-20 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR INFORMATION FEEDBACK
CN112019308B (zh) * 2019-05-29 2023-06-16 成都鼎桥通信技术有限公司 一种harq传输方法和装置
CN112583527B (zh) * 2019-09-27 2022-04-12 大唐移动通信设备有限公司 混合自动重传请求进程编号确定方法、终端及网络侧设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113138A1 (en) * 2005-10-21 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packet data using HARQ in a mobile communication system
CN102263623A (zh) * 2010-05-26 2011-11-30 株式会社Ntt都科摩 数据的重传方法及装置
CN102740465A (zh) * 2011-04-01 2012-10-17 华为技术有限公司 数据传输方法、装置及系统
CN103384192A (zh) * 2012-05-02 2013-11-06 北京三星通信技术研究有限公司 动态tdd系统中保持上行harq进程的传输连续性的方法
CN105122932A (zh) * 2013-03-15 2015-12-02 摩托罗拉移动有限责任公司 用于设备到设备通信的方法和装置
CN106130702A (zh) * 2016-07-15 2016-11-16 深圳市金立通信设备有限公司 一种混合自动重传请求进程处理方法、设备及通信系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201708734TA (en) * 2012-07-18 2017-12-28 Sun Patent Trust Terminal device, and buffer partitioning method
GB2513904A (en) * 2013-05-10 2014-11-12 Nec Corp Communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113138A1 (en) * 2005-10-21 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packet data using HARQ in a mobile communication system
CN102263623A (zh) * 2010-05-26 2011-11-30 株式会社Ntt都科摩 数据的重传方法及装置
CN102740465A (zh) * 2011-04-01 2012-10-17 华为技术有限公司 数据传输方法、装置及系统
CN103384192A (zh) * 2012-05-02 2013-11-06 北京三星通信技术研究有限公司 动态tdd系统中保持上行harq进程的传输连续性的方法
CN105122932A (zh) * 2013-03-15 2015-12-02 摩托罗拉移动有限责任公司 用于设备到设备通信的方法和装置
CN106130702A (zh) * 2016-07-15 2016-11-16 深圳市金立通信设备有限公司 一种混合自动重传请求进程处理方法、设备及通信系统

Also Published As

Publication number Publication date
CN106130702A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
US20220279505A1 (en) Method and apparatus for transmitting information on an uplink channel
WO2018010497A1 (zh) 一种混合自动重传请求进程处理方法、设备及通信系统
US20200021402A1 (en) Data transmission method and related device
KR101083934B1 (ko) H-arq를 갖는 측정 갭들을 이용할 때의 채널 할당
EP2201717B1 (en) User specific load balancing
CN107211362B (zh) 一种数据传输方法、终端及ran设备
EP2817910B1 (en) Retransmission protocol feedback handling with multiple feedback times
JP2010158000A (ja) Ack/nackバンドリングを改善する方法及び通信装置
JP2010045790A (ja) Ttiバンドルの再送を処理する方法及び通信装置
JP2019510443A (ja) クリアチャネルアセスメントにおけるコンテンションウィンドウサイズを決定するための方法および装置
WO2016049850A1 (zh) 一种上行数据的传输方法及相关设备
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
JP2018525914A (ja) アップリンクデータの伝送方法及び装置
WO2017075854A1 (zh) 信息传输的方法、终端和基站
US10609725B2 (en) Data transmission method of system, user equipment, and base station
US11528714B2 (en) Data transmission method and apparatus
EP3930375B1 (en) Method and device for data transmission
WO2015062477A1 (zh) 一种数据传输方法及设备
CN103532658A (zh) SR的处理方法、eNB及UE
WO2017075857A1 (zh) 信息传输的方法、终端和基站
CN114762392B (zh) 通信方法及装置
WO2023231910A1 (zh) 反馈信息发送方法、反馈信息接收方法、终端及存储介质
EP4307600A2 (en) Hybrid automatic repeat request method, semi-persistent scheduling method, and communication apparatus
US20210329658A1 (en) Use of priority mismatch indication for uplink transmission for wireless networks
WO2021134151A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826836

Country of ref document: EP

Kind code of ref document: A1