WO2023010424A1 - 边链路非连续接收装置以及方法 - Google Patents

边链路非连续接收装置以及方法 Download PDF

Info

Publication number
WO2023010424A1
WO2023010424A1 PCT/CN2021/110924 CN2021110924W WO2023010424A1 WO 2023010424 A1 WO2023010424 A1 WO 2023010424A1 CN 2021110924 W CN2021110924 W CN 2021110924W WO 2023010424 A1 WO2023010424 A1 WO 2023010424A1
Authority
WO
WIPO (PCT)
Prior art keywords
side link
terminal device
control information
timer
link control
Prior art date
Application number
PCT/CN2021/110924
Other languages
English (en)
French (fr)
Inventor
纪鹏宇
寺岛裕树
张健
李国荣
王昕�
Original Assignee
富士通株式会社
纪鹏宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 纪鹏宇 filed Critical 富士通株式会社
Priority to PCT/CN2021/110924 priority Critical patent/WO2023010424A1/zh
Publication of WO2023010424A1 publication Critical patent/WO2023010424A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiment of the present application relates to the technical field of communications.
  • Mode 1 In Rel-15 and previous versions of Vehicle to Everything (V2X, Vehicle to Everything) communication, two allocation methods of Sidelink resources are supported: Mode 1 and Mode 2.
  • Mode 1 side link resources are allocated by network devices (such as base stations); for Mode 2, terminal devices independently select transmission resources, that is, transmission resources are obtained through sensing or detection-resource selection processes.
  • New Radio (NR, New Radio) side link communication is one of the current Rel-16 standardized research projects. Compared with Long Term Evolution (LTE, Long Term Evolution) side link communication, NR side link communication It needs to support many new scenarios and new services (such as remote driving, autonomous driving and fleet driving, etc.), and needs to meet higher technical indicators (high reliability, low latency, high data rate, etc.).
  • LTE Long Term Evolution
  • NR side link communication It needs to support many new scenarios and new services (such as remote driving, autonomous driving and fleet driving, etc.), and needs to meet higher technical indicators (high reliability, low latency, high data rate, etc.).
  • the physical channels defined by NR sidelink communication include Physical Sidelink Control Channel (PSCCH, Physical Sidelink Control Channel), Physical Sidelink Shared Channel (PSSCH, Physical Sidelink Shared Channel) and Physical Sidelink Feedback Channel (PSFCH, Physical Sidelink Feedback Channel).
  • PSCCH carries the first stage (1st stage) side link control information (SCI, Sidelink Control Informaiton), and the 1st stage SCI is mainly used to send resource reservation information.
  • the PSSCH carries the second stage (2nd stage) SCI and the transport block (TB, Transport Block), and the 2nd stage SCI is mainly used for TB demodulation.
  • PSFCH carries side link feedback information (may be referred to as HARQ-ACK).
  • the resources (time-frequency resources) used for side link transmission are located in a certain resource pool.
  • NR side link communication supports HARQ-ACK feedback for unicast and multicast.
  • Multicast also includes option 1 and option 2 two HARQ-ACK feedback methods.
  • the receiving devices within a certain communication range will feedback HARQ-ACK, and Use a method that only feeds back NACK (NACK-only). More specifically, all receiving devices share the same PSFCH resource, that is, they all feed back on the same PSFCH resource, and only perform feedback (send PSFCH) when the decoding result is "NACK", and do not send PSFCH when ACK, ACK and NACK
  • the PSFCH signals sent by multiple devices will be superimposed in the same direction on the same resource, and the sending device judges NACK or ACK according to the strength of the PSFCH signal.
  • the PSFCH resource used by each receiving device to feed back ACK/NACK is independent, and the receiving device feeds back ACK when it is correctly received, and feeds back NACK when it is not received correctly.
  • ACK and NACK are distinguished by different PSFCH sequences (cyclic shift).
  • the Discontinuous Reception (DRX, Discontinuous Reception) mechanism as an effective power-saving mechanism applied to the Uu interface, can be multiplexed on the side link.
  • the resource pool is configured with PSFCH
  • the receiving device needs to be in the "Active" state when the sending device sends retransmission data without being able to decode it correctly, so as to correctly receive the retransmission data packet and correctly understand the current TB. decoding. Otherwise, the reliability of data packet sending will be affected.
  • DRX discontinuous reception
  • embodiments of the present application provide a sidelink discontinuous reception method and device.
  • a sidelink discontinuous reception method including:
  • the first terminal device receives side link control information sent by the second terminal device;
  • the first terminal device starts a first timing for sidelink discontinuous reception (DRX) device.
  • DRX sidelink discontinuous reception
  • an apparatus for sidelink discontinuous reception which is configured in a first terminal device, and the apparatus includes:
  • a receiving unit configured to receive side link control information sent by the second terminal device
  • a determining unit which determines that the side link control information indicates that the corresponding side link transmission is only an unacknowledged first multicast
  • a processing unit in the case that the distance between the position of the first terminal device and the central position of the closest area is less than or equal to the communication range requirement indicated in the side link control information, or the side link control If the information does not indicate the area identifier and/or the communication range requirement, or if the location of the first terminal device is unavailable, start the first timer for side link discontinuous reception.
  • a sidelink discontinuous reception method including:
  • the first terminal device receives side link control information sent by the second terminal device;
  • the The first terminal device starts a first timer for sidelink discontinuous reception (DRX).
  • an apparatus for sidelink discontinuous reception which is configured in a first terminal device, and the apparatus includes:
  • a receiving unit configured to receive side link control information sent by the second terminal device
  • a processing unit in a case where the transport block sent by the first side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been successfully decoded before the first side link is sent Next, a first timer for sidelink discontinuous reception is started.
  • a communication system including:
  • a terminal device receiving side link control information; determining that the side link control information indicates that the corresponding side link is sent as an unacknowledged only first multicast; and at the location of the terminal device and the center location of the closest area In the case where the distance between them is less than or equal to the communication range requirement indicated in the side link control information, or in the case where the area identification and/or communication range requirement is not indicated in the side link control information, or the When the terminal device's own location is unavailable, start a first timer for side link discontinuous reception;
  • the transport block sent by the side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been successfully decoded before the side link is sent In the case of , start the first timer for sidelink discontinuous reception.
  • the first terminal device receives the side link control information sent by the second terminal device; when the side link control information indicates the first multicast, if the location of the first terminal device The distance to the center of the nearest area is less than or equal to the communication range requirement indicated in the side link control information, or the area identification and/or communication range requirement is not indicated in the side link control information, or the first terminal device itself The location is unavailable, the first terminal device starts the first timer for discontinuous reception (DRX) of the side link; thus the terminal device can adopt the DRX mechanism on the side link, and can accurately detect Retransmit data to improve transmission reliability.
  • DRX discontinuous reception
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is an example diagram of a scene for multicast feedback
  • FIG. 3 is an example diagram of another scene for multicast feedback
  • FIG. 4 is a schematic diagram of a sidelink discontinuous reception method according to an embodiment of the present application.
  • FIG. 5 is an example diagram of a scenario where multicast feedback is performed according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a sidelink discontinuous reception method according to an embodiment of the present application.
  • FIG. 7 is an example diagram of another scene where multicast feedback is performed according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sidelink discontinuous reception device according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a sidelink discontinuous reception device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocols, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include Remote Radio Head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power nodes (such as femeto, pico, etc.).
  • Node B Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power nodes such as femeto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • a terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld equipment, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld equipment machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • device may refer to network devices or terminal devices.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as examples.
  • a communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only uses two terminal devices and one network device as an example for illustration, but this embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • Fig. 1 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the present application is not limited thereto. Neither of the two terminal devices 102 and 103 may be within the coverage of the network device 101 , or one terminal device 102 may be within the coverage of the network device 101 while the other terminal device 103 is outside the coverage of the network device 101 .
  • side link transmission can be performed between two terminal devices 102 and 103 .
  • the two terminal devices 102 and 103 may both perform side link transmission within the coverage area of the network device 101 to implement side link communication, or both may perform side link transmission outside the coverage area of the network device 101 to implement side link communication.
  • one terminal device 102 may be within the coverage of the network device 101 while the other terminal device 103 is outside the coverage of the network device 101 to perform side link transmission to realize side link communication.
  • discontinuous reception may be configured on a Uu interface for a terminal device, so that the terminal device can save power.
  • the drx-OnDurationTimer that runs semi-statically can be configured for the terminal device. During the running period of this timer, the terminal device needs to perform blind detection on the physical downlink control channel (PDCCH). If other timers run at other times, the terminal device will also Blind detection of the physical downlink control channel (PDCCH) can be performed in the active state; and in the remaining time without any timer running, the terminal device can not detect the PDCCH, and can even turn off the receiving radio frequency based on the implementation to achieve the purpose of saving power .
  • PDCCH physical downlink control channel
  • Uu DRX On the basis of the DRX mechanism that operates in a semi-static cycle, Uu DRX also introduces an event-based timer that can dynamically switch the terminal device to the "Active" state when the conditions are met, so as to perform blind detection on the PDCCH.
  • drx-Retransmission TimerDL and drx-RetransmissionTimerUL can be configured for the HARQ process (per HARQ process), so that the terminal device can be dynamically in the "Active" state, and are used to detect the scheduling of retransmissions on the DL and UL respectively.
  • PDCCH Physical Downlink Control Channel
  • drx-HARQ-RTT-TimerDL the terminal device should be in the "non-Active" state during its operation
  • drx-RetransmissionTimerDL is started to make the terminal equipment in the "Active” state, and the DL retransmission scheduling PDCCH is monitored.
  • the terminal device can be in the "Active" state when the network device may schedule retransmission, which can ensure that the terminal device can detect and receive the PDCCH scheduled for retransmission.
  • a corresponding feedback mechanism was introduced in the R16 phase. If the current transmission is the first multicast (negative-only acknowledgment is indicated by the SCI), then the receiving device, after receiving the data packet, Specifically, if the decoding result is correct, no feedback information needs to be sent; if the decoding result is wrong, “NACK” needs to be fed back on the corresponding feedback channel resource. In this scenario, for a data packet to be sent, all other terminal devices in the group serve as receiving devices, and they send corresponding feedback in the SFN manner on the same PSFCH feedback channel.
  • Rel 16 also supports the receiving terminal device to judge whether to perform feedback according to the distance between its own position and the center position of the nearest area, where the center position of the nearest area can be indicated in the side link control information (SCI) It is obtained by calculating the value indicated by the zone_id of the zone_id and the sl-ZoneLength semi-statically configured in the resource pool. If the distance obtained by the receiving device through calculation is less than or equal to the communication range requirement indicated in the SCI, the receiving device can feed back NACK to the sending device if the decoding fails; otherwise, even if the decoding fails, the receiving device will not Will give feedback.
  • SCI side link control information
  • Fig. 2 is an example diagram of a scene for multicast feedback, which exemplarily shows a first multicast scene using a negative-only acknowledgment (negative-only acknowledgment) feedback manner.
  • the distance between the group members UE 0 and UE 1 and the center of the nearest area is less than the communication range requirement, and they fail to decode the current TB, they will feed back "NACK" to the source UE to request retransmission; for For group member UE 2, although the distance from the center of the nearest area is also less than the communication range requirement, but it successfully decodes the current TB, it does not need to send feedback information to the source UE; for group member UE 3, The distance between it and the center position of the closest area is greater than the communication range requirement, so even if it fails to decode, no feedback information is sent to the source UE.
  • the sending device may still retransmit. For example, the ACK that should have been sent was dropped due to the collision between the PSFCH feedback channel and other SL or Uu transmissions, or in the second multicast scenario of negative-positive acknowledgment, the receiving device fed back the ACK, but other receiving devices If there is a feedback NACK, the sending device also needs to retransmit, so that all devices in the group can correctly decode the current TB.
  • Fig. 3 is an example diagram of another scenario for multicast feedback, which exemplarily shows a second multicast scenario.
  • group member UE 2 correctly decoded and fed back ACK when it first sent, but because group members UE 1 and UE 3 failed to decode correctly and fed back NACK, the source UE will still retransmit.
  • the group member UE 2 finds that it is a retransmission of the current TB, and since UE 2 has already decoded correctly in the previous transmission, UE 2 does not correct the received data packet this time. to decode.
  • the SL DRX behavior mechanism of the receiving device can be controlled based on the timer mechanism, that is, through the side link such as SL-drx-OnDurationTimer, SL-drx-InactivityTimer, SL-drx-HARQ-RTT-Timer, SL-drx-RetransmissionTimer and other timers control the SL DRX mechanism of the receiving device.
  • the names of the above timers are only exemplified above, and the present application is not limited thereto.
  • the first timer and the second timer involved in the following may use the above-mentioned timer names, or may use other names.
  • PSFCH and “Sidelink Feedback Channel” can be interchanged without causing confusion
  • PSCCH and “Sidelink Control Channel” or “Sidelink Control Information” are interchangeable, as are the terms “PSSCH” and “sidelink data channel” or “sidelink data”.
  • sending (transmitting) or receiving (receiving) PSCCH can be understood as sending or receiving side link control information carried by PSCCH
  • sending or receiving PSSCH can be understood as sending or receiving side link data carried by PSSCH
  • sending or receiving PSFCH can be understood as sending or receiving side link feedback information carried by PSFCH.
  • Sidelink transmission (Sidelink transmission, also referred to as sidelink transmission) can be understood as PSCCH/PSSCH transmission or sidelink data/information transmission.
  • An embodiment of the present application provides a sidelink discontinuous reception method, which is described from a first terminal device.
  • the second terminal device may send side link data to the first terminal device.
  • the second terminal device in this embodiment of the present application is a sending device
  • the first terminal device is a receiving device.
  • FIG. 4 is a schematic diagram of a sidelink discontinuous reception method according to an embodiment of the present application. As shown in FIG. 4, the method includes:
  • the first terminal device receives side link control information sent by the second terminal device;
  • the first terminal device starts a first timer for sidelink discontinuous reception (DRX).
  • DRX sidelink discontinuous reception
  • the terminal device may perform side link DRX.
  • the terminal device may be in an active (active) or on (on) state on the side link, and in this state the terminal device performs PSCCH detection in the corresponding receiving resource pool; the terminal device may also be in the An inactive (inactive) or off (off) state, in which the terminal device does not perform PSCCH detection in the corresponding receiving resource pool.
  • the embodiment of the present application is not limited thereto, and related technologies may also be referred to for the DRX mechanism.
  • the timer is started/stopped for each process separately, that is, the terminal device can be configured separately for different processes. timer.
  • the terminal device can process them according to the set. For example, if UE 1 has multiple side link processes, if the retransmission timer corresponding to a certain side link process is running, the UE 1 should be in the active or on state.
  • the first multicast is indicated by a first indication field in the broadcast type (cast type) of the side link control information sent by the second terminal device, and the indication field indicates that the corresponding side link transmission is only Negative-only acknowledgment.
  • the center position of the nearest zone is based on the zone identification (zone_id) indicated in the side link control information (SCI) and the zone length corresponding to the communication range requirement (communication range requirement) indicated in the side link information ( sl_ZoneLength) is calculated.
  • the zone length (sl_ZoneLength) can be configured semi-statically in the resource pool.
  • the first timer is used to activate the first terminal device so that the first terminal device can receive retransmission data of a corresponding side-link hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first timer is SL-drx-RetransmissionTimer.
  • the specific value of SL-drx-RetransmissionTimer can be configured or preconfigured.
  • the specific value of the timer may be configured or pre-configured in resource pool configuration (resource pool configuration); for another example, the specific value of the timer may be configured or pre-configured as one slot (slot).
  • Table 1 exemplarily shows a manner of DRX, and the present application is not limited thereto.
  • the first terminal device when the distance between the position of the first terminal device and the central position of the closest area is greater than the communication range requirement indicated in the side link control information, the first terminal device does not activate the second terminal device. a timer.
  • the receiving device will not send feedback (only Feedback NACK). That is to say, the receiving device does not expect the retransmission of the sending device, and therefore does not start the first timer. In this way, unnecessary channel detection can be avoided, further saving power.
  • the first terminal device further starts the first timer when the second timer for sidelink discontinuous reception (DRX) expires.
  • the second timer is used to determine the start time of the first timer, for example, start the first timer after the second timer expires; the second timer is, for example, drx-HARQ-RTT-TimerSL.
  • the first terminal device receives the side link control information from the time slot of the first side link resource pool The first symbol of a slot starts the second timer.
  • HARQ side link hybrid automatic repeat request
  • Table 2 exemplarily shows another manner of DRX, and the present application is not limited thereto.
  • the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • the destination identifier indicated by the side link control information is an identifier of the first terminal device, or a group identifier of a group to which the first terminal device belongs.
  • the first terminal device is an intended (intended) receiving terminal of the side link control information and/or the corresponding PSSCH.
  • the destination identifier indicated in the side link control information is the same as the identifier of the first terminal device, or the destination identifier includes the identifier of the terminal device.
  • the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is disabled; and for a side link hybrid automatic repeat request (HARQ) process, the first terminal device, Not starting the second timer or setting the value of the second timer to zero, and/or, the first side link resource after the time slot in which the side link control information is received from the first terminal device The first symbol of the slot in the pool starts the first timer.
  • HARQ hybrid automatic repeat request
  • the terminal device does not start drx-HARQ-RTT-TimerSL at this time, or determines that the value of drx-HARQ-RTT-TimerSL is 0; SL-drx-RetransmissionTimer starts from the first symbol in the next slot corresponding to the slot where the SCI is sent by the channel.
  • one of the conditions for whether the terminal device starts the timer may also include failure to decode the side link transmission.
  • the MAC entity of the first terminal device does not successfully decode the transport block (TB) sent by the side link, and/or, the first terminal device feeds back a non-acknowledgement (NACK) on the physical side link feedback control channel , and/or, the MAC entity of the first terminal device instructs the physical layer to generate a non-acknowledgement (NACK).
  • NACK non-acknowledgement
  • FIG. 5 is an example diagram of a scenario of multicast feedback in an embodiment of the present application, which exemplarily shows the situation of each receiving device in the scenario of FIG. 2 .
  • the distance between the group member UE 1 and the center position of the nearest area obtained by calculation is less than the communication range requirement, and it fails to decode the current TB, it will feed back "NACK" to the source UE to request a retry at this time, the first timer is started after generating the NACK.
  • the distance between it and the center of the nearest area is greater than the communication range requirement, so even if it fails to decode, no feedback information is sent to the source UE. Therefore, PSFCH transmission is ignored after generating NACK, and the first timer is not started after decoding failure.
  • the receiving device when the distance calculated by the receiving device based on its own position and the center position of the nearest area is greater than the communication range requirement indicated in the SCI, even if the MAC entity of the receiving device has not successfully decoded the currently sent TB, and/or, the receiving device The MAC entity indicates that the feedback result generated by the physical layer is NACK, and the receiving device will not send feedback information on PSFCH channel resources (do not expect the arrival of retransmission), then the receiving device will not start SL-drx-RetransmissionTimer.
  • the transport block sent by the first terminal device on the side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been successfully decoded before being sent by the side link
  • a first timer is started. In case a transport block has been successfully decoded before said sidelink transmission, the first timer is not started.
  • Table 3 exemplarily shows another manner of DRX, and the present application is not limited thereto.
  • the first terminal device receives the side link control information sent by the second terminal device; in the case that the side link control information indicates the first multicast, if the location of the first terminal device and the center of the nearest area The distance between the locations is less than or equal to the communication range requirements indicated in the side link control information, or the area identification and/or communication range requirements are not indicated in the side link control information, or the own location of the first terminal device is unavailable, A terminal device starts the first timer for discontinuous reception (DRX) of the side link; thus the terminal device can adopt the DRX mechanism on the side link, and can accurately detect retransmission data while saving power, and improve Transmission reliability.
  • DRX discontinuous reception
  • the first terminal device does not start the first timer when the distance between the position of the first terminal device and the central position of the closest area is greater than the communication range requirement indicated in the side link control information. In this way, the terminal device can further avoid unnecessary channel detection and further save power.
  • the embodiment of the present application provides a side link discontinuous reception method, which is described from the perspective of the first terminal device, and the same content as the embodiment of the first aspect will not be repeated.
  • the embodiments of the second aspect may be combined with the embodiments of the first aspect, or implemented separately.
  • FIG. 6 is a schematic diagram of a sidelink discontinuous reception method according to an embodiment of the present application. As shown in FIG. 6, the method includes:
  • the first terminal device receives side link control information sent by the second terminal device;
  • the first terminal device starts a first timer for sidelink discontinuous reception (DRX).
  • DRX sidelink discontinuous reception
  • the first sidelink transmission is unicast or multicast or broadcast.
  • the first timer is used to activate the first terminal device so that the first terminal device can receive retransmission data of a corresponding side-link hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first timer is SL-drx-RetransmissionTimer.
  • the specific value of SL-drx-RetransmissionTimer can be configured or preconfigured, for example, it can be configured or preconfigured in the resource pool configuration (resource pool configuration); for example, it can be configured or preconfigured as one slot.
  • the first terminal device does not start the first timer in case said transport block has been successfully decoded in a second sidelink transmission preceding said first sidelink transmission.
  • the receiving device if the receiving device has successfully decoded the current TB in the previous sidelink transmission, after decoding the SCI corresponding to the first sidelink transmission, it does not need to decode the data of this sidelink transmission of the TB.
  • the resulting feedback is ACK. That is, the receiving device has correctly decoded this data packet, so the corresponding SL-drx-RetransmissionTimer is not started.
  • the first terminal device further starts the first timer when the second timer for sidelink discontinuous reception (DRX) expires.
  • the second timer is drx-HARQ-RTT-TimerSL.
  • the first terminal device receives the side link control information from the time slot of the first side link resource pool The first symbol of a slot starts the second timer.
  • HARQ side link hybrid automatic repeat request
  • the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • the destination identifier indicated by the side link control information is an identifier of the first terminal device, or a group identifier of a group to which the first terminal device belongs.
  • the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is disabled; and for a side link hybrid automatic repeat request (HARQ) process, the first terminal device, Not starting the second timer or setting the value of the second timer to zero, and/or, the first side link resource after the time slot in which the side link control information is received from the first terminal device The first symbol of the slot in the pool starts the first timer.
  • HARQ hybrid automatic repeat request
  • the terminal device does not start drx-HARQ-RTT-TimerSL at this time, or determines that the value of drx-HARQ-RTT-TimerSL is 0;
  • the SL-drx-RetransmissionTimer starts from the first symbol in the next slot corresponding to the slot where the SCI is sent.
  • FIG. 7 is an example diagram of another scenario of feedback for multicast according to an embodiment of the present application, which exemplarily shows the situation of each receiving device in the scenario of FIG. 3 .
  • group member UE 2 decoded correctly and fed back ACK when it first sent, but because UE 1 and UE 3 failed to decode correctly and fed back NACK, the source UE will still retransmit.
  • UE 2 For this retransmission, after decoding the SCI corresponding to the TB, UE 2 finds that the side link transmission indicated by the SCI is a retransmission of the current TB, and since UE 2 has correctly decoded the previous transmission, UE 2 should The received data packet is not decoded for the second time, and the first timer is not started.
  • the transport block sent by the terminal device on the first side link corresponding to the side link control information is not successfully decoded, and the transport block is not successfully decoded before the first side link is sent.
  • a first timer for sidelink discontinuous reception (DRX) is started. Therefore, the terminal device can adopt the DRX mechanism on the side link, which can accurately detect retransmitted data while saving power, and improve transmission reliability.
  • the first terminal device does not start the first timer when the transport block has been successfully decoded in the second sidelink transmission before the first sidelink transmission. In this way, the terminal device can further avoid unnecessary channel detection and further save power.
  • An embodiment of the present application provides an apparatus for sidelink discontinuous reception.
  • the apparatus may be, for example, a terminal device (such as the aforementioned first terminal device), or may be one or some components or components configured on the terminal device, and details that are the same as those in the embodiment of the first aspect will not be repeated here.
  • FIG. 8 is a schematic diagram of an apparatus for sidelink discontinuous reception according to an embodiment of the present application.
  • the apparatus 800 for sidelink discontinuous reception includes:
  • a receiving unit 801 configured to receive side link control information sent by the second terminal device
  • a determining unit 802 which determines that the side link control information indicates that the corresponding side link transmission is only a non-confirmed first multicast
  • a processing unit 803 where the distance between the position of the first terminal device and the central position of the nearest area is less than or equal to the communication range requirement indicated in the side link control information, or the side link If the control information does not indicate the area identifier and/or the communication range requirement, or if the first terminal device's own location is unavailable, start the first timer for side link discontinuous reception.
  • the first multicast is indicated by a first indication field in the propagation type of the side link control information sent by the second terminal device, and the indication field indicates the corresponding side link transmission For non-confirmation only.
  • the center position of the closest area is calculated according to the area identifier indicated in the side link control information and the area length corresponding to the communication range requirement indicated in the side link information.
  • the first timer is used to activate the first terminal device so that the first terminal device can receive the retransmission data of the corresponding side link HARQ process.
  • the processing unit 803 is further configured to: when the distance between the location of the first terminal device and the central location of the closest area is greater than the communication range requirement indicated in the side link control information, The first timer is not started.
  • the processing unit 803 also starts the first timer when the second timer for sidelink discontinuous reception times out.
  • the processing unit 803, for a side link HARQ process starts from the first time slot in the first side link resource pool after the time slot in which the side link control information is received symbol starts the second timer.
  • the side link control information indicates that HARQ feedback is enabled.
  • the destination identifier indicated by the side link control information is an identifier of the first terminal device, or a group identifier of a group to which the first terminal device belongs.
  • the side link control information indicates that HARQ feedback is disabled
  • the processing unit 803 does not start the second timer or sets the value of the second timer to zero, and/or, from the time slot when the sidelink control information is received
  • the first timer is started on the first symbol of the time slot in the first side link resource pool thereafter.
  • one of the conditions for whether the processing unit 803 starts the first timer may also include failure to decode the side link transmission.
  • the MAC entity of the first terminal device does not successfully decode the transport block sent by the side link, and/or, the first terminal device feeds back a non-acknowledgment on the physical side link feedback control channel, and/or , the MAC entity of the first terminal device instructs the physical layer to generate a non-acknowledgment.
  • the processing unit 803 is further configured to: the transport block sent by the side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been decoded before the side link is sent In case of successful decoding, start the first timer.
  • the sidelink discontinuous reception apparatus 800 may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • FIG. 8 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the first terminal device receives the side link control information sent by the second terminal device; in the case that the side link control information indicates the first multicast, if the location of the first terminal device and the center of the nearest area The distance between the locations is less than or equal to the communication range requirements indicated in the side link control information, or the area identification and/or communication range requirements are not indicated in the side link control information, or the own location of the first terminal device is unavailable, A terminal device starts the first timer for discontinuous reception (DRX) of the side link; thus the terminal device can adopt the DRX mechanism on the side link, and can accurately detect retransmission data while saving power, and improve Transmission reliability.
  • DRX discontinuous reception
  • the first terminal device does not start the first timer when the distance between the position of the first terminal device and the central position of the closest area is greater than the communication range requirement indicated in the side link control information. In this way, the terminal device can further avoid unnecessary channel detection and further save power.
  • An embodiment of the present application provides an apparatus for sidelink discontinuous reception.
  • the apparatus may be, for example, a terminal device (such as the aforementioned first terminal device), or may be one or some components or components configured on the terminal device, and details that are the same as those in the embodiment of the second aspect will not be described again.
  • FIG. 9 is a schematic diagram of an apparatus for sidelink discontinuous reception according to an embodiment of the present application.
  • the side link discontinuous reception device 900 includes:
  • a receiving unit 901 configured to receive side link control information sent by the second terminal device
  • the processing unit 902 is configured to send the transmission block corresponding to the first side link corresponding to the side link control information, and the transmission block has not been successfully decoded before the transmission of the first side link. case, start the first timer for sidelink discontinuous reception.
  • the first side link transmission is unicast or multicast or broadcast.
  • the first timer is used to activate the first terminal device so that the first terminal device can receive the retransmission data of the corresponding side link HARQ procedure.
  • the processing unit 902 is further configured to: if the transport block has been successfully decoded in a second sidelink transmission prior to the first sidelink transmission, not start the first timer.
  • the processing unit 902 also starts the first timer if the second timer for sidelink discontinuous reception expires.
  • the processing unit 902 for a side link HARQ process, starts from the first time slot in the first side link resource pool after the time slot in which the side link control information is received symbol starts the second timer.
  • the side link control information indicates that HARQ feedback is enabled.
  • the destination identifier indicated by the side link control information is an identifier of the first terminal device, or a group identifier of a group to which the first terminal device belongs.
  • the side link control information indicates that HARQ feedback is disabled
  • the processing unit 902 does not start the second timer or sets the value of the second timer to zero, and/or, from the time slot when the sidelink control information is received
  • the first timer is started on the first symbol of the time slot in the first side link resource pool thereafter.
  • the sidelink discontinuous reception apparatus 900 may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • FIG. 9 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the transport block sent by the terminal device on the first side link corresponding to the side link control information is not successfully decoded, and the transport block is not successfully decoded before the first side link is sent.
  • a first timer for sidelink discontinuous reception (DRX) is started. Therefore, the terminal device can adopt the DRX mechanism on the side link, which can accurately detect retransmitted data while saving power, and improve transmission reliability.
  • the first terminal device does not start the first timer when the transport block has been successfully decoded in the second sidelink transmission before the first sidelink transmission. In this way, the terminal device can further avoid unnecessary channel detection and further save power.
  • the embodiment of the present application also provides a communication system, which can be referred to FIG. 1 , and the same content as the embodiments of the first aspect to the fourth aspect will not be described again.
  • the communication system 100 includes:
  • a terminal device receiving side link control information; determining that the side link control information indicates that the corresponding side link is sent as an unacknowledged only first multicast; and at the location of the terminal device and the center location of the closest area In the case where the distance between them is less than or equal to the communication range requirement indicated in the side link control information, or in the case where the area identification and/or communication range requirement is not indicated in the side link control information, or the In the case that the self-location of the terminal device is unavailable, a first timer for side link discontinuous reception is started.
  • the communication system 100 includes:
  • a terminal device which receives side link control information; the transport block sent by the side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been successfully decoded before the side link is sent In case of decoding, a first timer for sidelink discontinuous reception is started.
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited thereto, and may be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited thereto, and may be other network devices.
  • FIG. 10 is a schematic diagram of a network device according to an embodiment of the present application.
  • the network device 1000 may include: a processor 1010 (such as a central processing unit CPU) and a memory 1020 ; the memory 1020 is coupled to the processor 1010 .
  • the memory 1020 can store various data; in addition, it also stores a program 1030 for information processing, and executes the program 1030 under the control of the processor 1010 .
  • the network device 1000 may further include: a transceiver 1040 and an antenna 1050 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1000 does not necessarily include all the components shown in FIG. 10 ; in addition, the network device 1000 may also include components not shown in FIG. 10 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited thereto, and may be other devices.
  • FIG. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1100 may include a processor 1110 and a memory 1120 ; the memory 1120 stores data and programs, and is coupled to the processor 1110 . It is worth noting that this figure is exemplary; other types of structures may also be used in addition to or instead of this structure to implement telecommunications functions or other functions.
  • the processor 1110 may be configured to execute a program to implement the sidelink discontinuous reception method described in the embodiment of the first aspect.
  • the processor 1110 may be configured to perform the following control: receive side link control information; determine that the side link control information indicates that the corresponding side link transmission is only a non-confirmed first multicast; and at the terminal If the distance between the location of the device and the central location of the nearest area is less than or equal to the communication range requirement indicated in the side link control information, or the area identification and/or communication is not indicated in the side link control information In case of a range requirement, or in case the terminal device's own location is not available, a first timer for sidelink discontinuous reception is started.
  • the processor 1110 may be configured to execute a program to implement the sidelink discontinuous reception method described in the embodiment of the second aspect.
  • the processor 1110 may be configured to perform the following control: receiving side link control information; the transport block sent on the side link corresponding to the side link control information has not been successfully decoded, and the transport block is in the If the sidelink transmission has not been successfully decoded before, start the first timer for the sidelink discontinuous reception.
  • the terminal device 1100 may further include: a communication module 1130 , an input unit 1140 , a display 1150 , and a power supply 1160 .
  • a communication module 1130 the terminal device 1100 may further include: a communication module 1130 , an input unit 1140 , a display 1150 , and a power supply 1160 .
  • the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the terminal device 1100 does not necessarily include all the components shown in FIG. have technology.
  • the embodiment of the present application also provides a computer program, wherein when the program is executed in the terminal device, the program causes the terminal device to execute the side link discontinuous reception method described in the embodiments of the first and second aspects .
  • the embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program causes the terminal device to execute the side link discontinuous reception method described in the first and second embodiments.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it may be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a sidelink discontinuous reception method comprising:
  • the first terminal device receives side link control information sent by the second terminal device;
  • the first terminal device starts a first timing for sidelink discontinuous reception (DRX) device.
  • DRX sidelink discontinuous reception
  • Supplement 2 The method according to Supplement 1, wherein the first multicast is indicated by the first indication field in the propagation type of the side link control information sent by the second terminal device, and the The indication field indicates that the corresponding sidelink is sent as negative-only acknowledgment (negative-only acknowledgment).
  • Supplement 3 The method according to Supplement 1 or 2, wherein the center position of the closest area is based on the area identifier indicated in the side link control information and the communication range indicated in the side link information The corresponding region length is required to be calculated.
  • Supplement 4 The method according to any one of Supplements 1 to 3, wherein the first timer is used to activate the first terminal device so that the first terminal device can receive the corresponding side link hybrid Retransmission data for the Automatic Repeat Request (HARQ) process.
  • HARQ Automatic Repeat Request
  • Supplement 5 The method according to Supplement 4, wherein the first timer is SL-drx-RetransmissionTimer.
  • Supplementary Note 6 The method according to any one of Supplementary Notes 1 to 5, wherein the method further comprises:
  • the first terminal device does not start the first timing when the distance between the position of the first terminal device and the central position of the closest area is greater than the communication range requirement indicated in the side link control information device.
  • Supplementary Note 7 The method according to any one of Supplementary Notes 1 to 5, wherein,
  • the first terminal device also starts the first timer when the second timer for sidelink discontinuous reception (DRX) times out.
  • DRX sidelink discontinuous reception
  • Supplementary Note 8 The method according to Supplementary Note 7, wherein the method further comprises:
  • the first terminal device receives the side link control information from the first terminal device in the first side link resource pool after the time slot The first symbol of a slot starts the second timer.
  • HARQ side link hybrid automatic repeat request
  • Supplement 9 The method according to Supplement 8, wherein the second timer is drx-HARQ-RTT-TimerSL.
  • Supplement 10 The method according to any one of Supplements 1 to 9, wherein the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • Supplement 11 The method according to any one of Supplements 1 to 10, wherein the destination identifier indicated by the side link control information is the identifier of the first terminal device, or the destination identifier where the first terminal device is located.
  • the group ID for the group is the identifier of the first terminal device, or the destination identifier where the first terminal device is located.
  • Supplement 12 The method according to any one of Supplements 1 to 5, wherein the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is disabled.
  • HARQ hybrid automatic repeat request
  • Supplement 13 The method according to Supplement 12, wherein the first terminal device does not start the second timer or set the value of the second timer to a side link Hybrid Automatic Repeat Request (HARQ) process set to zero, and/or start the first timing from the first symbol of a time slot in the first side link resource pool after the time slot in which the first terminal device receives the side link control information device.
  • HARQ Hybrid Automatic Repeat Request
  • Supplementary Note 14 The method according to any one of Supplementary Notes 1 to 13, wherein one of the conditions for starting the first timer further includes failure to decode the side link transmission.
  • the MAC entity of the first terminal device does not successfully decode the transport block (TB) sent by the side link, and/or, the first terminal device feeds back a non-acknowledgement (NACK) on the physical side link feedback control channel , and/or, the MAC entity of the first terminal device instructs the physical layer to generate a non-acknowledgement (NACK).
  • NACK non-acknowledgement
  • Supplement 16 The method according to any one of Supplements 1 to 15, wherein the method further comprises:
  • the first terminal device is also in the case that the transport block sent by the side link corresponding to the side link control information has not been successfully decoded, and the transport block has not been successfully decoded before the side link is sent , start the first timer.
  • the first terminal device receives side link control information sent by the second terminal device;
  • the The first terminal device starts a first timer for sidelink discontinuous reception (DRX).
  • Supplementary Note 18 The method according to Supplementary Note 15, wherein the first side link transmission is unicast or multicast or broadcast.
  • Supplement 19 The method according to Supplement 17 or 18, wherein the first timer is used to activate the first terminal device so that the first terminal device can receive the corresponding side link hybrid automatic repeat transmission Retransmission data of the request (HARQ) process.
  • HARQ side link hybrid automatic repeat transmission Retransmission data of the request
  • Supplement 20 The method according to Supplement 19, wherein the first timer is SL-drx-RetransmissionTimer.
  • Supplementary Note 21 The method according to any one of Supplementary Notes 17 to 20, wherein the method further comprises:
  • the first terminal device does not start the first timer if the transport block has been successfully decoded in a second sidelink transmission preceding the first sidelink transmission.
  • Supplementary Note 22 The method according to any one of Supplementary Notes 17 to 20, wherein,
  • the first terminal device also starts the first timer when the second timer for sidelink discontinuous reception (DRX) times out.
  • DRX sidelink discontinuous reception
  • the first terminal device receives the side link control information from the first terminal device in the first side link resource pool after the time slot The first symbol of a slot starts the second timer.
  • HARQ side link hybrid automatic repeat request
  • Supplement 24 The method according to Supplement 23, wherein the second timer is drx-HARQ-RTT-TimerSL.
  • Supplement 25 The method according to any one of Supplements 17 to 23, wherein the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • Supplement 26 The method according to any one of Supplements 17 to 25, wherein, the destination identifier indicated by the side link control information is the identifier of the first terminal device, or the destination identifier where the first terminal device is located.
  • Supplement 27 The method according to any one of Supplements 17 to 20, wherein the side link control information indicates that hybrid automatic repeat request (HARQ) feedback is disabled.
  • HARQ hybrid automatic repeat request
  • Supplementary Note 28 The method according to Supplementary Note 27, wherein the first terminal device does not start the second timer or set the value of the second timer to set to zero, and/or start the first timing from the first symbol of a time slot in the first side link resource pool after the time slot in which the first terminal device receives the side link control information device.
  • a terminal device including a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to realize the edge as described in any one of Supplements 1 to 28.
  • Link discontinuous reception method

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种边链路非连续接收装置以及方法。所述方法包括:第一终端设备接收第二终端设备发送的边链路控制信息;确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,所述第一终端设备启动用于边链路非连续接收的第一定时器。

Description

边链路非连续接收装置以及方法 技术领域
本申请实施例涉及通信技术领域。
背景技术
在Rel-15以及之前版本的车联网(V2X,Vehicle to Everything)通信中,支持边链路(Sidelink)资源的两种分配方式:Mode 1和Mode 2。对于Mode 1,边链路资源由网络设备(例如基站)进行分配而获得;对于Mode 2,终端设备自主地选择发送资源,即发送资源通过感知(sensing)或检测-资源选择过程获得。
另一方面,新无线(NR,New Radio)边链路通信是目前Rel-16标准化的研究项目之一,相比于长期演进(LTE,Long Term Evolution)边链路通信,NR边链路通信需要支持诸多新场景和新业务(例如远程驾驶、自动驾驶和车队行驶等),需要满足更高的技术指标(高可靠、低时延、高数据速率等)。
NR边链路通信定义的物理信道包括物理边链路控制信道(PSCCH,Physical Sidelink Control Channel)、物理边链路共享信道(PSSCH,Physical Sidelink Shared Channel)和物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel)。PSCCH承载第一级(1st stage)边链路控制信息(SCI,Sidelink Control Informaiton),1st stage SCI主要用于发送资源预留信息。PSSCH承载第二级(2nd stage)SCI以及传输块(TB,Transport Block),2nd stage SCI主要用于TB解调。PSFCH承载边链路反馈信息(可称为HARQ-ACK)。边链路发送所使用的资源(时频资源)位于某一资源池内。
NR边链路通信对于单播和组播支持HARQ-ACK反馈。组播又包括选项1和选项2两种HARQ-ACK反馈方式。
对于选项1的组播(可称为第一组播,或者仅非确认negative-only acknowledgement的组播),只有在一定的通信范围(communication range)内的接收设备才会反馈HARQ-ACK,并且使用一种只反馈NACK(NACK-only)的方式。更具体地,所有接收设备共享同一个PSFCH资源,即都在同一个PSFCH资源上反馈,并且只有解码结果是“NACK”时才进行反馈(发送PSFCH),在ACK时不发送PSFCH,ACK和NACK通过PSFCH信号的有无进行区分,多个设备发送的PSFCH会在同一个资源上产生同向叠加,发送设备根据PSFCH信号的强度来判断NACK或ACK。
对于选项2的组播(可称为第二组播),每个接收设备用于反馈ACK/NACK的PSFCH资源是独立的,接收设备在正确接收时反馈ACK,在未正确接收时反馈NACK,ACK和NACK通过不同的PSFCH序列(循环移位)进行区分。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:在Rel 17边链路增强的课题中,一个重要目标是对某些终端设备,例如手持UE(P-UE),要对在边链路上的省电机制进行研究和设计。非连续接收(DRX,Discontinuous Reception)机制作为一个应用于Uu接口中的有效省电机制,可以复用在边链路上。当资源池配置了PSFCH的情况下,接收设备需要在没有能够正确解码的情况下,在当发送设备发送重传数据的时候处于“Active”状态,以正确接收重传数据包和对当前TB正确解码。否则,会影响数据包发送的可靠性。但是,如何在边链路上支持非连续接收(DRX),目前还没有解决方案。
针对上述问题的至少之一,本申请实施例提供一种边链路非连续接收方法及装置。
根据本申请实施例的一个方面,提供一种边链路非连续接收方法,包括:
第一终端设备接收第二终端设备发送的边链路控制信息;
确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及
在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,所述第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
根据本申请实施例的另一个方面,提供一种边链路非连续接收装置,配置于第一终端设备,所述装置包括:
接收单元,其接收第二终端设备发送的边链路控制信息;
确定单元,其确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及
处理单元,其在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中 没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器。
根据本申请实施例的另一个方面,提供一种边链路非连续接收方法,包括:
第一终端设备接收第二终端设备发送的边链路控制信息;
在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,所述第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
根据本申请实施例的另一个方面,提供一种边链路非连续接收装置,配置于第一终端设备,所述装置包括:
接收单元,其接收第二终端设备发送的边链路控制信息;
处理单元,其在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
根据本申请实施例的另一个方面,提供一种通信系统,包括:
终端设备,其接收边链路控制信息;确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及在所述终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器;
或者,其接收边链路控制信息;在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
本申请实施例的有益效果之一在于:第一终端设备接收第二终端设备发送的边链路控制信息;在边链路控制信息指示第一组播的情况下,如果第一终端设备的位置和最近区域的中心位置之间的距离小于或等于边链路控制信息中指示的通信范围要求,或者边链路控制信息中没有指示区域标识和/或通信范围要求,或者第一终端设备的自身位置不可用,第一终端设备启动用于边链路非连续接收(DRX)的第一定时器;由此终端设备在边链路上能够采用DRX机制,能够在节省电量的同时准确地检测到重传数据,提升传输可靠性。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理 可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的一示意图;
图2是针对组播进行反馈的一场景示例图;
图3是针对组播进行反馈的另一场景示例图;
图4是本申请实施例的边链路非连续接收方法的一示意图;
图5是本申请实施例针对组播进行反馈的一场景示例图;
图6是本申请实施例的边链路非连续接收方法的一示意图;
图7是本申请实施例针对组播进行反馈的另一场景示例图;
图8是本申请实施例的边链路非连续接收装置的一示意图;
图9是本申请实施例的边链路非连续接收装置的另一示意图;
图10是本申请实施例的网络设备的示意图;
图11是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和 /或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、 站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本申请实施例中,两个终端设备102、103之间可以进行边链路发送。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路发送以实现边链路通信,也可以都在网络设备101的覆盖范围之外进行边链路发送以实现边链路通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络 设备101的覆盖范围之外进行边链路发送以实现边链路通信。
在现有标准中,可以为终端设备在Uu接口上配置非连续接收(DRX),以使得终端设备能够节省电量。可以为终端设备配置半静态周期运行的drx-OnDurationTimer,在此定时器运行期间内,终端设备需要对物理下行控制信道(PDCCH)进行盲检测,在其他时间如果有其他定时器运行,终端设备也可以处于激活状态对物理下行控制信道(PDCCH)进行盲检测;而在没有任何定时器运行的其余时间,终端设备可以不对PDCCH进行检测,甚至可以基于实现将接收射频关闭,以达到节省电量的目的。
在半静态周期运行的DRX机制基础之上,Uu DRX还引入了基于事件启动运行的定时器,能够在满足条件时动态地使终端设备转换到“Active”状态,以对PDCCH进行盲检测。具体的,可针对HARQ进程(per HARQ process)分别配置drx-Retransmission TimerDL和drx-RetransmissionTimerUL,可以使终端设备动态地处于“Active”状态,分别用于检测在DL和UL上对重传进行调度的PDCCH。
对于DL,当终端设备收到一个PDCCH指示DL调度(无论指示的是新传还是重传),对于其指示的相应HARQ process,停止之前正在运行的drx-RetransmissionTimerDL,对该HARQ process,在对应的DL HARQ反馈发送完成后的下一个符号(symbol)启动drx-HARQ-RTT-TimerDL(其运行期间终端设备应处于“non-Active”状态),当该定时器超时后,如果当前数据包没能正确解码,则启动drx-RetransmissionTimerDL使终端设备处于“Active”状态,对DL的重传调度PDCCH进行监听。
对于UL,当终端设备收到一个PDCCH指示UL调度(无论指示的是新传还是重传),对于其指示的相应HARQ process,停止之前正在运行的drx-RetransmissionTimerUL,对该HARQ process,在对应的PUSCH(first repetiton)发送完成后的下一个符号(symbol)启动drx-HARQ-RTT-TimerUL(其运行期间终端设备应处于“non-Active”状态),当该定时器超时后,启动drx-RetransmissionTimerUL使终端设备处于“Active”状态,对UL的重传调度PDCCH进行监听。
基于上述的Uu DRX运行机制,终端设备能够在网络设备可能调度重传的时间处于“Active”状态,能够保证终端设备对重传调度的PDCCH进行检测和接收。
对于边链路发送,在R16阶段引入了对应的反馈机制,如果当前发送为第一组播(negative-only acknowledgement is indicated by the SCI),那么接收设备在收到数据包之后,根据自身的译码结果进行反馈,具体的,如果译码结果正确,则不需要发送反馈信息;如果译码结果错误,则需要在对应的反馈信道资源上反馈“NACK”。在这种场景下, 对于一个发送数据包,组内的所有其它终端设备都作为接收设备,且它们在相同的PSFCH反馈信道上采用SFN的方式发送对应的反馈。
进一步的,Rel 16还支持接收终端设备根据其自身位置与最近区域的中心位置之间的距离来判断是否进行反馈,其中,该最近区域的中心位置可以根据边链路控制信息(SCI)中指示的zone_id以及资源池中半静态配置的sl-ZoneLength指示的数值计算而获得。如果接收设备通过计算获得的距离小于或等于SCI中指示的通信范围要求(communication range requirement),接收设备才可以在解码失败的情况下向发送设备反馈NACK;否则,即使解码失败,接收设备也不会进行反馈。
图2是针对组播进行反馈的一场景示例图,示例性示出了采用仅非确认(negative-only acknowledgement)反馈方式的第一组播场景。如图2所示,组成员UE 0和UE 1与最近区域的中心位置之间的距离小于通信范围要求,且它们对当前TB解码失败,则向源UE反馈“NACK”以请求重传;对于组成员UE 2来说,虽然与最近区域的中心位置之间的距离也小于通信范围要求,但它对当前TB解码成功,则不需要向源UE发送反馈信息;对于组成员UE 3来说,它与最近区域的中心位置之间的距离大于通信范围要求,所以即使它解码失败,也不向源UE发送反馈信息。
在某些情况下,即使接收设备正确解码,发送设备仍可能进行重传。例如本应发送的ACK由于PSFCH反馈信道与其它SL或者Uu的发送发生碰撞被丢弃(drop),或者在negative-positive acknowledgement的第二组播场景下,接收设备反馈了ACK,但其它接收设备中存在反馈NACK的情况,则发送设备也需要进行重传,使组内所有设备都能够对当前TB正确解码。
图3是针对组播进行反馈的另一场景示例图,示例性示出了第二组播场景。如图3所示,组成员UE 2在首次发送时正确解码并反馈了ACK,但由于组成员UE 1和UE 3没能正确解码,并且反馈了NACK,则源UE仍会进行重传。此时,组成员UE 2在解码该TB对应的SCI后,发现是对当前TB的重传,且由于UE 2已经在前一次发送时已经正确解码,则UE 2本次不对收到的数据包进行解码。
对于以上场景,可以基于定时器机制对接收设备的SL DRX行为机制进行控制,即在边链路上通过例如SL-drx-OnDurationTimer、SL-drx-InactivityTimer、SL-drx-HARQ-RTT-Timer、SL-drx-RetransmissionTimer等定时器,对接收设备的SL DRX机制进行控制。以上仅示例性说明了上述定时器的名称,本申请不限于此。以下涉及的第一定时器和第二定时器可以采用上述的定时器名称,也可以使用其他名称。
在本申请实施例中,在不引起混淆的情况下,术语“PSFCH”和“边链路反馈信道”可以互换,术语“PSCCH”和“边链路控制信道”或“边链路控制信息”可以互换,术语“PSSCH”和“边链路数据信道”或“边链路数据”也可以互换。另外,发送(transmitting)或接收(receiving)PSCCH可以理解为发送或接收由PSCCH承载的边链路控制信息;发送或接收PSSCH可以理解为发送或接收由PSSCH承载的边链路数据;发送或接收PSFCH可以理解为发送或接收由PSFCH承载的边链路反馈信息。边链路发送(Sidelink transmission,也可称为边链路传输)可以理解为PSCCH/PSSCH发送或者边链路数据/信息发送。
第一方面的实施例
本申请实施例提供一种边链路非连续接收方法,从第一终端设备进行说明。其中第二终端设备可以向第一终端设备发送边链路数据。从边链路数据发送的角度,本申请实施例的第二终端设备为发送设备,第一终端设备为接收设备。
图4是本申请实施例的边链路非连续接收方法的一示意图,如图4所示,该方法包括:
401,第一终端设备接收第二终端设备发送的边链路控制信息;
402,确定边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及
403,在第一终端设备的位置和最近区域的中心位置之间的距离小于或等于边链路控制信息中指示的通信范围要求的情况下,或者边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者第一终端设备的自身位置不可用的情况下,第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
值得注意的是,以上附图4仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
在本申请实施例中,终端设备可以进行边链路DRX。具体地,例如终端设备可以在边链路上处于激活(active)或开启(on)状态,在该状态下终端设备在对应的接收资源池内进行PSCCH检测;终端设备还可以在边链路上处于非激活(inactive)或关闭(off)状态,在该状态下终端设备不在对应的接收资源池内进行PSCCH检测。本申请实施例不限于此,关于DRX机制还可以参考相关技术。
以下针对某一个边链路HARQ进程进行说明,例如在使用RRT定时器(timer)或重传定时器时,定时器是针对每个进程分别启动/停止的,即终端设备针对不同进程可以分别配置定时器。对于多个边链路进程的情况,终端设备可以按照合集进行处理。例如,如果UE 1有多个边链路进程,如果针对某一个边链路进程对应的重传定时器运行,则该UE 1就应该处于激活或开启状态。
在一些实施例中,第一组播由第二终端设备发送的边链路控制信息的传播类型(cast type)中的第一指示域指示,所述指示域指示对应的边链路发送为仅非确认(negative-only acknowledgement)。
在一些实施例中,最近区域的中心位置根据边链路控制信息(SCI)中指示的区域标识(zone_id)和与边链路信息中指示的通信范围要求(communication range requirement)对应的区域长度(sl_ZoneLength)计算得到。该区域长度(sl_ZoneLength)可以在资源池中半静态地配置。
在一些实施例中,第一定时器用于激活第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求(HARQ)进程的重传数据。
例如,所述第一定时器为SL-drx-RetransmissionTimer。SL-drx-RetransmissionTimer具体的值可以配置或预配置。例如,该定时器具体的值可以在资源池配置(resource pool configuration)中配置或预配置;再例如,该定时器具体的值可以被配置或预配置为1个时隙(slot)。
表1示例性示出了DRX的一种方式,本申请不限于此。
表1
Figure PCTCN2021110924-appb-000001
在一些实施例中,第一终端设备在第一终端设备的位置和最近区域的中心位置之间 的距离大于所述边链路控制信息中指示的通信范围要求的情况下,不启动所述第一定时器。
换言之,对于采用了negative-only acknowledgement反馈方式的组播场景,在自身位置与最近区域的中心位置之间的距离大于SCI中指示的communication range requirement的情况下,接收设备不会发送反馈(只能反馈NACK)。也就是说,接收设备并不期待发送设备的重传,因此不启动该第一定时器。由此,能够避免进行不必要的信道检测,进一步节省电量。
在一些实施例中,第一终端设备还在用于边链路非连续接收(DRX)的第二定时器超时的情况下,启动所述第一定时器。该第二定时器用于确定第一定时器的启动时间,例如在第二定时器超时后启动该第一定时器;所述第二定时器例如为drx-HARQ-RTT-TimerSL。
例如,第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
表2示例性示出了DRX的另一种方式,本申请不限于此。
表2
Figure PCTCN2021110924-appb-000002
在一些实施例中,边链路控制信息中指示混合自动重传请求(HARQ)反馈使能。
在一些实施例中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
即,第一终端设备为所述边链路控制信息和/或对应的PSSCH的意向(intended)接收终端。例如,所述边链路控制信息中指示的目的标识与所述第一终端设备的标识相同,或者,所述目的标识包括所述终端设备的标识。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈去使能;并且所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
例如,如果SCI中指示了HARQ feedback disabled,此时终端设备不启动drx-HARQ-RTT-TimerSL,,或者确定drx-HARQ-RTT-TimerSL的值为0;而是在检测到的本次边链路发送的对应SCI所在的slot的下一个slot中的首个symbol开始,启动SL-drx-RetransmissionTimer。
在一些实施例中,终端设备是否启动定时器的条件之一还可以包括对边链路发送的解码失败。例如,第一终端设备的MAC实体没有成功解码所述边链路发送的传输块(TB),和/或,所述第一终端设备在物理边链路反馈控制信道上反馈非确认(NACK),和/或,所述第一终端设备的MAC实体指示物理层生成非确认(NACK)。
图5是本申请实施例针对组播进行反馈的一场景示例图,示例性示出了图2的场景下各接收设备的情况。例如,如图5所示,组成员UE 1与通过计算获得的最近区域的中心位置之间的距离小于communication range requirement,且它对当前TB解码失败,则向源UE反馈“NACK”以请求重传;此时,第一定时器在生成NACK之后被启动。
对于组成员UE 3来说,它与最近区域的中心位置之间的距离大于communication range requirement,所以即使它解码失败,也不向源UE发送反馈信息。因此,在生成NACK之后PSFCH发送被忽略,并且第一定时器在解码失败之后不被启动。
换言之,当接收设备根据其自身位置以及最近区域的中心位置计算获得的距离大于SCI中指示的communication range requirement时,即使接收设备的MAC实体对当前发送的TB没有解码成功,和/或,接收设备的MAC实体指示物理层生成的反馈结果是NACK,该接收设备在PSFCH信道资源上不会进行反馈信息发送(不期待重传的到来), 则该接收设备也不启动SL-drx-RetransmissionTimer。
在一些实施例中,第一终端设备还在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动第一定时器。在传输块在所述边链路发送之前已经被成功解码的情况下,不启动第一定时器。
表3示例性示出了DRX的另一种方式,本申请不限于此。
表3
Figure PCTCN2021110924-appb-000003
以上示例性对本申请实施例的第一定时器和第二定时器,以及接收设备的非激活(inactive)或关闭(off)状态、激活(active)或开启(on)状态进行了示例性说明,但本申请不限于此。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,第一终端设备接收第二终端设备发送的边链路控制信息;在边 链路控制信息指示第一组播的情况下,如果第一终端设备的位置和最近区域的中心位置之间的距离小于或等于边链路控制信息中指示的通信范围要求,或者边链路控制信息中没有指示区域标识和/或通信范围要求,或者第一终端设备的自身位置不可用,第一终端设备启动用于边链路非连续接收(DRX)的第一定时器;由此终端设备能够在边链路上采用DRX机制,能够在节省电量的同时准确地检测到重传数据,提升传输可靠性。
进一步地,第一终端设备在第一终端设备的位置和最近区域的中心位置之间的距离大于边链路控制信息中指示的通信范围要求的情况下,不启动第一定时器。由此终端设备能够进一步避免进行不必要的信道检测,进一步节省电量。
第二方面的实施例
本申请实施例提供一种边链路非连续接收方法,从第一终端设备进行说明,与第一方面的实施例相同的内容不再赘述。第二方面的实施例可以与第一方面的实施例结合起来,也可以单独地实施。
图6是本申请实施例的边链路非连续接收方法的一示意图,如图6所示,该方法包括:
601,第一终端设备接收第二终端设备发送的边链路控制信息;
602,在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
值得注意的是,以上附图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
在一些实施例中,第一边链路发送为单播或者组播或者广播。
在一些实施例中,第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求(HARQ)进程的重传数据。
例如,第一定时器为SL-drx-RetransmissionTimer。SL-drx-RetransmissionTimer具体的值可以配置或预配置,例如可以在资源池配置(resource pool configuration)中配置或预配置;例如配置或预配置为1个slot。
在一些实施例中,第一终端设备在所述传输块在所述第一边链路发送之前的第二边 链路发送中已经被成功解码的情况下,不启动第一定时器。
换言之,如果接收设备在之前的边链路发送中对当前TB已经成功解码,在解码第一边链路发送对应的SCI之后就不需要解码该TB的本次边链路发送的数据,这时候生成的反馈为ACK。即,接收设备已经正确解码了这个数据包,因此不启动对应的SL-drx-RetransmissionTimer。
在一些实施例中,第一终端设备还在用于边链路非连续接收(DRX)的第二定时器超时的情况下,启动所述第一定时器。例如,所述第二定时器为drx-HARQ-RTT-TimerSL。
例如,第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
在一些实施例中,边链路控制信息中指示混合自动重传请求(HARQ)反馈使能。
在一些实施例中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈去使能;并且所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
例如,如果SCI中指示了HARQ feedback disabled,此时终端设备不启动drx-HARQ-RTT-TimerSL,或者确定drx-HARQ-RTT-TimerSL的值为0;而是在检测到的本次边链路发送的对应SCI所在的slot的下一个slot中的首个symbol开始,启动SL-drx-RetransmissionTimer。
图7是本申请实施例针对组播进行反馈的另一场景示例图,示例性示出了图3的场景下各接收设备的情况。例如,如图7所示,组成员UE 2在首次发送时正确解码并反馈了ACK,但由于UE 1和UE 3没能正确解码,并且反馈了NACK,则源UE仍会进行重传。
针对该重传,UE 2在解码该TB对应的SCI后,发现该SCI指示的边链路发送是对当前TB的重传,且由于UE 2在前一次发送时已经正确解码,则UE 2本次不对收到的数据包进行解码,并且第一定时器不被启动。
以上示例性对本申请实施例的第一定时器和第二定时器,以及接收设备的非激活 (inactive)或关闭(off)状态、激活(active)或开启(on)状态进行了示例性说明,但本申请不限于此。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备在边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收(DRX)的第一定时器。由此终端设备能够在边链路上采用DRX机制,能够在节省电量的同时准确地检测到重传数据,提升传输可靠性。
进一步地,第一终端设备在传输块在第一边链路发送之前的第二边链路发送中已经被成功解码的情况下,不启动第一定时器。由此终端设备能够进一步避免进行不必要的信道检测,进一步节省电量。
第三方面的实施例
本申请实施例提供一种边链路非连续接收装置。该装置例如可以是终端设备(例如前述的第一终端设备),也可以是配置于终端设备的某个或某些部件或者组件,与第一方面的实施例相同的内容不再赘述。
图8是本申请实施例的边链路非连续接收装置的一示意图。如图8所示,边链路非连续接收装置800包括:
接收单元801,其接收第二终端设备发送的边链路控制信息;
确定单元802,其确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及
处理单元803,其在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器。
在一些实施例中,所述第一组播由所述第二终端设备发送的所述边链路控制信息的传播类型中的第一指示域指示,所述指示域指示对应的边链路发送为仅非确认。
在一些实施例中,所述最近区域的中心位置根据所述边链路控制信息中指示的区域标识和与所述边链路信息中指示的通信范围要求对应的区域长度计算得到。
在一些实施例中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求进程的重传数据。
在一些实施例中,处理单元803还用于:在所述第一终端设备的位置和最近区域的中心位置之间的距离大于所述边链路控制信息中指示的通信范围要求的情况下,不启动所述第一定时器。
在一些实施例中,处理单元803还在用于边链路非连续接收的第二定时器超时的情况下,启动所述第一定时器。
在一些实施例中,处理单元803针对一个边链路混合自动重传请求进程,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求反馈使能。
在一些实施例中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求反馈去使能;
处理单元803针对一个边链路混合自动重传请求进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
在一些实施例中,处理单元803是否启动第一定时器的条件之一还可以包括对所述边链路发送的解码失败。例如,所述第一终端设备的MAC实体没有成功解码所述边链路发送的传输块,和/或,所述第一终端设备在物理边链路反馈控制信道上反馈非确认,和/或,所述第一终端设备的MAC实体指示物理层生成非确认。
在一些实施例中,处理单元803还用于:在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动所述第一定时器。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。边链路非连续接收装置800还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,第一终端设备接收第二终端设备发送的边链路控制信息;在边链路控制信息指示第一组播的情况下,如果第一终端设备的位置和最近区域的中心位置之间的距离小于或等于边链路控制信息中指示的通信范围要求,或者边链路控制信息中没有指示区域标识和/或通信范围要求,或者第一终端设备的自身位置不可用,第一终端设备启动用于边链路非连续接收(DRX)的第一定时器;由此终端设备能够在边链路上采用DRX机制,能够在节省电量的同时准确地检测到重传数据,提升传输可靠性。
进一步地,第一终端设备在第一终端设备的位置和最近区域的中心位置之间的距离大于边链路控制信息中指示的通信范围要求的情况下,不启动第一定时器。由此终端设备能够进一步避免进行不必要的信道检测,进一步节省电量。
第四方面的实施例
本申请实施例提供一种边链路非连续接收装置。该装置例如可以是终端设备(例如前述的第一终端设备),也可以是配置于终端设备的某个或某些部件或者组件,与第二方面的实施例相同的内容不再赘述。
图9是本申请实施例的边链路非连续接收装置的一示意图。如图9所示,边链路非连续接收装置900包括:
接收单元901,其接收第二终端设备发送的边链路控制信息;以及
处理单元902,其在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
在一些实施例中,所述第一边链路发送为单播或者组播或者广播。
在一些实施例中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求进程的重传数据。
在一些实施例中,处理单元902还用于:在所述传输块在所述第一边链路发送之前的第二边链路发送中已经被成功解码的情况下,不启动所述第一定时器。
在一些实施例中,处理单元902还在用于边链路非连续接收的第二定时器超时的情 况下,启动所述第一定时器。
在一些实施例中,处理单元902针对一个边链路混合自动重传请求进程,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求反馈使能。
在一些实施例中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
在一些实施例中,所述边链路控制信息中指示混合自动重传请求反馈去使能;
处理单元902针对一个边链路混合自动重传请求进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。边链路非连续接收装置900还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图9中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备在边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收(DRX)的第一定时器。由此终端设备能够在边链路上采用DRX机制,能够在节省电量的同时准确地检测到重传数据,提升传输可靠性。
进一步地,第一终端设备在传输块在第一边链路发送之前的第二边链路发送中已经被成功解码的情况下,不启动第一定时器。由此终端设备能够进一步避免进行不必要的信道检测,进一步节省电量。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100包括:
终端设备,其接收边链路控制信息;确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及在所述终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器。
在一些实施例中,通信系统100包括:
终端设备,其接收边链路控制信息;在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图10是本申请实施例的网络设备的构成示意图。如图10所示,网络设备1000可以包括:处理器1010(例如中央处理器CPU)和存储器1020;存储器1020耦合到处理器1010。其中该存储器1020可存储各种数据;此外还存储信息处理的程序1030,并且在处理器1010的控制下执行该程序1030。
此外,如图10所示,网络设备1000还可以包括:收发机1040和天线1050等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1000也并不是必须要包括图10中所示的所有部件;此外,网络设备1000还可以包括图10中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图11是本申请实施例的终端设备的示意图。如图11所示,该终端设备1100可以包括处理器1110和存储器1120;存储器1120存储有数据和程序,并耦合到处理器1110。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1110可以被配置为执行程序而实现如第一方面的实施例所述的边链路非连续接收方法。例如处理器1110可以被配置为进行如下的控制:接收边链路控制信息;确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及在 所述终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器。
再例如,处理器1110可以被配置为执行程序而实现如第二方面的实施例所述的边链路非连续接收方法。例如处理器1110可以被配置为进行如下的控制:接收边链路控制信息;在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
如图11所示,该终端设备1100还可以包括:通信模块1130、输入单元1140、显示器1150、电源1160。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1100也并不是必须要包括图11中所示的所有部件,上述部件并不是必需的;此外,终端设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一、二方面的实施例所述的边链路非连续接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一、二方面的实施例所述的边链路非连续接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且 可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1.一种边链路非连续接收方法,包括:
第一终端设备接收第二终端设备发送的边链路控制信息;
确定所述边链路控制信息指示对应的边链路发送为仅非确认(negative-only acknowledgement)的第一组播;以及
在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,所述第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
附记2.根据附记1所述的方法,其中,所述第一组播由所述第二终端设备发送的所述边链路控制信息的传播类型中的第一指示域指示,所述指示域指示对应的边链路发送为仅非确认(negative-only acknowledgement)。
附记3.根据附记1或2所述的方法,其中,所述最近区域的中心位置根据所述边链路控制信息中指示的区域标识和与所述边链路信息中指示的通信范围要求对应的区域长度计算得到。
附记4.根据附记1至3任一项所述的方法,其中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求(HARQ)进程的重传数据。
附记5.根据附记4所述的方法,其中,所述第一定时器为SL-drx-RetransmissionTimer。
附记6.根据附记1至5任一项所述的方法,其中,所述方法还包括:
所述第一终端设备在所述第一终端设备的位置和最近区域的中心位置之间的距离大于所述边链路控制信息中指示的通信范围要求的情况下,不启动所述第一定时器。
附记7.根据附记1至5任一项所述的方法,其中,
所述第一终端设备还在用于边链路非连续接收(DRX)的第二定时器超时的情况下,启动所述第一定时器。
附记8.根据附记7所述的方法,其中,所述方法还包括:
所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
附记9.根据附记8所述的方法,其中,所述第二定时器为drx-HARQ-RTT-TimerSL。
附记10.根据附记1至9任一项所述的方法,其中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈使能。
附记11.根据附记1至10任一项所述的方法,其中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
附记12.根据附记1至5任一项所述的方法,其中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈去使能。
附记13.根据附记12所述的方法,其中,所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
附记14.根据附记1至13任一项所述的方法,其中,是否启动第一定时器的条件之一还包括对所述边链路发送的解码失败。
附记15.根据附记14所述的方法,其中,所述解码失败包括:
所述第一终端设备的MAC实体没有成功解码所述边链路发送的传输块(TB),和/或,所述第一终端设备在物理边链路反馈控制信道上反馈非确认(NACK),和/或,所 述第一终端设备的MAC实体指示物理层生成非确认(NACK)。
附记16.根据附记1至15任一项所述的方法,其中,所述方法还包括:
所述第一终端设备还在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动所述第一定时器。
附记17.一种边链路非连续接收(DRX)的方法,包括:
第一终端设备接收第二终端设备发送的边链路控制信息;
在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,所述第一终端设备启动用于边链路非连续接收(DRX)的第一定时器。
附记18.根据附记15所述的方法,其中,所述第一边链路发送为单播或者组播或者广播。
附记19.根据附记17或18所述的方法,其中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求(HARQ)进程的重传数据。
附记20.根据附记19所述的方法,其中,第一定时器为SL-drx-RetransmissionTimer。
附记21.根据附记17至20任一项所述的方法,其中,所述方法还包括:
所述第一终端设备在所述传输块在所述第一边链路发送之前的第二边链路发送中已经被成功解码的情况下,不启动所述第一定时器。
附记22.根据附记17至20任一项所述的方法,其中,
所述第一终端设备还在用于边链路非连续接收(DRX)的第二定时器超时的情况下,启动所述第一定时器。
附记23.根据附记22所述的方法,其中,所述方法还包括:
所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
附记24.根据附记23所述的方法,其中,所述第二定时器为drx-HARQ-RTT-TimerSL。
附记25.根据附记17至23任一项所述的方法,其中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈使能。
附记26.根据附记17至25任一项所述的方法,其中,所述边链路控制信息指示的 目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
附记27.根据附记17至20任一项所述的方法,其中,所述边链路控制信息中指示混合自动重传请求(HARQ)反馈去使能。
附记28.根据附记27所述的方法,其中,所述第一终端设备针对一个边链路混合自动重传请求(HARQ)进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从所述第一终端设备接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
附记29.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至28任一项所述的边链路非连续接收方法。

Claims (20)

  1. 一种边链路非连续接收装置,配置于第一终端设备,所述装置包括:
    接收单元,其接收第二终端设备发送的边链路控制信息;
    确定单元,其确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及
    处理单元,其在所述第一终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述第一终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器。
  2. 根据权利要求1所述的装置,其中,所述第一组播由所述第二终端设备发送的所述边链路控制信息的传播类型中的第一指示域指示,所述指示域指示对应的边链路发送为仅非确认。
  3. 根据权利要求1所述的装置,其中,所述最近区域的中心位置根据所述边链路控制信息中指示的区域标识和与所述边链路信息中指示的通信范围要求对应的区域长度计算得到。
  4. 根据权利要求1所述的装置,其中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求进程的重传数据。
  5. 根据权利要求1所述的装置,其中,所述处理单元还用于:在所述第一终端设备的位置和最近区域的中心位置之间的距离大于所述边链路控制信息中指示的通信范围要求的情况下,不启动所述第一定时器。
  6. 根据权利要求1所述的装置,其中,所述处理单元还在用于边链路非连续接收的第二定时器超时的情况下,启动所述第一定时器;
    其中,所述处理单元针对一个边链路混合自动重传请求进程,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
  7. 根据权利要求1所述的装置,其中,所述边链路控制信息中指示混合自动重传请求反馈使能。
  8. 根据权利要求1所述的装置,其中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
  9. 根据权利要求1所述的装置,其中,所述边链路控制信息中指示混合自动重传请求反馈去使能;
    并且所述处理单元针对一个边链路混合自动重传请求进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
  10. 根据权利要求1所述的装置,其中,所述处理单元是否启动所述第一定时器的条件之一还包括对所述边链路发送的解码失败;
    其中,所述解码失败包括:所述第一终端设备的MAC实体没有成功解码所述边链路发送的传输块,和/或,所述第一终端设备在物理边链路反馈控制信道上反馈非确认,和/或,所述第一终端设备的MAC实体指示物理层生成非确认。
  11. 根据权利要求1所述的装置,其中,所述处理单元还用于:在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动所述第一定时器。
  12. 一种边链路非连续接收的装置,配置于第一终端设备,所述装置包括:
    接收单元,其接收第二终端设备发送的边链路控制信息;
    处理单元,其在所述边链路控制信息对应的第一边链路发送的传输块没有被成功解码,并且所述传输块在所述第一边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
  13. 根据权利要求12所述的装置,其中,所述第一边链路发送为单播或者组播或者广播。
  14. 根据权利要求12所述的装置,其中,所述第一定时器用于激活所述第一终端设备以使得所述第一终端设备能够接收对应的边链路混合自动重传请求进程的重传数据。
  15. 根据权利要求12所述的装置,其中,所述处理单元还用于:在所述传输块在所述第一边链路发送之前的第二边链路发送中已经被成功解码的情况下,不启动所述第一定时器。
  16. 根据权利要求12所述的装置,其中,所述处理单元还在用于边链路非连续接收的第二定时器超时的情况下,启动所述第一定时器;
    其中,针对一个边链路混合自动重传请求进程,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第二定时器。
  17. 根据权利要求12所述的装置,其中,所述边链路控制信息中指示混合自动重传请求反馈使能。
  18. 根据权利要求12所述的装置,其中,所述边链路控制信息指示的目的标识为所述第一终端设备的标识,或者为所述第一终端设备所在组的组标识。
  19. 根据权利要求12所述的装置,其中,所述边链路控制信息中指示混合自动重传请求反馈去使能;
    并且所述处理单元针对一个边链路混合自动重传请求进程,不启动第二定时器或将第二定时器的值设置为零,和/或,从接收到所述边链路控制信息的时隙之后的第一个边链路资源池内时隙的第一个符号启动所述第一定时器。
  20. 一种通信系统,包括:
    终端设备,其接收边链路控制信息;确定所述边链路控制信息指示对应的边链路发送为仅非确认的第一组播;以及在所述终端设备的位置和最近区域的中心位置之间的距离小于或等于所述边链路控制信息中指示的通信范围要求的情况下,或者所述边链路控制信息中没有指示区域标识和/或通信范围要求的情况下,或者所述终端设备的自身位置不可用的情况下,启动用于边链路非连续接收的第一定时器;
    或者,其接收边链路控制信息;在所述边链路控制信息对应的边链路发送的传输块没有被成功解码,并且所述传输块在所述边链路发送之前也没有被成功解码的情况下,启动用于边链路非连续接收的第一定时器。
PCT/CN2021/110924 2021-08-05 2021-08-05 边链路非连续接收装置以及方法 WO2023010424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110924 WO2023010424A1 (zh) 2021-08-05 2021-08-05 边链路非连续接收装置以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110924 WO2023010424A1 (zh) 2021-08-05 2021-08-05 边链路非连续接收装置以及方法

Publications (1)

Publication Number Publication Date
WO2023010424A1 true WO2023010424A1 (zh) 2023-02-09

Family

ID=85155008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110924 WO2023010424A1 (zh) 2021-08-05 2021-08-05 边链路非连续接收装置以及方法

Country Status (1)

Country Link
WO (1) WO2023010424A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050423A (zh) * 2018-10-15 2020-04-21 维沃移动通信有限公司 一种非连续接收的处理方法及终端
CN111556590A (zh) * 2020-04-13 2020-08-18 中国信息通信研究院 一种边链路非连续接收方法
CN111600682A (zh) * 2019-02-21 2020-08-28 华硕电脑股份有限公司 无线通信系统改进侧链路通信的重新传送调度方法和设备
US20210037468A1 (en) * 2019-08-01 2021-02-04 Asustek Computer Inc. Method and apparatus for providing power saving of monitoring for device-to-device communication in a wireless communication system
WO2021145745A1 (ko) * 2020-01-17 2021-07-22 엘지전자 주식회사 Nr v2x에서 사이드링크 harq 피드백 정보를 기반으로 사이드링크 통신을 수행하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050423A (zh) * 2018-10-15 2020-04-21 维沃移动通信有限公司 一种非连续接收的处理方法及终端
CN111600682A (zh) * 2019-02-21 2020-08-28 华硕电脑股份有限公司 无线通信系统改进侧链路通信的重新传送调度方法和设备
US20210037468A1 (en) * 2019-08-01 2021-02-04 Asustek Computer Inc. Method and apparatus for providing power saving of monitoring for device-to-device communication in a wireless communication system
WO2021145745A1 (ko) * 2020-01-17 2021-07-22 엘지전자 주식회사 Nr v2x에서 사이드링크 harq 피드백 정보를 기반으로 사이드링크 통신을 수행하는 방법 및 장치
CN111556590A (zh) * 2020-04-13 2020-08-18 中国信息通信研究院 一种边链路非连续接收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC. (RAPPORTEUR): "Summary of MAC open issues for NR sidelink", 3GPP DRAFT; R2-2003757, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200420 - 20200430, 1 May 2020 (2020-05-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051879213 *
LG ELECTRONICS INC.: "Corrections to 5G V2X with NR Sidelink", 3GPP DRAFT; R2-2005970, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200601 - 20200612, 23 June 2020 (2020-06-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051904145 *

Similar Documents

Publication Publication Date Title
EP3557776B1 (en) Data transmission method, communication device and data transmission system
US11445531B2 (en) Communication method, communications apparatus, and readable storage medium
RU2701044C1 (ru) Узел радиосети, беспроводное устройство и способы, выполняемые в них
JP2023081914A (ja) 無線通信のための方法
EP3598682B1 (en) Method and apparatus for uplink data transmission
WO2020132869A1 (zh) 资源分配的方法和终端设备
WO2016165131A1 (zh) 一种信息反馈的方法、设备和系统
JP2022543671A (ja) 信号送信方法、装置及びシステム
WO2021159375A1 (zh) 边链路发送的重传方法以及装置
US20230354469A1 (en) Data reception method and apparatus and system
WO2019096129A1 (zh) 一种波束配置方法和装置
WO2022151287A1 (zh) 资源选择方法、装置和系统
WO2022082677A1 (zh) 边链路非连续接收方法及装置
WO2021063212A1 (zh) 反馈方法及装置
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
WO2023010424A1 (zh) 边链路非连续接收装置以及方法
EP4191916A1 (en) Method and apparatus for receiving indication information
WO2018098675A1 (zh) 用于数据重传的装置、方法以及通信系统
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
EP4287542A2 (en) Completion of scell beam failure recovery
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
CN113966001A (zh) 半持久调度数据传输触发的混合自动重复请求确认报告
WO2023098464A1 (zh) 数据传输的方法和装置
WO2023077355A1 (zh) 反馈信息的生成方法、装置和系统
WO2023050436A1 (zh) 信息反馈方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE