WO2019096129A1 - 一种波束配置方法和装置 - Google Patents

一种波束配置方法和装置 Download PDF

Info

Publication number
WO2019096129A1
WO2019096129A1 PCT/CN2018/115244 CN2018115244W WO2019096129A1 WO 2019096129 A1 WO2019096129 A1 WO 2019096129A1 CN 2018115244 W CN2018115244 W CN 2018115244W WO 2019096129 A1 WO2019096129 A1 WO 2019096129A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network device
time
uplink
downlink
Prior art date
Application number
PCT/CN2018/115244
Other languages
English (en)
French (fr)
Inventor
管鹏
秦熠
刘建琴
蒋鹏
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811302964.6A external-priority patent/CN109803427B/zh
Priority to JP2019556797A priority Critical patent/JP6951025B2/ja
Priority to CN201880074673.8A priority patent/CN111684843B/zh
Priority to CA3061633A priority patent/CA3061633C/en
Priority to KR1020197033514A priority patent/KR102267573B1/ko
Priority to BR112019022950-7A priority patent/BR112019022950A2/pt
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21187853.3A priority patent/EP3961935A1/en
Priority to EP18877610.8A priority patent/EP3606195B1/en
Publication of WO2019096129A1 publication Critical patent/WO2019096129A1/zh
Priority to US16/674,845 priority patent/US11089590B2/en
Priority to US17/336,948 priority patent/US11438888B2/en
Priority to US17/879,567 priority patent/US11877265B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a beam configuration method and apparatus.
  • Beamforming technology is used to limit the energy of the transmitted signal to a certain beam direction, thereby increasing signal communication efficiency. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity.
  • beam alignment is required to realize that a signal received by a receiving end device through a specific receiving beam is sent from a specific transmitting beam of the transmitting device, thereby obtaining a better signal quality. Otherwise, it is impossible to achieve relatively high communication efficiency or even communication.
  • the beam including the transmitting beam or the receiving beam
  • the beam with better channel quality may be changed, which requires beam configuration.
  • An embodiment of the present application provides a beam configuration method and apparatus, which are used to implement a second beam transmission signal corresponding to the first beam when the terminal uses the first beam transmission signal configured by the network device, for example, A beam and a second beam belong to the same beam pair, thereby improving signal transmission efficiency.
  • the present application provides a beam configuration method, the method includes: receiving, by a terminal, beam configuration information sent by a network device, where beam configuration information is used to indicate that the terminal uses the first beam to transmit a signal; When the first preset duration arrives, at least the first beam transmission signal is used; wherein the first moment is a moment when the terminal sends an ACK message for the beam configuration information to the network device.
  • the first preset duration may be greater than or equal to 0.
  • the beam configuration information may be beam configuration information in the first beam configuration process or beam configuration information in the re-beam configuration process.
  • the technical solution can be applied to a scenario in which the terminal supports single beam transmission; if at least the first beam transmission signal is used, in addition to the first beam, If other beams are used to transmit signals, the technical solution can be applied to a scenario in which the terminal supports single beam transmission or multiple beam transmission.
  • the technical solution can be applied to the downlink beam configuration scenario, and can also be applied to the uplink beam configuration scenario.
  • the timer when the terminal sends an ACK message for the beam configuration information to the network device, the timer is started, and when the preset time duration of the timer reaches the preset duration, the first beam is used to transmit the signal; thus, if the network device When the ACK message is received, the timer is started, and when the preset time duration of the timer reaches the preset duration, the second beam transmission signal corresponding to the first beam is used, and therefore, the terminal sends an ACK message, and the network When the device receives the ACK message, it helps to achieve the same behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • using at least the first beam to transmit the signal may include: the terminal starts the timer from the first moment, and is in the timer When the timing time reaches the first preset duration, at least the first beam is used to transmit the signal.
  • the possible design provides a scheme for transmitting a signal using at least the first beam when the preset duration from the first moment arrives by using a timer, and the specific implementation is not limited thereto. For example, it can be realized by setting a time window or the like.
  • the method may further include: when the timer does not reach the first preset duration, if the terminal receives the beam configuration information again, stopping the timer, and starting the timer at the second moment;
  • the second moment is a moment when the terminal sends an ACK message for the re-received beam configuration information to the network device.
  • using at least the first beam to transmit the signal may include: when the terminal arrives at the first preset duration from the first moment.
  • the last used beam or the beam transmission signal used by default is used. This possible design can be applied to scenarios where the terminal supports multi-beam transmission.
  • the method may further include: if the terminal receives the signal on the first beam, using the first beam to receive the signal. Or, after the timing of the timer reaches the first preset duration, if the terminal receives the signal on the beam other than the first beam, the terminal sends an ACK message for the beam configuration information to the network device, and sends an ACK message.
  • the timer is turned on, and when the timing time of the timer reaches the first preset duration, the signal is received using the first beam.
  • the terminal sends an error indication to the network device, where the error indication is used to instruct the network device to retransmit the beam configuration information.
  • This possible design can be applied to the downlink beam configuration procedure in a scenario where the terminal supports multi-beam transmission. This helps to achieve the same behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • the method may further include: if the terminal arrives at the second preset duration from the third moment, transmitting the signal by using the first beam; wherein the third moment is the timing time of the timer arrives.
  • the time of the preset duration can be applied to the uplink beam configuration procedure in a scenario where the terminal supports multi-beam transmission. This helps to achieve the same behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • the present application provides a beam configuration method, where the method may include: the network device sends beam configuration information to the terminal, where the beam configuration information is used to indicate that the terminal uses the first beam to transmit the signal; the network device is in the first The second time beam transmission signal corresponding to the first beam is used for the preset time duration, where the first time is the time when the network device receives the ACK message for the beam configuration information sent by the terminal.
  • the preset duration here may be the “first preset duration” in the first aspect.
  • the network device transmits the signal by using the second beam corresponding to the first beam at a preset duration from the first moment
  • the method may include: the network device starts the timer at the first moment, and is in the timing When the timing of the device reaches the preset duration, the second beam corresponding to the first beam is used to transmit the signal.
  • the method may further include: the network device receiving an error indication sent by the terminal, where the error indication is used to instruct the network device to retransmit the beam configuration information; and the network device retransmits the beam configuration to the terminal according to the error indication. information.
  • the beam configuration method provided by the second aspect can be used in combination with the corresponding beam configuration method provided by the first aspect, thereby facilitating the behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • the technical solutions provided by the first aspect and the second aspect, and how to implement the behavior of the network device and the terminal reference may be made to the following specific embodiments.
  • the present application provides a beam configuration method, where the method may include: receiving, by a terminal, beam configuration information sent by a network device, where beam configuration information is used to indicate that the terminal uses the first beam transmission signal; and the terminal sends the beam configuration information to the network device.
  • An ACK message for beam configuration information the terminal receives indication information indicating that the ACK message is successfully transmitted by the network device, and transmits the signal using the first beam when the preset time period from the fourth time arrives; wherein the fourth time is The moment when the terminal receives the indication information.
  • the technical solution can be applied to a scenario in which the terminal supports single beam transmission or multiple beam transmission. It can be applied to the downlink beam configuration scenario or to the uplink beam configuration scenario.
  • the terminal and the network device pass the three times of “handshake”, and the terminal uses the preset time when the terminal receives the indication information indicating that the ACK message for the beam configuration information is successfully transmitted.
  • a beam transmission signal if the network device arrives at the preset time period from when the indication information is sent, using the second beam transmission signal corresponding to the first beam, the behavior of the network device and the terminal can be consistent, thereby improving the signal. Transmission efficiency.
  • using the first beam to transmit the signal may include: the terminal starts the timer at the fourth moment, and reaches the pre-time at the timer timing.
  • the signal is transmitted using the first beam.
  • the present application provides a beam configuration method, where the method may include: the network device sends beam configuration information to the terminal, where the beam configuration information is used to indicate that the terminal uses the first beam transmission signal; and the network device receives the terminal transmission An ACK message for beam configuration information; the network device sends indication information indicating that the ACK message is successfully transmitted to the terminal, and uses a second beam transmission signal corresponding to the first beam when the preset duration from the fourth time arrives; The fourth moment is a moment when the network device sends the indication information.
  • using the second beam transmission signal corresponding to the first beam may include: the network device starts the timer at the fourth moment, and When the timing time of the timer reaches the preset duration, the second beam transmission signal corresponding to the first beam is used.
  • any of the beam configuration methods provided by the fourth aspect may be used in combination with the corresponding beam configuration method provided by the third aspect, thereby facilitating the behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • the fourth aspect may be used in combination with the corresponding beam configuration method provided by the third aspect, thereby facilitating the behavior of the network device and the terminal, thereby improving signal transmission efficiency.
  • the present application provides a communication device, which may be a terminal.
  • the communication device may be used to perform the beam configuration method provided by the first aspect or the third aspect.
  • the communication device may be a network device, in which case the communication device may be used to perform the beam configuration method provided by the second aspect or the fourth aspect above.
  • the communication module may be divided into functional modules according to the corresponding method provided above.
  • each functional module may be divided according to each function, or two or more functions may be integrated in the In a processing module.
  • the communication device may include: a processor and a transceiver, and optionally, a memory; wherein the memory is used to store a computer program, when the computer program is executed by the processor, The respective methods provided by the first to fourth aspects are performed.
  • the transceiver is used to communicate with other communication devices under the control of the processor.
  • the memory may be a memory chip or the like.
  • the present application also provides a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to perform any of the possible methods of the first to fourth aspects above.
  • the present application also provides a computer program product that, when run on a computer, causes any of the methods provided by the first to fourth aspects to be performed.
  • the embodiment of the present application further provides a processing device for implementing the functions of the terminal or the network device, including a processor and an interface.
  • the processing device may be a chip, and the processor may be implemented by using hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software code stored in the memory, and the memory may be changed. Integrated in the processor, it can be located outside the processor and exist independently.
  • any of the communication devices or computer storage media or computer program products provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the beneficial methods in the corresponding methods. The effect will not be described here.
  • FIG. 1 is a schematic structural diagram of a system applicable to a technical solution provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram 1 of a beam configuration method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram 2 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a beam configuration process according to FIG. 4 according to an embodiment of the present disclosure
  • FIG. 6 is an interaction flowchart 2 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a beam configuration process based on FIG. 6 according to an embodiment of the present disclosure
  • FIG. 8 is an interaction flowchart 3 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a beam configuration process based on FIG. 8 according to an embodiment of the present disclosure.
  • FIG. 10 is an interaction flowchart 4 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 11 is an interaction flowchart 5 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 12 is an interaction flowchart 6 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 13 is an interaction flowchart 7 of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a beam configuration process based on FIG. 13 according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram 1 of a communication device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 2 of a communication device according to an embodiment of the present disclosure.
  • 17 is a schematic diagram of a beam configuration process
  • FIG. 18 is still another schematic diagram of a beam configuration process according to an embodiment of the present application.
  • FIG. 19 is still another schematic diagram of a beam configuration process according to an embodiment of the present disclosure.
  • FIG. 20 is still another schematic diagram of a beam configuration process according to an embodiment of the present disclosure.
  • FIG. 21 is an interaction process of a beam configuration process according to an embodiment of the present application.
  • FIG. 22 is a schematic signaling diagram of a beam configuration scheme according to an embodiment of the present disclosure.
  • FIG. 23 is still another schematic signaling diagram of a beam configuration scheme according to an embodiment of the present disclosure.
  • FIG. 24 is still another schematic signaling diagram of a beam configuration method according to an embodiment of the present disclosure.
  • FIG. 25 is still another schematic signaling diagram of a beam configuration procedure according to an embodiment of the present disclosure.
  • FIG. 26 is still another schematic signaling diagram of a beam configuration procedure according to an embodiment of the present application.
  • plural in the present application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, and the like in this application are used to distinguish different objects, and do not limit the order of the different objects.
  • the technical solutions provided by the present application can be applied to various communication systems.
  • the technical solution provided by the present application can be applied to a 5G communication system, a future evolution system, or a plurality of communication fusion systems, and the like, and can also be applied to an existing communication system or the like.
  • the application scenarios of the technical solutions provided by the present application may include various types, for example, machine to machine (M2M), macro communication, enhanced mobile broadband (eMBB), ultra high reliability and ultra low Scenes such as ultra reliable & low latency communication (uRLLC) and massive machine type communication (mMTC).
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra reliable & low latency communication
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to, a communication scenario between the terminal and the terminal, a communication scenario between the network device and the network device, a communication scenario between the network device and the terminal, and the like.
  • the following is an example of a scenario applied to network device and terminal communication.
  • FIG. 1 is a schematic diagram of a communication system to which the technical solution provided by the present application is applied, which may include one or more network devices 100 (only one is shown) and one connected to each network device. Or a plurality of terminals 200.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation of the applicable scenario of the technical solution provided by the present application.
  • the network device 100 may be a transmission reception point (TRP), a base station, a relay station or an access point, and the like.
  • the network device 100 may be a network device in a 5G communication system or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • it may be: a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a broadband
  • the NB (NodeB) in the code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the terminal 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE proxy, or a UE device. Wait.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a beam is a communication resource.
  • the beam can be divided into a transmit beam and a receive beam.
  • the transmit beam can be understood as the distribution of the signal strength formed in different directions of the space after the signal is transmitted through the antenna.
  • the receiving beam can be understood as the signal intensity distribution of the wireless signals received from the antenna in different directions in space. Different beams can be considered as different resources. Different beams can be used to send the same information or different information.
  • One or more antenna ports may be included in one beam for transmitting data channel information, controlling channel information, and detecting signals.
  • the beam may for example be a spatial filter in the protocol.
  • the beam pair is built on the concept of the beam.
  • a beam pair typically includes a transmit beam of the transmitting device and a receive beam of the receiving device.
  • the sending end device may be a network device, and the receiving end device may be a terminal.
  • the sending end device may be a terminal, and the receiving end device may be a network device.
  • the beam indication information is used to indicate the beam.
  • the beam indication information may be, for example, at least one of the following: an index of the beam (eg, a relative number of the beam, a logical number, a physical number, etc.), a port number corresponding to the reference signal carried by the beam, and a beam pair link. , BPL) information, etc.
  • BPL beam pair link.
  • the beam indication information may also be implicitly indicated by other information, for example, there is a correspondence between the beam indication information and other information, so the beam may be indicated by indicating other information.
  • the other information may for example be quasi co location (QCL) information of the beam. Wherein, QCL is used to indicate that one or more identical or similar communication features are between multiple resources.
  • the channel size information between different network devices is different.
  • the same or similar communication configurations can be employed.
  • the large-scale characteristics of the channel in which one port transmits one symbol can be inferred from the large-scale characteristics of the channel from which one symbol transmits one symbol.
  • Large-scale features can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, terminal receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna space Correlation, angel of arrival (AoA), average angle of arrival, extension of AoA, etc.
  • both the network device and the terminal can generate one or more beams.
  • a beam pair with better channel quality may be selected in advance by beam alignment to transmit a signal.
  • the signal may be, for example, data channel information control channel information, or a sounding signal or the like.
  • a beam pair with better channel quality may change, both in the downlink direction and in the uplink direction.
  • the network device can periodically or triggerably interact with the terminal to measure the channel quality of each beam pair, and perform beam configuration process when the beam is configured to the terminal for the first time, or when the beam used by the terminal for current communication needs to be changed.
  • the downlink beam configuration process is performed, that is, the network device instructs the terminal to use a certain receive beam to receive the signal, and the receive beam may be any one of the receive beams of the terminal.
  • the uplink beam configuration procedure is performed, that is, the network device instructs the terminal to use a certain transmit beam to send a signal, and the transmit beam may be any one of the transmit beams of the terminal.
  • the network device In the downlink direction, if the network device uses a transmit beam to transmit a signal at the same time, and the terminal receives the signal by using a receive beam corresponding to the transmit beam (for example, the transmit beam and the receive beam belong to the same beam pair), the network device is considered as the network device. Consistent with the behavior of the terminal. Otherwise, the behavior of the network device and the terminal is considered to be inconsistent.
  • the network device In the uplink direction, if the terminal uses a transmit beam to transmit a signal at the same time, and the network device receives the signal by using a receive beam corresponding to the transmit beam (for example, the transmit beam and the receive beam belong to the same beam pair), the network device is considered as the network device. Consistent with the behavior of the terminal. Otherwise, the behavior of the network device and the terminal is considered to be inconsistent.
  • the beam configuration method provided by the present application may specifically perform beam configuration on a control channel or beam configuration on a data channel.
  • the beam configuration of the control channel is taken as an example for description.
  • the beam configuration information transmitted when the control channel performs beam configuration is briefly described below.
  • the beam configuration information is used to configure the terminal to transmit signals using a certain beam.
  • the information about a beam can be indicated by indicating a transmission configuration index (TCI), specifically a TCI bit, to the terminal.
  • TCI transmission configuration index
  • a possible beam configuration information sent by RRC signaling or MAC signaling may be as shown in Table 3 below. Prior to this, for a better understanding, you can first introduce TCI related information:
  • the TCI can be used to indicate the relevant configuration of the transmitted information. For example, it can be used to indicate information of a receiving beam used by the terminal.
  • Each TCI bit corresponds to a TCI state of a higher layer signaling configuration, as shown in Table 1:
  • Each TCI state corresponds to configuration information of a reference signal set (RS set), as shown in Table 2.
  • RS set reference signal set
  • TCI status RS set status TCI_00 TCI-RS-SetConfig[0] TCI_01 TCI-RS-SetConfig[1] TCI_02 TCI-RS-SetConfig[2] TCI_03 TCI-RS-SetConfig[3] ... ... TCI_(M-1) TCI-RS-SetConfig[M-1]
  • each of the reference signal sets may be specifically used to describe the QCL relationship of one or more reference signals to the data channel reference signals. as shown in Table 3:
  • TCI-RS-SetConfig[x] represents the reference signal set configuration x
  • Table 3 illustrates that the SS block of the number #a transmitted by the time #1 on the carrier #1 has a QCL relationship with the data channel reference signal with respect to the receiving parameter.
  • Time #5 The CSI-RS of number #A transmitted on carrier #3 and the data channel reference signal have a QCL relationship with respect to delay spread, average delay, Doppler spread, Doppler shift, average gain, and receive parameters. This information can be used for demodulation of data channel signals.
  • the SSB number can be an SS block index.
  • the CSI-RS number may be a channel state information (CSI) resource index CSI-RS resource set index, a CSI-RS port index, or the like, or a combination thereof.
  • CSI channel state information
  • the QCL information can be a specific parameter or a QCL type. Different QCL types include different parameters.
  • the time information can be a slot number, a subframe number, an absolute time, a symbol number, a cycle number, and the like.
  • the frequency resource information may be a carrier number, a bandwidth part number, or the like.
  • Other information may include measurement limits, etc., that is, the measurement result of the RS on the frequency cannot be used to help the data channel demodulation.
  • the configuration of the above TCI is transmitted through RRC signaling and/or MAC signaling.
  • the effective time of the above configurations can be processed in the same way as the effective time of the beam configuration information in this application.
  • the "simultaneous/same time” described in the present application refers to the same time interval (TI).
  • the TI may be a transmission time interval (TTI) in the LTE system, or may be a short TTI at the symbol level, or a short TTI at a large subcarrier interval in the high frequency system, or may be a time in the 5G system. Slot or mini-slot, etc. This application does not limit this. In the following, the description is made by taking TI as a time slot as an example.
  • the signaling may be, for example, but not limited to radio resource control (RRC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • any information that can be configured by using the signaling may be carried in the beam configuration information or may be carried in other configuration information, which is exemplified by being carried in the beam configuration information.
  • the purpose of "performing certain steps when the preset duration from a certain time arrives" is achieved by setting a timer.
  • it may also be implemented by setting a time window or a time offset, and the timer may also be referred to as a timer or the like.
  • a beam configuration method may include the following steps:
  • the network device sends beam configuration information to the terminal and starts timer T2.
  • n is an integer greater than or equal to zero.
  • the beam configuration information is used to indicate that the terminal transmits a signal on the first beam.
  • the first beam may be a receive beam or a transmit beam. If the first beam is a receiving beam, the beam configuration process provided in this embodiment is specifically a downlink beam configuration process, and the beam configuration information is specifically used to indicate that the terminal receives the signal on the first beam. If the first beam is a transmit beam, the beam configuration process provided in this embodiment is specifically an uplink beam configuration process, and the beam configuration information is specifically used to indicate that the terminal sends a signal on the first beam.
  • the signaling carrying the beam configuration information may be, for example, at least one of RRC signaling, MAC signaling, or DCI.
  • the beam configuration information may carry the beam indication information of the first beam.
  • the beam indication information For related descriptions of the beam indication information, reference may be made to the above, and details are not described herein again.
  • the terminal receives the beam configuration information and starts the timer T1.
  • the terminal checks the beam configuration information.
  • the terminal sends an acknowledgement (ACK) indication to the network device at the n+k1 time slot terminal.
  • ACK acknowledgement
  • the ACK message is used to indicate to the network device that the terminal has successfully received the beam configuration information.
  • the timing of the timer T1 reaches a preset duration
  • the first beam is used to transmit the signal.
  • the terminal transmits the signal using the last used beam or the default beam. as shown in picture 2.
  • the terminal sends a negative acknowledgement (NACK) indication to the network device at the n+k1 time slot terminal.
  • NACK negative acknowledgement
  • the NACK message is used to indicate to the network device that the terminal has not successfully received the beam configuration information.
  • the terminal uses the last used beam or the default beam transmission signal.
  • K1 may be a value that the network device configures to the terminal through signaling, or a preset value such as a value specified in the protocol.
  • the preset duration is greater than k1 slots. The preset duration and k1 slots in the following embodiments may not satisfy this relationship.
  • the preset duration may be configured by the network device to the terminal, for example, carried in the beam configuration information or other configuration information, and sent to the terminal.
  • the network device may be determined according to the capability information of the terminal fed back by the terminal, and the configured preset durations may be equal or unequal for different terminals.
  • the preset duration can also be preset, for example, set in advance by a protocol.
  • the use of the first beam transmission signal can be understood as: the transmission signal is valid on the first beam, that is, if there is a signal transmission requirement between the network device and the terminal, the first beam transmission signal is used.
  • the first beam transmission signal it can be understood that the first beam receiving signal configured in the current beam configuration procedure is effective, that is, the subsequent terminal monitors the first beam to receive the network device. signal.
  • the last used beam in S103 refers to the last used receiving beam of the terminal
  • the default beam refers to the receiving beam used by the terminal by default.
  • the receiving beam used by the terminal may be a receiving beam configured by the network device to the terminal by using high-layer signaling (for example, RRC signaling or MAC signaling), and may be, for example, any one of the following: a synchronization signal block used by the terminal for initial access ( The beam of the synchronization signal block (SSB), the receive beam corresponding to the first state of the TCI, the most recently used receive beam, the omnidirectional receive beam, and the like.
  • a synchronization signal block used by the terminal for initial access The beam of the synchronization signal block (SSB), the receive beam corresponding to the first state of the TCI, the most recently used receive beam, the omnidirectional receive beam, and the like.
  • SSB synchronization signal block
  • the default beam used by the terminal can be different.
  • the following options are listed:
  • the initially accessed beam is used.
  • the beam corresponding to the first state of the TCI is used.
  • the TCI table is configured by the high layer signaling, and there is an explicit TCI indication, but the TCI effective time (ie, the preset duration in the present application) is less than a predetermined threshold (where the threshold may be determined by the capability of the terminal) Use the most recent valid beam, either with a wide beam or with a predefined back-off beam.
  • the last used beam in the uplink beam configuration process refers to the last used transmit beam of the terminal.
  • the default beam refers to the transmit beam used by the terminal by default.
  • the transmit beam used by the terminal by default may be configured by the network device to the terminal.
  • the information used by the terminal by default may be used to transmit information.
  • the beam used by the terminal by default is updateable.
  • the network device if a default receive beam is indicated to the terminal, the network device maintains a transmit beam that is used by the network device by default to ensure that the terminal can correctly receive the network device on the default receive beam.
  • the signal sent by the beam For a network device, if a default transmit beam is indicated to the terminal, the network device maintains a receive beam that is used by the network device by default to ensure that the network device can correctly receive the terminal through the default send beam on the default receive beam.
  • the signal sent by the beam if a default transmit beam is indicated to the terminal, the network device maintains a receive beam that is used by the network device by default to ensure that the network device can correctly receive the terminal through the default send beam on the default receive beam.
  • the terminal sends an ACK message to the network device
  • the network device receives the ACK message in the n+k1 time slot
  • the second time is used when the timer T2 reaches the preset time. Beam transmission signal.
  • the network device does not know whether the terminal successfully receives the beam configuration information, regardless of the timer time of the timer T2. Whether the preset duration is reached or not, the signal is transmitted using the last used beam or the default beam. In the n+k1+n2 time slots, the beam configuration information is retransmitted, that is, the beam configuration procedure is performed again.
  • N2 is an integer greater than or equal to 1.
  • N2 may be a value configured by signaling, or a preset value such as a value preset in the protocol. N2 and n1 may or may not be equal. Wherein, before the preset time of the timer T2 reaches the preset duration, the signal is transmitted using the last used beam or the default beam. as shown in picture 2.
  • the second beam is a receive beam; the second beam is used to transmit a signal, in particular using a second beam to receive a signal transmitted by the terminal through the first beam. If the first beam is a receive beam, the second beam is a transmit beam; the second beam is used to transmit a signal, in particular using a second beam to transmit a signal to the terminal.
  • the network device uses beam 1 to transmit signals in the nth time slot, and the terminal uses beam a to transmit signals in the nth time slot as an example.
  • beam 1 is a beam corresponding to beam a
  • beam 1 and beam a belong to one beam pair.
  • the second beam is a beam corresponding to the first beam, for example, the second beam belongs to the same beam pair as the first beam.
  • the terminal when the terminal reaches the preset time length of the timer T1, the terminal transmits the signal using the first beam, and the network device uses the second beam to transmit the signal.
  • the terminal sends a NACK message to the network device, and if the network device receives the NACK message in the n+k1 time slot, the network device uses the last used beam or the default beam transmission signal. In the n+k1+n1 time slots, the beam configuration information is retransmitted, that is, the beam configuration procedure is performed again.
  • n1 is an integer greater than or equal to 1.
  • N1 may be a value configured by signaling, or a preset value such as a value specified in the protocol.
  • N2 is an integer greater than or equal to 1.
  • N2 may be a value configured by signaling, or a preset value such as a value preset in the protocol.
  • N2 and n1 may or may not be equal.
  • the last used beam of the terminal refers to the last used transmit beam of the network device
  • the default beam refers to the transmit beam used by the network device by default.
  • the transmit beam used by the network device by default may be the transmit beam corresponding to the receive beam used by the terminal by default.
  • the last used beam of the terminal refers to the last used receiving beam of the network device
  • the default beam refers to the receiving beam used by the network device by default.
  • the receiving beam used by the network device by default may be the receiving beam corresponding to the sending beam used by the terminal by default.
  • the terminal when receiving the beam configuration information, the terminal starts the timer T1; when the network device sends the beam configuration information, the timer T2 is started.
  • the first beam transmission signal is used when the timing time of the timer T1 reaches the preset time length.
  • the second beam transmission signal will not start to be used.
  • the problem of inconsistent behavior of network devices and terminals may result in poor quality of subsequent communications or even communication with each other. For example, as shown in FIG.
  • FIG. 3 it is a schematic diagram under the scene.
  • the network device uses beam 1 to transmit signals in the nth time slot, and the terminal uses beam a to transmit signals in the nth time slot as an example.
  • the terminal uses beam a to transmit signals in the nth time slot as an example.
  • the network device still uses the beam 1 to transmit the signal.
  • the present application provides the following beam configuration method:
  • FIG. 4 to FIG. 7 are schematic diagrams of a beam configuration method according to an embodiment of the present disclosure.
  • the method provided in this embodiment may include the following steps:
  • the network device In the nth time slot, the network device sends beam configuration information to the terminal. Where n is an integer greater than or equal to zero.
  • the beam configuration information is used to indicate that the terminal transmits a signal on the first beam.
  • the beam configuration process provided in this embodiment is specifically a downlink beam configuration process. If the first beam is a transmit beam, the beam configuration process provided in this embodiment is specifically an uplink beam configuration process.
  • S202 The terminal receives the beam configuration information in the nth time slot.
  • S203 The terminal checks the beam configuration information.
  • an ACK message is sent to the network device in the n+k1 time slot, and the timer T1 is started.
  • the timing of the timer T1 reaches the preset duration, the first beam is used to transmit the signal, as shown in FIGS. 4 to 7.
  • the signal is transmitted using the last used beam or the default beam.
  • a NACK message is sent to the network device in the n+k1 time slot.
  • the signal is transmitted using the last used beam or the default beam.
  • the network device can perform steps S204a, S204b or S204c. It can be understood that, if the terminal sends an ACK message to the network device in S203, the network device may perform S204a or S204c. If the terminal sends a NACK message to the network device in S203, the network device may perform S204b or S204c.
  • S204a If an ACK message is received in the n+k1 time slot, the timer T2 is turned on, and then the second beam is used to transmit the signal when the timing time of the timer T2 reaches the preset time length. As shown in Figure 4 and Figure 5. Wherein, before the preset time of the timer T2 reaches the preset duration, the signal is transmitted using the last used beam or the default beam. In FIG. 5, the network device uses beam 1 to transmit signals in the nth time slot, and the terminal uses beam a to transmit signals in the nth time slot as an example.
  • the network device and the terminal since the network device and the terminal both turn on their respective timers in the n+k1 time slots, and use the first beam/second beam when the respective timers reach the same preset duration.
  • the signal is transmitted, so that the behavior of the terminal and the network device are consistent, thereby improving signal transmission performance.
  • the process of performing the beam configuration again may refer to the beam configuration process shown in the foregoing S201 to S204, and details are not described herein again. It can be understood that, in the process of performing the beam configuration process again, if S204a is specifically executed when S204 is executed, then after executing S204a, the process ends. If S204b or S204c is specifically executed, the beam configuration process may be performed again, and so on, until a certain beam configuration process is performed, and S204a is finally executed, and then the process ends.
  • the maximum number of times the beam configuration process is performed for the same beam configuration information may be set, so that when the number of times the beam configuration process is performed for the same beam configuration information reaches the maximum value, if the execution is still not successful, the process ends.
  • this application is not limited to this.
  • the network device since the terminal does not enable the timer T1 before the beam configuration process is performed again, the network device does not enable the timer T2, so the terminal and the network device use the last used beam or default before performing the beam configuration process again. Beam transmission signal.
  • Case 1 If the terminal sends an ACK message to the network device in S203, the terminal has started the timer T1 and the network device does not start the timer T2 before performing the beam configuration procedure again. At this time, the terminal may stop the timer T1 when receiving the retransmitted beam configuration information, that is, the n+k1+n2 time slots, and then send an ACK message for the re-received beam configuration information to the network device. When the timer T1 is turned on. As shown in Figure 6 and Figure 7.
  • the timer T2 of the network device and the timer T1 of the terminal start timing at the same time, so that the preset duration can be reached at the same time, which helps the terminal to feed back the ACK message to the network device and the network device receives.
  • the terminal uses the first beam to transmit the signal
  • the network device uses the second beam to transmit the signal, that is, the behavior of the terminal and the network device are consistent, thereby improving the signal transmission performance.
  • the other steps of the beam configuration process refer to the related steps in the beam configuration process shown in the foregoing S201 to S204, and details are not described herein again. In FIG. 6 and FIG.
  • the terminal in the process of performing the beam configuration procedure again, the terminal sends an ACK message to the network device in the n+k1+n2+k1 time slots, and the network device is at the n+k1+n2+.
  • the ACK message is received in k1 time slots as an example for description.
  • this application is not limited to this.
  • the network device uses beam 1 to transmit signals in the nth time slot, and the terminal uses beam a to transmit signals in the nth time slot as an example.
  • Case 2 If the terminal sends a NACK message to the network device in S203, the terminal does not enable the timer T1 and the network device does not enable the timer T2 before performing the beam configuration process again. Therefore, the process of performing the beam configuration again may be performed.
  • the beam configuration procedure shown in the above S201 to S204a, S204a, and S204c and details are not described herein again.
  • the technical solution provided by the embodiment can ensure that the ACK message or the NACK message for the beam configuration information is received by the network device, and neither the ACK message nor the NACK is received. In the case of a message, the behavior of the terminal and the network device can be made uniform, thereby improving signal transmission performance.
  • FIG. 8 is a schematic diagram of a beam configuration method according to an embodiment of the present disclosure.
  • the method provided in this embodiment may include the following steps:
  • S301 to S302 Reference may be made to the above S201 to S202. Of course, this application is not limited to this.
  • the first beam is a receive beam
  • the second beam is a transmit beam.
  • the beam configuration process provided in this embodiment is specifically a downlink beam configuration process.
  • S303 The terminal checks the beam configuration information.
  • an ACK message is sent to the network device in the n+k1 time slot, and the timer T1 is started.
  • the timing of the timer T1 reaches the preset duration, the signals are received using the beams in the beam set, as shown in FIGS. 8 to 11. Wherein, before the preset time of the timer T1 reaches the preset duration, the signal is received using the last used beam or the default beam.
  • a NACK message is sent to the network device in the n+k1 time slot.
  • the signal is received using the last used beam or the default beam.
  • the beam set may include at least one of the following: a receiving beam that is used last time by the terminal, a receiving beam that is used by the terminal by default, a beam that covers the first beam, and the like.
  • Each beam has a certain coverage, and the beam covering the first beam refers to a beam whose coverage includes the coverage of the first beam.
  • step S304a, S304b or S304c can be performed. It can be understood that, if the terminal sends an ACK message to the network device in S303, the network device may perform S304a or S304c. If the terminal sends a NACK message to the network device in S303, the network device may perform S304b or S304c.
  • S304a If the network device receives the ACK message in the n+k1 time slot, the timer T2 is started, and when the timing time of the timer T2 reaches a preset time, the second beam is used to transmit the signal. It can be understood that, if the network device sends a signal to the terminal, the signal is specifically transmitted on the second beam, and the terminal receives the signal on the first beam.
  • the network device If the network device does not receive the ACK message in the n+k1 time slots and does not receive the NACK message, the signal is transmitted using the last used beam or the default beam. It can be understood that, if the network device sends a signal to the terminal, the signal is specifically sent on the non-second beam, and the terminal usually receives the signal on the non-first beam.
  • the terminal sends an ACK message to the network device in the n+k1 time slot, that is, the terminal successfully checks the beam configuration information, and the terminal can learn the first beam configured by the beam configuration information, and then the terminal can be configured.
  • the first beam and the non-first beam are identified.
  • the network device may have received the ACK message or may not receive the ACK message. Based on this, in the case that the terminal sends an ACK message, subsequently, the terminal may perform step S305.
  • the processing procedure of the network device and the terminal may refer to the related description in the foregoing Embodiment 2, and details are not described herein again.
  • step S305a, S305b or S305c can be performed. It can be understood that if S304a is specifically executed in S304, S305a or S305c may be performed in S305; if ACK message is not received in S304c, S305b or S305c may be performed.
  • S305a in the n+k1+r time slots to the n+k1+r+m1 time slots, if the signal is received on the first beam, the network device sends the signal by using the second beam in the time slot. That is, the network device receives the ACK message in the n+k1 time slot, and the terminal uses the first beam to receive the signal.
  • r is the preset duration
  • m1 is an integer greater than or equal to 1.
  • M1 may be a value configured by signaling, or a preset value such as a value specified in the protocol.
  • S305b in the n+k1+r time slots to the n+k1+r+m1 time slots, if a signal is received on a beam other than the first beam (ie, a non-first beam) in the beam set, It is indicated that the network device does not receive the ACK message in the n+k1 time slot, and may continue to perform one of the following two methods:
  • Manner 1 The terminal sends an ACK message to the network device, and starts the timer T1. When the timer T1 reaches the preset time, the signals are received by using the beams in the beam set. In this manner, the terminal may send an ACK message to the network device in the same time slot or a number of time slots after receiving the signal.
  • FIG. 10 is an example in which S305a is specifically executed.
  • the timing of the timer T1 that the terminal is turned on in the n+k1 time slot has reached a preset duration, and usually reaches a preset time duration timer.
  • the timing is automatically stopped, so in Mode 1, the terminal can re-enable the timer T1 instead of restarting the timer T1.
  • Manner 2 The terminal sends an error indication to the network device, where the error indication is used to instruct the network device to send the beam configuration information to the terminal again.
  • the error indication is used to instruct the network device to send the beam configuration information to the terminal again.
  • the technical solution provided in this embodiment may be applied to a scenario in which a terminal supports multiple beam transmission.
  • the network device can obtain the capability of the terminal to support the multi-beam transmission by sending the indication information to the terminal, or the network device can actively report the capability of the terminal to support the multi-beam transmission to the network device, so that the network device knows The capabilities of the terminal, such that the network device supports the method provided by this embodiment.
  • the timer T1 when the terminal sends an ACK message for the beam configuration information to the network device, the timer T1 is started; when the network device receives the ACK message, the timer T2 is started. Moreover, when the terminal reaches the preset duration in the timing of the timer T1, the terminal uses the first beam reception signal configured by the beam configuration information.
  • the technical solution provided in this embodiment can ensure that, in the downlink beam configuration process, the network device receives the ACK message or the NACK message for the beam configuration information, or does not receive the ACK. In the case that the message does not receive the NACK message, the behavior of the terminal and the network device can be consistent, thereby improving the signal transmission performance.
  • FIG. 12 is a schematic diagram of a beam configuration method according to an embodiment of the present disclosure.
  • the method provided in this embodiment may include the following steps:
  • the first beam is a transmit beam
  • the second beam is a receive beam.
  • the beam configuration process provided in this embodiment is specifically an uplink beam configuration process.
  • S403 The terminal checks the beam configuration information.
  • an ACK message is sent to the network device in the n+k1 time slot, and the timer T1 is started.
  • the timing of the timer T1 reaches the preset duration, the signals are transmitted using the beams in the beam set, as shown in FIG. Before the scheduled time of the timer T1 reaches the preset duration, the signal is transmitted using the last used beam or the default beam.
  • a NACK message is sent to the network device in the n+k1 time slot.
  • the signal is transmitted using the last used beam or the default beam.
  • the beam set may include at least one of the following: a transmit beam that is used last time by the terminal, a transmit beam that is used by the terminal by default, a beam that covers the first beam, and the like.
  • step S404a, S404b or S404c can be performed. It can be understood that, if the terminal sends an ACK message to the network device in S403, the network device may perform S404a or S404c. If the terminal sends a NACK message to the network device in S403, the network device may perform S404b or S404c.
  • the terminal sends an ACK message to the network device in the n+k1 time slot, that is, the terminal successfully checks the beam configuration information, and the terminal can learn the information of the first beam configured by the beam configuration information, and further The first beam and the non-first beam can be identified.
  • the network device may have received the ACK message or may not receive the ACK message.
  • the terminal may perform step S405.
  • the processing flow of the network device and the terminal may refer to the related description in the foregoing Embodiment 2, and details are not described herein again.
  • the terminal uses the multi-beam transmission.
  • the signal that is, the terminal successfully receives the beam configuration information, and therefore, the beam configuration process ends.
  • the beam configuration process is performed again, where the beam configuration process may be performed again, refer to the foregoing S204c.
  • S404c and S204c is that when the timing of the timer T1 of the terminal reaches the preset duration, the signals are transmitted using the beams in the beam set.
  • the timer T1 when the terminal sends an ACK message for the beam configuration information to the network device, the timer T1 is started; when the network device receives the ACK message, the timer T2 is started. Moreover, when the terminal reaches the preset duration in the timing of the timer T1, the terminal transmits the signal using the first beam configured including the beam configuration information.
  • the technical solution provided in this embodiment can ensure that, in the uplink beam configuration process, when the network device receives the ACK message or the NACK message for the beam configuration information, neither the ACK message nor the ACK message is received. When the NACK message is received, the behavior of the terminal and the network device can be consistent, thereby improving signal transmission performance.
  • FIG. 13 to FIG. 14 are schematic diagrams of a beam configuration method according to an embodiment of the present disclosure.
  • the method provided in this embodiment may include the following steps:
  • the network device sends beam configuration information to the terminal in the nth time slot. Where n is an integer greater than or equal to zero.
  • the beam configuration information is used to indicate that the terminal transmits a signal on the first beam.
  • the beam configuration process provided in this embodiment is specifically a downlink beam configuration process. If the first beam is a transmit beam, the beam configuration process provided in this embodiment is specifically an uplink beam configuration process.
  • S502 The terminal receives the beam configuration information in the nth time slot.
  • S503 The terminal checks the beam configuration information.
  • an ACK message is sent to the network device in the n+k1 time slot.
  • the network device may perform S504a or S504c. If the terminal sends a NACK message to the network device in S503, the network device may execute S504b or S504c.
  • S504a if the network device receives the ACK message in the n+k1 time slot, sending, to the n+k1+q time slot terminal, indication information indicating that the ACK message is successfully transmitted, and transmitting the indication information , the timer T2 is turned on. Then, when the timing of the timer T2 reaches the preset duration, the second beam is used to transmit the signal.
  • the terminal receives the indication information indicating that the ACK message is successfully transmitted in the n+k1+q time slots, and starts the timer T1 when the indication information is received, that is, the n+k1+q time slots. Then, when the timing of the timer T1 reaches the preset duration, the signal is transmitted using the first beam. As shown in Figure 13 and Figure 14. 14 is a diagram in which the network device transmits the signal using the beam 1 in the nth time slot, and the terminal uses the beam a to transmit the signal in the nth time slot as an example.
  • q is an integer greater than or equal to 1.
  • q can be a value configured by signaling, or a preset value such as a value specified in the protocol.
  • the network device and the terminal pass three "handshake" (for example, S501 and S503 in FIG. 13 and the step of transmitting/receiving the foregoing indication information in S504a), and the network device sends a indication to the terminal.
  • the indication information of the ACK message of the beam configuration information is successfully transmitted, the timer T2 is started; when receiving the indication information, the terminal starts the timer T1; and when the timing of the respective timer reaches the same preset duration, the timer is used.
  • the first beam/second beam transmits signals, thereby making the behavior of the terminal and the network device consistent, thereby improving signal transmission performance.
  • the network device receives the NACK message, and the network device does not receive the ACK message or the NACK message, the network device does not send the indication information, and therefore, the network device and the terminal do not start.
  • the timer when the beam configuration process is performed again in both cases, it is possible to perform the process shown in FIG. 13 so that the behavior of the terminal and the network device are consistent.
  • the values of the same reference in the foregoing two embodiments may be the same or different.
  • the preset durations in the embodiments may be the same or different, and, for example, n1 in each embodiment. Can be the same or different. Other examples are not listed one by one.
  • Embodiments 1 and 4 may be applicable to a scenario in which the terminal supports multiple beam transmission, and may also be applied in a scenario in which the terminal supports single beam transmission.
  • the foregoing Embodiments 2 and 3 are applicable to a scenario in which the terminal supports multiple beam transmission.
  • Whether the terminal supports multi-beam transmission is determined by the configuration of the terminal, and the multi-beam transmission refers to transmitting signals or receiving signals by using multiple beams at the same time.
  • the network device may send an indication information to the terminal to indicate whether the terminal reports the capability of the terminal to support multi-beam transmission, or the terminal may actively report to the network device whether the terminal supports multi-beam transmission. .
  • the network device After the network device learns whether the terminal supports the capability of multi-beam transmission, it may indicate in the configuration information whether the terminal uses the multi-beam transmission signal or does not use the multi-beam transmission signal. In addition, the network device may indicate, in the configuration information, that the terminal performs beam configuration by using one of Embodiments 1 to 4.
  • the embodiments of the present application may perform the division of the function modules on the terminal and the network device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the communication device shown in FIG. 15 may include a transceiving unit 1501 and a processing unit 1502.
  • the communication device can be a terminal or a network device.
  • the terminal can be used to perform the steps performed by the terminal in any of the foregoing embodiments 1 to 4.
  • the transceiver unit 1501 is configured to receive beam configuration information sent by the network device, where the beam configuration information is used to indicate that the terminal uses the first beam to transmit the signal, and the processing unit 1502 is configured to use the first time.
  • the configuration transceiver unit 1501 uses at least the first beam transmission signal; wherein, the first moment is a moment when the terminal sends an ACK message for the beam configuration information to the network device.
  • the first time may be the n+k1th time slot.
  • the first preset duration may be a preset duration.
  • the transceiver unit 1501 can be configured to execute S202, S302, and S402.
  • the processing unit 1502 is specifically configured to: when the timer is started from the first moment, and when the timing time of the timer reaches the first preset duration, the transceiver unit 1501 is configured to use at least the first beam transmission signal.
  • the timer may be the timer T1
  • the transceiver unit 1501 may execute S202, S301, and S401.
  • the processing unit 1502 can perform S203, S303, and S403 in conjunction with the transceiver unit 1501.
  • the processing unit 1502 is further configured to: when the timer does not reach the first preset duration, if the transceiver unit 1501 receives the beam configuration information again, stop the timer, and start the timing at the second moment.
  • the second time is a time when the terminal sends an ACK message for the re-received beam configuration information to the network device.
  • the second time instant is the n+k1+n2+k1 time slots.
  • the processing unit 1502 may be configured to perform steps other than transmission (including reception and transmission) performed by the terminal in S204c.
  • the processing unit 1502 is specifically configured to: when the first preset duration from the first moment arrives, configure the transceiver unit 1501 to use the last used beam or the default, in addition to using the first beam.
  • the beam used to transmit the signal For example, in conjunction with FIG. 8 and FIG. 10 to FIG. 12, the processing unit 1502 can perform S303 and S403 in conjunction with the transceiver unit 1501.
  • processing unit 1502 is further configured to: if the transceiver unit 1501 receives a signal on the first beam, configure the transceiver unit 1501 to receive the signal using the first beam. For example, in conjunction with FIG. 8, processing unit 1502 can perform S305a in conjunction with transceiver unit 1501.
  • the transceiver unit 1501 is further configured to: after receiving the signal on the beam other than the first beam, after the timing time of the timer reaches the first preset duration, send the target to the network device The ACK message of the beam configuration information; the processing unit 1502 is further configured to: when the transceiver unit 1501 sends the ACK message, start the timer, and when the timing time of the timer reaches the first preset duration, configure the transceiver unit 1501 to receive by using the first beam. signal.
  • the transceiver unit 1501 can be configured to perform the step of transmitting an ACK message in Mode 1.
  • Processing unit 1502 can perform the steps in mode 1 other than transmission.
  • the transceiver unit 1501 is further configured to: if a signal is received on a beam other than the first beam, send an error indication to the network device, where the error indication is used to instruct the network device to retransmit the beam configuration information.
  • the transceiving unit 1501 can be configured to perform the step of transmitting an error indication in mode 2.
  • the processing unit 1502 is further configured to: if the second preset duration from the third moment arrives, the configuration transceiver unit 1501 sends a signal by using the first beam; wherein the third moment is a timer The time of the scheduled time reaches the preset time.
  • the third time may be the n+k1+r time slots, the second preset time length is m2 time slots, and the processing unit 1502 may perform S405 in conjunction with the transceiver unit 1501.
  • the transceiver unit 1501 is configured to receive beam configuration information that is sent by the network device, where the beam configuration information is used to instruct the terminal to use the first beam transmission signal, to send an ACK message for the beam configuration information to the network device, and to receive the ACK message sent by the network device.
  • An indication of successful transmission is configured to configure the transceiver unit 1501 to use the first beam transmission signal when the preset time length starts from the fourth time.
  • the fourth time is the time when the terminal receives the indication information. Referring to Figure 13, the fourth time instant is the n+k1+q time slots.
  • the transceiver unit 1501 can be configured to perform the transmitting and receiving steps performed by the terminal in S502, S503, and S504a.
  • the processing unit 1502 is specifically configured to: when the terminal starts the timer at the fourth time, and configures the transceiver unit 1501 to transmit the signal by using the first beam when the timer time reaches the preset time.
  • the timer is a timer T1
  • the processing unit 1502 can perform S504a in conjunction with the transceiver unit 1501.
  • the network device can be used to perform the steps performed by the network device in any of the above embodiments 1 to 4.
  • the transceiver unit 1501 is configured to send beam configuration information to the terminal, where the beam configuration information is used to instruct the terminal to use the first beam to transmit the signal.
  • the processing unit 1502 is configured to configure the transceiver unit 1501 to use the second beam transmission signal corresponding to the first beam at the first time; wherein, the first time is a time when the network device receives the ACK message for the beam configuration information sent by the terminal. Referring to FIG. 4, FIG. 6, FIG. 8, and FIG. 10 to 12, the first time may be the n+k1th time slot.
  • the transceiver unit 1501 can be configured to execute S201, S301, and S401.
  • the processing unit 1502 is specifically configured to: start a timer at a first moment, and configure the transceiver unit 1501 to use a second beam corresponding to the first beam when the timing time of the timer reaches a preset duration.
  • Transmission signal. 4, FIG. 6, FIG. 8, FIG. 10, FIG. 12, the timer may be a timer T2, and the processor 1502 may perform the steps performed by the network device in S204a, S204c in conjunction with the transceiver unit 1501, S304a, and FIG. Steps performed by the network device, S404a.
  • the transceiver unit 1501 is further configured to: receive an error indication sent by the terminal, where the error indication is used to instruct the network device to retransmit the beam configuration information; and, according to the error indication, retransmit the beam configuration information to the terminal. .
  • the transceiver unit 1501 can be configured to perform the step of receiving an error indication in Mode 2.
  • the transceiver unit 1501 is configured to send beam configuration information to the terminal, where the beam configuration information is used to indicate that the terminal uses the first beam transmission signal; the ACK message sent by the terminal for the beam configuration information is sent; and the terminal is sent an indication that the ACK message is successfully transmitted. information.
  • the processing unit 1502 is configured to: when the preset duration from the fourth time arrives, configure the transceiver unit 1501 to use the second beam transmission signal corresponding to the first beam; wherein the fourth time is a time when the network device sends the indication information. Referring to Figure 13, the fourth time instant is the n+k1+q time slots.
  • the transceiver unit 1501 is configured to perform the transmitting and receiving steps performed by the network device in S501, S503, and S504a.
  • the processing unit 1502 is specifically configured to: when a timer is started at a fourth time, and when the timing time of the timer reaches a preset duration, the transceiver unit 1501 is configured to use the second beam corresponding to the first beam. Transmission signal. Referring to FIG. 13, the processing unit 1502 can perform S504a in conjunction with the transceiver unit 1501.
  • the communication device provided by the embodiment of the present application can be used to perform the foregoing beam configuration method. Therefore, the technical effects of the present invention can be referred to the foregoing method embodiments.
  • the communication device 160 may include a memory 1601, a processor 1602, a transceiver 1603, and a bus 1604.
  • the memory 1601, the processor 1602, and the transceiver 1603 are connected to each other through a bus 1604.
  • the above processing unit 1502 can be implemented by the processor 1602.
  • the transceiver unit 1501 can be implemented by the transceiver 1603.
  • the memory 1601 is used to store computer programs.
  • the transceiver 1603 is configured to communicate with other communication devices (eg, network devices) under the control of the processor 1602.
  • the communication device 150 is a network device
  • the network device when the computer program stored in the memory 1601 is executed by the processor 1602, the network device is caused to perform the steps performed by the network devices in the first to fourth embodiments above.
  • the transceiver 1603 is configured to communicate with other communication devices (e.g., terminals) under the control of the processor 1602.
  • the memory 1601 may be a memory chip or the like.
  • the processor 1602 can be a CPU, a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus 1604 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the terminal uses at least the first when the first preset duration from the first moment arrives.
  • the beam transmission signal where the first time is specifically the yth time slot, for example, in the first embodiment and the third embodiment, the yth time slot is specifically the (n+k1) where the terminal sends an ACK message to the network device.
  • the yth time slot may be the (n+k1+n2+k1) time slot in which the terminal sends an ACK to the network device.
  • the yth time slot is not directly related to the nth time slot in which the network device sends the beam configuration information to the terminal, and only represents the time when the terminal sends the ACK message to the network device; optionally, the first time may also be a network.
  • the device After receiving the ACK message fed back by the terminal, the device sends the indication information to the terminal, and the terminal receives the indication information.
  • the yth time slot is specifically the terminal receiving the network device.
  • the (n+k1+q)th slot of the indication information is specifically the terminal receiving the network device.
  • the second beam transmission signal corresponding to the first beam is used, where the first moment is specifically the yth time slot, and the network device is at the yth time.
  • the slot receives the ACK message sent by the terminal.
  • the yth time slot is specifically the (n+k1) time slot in which the network device receives the ACK message fed back by the terminal.
  • the yth time slot may be used. It is the (n+k1+n2+k1) time slot in which the network device receives the ACK fed back by the terminal.
  • the yth time slot is not directly related to the nth time slot in which the network device sends the beam configuration information to the terminal, and only represents the time slot in which the network device receives the ACK message fed back by the terminal; the network device receives the sent by the terminal. After the ACK, the terminal sends an indication message to the terminal to confirm that it has received the ACK message.
  • the first time may be a time slot in which the terminal determines to receive the indication information sent by the network device, for example, as shown in FIG. 13 to FIG.
  • the yth time slot is specifically (n+k1+q) time slots.
  • the network device sends beam configuration information to the terminal, where the beam configuration information is specifically used to configure the terminal to use the beam used for transmitting the signal.
  • the network device may indicate a TCI to the terminal by transmitting a configuration number TCI bit, where the TCI bit corresponds to a TCI state, and the TCI state corresponds to a quasi-homolog QCL relationship between one or more reference signals and a data channel reference signal.
  • a TCI state corresponds to the beam of the transmitted signal.
  • the signaling for transmitting the beam configuration information is referred to as activation signaling.
  • the terminal should apply activation signaling after the first preset duration arrives under the indication of the beam configuration information or the activation signaling of the network device. Specifically, the network is enabled in the next time slot after the first preset time is reached.
  • the beam used by the transmission signal corresponding to the TCI state in the beam configuration information transmitted by the device uses the beam for signal transmission when there is signal transmission, for example, transmitting a signal by using a transmitting beam or receiving a signal by using a receiving beam.
  • the terminal should apply the MAC-CE indication information, that is, adjust. Or switch to the receive beam indicated by the network device.
  • the network device should adjust the transmit beam at the same time to ensure the beam alignment of the network device and the terminal.
  • This method is applied to a variety of other signals and channels involving beams, including PDCCH/PUCCH/CSI-RS/SRS, and available TCI configurations for PDSCH.
  • the terminal after receiving the beam configuration information sent by the network device to the terminal through the PDSCH, the terminal sends a HARQ-ACK message to the network device, where the HARQ-ACK message is sent to the network device in the time slot (y).
  • the terminal is The activation signaling is applied at the moment, that is, the beam used by the transmission signal indicated in the beam configuration information transmitted by the network device is started to be used, so that the signal is used for signal transmission when there is a signal transmission requirement.
  • N is the number of slots in one subframe, and the value of N is related to the system parameter ⁇ , as shown in Table 4 and Table 5 below.
  • Table 4 Number of OFDM symbols included in each slot of the normal cyclic prefix Number of slots included in each frame Number of slots included in each subframe
  • Table 5 Number of OFDM symbols included in each slot of the extended cyclic prefix Number of slots included in each frame Number of slots included in each subframe
  • is the identifier of the system parameter, and its value is shown in Table 6 below.
  • the unit lengths of the uplink time slot and the downlink time slot may be different.
  • the subcarrier spacing (SCS) of the uplink transmission and the downlink transmission may be different.
  • the uplink transmission uses a 15 kHz SCS, and the length of one uplink time slot is 1 millisecond.
  • the length of one downlink time slot is 0.125 milliseconds.
  • the uplink transmission uses a 15 kHz SCS, that is, ⁇ f is 15 kHz, and its corresponding system parameter ⁇ is zero.
  • the downlink transmission uses a 120 kHz SCS, that is, ⁇ f is 120 kHz, and its corresponding system parameter ⁇ is 3. Therefore, the system parameters corresponding to the uplink and downlink transmissions are different, and the unit lengths of the uplink time slot and the downlink time slot are also different, which causes the network device and the terminal to use the time slot corresponding to the first time when the ACK is sent, and the time slot to which the activation signaling is applied may be different. Understanding. For example, the terminal sends an ACK in the 0th uplink time slot, and after 3 milliseconds, that is, after 3 uplink time slots, in the 4th uplink time slot, the terminal applies activation signaling. For a network device, 3 milliseconds is equivalent to 24 downlink time slots, that is, the 25th downlink time slot after 24 uplink time slots, and the network device applies activation signaling.
  • the network device and the terminal respectively use the following time slot and the uplink time slot as the timing standard. This leads to inconsistencies in the understanding of the time (slot) of application activation signaling by the network device and the terminal device.
  • the time slot corresponding to the first time that is, the yth time slot or the time slot (y) referred to above is used. There are several ways to determine:
  • the first mode the first time, that is, the yth time slot is an uplink time slot (y), that is, a system in which the terminal is based on an uplink carrier component (CC) or an uplink part bandwidth (BWP) or an uplink frame. Parameters to determine when the application activation signaling is applied.
  • y uplink time slot
  • CC uplink carrier component
  • BWP uplink part bandwidth
  • the first time is an uplink time slot (y) that the terminal sends an acknowledgement ACK message for the beam configuration information to the network device, where the terminal is in the uplink time slot (y)
  • the timer is started, and the first preset duration is the length of the timer, which is x milliseconds, specifically, 3 milliseconds; or m uplink time slots, where m is a positive integer; for example, according to Table 6
  • the length of the timer that is, the first preset duration may be three uplink time slots.
  • the time slot for the terminal to use the first beam transmission signal is: Where slot(y) represents an uplink time slot (y), which is the first time; For the first preset duration, 1 represents the next slot after the arrival of the first preset duration; That is, the uplink slot (y) that the terminal sends an ACK message to the network device starts the timer, and the first preset duration is passed.
  • the activation signaling is formally applied; where N is the number of time slots in one subframe, and ⁇ is equal to the uplink carrier component of the acknowledge ACK or the system parameter ⁇ UL of the uplink bandwidth part or the uplink frame.
  • the first beam transmission signal is used, and the first use is used herein.
  • the beam transmission signal that is, the application activation signaling, enables the first beam indicated in the beam configuration information corresponding to the activation signaling, and uses the first beam transmission signal when there is a signal transmission requirement.
  • the network device determines the time slot corresponding to the first moment and the moment when the activation signaling is applied in the same manner.
  • the second mode the first time, that is, the yth time slot is the downlink time slot (y), that is, the terminal determines the time slot for applying the activation signaling according to the system parameter configuration of the downlink CC or the downlink BWP or the downlink frame.
  • the first time is a downlink time slot (y) corresponding to an uplink time slot (z) that the terminal sends an acknowledgement ACK message for the beam configuration information to the network device, where the terminal
  • the timer is started in the downlink time slot (y), where the first preset duration is the length of the timer, which is x milliseconds, specifically, 3 milliseconds; or m downlink time slots, where m is A positive integer; for example, according to Table 6, when the subcarrier spacing of one uplink time slot is 120 kHz and the length of one downlink time slot is 0.125 milliseconds, the length of the timer, that is, the first preset duration may be 24 Downlink time slot.
  • the method of converting the uplink time slot (z) to the downlink time slot (y) may be among them It is a rounding down symbol.
  • ⁇ UL and ⁇ DL are system parameters used for uplink transmission and downlink transmission, respectively.
  • the time slot for the terminal to use the first beam transmission signal is: among them Indicates a downlink time slot (y), which is the first time, where z is a number of an uplink time slot (z) for which the terminal transmits a positive acknowledgement ACK message for beam configuration information to the network device, and ⁇ DL is The terminal receives a downlink carrier component of the physical downlink shared channel or a system parameter of a downlink bandwidth part or a downlink frame; the ⁇ UL is an uplink carrier component or an uplink bandwidth part or an uplink frame that the terminal sends a positive acknowledgement ACK message to the network device.
  • System parameters Express The result is rounded down;
  • 1 For the first preset duration, 1 represents the next slot after the arrival of the first preset duration; That is, the downlink slot (y) that the terminal sends an ACK message to the network device starts the timer, and the first preset duration is passed.
  • the activation signaling is formally applied; where N is the number of time slots in one subframe, and ⁇ is the system parameter of the downlink carrier component or the downlink bandwidth part or the downlink frame of the terminal receiving the physical downlink shared channel. DL .
  • the first preset duration Equal to 3 milliseconds, or according to Tables 4 and 6, when the subcarrier spacing of one uplink time slot is 120 kHz, and the number of time slots in one subframe is 8, the first preset duration There are 24 downlink time slots. Therefore, after the first preset time period is reached, that is, 3 milliseconds or the next downlink time slot after 24 downlink time slots, the first beam transmission signal is used.
  • the first beam transmitted in the beam configuration information corresponding to the activation signaling is enabled by using the first beam transmission signal, that is, the activation signaling is used, and the first beam is used when there is a signal transmission requirement. Transmission signal.
  • the uplink frame has a timing advance (TA, time advance) compared to the downlink frame
  • TA timing advance
  • time advance time advance
  • the impact of the TA needs to be considered when determining the application activation signaling timing by using the downlink system parameter configuration, such as As shown in FIG. 19, the first preset duration is equivalent to TA + m milliseconds.
  • the network device determines the time slot corresponding to the first moment and the time slot of the application activation signaling in the same manner.
  • the third way the terminal compares the uplink and downlink system parameters and determines one of them as the basis for the unified time. For example, the terminal compares the carrier component or the bandwidth portion or the system parameter ⁇ of the uplink and downlink frames, and the system parameter corresponding to the smaller subcarrier spacing of the uplink subcarrier spacing and the downlink subcarrier spacing is used as the range of the time metric as the first moment. And the first preset duration basis, that is, the moment when the application activation signaling is determined.
  • the terminal starts a timer in a time slot (y) that sends an ACK to the network device, where the time slot (y) is a carrier component or a bandwidth portion corresponding to a smaller subcarrier interval in the uplink subcarrier interval and the downlink subcarrier interval.
  • the time slot (y) corresponding to the system parameter ⁇ of the uplink and downlink frames may be, for example, an uplink time slot (y) or a downlink time slot (y).
  • the time slot for the terminal to use the first beam transmission signal is: Uplink component carrier or upstream bandwidth part of the application wherein, ⁇ is the smaller value of ⁇ DL and ⁇ UL is, ⁇ UL terminal sends an acknowledgment ACK message or a system parameters upstream frame; ⁇ DL receiving a physical downlink terminal shared channel Downstream carrier component or system parameter of downlink bandwidth part or downlink frame.
  • is a smaller value ⁇ UL in ⁇ DL and ⁇ UL
  • slot(y) is also an uplink time slot (y) corresponding to ⁇ UL .
  • the network device determines the time slot corresponding to the first moment and the time slot of the application activation signaling in the same manner.
  • the system parameter ⁇ UL of the uplink CC or the uplink BWP or the uplink frame may be an uplink system parameter ⁇ HARQ-ACK applied by the terminal at the time of sending the ACK message, or may be an uplink system parameter applied by the terminal at the time of transmitting the PUSCH.
  • ⁇ PUSCH , PUSCH refers to the channel occupied by the terminal sending an ACK message to the network device.
  • the uplink system parameter ⁇ UL may also be an uplink system parameter ⁇ PUCCH applied by the terminal to the PUCCH time, where the PUCCH is the channel occupied by the terminal sending the ACK message to the network device; the ⁇ PUCCH may also be the uplink system parameter corresponding to the PUCCH scheduling the PUSCH. PUCCH .
  • the system parameter ⁇ DL of the downlink CC or the downlink BWP or the downlink frame may be the downlink system parameter ⁇ PDSCH applied by the terminal at the time of receiving the PDSCH , or may be the downlink system parameter ⁇ HARQ-ACK applied by the terminal at the time of transmitting the ACK message.
  • the PDSCH refers to the channel occupied by the activation signaling sent by the network device to the terminal.
  • ⁇ DL downlink system parameter may also be a terminal receives PDCCH downlink PDCCH system parameters [mu] application time, the PDCCH is a PDCCH scheduling a PDSCH terminal, system parameters [mu] a downlink PDCCH scheduling a PDSCH of the downlink is a system parameter ⁇ PDCCH.
  • the first time is a time slot in which the terminal sends an ACK to the network device.
  • the first time is the first time or the last time the terminal sends the network device.
  • An uplink time slot of the acknowledgement ACK message sent for the beam configuration information, or an uplink of the acknowledgement ACK message for the beam configuration information sent by the terminal device for the first time or the last time The downlink slot corresponding to the slot (z).
  • the method is: the terminal sends the ACK time slot to the network device for the first time as the first time, and the timer is started to start timing. After the preset duration arrives, for example, after 3 milliseconds, the application of the activation signaling is started; the other way is: the terminal sends the ACK to the network device as the first time, that is, the fourth time to send the ACK to the network device. As the first moment, the timer is started to start timing, and after the first preset duration arrives, for example, 3 milliseconds, the application activation signaling is started.
  • the first time may be a time when the terminal sends an indication message to the terminal after receiving the ACK returned by the network device, and confirms that the terminal has started the ACK message, and the time when the terminal starts the timer, for example, FIG. 12 to FIG.
  • the yth time slot is specifically (n+k1+q) time slots.
  • the network device determines the time slot corresponding to the first moment and the time slot of the application activation signaling in the same manner.
  • the ACK message sent or fed back by the terminal to the network device may be a hybrid automatic repeat request-acknowledgment (HARQ-ACK).
  • HARQ-ACK hybrid automatic repeat request-acknowledgment
  • the network device and the terminal can determine the time slot corresponding to the first time and the time slot of the application activation signaling based on the same principle.
  • the network device sends the beam configuration information to the terminal, and the terminal applies the beam configuration information to the terminal.
  • the complete process is shown in Figure 21, as follows:
  • Step 601 The network device sends RRC configuration information to the terminal.
  • the RRC configuration involved in the embodiment of the present application mainly refers to a beam of various physical channels or signals, or a QCL relationship, or a spatial relation, including:
  • Control resource set (CORESET) configuration For each CORESET, a plurality of possible beams are configured to the terminal by adding and releasing a transmission configuration number state (TCI-State);
  • TCI-State transmission configuration number state
  • Physical uplink control channel (PUCCH) configuration for all PUCCH resources, a plurality of possible beams are configured to the terminal by adding and releasing PUCCH-SpatialRelationInfo;
  • Channel state information-reference signal (CSI-RS) configuration For all CSI-RS resources, multiple possible configurations are configured to the terminal by adding and releasing a transmission configuration number state (TCI-State) Beam
  • PDSCH Physical downlink shared channel
  • TCI configuration For the PDSCH, a plurality of possible beams are configured to the terminal by adding and releasing a transmission configuration number state (TCI-State);
  • the RRC configuration is generally sent through the PDSCH. Depending on the size of the configuration information, it may be divided into one or more TBs to be sent to the terminal in one or more slots.
  • Step 602 The network device sends a Media Access Control Control Element (MAC-CE) activation signaling to the terminal.
  • MAC-CE Media Access Control Control Element
  • the MAC-CE activation signaling means that, for various physical channels/signals, the network device selects a specific one of a plurality of possible beam or QCL relationships or spatial relationships configured in step 601. Signaling of beam or QCL relationships or spatial relationships.
  • TCI activation signaling for CORESET Use MAC-CE activation signaling to specify a specific TCI for a particular CORESET.
  • spatial relation activation signaling of PUCCH MAC-CE activation signaling is used to specify a specific spatial relation for a specific PUCCH.
  • Si is 1, indicating that the spatial relation of PUCCH-SpatialRelationInfoID is i is activated, and Si is 0, indicating that the spatial relation of PUCCH-SpatialRelationInfoID is i is not activated.
  • TCI activation signaling of CSI-RS specifically a semi-persistent (SP) CSI-RS. Since the CSI-RS is activated in units of sets, it is necessary to indicate a specific TCI for a specific CSI-RS resrouce set. If there are multiple CSI-RS resources in the set, then a specific TCI needs to be indicated for each CSI-RS resource.
  • SP semi-persistent
  • PDSCH TCI selection signaling MAC-CE selects up to 8 TCI states for PDSCH. Ti is 1, indicating that the TCI state with the TCI-StateID i is activated, Ti is 0, and the TCI state indicating that the TCI-StateID is i is not activated.
  • SRS spatial relation activation signaling specifically a semi-persistent (SP) CSI-RS.
  • SP SRS is a step of directly indicating a spatial relation by MAC-CE, and there is no RRC to configure multiple possible spatial relations. Since it is activated in units of sets, it is necessary to indicate a specific spatial relation for a specific SRS resource set. If there are multiple SRS resources in a set, a specific spatial relation needs to be indicated for each SRS resource.
  • Fi+Resource Idi has a total of 8 bits as the spatial relation indication of the i-th SRS resource.
  • C is used to indicate whether or not a byte including the Resource Serving Cell ID field (s) and the Resource BWP ID field (s) exists.
  • the SUL is used to indicate whether this signaling is applied to a supplementary uplink (supplementary uplink).
  • the MAC-CE activation signaling is generally sent through the PDSCH. Depending on the size of the signaling, it may be divided into one or more TBs to be transmitted in one or more slots.
  • Step 603 The terminal receives the PDSCH and decodes it, obtains the TB, and performs a CRC check to determine whether the foregoing RRC configuration signaling and MAC-CE activation signaling are correctly received.
  • Step 604 if the CRC check is successful in step 603, the terminal can prepare ACK feedback for the PDSCH. Correspondingly, the network device receives the ACK fed back by the terminal.
  • the terminal and the network device determine the first time and the first preset duration according to the foregoing Embodiments 1 to 4, start a timer at the first moment, and thereby determine to apply the MAC-CE activation signaling. time.
  • Step 605 The terminal reads the specific content of the MAC-CE activation signaling from the bit sequence.
  • step 606 the terminal applies MAC-CE activation signaling. Specifically, when the timer is expired in step 604, the terminal starts to apply the content of the MAC-CE activation signaling, including:
  • the network device also starts to use the indicated beam for CORESET/PDSCH/SP CSI-RS transmission and PUCCH/SRS reception.
  • the implementation of the embodiment of the present application can avoid the problem that the effective time of the beam configuration information may be mismatched between the transmitting end and the receiving end.
  • the timer is started, and the timer is started.
  • the time reaches the preset duration the second beam transmission signal corresponding to the first beam is used, and the start timer and the preset duration are unified according to the uplink time slot or the downlink time slot, and the ACK is sent for the first time in the terminal.
  • the timer is started. Therefore, when the terminal sends an ACK message and the network device receives the ACK message, it helps to achieve the behavior of the network device and the terminal, thereby improving signal transmission. effectiveness.
  • the management node provided by the embodiment of the present application can be used to perform the above-mentioned method for locking the access operation of the shared resource. Therefore, the technical solution can be obtained by referring to the foregoing method embodiment. Narration.
  • the steps of the method or algorithm described in connection with the disclosure of the present application may be implemented in a hardware manner, or may be implemented by a processing module executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请实施例公开了一种波束配置方法和装置,有助于实现终端在使用网络设备配置的第一波束传输信号时,网络设备使用与该第一波束对应的第二波束传输信号,例如第一波束和第二波束同属一个波束对,从而提高信号传输效率。该方法可以包括:网络设备向终端发送波束配置信息,其中,该波束配置信息用于指示终端使用第一波束传输信号;终端在成功接收该波束配置信息后,向网络设备发送ACK消息,并在从向网络设备发送ACK消息时开始的预设时长到达时,使用第一波束传输信号。网络设备接收该ACK消息,并在从接收到该ACK消息开始的该预设时长到达时,使用与第一波束对应的第二波束传输信号。

Description

一种波束配置方法和装置
本申请要求于2017年11月17日提交中国专利局、申请号为201711164925.X、申请名称为“一种波束配置方法和装置”的中国专利申请的优先权,以及2018年11月2日提交中国专利局、申请号为201811302964.6、申请名称为“一种波束配置方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束配置方法和装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在5G以及未来无线通信系统中,波束成型技术用来将传输信号的能量限制在某个波束方向内,从而增加信号通信效率。波束成型技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。
在采用波束成型技术的通信网络中,需要通过波束对准,实现接收端设备通过某一特定的接收波束接收到的信号来自发送端设备的某一特定发送波束,从而获得比较好的信号质量,否则无法取得比较高的通信效率甚至无法进行通信。随着通信信道环境的改变或通信设备(包括发送端设备或接收端设备)的移动等,可能导致信道质量较好的波束(包括发送波束或接收波束)发生改变,这就需要进行波束配置。
发明内容
本申请实施例提供了一种波束配置方法和装置,有助于实现终端在使用网络设备配置的第一波束传输信号时,网络设备使用与该第一波束对应的第二波束传输信号,例如第一波束和第二波束同属一个波束对,从而提高信号传输效率。
第一方面,本申请提供了一种波束配置方法,该方法包括:终端接收网络设备发送的波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;终端在从第一时刻开始的第一预设时长到达时,至少使用第一波束传输信号;其中,第一时刻是终端向网络设备发送针对波束配置信息的ACK消息的时刻。其中,第一预设时长可以大于或等于0。该波束配置信息可以是首次波束配置流程中的波束配置信息,也可以是再次波束配置流程中的波束配置信息。若至少使用第一波束传输信号具体是仅使用第一波束传输信号,则该技术方案可以应用于终端支持单波束传输的场景中;若至少使用第一波束传输信号具体是除第一波束外还使用其他波束传输信号,则该技术方案可以应用于终端支持单波束传输或多波束传输的场景中。该技术方案可以应用于下行波束配置场景中,也可以应用于上行波束配置场景中。该技术方案中,终端在向网络设备发送针对波束配置信息的ACK消息时,开启定时器,并在定时器的定时时间到达该预设时长时,使用第一波束传输信号;这样,若网络设备在接收到该ACK消息信息时,开启定时器,则在定时器的定时时间到达该预设时长时,使用与第一波束对应的第二波束传输信号,因此,在终端发送ACK消息,且网络设备接收到ACK消息的情况下,有助于实现在网络设备与终端的行为一致,从而提高信号传输效率。
在一种可能的设计中,终端在从第一时刻开始的第一预设时长到达时,至少使用第一波束传输信号,可以包括:终端在从第一时刻开启定时器,并在定时器的定时时 间到达第一预设时长时,至少使用第一波束传输信号。该可能的设计提供了一种通过定时器实现在从第一时刻开始的预设时长到达时,至少使用第一波束传输信号的方案,当然具体实现时不限于此。例如,可以通过设置时间窗的方式等实现。
在一种可能的设计中,该方法还可以包括:终端在定时器未达到第一预设时长时,若再次接收到波束配置信息,则停止定时器,并在第二时刻开启定时器;其中,第二时刻是终端向网络设备发送针对重新接收到的波束配置信息的ACK消息的时刻。该可能的设计可以应用于终端在向网络设备发送了ACK消息,而网络设备没有接收到该ACK消息的场景中。该场景中,如果网络设备在接收到该ACK消息信息时,开启定时器,则在定时器的定时时间到达该预设时长时,使用与第一波束对应的第二波束传输信号,则有助于实现网络设备与终端的行为一致。
在一种可能的设计中,终端在从第一时刻开始的第一预设时长到达时,至少使用第一波束传输信号,可以包括:终端在从第一时刻开始的第一预设时长到达时,除使用第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号。该可能的设计可以应用于终端支持多波束传输的场景中。
在一种可能的设计中,该方法还可以包括:终端若在第一波束上接收到信号,则使用第一波束接收信号。或,在定时器的定时时间到达第一预设时长之后,终端若在除第一波束之外的波束上接收到信号,则向网络设备发送针对波束配置信息的ACK消息,并在发送ACK消息时,开启定时器,在定时器的定时时间到达第一预设时长时,使用第一波束接收信号。或,终端若在除第一波束之外的波束上接收到信号,则向网络设备发送错误指示,错误指示用于指示网络设备重新发送波束配置信息。该可能的设计可以应用于终端支持多波束传输的场景中的下行波束配置流程中。这样有助于实现网络设备与终端的行为一致,从而提高信号传输效率。
在一种可能的设计中,该方法还可以包括:终端若在从第三时刻开始的第二预设时长到达时,使用第一波束发送信号;其中,第三时刻是定时器的定时时间到达预设时长的时刻。该可能的设计可以应用于终端支持多波束传输的场景中的上行波束配置流程中。这样有助于实现网络设备与终端的行为一致,从而提高信号传输效率。
第二方面,本申请提供了一种波束配置方法,该方法可以包括:网络设备向终端发送波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;网络设备在从第一时刻开始的预设时长,使用与第一波束对应的第二波束传输信号;其中,第一时刻是网络设备接收到终端发送的针对波束配置信息的ACK消息的时刻。其中,这里的预设时长可以是第一方面中的“第一预设时长”。
在一种可能的设计中,网络设备在从第一时刻开始的预设时长,使用与第一波束对应的第二波束传输信号,可以包括:网络设备在第一时刻开启定时器,并在定时器的定时时间到达预设时长时,使用与第一波束对应的第二波束传输信号。
在一种可能的设计中,该方法还可以包括:网络设备接收终端发送的错误指示,其中,错误指示用于指示网络设备重新发送波束配置信息;网络设备根据错误指示,重新向终端发送波束配置信息。
第二方面提供的任一种波束配置方法可以与第一方面提供的对应的波束配置方法结合使用,从而有助于实现网络设备与终端的行为一致,从而提高信号传输效率。关 于第一方面和第二方面提供的技术方案之间的对应关系,以及如何实现网络设备与终端的行为一致,可参考下述具体实施例。
第三方面,本申请提供了一种波束配置方法,该方法可以包括:终端接收网络设备发送的波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;终端向网络设备发送针对波束配置信息的ACK消息;终端接收网络设备发送的表示ACK消息传输成功的指示信息,并在从第四时刻开始的预设时长到达时,使用第一波束传输信号;其中,第四时刻是终端接收到指示信息的时刻。该技术方案可以应用于终端支持单波束传输或多波束传输的场景中。可以应用于下行波束配置场景中,也可以应用于上行波束配置场景中。该技术方案中,终端与网络设备之间通过三次“握手”,终端在从接收到网络设备发送的表示针对波束配置信息的ACK消息传输成功的指示信息时开始的预设时长到达时,使用第一波束传输信号;若网络设备在从发送该指示信息时开始的该预设时长到达时,使用第一波束对应的第二波束传输信号,则能够实现网络设备与终端的行为一致,从而提高信号传输效率。
在一种可能的设计中,终端在从第四时刻开始的预设时长到达时,使用第一波束传输信号,可以包括:终端在第四时刻开启定时器,并在定时器的定时时间到达预设时长时,使用第一波束传输信号。
第四方面,本申请提供了一种波束配置方法,该方法可以包括:网络设备向终端发送波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;网络设备接收终端发送的针对波束配置信息的ACK消息;网络设备向终端发送表示ACK消息传输成功的指示信息,并在从第四时刻开始的预设时长到达时,使用与第一波束对应的第二波束传输信号;其中,第四时刻是网络设备发送指示信息的时刻。
在一种可能的设计中,网络设备在从第四时刻开始的预设时长到达时,使用与第一波束对应的第二波束传输信号,可以包括:网络设备在第四时刻开启定时器,并在定时器的定时时间到达预设时长时,使用与第一波束对应的第二波束传输信号。
第四方面提供的任一种波束配置方法可以与第三方面提供的对应的波束配置方法结合使用,从而有助于实现网络设备与终端的行为一致,从而提高信号传输效率。具体可参考下述具体实施部分。
第五方面,本申请提供了一种通信设备,该通信设备可以是终端,该情况下,该通信设备可以用于执行上述第一方面或第三方面提供的波束配置方法。该通信设备可以是网络设备,该情况下,该通信设备可以用于执行上述第二方面或第四方面提供的波束配置方法。
在一种可能的设计中,可以根据上述提供的相应的方法对该通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在另一种可能的设计中,该通信设备可以包括:处理器和收发器,可选的,还可以包括存储器;其中,存储器用于存储计算机程序,该计算机程序被处理器执行时,使得上述第一方面至第四方面提供的相应的方法被执行。收发器用于在处理器的控制下与其他通信设备进行通信。存储器可以是存储芯片等。
本申请还提供了一种计算机可读存储介质,其上储存有计算机程序,当该程序在 计算机上运行时,使得计算机执行上述第一方面至第四方面的任一种可能的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得第一方面至第四方面提供的任一方法被执行。
本申请实施例还提供了一种处理装置,用以实现上述终端或者网络设备的功能,包括处理器和接口;处理装置可以是一个芯片,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于处理器之外,独立存在。
可以理解的,上述提供的任一种通信设备或计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的技术方案所适用的一种系统架构示意图;
图2为本申请实施例提供的一种波束配置方法的示意图一;
图3为本申请实施例提供的一种波束配置方法的示意图二;
图4为本申请实施例提供的一种波束配置方法的交互流程图一;
图5为本申请实施例提供的基于图4所示的波束配置流程的示意图;
图6为本申请实施例提供的一种波束配置方法的交互流程图二;
图7为本申请实施例提供的基于图6所示的波束配置流程的示意图;
图8为本申请实施例提供的一种波束配置方法的交互流程图三;
图9为本申请实施例提供的基于图8所示的波束配置流程的示意图;
图10为本申请实施例提供的一种波束配置方法的交互流程图四;
图11为本申请实施例提供的一种波束配置方法的交互流程图五;
图12为本申请实施例提供的一种波束配置方法的交互流程图六;
图13为本申请实施例提供的一种波束配置方法的交互流程图七;
图14为本申请实施例提供的基于图13所示的波束配置流程的示意图;
图15为本申请实施例提供的一种通信设备的结构示意图一;
图16为本申请实施例提供的一种通信设备的结构示意图二;
图17为波束配置流程的一个示意图;
图18为本申请实施例提供的波束配置流程的又一示意图;
图19为本申请实施例提供的波束配置流程的又一示意图;
图20为本申请实施例提供的波束配置流程的又一示意图;
图21为本申请实施例提供的一种波束配置流程的交互流程;
图22为本申请实施例提供的一种波束配置方案的一个信令示意图;
图23为本申请实施例提供的一种波束配置方案的又一信令示意图;
图24为本申请实施例提供的一种波束配置方法的又一信令示意图;
图25为本申请实施例提供的波束配置流程的又一信令示意图;
图26为本申请实施例提供的波束配置流程的又一信令示意图。
具体实施方式
本申请中的术语“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请提供的技术方案可以应用于各种通信系统。本申请提供的技术方案可以应用于5G通信系统,未来演进系统或多种通信融合系统等中,也可以应用于在现有通信系统等。本申请提供的技术方案的应用场景可以包括多种,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。下文中均是以应用于网络设备和终端通信的场景中为例进行说明的。
图1给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括一个或多个网络设备100(仅示出了1个)以及与每一网络设备连接的一个或多个终端200。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备100可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备100可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
终端200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或未来演进的PLMN网络中的终端等。
波束是一种通信资源。波束可以分为发送波束和接收波束。发送波束,可以理解为:信号经天线发送出去后在空间不同方向上形成的信号强度的分布。接收波束,可以理解为:从天线上接收到的无线信号在空间不同方向上的信号强度分布。不同的波束可以认为是不同的资源。使用不同的波束可以发送相同的信息或不同的信息。一个波束内可以包括一个或多个天线端口,用于传输数据信道信息,控制信道信息和探测 信号等。波束在协议中例如可以为空域滤波器(spatial filter)。
波束对建立在波束的概念上。一个波束对通常包括发送端设备的一个发送波束和接收端设备的一个接收波束。在下行方向上,发送端设备可以是网络设备,接收端设备可以是终端。在上行方向上,发送端设备可以是终端,接收端设备可以是网络设备。
波束指示信息用于指示波束。波束指示信息可以例如是以下信息中的至少一种:波束的索引(例如波束的相对编号、逻辑编号、物理编号等),波束所承载的参考信号对应的端口号,波束对连接(beam pair link,BPL)信息等。应注意,波束指示信息也可以通过其他信息隐式指示,例如波束指示信息与其他信息之间存在对应关系,因此可以通过指示其他信息来指示波束。该其他信息可以例如是该波束的准同位(quasi co location,QCL)信息。其中,QCL用于表示多个资源之间具有一个或多个相同或相类似的通信特征。一般地,不同网络设备之间的信道大尺度信息不同。对于具有QCL关系的多个资源,可以采用相同或类似的通信配置。例如,如果两个天线端口具有QCL关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端接收波束编号,发送/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel of arrival,AoA),平均到达角,AoA的扩展等。
在通信系统例如5G新空口(new radio,NR)系统中,网络设备和终端均可生成一个或多个波束。作为一个示例,在传输信号之前,可以预先通过波束对准选择出信道质量较好的波束对来传输信号。该信号可以例如是数据信道信息控制信道信息、或探测信号等。
在通信系统中,无论在下行方向上还是在上行方向上,信道质量较好的波束对可能发生改变。网络设备可以周期性地或触发性地与终端之间进行交互,从而测量各波束对的信道质量,并在首次向终端配置波束,或确定终端当前通信使用的波束需要变更时,执行波束配置流程。其中,当网络设备确定需要向终端配置下行方向上的波束时,执行下行波束配置流程,即网络设备指示终端使用某一接收波束接收信号的流程,该接收波束可以是终端的任一个接收波束。当网络设备确定需要向终端配置上行方向上的波束时,执行上行波束配置流程,即网络设备指示终端使用某一发送波束发送信号的流程,该发送波束可以是该终端的任一个发送波束。
在下行方向上,若同一时刻,网络设备使用一个发送波束发送信号,终端使用与该发送波束对应的接收波束(例如,该发送波束和该接收波束同属一个波束对)接收该信号,则认为网络设备和终端的行为一致。否则,认为网络设备和终端的行为不一致。在上行方向上,若同一时刻,终端使用一个发送波束发送信号,网络设备使用与该发送波束对应的接收波束(例如该发送波束和该接收波束同属一个波束对)接收该信号,则认为网络设备和终端的行为一致。否则,认为网络设备和终端的行为不一致。
本申请提供的波束配置方法具体可以例如对控制信道进行波束配置,或者对数据信道进行波束配置。下文中均是以对控制信道进行波束配置为例进行说明的。
下面简单介绍控制信道进行波束配置时所传输的波束配置信息。
波束配置信息用于向终端配置使用某个波束传输信号。具体可以通过向终端指示 一个传输配置编号(transmission configuration index,TCI),具体是TCI比特来指示一个波束的相关信息。一种可能的通过RRC信令或MAC信令发送的波束配置信息,可以如以下表3所示。在此之前,为了更好地理解,可以先介绍TCI相关信息:
TCI可以用来指示传输信息的相关配置。例如可以用来指示终端使用的接收波束的信息。每个TCI比特对应一个高层信令配置的TCI状态,如表1所示:
表1
TCI比特 TCI状态
00 TCI_00
01 TCI_01
10 TCI_02
11 TCI_03
每个TCI状态对应一个参考信号集合(reference signal set,RS set)的配置信息,如表2所示。
表2
TCI状态 RS set状态
TCI_00 TCI-RS-SetConfig[0]
TCI_01 TCI-RS-SetConfig[1]
TCI_02 TCI-RS-SetConfig[2]
TCI_03 TCI-RS-SetConfig[3]
TCI_(M-1) TCI-RS-SetConfig[M-1]
每一个参考信号集合(RS set)的配置具体可以用于描述一个或者多个参考信号与数据信道参考信号的QCL关系。如表3所示:
表3
Figure PCTCN2018115244-appb-000001
其中,TCI-RS-SetConfig[x]表示参考信号集合配置x,表3说明了:时间#1在载波#1上传输的编号#a的SS block与数据信道参考信号关于接收参数具有QCL关系。时间#5在载波#3上传输的编号#A的CSI-RS与数据信道参考信号关于延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数具有QCL关系。这些信息可以用于数据信道信号的解调。
其中,SSB编号可以是SS block index。
CSI-RS编号可以是公共参考信道(channel state information,CSI)资源索引(resource index)CSI-RS resource set index,CSI-RS port index等,或者它们的组合。
QCL信息可以是具体的参数,也可以是QCL类型。其中不同的QCL类型包括不同的参数。
时间信息可以是slot号,子帧号,绝对时间,符号编号,周期编号等。
频率资源信息可以是载波编号,带宽部分编号等。
其他信息可以包括测量限制等,即某一段时间,频率上该RS的测量结果不能用于帮助数据信道解调。
另外,上述TCI的配置都是通过RRC信令和/或MAC信令传输的。上述各种配置的生效时间与本申请中波束配置信息的生效时间可以采用相同的方法进行处理。
本申请中所描述的“同时/同一时刻”是指同一个时间间隔(time interval,TI)。其中,TI可以是LTE系统中的传输时间间隔(transmission time interval,TTI),也可以是符号级短TTI,或高频系统中的大子载波间隔的短TTI,也可以是5G系统中的时隙(slot)或微型时隙(mini-slot)等。本申请对此不做限定。下文中均是以TI是时隙为例进行说明。
本申请中可以通过信令配置的任一信息,例如n1、n2、m1、m2等,在具体配置过程中,该信令均可以例如但不限无线资源控制(radio resource control,RRC)信令、媒体接入控制(medium access control,MAC)信令或下行控制信息(downlink control information,DCI)中的至少一种。下文中不再赘述。另外,可以通过信令配置的任一信息,可以是携带在波束配置信息中,也可以携带在其他配置信息中,下文中是以携带在波束配置信息中为例说明的。
本申请中的具体示例中通过设置定时器来实现“从某一时刻开始的预设时长到达时,执行某些步骤”这一目的。具体实现时,也可以通过设置时间窗或者时间偏移等方式实现,另外定时器也可以称为计时器等。
如图2和图3所示,一种波束配置方法。具体可以包括如下步骤:
在第n个时隙,网络设备向终端发送波束配置信息,并开启定时器T2。其中,n是大于或等于0的整数。该波束配置信息用于指示终端在第一波束上传输信号。
第一波束可以是接收波束或发送波束。若第一波束是接收波束,则本实施例提供的波束配置流程具体是下行波束配置流程,波束配置信息具体用于指示终端在第一波束上接收信号。若第一波束是发送波束,则本实施例提供的波束配置流程具体是上行波束配置流程,波束配置信息具体用于指示终端在第一波束上发送信号。
携带波束配置信息的信令可以例如是RRC信令、MAC信令或DCI中的至少一种。
波束配置信息可以携带第一波束的波束指示信息,关于波束指示信息的相关描述可参考上文,此处不再赘述。
在第n个时隙,终端接收到该波束配置信息,并开启定时器T1。
终端对该波束配置信息进行校验。
若校验成功,则在第n+k1个时隙终端向网络设备发送肯定应答(acknowledgement,ACK)指示。ACK消息用于向网络设备指示终端已成功接收到该波束配置信息。在定 时器T1的定时时间到达预设时长时,使用第一波束传输信号。在定时器T1的定时时间到达预设时长之前,终端使用最近一次使用的波束或默认波束传输信号。如图2所示。
若校验失败,则在第n+k1个时隙终端向网络设备发送否定应答(negative acknowledgement,NACK)指示。NACK消息用于向网络设备指示终端没有成功接收到该波束配置信息。该情况下,无论定时器T1的定时时间是否到达预设时长,终端均使用最近一次使用的波束或默认波束传输信号。
其中,k1是大于或等于1的整数。k1可以是网络设备通过信令向终端配置的值,或预设的值如协议中规定的值。本实施例中,通常,预设时长大于k1个时隙。下述各实施例中预设时长和k1个时隙可以不满足此关系。
预设时长,可以是网络设备向终端配置的,例如携带在波束配置信息或其他配置信息中发送给终端。具体可以是网络设备根据终端反馈的该终端的能力信息确定的,针对不同终端,所配置预设时长可以相等也可以不相等。当然,预设时长也可以是预先设置的,例如预先通过协议设置的。
使用第一波束传输信号可以理解为:在第一波束上传输信号生效,即后续若网络设备与终端之间有信号传输需求时,则使用第一波束传输信号。例如,在下行波束配置流程中,使用第一波束传输信号,可以理解为:本次波束配置流程中所配置的在第一波束接收信号生效,即后续终端监测第一波束以接收网络设备发送的信号。
下文中的“使用第二波束传输信号”或“使用波束集合中的各信号传输信号”等的含义与此类似,下文中不再赘述。
在下行波束配置流程中,S103中的最近一次使用的波束是指终端最近一次使用的接收波束,默认波束是指终端默认使用的接收波束。
终端默认使用的接收波束,可以是网络设备通过高层信令(例如RRC信令或MAC信令)向终端配置的接收波束,可以例如是以下任一种:终端初始接入使用的同步信号块(synchronization signal block,SSB)的波束,TCI的第一状态对应的接收波束,最近使用的接收波束,全向接收波束等。
可选的,在不同场景下,终端默认使用的波束可以不同,下面列举几种可选的方式:
当高层信令(如RRC信令)没有配置TCI表格时,使用初始接入的波束。
当高层信令配置了TCI表格但是没有显式的TCI指示时,使用TCI第一状态对应的波束。
当高层信令配置了TCI表格,且有显式的TCI指示,但TCI生效时间(即本申请中的预设时长)小于预定的门限值(其中门限可以是由终端的能力确定的)时,使用最近一次有效的波束,或者使用宽波束,或者使用预定义的回退波束。
在上行波束配置流程中最近一次使用的波束是指终端最近一次使用的发送波束,默认波束是指终端默认使用的发送波束。终端默认使用的发送波束可以是网络设备向终端配置的。
需要说明的是,通常,在终端没有显式的波束指示或波束指示含混的时候,可以使用终端默认使用的波束(包括默认发送波束或默认接收波束)传输信息。终端默认 使用的波束是可以更新的。对于网络设备来说,如果向终端指示了一个默认接收波束,则网络设备会同时维护一个网络设备默认使用的发送波束,以保证终端能够在该默认接收波束上正确接收到网络设备通过该默认发送波束发送的信号。对于网络设备来说,如果向终端指示了一个默认发送波束,则网络设备会同时维护一个网络设备默认使用的接收波束,以保证网络设备能够在该默认接收波束上正确接收到终端通过该默认发送波束发送的信号。
可以理解的,若终端向网络设备发送的是ACK消息,则网络设备若在第n+k1个时隙,接收到ACK消息,则在定时器T2的定时时间到达预设时长时,使用第二波束传输信号。
若网络设备在第n+k1个时隙,既没有接收到ACK消息也没有接收到NACK消息,此时,网络设备不知道终端是否成功接收到该波束配置信息,则无论定时器T2的定时时间是否到达预设时长,均使用最近一次使用的波束或默认波束传输信号。在第n+k1+n2个时隙,重新发送该波束配置信息,即再次执行波束配置流程。n2是大于或等于1的整数。n2可以是通过信令配置的一个值,或预设的一个值如协议中预设的一个值。n2与n1可以相等也可以不相等。其中,在定时器T2的定时时间到达预设时长之前,使用最近一次使用的波束或默认波束传输信号。如图2所示。
若第一波束是发送波束,则第二波束是接收波束;使用第二波束传输信号,具体是使用第二波束接收终端通过第一波束发送的信号。若第一波束是接收波束,则第二波束是发送波束;使用第二波束传输信号,具体是使用第二波束向终端发送信号。
图2中是网络设备在第n个时隙使用波束1传输信号,终端在第n个时隙使用波束a传输信号为例进行说明的。其中,波束1是波束a对应的波束,例如波束1和波束a同属一个波束对。第二波束是第一波束对应的波束,例如第二波束与第一波束同属一个波束对。由图2可知,终端在定时器T1的定时时间到达预设时长时,使用第一波束传输信号,网络设备使用第二波束传输信号。
终端向网络设备发送的是NACK消息,则网络设备若在第n+k1个时隙,接收到NACK消息,则网络设备使用最近一次使用的波束或默认波束传输信号。在第n+k1+n1个时隙,重新发送该波束配置信息,即再次执行波束配置流程。其中,n1是大于或等于1的整数。n1可以是通过信令配置的一个值,或预设的一个值如协议中规定的一个值。
或者网络设备若在第n+k1个时隙,既没有接收到ACK指示ACK消息也没有接收到NACK消息,此时,网络设备不知道终端是否成功接收到该波束配置信息,则无论定时器T2的定时时间是否到达预设时长,均使用最近一次使用的波束或默认波束传输信号。在第n+k1+n2个时隙,重新发送该波束配置信息,即再次执行波束配置流程。n2是大于或等于1的整数。n2可以是通过信令配置的一个值,或预设的一个值如协议中预设的一个值。n2与n1可以相等也可以不相等。
在下行波束配置流程中,终端最近一次使用的波束是指网络设备最近一次使用的发送波束,默认波束是指网络设备默认使用的发送波束。其中,网络设备默认使用的发送波束可以是终端默认使用的接收波束对应的发送波束。
在上行波束配置流程中,终端最近一次使用的波束是指网络设备最近一次使用的 接收波束,默认波束是指网络设备默认使用的接收波束。其中,网络设备默认使用的接收波束可以是终端默认使用的发送波束对应的接收波束。
在本实施例中,终端在接收到波束配置信息时,开启定时器T1;网络设备在发送波束配置信息时,开启定时器T2。这样,对于终端来说,若在第n+k1个时隙向网络设备发送的是ACK消息,则在定时器T1的定时时间到达预设时长时,使用第一波束传输信号。然而,对于网络设备来说,若在第n+k1个时隙没有接收到该ACK消息,则即使定时器T2的定时时间到达预设时长,也不会开始使用第二波束传输信号,这会造成网络设备和终端的行为不一致的问题,从而可能导致后续通信的质量较差,甚至不能相互通信。例如,如图3所示,为该场景下的一个示意图。图3中是网络设备在第n个时隙使用波束1传输信号,终端在第n个时隙使用波束a传输信号为例进行说明的。由图3可知,终端在定时器T1的定时时间到达预设时长时,使用第一波束来传输信号,而此时网络设备仍然使用波束1传输信号。
基于此,本申请提供了如下波束配置方法:
实施例一
参见图4至图7,为本实施例提供的一种波束配置方法的示意图。本实施例中相关内容的解释可以参考上文。本实施例提供的方法可以包括如下步骤:
S201:在第n个时隙,网络设备向终端发送波束配置信息。其中,n是大于或等于0的整数。该波束配置信息用于指示终端在第一波束上传输信号。
若第一波束是接收波束,则本实施例提供的波束配置流程具体是下行波束配置流程。若第一波束是发送波束,则本实施例提供的波束配置流程具体是上行波束配置流程。
S202:在第n个时隙,终端接收到该波束配置信息。
S203:终端对该波束配置信息进行校验。
若校验成功,则在第n+k1个时隙向网络设备发送ACK消息,并开启定时器T1。在定时器T1的定时时间到达预设时长时,使用第一波束传输信号,如图4至图7所示。其中,在定时器T1的定时时间到达预设时长之前,使用最近一次使用的波束或默认波束传输信号。
若校验失败,则在第n+k1个时隙向网络设备发送NACK消息。该情况下,由于终端没有开启定时器T1,因此使用最近一次使用的波束或默认波束传输信号。
网络设备可以执行步骤S204a、S204b或S204c。可以理解的,若在S203中,终端向网络设备发送的是ACK消息,则网络设备可能执行S204a或S204c。若在S203中,终端向网络设备发送的是NACK消息,则网络设备可能执行S204b或S204c。
S204a:若在第n+k1个时隙,接收到ACK消息,则开启定时器T2,然后在定时器T2的定时时间到达预设时长时,使用第二波束传输信号。如图4和图5所示。其中,在定时器T2的定时时间到达预设时长之前,使用最近一次使用的波束或默认波束传输信号。图5中是网络设备在第n个时隙使用波束1传输信号,终端在第n个时隙使用波束a传输信号为例进行说明的。
结合图4和图5可知,由于网络设备和终端均是在第n+k1个时隙开启各自的定时器,并在各自的定时器到达同一预设时长时,使用第一波束/第二波束传输信号,因此, 终端和网络设备的行为一致,从而可以提高信号传输性能。
S204b:若在第n+k1个时隙,接收到NACK消息,则在第n+k1+n1个时隙,重新发送该波束配置信息,即再次执行波束配置流程。
需要说明的是,由于在再次执行波束配置流程之前,终端没有开启定时器T1,且网络设备没有开启定时器T2。因此,再次执行波束配置的流程可参考上述S201至S204所示的波束配置流程,此处不再赘述。可以理解的,再次执行波束配置流程的过程中,在执行S204时若具体执行的是S204a,则执行S204a之后,则结束。若具体执行的是S204b或S204c,则可以再次执行波束配置流程,以此类推,直至某一次执行波束配置流程时,最后执行的是S204a,则结束。具体实现时,也可以设置针对同一波束配置信息执行波束配置流程的次数的最大值,从而在针对同一波束配置信息执行波束配置流程的次数到达该最大值时,若仍然没有执行成功,则结束。当然本申请不限于此。
可以理解的,由于在再次执行波束配置流程之前,终端没有开启定时器T1,网络设备没有开启定时器T2,因此在再次执行波束配置流程之前,终端和网络设备均使用最近一次使用的波束或默认波束传输信号。
S204c:若在第n+k1个时隙,既没有接收到ACK消息也没有接收到NACK消息,则在第n+k1+n2个时隙,重新发送该波束配置信息,即再次执行波束配置流程。
在再次执行波束配置流程时,具体可以包括如下两种情况:
情况1:若在S203中终端向网络设备发送的是ACK消息,则在再次执行波束配置流程之前,终端已开启定时器T1,网络设备没有开启定时器T2。此时,终端可以在接收到重新发送的波束配置信息时即第n+k1+n2个时隙,停止定时器T1,接着,在向网络设备发送针对该重新接收到的波束配置信息的ACK消息时,开启定时器T1。如图6和图7所示。这样,能够保证再次执行波束配置流程时,网络设备的计时器T2和终端的计时器T1同时开始计时,从而可以同时到达预设时长,有助于在终端向网络设备反馈ACK消息且网络设备接收到该ACK消息的情况下,终端使用第一波束传输信号,网络设备使用第二波束传输信号,即终端和网络设备的行为一致,从而提高信号传输性能。其中,再次执行波束配置流程的其他步骤可参考上述S201至S204所示的波束配置流程中的相关步骤,此处不再赘述。其中,图6和图7中是以再次执行波束配置流程的过程中,终端在第n+k1+n2+k1个时隙内向网络设备发送ACK消息,且网络设备在第n+k1+n2+k1个时隙内接收到了该ACK消息为例进行说明的。当然本申请不限于此。图7中是网络设备在第n个时隙使用波束1传输信号,终端在第n个时隙使用波束a传输信号为例进行说明的。
情况2:若在S203中终端向网络设备发送的是NACK消息,则在再次执行波束配置流程之前,终端没有开启定时器T1,网络设备没有开启定时器T2,因此,再次执行波束配置的流程可参考上述S201至S204a,S204a,S204c所示的波束配置流程,此处不再赘述。关于再次执行波束配置的流程的说明,以及在再次执行波束配置流程之前,终端和网络设备所使用的波束均可以参考上述S204b中的相关内容,此处不再赘述。
本实施中,终端在向网络设备发送针对波束配置信息的ACK消息时,开启定时器T1;网络设备在接收到该ACK消息时,开启定时器T2。结合图4至图7,以及上述 分析可知,本实施例提供的技术方案能够保证,在网络设备接收到针对波束配置信息的ACK消息或NACK消息,还是既没有接收到ACK消息也没有接收到NACK消息的情况下,均能够使终端和网络设备的行为一致,从而提高信号传输性能。
实施例二
参见图8至图11,为本实施例提供的一种波束配置方法的示意图。本实施例中相关内容的解释可以参考上文。本实施例提供的方法可以包括如下步骤:
S301至S302:可以参考上述S201至S202。当然本申请不限于此。
本实施例中,第一波束是接收波束,第二波束是发送波束,即本实施例提供的波束配置流程具体是下行波束配置流程。
S303:终端对该波束配置信息进行校验。
若校验成功,则在第n+k1个时隙向网络设备发送ACK消息,并开启定时器T1。在定时器T1的定时时间到达预设时长时,使用波束集合中的各波束接收信号,如图8至图11所示。其中,在定时器T1的定时时间到达预设时长之前,使用最近一次使用的波束或默认波束接收信号。
若校验失败,则在第n+k1个时隙向网络设备发送NACK消息。该情况下,由于终端没有开启定时器T1,因此使用最近一次使用的波束或默认波束接收信号。
其中,波束集合除了包括第一波束之外,还可以包括以下至少一个波束:终端最近一次使用的接收波束,终端默认使用的接收波束,覆盖第一波束的波束等。每个波束具有一定的覆盖范围,覆盖第一波束的波束是指覆盖范围包括第一波束的覆盖范围的波束。
对于网络设备来说,可以执行步骤S304a、S304b或S304c。可以理解的,若在S303中,终端向网络设备发送的是ACK消息,则网络设备可能执行S304a或S304c。若在S303中,终端向网络设备发送的是NACK消息,则网络设备可能执行S304b或S304c。
S304a:若网络设备在第n+k1个时隙接收到了ACK消息,则开启定时器T2,并在定时器T2的定时时间到预设时长时,使用第二波束发送信号。可以理解的,后续,若网络设备向终端发送信号,则具体是在第二波束上发送信号,且终端在第一波束上接收该信号。
S304b:若网络设备在第n+k1个时隙接收到了NACK消息,则在第n+k1+n1个时隙重新发送该波束配置信息,即再次执行波束配置流程。其中,该再次执行波束配置流程可参考上述S204b中的相关描述,此处不再赘述。
S304c:若网络设备在n+k1个时隙没有接收到ACK消息也没有接收到NACK消息,则使用最近一次使用的波束或默认波束发送信号。可以理解的,后续,若网络设备向终端发送信号,则具体是在非第二波束上发送信号,且终端通常是在非第一波束上接收该信号。
可以理解的,只有终端在第n+k1个时隙向网络设备发送的是ACK消息,即终端对波束配置信息校验成功,终端才可以获知波束配置信息所配置的第一波束,进而才可以识别第一波束和非第一波束。该情况下,网络设备可能接收到了ACK消息,也可能没有接收到ACK消息。基于此,在终端发送的是ACK消息的情况下,后续,终端可以执行步骤S305。在终端发送的是NACK消息的情况下,网络设备和终端的处理流 程均可以参考上文实施例二中的相关描述,此处不再赘述。
对于终端来说,可以执行步骤S305a、S305b或S305c。可以理解的,若在S304中具体执行的是S304a,则在S305中可能执行S305a或S305c;若是S304c中的没有接收到ACK消息,则可能执行S305b或S305c。
S305a:在第n+k1+r个时隙~第n+k1+r+m1个时隙,若在第一波束上接收到信号,说明网络设备在该时隙内使用第二波束发送该信号,即网络设备在第n+k1个时隙接收到了ACK消息,则终端使用第一波束接收信号。如图8和图9所示。这样,能够使网络设备和终端的行为一致,从而提高信息传输效率。其中,r是预设时长,m1是大于或等于1的整数。m1可以是通过信令配置的一个值,或预设的一个值如协议中规定的一个值。
S305b:在第n+k1+r个时隙~第n+k1+r+m1个时隙,若在波束集合中除第一波束之外的波束(即非第一波束)上接收到信号,说明在第n+k1个时隙网络设备没有接收到ACK消息,则可以继续执行如下两种方式之一:
方式1:终端向网络设备发送ACK消息,并开启定时器T1,在定时器T1的定时时间到达预设时长时,使用波束集合中的各波束接收信号。其中,该方式中,终端可以在接收到该信号的同一个时隙或之后的若干个时隙向网络设备发送ACK消息。
后续,网络设备接收到ACK消息时,开启定时器T2,并在定时器T2的定时时间到达预设时长时,使用第二波束发送信号。接着,可返回执行S305a、S305b或S305c。如图10所示。其中,图10中是以具体执行的是S305a为例进行说明的。
可以理解的,由于在第n+k1+r个时隙时,终端在第n+k1个时隙开启的定时器T1的定时时间已到达预设时长,且通常在到达预设时长时定时器会自动停止计时,因此在方式1中,终端可以重新开启定时器T1,而非重启定时器T1。
方式2:终端向网络设备发送错误指示,错误指示用于指示网络设备再次向终端发送该波束配置信息。如图11所示,再次执行波束配置流程的相关描述可参考上文,此处不再赘述。
S305c:在第n+k1+r个时隙~第n+k1+r+m1个时隙,终端没有收到信号,则终端向网络设备发送波束配置请求,该波束配置请求用于请求网络设备再次向终端发送该波束配置信息。再次执行波束配置流程的相关描述可参考上文,此处不再赘述。
需要说明的是,本实施例提供的技术方案可以应用于终端支持多波束传输的场景中。具体实现时,网络设备可以通过向终端发送指示信息来获取终端是否支持多波束传输的能力,也可以由网络设备主动向网络设备上报该终端是否支持多波束传输的能力等方式,使得网络设备获知终端的能力,从而使得网络设备支持本实施例提供的方法。
本实施例中,终端在向网络设备发送针对波束配置信息的ACK消息时,开启定时器T1;网络设备在接收到该ACK消息时,开启定时器T2。并且,终端在定时器T1的定时时间到达预设时长时,使用包括波束配置信息所配置的第一波束接收信号。结合图8至图11,以及上述分析可知,本实施例提供的技术方案能够保证,下行波束配置流程中,在网络设备接收到针对波束配置信息的ACK消息或NACK消息,还是既没有接收到ACK消息也没有接收到NACK消息的情况下,均能够使终端和网络设备 的行为一致,从而提高信号传输性能。
实施例三
参见图12,为本实施例提供的一种波束配置方法的示意图。本实施例中相关内容的解释可以参考上文。本实施例提供的方法可以包括如下步骤:
S401至S402:可以参考上述S201至S202。当然本申请不限于此。
本实施例中,第一波束是发送波束,第二波束是接收波束,即本实施例提供的波束配置流程具体是上行波束配置流程。
S403:终端对该波束配置信息进行校验。
若校验成功,则在第n+k1个时隙向网络设备发送ACK消息,并开启定时器T1。在定时器T1的定时时间到达预设时长时,使用波束集合中的各波束发送信号,如图12所示。在定时器T1的定时时间到达预设时长之前,使用最近一次使用的波束或默认波束传输信号。
若校验失败,则在第n+k1个时隙向网络设备发送NACK消息。该情况下,由于终端没有开启定时器T1,因此使用最近一次使用的波束或默认波束传输信号。
其中,波束集合除了包括第一波束之外,还可以包括以下至少一个波束:终端最近一次使用的发送波束,终端默认使用的发送波束,覆盖第一波束的波束等。
对于网络设备来说,可以执行步骤S404a、S404b或S404c。可以理解的,若在S403中,终端向网络设备发送的是ACK消息,则网络设备可能执行S404a或S404c。若在S403中,终端向网络设备发送的是NACK消息,则网络设备可能执行S404b或S404c。
S404a:若在第n+k1个时隙接收到了ACK消息,则开启定时器T2,并在定时器T2的定时时间到预设时长时,使用第二波束接收信号。如图12所示。
S404b:若在第n+k1个时隙接收到了NACK消息,则在第n+k1+n1个时隙重新发送该波束配置信息,即再次执行波束配置流程。其中,该再次执行波束配置流程可参考上述S204b中的相关描述,此处不再赘述。
S404c:若在n+k1个时隙没有接收到ACK消息也没有接收到NACK消息,则使用最近一次使用的波束或默认波束接收信号。
可以理解的,只有终端在第n+k1个时隙向网络设备发送的是ACK消息,即终端对波束配置信息校验成功,终端才可以获知波束配置信息所配置的第一波束的信息,进而才可以识别第一波束和非第一波束。该情况下,网络设备可能接收到了ACK消息,也可能没有接收到ACK消息。基于此,在终端发送的是ACK消息的情况下,后续,终端可以执行步骤S405。在终端发送的是NACK消息的情况下,网络设备和终端的处理流程均可以参考上文实施例二中的相关描述,此处不再赘述。
S405:对于终端来说,在第n+k1+r+m2个时隙,使用第一波束发送信号。如图12所示。
后续,对于网络设备来说,在第n+k1+r个时隙~第n+k1+r+m2个时隙,若在非第二波束上接收到信号,说明终端使用多波束发送的该信号,即终端成功接收到该波束配置信息,因此,波束配置流程结束。或者,在第n+k1+r个时隙~第n+k1+r+m2个时隙,若没有接收到信号,则再次执行波束配置流程,其中,再次执行波束配置流程可参考上述S204c中的相关描述。可以理解的,S404c与S204c的区别在于,终端的定 时器T1的定时时间到达预设时长时,使用波束集合中的各波束发送信号。
本实施例中,终端在向网络设备发送针对波束配置信息的ACK消息时,开启定时器T1;网络设备在接收到该ACK消息时,开启定时器T2。并且,终端在定时器T1的定时时间到达预设时长时,使用包括波束配置信息所配置的第一波束发送信号。结合图12,以及上述分析可知,本实施例提供的技术方案能够保证,上行波束配置流程中,在网络设备接收到针对波束配置信息的ACK消息或NACK消息,还是既没有接收到ACK消息也没有接收到NACK消息的情况下,均能够使终端和网络设备的行为一致,从而提高信号传输性能。
实施例四
参见图13至图14,为本实施例提供的一种波束配置方法的示意图。本实施例中相关内容的解释可以参考上文。本实施例提供的方法可以包括如下步骤:
S501:网络设备在第n个时隙向终端发送波束配置信息。其中,n是大于或等于0的整数。该波束配置信息用于指示终端在第一波束上传输信号。
若第一波束是接收波束,则本实施例提供的波束配置流程具体是下行波束配置流程。若第一波束是发送波束,则本实施例提供的波束配置流程具体是上行波束配置流程。
S502:终端在第n个时隙接收到该波束配置信息。
S503:终端对该波束配置信息进行校验。
若校验成功,则在第n+k1个时隙向网络设备发送ACK消息。
若校验失败,则在第n+k1个时隙向网络设备发送NACK消息。
可以理解的,若在S503中,终端向网络设备发送的是ACK消息,则网络设备可能执行S504a或S504c。若在S503中,终端向网络设备发送的是NACK消息,则网络设备可能执行S504b或S504c。
S504a:网络设备若在第n+k1个时隙,接收到ACK消息,则向在第n+k1+q个时隙终端发送表示该ACK消息传输成功的指示信息,并在发送该指示信息时,开启定时器T2。然后在定时器T2的定时时间到达预设时长时,使用第二波束传输信号。
后续,终端在第n+k1+q个时隙,接收到表示该ACK消息传输成功的指示信息,并在接收到该指示信息时即第n+k1+q个时隙,开启定时器T1。然后在定时器T1的定时时间到达预设时长时,使用第一波束传输信号。如图13和图14所示。其中,图14中是以网络设备在第n个时隙使用波束1传输信号,终端在第n个时隙使用波束a传输信号为例进行说明的。
其中,q是大于或等于1的整数。q可以是通过信令配置的一个值,或预设的一个值如协议中规定的一个值。
S504b:网络设备若在第n+k1个时隙,接收到NACK消息,则在第n+k1+n1个时隙,再次向终端发送该波束配置信息,即再次执行波束指示流程。其中,再次执行波束指示流程可参考前述流程,此处不再赘述。
S504c:网络设备若在第n+k1个时隙,既没有接收到ACK消息也没有接收到NACK消息,则在第n+k1+n2个时隙,再次向终端发送该波束配置信息,即再次执行波束指示流程。其中,再次执行波束指示流程可参考S501~S504,此处不再赘述。
本实施例中,网络设备和终端之间通过三次“握手”(例如图13中的S501和S503,以及S504a中的发送/接收上述指示信息的步骤),并且,网络设备在向终端发送表示针对波束配置信息的ACK消息传输成功的指示信息时,开启定时器T2;终端在接收到该指示信息时,开启定时器T1;并且,在各自的定时器的定时时间到达同一预设时长时,使用第一波束/第二波束传输信号,从而使终端和网络设备的行为一致,从而提高信号传输性能。由于在网络设备接收到NACK消息的情况,以及网络设备既没有接收到ACK消息也没有接收到NACK消息的情况下,网络设备均不会发送上述指示信息,因此,网络设备和终端均不会启动定时器,在这两种情况下再次执行波束配置流程时,有可能执行如图13所示的流程,从而使得终端和网络设备的行为一致。
需要说明的是,上述任意两个实施例中的同一参考的取值可以相同也可以不相同,例如,各实施例中的预设时长可以相同也可以不同,又如,各实施例中的n1可以相同也可以不同。其他示例不再一一列举。
另外需要说明的是,上述实施例一、四可以适用于终端支持多波束传输的场景中,也可以应用于终端支持单波束传输的场景中。上述实施例二、三适用于终端支持多波束传输的场景中。其中,终端是否支持多波束传输是由该终端的自身配置决定的,多波束传输是指同时使用多个波束发送信号或接收信号。实际实现时,可选的,网络设备可以通过向终端发送一个指示信息来指示终端上报该终端是否支持多波束传输的能力,或者终端可以主动向网络设备上报该终端是否支持多波束传输的能力等。网络设备获知终端是否支持多波束传输的能力之后,可以在配置信息中指示终端使用多波束传输信号还是不使用多波束传输信号。另外,网络设备可以在配置信息中指示终端使用实施例一至四中的某一种方式进行波束配置。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图15所示,为本申请实施例提供的一种通信设备。图15所示的通信设备可以包括收发单元1501和处理单元1502。该通信设备可以是终端,也可以是网络设备。
若通信设备150是终端,则该终端可以用于执行上述实施例一至四中任意实施例中终端执行的步骤。
应用于上述实施例一至实施例三时:
在一种可能的设计中,收发单元1501,用于接收网络设备发送的波束配置信息, 其中,波束配置信息用于指示终端使用第一波束传输信号;处理单元1502,用于在从第一时刻开始的第一预设时长到达时,配置收发单元1501至少使用第一波束传输信号;其中,第一时刻是终端向网络设备发送针对波束配置信息的ACK消息的时刻。例如,结合图4、图6、图8、图10~12,第一时刻可以是第n+k1个时隙。第一预设时长可以是预设时长。收发单元1501可以用于执行S202、S302、S402。
在一种可能的设计中,处理单元1502具体用于:在从第一时刻开启定时器,并在定时器的定时时间到达第一预设时长时,配置收发单元1501至少使用第一波束传输信号。例如,结合图4、图6、图8、图10~12,定时器可以是定时器T1,收发单元1501可以执行S202,S301、S401。处理单元1502可以结合收发单元1501执行S203、S303、S403。
在一种可能的设计中,处理单元1502还用于:在定时器未达到第一预设时长时,若收发单元1501再次接收到波束配置信息,则停止定时器,并在第二时刻开启定时器;其中,第二时刻是终端向网络设备发送针对重新接收到的波束配置信息的ACK消息的时刻。例如,结合图6,第二时刻是第n+k1+n2+k1个时隙。处理单元1502可以用于执行S204c中终端执行的除传输(包括接收和发送)之外的步骤。
在一种可能的设计中,处理单元1502具体用于:在从第一时刻开始的第一预设时长到达时,配置收发单元1501除使用第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号。例如,结合图8、图10~12,处理单元1502可以结合收发单元1501执行S303、S403。
在一种可能的设计中,处理单元1502还用于:若收发单元1501在第一波束上接收到信号,则配置收发单元1501使用第一波束接收信号。例如,结合图8,处理单元1502可以结合收发单元1501执行S305a。
在一种可能的设计中,收发单元1501还用于:在定时器的定时时间到达第一预设时长之后,若在除第一波束之外的波束上接收到信号,则向网络设备发送针对波束配置信息的ACK消息;处理单元1502还用于:在收发单元1501发送ACK消息时,开启定时器,在定时器的定时时间到达第一预设时长时,配置收发单元1501使用第一波束接收信号。例如,结合图10,收发单元1501可以用于执行方式1中发送ACK消息的步骤。处理单元1502可以执行方式1中除传输之外的步骤。
在一种可能的设计中,收发单元1501还用于:若在除第一波束之外的波束上接收到信号,则向网络设备发送错误指示,错误指示用于指示网络设备重新发送波束配置信息。例如,结合图11,收发单元1501可以用于执行方式2中发送错误指示的步骤。
在一种可能的设计中,处理单元1502还用于:若在从第三时刻开始的第二预设时长到达时,配置收发单元1501使用第一波束发送信号;其中,第三时刻是定时器的定时时间到达预设时长的时刻。例如,结合图12,第三时刻可以是第n+k1+r个时隙,第二预设时长是m2个时隙,处理单元1502可以结合收发单元1501执行S405。
应用于上述实施例四时:
收发单元1501用于接收网络设备发送的波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;向网络设备发送针对波束配置信息的ACK消息;接收网络设备发送的表示ACK消息传输成功的指示信息。处理单元1502用于在从第四 时刻开始的预设时长到达时,配置收发单元1501使用第一波束传输信号;其中,第四时刻是终端接收到指示信息的时刻。结合图13,第四时刻是第n+k1+q个时隙。收发单元1501可以用于执行S502、S503和S504a中终端执行的收发步骤。
在一种可能的设计中,处理单元1502具体用于:终端在第四时刻开启定时器,并在定时器的定时时间到达预设时长时,配置收发单元1501使用第一波束传输信号。结合图13,定时器是定时器T1,处理单元1502可以结合收发单元1501执行S504a。
若通信设备150是网络设备,则该网络设备可以用于执行上述实施例一至四中任意实施例中网络设备执行的步骤。
应用于上述实施例一至实施例三时:
收发单元1501,用于向终端发送波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号。处理单元1502,用于在第一时刻配置收发单元1501使用与第一波束对应的第二波束传输信号;其中,第一时刻是网络设备接收到终端发送的针对波束配置信息的ACK消息的时刻。结合图4、图6、图8、图10~12,第一时刻可以是第n+k1个时隙。收发单元1501可以用于执行S201、S301、S401。
在一种可能的设计中,处理单元1502具体用于:在第一时刻开启定时器,并在定时器的定时时间到达预设时长时,配置收发单元1501使用与第一波束对应的第二波束传输信号。结合图4、图6、图8、图10、图12,定时器可以是定时器T2,处理器1502可以结合收发单元1501执行S204a、S204c中网络设备执行的步骤,S304a、图10方式1中网络设备执行的步骤,S404a。
在一种可能的设计中,收发单元1501还用于:接收终端发送的错误指示,其中,错误指示用于指示网络设备重新发送波束配置信息;以及,根据错误指示,重新向终端发送波束配置信息。结合图11,收发单元1501可以用于执行方式2中的接收错误指示的步骤。
应用于上述实施例四时:
收发单元1501用于向终端发送波束配置信息,其中,波束配置信息用于指示终端使用第一波束传输信号;接收终端发送的针对波束配置信息的ACK消息;向终端发送表示ACK消息传输成功的指示信息。处理单元1502用于在从第四时刻开始的预设时长到达时,配置收发单元1501使用与第一波束对应的第二波束传输信号;其中,第四时刻是网络设备发送指示信息的时刻。结合图13,第四时刻是第n+k1+q个时隙。收发单元1501用于执行S501、S503和S504a中网络设备执行的收发步骤。
在一种可能的设计中,处理单元1502具体用于:在第四时刻开启定时器,并在定时器的定时时间到达预设时长时,配置收发单元1501使用与第一波束对应的第二波束传输信号。结合图13,处理单元1502可以结合收发单元1501执行S504a。
由于本申请实施例提供的通信设备可以用于执行上述波束配置方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
通信设备150的一种硬件实现方式可以参考图16。如图16所示,通信设备160可以包括:存储器1601、处理器1602、收发器1603以及总线1604;其中,存储器1601、处理器1602、收发器1603通过总线1604相互连接。上述处理单元1502可以通过处理器1602实现。收发单元1501可以通过收发器1603实现。存储器1601用于存储计 算机程序。
当通信设备150是终端时,存储器1601中存储的计算机程序被处理器1602执行时,使得该终端执行上文实施例一至实施例四中终端所执行的步骤。收发器1603用于在处理器1602的控制下与其他通信设备(例如网络设备)进行通信。
当通信设备150是网络设备时,存储器1601中存储的计算机程序被处理器1602执行时,使得该网络设备执行上文实施例一至实施例四中网络设备所执行的步骤。收发器1603用于在处理器1602的控制下与其他通信设备(例如终端)进行通信。
存储器1601可以是存储芯片等。处理器1602可以是CPU,通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。总线1604可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述实施例一至实施例三提供的波束配置方法中,以及图15和图16提供的通信设备实施例中,终端在从第一时刻开始的第一预设时长到达时,至少使用所述第一波束传输信号,这里的第一时刻具体是第y个时隙,例如在实施例一和实施例三中,第y个时隙具体是终端向网络设备发送ACK消息所在的第(n+k1)个时隙,实施例二中,该第y个时隙可以是终端向网络设备发送ACK所在的第(n+k1+n2+k1)个时隙。当然,该第y个时隙与网络设备向终端发送波束配置信息的第n个时隙没有直接关系,仅代表终端向网络设备发送ACK消息的时刻;可选的,第一时刻还可以是网络设备接收到终端反馈的ACK消息后,向终端发送指示信息,终端收到该指示信息的时刻,例如图13~14所示的实施例四中,第y个时隙具体是终端收到网络设备的指示信息的第(n+k1+q)个时隙。
网络设备在从第一时刻开始的预设时长到达时,使用与所述第一波束对应的第二波束传输信号,这里的第一时刻具体是第y个时隙,网络设备在第y个时隙接收终端发送的ACK消息。例如在实施例一和实施例三中,第y个时隙具体是网络设备接收到终端反馈的ACK消息的第(n+k1)个时隙,实施例二中,该第y个时隙可以是网络设备接收到终端反馈的ACK的第(n+k1+n2+k1)个时隙。当然,该第y个时隙与网络设备向终端发送波束配置信息的第n个时隙没有直接关系,仅代表网络设备接收到终端向其反馈ACK消息的时隙;网络设备接收到终端发送的ACK后,向终端发送指示信息,确认其已经收到ACK消息,这种情况下,第一时刻还可以是终端确定收到网络设备发送的指示信息的时隙,例如图13~14所示的实施例四中,第y个时隙具体是(n+k1+q)个时隙。
为了实现在网络设备与终端的行为一致,网络设备向终端发送波束配置信息,该波束配置信息具体用于向终端配置传输信号所使用的波束。具体实现中,网络设备可 以通过传输配置编号TCI比特向所述终端指示TCI,所述TCI比特对应一个TCI状态,所述TCI状态对应一个或者多个参考信号与数据信道参考信号的准同位QCL关系,一个TCI状态对应传输信号的波束。本实施例中,将发送该波束配置信息的信令称为激活信令。
终端应该在网络设备的波束配置信息或激活信令的指示下,在第一预设时长到达之后,应用激活信令,具体的,在第一预设时长达后的下一个时隙,启用网络设备发送的波束配置信息中的TCI状态对应的传输信号所使用的波束,在有信号传输时,使用该波束进行信号传输,例如利用发送波束发送信号,或利用接收波束接收信号。
以保证网络设备和终端对于PDCCH的QCL有共同的理解为例,例如,在基站使用MAC-CE激活命令改变某一个CORESET的TCI后,终端应该在何时应用MAC-CE指示的信息,即调整或切换到网络设备所指示的接收波束。相应的,网络设备应该在同一时刻对发送波束做出调整,保证网络设备和终端的波束对齐。为了保证这一点,终端对携带激活信令的PDSCH做出HARQ-ACK响应后的第一预设时长之后,终端开始应用该激活信令指示的QCL假设。
这种方法应用到涉及波束的其他多种信号和信道上,包括PDCCH/PUCCH/CSI-RS/SRS,以及PDSCH的可用TCI配置上。
另外,以PDSCH的可用TCI为例:终端收到网络设备通过PDSCH向终端发送的波束配置信息后,向网络设备发送HARQ-ACK消息,该HARQ-ACK消息在时隙(y)向网络设备进行传输时,终端在
Figure PCTCN2018115244-appb-000002
时刻开始应用激活信令,也即开始启用网络设备发送的波束配置信息中指示的传输信号所使用的波束,以便在有信号传输需求时,使用该波束进行信号传输。
其中,
Figure PCTCN2018115244-appb-000003
为预设时长(例如上述第一预设时长),N为一个子帧中的时隙数目,N的取值与系统参数μ有关,如下表4和表5所示。
表4:正常循环前缀的每个时隙所含的OFDM符号数目
Figure PCTCN2018115244-appb-000004
每帧所含的时隙数目
Figure PCTCN2018115244-appb-000005
每子帧所含的时隙数目
Figure PCTCN2018115244-appb-000006
Figure PCTCN2018115244-appb-000007
表5:扩展循环前缀的每个时隙所含的OFDM符号数目
Figure PCTCN2018115244-appb-000008
每帧所含的时隙数目
Figure PCTCN2018115244-appb-000009
每子帧所含的时隙数目
Figure PCTCN2018115244-appb-000010
Figure PCTCN2018115244-appb-000011
其中,μ是系统参数的标识,其取值如下表6所示。
表6:支持的传输类型
Figure PCTCN2018115244-appb-000012
上行时隙和下行时隙的单位长度可以是不同的。以PDCCH为例,由于上行传输和下行传输的子载波间隔(Subcarrier spacing,SCS)可能不同,例如图17所示,上行传输使用15kHz的SCS,一个上行时隙的长度为1毫秒,下行传输使用120KHz的SCS,一个下行时隙的长度为0.125毫秒。结合表6可知,上行传输使用15kHz的SCS,即△f为15kHz,其对应的系统参数μ为0。下行传输使用120kHz的SCS,即△f为120kHz,其对应的系统参数μ为3。因此上下行传输对应的系统参数不同,上行时隙和下行时隙的单位长度也不同,导致网络设备和终端对发送ACK的第一时刻对应的时隙,应用激活信令的时隙会有不同的理解。例如,终端在第0个上行时隙发送ACK,经过3毫秒,也即经过3个上行时隙之后,在第4个上行时隙,终端应用激活信令。而对于网络设备来讲,3毫秒相当于24个下行时隙,也即经过24个上行时隙之后的第25个下行时隙,网络设备应用激活信令。
由此,对于第一时刻所对应的时隙,以及第一预设时长达到后应用激活信令的时刻所对应的时隙,网络设备和终端各自以下行时隙和上行时隙作为计时标准,这就导致了网络设备和终端设备对于应用激活信令的时刻(时隙)理解的不一致。
为了统一网络设备与终端对应用激活信令对应的时刻的理解,本申请实施例中,对第一时刻对应的时隙,即上文所称的第y个时隙,或时隙(y)有如下几种确定的方式:
第一种方式:第一时刻,即第y个时隙为上行时隙(y),即终端根据上行载波分量(component carrier,CC)或上行部分带宽(bandwidth part,BWP)或上行帧的系统参数,来确定应用激活信令的时刻。
具体的,如图18所示,第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(y),终端在该上行时隙(y)开启定时器,所述第一预设时长即为所述定时器的长度,为x毫秒,具体的,可以是3毫秒;或者为m个上行时隙,m为正整数;例如,根据表6所示,一个上行时隙的子载波间隔为15kHz时,其长度为1毫秒时,则定时器的长度,即第一预设时长可以是3个上行时隙。
或者,令终端使用所述第一波束传输信号的时隙为:
Figure PCTCN2018115244-appb-000013
其中 slot(y)表示上行时隙(y),为所述第一时刻;
Figure PCTCN2018115244-appb-000014
为所述第一预设时长,1表示第一预设时长到达后的下一个时隙;
Figure PCTCN2018115244-appb-000015
即表示终端向网络设备发送ACK消息的上行slot(y)开启定时器,经过第一预设时长
Figure PCTCN2018115244-appb-000016
之后的下一个上行时隙,正式应用激活信令;其中,N为一个子帧中的时隙数目,μ等于发送肯定应答ACK的上行载波分量或上行带宽部分或上行帧的系统参数μ UL。例如,第一预设时长
Figure PCTCN2018115244-appb-000017
等于3毫秒;或根据表4和6所示,一个上行时隙的子载波间隔为15kHz时,其一个子帧中的时隙数目为1的时候,第一预设时长
Figure PCTCN2018115244-appb-000018
等于3个上行时隙,在第一预设时长到达后,即3毫秒或者3个上行时隙之后的下一个上行时隙,使用所述第一波束传输信号,本文中所说的使用第一波束传输信号,即应用激活信令,启用该激活信令对应的波束配置信息中指示的第一波束,并在有信号传输需求时,使用第一波束传输信号。
相应的,网络设备采用同样的方式确定第一时刻对应的时隙和应用激活信令的时刻。
第二种方式:第一时刻,即第y个时隙为下行时隙(y),即终端根据下行CC或下行BWP或下行帧的系统参数配置,来确定应用激活信令的时隙。
具体的,如图19所示,第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(z)对应的下行时隙(y),终端在该下行时隙(y)开启定时器,所述第一预设时长即为所述定时器的长度,为x毫秒,具体的,可以是3毫秒;或者为m个下行时隙,m为正整数;例如,根据表6所示,一个上行时隙的子载波间隔为120kHz时,一个下行时隙的长度为0.125毫秒时,则定时器的长度,即第一预设时长可以是24个下行时隙。
上行时隙(z)换算到下行时隙(y)的方法可以为
Figure PCTCN2018115244-appb-000019
其中
Figure PCTCN2018115244-appb-000020
是向下取整符号。μ UL和μ DL分别是上行传输和下行传输使用的系统参数。
或者,令终端使用所述第一波束传输信号的时隙为:
Figure PCTCN2018115244-appb-000021
其中
Figure PCTCN2018115244-appb-000022
表示下行时隙(y),为所述第一时刻,其中,z为所述终端向所述网络设备发送针对波束配置信息的肯定应答ACK消息的上行时隙(z)的编号,μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数;μ UL为所述终端向所述网络设备发送肯定应答ACK消息的上行载波分量或上行带宽部分或上行帧的系统参数;
Figure PCTCN2018115244-appb-000023
表示对
Figure PCTCN2018115244-appb-000024
的结果进行向下取整;
Figure PCTCN2018115244-appb-000025
为所述第一预设时长,1表示第一预设时长到达后的下一个时隙;
Figure PCTCN2018115244-appb-000026
即表示终端向网络设备发送ACK消息的下行slot(y)开启定时器,经过第一预设时长
Figure PCTCN2018115244-appb-000027
之后的下一个下行时隙,正式应用激活信令;其中,N为一个子帧中的时隙数目,μ为终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数μ DL。例如,第一预设时长
Figure PCTCN2018115244-appb-000028
等于3毫秒,或根据表4和6所示,一个上行时隙的子载波间隔为120kHz时,其一个子帧中的时隙数目为8的时候,第一预设时长
Figure PCTCN2018115244-appb-000029
为24个下行时隙,因此,在第一预设时长到达后,即3毫秒或者24个下行时隙之后的下一个下行时隙,使用所述第一波束传输信号。本文中所说的使用所述第一波束传输信号,也即应用激活信令,启用该激活信令对应的波束配置信息中指示的第一波束,并在有信号传输需求时,使用第一波束传输信号。
可选的,由于上行帧在发送时间上相比于下行帧有一个时间提前量(TA,time advance),在使用下行系统参数配置确定应用激活信令的时刻时,需要考虑TA的影响,如图19所示,第一预设时长等效于TA+m毫秒。
相应的,网络设备采用同样的方式确定第一时刻对应的时隙和应用激活信令的时隙。
第三种方式:终端比较上行和下行的系统参数,确定其中一个作为统一时间的依据。例如,终端比较载波分量或带宽部分或者上下行帧的系统参数μ,以上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的系统参数作为时间度量的范围,作为确定第一时刻的以及第一预设时长依据,也即确定应用激活信令的时刻。
具体的,终端在向网络设备发送ACK的时隙(y)开启定时器,该时隙(y)为上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的载波分量或带宽部分或者上下行帧的系统参数μ对应的时隙(y),例如可以是上行时隙(y),也可以是下行时隙(y)。
或者,令终端使用所述第一波束传输信号的时隙为:
Figure PCTCN2018115244-appb-000030
其中,μ为μ DL和μ UL中的较小值,μ UL为终端发送肯定应答ACK消息时应用的上行载波分量或上行带宽部分或上行帧的系统参数;μ DL为终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数。如表3所示,假如上行载波分量或上行带宽部分或上行帧对应的子载波间隔为15kHz,则对应的μ UL为0,假如下行载波分量或下行带宽部分或下行帧对应的子载波间隔为120kHz,则对应的μ DL为3,则使用
Figure PCTCN2018115244-appb-000031
确定终端使用第一波束传输信号的时刻时,μ为μ DL和μ UL中的较小值μ UL,slot(y)也为μ UL对应的上行时隙(y)。
相应的,网络设备采用同样的方式确定第一时刻对应的时隙和应用激活信令的时隙。
上述三种方式中,上行CC或上行BWP或上行帧的系统参数μ UL,可以是终端发送ACK消息的时刻应用的上行系统参数μ HARQ-ACK,还可以是终端发送PUSCH时刻应用的上行系统参数μ PUSCH,PUSCH是指终端向网络设备发送ACK消息所占的信道。 上行系统参数μ UL还可以是终端发送PUCCH时刻应用的上行系统参数μ PUCCH,该PUCCH是终端向网络设备发送ACK消息所占的信道;μ PUCCH也可以是调度PUSCH的PUCCH对应的上行系统参数μ PUCCH
下行CC或下行BWP或下行帧的系统参数μ DL,可以是终端接收PDSCH时刻应用的下行系统参数μ PDSCH,也可以是终端发送ACK消息的时刻应用的下行系统参数μ HARQ-ACK。PDSCH是指网络设备向终端发送的激活信令所占的信道。下行系统参数μ DL还可以是终端接收PDCCH时刻应用的下行系统参数μ PDCCH,该PDCCH是终端调度PDSCH的PDCCH,下行系统参数μ PDCCH是调度PDSCH的下行系统参数μ PDCCH
上述实施例一至实施例三中,第一时刻为终端向网络设备发送ACK的时隙,在存在终端多次发送ACK的情况时,所述第一时刻是终端第一次或最后一次向网络设备发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙,或者为所述网络设备第一次或最后一次接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙(z)对应的下行时隙。
如图20所示,如果终端一共向网络设备发送了4次ACK,一种方式是:终端以第一次向网络设备发送ACK的时隙作为第一时刻,开启定时器开始计时,在第一预设时长到达之后,例如3毫秒之后,开始应用激活信令;另一种方式是:终端以最后一次向网络设备发送ACK的时刻作为第一时刻,也即第四次向网络设备发送ACK的时刻作为第一时刻,开启定时器开始计时,在第一预设时长到达之后,例如3毫秒之后,开始应用激活信令。
可选的,第一时刻还可以是终端在收到网络设备返回的接收到ACK后,向终端发送指示信息,确认其已经收到ACK消息时,终端开启定时器的时刻,例如图12~14所示的实施例四中,第y个时隙具体是(n+k1+q)个时隙。
相应的,网络设备采用同样的方式确定第一时刻对应的时隙和应用激活信令的时隙。
需要说明的是,本申请所有实施例中,终端向网络设备发送或反馈的ACK消息,可以是混合自动重传请求确认(hybrid automatic repeat request-acknowledgment,HARQ-ACK)。
由此,网络设备和终端可以基于同样的原则确定第一时刻对应的时隙和应用激活信令的时隙,本申请实施例由网络设备向终端发送波束配置信息,至终端应用波束配置信息的完整流程如图21所示,如下:
步骤601,网络设备向终端发送RRC配置信息。
本申请实施例涉及到的RRC配置主要是指各种物理信道或信号的波束,或者QCL关系,或空间关系(spatial relation),包括:
控制资源集(control resource set,CORESET)配置:对于每一个CORESET,通过添加和释放传输配置编号状态(TCI-State)的方法来向终端配置多个可能的波束;
物理上行控制信道(physical uplink control channel,PUCCH)配置:对于所有的PUCCH资源,通过添加和释放PUCCH空间关系信息(PUCCH-SpatialRelationInfo)的方法来向终端配置多个可能的波束;
信道状态信息参考信号(channel state information-reference signal,CSI-RS)配置:对于所有的CSI-RS资源,通过添加和释放传输配置编号状态(TCI-State)的方法来向终端配置多个可能的波束;
物理下行共享信道(physical downlink shared channel,PDSCH)TCI配置:对于PDSCH,通过添加和释放传输配置编号状态(TCI-State)的方法来向终端配置多个可能的波束;
RRC配置一般是通过PDSCH发送的,根据配置信息的大小,可能分为一个或多个TB在一个或多个时隙(slot)中向终端发送。
步骤602,网络设备向终端发送媒体接入控制控制元素(Media Access Control control element,MAC-CE)激活信令。
本申请实施例涉及到的MAC-CE激活信令是指,针对各种物理信道/信号,网络设备为终端从步骤601中配置的多种可能的波束或QCL关系或空间关系中选择出一个特定的波束或QCL关系或空间关系的信令。
例如图22所示:CORESET的TCI激活信令:使用MAC-CE激活信令,为特定CORESET指定特定TCI。可选的,当CORESET ID=0时,如果TCI State ID的第一个比特为第一值,例如1,TCI State ID的后六个比特代表一个TCI状态,如果TCI State ID的第一个比特为第二值,例如0,TCI State ID的后六个比特代表一个SSB index。
例如图23所示:PUCCH的空间关系(spatial relation)激活信令:使用MAC-CE激活信令,为特定PUCCH指定特定的spatial relation。Si为1,表示PUCCH-SpatialRelationInfoID为i的spatial relation被激活,Si为0则表示PUCCH-SpatialRelationInfoID为i的spatial relation未激活。
例如图24所示:CSI-RS的TCI激活信令:特指半持续(semi-persistent,SP)的CSI-RS。因为CSI-RS是以集(set)为单位激活的,所以需要为特定的CSI-RS resrouce set指示特定的TCI。如果set中有多个CSI-RS resource,则需要为每一个CSI-RS resource指示特定的TCI。
例如图25所示:PDSCH TCI的选择信令:MAC-CE为PDSCH选择最多8个TCI状态。Ti为1,表示TCI-StateID为i的TCI状态被激活,Ti为0,表示TCI-StateID为i的TCI状态则未激活。
例如图26所示:SRS的空间关系(spatial relation)激活信令:特指半持续(semi-persistent,SP)的CSI-RS。与前述不同的是,SP SRS是直接通过MAC-CE指示spatial relation的,没有RRC配置多个可能的spatial relation的步骤。因为是按照set为单位进行激活的,所以需要为特定的SRS资源集(SRS resource set)指示特定的spatial relation。如果一个set中有多个SRS resource,则需要为每一个SRS资源(SRS resource)指示特定的spatial relation。Fi+Resource Idi共8个比特作为第i个SRS resource的spatial relation指示,如果Fi=1,那么Resource Idi是一个CSI-RS resource ID;如果Fi=0,Resource Idi的第一个比特是1,那么剩下的6比特是一个SSB index;如果Fi=0,Resource Idi的第一个比特是0,那么剩下的6比特是一个SRS resource ID。图26中,C用来指示包括Resource Serving Cell ID field(s)和Resource BWP ID field(s)的字节是否存在。SUL用来指示这个信令是否应用在补充上行载波(supplementary Uplink) 上。
MAC-CE激活信令一般是通过PDSCH发送的,根据信令的大小,可能分为一个或多个TB在一个或多个时隙(slot)中发送。
步骤603,终端接收PDSCH并解码,获得TB并进行CRC校验以确定是否正确接收到前述的RRC配置信令和MAC-CE激活信令。
步骤604,如果步骤603中CRC校验成功,终端即可准备针对这个PDSCH进行ACK反馈。相应的,网络设备接收终端反馈的ACK。
此步骤中,终端和网络设备按照前述的实施例一至实施例四中的确定第一时刻和第一预设时长,在第一时刻启动定时器,并由此确定应用MAC-CE激活信令的时刻。
步骤605,终端从比特序列读取MAC-CE激活信令的具体内容。
步骤606,终端应用MAC-CE激活信令。具体的,在步骤604开始启用定时器到期时,终端开始应用MAC-CE激活信令的内容,包括:
开始使用媒体接入控制控制元素MAC-CE激活信令为控制资源集CORESET指定的传输配置编号TCI,确定所述控制资源集CORESET的准同位QCL假设;
或开始使用MAC-CE激活信令为物理上行控制信道PUCCH指定的空间关系,发送所述PUCCH;
或开始按照MAC-CE激活信令的指示,接收半持续信道状态信息参考信号资源集,并使用TCI接收所述半持续信道状态信息参考信号资源集中的半持续信道状态信息参考信号资源;
或开始按照MAC-CE激活信令的指示,从下行控制信息DCI中映射出物理下行共享信道PDSCH的TCI指示和RRC配置的TCI状态;
或开始按照MAC-CE激活信令的指示,发送半持续信道状态信息参考信号资源集,并使用发送波束发送所述半持续信道状态信息参考信号资源集中的信道探测参考信号资源。
相应的,网络设备也开始使用其所指示的波束进行CORESET/PDSCH/SP CSI-RS的发送和PUCCH/SRS的接收。
实施本申请实施例,能够避免波束配置信息的生效时间在发送端和接收端可能产生的不匹配的问题,通过网络设备在接收到终端的ACK消息信息时,开启定时器,在定时器的定时时间到达该预设时长时,使用与第一波束对应的第二波束传输信号,开启定时器和预设时长都统一以上行时隙或者下行时隙作为依据,并且统一在终端第一次发送ACK消息信息或者最后一次发送ACK消息信息时开启定时器,因此,在终端发送ACK消息,且网络设备接收到ACK消息的情况下,有助于实现在网络设备与终端的行为一致,从而提高信号传输效率。
由于本申请实施例提供的管理节点可以用于执行上述提供的对共享资源的访问操作的加锁方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理模块执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只 读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围。

Claims (73)

  1. 一种波束配置方法,其特征在于,包括:
    终端接收网络设备发送的波束配置信息,其中,所述波束配置信息用于指示所述终端使用第一波束传输信号;
    所述终端在从第一时刻开始的第一预设时长到达时,至少使用所述第一波束传输信号;其中,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的时刻。
  2. 根据权利要求1所述的波束配置方法,其特征在于,所述终端在从第一时刻开始的第一预设时长到达时,至少使用所述第一波束传输信号,包括:
    所述终端在从所述第一时刻开启定时器,并在所述定时器的定时时间到达所述第一预设时长时,至少使用所述第一波束传输信号。
  3. 根据权利要求2所述的波束配置方法,其特征在于,所述方法还包括:
    所述终端在所述定时器未达到所述第一预设时长时,若再次接收到所述波束配置信息,则停止所述定时器,并在第二时刻开启所述定时器;其中,所述第二时刻是所述终端向所述网络设备发送针对所述重新接收到的所述波束配置信息的ACK消息的时刻。
  4. 根据权利要求1至3任一项所述的波束配置方法,其特征在于,所述终端在从第一时刻开始的第一预设时长到达时,至少使用所述第一波束传输信号,包括:
    所述终端在从第一时刻开始的第一预设时长到达时,除使用所述第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号。
  5. 根据权利要求4所述的波束配置方法,其特征在于,所述方法还包括:
    所述终端若在所述第一波束上接收到信号,则使用所述第一波束接收信号;
    或,在所述定时器的定时时间到达所述第一预设时长之后,所述终端若在除所述第一波束之外的波束上接收到信号,则向所述网络设备发送针对所述波束配置信息的ACK消息,并在发送所述ACK消息时,开启所述定时器,在所述定时器的定时时间到达所述第一预设时长时,除使用所述第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号;
    或,所述终端若在除所述第一波束之外的波束上接收到信号,则向所述网络设备发送错误指示,所述错误指示用于指示所述网络设备重新发送所述波束配置信息。
  6. 根据权利要求4所述的波束配置方法,其特征在于,所述方法还包括:
    所述终端若在从第三时刻开始的第二预设时长到达时,使用所述第一波束发送信号;其中,所述第三时刻是所述定时器的定时时间到达所述预设时长的时刻。
  7. 根据权利要求1至6任一项所述的波束配置方法,其特征在于,所述信号包括:上行数据信道信息、上行控制信道信息、上行探测信号、下行数据信道信息、下行控制信道信息或下行探测信号。
  8. 根据权利要求1至7任一项所述的波束配置方法,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束。
  9. 根据权利要求8所述的波束配置方法,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束,具体为通过传输配置编号TCI比特向 所述终端指示TCI,所述TCI比特对应一个TCI状态,所述TCI状态对应一个或者多个参考信号与数据信道参考信号的准同位QCL关系。
  10. 根据权利要求9所述的波束配置方法,其特征在于,所述QCL关系包括频率资源信息,所述频率资源信息包括载波编号或带宽部分编号。
  11. 根据权利要求9或10所述的波束配置方法,其特征在于,所述方法还包括:
    当所述波束配置信息没有指示所述TCI时,所述终端使用初始接入的波束传输信号。
  12. 根据权利要求1至7任一项所述的波束配置方法,其特征在于,所述方法还包括:
    所述终端没有收到显式的波束指示或收到的波束指示含混时,所述终端使用所述终端默认使用的波束传输信号。
  13. 根据权利要求12所述的波束配置方法,其特征在于,所述终端默认使用的波束包括默认发送波束或默认接收波束。
  14. 根据权利要求13所述的波束配置方法,其特征在于,所述默认接收波束是所述终端初始接入使用的同步信号块的波束。
  15. 根据权利要求1至14中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(y),或为所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(z)对应的下行时隙(y)。
  16. 根据权利要求15所述的波束配置方法,其特征在于,所述终端在所述上行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个上行时隙,m为正整数;
    或者终端在所述下行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个下行时隙,m为正整数。
  17. 根据权利要求1至14中任一项所述的波束配置方法,其特征在于,使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100001
    其中slot(y)表示上行时隙(y),为所述第一时刻;
    Figure PCTCN2018115244-appb-100002
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为终端向网络设备发送肯定应答ACK消息应用的上行载波分量或上行带宽部分或上行帧的系统参数μ UL
  18. 根据权利要求1至14中任一项所述的波束配置方法,其特征在于,所述终端使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100003
    其中
    Figure PCTCN2018115244-appb-100004
    表示下行时隙(y),为所述第一时刻,其中,z为所述终端向所述网络设备发送针对波束配置信息的肯定应答ACK消息的上行时隙(z)的编号,μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参 数;μ UL为所述终端向所述网络设备发送肯定应答ACK消息的上行载波分量或上行带宽部分或上行帧的系统参数;
    Figure PCTCN2018115244-appb-100005
    表示对
    Figure PCTCN2018115244-appb-100006
    的结果进行向下取整;
    Figure PCTCN2018115244-appb-100007
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数μ DL
  19. 根据权利要求1至14中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的时隙(y),所述时隙(y)为上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的系统参数μ对应的时隙(y)。
  20. 根据权利要求1至14中任一项所述的波束配置方法,其特征在于,所述终端使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100008
    其中,μ为μ DL和μ UL中的较小值,μ UL为所述终端发送肯定应答ACK应用的上行载波分量或上行带宽部分或上行帧的系统参数;μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数。
  21. 根据权利要求1至20中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述终端第一次或最后一次向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙,或者为所述终端第一次或最后一次向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙对应的下行时隙。
  22. 一种波束配置方法,其特征在于,包括:
    网络设备向终端发送波束配置信息,其中,所述波束配置信息用于指示所述终端使用第一波束传输信号;
    所述网络设备在从第一时刻开始的预设时长到达时,使用与所述第一波束对应的第二波束传输信号;其中,所述第一时刻是所述网络设备接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的时刻。
  23. 根据权利要求22所述的波束配置方法,其特征在于,所述网络设备从第一时刻开始的预设时长到达时,使用与所述第一波束对应的第二波束传输信号,包括:
    所述网络设备在第一时刻开启定时器,并在所述定时器的定时时间到达所述预设时长时,使用与所述第一波束对应的第二波束传输信号。
  24. 根据权利要求22或23所述的波束配置方法,其特征在于,所述方法还包括:
    所述网络设备接收终端发送的错误指示,其中,所述错误指示用于指示所述网络设备重新发送所述波束配置信息;
    所述网络设备根据所述错误指示,重新向所述终端发送所述波束配置信息。
  25. 根据权利要求22至24任一项所述的波束配置方法,其特征在于,所述信号包括:上行数据信道信息、上行控制信道信息、上行探测信号、下行数据信道信息、下行控制信道信息或下行探测信号。
  26. 根据权利要求22至25任一项所述的波束配置方法,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束。
  27. 根据权利要求26所述的波束配置方法,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束,具体为通过传输配置编号TCI比特向所述终端指示TCI,所述TCI比特对应一个TCI状态,所述TCI状态对应一个或者多个参考信号与数据信道参考信号的准同位QCL关系。
  28. 根据权利要求27所述的波束配置方法,其特征在于,所述QCL关系包括频率资源信息,所述频率资源信息包括载波编号或带宽部分编号。
  29. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述网络设备接收到所述终端发送的针对所述波束配置信息的肯定应答
    ACK消息的下行时隙(y)或所述终端发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(y)。
  30. 根据权利要求29所述的波束配置方法,其特征在于,所述网络设备在所述上行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个上行时隙,m为正整数;
    或者所述网络设备在下行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个下行时隙,m为正整数。
  31. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述网络设备使用与所述第一波束对应的第二波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100009
    其中slot(y)表示上行时隙(y),为所述第一时刻,
    Figure PCTCN2018115244-appb-100010
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为所述终端发送肯定应答ACK消息时应用的上行载波分量或上行带宽部分或上行帧的系统参数μ UL
  32. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述网络设备使用与所述第一波束对应的第二波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100011
    其中
    Figure PCTCN2018115244-appb-100012
    表示下行时隙(y),为所述第一时刻;其中
    Figure PCTCN2018115244-appb-100013
    表示下行时隙(y),为所述第一时刻,其中,z为所述终端向所述网络设备发送针对波束配置信息的肯定应答ACK消息的上行时隙(z)的编号,μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数;μ UL为所述终端向所述网络设备发送肯定应答ACK消息的上行载波分量或上行带宽部分或上行帧的系统参数;
    Figure PCTCN2018115244-appb-100014
    表示对
    Figure PCTCN2018115244-appb-100015
    的结果进行向下取整;
    Figure PCTCN2018115244-appb-100016
    为 所述第一预设时长,N为一个子帧中的时隙数目,μ为接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数μ DL
  33. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述网络设备接收到所述终端向其发送针对所述波束配置信息的肯定应答ACK消息的时隙(y),所述时隙(y)为上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的系统参数μ对应的时隙y。
  34. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述网络设备使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100017
    其中,μ为μ DL和μ UL中的较小值,μ UL为发送肯定应答ACK的上行载波分量或上行带宽部分的系统参数;μ DL为接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数。
  35. 根据权利要求22至28中任一项所述的波束配置方法,其特征在于,所述第一时刻是所述网络设备第一次或最后一次接收到所述终端发送针对所述波束配置信息的肯定应答ACK消息的下行时隙,或者为所述网络设备第一次或最后一次接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙(z)对应的下行时隙。
  36. 一种终端,其特征在于,包括:
    收发单元,用于接收网络设备发送的波束配置信息,其中,所述波束配置信息用于指示所述终端使用第一波束传输信号;
    处理单元,用于在从第一时刻开始的第一预设时长到达时,配置所述收发单元至少使用所述第一波束传输信号;其中,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的时刻。
  37. 根据权利要求36所述的终端,其特征在于,
    所述处理单元具体用于:在从所述第一时刻开启定时器,并在所述定时器的定时时间到达所述第一预设时长时,配置所述收发单元至少使用所述第一波束传输信号。
  38. 根据权利要求37所述的终端,其特征在于,
    所述处理单元还用于:在所述定时器未达到所述第一预设时长时,若所述收发单元再次接收到所述波束配置信息,则停止所述定时器,并在第二时刻开启所述定时器;其中,所述第二时刻是所述终端向所述网络设备发送针对所述重新接收到的所述波束配置信息的ACK消息的时刻。
  39. 根据权利要求36至38任一项所述的终端,其特征在于,
    所述处理单元具体用于:在从第一时刻开始的第一预设时长到达时,配置所述收发单元除使用所述第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号。
  40. 根据权利要求39所述的终端,其特征在于,
    所述处理单元还用于:若所述收发单元在所述第一波束上接收到信号,则配置所述收发单元使用所述第一波束接收信号;
    或,所述收发单元还用于:在所述定时器的定时时间到达所述第一预设时长之后, 若在除所述第一波束之外的波束上接收到信号,则向所述网络设备发送针对所述波束配置信息的ACK消息;所述处理单元还用于:在所述收发单元发送所述ACK消息时,开启所述定时器,在所述定时器的定时时间到达所述第一预设时长时,配置所述收发单元除使用所述第一波束外,还使用最近一次使用的波束或者默认使用的波束传输信号;
    或,所述收发单元还用于:若在除所述第一波束之外的波束上接收到信号,则向所述网络设备发送错误指示,所述错误指示用于指示所述网络设备重新发送所述波束配置信息。
  41. 根据权利要求39所述的终端,其特征在于,
    所述处理单元还用于:若在从第三时刻开始的第二预设时长到达时,配置所述收发单元使用所述第一波束发送信号;其中,所述第三时刻是所述定时器的定时时间到达所述预设时长的时刻。
  42. 根据权利要求36至41任一项所述的终端,其特征在于,所述信号包括:上行数据信道信息、上行控制信道信息、上行探测信号、下行数据信道信息、下行控制信道信息或下行探测信号。
  43. 根据权利要求36至42任一项所述的终端,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束。
  44. 根据权利要求43所述的终端,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束,具体为通过传输配置编号TCI比特向所述终端指示TCI,所述TCI比特对应一个TCI状态,所述TCI状态对应一个或者多个参考信号与数据信道参考信号的准同位QCL关系。
  45. 根据权利要求44所述的终端,其特征在于,所述QCL关系包括频率资源信息,所述频率资源信息包括载波编号或带宽部分编号。
  46. 根据权利要求44或45所述的终端,其特征在于,
    所述收发单元还用于,当所述波束配置信息没有指示所述TCI时,使用初始接入的波束传输信号。
  47. 根据权利要求36至42任一项所述的终端,其特征在于,
    所述收发单元还用于,所述终端没有收到显式的波束指示或收到的波束指示含混时,使用所述终端默认使用的波束传输信号。
  48. 根据权利要求47所述的终端,其特征在于,所述终端默认使用的波束包括默认发送波束或默认接收波束。
  49. 根据权利要求48所述的终端,其特征在于,所述默认接收波束是所述终端初始接入使用的同步信号块的波束。
  50. 根据权利要求36至49任一项所述的终端,其特征在于,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(y),或为所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙(z)对应的下行时隙(y)。
  51. 根据权利要求50所述的终端,其特征在于,所述处理单元在所述上行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个上行时 隙,m为正整数;
    或所述处理单元在所述下行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个下行时隙,m为正整数。
  52. 根据权利要求36至49任一项所述的终端,其特征在于,所述收发单元使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100018
    其中slot(y)表示上行时隙(y),为所述第一时刻;
    Figure PCTCN2018115244-appb-100019
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为所述终端发送肯定应答ACK消息应用的上行载波分量或上行带宽部分或上行帧的系统参数μ UL
  53. 根据权利要求36至49任一项所述的终端,其特征在于,所述收发单元使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100020
    其中
    Figure PCTCN2018115244-appb-100021
    表示下行时隙(y),为所述第一时刻,其中,z为所述终端向所述网络设备发送针对波束配置信息的肯定应答ACK消息的上行时隙(z)的编号,μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数;μ UL为所述终端向所述网络设备发送肯定应答ACK消息的上行载波分量或上行带宽部分或上行帧的系统参数;
    Figure PCTCN2018115244-appb-100022
    表示对
    Figure PCTCN2018115244-appb-100023
    的结果进行向下取整;
    Figure PCTCN2018115244-appb-100024
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数μ DL
  54. 根据权利要求36至49任一项所述的终端,其特征在于,所述第一时刻是所述终端向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的时隙(y),所述时隙(y)为上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的系统参数μ对应的时隙(y)。
  55. 根据权利要求36至49任一项所述的终端,其特征在于,所述收发单元使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100025
    其中,μ为μ DL和μ UL中的较小值,μ UL为所述终端发送肯定应答ACK消息应用的上行载波分量或上行带宽部分的系统参数;μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数。
  56. 根据权利要求36至55任一项所述的终端,其特征在于,所述第一时刻是所述终端第一次或最后一次向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙,或者为所述终端第一次或最后一次向所述网络设备发送针对所述波束配置信息的肯定应答ACK消息的上行时隙对应的下行时隙。
  57. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端发送波束配置信息,其中,所述波束配置信息用于指示所述终端使用第一波束传输信号;
    处理单元,用于在从第一时刻开始的预设时长到达时,配置所述收发单元使用与所述第一波束对应的第二波束传输信号;其中,所述第一时刻是所述网络设备接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的时刻。
  58. 根据权利要求57所述的网络设备,其特征在于,
    所述处理单元具体用于:在第一时刻开启定时器,并在所述定时器的定时时间到达所述预设时长时,配置所述收发单元使用与所述第一波束对应的第二波束传输信号。
  59. 根据权利要求57或58所述的网络设备,其特征在于,
    所述收发单元还用于:接收终端发送的错误指示,其中,所述错误指示用于指示所述网络设备重新发送所述波束配置信息;以及,根据所述错误指示,重新向所述终端发送所述波束配置信息。
  60. 根据权利要求57至59任一项所述的网络设备,其特征在于,所述信号包括:上行数据信道信息、上行控制信道信息、上行探测信号、下行数据信道信息、下行控制信道信息或下行探测信号。
  61. 根据权利要求57至60任一项所述的网络设备,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束。
  62. 根据权利要求61所述的网络设备,其特征在于,所述波束配置信息具体用于向所述终端配置传输所述信号所使用的波束,具体为通过传输配置编号TCI比特向所述终端指示TCI,所述TCI比特对应一个TCI状态,所述TCI状态对应一个或者多个参考信号与数据信道参考信号的准同位QCL关系。
  63. 根据权利要求62所述的网络设备,其特征在于,所述QCL关系包括频率资源信息,所述频率资源信息包括载波编号或带宽部分编号。
  64. 根据权利要求57至63任一项所述的网络设备,其特征在于,所述第一时刻是所述网络设备接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的下行时隙(y)或所述终端发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙(y)。
  65. 根据权利要求64所述的网络设备,其特征在于,所述处理单元在所述上行时隙(y))开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个上行时隙,m为正整数;
    或所述处理单元在所述下行时隙(y)开启定时器,所述第一预设时长为所述定时器的长度,为x毫秒,或者为m个下行时隙,m为正整数。
  66. 根据权利要求57至63任一项所述的网络设备,其特征在于,所述收发单元使用与所述第一波束对应的第二波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100026
    其中slot(y)表示上行时隙(y),为所述第一时刻;
    Figure PCTCN2018115244-appb-100027
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为所述终端发送肯定应答ACK消息应用的上行载波分量或上行带宽部分或上行帧的系统参数μ UL
  67. 根据权利要求57至63任一项所述的网络设备,其特征在于,所述收发单元 使用与所述第一波束对应的第二波束传输信号的时刻为:其中
    Figure PCTCN2018115244-appb-100028
    表示下行时隙(y),为所述第一时刻,其中,z为所述终端向所述网络设备发送针对波束配置信息的肯定应答ACK消息的上行时隙(z)的编号,μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数;μ UL为所述终端向所述网络设备发送肯定应答ACK消息的上行载波分量或上行带宽部分或上行帧的系统参数;
    Figure PCTCN2018115244-appb-100029
    表示对
    Figure PCTCN2018115244-appb-100030
    的结果进行向下取整;
    Figure PCTCN2018115244-appb-100031
    为所述第一预设时长,N为一个子帧中的时隙数目,μ为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数μ DL
  68. 根据权利要求57至63任一项所述的网络设备,其特征在于,所述第一时刻是所述收发单元接收到所述终端向其发送针对所述波束配置信息的肯定应答ACK消息的时隙(y),所述时隙(y)为上行子载波间隔和下行子载波间隔中较小的子载波间隔对应的时隙(y)。
  69. 根据权利要求57至63任一项所述的网络设备,其特征在于,所述收发单元使用所述第一波束传输信号的时刻为:
    Figure PCTCN2018115244-appb-100032
    其中,μ为μ DL和μ UL中的较小值,μ UL为所述终端发送肯定应答ACK消息应用的上行载波分量或上行带宽部分的系统参数;μ DL为所述终端接收物理下行共享信道的下行载波分量或下行带宽部分或下行帧的系统参数。
  70. 根据权利要求57至69任一项所述的网络设备,其特征在于,所述第一时刻是所述收发单元第一次或最后一次接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙,或者为所述收发单元第一次或最后一次接收到所述终端发送的针对所述波束配置信息的肯定应答ACK消息的上行时隙对应的下行时隙。
  71. 一种通信设备,其特征在于,包括处理器和收发器;所述处理器用于执行权利要求1至35任一项所述的波束配置方法,收发器用于在所述处理器的控制下与其他通信设备进行通信。
  72. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上储存有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行权利要求1至35任一项所述的波束配置方法。
  73. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得权利要求1至35任一项所述的波束配置方法被执行。
PCT/CN2018/115244 2017-11-17 2018-11-13 一种波束配置方法和装置 WO2019096129A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP18877610.8A EP3606195B1 (en) 2017-11-17 2018-11-13 Beam configuration methods and devices, computer-readable storage medium and computer program product
CN201880074673.8A CN111684843B (zh) 2017-11-17 2018-11-13 一种波束配置方法和装置
CA3061633A CA3061633C (en) 2017-11-17 2018-11-13 Beam configuration method and apparatus
KR1020197033514A KR102267573B1 (ko) 2017-11-17 2018-11-13 빔 구성 방법 및 장치
BR112019022950-7A BR112019022950A2 (pt) 2017-11-17 2018-11-13 Método de configuração de feixe, dispositivo de rede, dispositivo de comunicação, terminal, meio de armazenamento legível por computador e produto de programa de computador
JP2019556797A JP6951025B2 (ja) 2017-11-17 2018-11-13 ビーム構成方法および装置
EP21187853.3A EP3961935A1 (en) 2017-11-17 2018-11-13 Beam configuration methods, apparatuses, computer-readable storage medium and computer program product
US16/674,845 US11089590B2 (en) 2017-11-17 2019-11-05 Beam configuration method and apparatus
US17/336,948 US11438888B2 (en) 2017-11-17 2021-06-02 Beam configuration method and apparatus
US17/879,567 US11877265B2 (en) 2017-11-17 2022-08-02 Beam configuration method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711164925.X 2017-11-17
CN201711164925 2017-11-17
CN201811302964.6A CN109803427B (zh) 2017-11-17 2018-11-02 一种波束配置方法和装置
CN201811302964.6 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,845 Continuation US11089590B2 (en) 2017-11-17 2019-11-05 Beam configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2019096129A1 true WO2019096129A1 (zh) 2019-05-23

Family

ID=66539381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115244 WO2019096129A1 (zh) 2017-11-17 2018-11-13 一种波束配置方法和装置

Country Status (1)

Country Link
WO (1) WO2019096129A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056509A1 (en) * 2019-09-29 2021-04-01 Apple Inc. Sounding reference signal based downlink transmission configuration indication
US20210235454A1 (en) * 2020-01-27 2021-07-29 Qualcomm Incorporated Dynamically switching transmission configuration indication states using a single control resource set
WO2023284628A1 (zh) * 2021-07-15 2023-01-19 华为技术有限公司 一种波束配置方法、装置及通信系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796185A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 波束信息获取方法、导频波束发送方法、通信节点及系统
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796185A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 波束信息获取方法、导频波束发送方法、通信节点及系统
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Analysis of Beam Indication Signaling Options", 3GPP TSG-RAN WGI #89AH-NR, RL-1711023, 30 June 2017 (2017-06-30), XP051300223 *
QUALCOMM: "Beam Management for NR", 3GPP TSG-RAN WGI #90BIS, R1-1718541, 13 October 2017 (2017-10-13), XP051341723 *
See also references of EP3606195A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056509A1 (en) * 2019-09-29 2021-04-01 Apple Inc. Sounding reference signal based downlink transmission configuration indication
US20210235454A1 (en) * 2020-01-27 2021-07-29 Qualcomm Incorporated Dynamically switching transmission configuration indication states using a single control resource set
US11678354B2 (en) * 2020-01-27 2023-06-13 Qualcomm Incorporated Dynamically switching transmission configuration indication states using a single control resource set
WO2023284628A1 (zh) * 2021-07-15 2023-01-19 华为技术有限公司 一种波束配置方法、装置及通信系统

Similar Documents

Publication Publication Date Title
KR102267573B1 (ko) 빔 구성 방법 및 장치
WO2020048364A1 (zh) 发送和接收混合自动重传请求确认信息的方法、通信装置
CN110463111B (zh) 用于无线通信的方法和装备
US11140731B2 (en) Data transmission method, communication device, and data transmission system
US10594447B2 (en) Data transmission method, terminal, and ran device
US11445531B2 (en) Communication method, communications apparatus, and readable storage medium
JP6885654B2 (ja) 伝送タイミング情報送信方法、伝送タイミング情報受信方法、および装置
KR102035402B1 (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
US10779284B2 (en) Data transmission method, user equipment, and base station
WO2020132869A1 (zh) 资源分配的方法和终端设备
WO2016165131A1 (zh) 一种信息反馈的方法、设备和系统
WO2019096129A1 (zh) 一种波束配置方法和装置
WO2018058679A1 (zh) 多载波下的数据传输方法和装置
WO2022237424A1 (zh) 通信方法及装置
WO2022068906A1 (zh) 波束指示方法、装置、网络侧设备及终端
WO2020156394A1 (zh) 一种反馈方法及装置
CN113966001A (zh) 半持久调度数据传输触发的混合自动重复请求确认报告
US20180132242A1 (en) Grouping of serving cells with shortened transmission time intervals
WO2023010424A1 (zh) 边链路非连续接收装置以及方法
WO2021031023A1 (zh) 一种信息处理方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556797

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018877610

Country of ref document: EP

Effective date: 20191023

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019022950

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197033514

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019022950

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191031