WO2020143732A1 - 发送和接收反馈信道的方法以及装置 - Google Patents

发送和接收反馈信道的方法以及装置 Download PDF

Info

Publication number
WO2020143732A1
WO2020143732A1 PCT/CN2020/071293 CN2020071293W WO2020143732A1 WO 2020143732 A1 WO2020143732 A1 WO 2020143732A1 CN 2020071293 W CN2020071293 W CN 2020071293W WO 2020143732 A1 WO2020143732 A1 WO 2020143732A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
terminal device
pscch
sub
subchannels
Prior art date
Application number
PCT/CN2020/071293
Other languages
English (en)
French (fr)
Inventor
苏宏家
张锦芳
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738953.7A priority Critical patent/EP3883320A4/en
Publication of WO2020143732A1 publication Critical patent/WO2020143732A1/zh
Priority to US17/363,425 priority patent/US20210329431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the field of Internet of Vehicles, and more specifically, to a method and device for transmitting a feedback channel, and a method and device for receiving a feedback channel.
  • V2X communication refers to the communication between the vehicle and the outside world, such as vehicle-to-vehicle, vehicle-to-pedestrian communication, vehicle-to-infrastructure communication, vehicle-to-network communication, etc.
  • vehicle-user equipment V-UE
  • V-UE vehicle-user equipment
  • the V-UE will also receive information about the surrounding V-UE in real time.
  • NR V2X new radio
  • 3GPP 3rd Generation Partnership Project
  • NR V2X will also be further developed, for example, to support lower transmission delay, More reliable communication transmission, higher throughput, better user experience, etc., to increase the demand for a wider range of application scenarios.
  • the existing physical side control channel physical sidelink control channel, PSCCH
  • PSSCH physical sidelink shared channel
  • PSFCH physical sideline feedback channel
  • PSFCH will be used to carry sideline feedback control information (sidelink feedback control channel, SFCI), including hybrid automatic repeat request (HARQ) and/or channel state information (CSI).
  • SFCI sideline feedback control information
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • the V-UE sends and receives the PSFCH according to the PSSCH, because the PSSCH is scheduled and sent by the PSCCH, this means that the PSFCH also requires PSCCH scheduling, which will increase the format of the information and control information carried by the PSCCH and the air interface signaling overhead Larger, but also brings a rise in complexity. If the V-UE transmits and receives the PSFCH in the manner of the PSCCH, since the PSCCH requires the V-UE to receive through blind detection, the complexity is higher. If in the V2X base station scheduling mode, the PSFCH also requires the base station to perform scheduling, thereby bringing signaling overhead and complexity of the air interface. In the V2X V-UE autonomous resource selection mode, if the V-UE autonomously selects the resources to send and receive PSFCH, it may cause the collision of PSFCH and PSCCH resources, resulting in a decrease in the reliability of V2X communication.
  • This application provides a method for receiving and transmitting a feedback channel, which can reduce the reception complexity of the PSFCH, save the signaling overhead for transmitting and receiving the PSFCH, and improve the reliability of v2x communication.
  • the present application provides a method for receiving a feedback channel.
  • the method includes: a first terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the first terminal device and the first Side communication is performed between the two terminal devices, and the configuration information is used to indicate that the frequency domain resources of the resource pool include L subchannels and each subchannel of the L subchannels includes q resource blocks RB, and the L subchannels include M sub-channels and N sub-channels, the M sub-channels are used by the first terminal device to send the physical side row control channel PSCCH and/or the physical side row shared channel PSSCH, and the N sub-channels are used by the first terminal device from the second
  • the terminal device receives the physical side feedback channel PSFCH, and there is a correspondence between one of the M subchannels and one of the N ⁇ q RBs contained in the N subchannels, N ⁇ q ⁇ M, L, M, N and q are all integers greater than or equal to 1; the first terminal device send
  • the network device divides the L sub-channels included in the frequency domain resource of the resource pool of the side link into M sub-channels for the first terminal device to send the PSCCH and/or PSSCH and for the first terminal
  • the device receives the two parts of the N sub-channels of the PSFCH, and by defining the correspondence between the M sub-channels and the N ⁇ q RBs contained in the N sub-channels, the first terminal device (ie, , The sender) receiving the PSFCH, or the second terminal device (ie, the receiving end) does not require the network device to schedule the PSFCH, nor does it need to be autonomous according to some specific conditions (for example, listening to the channel) Selecting resources can therefore reduce the complexity of both sides of SL communication to achieve side communication.
  • the first terminal device (transmitting end) and the second terminal device (receiving end) that perform side communication can determine the resource location of receiving or sending the PSFCH without any indication of the feedback resource, thereby Save the signaling overhead of the air interface.
  • the mode of user self-selection of resources collision between the resource selected by the user for sending PSFCF and the resource selected by other users for sending PSCCH or PSSCH is avoided, thereby improving the reliability of V2X communication .
  • the first terminal device sending the first PSCCH and/or the first PSSCH on the first channel includes: the first terminal device sending the first PSCCH and/or on the first channel scheduled by the network device The first PSSCH; or, the first terminal device autonomously selects to send the first PSCCH and/or the first PSSCH on the first channel.
  • the first terminal device may send the PSCCH and/or PSSCH on the sub-channel scheduled by the network device or autonomously, which may improve the flexibility of V2 communication.
  • the L sub-channels included in the frequency domain resource of the resource pool can be divided into two parts, and one part is the M sub-channels used to send the PSCCH and/or PSSCH , The other part is the N sub-channels for receiving PSFCH. Therefore, the L sub-channels of the resource pool can be allocated reasonably. On the other hand, dividing the L sub-channels into two parts can be considered as clearly defining the M sub-channels used to transmit the PSCCH and/or PSSCH, and the N sub-channels used to transmit the PSFCH.
  • the terminal device blindly sends the PSFCH on the L sub-channels, and resource collision may occur with other terminal devices sending the PSCCH and/or PSSCH on the L sub-channels. Therefore, through the design of this embodiment, the terminal device transmits the PSFCH only on the N subchannels used to transmit the PSFCH, which can reduce the probability of resource collision.
  • the blind detection range of the PSCCH at the receiving end for SL communication can be reduced. That is, the receiving end narrows down from blindly detecting all L subchannels to blindly detecting the M subchannels. Therefore, the complexity of blind inspection can be reduced.
  • the M subchannels there is a correspondence between one of the M subchannels and one of the N ⁇ q RBs included in the N subchannels, including: the M subchannels
  • the m-th subchannel of corresponds to the m-th RB of the N ⁇ q RBs included in the N subchannels, where 1 ⁇ m ⁇ M, and m is an integer.
  • Establishing a one-to-one mapping correspondence relationship between the M sub-channels and the N ⁇ q RBs included in the N sub-channels in an index order can reduce the N ⁇ q included in the M sub-channels and the N sub-channels The design complexity of the correspondence between RBs.
  • the method further includes: the first terminal device sends a second PSCCH on the second RB, the second PSCCH is not used to schedule the PSSCH, or the second PSCCH and the corresponding PSSCH are located in different time slots,
  • the second RB is an RB other than the RB corresponding to one of the M subchannels among the N ⁇ q RBs included in the N subchannels.
  • the second PSCCH may not be used to schedule the PSSCH, or even if the second PSCCH is used to schedule the PSSCH, the second PSCCH and the scheduled PSSCH are located in different time slots. Therefore, the network device only needs to configure resources for the sending end to send the second PSCCH, and does not need to consider configuring resources for the PSFCH of the second PSSCH. Therefore, the second PSCCH is transmitted on RBs other than the RB corresponding to one of the M subchannels among the N ⁇ q RBs included in the N subchannels. On the one hand, it satisfies the requirement of the sending end to send the second PSCCH, on the other hand, it can make full use of the remaining frequency domain resources of the resource pool to avoid waste of resources.
  • the first terminal device sends the first PSCCH and/or the first PSSCH on the first channel in time slot n, which includes: the first terminal device determining the index of the second channel where the first PSCCH is located , The second channel is one of the one or more sub-channels included in the first channel; the first terminal device sends the first PSCCH to the second terminal device on the second channel.
  • the second terminal device only blindly receives the first PSCCH on the determined second channel, and does not need to perform blind detection on all sub-channels of the M sub-channels, which can reduce the complexity of blind detection.
  • the first terminal device determines the index of the second channel where the first PSCCH is located Meet the formula: among them, Is the starting index of one or more sub-channels included in the first channel, and K subCH is the number of one or more sub-channels included in the first channel.
  • the PSCCH can be designed in the middle of the PSSCH.
  • the PSCCH of the V-UE is only adjacent to its own PSSCH, and not adjacent to the PSCCH or PSSCH of other V-UEs, it can reduce the in-band leakage of other V-UEs to the V-UE, so it can Improve the transmission reliability of PSCCH.
  • the configuration information includes the value of k
  • the method further includes: the first terminal device determines the value of k according to the configuration information.
  • the present application provides a method for sending a feedback channel.
  • the method includes: a second terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the first terminal device and the first Side communication is performed between the two terminal devices, and the configuration information includes information indicating that the frequency domain resource of the resource pool includes L subchannels, and each subchannel of the L subchannels includes q resource blocks RB, and the L subchannels It includes M sub-channels and N sub-channels.
  • the M sub-channels are used by the first terminal device to send the physical side row control channel PSCCH and/or the physical side row shared channel PSSCH, and the N sub-channels are used by the first terminal device from the first
  • Two terminal devices receive the physical side feedback channel PSFCH, and there is a correspondence between one of the M subchannels and one of the N ⁇ q RBs included in the N subchannels, the N ⁇ q Greater than or equal to M, L, M, N and q are all integers greater than or equal to 1;
  • the second terminal device receives the first PSCCH and/or the first PSSCH from the first terminal device on the first channel of time slot n,
  • the first channel includes one or more sub-channels among the M sub-channels;
  • the second terminal device determines, according to the correspondence and the first channel, the first to send the first PSFCH for the first PSCCH and/or the first PSSCH RB, the first RB belongs to N ⁇ q RBs included in the N sub-channels;
  • the M subchannels there is a correspondence between one of the M subchannels and one of the N ⁇ q RBs included in the N subchannels, including: the M subchannels
  • the m-th subchannel of corresponds to the m-th RB of the N ⁇ q RBs included in the N subchannels, where 1 ⁇ m ⁇ M, and m is an integer.
  • the method further includes: the second terminal device receives a second PSCCH from the first terminal device on the second RB, the second PSCCH is not used to schedule the PSSCH, or the second PSCCH And the corresponding PSSCH are located in different time slots, and the second RB is an RB among the N ⁇ q RBs included in the N sub-channels except for an RB corresponding to one of the M sub-channels.
  • the second terminal device receiving the first PSCCH and/or the first PSSCH from the first terminal device on the first channel includes the second terminal device determining that the first PSCCH is located on the second channel Index, the second channel is one of one or more sub-channels included in the first channel; the second terminal device receives the first PSCCH from the first terminal device on the second channel.
  • the second terminal device determines the index of the second channel where the first PSCCH is located Meet the formula: among them, Is the starting index of one or more sub-channels included in the first channel, and K subCH is the number of one or more sub-channels included in the first channel.
  • the second terminal device determines the value of k by: the second terminal device determines the value of k according to configuration information, where the configuration information includes the value of k Or, the second terminal device determines the value of k according to the first PSCCH, where the first PSCCH carries information indicating the value of k.
  • the present application provides an apparatus for receiving a feedback channel, which has a function of implementing the method in the first aspect and any possible implementation manner thereof.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides an apparatus for transmitting a feedback channel, the apparatus having a function of implementing the method in the second aspect and any possible implementation manner thereof.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in the first aspect or any possible implementation manner of the first aspect.
  • the present application also provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in the second aspect or any possible implementation manner of the second aspect.
  • the present application also provides a method for sending a PSCCH.
  • the method includes: a first terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the first terminal device and the first Side communication is performed between the two terminal devices, and the configuration information is used to indicate that the frequency domain resources of the resource pool include L subchannels and each subchannel of the L subchannels includes q resource blocks RB, and the L subchannels include M sub-channels and N sub-channels, the M sub-channels are used by the first terminal device to send a physical side row control channel PSCCH and/or a physical side row shared channel PSSCH, and the N sub-channels are used by the first terminal
  • the device sends a second PSCCH, which is not used to schedule the PSSCH, or the second PSCCH and the corresponding PSSCH are located in different time slots, and L, M, and N are integers greater than or equal to 1; the first terminal The device sends the second PSCCH on one or more of the N
  • the second PSCCH refers to a stand-alone PSCCH (stand-alone PSCCH).
  • the N sub-channels of the L sub-channels are used to send the PSFCH. Further, when N ⁇ q>M, the second PSCCH is sent on the second RB in N ⁇ q included in the N sub-channels. Different from the first aspect, in the eleventh aspect, the N sub-channels of the L sub-channels are used to transmit independent PSCCHs, and are not used to transmit PSFCHs.
  • the present application provides a method for receiving a PSCCH.
  • the method includes: a second terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the second terminal device and the first Side communication is performed between terminal devices, and the configuration information is used to indicate that the frequency domain resource of the resource pool includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, and the L subchannels include M Sub-channels and N sub-channels, the M sub-channels are used by the first terminal device to send a physical side line control channel PSCCH and/or a physical side line shared channel PSSCH, and the N sub-channels are used by the first terminal device
  • the second PSCCH is sent, and L, M, and N are all integers greater than or equal to 1; the second terminal device blindly detects the N subchannels, and receives the second PSCCH from the first terminal device.
  • the second terminal device when the N sub-channels of the L sub-channels are used for the first terminal device to send the second PSCCH, the second terminal device that is the receiving end of the side communication receives the first sub-channel by blindly detecting the N sub-channels Two PSCCH.
  • the second PSCCH may occupy one or more of all RBs included in the N sub-channels, which is not limited in this application.
  • the present application provides a method for transmitting a physical side control channel PSCCH.
  • the method includes: a first terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the first Side communication is performed between the terminal device and the second terminal device, and the configuration information is used to indicate that the frequency domain resource of the resource pool includes L sub-channels and each sub-channel of the L sub-channels includes q resource blocks RB, the L sub-channels include M sub-channels and N sub-channels, the M sub-channels are used by the first terminal device to send a physical side row control channel PSCCH and/or physical side row shared channel PSSCH, and the N sub-channels are used for the first
  • a terminal device receives a physical side feedback channel PSFCH from the second terminal device, and one of the M subchannels corresponds to one of the N ⁇ q RBs included in the N subchannels Relationship, the N ⁇ q is greater than or equal to M, L, M, N and q are all integer
  • I the starting index of one or more sub-channels included in the first channel
  • K subCH is the number of sub-channels included in the first channel
  • the first terminal device sending the first PSCCH and/or the first PSSCH on the first channel includes: the first terminal device determining the index of the second channel The first terminal device transmits the first PSCCH on the second channel, and transmits the first PSSCH on the other sub-channels than the second channel among the one or more sub-channels included in the first channel.
  • the present application provides a method for transmitting a physical side control channel PSCCH.
  • the method includes: a second terminal device obtains configuration information of a side link resource pool, and the side link resource pool is used for the first Side communication is performed between the terminal device and the second terminal device, and the configuration information is used to indicate that the frequency domain resource of the resource pool includes L sub-channels and each sub-channel of the L sub-channels includes q resource blocks RB, the L sub-channels include M sub-channels and N sub-channels, the M sub-channels are used by the first terminal device to send a physical side row control channel PSCCH and/or physical side row shared channel PSSCH, and the N sub-channels are used for the first
  • a terminal device receives a physical side feedback channel PSFCH from the second terminal device, and one of the M subchannels corresponds to one of the N ⁇ q RBs included in the N subchannels Relationship, where N ⁇ q is greater than or equal to M, L, M, N and q are
  • I the starting index of one or more sub-channels included in the first channel
  • K subCH is the number of sub-channels included in the first channel
  • the second terminal device as the receiving end of the sideline communication calculates the index of the sub-channel that needs to be blindly detected among the M sub-channels.
  • the second terminal device only blindly detects the first PSCCH on the determined second channel, and does not need to perform blind detection on all of the M subchannels, which can reduce the complexity of blind detection.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or any possible aspect of the first aspect
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions run on a computer, causes the computer to perform the second aspect or any possible aspect of the second aspect
  • the present application provides a chip, including a processor.
  • the processor is configured to read and execute the computer program stored in the memory to execute the method of the first aspect or any possible design of the first aspect, or the method of the seventh aspect or any possible design of the seventh aspect, or, Perform the ninth aspect or the method in any possible design of the ninth aspect.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through circuits or wires.
  • the chip further includes a communication interface.
  • the present application provides a chip, including a processor.
  • the processor is configured to read and execute the computer program stored in the memory to execute the method in the second aspect or any possible design in the second aspect, or the method in the eighth aspect or any possible design in the eighth aspect, or, Implement the tenth aspect or the method in any possible design of the tenth aspect.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through circuits or wires.
  • the chip further includes a communication interface.
  • the network device divides the L sub-channels included in the frequency domain resources of the resource pool of the side link into M sub-channels used for the first terminal device to send the PSCCH and/or PSSCH and used for the first
  • the terminal device receives the two parts of the N sub-channels of the PSFCH, and by defining the correspondence between the M sub-channels and the N ⁇ q RBs contained in the N sub-channels, the first terminal device that performs side communication ( That is, neither the receiving end of the PSFCH nor the sending of the PSFCH by the second terminal device (that is, the receiving end) needs to be scheduled by the network device, nor does it need to be based on some specific conditions (for example, listening to the channel) Independent selection of resources can reduce the complexity of both sides of SL communication to achieve side communication.
  • Figure 1 is a schematic diagram of a V2X communication scenario.
  • FIG. 2 is a schematic diagram of a side link resource pool.
  • FIG. 3 show a mode in which the network device schedules resources and a mode in which the user autonomously selects resources.
  • 4 is a schematic diagram of the correspondence between M subchannels and N ⁇ q RBs included in N subchannels.
  • FIG. 5 is a schematic interaction diagram of a method for sending and receiving a feedback channel provided by this application.
  • FIG. 6 is a flowchart of sending and receiving feedback channels provided by the present application.
  • FIG. 7 is a flowchart of a terminal device sending a second PSCCH on a second RB.
  • FIG. 8 is a schematic diagram of the terminal device determining the position of the sub-channel for transmitting the PSCCH.
  • 9 is an example of a method for transmitting a feedback channel provided by this application.
  • FIG. 11 is an example in which the first terminal device sends the second PSCCH on the N subchannels.
  • FIG. 12 is an example of the position of the second PSCCH in the resource pool.
  • FIG. 13 is a schematic block diagram of an apparatus 500 for receiving a feedback channel provided by this application.
  • FIG. 14 is a schematic block diagram of an apparatus 600 for sending a feedback channel provided by this application.
  • 15 is a schematic structural diagram of a terminal device 1000 provided by this application.
  • V2X vehicle-to-everything
  • 3GPP 3rd Generation Partnership Project
  • LTE long-term evolution
  • V2X can refer to the communication between vehicles and the outside world, for example, vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P) communication, vehicle-to-infrastructure (V2I) ) Communication and vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • FIG. 1 is a schematic diagram of a V2X communication scenario.
  • V-UE vehicle user equipment
  • RSU roadside unit
  • sidelink sidelink
  • DL downlink
  • uplink uplink
  • Uu air interface corresponding to DL communication and UL communication are also called Uu communication.
  • both parties of wireless communication are network equipment and terminal equipment.
  • both sides of wireless communication are terminal devices.
  • the network devices mentioned in this application include access network (AN) devices, such as base stations (for example, access points), which may refer to wireless terminals that pass through one or more cells on the air interface in the access network
  • AN access network
  • the device that the device communicates with, or for example, a network device in V2X technology is a road side unit (RSU).
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other as a router between the terminal equipment and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or advanced long-term evolution (LTE-A), or may also include a 5G NR system
  • NodeB or eNB or e-NodeB, evolutional Node B in an LTE system or advanced long-term evolution (LTE-A)
  • LTE-A long-term evolution
  • the next generation node B may also include a centralized unit (CU) and a distributed unit (distributed unit) in a cloud access network (cloud radio access network, Cloud RAN) system DU), the embodiments of the present application are not limited.
  • the terminal devices mentioned in this application include devices that provide voice and/or data connectivity to users, for example, may include handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device may communicate with the core network via a radio access network (RAN) and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote), access point (access point (AP), remote terminal (remote) terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user) and so on.
  • IoT internet of things
  • a mobile phone or referred to as a "cellular" phone
  • a computer with a mobile terminal device
  • a portable, pocket-sized, handheld, mobile device built into the computer and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, devices with limited storage capacity, or devices with limited computing power. Examples include bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various types of smart bracelets, smart helmets, smart jewelry, etc. for sign monitoring.
  • the various terminal devices described above are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), they can be regarded as on-board terminal devices.
  • the on-board terminal devices are also called on-board units (OBU, for example) ).
  • the resource pool (RP) of the side link is used for SL communication between terminal devices.
  • a resource pool is a collection of resources composed of time-domain resources and frequency-domain resources. Among them, the time domain resource is composed of several side sub-frames (sub-frames), and the frequency domain resource is composed of several sub-channels (sub-channels).
  • SL control information and SL data information are involved.
  • the resource location used by the SL data information is indicated or scheduled by the SL control information.
  • the resource location used by the SL control information is relatively fixed, so as to reduce the complexity of blind detection (BD) at the receiving side of the side communication.
  • SL control information is carried on the physical sidelink control channel (physical sidelink control channel, PSCCH), and SL data information is carried on the physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSCCH is used to schedule the PSSCH, and the receiving end performing SL communication receives the PSCCH to learn the resource position of the PSSCH, and decodes the PSSCH according to the correctly decoded PSCCH.
  • the resource pool includes several sub-channels in the frequency domain.
  • the PSCCH may include several resource blocks (RBs) with the lowest index of the subchannel in the frequency domain, and one subframe in the time domain.
  • the resource pool includes several subchannels in the frequency domain, where the PSCCH may include several RBs in the frequency domain, one time slot in the time domain, or several OFDM symbols.
  • the resource allocation method can support the mode of network device scheduling and the mode independently selected by the user. See (a) and (b) of Figure 3.
  • (A) and (b) of FIG. 3 show a network device scheduling resource mode and a user autonomously selecting resource mode, respectively.
  • the network device sends downlink scheduling information to the terminal device, and the downlink scheduling information is used to instruct UE#1 to send resources of PSCCH and PSSCH.
  • UE#1 sends the PSCCH and PSSCH on the resources indicated by the downlink scheduling information.
  • UE#2 receives the PSCCH and PSSCH from UE#1 by blindly checking the resources corresponding to the side link resource pool.
  • the transmitting end (such as UE#1) for side communication selects the resources for sending PSCCH and PSSCH according to the resource selection mechanism, and selects the resources Send PSCCH and PSSCH.
  • the receiving end (such as UE#2) receives the PSCCH through blind detection. Then receive PSSCH according to PSCCH. It can be seen that no matter which mode is adopted, the receiver of SL communication picks up the PSCCH blindly in the resource pool, and then decodes the PSCCH to obtain sidelink control information (SCI), and then receives the PSSCH.
  • SCI sidelink control information
  • the network device defines a side link resource pool (hereinafter referred to as a resource pool), and the resource pool includes a total of L sub-channels.
  • the L sub-channels in the resource pool are divided into two parts.
  • the M sub-channels of the L sub-channels are used by the first terminal device to send the PSCCH and/or PSSCH
  • Each of the L sub-channels includes q RBs. That is, each of the M sub-channels includes q RBs, and each of the N sub-channels also includes q RBs.
  • each of the L sub-channels includes q RBs
  • the N sub-channels include N ⁇ q RBs in total, where N ⁇ q ⁇ M.
  • the N ⁇ q RBs included in the N sub-channels have a corresponding relationship with the M sub-channels. Specifically, each of the M sub-channels corresponds to one RB of N ⁇ q RBs included in the N sub-channels. In other words, each of the M sub-channels must correspond to one RB of the N ⁇ q RBs included in the N sub-channels.
  • each of the M subchannels corresponds to one of the N ⁇ q RBs included in the N subchannels.
  • Each of the N ⁇ q RBs included in the N sub-channels corresponds to one of the M sub-channels.
  • N ⁇ q>M each of the M subchannels corresponds to one of the N ⁇ q RBs included in the N subchannels.
  • some of the N ⁇ q RBs included in the N sub-channels do not correspond to any one of the M sub-channels. This situation will be described in detail below.
  • FIG. 4 is a schematic diagram of the correspondence between M sub-channels and N ⁇ q RBs included in N sub-channels in this application.
  • the resource pool includes a total of 9 sub-channels, of which 7 sub-channels are used by the first terminal device to send the PSCCH and/or PSSCH, and the remaining 2 sub-channels are used by the first terminal device to receive the PSFCH from the second terminal device .
  • Each of the 9 sub-channels includes 4 RBs. Therefore, the 2 sub-channels used by the first terminal device to receive the PSFCH from the second terminal device contain a total of 8 RBs.
  • the 7 sub-channels for the first terminal device to send the PSCCH and/or PSSCH and the 8 RBs contained in the 2 sub-channels for the first terminal device to receive the PSFCH from the second terminal device corresponds to the mth channel in the 7 subchannels.
  • the mth channel in the 7 subchannels corresponds to the mth RB in 8 RBs included in the 2 subchannels, where 1 ⁇ m ⁇ M, and m is an integer.
  • RBs filled with the same pattern and subchannels there is a correspondence between RBs filled with the same pattern and subchannels. It should be noted that RB#8 does not correspond to any of the 7 subchannels. In the case of N ⁇ q>M shown in FIG.
  • the first M RBs with the smallest sequence number among the N sub-channels have a corresponding relationship with the M sub-channels, that is, the RBs in the N sub-channels follow the RB sequence number
  • the order from small to large corresponds to the M sub-channels in one-to-one order according to the order of the sub-channel numbers.
  • RB1 to RB7 correspond to sub-channels 1 to 7 respectively. That is, RB1 corresponds to subchannel 1, RB2 corresponds to subchannel 2, RB3 corresponds to subchannel 3, RB4 corresponds to subchannel 4, RB5 corresponds to subchannel 5, RB6 corresponds to subchannel 6, and RB7 corresponds to subchannel 7.
  • any M RBs of the N ⁇ q RBs included in the N channels have a corresponding relationship with the M sub-channels, for example, the M RBs with the largest sequence number among the N sub-channels and the M sub-channels have Correspondence.
  • the network device defines the number L of subchannels included in the frequency domain resource of the resource pool, and the number q of RBs contained in each subchannel of the L subchannels, and then notifies L and q to the terminal device. Based on L and q, both parties performing SL communication can determine M and N and the number N ⁇ q of RBs included in the N sub-channels. For example, the receiving end performing SL communication may send feedback information on the PSCCH and/or PSSCH received on one of the M sub-channels on the RB corresponding to each of the M sub-channels .
  • the receiving end receives the PSCCH for the PSCCH from the receiving end on the RB corresponding to each of the M sub-channels And/or PSFCH sent by PSSCH.
  • FIG. 5 is a schematic interaction diagram of a method for sending and receiving a feedback channel provided by this application.
  • the first terminal device and the second terminal device obtain configuration information of the side link resource pool.
  • the resource pool of the side link is used for the side terminal communication between the first terminal device and the second terminal device.
  • the configuration information includes that the frequency domain resource used to indicate the resource pool includes L subchannels and each subchannel of the L subchannels includes q RBs.
  • the L sub-channels are divided into M sub-channels and N sub-channels, wherein the M sub-channels are used by the first terminal device to send the PSCCH and/or PSSCH, and the N sub-channels are used by the first terminal device from the second
  • the terminal device receives the PSFCH.
  • N ⁇ q ⁇ M, L, M, N, and q are greater than or equal to An integer equal to 1.
  • the network device may define two resource pools, where one resource pool includes only the M subchannels, and each of the M subchannels includes q1 RBs.
  • the other resource pool includes only the N subchannels.
  • each of the N sub-channels includes q 2 RBs.
  • q 1 q 2 , or q 1 ⁇ q 2 .
  • M, N, q1 and q2 are all integers greater than or equal to 1.
  • the network device configures one resource pool for resources used for the first terminal device to send the PSCCH and/or PSSCH, and configures another resource pool for resources used for the first terminal device to receive the PSFCH from the second terminal device, to Different physical channel resources are distinguished by different resource pools.
  • the network device generates a configuration information for each resource pool to notify the terminal device, which is not limited in this embodiment of the present application.
  • first terminal device and the second terminal device are examples of a sending end and a receiving end performing SL communication, respectively.
  • the first terminal device sends the first PSCCH and/or the first PSSCH to the second terminal device on the first channel in time slot n.
  • the second terminal device receives the first PSCCH and/or the first PSSCH from the first terminal device on the first channel of time slot n.
  • the first channel includes one or more sub-channels in the M sub-channels.
  • the first terminal device may send the first PSCCH and/or the first PSSCH on the first channel scheduled by the network device.
  • the first terminal device may also autonomously select the first channel, and send the first PSCCH and/or the first PSSCH to the second terminal device on the autonomously selected first channel.
  • the second terminal device receives by blindly checking the resource pool The first PSCCH, and receives the first PSSCH according to the received first PSCCH.
  • the first terminal device determines, according to the correspondence relationship and the first channel, a first RB for receiving the second terminal device sending the first PSFCH for the first PSCCH and/or the first PSSCH.
  • the second terminal device determines the first RB that transmits the first PSFCH for the first PSCCH and/or the first PSSCH according to the corresponding relationship. It should be understood that the first RB belongs to N ⁇ q RBs included in the N subchannels.
  • the correspondence described herein refers to the correspondence between each of the M sub-channels and one of the N ⁇ q RBs contained in the N sub-channels.
  • the process of determining the first RB according to the corresponding relationship between the first terminal device and the second terminal device is the same, and the first terminal device is used as an example for description below.
  • the first channel includes one of the M sub-channels and the first channel includes multiple of the M sub-channels.
  • the first channel includes one of the M subchannels.
  • the first terminal device obtains configuration information of the resource pool, and the configuration information is used to indicate L and q.
  • L, M, N and q may also be indicated in the configuration information.
  • the first terminal device may determine the number N ⁇ q of RBs included in the N sub-channels. Then, according to the correspondence between the M sub-channels and the N ⁇ q RBs, the first RB corresponding to the first channel among the N ⁇ q RBs is determined.
  • the first channel includes multiple sub-channels among the M sub-channels.
  • the first channel includes multiple sub-channels among the M sub-channels
  • the first terminal device may determine multiple sub-channels among the M sub-channels included in the first channel
  • each of the multiple sub-channels contained in the first channel corresponds to one of N ⁇ q RBs
  • the multiple sub-channels contained in the first channel correspond to multiple of N ⁇ q RBs RB.
  • the first channel includes 3 sub-channels in M channels, and each of the 3 sub-channels corresponds to one RB of N ⁇ q RBs, respectively, so these 3 sub-channels correspond to a total of N ⁇ q RBs. 3 RBs.
  • the second terminal device may select to transmit on one RB among multiple RBs corresponding to the multiple sub-channels included in the first channel The first PSFCH for the first PSCCH and/or the first PSSCH. Alternatively, the second terminal device may also send the first PSFCH on all subchannels among the multiple subchannels included in the first channel.
  • the second terminal device selects to receive and send the first PSFCH on one RB among multiple RBs corresponding to multiple sub-channels included in the first channel
  • the second terminal device The first PSFCH may be selected to be transmitted on the RB corresponding to the smallest RB index among the multiple RBs corresponding to the multiple subchannels included in the first channel. That is to say, the RB corresponding to the smallest RB index among the multiple RBs corresponding to the multiple sub-channels included in the first channel is the first RB.
  • the value of the RB index is [0, (N ⁇ q-1)], which corresponds to all N ⁇ q RBs included in the N sub-channels.
  • the second terminal device may also arbitrarily select one RB from multiple RBs corresponding to multiple sub-channels included in the first channel to send the first PSFCH.
  • the first terminal device and the second terminal device may agree on the selected rule in advance.
  • the second terminal device selects to transmit the first PSFCH on the RB corresponding to the largest RB index among the multiple RBs corresponding to the multiple subchannels included in the first channel, or specified in the protocol.
  • the first terminal device sends the first PSCCH and/or the first PSSCH to the second terminal device on the first channel.
  • the second terminal device receives the first PSCCH and/or the first PSSCH from the first terminal device on the first channel.
  • the second terminal device determines the first RB for transmitting the first PSFCH for the first PSCCH and/or the first PSSCH.
  • the first terminal device also needs to determine the first RB that is received from the second terminal device and sent by the second terminal device to the first PSCCH and/or the first PSSCH.
  • the first terminal device receives the first PSFCH sent by the second terminal device for the first PSCCH and/or the first PSSCH from the second terminal device on the first RB of the time slot n+k, n ⁇ 0, k ⁇ 1 , And n and k are integers.
  • the second terminal device transmits the first PSFCH for the first PSCCH and/or the first PSSCH on the first RB.
  • the first terminal device receives the first PSFCH sent by the second terminal device on the first RB.
  • the network device divides the L sub-channels included in the frequency domain resources of the resource pool of the side link into M sub-channels for the first terminal device to send the PSCCH and/or PSSCH and A terminal device receives the two parts of the N sub-channels of the PSFCH, and by defining the correspondence between the M sub-channels and the N ⁇ q RBs contained in the N sub-channels, the first terminal device that performs side communication
  • the (transmitting end) and the second terminal device (receiving end) can determine the resource position of receiving or sending the PSFCH without any indication of the feedback resource, which can save the signaling overhead of the air interface.
  • the user autonomously selects resources, it also avoids the collision between the resources selected by the user for sending PSFCF and the resources selected by other users for sending PSCCH or PSSCH, thereby ensuring the reliability of V2X communication.
  • time slot n is the time slot where the PSSCH sent by the transmitter that performs side communication is located.
  • Time slot n+k is a certain time slot after time slot n.
  • k may be an integer greater than or equal to 1.
  • QoS service quality
  • the value of k can be represented by several bits. For example, 2, 3 or 4 etc.
  • the first terminal device may obtain the value of k in the following manner.
  • the value of k is carried in the configuration information of the resource pool.
  • the network device sends the configuration information of the resource pool to the terminal devices (for example, the first terminal device and the second terminal device), where the configuration information carries the value of k.
  • the first terminal device can obtain the value of k from the configuration information of the resource pool.
  • the value of k is carried in system information block (system information block, SIB), cell-level radio resource control (RRC) signaling, or user-level (UE-specific) RRC signaling, etc.
  • SIB system information block
  • RRC radio resource control
  • UE-specific user-level
  • the network device does not need to specifically notify the end device of the value of k.
  • the terminal device also does not need to perform information interaction with other terminal devices on the value of k.
  • the second terminal device can also determine the value of k in the above three ways.
  • the first terminal device may carry the value of k in the first PSCCH sent to the second terminal device, that is, the value of k is carried in the side control information ( sidelink control information (SCI) to notify the second terminal device of the value of k. Therefore, the second terminal device may also obtain the value of k from the first PSCCH sent by the first terminal device.
  • side control information sidelink control information (SCI)
  • the technical solution of the present application is applicable to V2X communication systems with and without network coverage.
  • the following describes the side communication between terminal devices in scenarios with and without network coverage. Detailed process.
  • FIG. 6 is a flowchart of sending and receiving feedback channels provided by the present application.
  • the first terminal device determines whether the first terminal device is within the network coverage.
  • step 302 is performed. If the first terminal device is not within the network coverage, step 303 is executed.
  • the first terminal device obtains configuration information of the resource pool from the network device.
  • the configuration information is used to indicate a resource pool configured by the network device for the side terminal communication between the first terminal device and other terminal devices.
  • the configuration information please refer to the description in step 110 above, which will not be repeated here.
  • steps 304-310 are performed.
  • the first terminal device obtains configuration information of the pre-configured resource pool.
  • steps 304-310 are performed.
  • the first terminal device determines M, N, and q according to the configuration information.
  • the first terminal device sends the first PSCCH and/or the first PSSCH to the second terminal device on the first channel in time slot n.
  • the first channel includes one or more sub-channels among the M sub-channels.
  • the second terminal device performs blind PSCCH detection, receives the first PSCCH from the first terminal device on the first channel of time slot n, and receives the first PSSCH according to the received first PSSCH.
  • the second terminal device determines the first RB corresponding to the first channel among the N ⁇ q RBs included in the N sub-channels.
  • the first RB belongs to N ⁇ q RBs included in the N sub-channels
  • the second terminal device sends the first PSFCH for the first PSCCH and/or the first PSSCH to the first terminal device on the first RB of the time slot n+k.
  • the first terminal device determines the first RB corresponding to the first channel among the N ⁇ q RBs included in the N sub-channels.
  • the first terminal device receives the first PSFCH from the second terminal device on the first RB in the time slot n+k.
  • the N ⁇ q RBs included in the N sub-channels include (N ⁇ qM) RBs and none of the M sub-channels correspond.
  • the other RBs of the N ⁇ q RBs except the RB corresponding to one of the M subchannels are called second RBs.
  • the N ⁇ q RBs included in the N sub-channels may include one second RB, or may include multiple second RBs.
  • the second RB may be used to send the second PSCCH.
  • the second PSCCH may occupy one second RB, or may also occupy multiple second RBs, which is not limited herein.
  • the second PSCCH is different from the first PSCCH.
  • the first PSCCH is used to schedule the PSSCH, and the first PSCCH and the PSSCH scheduled by the first PSCCH are located in the same time slot in the time domain.
  • the second PSCCH is not used to schedule the PSSCH.
  • the second PSCCH is used to schedule the PSSCH, but the PSSCH scheduled by the second PSCCH and the second PSCCH are located in different time slots in the time domain.
  • the first PSCCH may also be referred to as a non-independent PSCCH.
  • the second PSCCH may also be called a standalone PSCCH (standalone-PSCCH).
  • the independent PSCCH may be used for cross slot scheduling, that is, the independent PSCCH and the scheduled PSSCH are located in different time slots.
  • the independent PSCCH may not be used for PSSCH scheduling or non-PSSCH scheduling.
  • an independent PSCCH is used to allocate resources to other terminal devices and group users (groups), requesting other terminal devices to send channel state information feedback or specific reference signals (reference signals, RS), for example, channel state information reference signals ( channel, state information, CSI-RS), etc.
  • FIG. 7 is a flowchart of the terminal device sending the second PSCCH on the second RB.
  • the first terminal device determines whether the first terminal device is within the network coverage.
  • the first terminal device executes step 402. If the first terminal device is not within the network coverage, the first terminal device executes step 403.
  • the first terminal device obtains configuration information of the resource pool from the network device.
  • steps 404-406 are executed.
  • the first terminal device obtains configuration information of the pre-configured resource pool.
  • the first terminal device determines M, N, and q according to the configuration information.
  • the first terminal device determines the second RB among the N ⁇ q RBs included in the N subchannels, and sends the second PSCCH to the first terminal device on the second RB.
  • the second terminal device blindly detects N ⁇ q RBs included in the N sub-channels, and receives the second PSCCH from the first terminal device on the second RB.
  • the resource positions of the PSCCH are all located in the first subchannel of one or more subchannels among the M subchannels included in the first channel.
  • the PSCCH may start from the RB with the smallest index included in the first channel and occupy several RBs in succession.
  • the first several RBs in the first channel are used to transmit PSCCH.
  • the position of the PSCCH is no longer fixed on the first subchannel of one or more subchannels among the M subchannels included in the first channel.
  • the position of the PSCCH may be located on the second channel, and the second channel is one of the one or more sub-channels included in the first channel.
  • an index of a sub-channel (that is, a second channel) used to send a PSCCH among the M sub-channels It can be calculated and determined according to the following formula (1):
  • I the index of the starting sub-channel in one or more sub-channels included in the first channel
  • K subCH is the number of sub-channels included in the first channel
  • the second terminal device calculates the index of the second channel that needs to be blindly detected according to formula (1), and blindly detects the first PSCCH on the second channel. Compared with the above-mentioned embodiment, the second terminal device needs to blindly detect all the sub-channels included in the M sub-channels, which can reduce the complexity of the blind detection of the second terminal device.
  • the user’s PSCCH is only adjacent to its own PSSCH, and not adjacent to other users’ PSCCH or PSSCH, which can reduce the pairing of other users.
  • the in-band leakage (IBE) of the user can improve the transmission reliability of the user's PSCCH.
  • FIG. 8 is a schematic diagram of determining the position of the sub-channel used to transmit the PSCCH.
  • the network device configures a resource pool for side communication between UE#1 and UE#10.
  • the network device schedules UE#1 to send PSCCH and PSSCH on the first channel to UE#2 for unicast side communication.
  • the first channel includes the first subchannel and the second subchannel of the M subchannels channel.
  • UE#2 sends the PSFCH for the PSCCH and PSSCH to the UE#1 on the first RB among the 8 RBs included in the N subchannels.
  • the second terminal device may have the smallest index among multiple RBs corresponding to multiple sub-channels among the M sub-channels included in the first channel
  • the PSFCH is sent on the RB of the RB, or the PSFCH may also be sent on one of the RBs, or the PSFCH is sent on all the RBs in the plurality of RBs. Therefore, UE#2 may also send the PSFCH to UE#1 on the second RB among the 8 RBs included in the N subchannels. Alternatively, UE#2 sends the PSFCH to UE#1 on the first RB and the second RB of the 8 RBs included in the N subchannels.
  • time slot n the network device schedules UE#3 to send the PSCCH and PSSCH on the third subchannel of the M subchannels to UE#4 for unicast side communication.
  • UE#4 sends a PSFCH to UE#3 on the third RB among the 8 RBs included in the N subchannels.
  • time slot n the network device schedules UE#5 to send the PSCCH and PSSCH on the fourth subchannel of the M subchannels to UE#6 for unicast side communication.
  • time slot n+1 UE#6 sends a PSFCH to UE#5 on the fourth RB among the 8 RBs included in the N subchannels.
  • time slot n the network device schedules UE#7 to send the PSCCH and PSSCH to the terminal group (UE#8, UE#9 and UE#10) on the fifth subchannel of the M subchannels for multicast sidewalk Communication.
  • time slot n+1 UE#8, UE#9 and UE#10 send a PSFCH to UE7 on the fifth RB among the 8 RBs included in the N subchannels.
  • UE#8, UE#9 and UE#10 can send a PSFCH to UE#1 by sending different sequences on the fifth RB or by code division multiplexing (code division multiplexing, CDM).
  • code division multiplexing code division multiplexing
  • the PSFCH usually occupies only 1 due to the relatively small amount of data RB resources can be transmitted.
  • Figure 9 only shows that the first RB is used by UE#2 to send PSFCH to UE#1.
  • the first RB and the second RB can be used at the same time. It is used for UE#2 to send the PSFCH to UE#1.
  • the situation of the PSFCH sent by other UEs is similar and will not be repeated here.
  • UE#3 sends a PSFCH to UE#1 on the third RB among the 8 RBs included in the N sub-channels, and UE#5 forwards on the fourth RB among the 8 RBs included in the N sub-channels UE#1 sends a PSFCH, and UE#8, #9, and #10 send a PSFCH to UE#1 on the 5th of the 8 RBs included in the N subchannels, then the 8 contained in the N subchannels
  • the second RB, the sixth RB, the seventh RB, and the eighth RB among the RBs do not correspond to any one of the M subchannels. If these RBs are not used, it will cause a waste of resources.
  • FIG. 10 is an example of sending a second PSCCH on a second RB provided by this application.
  • the network device configures a resource pool for side communication between UE#1 and UE#10.
  • a specific example of UE#1 sending the PSCCH and/or PSSCH to other UEs, and other UEs sending the PSFCH to UE#1 may be as shown in FIG. 9 and will not be repeated here.
  • UE#1 may send an independent PSCCH (eg, the second PSCCH described above) on the second RB of the 8 RBs included in the N subchannels.
  • the second RB may be the second RB, the sixth RB, the seventh RB, and the eighth RB among the eight RBs included in the N subchannels.
  • the N sub-channels in the resource may only be used to send the second PSCCH.
  • the first terminal device obtains configuration information of the side link resource pool from the network device, where the configuration information is used to indicate that the resource pool includes L sub-channels, and M of the L sub-channels are used to send the first The PSCCH and/or the first PSSCH, and the N sub-channels of the L sub-channels are used to send the second PSCCH.
  • the first terminal device determines the N subchannels according to the configuration information, and sends the second PSCCH on one or more subchannels on the N subchannels.
  • the second terminal device also obtains configuration information from the network device, and determines the N sub-channels according to the configuration information, and then blindly detects the second PSCCH on the N sub-channels. This will be described with reference to FIG. 11 below.
  • FIG. 11 is an example in which the first terminal device sends the second PSCCH on the N subchannels.
  • UE#1 sends the second PSCCH to UE#2 on the first RB and the second RB on the 8 RBs.
  • UE#3 sends the first PSCCH and the first PSSCH on the first and second subchannels of the M subchannels in the resource pool to UE#4 for unicast side communication.
  • the embodiment in which the first terminal device sends the second PSCCH on the second RB among the N ⁇ q RBs included in the N sub-channels can be used independently of each other. In other words, the N sub-channels may only be used to transmit the second PSCCH.
  • the resource pool includes a total of 4 sub-channels, namely sub-channel #1, sub-channel #2, sub-channel #3, and sub-channel #4.
  • sub-channel #1, sub-channel #2, and sub-channel #3 are used by the first terminal device to transmit a non-independent PSCCH (for example, the first PSCCH described herein) and/or PSSCH.
  • Sub-channel #4 is used to send standalone PSCCH (standalone PSCCH), as shown in FIG. 12 the second PSCCH.
  • the process for the first terminal device to send the second PSCCH is as follows:
  • the first terminal device obtains configuration information of the side link resource pool, the side link resource pool is used for side communication between the first terminal device and the second terminal device, and the configuration information is used to indicate the resource pool
  • the frequency domain resource includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used for the first
  • the terminal device sends a physical side channel control channel PSCCH and/or a physical side channel shared channel PSSCH, the N sub-channels are used by the first terminal device to send a second PSCCH, L, M and N are all integers greater than or equal to 1 ;
  • the first terminal device sends the second PSCCH on one or more of the N subchannels.
  • the flow of the second terminal device receiving the second PSCCH is as follows:
  • the second terminal device obtains configuration information of the side link resource pool, the side link resource pool is used for side communication between the second terminal device and the first terminal device, and the configuration information is used to indicate the resource pool
  • the frequency domain resource includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used for the first
  • the terminal device sends a physical side channel control channel PSCCH and/or a physical side channel shared channel PSSCH, the N sub-channels are used by the first terminal device to send a second PSCCH, L, M and N are all integers greater than or equal to 1 ;
  • the second terminal device blindly detects the N subchannels, and receives the second PSCCH from the first terminal device.
  • the second PSCCH may occupy one or more of all RBs included in the N sub-channels, which is not limited in this application.
  • the first terminal device sends the first PSCCH as follows:
  • the first terminal device obtains configuration information of the side link resource pool, the side link resource pool is used for side communication between the first terminal device and the second terminal device, and the configuration information is used to indicate the resource pool
  • the frequency domain resource includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used for the first terminal device Sending a physical side channel control channel PSCCH and/or a physical side channel shared channel PSSCH, the N sub-channels are used by the first terminal device to receive a physical side channel feedback channel PSFCH from the second terminal device, and the M sub-channels There is a correspondence between one of the sub-channels and one of the N ⁇ q RBs contained in the N sub-channels, where N ⁇ q is greater than or equal to M, L, M, N, and q are greater than or equal to An integer equal to 1;
  • the first terminal device sends the first PSCCH and/or the first PSSCH on the first channel.
  • the first channel includes one or more sub-channels of the M sub-channels.
  • the first PSCCH is located on the second channel, and the second channel is One of the one or more sub-channels contained in the first channel, where the index of the second sub-channel satisfies the formula:
  • I the starting index of one or more sub-channels included in the first channel
  • K subCH is the number of sub-channels included in the first channel
  • the first terminal device calculates one or more sub-channels included in the first channel according to formula (1) Index of the second channel used to transmit the first PSSCH After determining the index of the second channel, the first terminal device sends the first PSCCH on the second channel, and sends the first PSSCH on the other sub-channels than the second channel among the one or more sub-channels included in the first channel .
  • the second terminal device receives the first PSCCH as follows:
  • the second terminal device obtains configuration information of the side link resource pool, the side link resource pool is used for side communication between the first terminal device and the second terminal device, and the configuration information is used to indicate the resource pool
  • the frequency domain resource includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used for the first terminal device Sending a physical side channel control channel PSCCH and/or a physical side channel shared channel PSSCH, the N sub-channels are used by the first terminal device to receive a physical side channel feedback channel PSFCH from the second terminal device, and the M sub-channels There is a correspondence between one of the sub-channels and one of the N ⁇ q RBs contained in the N sub-channels, where N ⁇ q is greater than or equal to M, L, M, N, and q are greater than or equal to An integer equal to 1;
  • the second terminal device determines the index of the second channel that requires blind detection.
  • the second channel carries the first PSCCH, the second channel is one of one or more subchannels included in the first channel, and the first channel includes all One or more sub-channels of the M sub-channels, the first PSSCH is carried on the sub-channels other than the second channel among the one or more sub-channels included in the first channel, wherein the index of the second channel satisfies the formula : among them, Is the starting index of one or more sub-channels included in the first channel, and K subCH is the number of sub-channels included in the first channel.
  • the second terminal device only blindly receives the first PSCCH on the determined second channel, and does not need to perform blind detection on all sub-channels of the M sub-channels, which can reduce the complexity of blind detection.
  • FIG. 13 is a schematic block diagram of an apparatus 500 for receiving a feedback channel provided by this application.
  • the device 500 includes a transceiver unit 510 and a processing unit 520.
  • the apparatus 500 is used to perform the steps performed by the first terminal device in the embodiments shown in FIG. 5, FIG. 6, or FIG.
  • the transceiver unit 510 is used to obtain configuration information of the side link resource pool, the side link resource pool is used for side communication between the device 500 and the second terminal device, and the configuration information is used to indicate the resource pool
  • the frequency domain resource includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used in the device 500 Sending PSCCH and/or PSSCH, the N sub-channels are used by the apparatus 500 to receive the PSFCH from the second terminal device, one of the M sub-channels and the N ⁇ q RBs included in the N sub-channels There is a correspondence between one RB in N ⁇ q ⁇ M, L, M, N and q are all integers greater than or equal to 1;
  • the transceiver unit 510 is further configured to send the first PSCCH and/or the first PSSCH on the first channel of the time slot n, where the first channel includes one or more sub-channels of the M sub-channels;
  • the processing unit 520 is configured to determine, according to the correspondence relationship and the first channel, the first RB that receives the second terminal device from the second terminal device and sends the first PSFCH for the first PSCCH and/or the first PSSCH;
  • the transceiver unit 510 is also used to receive the first PSFCH from the second terminal device on the first RB of the time slot n+k, n ⁇ 0, k ⁇ 1, and n and k are both integers.
  • the transceiver unit 510 may also be replaced by a receiving unit and/or a sending unit.
  • the transceiver unit 510 may be replaced by the receiving unit when performing the receiving step.
  • the transceiver unit 510 may be replaced by the receiving unit when acquiring the configuration information of the side link resource pool.
  • the transceiver unit 510 receives the first PSFCH, it may be replaced by the receiving unit.
  • the sending and receiving unit 510 can be replaced by the sending unit when performing the sending step.
  • the transceiver unit 510 may be replaced by the sending unit when sending the first PSCCH and/or the first PSSCH.
  • the apparatus 500 may completely correspond to the first terminal device in the method 100.
  • the corresponding units of the apparatus 500 are respectively used to perform the corresponding operations or processes performed by the first terminal device in the method 100 or its embodiments.
  • the transceiving unit 510 is used to perform steps such as acquiring configuration information of the side link resource pool, sending the first PSCCH and/or first PSSCH to the second terminal device, and sending the second PSCCH to the second terminal device.
  • the processing unit 520 is configured to determine the first RB that receives the first PSFCH from the second terminal device according to the correspondence and the first channel, determine the second RB among the N ⁇ q RBs included in the N sub-channels, and determine the first
  • the two-channel index determines the value of k according to the configuration information, and obtains the value of k from the first PSCCH.
  • the transceiving unit 510 may be a transceiver.
  • the transceiver 510 has functions of sending and/or receiving.
  • the transceiver may also be replaced by a receiver and/or a transmitter.
  • the transceiver unit 510 may be a communication interface.
  • the communication interface may include an input interface and/or an output interface.
  • the processing unit 520 may be a processor.
  • the processing unit 520 may be a processing device, and the functions of the processing device may be partially or fully implemented by software.
  • the functions of the processing device may be partially or fully implemented by software.
  • the processing apparatus may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory to execute the method 100 and its embodiments in the first terminal device Steps to achieve. For example, the steps described above by the processing unit 510 are performed.
  • the processing device may be a processor.
  • the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the functions of the processing device may be partially or fully implemented by hardware.
  • the processing device includes: an input interface circuit for acquiring configuration information; a logic circuit for determining M, N and the number of RBs included in the N sub-channels N ⁇ q according to the configuration information; and an output interface circuit for For output M, N and N ⁇ q.
  • FIG. 14 is a schematic block diagram of an apparatus 600 for sending a feedback channel provided by this application.
  • the device 600 includes a transceiver unit 610 and a processing unit 620.
  • the apparatus 600 is used to perform the steps performed by the second terminal device in the embodiments shown in FIG. 5, FIG. 6 or FIG.
  • the transceiver unit 610 is configured to obtain configuration information of a side link resource pool, where the side link resource pool is used for side communication between the first terminal device and the device 600, and the configuration information includes a
  • the frequency domain resource of the resource pool includes L subchannels and each subchannel of the L subchannels includes q resource blocks RB, the L subchannels include M subchannels and N subchannels, and the M subchannels are used for A terminal device sends a PSCCH and/or PSSCH, the N subchannels are used by the first terminal device to receive the PSFCH from the apparatus 600, one of the M subchannels and the N included in the N subchannels There is a correspondence between one RB of q RBs, N ⁇ q ⁇ M, L, M, N and q are all integers greater than or equal to 1;
  • the transceiver unit 610 is further configured to receive the first PSCCH and/or the first PSSCH from the first terminal device on the first channel of the time slot n, where the first channel includes one or more of the M subchannels;
  • the processing unit 620 is configured to determine, according to the correspondence relationship and the first channel, the first RB that sends the first PSFCH for the first PSCCH and/or the first PSSCH, and the first RB belongs to the N included in the N sub-channels Q q RBs;
  • the transceiver unit 610 is further configured to send the first PSFCH to the first terminal device on the first RB of the time slot n+k, n ⁇ 0, k ⁇ 1, and n and k are both integers.
  • the transceiver unit 610 may also be replaced by a receiving unit and/or a sending unit.
  • the transceiver unit 610 may be replaced by the receiving unit when performing the receiving step.
  • the transceiver unit 610 may be replaced by the receiving unit when acquiring the configuration information of the side link resource pool.
  • the sending and receiving unit 610 can be replaced by the sending unit when performing the sending step.
  • the transceiver unit 610 may be replaced by the sending unit when sending the first PSCCH and/or the first PSSCH.
  • the transmitting unit may also be replaced.
  • the apparatus 600 may completely correspond to the second terminal device in the method 100.
  • the corresponding units of the apparatus 600 are respectively used to perform the corresponding operations or processes performed by the second terminal device in the method 100 or the embodiments thereof.
  • the transceiving unit 610 is configured to perform receiving the first PSCCH and/or first PSSCH from the first terminal device, sending the first PSFCH to the first terminal device, receiving the second PSCCH from the first terminal device, and so on.
  • the processing unit 620 is configured to determine the first RB that sends the first PSCCH and/or the first PSFCH of the first PSSCH to the first terminal device, determine the index of the second channel that receives the first PSCCH from the first terminal device, according to the configuration
  • the information determines the value of k or obtains the value of k from the first PSCCH.
  • the transceiving unit 610 may be a transceiver, and the transceiver 610 has a sending and/or receiving function.
  • the transceiver 610 may also be replaced by a receiver and/or transmitter.
  • the transceiver unit 610 may be a communication interface.
  • the communication interface may include an input interface and/or an output interface.
  • the processing unit 620 may be a processor.
  • the processing unit 620 may be a processing device, and the functions of the processing device may be partially or fully implemented by software.
  • the functions of the processing device may be partially or fully implemented by software.
  • the processing apparatus may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory to execute the method 100 and its embodiments by the second terminal device Steps to achieve. For example, the steps performed by the processing unit 620 described above are performed.
  • the processing device may be a processor.
  • the memory for storing the computer program is located outside the processing device, and the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the functions of the processing device may be partially or fully implemented by hardware.
  • the processing device includes: an input interface circuit for acquiring configuration information of the side link resource pool; a logic circuit for determining M, N and the number N of RBs included in the N sub-channels according to the configuration information Q; output interface circuit for outputting the M, N and N ⁇ q.
  • the processing device involved in this application may be a chip or an integrated circuit.
  • the processing device may be a field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), system chip (SoC), central processor (central processor) unit , CPU), network processor (NP), digital signal processing circuit (digital) processor (DSP), microcontroller (microcontroller unit, MCU), programmable controller (programmable logic device (PLD) or other Integrated chips, etc.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller microcontroller unit, MCU
  • programmable controller programmable logic device (PLD) or other Integrated chips, etc.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by this application.
  • the terminal device 1000 includes a processor 1001 and a transceiver 1002.
  • the terminal device 1000 further includes a memory 1003.
  • the processor 1001, the transceiver 1002, and the memory 1003 can communicate with each other through an internal connection channel to transfer control signals and/or data signals.
  • the memory 1003 is used to store a computer program, and the processor 1001 is used to call and run the computer program from the memory 1003 to control the transceiver 1002 to send and receive signals.
  • the terminal device 1000 may further include an antenna 1004 for sending uplink data or uplink control signaling output by the transceiver 1002 through a wireless signal.
  • the processor 1001 and the memory 1003 may be combined into one processing device.
  • the processor 1001 is used to execute the program code stored in the memory 1003 to implement the above-mentioned functions.
  • the memory 1003 may also be integrated in the processor 1001 or independent of the processor 1001.
  • the terminal device 1000 may correspond to the first terminal device or the second terminal device of the method embodiment of the present application.
  • the terminal device 1000 may include a unit for performing steps performed by the first terminal device or the second terminal device in various embodiments of the method.
  • each unit in the terminal device 1000 separately implements the corresponding process performed by the first terminal device in the method 100 and the embodiments thereof.
  • the transceiver 1002 of the terminal device 1000 is used to perform step 110 in FIG. 5, the step of transmitting the first PSCCH and/or the first PSSCH (step 120), and the step of receiving the first PSFCH on the first RB (step 140) ).
  • the processor 1001 is used to perform step 130 in FIG. 5.
  • the transceiver 1002 is also used to perform step 302, step 305, and step 310 shown in FIG.
  • the transceiver is also used to perform the process of sending the second PSCCH in steps 402 and 405 shown in FIG. 7.
  • the processor 1001 is further configured to perform the step of determining the second RB, the step of determining the index of the second channel, the step of determining the value of k, etc. in the method embodiment.
  • each unit in the terminal device 1000 separately implements the corresponding process performed by the second terminal device in the method 100 and the embodiments thereof.
  • the transceiver 1002 of the terminal device 1000 is used to perform the step of receiving the first PSCCH and/or the first PSSCH from the first terminal device in FIG. 5 (step 120), and the step of transmitting the first PSFCH on the first RB (step 140).
  • the processor 1001 is used to perform step 130 in FIG. 5.
  • the transceiver 1002 is further configured to perform the steps of receiving the first PSCCH and/or the first PSSCH shown in FIG. 6 (step 305), blindly detecting the first PSCCH, and receiving the first PSSCH according to the first PSCCH (Ste 306), a step of sending the first PSFCH on the first RB (step 310).
  • the transceiver is also used to perform the steps shown in FIG.
  • step 405 step 405
  • step 406 step 406
  • the processor 1001 is further configured to perform the step of determining the second RB, the step of determining the index of the second channel, the step of determining the value of k, etc. in the method embodiment.
  • the above-mentioned processor 1001 may be used to perform actions internally implemented in the first terminal device or the second terminal device described in the foregoing method embodiment, and the transceiver 1002 may be used to execute the first terminal device or the first terminal device described in the foregoing method embodiment.
  • the action initiated or received by the terminal device please refer to the description in the foregoing method embodiment, and no more details are provided here.
  • the terminal device 1000 may further include a power supply 1005, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 1005 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 1000 may further include one or more of an input unit 1006, a display unit 1007, an audio circuit 1008, a camera 1009, a sensor 1010, etc.
  • the audio circuit may also include A speaker 10082, a microphone 10084, etc.
  • the present application also provides a communication system, including a first terminal device and a second terminal device. Further, the communication system may also include network equipment.
  • the present application also provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a computer, causes the computer to execute any method embodiment executed by the first terminal device Steps and/or processes.
  • the present application also provides a computer program product, the computer program product including computer program code, when the computer program code runs on a computer, causing the computer to perform any method embodiment of the steps performed by the first terminal device and /Or process.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform the steps and/or processes performed by the first terminal device in any method embodiment.
  • the chip may further include a memory and a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, or the like.
  • the present application also provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a computer, causes the computer to execute any method embodiment executed by the second terminal device Steps and/or processes.
  • the present application also provides a computer program product, the computer program product includes computer program code, and when the computer program code runs on a computer, causes the computer to perform any step performed by the second terminal device in any method embodiment and /Or process.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform the steps and/or processes performed by the second terminal device in any method embodiment.
  • the chip may further include a memory and a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, or the like.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has the ability to process signals.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied and executed by a hardware encoding processor, or may be executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种发送反馈信道的方法,可应用于车联网V2X、智能网联汽车、自动驾驶或辅助驾驶等领域。该方法包括:第一终端设备获取资源池的配置信息,配置信息用于指示资源池的频域资源包括L个子信道以及每个子信道包含q个RB,该L个子信道中的M个子信道用于第一终端设备发送PSCCH和/或PSSCH,该L个子信道中的N个子信道用于第一终端设备从第二终端设备接收PSFCH,M个子信道中的每个子信道和N个子信道包含的个RB中的一个RB具有对应关系;第一终端设备在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH;第一终端设备根据对应关系和第一信道,确定从第二终端设备接收第一PSFCH的第一RB;第一终端设备在时隙n+k的第一RB上从第二终端设备接收第一PSFCH。

Description

发送和接收反馈信道的方法以及装置
本申请要求于2019年01月11日提交国家知识产权局、申请号为201910028002.4、申请名称为“发送和接收反馈信道的方法以及装置”的中国专利申请的优先权,以及于2019年8月14日递交国家知识产权局、申请号为201910749320.X、申请名称为“发送和接收反馈信道的方法以及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网领域,更具体地,涉及一种发送反馈信道的方法和装置,一种接收反馈信道的方法和装置。
背景技术
车联网(vehicle to everything,V2X)通信是指车辆与外界任何事物的通信,例如车辆与车辆,车辆与行人的通信,车辆与基础设施的通信,车辆与网络的通信等。基于V2X技术,车辆用户设备(vehicle-user equipment,V-UE)能将自身的一些信息,例如,位置、速度、意图(转弯、并线或倒车等)等信息向周围的V-UE发送,同时,V-UE也会实时接收周围的V-UE的信息。
随着新空口(new radio,NR)技术在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)标准组织中的开发,NR V2X也将进一步发展,例如,支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验等,以增加更广泛的应用场景的需求。在NR V2X中,为了保证物理层单播和组播的通信质量(包括时延、可靠性、吞吐量和频谱效率等),将会在现有的物理侧行控制信道(physical sidelink control channel,PSCCH)和物理侧行共享信道(physical sidelink shared channel,PSSCH)的基础上引入物理侧行反馈信道(physical sidelink feedback channel,PSFCH),PSFCH将用于承载侧行反馈控制信息(sidelink feedback control channel,SFCI),包括侧行混合自动重传请求(hybrid automatic repeatrequest,HARQ)和/或侧行信道状态信息(channel state information,CSI)等。
如果V-UE按照PSSCH的方式发送和接收PSFCH,由于PSSCH是由PSCCH调度发送的,这就意味着PSFCH也需要PSCCH调度,将会增加PSCCH所承载的信息以及控制信息的格式,空口信令开销较大,同时也带来复杂度的上升。如果V-UE按照PSCCH的方式发送和接收PSFCH,由于PSCCH需要V-UE通过盲检接收,因此,复杂度较高。如果在V2X的基站调度模式下,PSFCH也需要基站进行调度,从而带来空口(air interface)的信令开销和复杂度。在V2X的V-UE自主选择资源的模式下,V-UE如果自主选择发送和接收PSFCH的资源,又可能造成PSFCH和PSCCH的资源碰撞,导致V2X通信可靠性的降低。
发明内容
本申请提供一种接收和发送反馈信道的方法,可以降低PSFCH的接收复杂度,节省用于发送和接收PSFCH的信令开销,并提高v2x通信的可靠性。
第一方面,本申请提供一种接收反馈信道的方法,该方法包括:第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于第一终端设备从第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;第一终端设备在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,第一信道包括所述M个子信道中的一个或多个子信道;第一终端设备根据所述对应关系和第一信道,确定从第二终端设备接收第二终端设备针对第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB,第一RB属于所述N个子信道所包含的N·q个RB;第一终端设备在时隙n+k的第一RB上从第二终端设备接收所述第一PSFCH,n≥0,k≥1,且n和k均为整数。
本申请的技术方案,网络设备通过将侧行链路的资源池的频域资源包括的L个子信道划分为用于第一终端设备发送PSCCH和/或PSSCH的M个子信道和用于第一终端设备接收PSFCH的N个子信道这两部分,并通过定义所述M个子信道和所述N个子信道包含的N·q个RB之间的对应关系,使得进行侧行通信的第一终端设备(即,发送端)对PSFCH的接收,或者第二终端设备(即,接收端)对PSFCH的发送均不需要网络设备进行调度,也不需要根据一些特定条件(例如,对信道进行侦听)进行自主选择资源,因此可以降低SL通信双方实现侧行通信的复杂度。另一方面,进行侧行通信的第一终端设备(发送端)和第二终端设备(接收端)可以在不需要对反馈资源进行任何指示的情况下,确定接收或发送PSFCH的资源位置,从而节省空口的信令开销。再一方面,在用户自主选择资源的模式下,也避免了用户自主选择的用于发送PSFCF的资源和其它用户选择的用于发送PSCCH或PSSCH的资源发生碰撞,从而可以提高V2X通信的可靠性。
在一种可能的设计中,第一终端设备在第一信道上发送第一PSCCH和/或第一PSSCH,包括:第一终端设备在网络设备调度的第一信道上发送第一PSCCH和/或第一PSSCH;或者,第一终端设备自主选择在第一信道上发送第一PSCCH和/或第一PSSCH。
第一终端设备可以在网络设备的调度或者自主选择的子信道上发送PSCCH和/或PSSCH,可以提高V2通信的灵活性。
在一种可能的设计中,所述L,q,M和N满足
Figure PCTCN2020071293-appb-000001
L=M+N,
Figure PCTCN2020071293-appb-000002
表示向上取整。
通过设计L,q,M和N之间满足的关系式,可以将资源池的频域资源包含的L个子信道划分为两部分,一部分是用于发送PSCCH和/或PSSCH的所述M个子信道,另一部分是用于接收PSFCH的所述N个子信道。从而,可以将资源池的所述L个子信道进行合理分配。另一方面,将L个子信道划分为两部分,可以认为是明确定义了用于发送PSCCH 和/或PSSCH的所述M个子信道,和用于发送PSFCH的所述N个子信道。这样,可以避免终端设备盲目地在所述L个子信道上发送PSFCH,可能会和其它终端设备在所述L个子信道上发送PSCCH和/或PSSCH发生资源碰撞。因此,通过本实施例的设计,终端设备仅在用于发送PSFCH的所述N个子信道上发送PSFCH,可以降低发生资源碰撞的概率。再一方面,通过将L个子信道划分为两部分,可以缩小进行SL通信的接收端对PSCCH的盲检范围。也即,接收端从需要盲检全部的L个子信道,缩小到盲检所述M个子信道。因此,可以降低盲检复杂度。
在一种可能的设计中,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中,1≤m≤M,m为整数。
将所述M个子信道和所述N个子信道所包含的N·q个RB按照索引顺序建立一一映射的对应关系,可以降低所述M个子信道和所述N个子信道所包含的N·q个RB之间的对应关系的设计复杂度。
在一种可能的设计中,该方法还包括:第一终端设备在第二RB上发送第二PSCCH,第二PSCCH不用于调度PSSCH,或者,第二PSCCH和对应的PSSCH位于不同的时隙,第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB。
考虑到第二PSCCH的特点,即第二PSCCH可能不用于调度PSSCH,或者,即使第二PSCCH用于调度PSSCH,但是第二PSCCH和所调度的PSSCH位于不同的时隙。因此网络设备只需要配置用于发送端发送第二PSCCH的资源,而不需要考虑配置针对第二PSSCH的PSFCH的资源。因此,在所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB上发送第二PSCCH。一方面满足了发送端发送第二PSCCH的需求,另一方面可以充分利用资源池剩余的频域资源,避免资源浪费。
在一种可能的设计中,第一终端设备在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,包括:第一终端设备确定第一PSCCH所位于的第二信道的索引,所述第二信道为第一信道包含的一个或多个子信道中的一个子信道;第一终端设备在所述第二信道上向第二终端设备发送第一PSCCH。
在本实施例中,第二终端设备仅在确定的第二信道上盲检接收第一PSCCH,不需要在所述M个子信道的全部子信道上进行盲检,可以降低盲检复杂度。
在一种可能的设计中,第一终端设备确定第一PSCCH所位于的第二信道的索引
Figure PCTCN2020071293-appb-000003
满足公式:
Figure PCTCN2020071293-appb-000004
其中,
Figure PCTCN2020071293-appb-000005
为第一信道包含的一个或多个子信道的起始索引,K subCH为第一信道包含的一个或多个子信道的数量。
根据本申请中提供的确定第二信道的索引的公式,可以将PSCCH设计在PSSCH的中间位置。在频域上,如果V-UE的PSCCH只和自身的PSSCH相邻,不与其它V-UE的PSCCH或者PSSCH相邻,可以降低其它V-UE对该V-UE的带内泄露,因而可以提升PSCCH的传输可靠性。
在一种可能的设计中,配置信息中包括所述k的取值,所述方法还包括:第一终端设备根据配置信息,确定所述k的取值。
第二方面,本申请提供一种发送反馈信道的方法,该方法包括:第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息包括用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于第一终端设备从第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,所述N·q大于或等于M,L,M,N和q均为大于或等于1的整数;第二终端设备在时隙n的第一信道上从第一终端设备接收第一PSCCH和/或第一PSSCH,第一信道包括所述M个子信道中的一个或多个子信道;第二终端设备根据所述对应关系和第一信道,确定发送针对第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB,所述第一RB属于所述N个子信道所包含的N·q个RB;第二终端设备在时隙n+k的所述第一RB上向第一终端设备发送所述第一PSFCH,n≥0,k≥1,且n和k均为整数。
在一种可能的设计中,所述L,q,M和N满足
Figure PCTCN2020071293-appb-000006
L=M+N,
Figure PCTCN2020071293-appb-000007
表示向上取整。
在一种可能的设计中,所述M个子信道中的一个子信道与所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中1≤m≤M,m为整数。
在一种可能的设计中,所述方法还包括:第二终端设备在第二RB上从第一终端设备接收第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,所述第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB。
在一种可能的设计中,第二终端设备在第一信道上从第一终端设备接收第一PSCCH和/或第一PSSCH,包括:第二终端设备确定第一PSCCH所位于的第二信道的索引,所述第二信道为第一信道包含的一个或多个子信道中的一个子信道;第二终端设备在所述第二信道上从第一终端设备接收第一PSCCH。
在一种可能的设计中,第二终端设备确定第一PSCCH所位于的第二信道的索引
Figure PCTCN2020071293-appb-000008
满足公式:
Figure PCTCN2020071293-appb-000009
其中,
Figure PCTCN2020071293-appb-000010
为第一信道包含的一个或多个子信道的起始索引,K subCH为第一信道包含的一个或多个子信道的数量。
在一种可能的设计中,第二终端设备通过如下方式确定所述k的取值:第二终端设备根据配置信息,确定所述k的取值,其中,配置信息中包括所述k的取值;或者,第二终端设备根据第一PSCCH,确定所述k的取值,其中,第一PSCCH携带有指示所述k的取值的信息。
应理解,第二方面的方法及其任意可能的设计所能获得的有益效果,可以参考第一方面及其各种可能的设计的说明,这里不再一一赘述。
第三方面,本申请提供一种接收反馈信道的装置,该装置具有实现第一方面及其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,本申请提供一种发送反馈信道的装置,该装置具有实现第二方面及其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,本申请提供一种终端设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行上述第一方面或第一方面任意可能的实现方式中的方法。
第六方面,本申请还提供一种终端设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行第二方面或第二方面任意可能的实现方式中的方法。
第七方面,本申请还提供一种发送PSCCH的方法,该方法包括:第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备发送第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,L,M和N均为大于或等于1的整数;第一终端设备在所述N个子信道中的一个或多个子信道上发送所述第二PSCCH。
这里,第二PSCCH是指独立的PSCCH(stand-alone PSCCH)。
需要说明的是,在第一方面中,L个子信道中的所述N个子信道用于发送PSFCH。进一步地,当N·q>M时,在所述N个子信道包含的N·q中的第二RB上发送第二PSCCH。与第一方面不同的是,在第十一方面中,L个子信道中的所述N个子信道用于发送独立的PSCCH,不用于发送PSFCH。
第八方面,本申请提供一种接收PSCCH的方法,该方法包括:第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第二终端设备和第一终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备发送第二PSCCH,L,M和N均为大于或等于1的整数;第二终端设备盲检所述N个子信道,从第一终端设备接收第二PSCCH。
在第八方面中,当L个子信道中的所述N个子信道用于第一终端设备发送第二PSCCH时,作为侧行通信的接收端的第二终端设备通过盲检所述N个子信道接收第二PSCCH。
在一种可能的设计中,第二PSCCH可以占用所述N个子信道包含的全部RB中的一个或多个,本申请中不作限定。
第九方面,本申请提供一种发送物理侧行控制信道PSCCH的方法,该方法包括:第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道 和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,所述N·q大于或等于M,L,M,N和q均为大于或等于1的整数;第一终端设备在第一信道上发送第一PSCCH和/或第一PSSCH,第一信道包含所述M个子信道中的一个或多个子信道,第一PSCCH位于第二信道上,所述第二信道为第一信道所包含的一个或多个子信道中的一个子信道,其中,第二子信道的索引满足公式:
Figure PCTCN2020071293-appb-000011
其中,
Figure PCTCN2020071293-appb-000012
为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
在一种可能的设计,第一终端设备在第一信道上发送第一PSCCH和/或第一PSSCH,包括:第一终端设备确定第二信道的索引
Figure PCTCN2020071293-appb-000013
第一终端设备在第二信道上发送第一PSCCH,并在第一信道包括的一个或多个子信道中除了第二信道之外的其它子信道上发送第一PSSCH。
第十方面,本申请提供一种发送物理侧行控制信道PSCCH的方法,该方法包括:第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,所述N·q大于或等于M,L,M,N和q均为大于或等于1的整数;第二终端设备确定需要盲检的第二信道的索引,第二信道上承载有第一PSCCH,第二信道为第一信道包含的一个或多个子信道中的一个子信道,第一信道包含所述M个子信道中的一个或多个子信道,第一信道所包含的一个或多个子信道中除了第二信道之外的其它子信道上承载有第一PSSCH,其中,第二信道的索引满足公式:
Figure PCTCN2020071293-appb-000014
其中,
Figure PCTCN2020071293-appb-000015
为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
作为侧行通信的接收端的第二终端设备,计算所述M个子信道中需要盲检的子信道的索引。第二终端设备仅在确定的第二信道上盲检第一PSCCH,不需要在所述M个子信道的全部子信道上进行盲检,可以降低盲检复杂度。
第十一方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的设计中的方法,或者执行第七方面或第七方面任意可能的设计中的方法,或者,执行第九方面或者第九方面的任意可能的设计中的方法。
第十二方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第二方面或第二方面的任意 可能的设计中的方法,或者执行第八方面或第八方面任意可能的设计中的方法,或者,执行第十方面或者第十方面的任意可能的设计中的方法。
第十三方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或第一方面任意可能的设计中的方法,或者执行第七方面或第七方面任意可能的设计中的方法,或者,执行第九方面或者第九方面的任意可能的设计中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十四方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面或第二方面任意可能的设计中的方法,或者执行第八方面或第八方面任意可能的设计中的方法,或者,执行第十方面或者第十方面的任意可能的设计中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
本申请提供的技术方案,网络设备通过将侧行链路的资源池的频域资源包括的L个子信道划分为用于第一终端设备发送PSCCH和/或PSSCH的M个子信道和用于第一终端设备接收PSFCH的N个子信道这两部分,并通过定义所述M个子信道和所述N个子信道包含的N·q个RB之间的对应关系,使得进行侧行通信的第一终端设备(即,发送端)对PSFCH的接收,或者第二终端设备(即,接收端)对PSFCH的发送均不需要网络设备进行调度,也不需要根据一些特定条件(例如,对信道进行侦听)进行自主选择资源,因此可以降低SL通信双方实现侧行通信的复杂度。
附图说明
图1是V2X通信场景的示意图。
图2是一种侧行链路资源池的示意图。
图3的(a)和(b)分别示出了网络设备调度资源的模式和用户自主选择资源的模式。
图4是M个子信道和N个子信道包含的N·q个RB之间的对应关系的示意图。
图5是本申请提供的发送和接收反馈信道的方法的示意性交互图。
图6是本申请提供的发送和接收反馈信道的一个流程图。
图7是终端设备在第二RB上发送第二PSCCH的流程图。
图8是终端设备确定用于发送PSCCH的子信道的位置的示意图。
图9是本申请提供的发送反馈信道的方法的一个示例。
图10是本申请提供的在第二RB上发送第二PSCCH的一个示例。
图11为第一终端设备在所述N个子信道上发送第二PSCCH的示例。
图12为第二PSCCH在资源池中的位置的一个示例。
图13是本申请提供的接收反馈信道的装置500的示意性框图。
图14是本申请提供的发送反馈信道的装置600的示意性框图。
图15是本申请提供的终端设备1000的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于车联网(vehicle-to-everything,V2X)通信系统,对于有网络覆盖和无网络覆盖的场景都是适用的。V2X在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)的长期演进(long term evolution,LTE)技术的网络下被标准化定义。V2X可以指车辆与外界的任何事物的通信,例如,车与车的通信(vehicle to vehicle,V2V)、车与行人(vehicle to pedestrian,V2P)的通信、车与基础设施(vehicle to infrastructure,V2I)的通信和车与网络(vehicle to network,V2N)的通信等。
参见图1,图1是V2X通信场景的示意图。在V2X通信中,车辆用户设备(vehicle-user equipment,V-UE)和车辆用户设备、行人用户设备和车辆用户设备、路边单元(roadside unit,RSU)设备之间的链路称为侧行链路(sidelink,SL),车辆用户设备和网络设备之间的链路称为下行链路(downlink,DL)或者上行链路(uplink,UL),其空口也称为Uu空口,相对应的DL通信和UL通信也称为Uu通信。
在本申请的技术方案中,在Uu空口传输中,无线通信的双方为网络设备和终端设备。在SL空口传输中,无线通信的双方都是终端设备。
本申请中提及的网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
本申请中提及的终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local  loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
侧行链路的资源池(resource pool,RP),用于终端设备之间进行SL通信。资源池是由时域资源和频域资源组成的资源集合。其中,时域资源由若干个侧行子帧(sub-frame)组成,频域资源由若干个子信道(sub-channel)组成。在SL通信中,涉及到SL控制信息和SL数据信息。SL数据信息所使用的资源位置由SL控制信息指示或调度。SL控制信息所使用的资源位置相对固定,以减少侧行通信的接收端进行盲检(blind decoding,BD)的复杂度。其中,SL控制信息承载于物理侧行控制信道(physical sidelink control channel,PSCCH),SL数据信息承载于物理侧行共享信道(physical sidelink shared channel,PSSCH)。PSCCH用于调度PSSCH,进行SL通信的接收端通过接收PSCCH来获知PSSCH的资源位置,并根据正确解码的PSCCH来解码PSSCH。
图2是一种侧行链路资源池的示意图。如图2所示,资源池在频域上包括若干个子信道。其中,PSCCH在频域上可以包含子信道最低索引(index)的若干个资源块(resource block,RB),在时域上包含一个子帧。可选的,资源池在频域上包括若干个子信道,其中PSCCH在频域上可以包含若干个RB,在时域上包含一个时隙,或者若干个OFDM符号。
另外,在V2X通信系统中,资源分配方式可以支持网络设备调度的模式和用户自主选择的模式。参见图3的(a)和(b)。图3的(a)和(b)分别示出了网络设备调度资源模式和用户自主选择资源的模式。在图3的(a)所示的网络设备调度资源的模式中,网络设备通过向终端设备发送下行调度信息,下行调度信息用于指示UE#1发送PSCCH和PSSCH的资源。UE#1在下行调度信息指示的资源上发送PSCCH和PSSCH。UE#2通过盲检侧行链路资源池对应的资源,从UE#1接收PSCCH和PSSCH。在图3的(b)所示的用户自主选择资源的模式中,进行侧行通信的发送端(如UE#1)根据资源选择机制,选择发送PSCCH和PSSCH的资源,并在选择的资源上发送PSCCH和PSSCH。同样地,接收端(如UE#2)通过盲检接收PSCCH。再根据PSCCH来接收PSSCH。可见,无论采用哪种模式,SL通信的接收端都是在资源池中盲捡PSCCH,再通过译码PSCCH,获得侧行控制信息(sidelink control information,SCI),进而接收PSSCH。
下面对本申请的技术方案进行详细说明。
在本申请的技术方案中,网络设备定义侧行链路资源池(以下简称为资源池),资源池中共包括L个子信道。具体地,资源池中的L个子信道被划分为两部分。其中,L个子信道中的M个子信道用于第一终端设备发送PSCCH和/或PSSCH,L个子信道中的N个子信道用于第一终端设备从第二终端设备接收PSFCH,L=M+N,其中,L,M,和N均为正整数。L个子信道中的每个子信道包含q个RB。也即,M个子信道中的每个子信道包含q个RB,N个子信道中的每个子信道也包含q个RB。
可以理解的是,由于L个子信道中的每个子信道包含q个RB,因此,所述N个子信道共包含N·q个RB,其中,N·q≥M。
在本申请中,所述N个子信道包含的N·q个RB和所述M个子信道之间具有对应关系。具体地,所述M个子信道中的每个子信道和所述N个子信道包含的N·q个RB一个RB对应。换句话说,所述M个子信道中的每个子信道必然对应着所述N个子信道所包含的N·q个RB中的一个RB。
由于N·q≥M,因此,N·q=M时,所述M个子信道中的每个子信道和所述N个子信道所包含的N·q个RB中的一个RB对应。所述N个子信道包含的N·q个RB中的每个RB和所述M个子信道中的一个子信道对应。而当N·q>M时,所述M个子信道中的每个子信道和所述N个子信道所包含的N·q个RB中的一个RB对应。但是,所述N个子信道包含的N·q个RB中的一些RB和所述M个子信道中的任何一个子信道都不对应。这种情况下文会作详细介绍。
参见图4,图4是本申请中M个子信道和N个子信道包含的N·q个RB之间的对应关系的示意图。如图4所示,资源池共包括9个子信道,其中有7个子信道用于第一终端设备发送PSCCH和/或PSSCH,其余的2个子信道用于第一终端设备从第二终端设备接收PSFCH。所述9个子信道中的每个子信道均包含4个RB。因此,用于第一终端设备从第二终端设备接收PSFCH的所述2个子信道共包含8个RB。用于第一终端设备发送PSCCH和/或PSSCH的所述7个子信道和用于第一终端设备从第二终端设备接收PSFCH的所述2个子信道包含的8个RB之间具有对应关系。其中,所述7个子信道中的第m个信道和所述2个子信道包含的8个RB中的第m个RB对应,其中,1≤m≤M,m为整数。如图3所示,填充有相同的图案的RB和子信道之间具有对应关系。需要说明的是,RB#8和所述7个子信道中的任何一个子信道都不对应。在图4所示的N·q>M的情况中,N个子信道中的序号最小的前M个RB与所述M个子信道具有对应关系,即所述N个子信道中的RB按照RB的序号从小到大的顺序与所述M个子信道按照子信道序号从小到大的顺序一一对应,在图4中,RB1至RB7与子信道1至子信道7分别对应。即RB1对应子信道1,RB2对应子信道2,RB3对应子信道3,RB4对应子信道4,RB5对应子信道5,RB6对应子信道6,RB7对应子信道7。当然,也可以是N个信道包含的N·q个RB中的任意M个RB与所述M个子信道具有对应关系,例如N个子信道中的序号最大的M个RB与所述M个子信道具有对应关系。
网络设备定义了资源池的频域资源包括的子信道的个数L,以及该L个子信道中的每个子信道包含的RB的个数q之后,将L和q通知给终端设备。进行SL通信的双方根据L和q,可以确定M和N以及所述N个子信道包含的RB的个数N·q。例如,进行SL通信的接收端针对在所述M个子信道中的一个子信道上接收到的PSCCH和/或PSSCH,其 反馈信息可以在所述M个子信道中的每个子信道对应的RB上发送。相应地,发送端在所述M个子信道中的一个子信道上发送PSCCH和/或PSSCH之后,在所述M个子信道中的每个子信道对应的RB上从接收端接收所述接收端针对PSCCH和/或PSSCH发送的PSFCH。
以下出现的编号“第一”、“第二”仅仅是为了区分不同的描述对象,例如区分不同的终端设备、不同的子信道,不同的PSCCH等,不应该对本申请实施例的技术方案构成限定。
参见图5,图5是本申请提供的发送和接收反馈信道的方法的示意性交互图。
110、第一终端设备和第二终端设备获取侧行链路资源池的配置信息。
侧行链路的资源池用于第一终端设备和第二终端设备进行侧行通信。配置信息包括用于指示资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个RB。所述L个子信道被划分为M个子信道和N个子信道,其中,所述M个子信道用于第一终端设备发送PSCCH和/或PSSCH,所述N个子信道用于第一终端设备从第二终端设备接收PSFCH。所述M个子信道中的每个子信道和所述N个子信道包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数。
可选地,作为另一种实现,网络设备可以定义两个资源池,其中一个资源池中仅包括所述M个子信道,其中所述M个子信道中的每一个子信道包括q1个RB。另一个资源池仅包括所述N个子信道。其中,所述N个子信道中的每一个子信道包括q 2个RB。其中q 1=q 2,或者,q 1≠q 2。所述M个子信道中的每个子信道和所述N个子信道包含的N·q 2个RB中的一个RB之间具有对应关系,N·q 2≥M。M,N,q1和q2均为大于或等于1的整数。
换句话说,网络设备针对用于第一终端设备发送PSCCH和/或PSSCH的资源配置一个资源池,并针对用于第一终端设备从第二终端设备接收PSFCH的资源配置另一个资源池,以通过不同的资源池来区分不同的物理信道资源。网络设备针对每个资源池各自生成一个配置信息通知终端设备,本申请实施例对此不作限定。
应理解,第一终端设备和第二终端设备分别是作为进行SL通信的发送端和接收端的示例。
120、第一终端设备在时隙n的第一信道上向第二终端设备发送第一PSCCH和/或第一PSSCH。
相对应地,第二终端设备在时隙n的第一信道上从第一终端设备接收第一PSCCH和/或第一PSSCH。
其中,第一信道包含所述M个子信道中的一个或多个子信道。
这里,第一终端设备可以是在网络设备调度的第一信道上发送第一PSCCH和/或第一PSSCH。或者,第一终端设备也可以是自主选择第一信道,并在自主选择的第一信道上向第二终端设备发送第一PSCCH和/或第一PSSCH。
如上文图3的(a)和(b)所述,在网络设备调度的模式下,或者第一终端设备自主选择资源的模式下,第二终端设备都是通过对资源池进行盲检来接收第一PSCCH,并根据接收到的第一PSCCH来接收第一PSSCH。
130、第一终端设备根据所述对应关系和第一信道,确定用于接收第二终端设备针对第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB。
相对应地,第二终端设备根据所述对应关系,确定针对第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB。应理解,第一RB属于所述N个子信道所包含的N·q个RB。
这里所述的对应关系是指M个子信道中的每个子信道和N个子信道包含的N·q个RB中的一个RB之间的对应关系。
第一终端设备和第二终端设备根据所述对应关系确定第一RB的过程是相同的,下面以第一终端设备作为示例进行说明。
下面,针对第一信道包含所述M个子信道中的一个子信道和第一信道包含所述M个子信道中的多个子信道分别进行说明。
情况1
第一信道包含所述M个子信道中的一个子信道。
在步骤110中,第一终端设备获取资源池的配置信息,配置信息用于指示L和q。第一终端设备根据L和q,以及L,M,N和q之间满足的关系
Figure PCTCN2020071293-appb-000016
L=M+N,可以确定出M和N。其中,
Figure PCTCN2020071293-appb-000017
表示向上取整。
或者,配置信息中也可以指示L,M,N和q。
第一终端设备确定M和N之后,结合q,第一终端设备可以确定所述N个子信道包含的RB的个数N·q。再根据所述M个子信道和N·q个RB之间的对应关系,确定N·q个RB中和第一信道对应的第一RB。
情况2
第一信道包含所述M个子信道中的多个子信道。
在情况2中,第一信道包含所述M个子信道中的多个子信道,那么采用和情况1中相同的方法,第一终端设备可以确定第一信道包含的所述M个子信道中的多个子信道各自在N·q中对应的RB。换句话说,第一信道所包含的多个子信道中的每个子信道都对应N·q个RB中的一个RB,那么第一信道包含的多个子信道就对应N·q个RB中的多个RB。
例如,第一信道包含M个信道中的3个子信道,这3个子信道中的每个子信道分别对应N·q个RB中的一个RB,因此这3个子信道共对应N·q个RB中的3个RB。
可选地,在情况2中,第一信道包含M个子信道中的多个子信道时,第二终端设备可以选择在第一信道所包含的多个子信道对应的多个RB中的一个RB上发送针对第一PSCCH和/或第一PSSCH的第一PSFCH。或者,第二终端设备也可以在第一信道所包含的多个子信道中的全部子信道中发送第一PSFCH。
进一步可选地,如果第二终端设备选择在第一信道所包含的多个子信道对应的多个RB中的一个RB上接收发送第一PSFCH,作为一种可选的实现方式,第二终端设备可以选择在第一信道所包含的多个子信道对应的多个RB中最小的RB索引对应的RB上发送第一PSFCH。也即是说,第一信道所包含的多个子信道对应的多个RB中最小的RB索引对应的RB为所述第一RB。RB索引的取值在[0,(N·q-1)],对应N个子信道所包含的全部N·q个RB。
当然,第二终端设备也可以从第一信道包含的多个子信道对应的多个RB中任意选择一个RB发送第一PSFCH。在这种情况下,第一终端设备和第二终端设备可以预先约定选择的规则。例如,第二终端设备选择在第一信道所包含的多个子信道对应的多个RB中最大的RB索引对应的RB上发送第一PSFCH,或者在协议中规定等。
应理解,在步骤120,第一终端设备在第一信道上向第二终端设备发送第一PSCCH和/或第一PSSCH。第二终端设备在第一信道上从第一终端设备接收第一PSCCH和/或第一PSSCH。在步骤130,第二终端设备确定用于发送针对第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB。相对应地,第一终端设备也需要确定从第二终端设备接收第二终端设备针对第一PSCCH和/或第一PSSCH发送第一PSFCH的所述第一RB。
140、第一终端设备在时隙n+k的第一RB上从第二终端设备接收第二终端设备针对第一PSCCH和/或第一PSSCH发送的第一PSFCH,n≥0,k≥1,且n和k均为整数。
在时隙n+k,第二终端设备在第一RB上发送针对第一PSCCH和/或第一PSSCH的第一PSFCH。第一终端设备在第一RB上接收第二终端设备发送的第一PSFCH。
在本申请的技术方案中,网络设备通过将侧行链路的资源池的频域资源包括的L个子信道划分为用于第一终端设备发送PSCCH和/或PSSCH的M个子信道和用于第一终端设备接收PSFCH的N个子信道这两部分,并通过定义所述M个子信道和所述N个子信道包含的N·q个RB之间的对应关系,使得进行侧行通信的第一终端设备(发送端)和第二终端设备(接收端)可以在不需要对反馈资源进行任何指示的情况下,确定接收或发送PSFCH的资源位置,可以节省空口的信令开销。
另一方面,由于进行侧行通信的发送端对PSFCH的接收,或者接收端对PSFCH的发送均不需要网络设备进行调度,也不需要根据一些特定条件(例如,对信道进行侦听)进行自主选择资源,因此可以降低通信系统和SL通信双方实现侧行通信的复杂度。
再一方面,在用户自主选择资源的模式下,也避免了用户自主选择的用于发送PSFCF的资源和其它用户选择的用于发送PSCCH或PSSCH的资源发生碰撞,从而保证V2X通信的可靠性。
需要说明的是,在时域上,PSSCH和PSFCH存在时间关系,该时间关系可以表征为n+k,其中,时隙n为进行侧行通信的发送端发送的PSSCH所在的时隙(slot),时隙n+k为时隙n之后的某一个时隙。k可以为大于或等于1的整数。例如,k=1,2,3,…。k的具体取值可以根据对业务的服务质量(quality of service,QoS)的需求而定,只要PSFCH的反馈时间满足QoS即可。因此,在不同的QoS需求的场景下,k可以被设计为不同的取值,本申请中不限定k的取值。
进一步地,k的取值可以用若干个比特来表示。例如,2,3或4等。
作为一些可选的实现方式,第一终端设备可以通过如下方式来获取k的取值。
方式1
k的取值携带在资源池的配置信息中。
在步骤110中,网络设备向终端设备(例如,第一终端设备和第二终端设备)发送资源池的配置信息,配置信息中携带k的取值。第一终端设备从资源池的配置信息中可以获取到k的取值。
方式2
k的取值携带在系统信息块(system information block,SIB)、小区级的无线资源控制(radio resource control,RRC)信令或用户级(UE-specific)的RRC信令中等。
应理解,方式2中的列举的几种信令仅是作为示例,本领域技术人员也可以想到,网络设备将k的取值携带在其它的消息或信令中通知给终端设备,本申请对此不作限定。
方式3
预先配置k的取值
在方式3中,网络设备不需要专门向端设备通知k的取值。终端设备也无需和其它终端设备对k的取值进行信息交互。
与第一终端设备类似,第二终端设备也可以通过上述3种方式来确定k的取值。
作为另一种实现方式,第一终端设备获取到k的取值之后,可以在发送给第二终端设备的第一PSCCH中携带k的取值,即k的取值承载于侧行控制信息(sidelink control information,SCI)中,以将k的取值通知给第二终端设备。因此,第二终端设备还可以从第一终端设备发送的第一PSCCH来获取k的取值。
上文已经说明,本申请的技术方案对于有网络覆盖范围和无网络覆盖的V2X通信系统都是适用的,下面分别说明在有网络覆盖和无网络覆盖的场景下终端设备之间进行侧行通信的详细流程。
参见图6,图6是本申请提供的发送和接收反馈信道的一个流程图。
301、第一终端设备判断第一终端设备是否处于网络覆盖范围内。
如果第一终端设备处于网络覆盖范围内,执行步骤302。如果第一终端设备未处于网络覆盖范围,执行步骤303。
302、第一终端设备从网络设备获取资源池的配置信息。
其中,配置信息用于指示网络设备配置的用于第一终端设备和其它终端设备进行侧行通信的资源池。关于配置信息的详细说明请参见上文步骤110中的说明,这里不再赘述。
步骤302之后,执行步骤304-310。
303、第一终端设备获取预配置的资源池的配置信息。
步骤303之后,执行步骤304-310。
304、第一终端设备根据配置信息,确定M,N和q。
305、第一终端设备在时隙n的第一信道上向第二终端设备发送第一PSCCH和/或第一PSSCH。
这里,第一信道包括所述M个子信道中的一个或多个子信道。
306、第二终端设备进行PSCCH盲检,在时隙n的第一信道上从所述第一终端设备接收第一PSCCH,并根据接收到的第一PSSCH接收第一PSSCH。
307、第二终端设备确定所述N个子信道包含的N·q个RB中和第一信道对应的第一RB。
这里,第一RB属于所述N个子信道所包含的N·q个RB
308、第二终端设备在时隙n+k的第一RB上向第一终端设备发送针对第一PSCCH和/或第一PSSCH的第一PSFCH。
309、第一终端设备确定所述N个子信道包含的N·q个RB中和第一信道对应的第一RB。
310、第一终端设备在时隙n+k的第一RB上从第二终端设备接收第一PSFCH。
上文已经介绍过,当N·q>M时,所述N个子信道包含的N·q个RB中包含有(N·q-M)个RB和所述M个子信道中的任何一个子信道都不对应。在本申请中,所述N·q个RB中除了和所述M个子信道中的一个子信道对应的RB之外的其它RB被称为第二RB。
可以理解的是,所述N个子信道包含的N·q个RB中可能包含一个第二RB,也可能包含多个第二RB。
可选地,第二RB可以用于发送第二PSCCH。第二PSCCH可能占用一个第二RB,或者也可能占用多个第二RB,这里不作限定。
需要说明的是,第二PSCCH和第一PSCCH不同。如上文所述,第一PSCCH用于调度PSSCH,且第一PSCCH和第一PSCCH调度的PSSCH在时域上位于同一个时隙。
在一种可能的实现方式中,第二PSCCH不用于调度PSSCH。在另一种可能的实现方式中,第二PSCCH用于调度PSSCH,但是第二PSCCH和第二PSCCH调度的PSSCH在时域上位于不同的时隙。
可替换地,在本申请实施例中,第一PSCCH也可以称为非独立的PSCCH。第二PSCCH也可以称为独立的PSCCH(standalone-PSCCH)。
独立的PSCCH(例如,第二PSCCH)可以用于跨时隙(cross slot)调度,即独立的PSCCH和所调度的PSSCH位于不同的时隙。或者,独立的PSCCH也可以不用于PSSCH的调度,或者说用于非PSSCH的调度。例如,独立的PSCCH用于对其它终端设备和组用户(group)进行资源分配,请求其它终端设备发送信道状态信息反馈或特定的参考信号(reference signal,RS),例如,信道状态信息参考信号(channel state information,CSI-RS)等。
在本申请实施例中,使用所述N个子信道包含的N·q个RB中除了和所述M个子信道中的一个子信道对应的RB之外的其它RB(也即,第二RB)发送独立的PSCCH,可以提高资源利用率,提升V2X通信系统的性能。下面结合图7进行说明。
参见图7,图7是终端设备在第二RB上发送第二PSCCH的流程图。
401、第一终端设备判断第一终端设备是否处于网络覆盖范围内。
如果第一终端设备处于网络覆盖范围,第一终端设备执行步骤402。如果第一终端设备不处于网络覆盖范围,第一终端设备执行步骤403。
402、第一终端设备从网络设备获取资源池的配置信息。
步骤402之后,执行步骤404-406。
403、第一终端设备获取预配置的资源池的配置信息。
404、第一终端设备根据配置信息,确定M,N和q。
405、第一终端设备确定所述N个子信道包含的N·q个RB中的第二RB,并在第二RB上向第一终端设备发送第二PSCCH。
406、第二终端设备盲检所述N个子信道包含的N·q个RB,在第二RB上从第一终端设备接收第二PSCCH。
在上述各实施例中,PSCCH(例如,第一PSCCH,第二PSCCH)的资源位置都位于第一信道包含的所述M个子信道中的一个或多个子信道的第一个子信道中。具体地,PSCCH可以从第一信道包含的索引最小的RB开始,连续占据若干个RB。换句话说,第一信道中的前若干个RB用于发送PSCCH。
本申请提供另一种实现方式,PSCCH的位置不再固定在第一信道所包含的所述M个子信道中的一个或多个子信道中的第一个子信道上。具体地,PSCCH的位置可以位于第二信道上,第二信道为第一信道包含的一个或多个子信道中的一个子信道。
具体地,所述M个子信道中用于发送PSCCH的一个子信道(也即,第二信道)的索引
Figure PCTCN2020071293-appb-000018
可以根据如下公式(1)计算确定:
Figure PCTCN2020071293-appb-000019
其中,
Figure PCTCN2020071293-appb-000020
为第一信道包含的一个或多个子信道中的起始子信道的索引,K subCH为第一信道包含的子信道的个数。
作为侧行通信的接收端,第二终端设备根据公式(1)计算需要盲检的第二信道的索引,并在第二信道上盲检第一PSCCH。与上述实施例中第二终端设备需要盲检所述M个子信道包含的全部子信道相比,可以降低第二终端设备盲检的复杂度。
需要说明的是,将一个用户的PSCCH放置在PSSCH的中间位置,在频域上,该用户的PSCCH只和自身的PSSCH相邻,不与其它用户的PSCCH或者PSSCH相邻,可以降低其它用户对该用户的带内泄露(in-band emission,IBE),因而可以提升用户的PSCCH的传输可靠性。
参见图8所示,图8是确定用于发送PSCCH的子信道的位置的示意图。如图8所示,
Figure PCTCN2020071293-appb-000021
K subCH=3,则3+1=4。因此,用于发送PSCCH的子信道为第一信道包含的多个子信道中的第4个子信道。
下面对本申请提供的发送和接收反馈信道的方法进行举例说明。
参见图9,图9是本申请提供的发送反馈信道的方法的一个示例。假定k=1。网络设备配置用于UE#1至UE#10之间进行侧行通信的资源池。资源池共包括9个子信道,每个子信道大小为4个RB,也即L=9,q=4。UE根据L,M,N和q之间的关系,可以获知
Figure PCTCN2020071293-appb-000022
M=L-N=7,N·q=8。
在时隙n,网络设备调度UE#1在第一信道上发送PSCCH和PSSCH给UE#2进行单播侧行通信,第一信道包含所述M个子信道中的第1个子信道和第2个子信道。在时隙n+1上,UE#2在所述N个子信道包含的8个RB中的第1个RB上向UE#1发送针对所述PSCCH和PSSCH的PSFCH。
如上文所述,第一信道包含所述M个子信道中的多个子信道时,第二终端设备可以在第一信道包含的所述M个子信道中的多个子信道对应的多个RB中最小索引的RB上发送PSFCH,或者也可以在其中的一个RB上发送PSFCH,或者在所述多个RB中的全部RB上发送PSFCH。因此,UE#2也可以在所述N个子信道包含的8个RB中的第2个RB上向UE#1发送PSFCH。或者,UE#2在所述N个子信道包含的8个RB中的第1个RB和第2个RB上向UE#1发送PSFCH。
在时隙n上,网络设备调度UE#3在所述M个子信道中的第3个子信道上发送PSCCH和PSSCH给UE#4进行单播侧行通信。在时隙n+1上,UE#4在所述N个子信道包含的8个RB中的第3个RB上向UE#3发送PSFCH。
在时隙n上,网络设备调度UE#5在所述M个子信道中的第4个子信道上发送PSCCH和PSSCH给UE#6进行单播侧行通信。在时隙n+1上,UE#6在所述N个子信道包含的8个RB中的第4个RB上向UE#5发送PSFCH。
在时隙n上,网络设备调度UE#7在所述M个子信道中的第5个子信道上发送PSCCH和PSSCH给终端组(UE#8,UE#9和UE#10)进行组播侧行通信。在时隙n+1上,UE#8, UE#9和UE#10在所述N个子信道包含的8个RB中的第5个RB上向UE7发送PSFCH。
可选地,UE#8,UE#9和UE#10可以在第5个RB上通过发送不同的序列或者以码分复用(code division multiplexing,CDM)的方式向UE#1发送PSFCH。
在图9所示的资源池中,如果UE#2在所述N个子信道包含的8个RB中的第1个RB上向UE#1发送PSFCH,通常PSFCH由于数据量比较小,仅占用1个RB的资源即可传输,图9仅示例在第1个RB用于UE#2向UE#1发送PSFCH,当然,在PSFCH数据量比较大时可以采用第1个RB以及第2个RB同时用于UE#2向UE#1发送所述PSFCH,其它UE发送的PSFCH情况类似,不再赘述。UE#3在所述N个子信道包含的8个RB中的第3个RB上向UE#1发送PSFCH,UE#5在所述N个子信道包含的8个RB中的第4个RB上向UE#1发送PSFCH,UE#8,#9和#10在所述N个子信道包含的8个RB中的第5个RB上向UE#1发送PSFCH,那么所述N个子信道包含的8个RB中的第2个RB,第6个RB,第7个RB和第8个RB均和所述M个子信道中的任何一个子信道不对应。如果这些RB不被使用,将会造成资源浪费。
优选的,所述N个子信道包含的N·q个RB中除了和所述M个子信道中的一个子信道对应的RB之外的其它RB(即,上文所述的第二RB)被用于发送独立的PSCCH。下面结合图9进行举例说明。
参见图10,图10是本申请提供的在第二RB上发送第二PSCCH的一个示例。网络设备配置用于UE#1至UE#10之间进行侧行通信的资源池。资源池共包括9个子信道,每个子信道大小为4个RB,也即L=9,q=4。UE根据L,M,N和q之间的关系,可以获知
Figure PCTCN2020071293-appb-000023
M=L-N=7,N·q=8。
UE#1发送PSCCH和/或PSSCH给其它UE,以及其它UE向UE#1发送PSFCH的具体示例可以如图9中所示,这里不在赘述。
在此基础上,UE#1可以在所述N个子信道包含的8个RB中的第二RB上发送独立的PSCCH(例如,上文所述的第二PSCCH)。其中,第二RB可以为所述N个子信道包含的8个RB中的第2个RB,第6个RB,第7个RB和第8个RB。
可选地,作为另一种实现方式,资源中的所述N个子信道可以仅用于发送第二PSCCH。具体地,第一终端设备从网络设备获取侧行链路资源池的配置信息,配置信息用于指示所述资源池包括L个子信道,所述L个子信道中的M个子信道用于发送第一PSCCH和/或第一PSSCH,以及所述L个子信道中的N个子信道用于发送第二PSCCH。第一终端设备根据配置信息,确定所述N个子信道,并在所述N个子信道上的一个或多个子信道上发送第二PSCCH。相对应地,第二终端设备也从网络设备获取配置信息,并根据配置信息确定所述N个子信道,进而在所述N个子信道上盲检第二PSCCH。下面结合图11进行说明。
参见图11,图11为第一终端设备在所述N个子信道上发送第二PSCCH的示例。如图11中所示,UE#1从配置信息中获取N,从而确定用于发送第二PSCCH的所述N个子信道。假设N=2,且所述2个子信道中的每个子信道包含4个RB,则所述2个子信道共包括8个RB。UE#1在所述8个RB上的第1个RB和第2个RB上向UE#2发送第二PSCCH。
此外,UE#3在资源池的所述M个子信道中第1个子信道和第2个子信道上发送第一PSCCH和第一PSSCH给UE#4进行单播侧行通信。
需要说明的是,本申请实施例中,第一终端设备在所述N个子信道包含的N·q个RB中的第二RB上发送第二PSCCH的实施例,与第一终端设备在所述N个子信道上发送第一PSFCH的实施例可以互相独立使用。换句话说,所述N个子信道可以仅用于发送第二PSCCH。
参见图12,图12为第二PSCCH在资源池中的位置的一个示例。如图12所示,假设资源池共包括4个子信道,分别为子信道#1,子信道#2,子信道#3和子信道#4。其中,子信道#1,子信道#2和子信道#3用于第一终端设备发送非独立的PSCCH(例如,本文中所述的第一PSCCH)和/或PSSCH。子信道#4用于发送独立的PSCCH(standalone PSCCH),如图12中所示的第二PSCCH。
当所述N个子信道可以仅用于发送第二PSCCH时,作为侧行通信的发送端,第一终端设备发送第二PSCCH的流程如下:
第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备发送第二PSCCH,L,M和N均为大于或等于1的整数;
第一终端设备在所述N个子信道中的一个或多个子信道上发送第二PSCCH。
作为侧行通信的接收端,第二终端设备接收第二PSCCH的流程如下:
第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第二终端设备和第一终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备发送第二PSCCH,L,M和N均为大于或等于1的整数;
第二终端设备盲检所述N个子信道,从第一终端设备接收第二PSCCH。
可选地,第二PSCCH可以占用所述N个子信道包含的全部RB中的一个或多个,本申请中不作限定。
另外,图8中所示的将第一PSCCH放置在第一PSSCH的中间位置的实施例,也可以单独使用。
作为侧行通信的发送端,第一终端设备发送第一PSCCH的流程如下:
第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,所述N·q大于或等于M,L,M,N和q均为大于或等于1的整数;
第一终端设备在第一信道上发送第一PSCCH和/或第一PSSCH,第一信道包含所述M个子信道中的一个或多个子信道,第一PSCCH位于第二信道上,第二信道为第一信道所包含的一个或多个子信道中的一个子信道,其中,第二子信道的索引满足公式:
Figure PCTCN2020071293-appb-000024
其中,
Figure PCTCN2020071293-appb-000025
为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
在本实施例中,第一终端设备确定用于发送第一PSSCH和/或第一PSSCH的第一信道之后,第一终端设备根据公式(1)计算第一信道包含的一个或多个子信道中用于发送第一PSSCH的第二信道的索引
Figure PCTCN2020071293-appb-000026
确定第二信道的索引之后,第一终端设备在第二信道上发送第一PSCCH,并在第一信道包括的一个或多个子信道中除了第二信道之外的其它子信道上发送第一PSSCH。
作为侧行通信的接收端,第二终端设备接收第一PSCCH的流程如下:
第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,所述N·q大于或等于M,L,M,N和q均为大于或等于1的整数;
第二终端设备确定需要盲检的第二信道的索引,第二信道上承载有第一PSCCH,第二信道为第一信道包含的一个或多个子信道中的一个子信道,第一信道包含所述M个子信道中的一个或多个子信道,第一信道所包含的一个或多个子信道中除了第二信道之外的其它子信道上承载有第一PSSCH,其中,第二信道的索引满足公式:
Figure PCTCN2020071293-appb-000027
其中,
Figure PCTCN2020071293-appb-000028
为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
在本实施例中,第二终端设备仅在确定的第二信道上盲检接收第一PSCCH,不需要在所述M个子信道的全部子信道上进行盲检,可以降低盲检复杂度。
以上对本申请提供的发送和接收反馈信道的方法作了详细说明,下面介绍本申请提供的发送反馈信道的装置和接收反馈信道的装置。
参见图13,图13为本申请提供的接收反馈信道的装置500的示意性框图。装置500包括收发单元510和处理单元520。装置500用于执行图5,图6或图7所示实施例中由第一终端设备执行的步骤。
收发单元510,用于获取侧行链路资源池的配置信息,侧行链路资源池用于所述装置500和第二终端设备之间进行侧行通信,配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述装置500发送PSCCH和/或PSSCH,所述N个子信道用于所述装置500从第二终端设备接收PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥ M,L,M,N和q均为大于或等于1的整数;
收发单元510,还用于在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,第一信道包括所述M个子信道中的一个或多个子信道;
处理单元520,用于根据所述对应关系和第一信道,确定从第二终端设备接收第二终端设备针对第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB;
收发单元510,还用于在时隙n+k的第一RB上从第二终端设备接收第一PSFCH,n≥0,k≥1,且n和k均为整数。
在一种可能的设计中,收发单元510也可以由接收单元和/或发送单元代替。例如,收发单元510在执行接收的步骤时,可以由接收单元代替。例如,收发单元510在获取侧行链路资源池的配置信息时,可以由接收单元代替。又例如,收发单元510在接收第一PSFCH时,也可以由接收单元代替。
相应地,收发单元510在执行发送的步骤时,可以由发送单元代替。例如,收发单元510在发送第一PSCCH和/或所述第一PSSCH时可以由发送单元代替。
这里,装置500可以和方法100中的第一终端设备完全对应。装置500的相应单元分别用于执行方法100或其各实施例中的由第一终端设备执行的相应操作或处理。
例如,收发单元510用于执行获取侧行链路资源池的配置信息,向第二终端设备发送第一PSCCH和/或第一PSSCH,向第二终端设备发送第二PSCCH等步骤。处理单元520用于执行根据对应关系和第一信道,确定从第二终端设备接收第一PSFCH的第一RB,确定所述N个子信道包含的N·q个RB中的第二RB,确定第二信道的索引,根据配置信息确定k的取值,从第一PSCCH中获取k的取值等步骤。
可选地,收发单元510可以是收发器,收发器510具有发送和/或接收的功能,收发器也可以由接收器和/或发射器代替。
或者,收发单元510可以为通信接口。具体地,通信接口可以包括输入接口和/或输出接口。
可选地,处理单元520可以是处理器。或者,处理单元520可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
在一种可能的设计中,当处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行方法100及其各实施例中由第一终端设备内部实现的步骤。例如,执行上文描述的由处理单元510执行的步骤。
在另一种可能的设计中,处理装置可以为处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
在另一种可能的设计中,处理装置的功能可以部分或全部通过硬件实现。此时,处理装置包括:输入接口电路,用于获取配置信息;逻辑电路,用于根据配置信息确定M,N以及所述N个子信道包含的RB的个数N·q;输出接口电路,用于输出M,N和N·q。
参见图14,图14为本申请提供的发送反馈信道的装置600的示意性框图。装置600包括收发单元610和处理单元620。装置600用于执行图5,图6或图7所示的实施例中由第二终端设备执行的步骤。
收发单元610,用于获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和所述装置600之间进行侧行通信,配置信息包括用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于第一终端设备发送PSCCH和/或PSSCH,所述N个子信道用于第一终端设备从所述装置600接收PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;
收发单元610,还用于在时隙n的第一信道上从第一终端设备接收第一PSCCH和/或第一PSSCH,第一信道包括所述M个子信道中的一个或多个子信道;
处理单元620,用于根据所述对应关系和第一信道,确定发送针对第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB,第一RB属于所述N个子信道所包含的N·q个RB;
收发单元610,还用于在时隙n+k的第一RB上向第一终端设备发送第一PSFCH,n≥0,k≥1,且n和k均为整数。
在一种可能的设计中,收发单元610也可以由接收单元和/或发送单元代替。例如,收发单元610在执行接收的步骤时,可以由接收单元代替。例如,收发单元610在获取侧行链路资源池的配置信息时,可以由接收单元代替。
相应地,收发单元610在执行发送的步骤时,可以由发送单元代替。例如,收发单元610在发送第一PSCCH和/或所述第一PSSCH时可以由发送单元代替。又例如,收发单元610在发送第一PSFCH时,也可以由发送单元代替。
这里,装置600可以和方法100中的第二终端设备完全对应。装置600的相应单元分别用于执行方法100或其各实施例中的由第二终端设备执行的相应操作或处理。
例如,收发单元610用于执行从第一终端设备接收第一PSCCH和/或第一PSSCH,向第一终端设备发送第一PSFCH,从第一终端设备接收第二PSCCH等。
处理单元620用于确定向第一终端设备发送针对第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB,确定从第一终端设备接收第一PSCCH的第二信道的索引,根据配置信息确定k的取值或从第一PSCCH中获取k的取值等。
可选地,收发单元610可以是收发器,收发器610具有发送和/或接收的功能。收发器610也可以由接收器和/或发射器代替。
或者,收发单元610可以为通信接口。具体地,通信接口可以包括输入接口和/或输出接口。
可选地,处理单元620可以是处理器。或者,处理单元620可以是一个处理装置,处理装置的功能可以部分或全部通过软件实现。
在一种可能的设计中,当处理装置的功能可以部分或全部通过软件实现。此时,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,以执行方法100及其各实施例中由第二终端设备内部实现的步骤。例如,执行上文描述的由处理单元620执行的步骤。
在另一种可能的设计中,处理装置可以为处理器。用于存储计算机程序的存储器位于处理装置之外,处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
在另一种可能的设计中,处理装置的功能可以部分或全部通过硬件实现。此时,处理装置包括:输入接口电路,用于获取侧行链路资源池的配置信息;逻辑电路,用于根据配置信息,确定M,N以及所述N个子信道包含的RB的个数N·q;输出接口电路,用于输出所述M,N和N·q。
可选地,本申请涉及的处理装置可以是一个芯片或集成电路。例如,处理装置可以是现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片等。
参见图15,图15是本申请提供的终端设备的示意性结构图。如图15所示,终端设备1000包括处理器1001和收发器1002。可选的,终端设备1000还包括存储器1003。其中,处理器1001、收发器1002和存储器1003之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。存储器1003用于存储计算机程序,处理器1001用于从存储器1003中调用并运行该计算机程序,以控制收发器1002收发信号。
可选的,终端设备1000还可以包括天线1004,用于将收发器1002输出的上行数据或上行控制信令通过无线信号发送出去。
处理器1001和存储器1003可以合成一个处理装置,处理器1001用于执行存储器1003中存储的程序代码来实现上述功能。具体实现时,存储器1003也可以集成在处理器1001中,或者独立于处理器1001。
具体地,终端设备1000可对应于本申请方法实施例的第一终端设备或者第二终端设备。终端设备1000可以包括用于执行方法各实施例中由第一终端设备或第二终端设备的执行的步骤的单元。
当终端设备1000对应方法实施例的第一终端设备时,终端设备1000中的各单元分别为了实现方法100及其各实施例中由第一终端设备执行的相应流程。
例如,终端设备1000的收发器1002用于执行图5中的步骤110,发送第一PSCCH和/或第一PSSCH的步骤(步骤120),在第一RB上接收第一PSFCH的步骤(步骤140)。处理器1001用于执行图5中的步骤130。进一步地,收发器1002还用于执行图6中所示的步骤302,步骤305,步骤310。收发器还用于执行图7中所示的步骤402,405中发送第二PSCCH的流程。进一步地,处理器1001还用于执行方法实施例中确定第二RB的步骤,确定第二信道的索引的步骤,确定k的取值的步骤等。
当终端设备1000对应方法实施例的第二终端设备时,终端设备1000中的各单元分别为了实现方法100及其各实施例中由第二终端设备执行的相应流程。
例如,终端设备1000的收发器1002用于执行图5中从第一终端设备接收第一PSCCH和/或第一PSSCH的步骤(步骤120),在第一RB上发送第一PSFCH的步骤(步骤140)。处理器1001用于执行图5中的步骤130。进一步地,收发器1002还用于执行图6中所示的接收第一PSCCH和/或第一PSSCH的步骤(步骤305),盲检第一PSCCH以及根据第一PSCCH接收第一PSSCH的步骤(步骤306),在第一RB上向发送第一PSFCH的步骤(步骤310)。收发器还用于执行图7中所示在第二RB上接收第二PSCCH的步骤(步 骤405),步骤406等。进一步地,处理器1001还用于执行方法实施例中确定第二RB的步骤,确定第二信道的索引的步骤,确定k的取值的步骤等。
上述处理器1001可以用于执行前面方法实施例中描述的第一终端设备或者第二终端设备内部实现的动作,而收发器1002可以用于执行前面方法实施例中描述的第一终端设备或者第二终端设备发动或者接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选的,上述终端设备1000还可以包括电源1005,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,终端设备1000还可以包括输入单元1006、显示单元1007、音频电路1008、摄像头1009和传感器1010等中的一个或多个,音频电路还可以包括扬声器10082、麦克风10084等。
此外,本申请还提供一种通信系统,包括第一终端设备和第二终端设备。进一步地,通信系统中还可以包括网络设备。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行任一方法实施例中由第一终端设备执行的步骤和/或流程。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行任一方法实施例中由第一终端设备执行的步骤和/或流程。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任一方法实施例中由第一终端设备执行的步骤和/或流程。
进一步地,所述芯片还可以包括存储器和通信接口。所述通信接口可以是输入/输出接口,输入/输出电路等。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行任一方法实施例中由第二终端设备执行的步骤和/或流程。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行任一方法实施例中由第二终端设备执行的步骤和/或流程。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任一方法实施例中由第二终端设备执行的步骤和/或流程。
进一步地,所述芯片还可以包括存储器和通信接口。所述通信接口可以是输入/输出接口,输入/输出电路等。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field  programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现,具体取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种接收反馈信道的方法,其特征在于,包括:
    第一终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于所述第一终端设备和第二终端设备之间进行侧行通信,所述配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;
    所述第一终端设备在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,所述第一信道包括所述M个子信道中的一个或多个子信道;
    所述第一终端设备根据所述对应关系和所述第一信道,确定从所述第二终端设备接收所述第二终端设备针对所述第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB,所述第一RB属于所述N个子信道所包含的N·q个RB;
    所述第一终端设备在时隙n+k的所述第一RB上从所述第二终端设备接收所述第一PSFCH,n≥0,k≥1,且n和k均为整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备在所述第一信道上发送第一PSCCH和/或第一PSSCH,包括:
    所述第一终端设备在网络设备调度的所述第一信道上发送所述第一PSCCH和/或第一PSSCH;或者,
    所述第一终端设备在自主选择的所述第一信道上发送所述第一PSCCH和/或第一PSSCH。
  3. 根据权利要求1或2所述的方法,其特征在于,所述L,q,M和N满足
    Figure PCTCN2020071293-appb-100001
    L=M+N,
    Figure PCTCN2020071293-appb-100002
    表示向上取整。
  4. 根据权利要求3所述的方法,其特征在于,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:
    所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中,1≤m≤M,m为整数。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在第二RB上发送第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,所述第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一终端设备在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,包括:
    所述第一终端设备确定所述第一PSCCH所位于的第二信道的索引,所述第二信道为 所述第一信道包含的一个或多个子信道中的一个子信道;
    所述第一终端设备在所述第二信道上向所述第二终端设备发送所述第一PSCCH。
  7. 根据权利要求6所述的方法,其特征在于,所述第一终端设备确定所述第一PSCCH所位于的第二信道的索引
    Figure PCTCN2020071293-appb-100003
    满足如下公式:
    Figure PCTCN2020071293-appb-100004
    其中,
    Figure PCTCN2020071293-appb-100005
    为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述配置信息中包括所述k的取值,所述方法还包括:
    所述第一终端设备根据所述配置信息,确定所述k的取值。
  9. 根据权利要求8所述的方法,其特征在于,所述第一PSCCH中携带有指示所述k的取值的信息。
  10. 一种发送反馈信道的方法,其特征在于,包括:
    第二终端设备获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和所述第二终端设备之间进行侧行通信,所述配置信息包括用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;
    所述第二终端设备在时隙n的第一信道上从所述第一终端设备接收第一PSCCH和/或第一PSSCH,所述第一信道包括所述M个子信道中的一个或多个子信道;
    所述第二终端设备根据所述对应关系和第一信道,确定发送针对所述第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB,所述第一RB属于所述N个子信道所包含的N·q个RB;
    所述第二终端设备在时隙n+k的所述第一RB上向所述第一终端设备发送所述第一PSFCH,n≥0,k≥1,且n和k均为整数。
  11. 根据权利要求10所述的方法,其特征在于,所述L,q,M和N满足
    Figure PCTCN2020071293-appb-100006
    L=M+N,
    Figure PCTCN2020071293-appb-100007
    表示向上取整。
  12. 根据权利要求11所述的方法,其特征在于,所述M个子信道中的一个子信道与所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:
    所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中,1≤m≤M,m为整数。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备在第二RB上从所述第一终端设备接收第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,所述第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个 子信道对应的RB之外的RB。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述第二终端设备在第一信道上从所述第一终端设备接收第一PSCCH和/或第一PSSCH,包括:
    所述第二终端设备确定所述第一PSCCH所位于的第二信道的索引,所述第二信道为所述第一信道包含的一个或多个子信道中的一个子信道;
    所述第二终端设备在所述第二信道上从所述第一终端设备接收所述第一PSCCH。
  15. 根据权利要求14所述的方法,其特征在于,所述第二终端设备确定所述第一PSCCH所位于的第二信道的索引
    Figure PCTCN2020071293-appb-100008
    满足如下公式:
    Figure PCTCN2020071293-appb-100009
    其中,
    Figure PCTCN2020071293-appb-100010
    为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,所述第二终端设备通过如下方式确定所述k的取值:
    所述第二终端设备根据所述配置信息,确定所述k的取值,其中,所述配置信息中包括所述k的取值;或者,
    所述第二终端设备根据所述第一PSCCH,确定所述k的取值,其中,所述第一PSCCH携带有指示所述k的取值的信息。
  17. 一种接收反馈信道的装置,其特征在于,包括:
    收发单元,用于获取侧行链路资源池的配置信息,所述侧行链路资源池用于所述装置和第二终端设备之间进行侧行通信,所述配置信息用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述装置发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述装置从所述第二终端设备接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;
    所述收发单元,还用于在时隙n的第一信道上发送第一PSCCH和/或第一PSSCH,所述第一信道包括所述M个子信道中的一个或多个子信道;
    处理单元,用于根据所述对应关系和所述第一信道,确定从所述第二终端设备接收所述第二终端设备针对所述第一PSCCH和/或第一PSSCH发送第一PSFCH的第一RB,所述第一RB属于所述N个子信道所包含的N·q个RB;
    所述收发单元,还用于在时隙n+k的所述第一RB上从所述第二终端设备接收所述第一PSFCH,n≥0,k≥1,且n和k均为整数。
  18. 根据权利要求17所述的装置,其特征在于,所述收发单元还用于在网络设备调度的所述第一信道上发送所述第一PSCCH和/或第一PSSCH;或者,
    所述收发单元具体用于在所述处理单元自主选择的所述第一信道上发送所述第一PSCCH和/或第一PSSCH。
  19. 根据权利要求17或18所述的装置,其特征在于,所述L,q,M和N满足
    Figure PCTCN2020071293-appb-100011
    L=M+N,
    Figure PCTCN2020071293-appb-100012
    表示向上取整。
  20. 根据权利要求19所述的装置,其特征在于,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:
    所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中,1≤m≤M,m为整数。
  21. 根据权利要求17-20中任一项所述的装置,其特征在于,所述收发单元还用于:
    在第二RB上发送第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,所述第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB。
  22. 根据权利要求17-21中任一项所述的装置,其特征在于,所述处理单元还用于确定所述第一PSCCH所位于的第二信道的索引,所述第二信道为所述第一信道包含的一个或多个子信道中的一个子信道;
    所述收发单元还用于在所述第二信道上向所述第二终端设备发送所述第一PSCCH。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元具体用于根据如下公式确定所述第二信道的索引
    Figure PCTCN2020071293-appb-100013
    Figure PCTCN2020071293-appb-100014
    其中,
    Figure PCTCN2020071293-appb-100015
    为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
  24. 根据权利要求17-23中任一项所述的装置,其特征在于,所述配置信息中包括所述k的取值,所述处理单元还用于:
    根据所述配置信息,确定所述k的取值。
  25. 根据权利要求24所述的装置,其特征在于,所述第一PSCCH中携带有指示所述k的取值的信息。
  26. 一种发送反馈信道的装置,其特征在于,包括:
    收发单元,用于获取侧行链路资源池的配置信息,所述侧行链路资源池用于第一终端设备和所述装置之间进行侧行通信,所述配置信息包括用于指示所述资源池的频域资源包括L个子信道以及所述L个子信道的每个子信道包含q个资源块RB,所述L个子信道包括M个子信道和N个子信道,所述M个子信道用于所述第一终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH,所述N个子信道用于所述第一终端设备从所述装置接收物理侧行反馈信道PSFCH,所述M个子信道中的一个子信道和所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,N·q≥M,L,M,N和q均为大于或等于1的整数;
    所述收发单元,还用于在时隙n的第一信道上从所述第一终端设备接收第一PSCCH和/或第一PSSCH,所述第一信道包括所述M个子信道中的一个或多个子信道;
    处理单元,用于根据所述对应关系和第一信道,确定发送针对所述第一PSCCH和/或第一PSSCH的第一PSFCH的第一RB,所述第一RB属于所述N个子信道所包含的N·q个RB;
    所述收发单元,还用于在时隙n+k的所述第一RB上向所述第一终端设备发送所述第 一PSFCH,n≥0,k≥1,且n和k均为整数。
  27. 根据权利要求26所述的装置,其特征在于,所述L,q,M和N满足
    Figure PCTCN2020071293-appb-100016
    L=M+N,
    Figure PCTCN2020071293-appb-100017
    表示向上取整。
  28. 根据权利要求27所述的装置,其特征在于,所述M个子信道中的一个子信道与所述N个子信道所包含的N·q个RB中的一个RB之间具有对应关系,包括:
    所述M个子信道中的第m个子信道与所述N个子信道所包含的N·q个RB中的第m个RB对应,其中1≤m≤M,m为整数。
  29. 根据权利要求26-28中任一项所述的装置,其特征在于,所述处理单元还用于:
    在第二RB上从所述第一终端设备接收第二PSCCH,所述第二PSCCH不用于调度PSSCH,或者,所述第二PSCCH和对应的PSSCH位于不同的时隙,所述第二RB为所述N个子信道所包含的N·q个RB中除了与所述M个子信道中的一个子信道对应的RB之外的RB。
  30. 根据权利要求26-29中任一项所述的装置,其特征在于,所述处理单元具体用于确定所述第一PSCCH所位于的第二信道的索引,所述第二信道为所述第一信道包含的一个或多个子信道中的一个子信道;
    所述收发单元,还用于在所述第二信道上从所述第一终端设备接收所述第一PSCCH。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于根据如下公式确定所述第一PSCCH所位于的第二信道的索引
    Figure PCTCN2020071293-appb-100018
    Figure PCTCN2020071293-appb-100019
    其中,
    Figure PCTCN2020071293-appb-100020
    为所述第一信道包含的一个或多个子信道的起始索引,K subCH为所述第一信道包含的子信道的数量。
  32. 根据权利要求26-31中任一项所述的装置,其特征在于,所述处理单元还用于根据所述配置信息,确定所述k的取值,其中,所述配置信息中包括所述k的取值;或者,
    所述处理单元用于根据所述第一PSCCH,确定所述k的取值,其中,所述第一PSCCH携带有指示所述k的取值的信息。
  33. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如权利要求1-9中任一项所述的方法被实现,或者,如权利要求10-16中任一项所述的方法被实现。
  34. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法,或者,所述通信装置执行如权利要求10-16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1-9中任一项所述的方法被实现,或者,如权利要求10-16中任一项所述的方法被实现。
PCT/CN2020/071293 2019-01-11 2020-01-10 发送和接收反馈信道的方法以及装置 WO2020143732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738953.7A EP3883320A4 (en) 2019-01-11 2020-01-10 FEEDBACK CHANNEL TRANSMISSION METHOD, FEEDBACK CHANNEL RECEIVING METHOD AND DEVICE
US17/363,425 US20210329431A1 (en) 2019-01-11 2021-06-30 Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910028002 2019-01-11
CN201910028002.4 2019-01-11
CN201910749320.XA CN111435909B (zh) 2019-01-11 2019-08-14 发送和接收反馈信道的方法以及装置
CN201910749320.X 2019-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/363,425 Continuation US20210329431A1 (en) 2019-01-11 2021-06-30 Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2020143732A1 true WO2020143732A1 (zh) 2020-07-16

Family

ID=71580127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071293 WO2020143732A1 (zh) 2019-01-11 2020-01-10 发送和接收反馈信道的方法以及装置

Country Status (4)

Country Link
US (1) US20210329431A1 (zh)
EP (1) EP3883320A4 (zh)
CN (1) CN111435909B (zh)
WO (1) WO2020143732A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154436B2 (ja) * 2019-03-05 2022-10-17 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるpsfchを送信する方法、及び装置
US20220053460A1 (en) * 2020-08-14 2022-02-17 Nokia Technologies Oy Facilitating Sidelink Mode 2 Random Selection for Support of Sidelink DRX
US20230269730A1 (en) * 2020-10-09 2023-08-24 Qualcomm Incorporated Sidelink resource allocation in unlicensed spectrum
CN112367705A (zh) * 2020-10-26 2021-02-12 Tcl通讯(宁波)有限公司 频域资源分配方法、装置及存储介质
WO2022222079A1 (zh) * 2021-04-21 2022-10-27 Oppo广东移动通信有限公司 资源配置方法、设备及存储介质
CN113301541B (zh) * 2021-07-27 2021-11-12 成都信息工程大学 Sl通信的视频知识图谱构建方法及装置
US11838911B2 (en) * 2021-08-20 2023-12-05 Qualcomm Incorporated Techniques for low-latency sidelink feedback transmission
CN117596676A (zh) * 2022-08-08 2024-02-23 中信科智联科技有限公司 直通链路的资源选择方法、装置及终端
CN117651337A (zh) * 2022-08-17 2024-03-05 展讯半导体(南京)有限公司 资源分配方法、装置以及存储介质
CN117997492A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种侧行通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486049A (zh) * 2014-12-30 2015-04-01 宇龙计算机通信科技(深圳)有限公司 数据接收状态的反馈方法、数据重传方法、装置和终端
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
WO2017049938A1 (zh) * 2015-09-21 2017-03-30 海能达通信股份有限公司 一种在直通模式下信道冲突的处理方法以及终端
CN106793092A (zh) * 2015-11-19 2017-05-31 中兴通讯股份有限公司 控制信道资源的获取方法及设备
CN109121209A (zh) * 2017-06-23 2019-01-01 北京三星通信技术研究有限公司 一种旁路通信中的资源分配方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813204B (zh) * 2014-12-31 2020-05-05 中兴通讯股份有限公司 资源池配置方法及设备
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
CN107277922B (zh) * 2016-04-01 2024-06-14 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
US11316625B2 (en) * 2017-02-17 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Sidelink resource signaling
EP3669557A1 (en) * 2017-08-17 2020-06-24 Intel Corporation Selecting resources for sidelink communication based on geo-location information
US20220124562A1 (en) * 2019-01-10 2022-04-21 Lenovo (Beijing) Limited Method and apparatus for pre-emption of a sidelink resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486049A (zh) * 2014-12-30 2015-04-01 宇龙计算机通信科技(深圳)有限公司 数据接收状态的反馈方法、数据重传方法、装置和终端
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
WO2017049938A1 (zh) * 2015-09-21 2017-03-30 海能达通信股份有限公司 一种在直通模式下信道冲突的处理方法以及终端
CN106793092A (zh) * 2015-11-19 2017-05-31 中兴通讯股份有限公司 控制信道资源的获取方法及设备
CN109121209A (zh) * 2017-06-23 2019-01-01 北京三星通信技术研究有限公司 一种旁路通信中的资源分配方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3883320A4

Also Published As

Publication number Publication date
EP3883320A1 (en) 2021-09-22
CN111435909A (zh) 2020-07-21
EP3883320A4 (en) 2022-01-19
US20210329431A1 (en) 2021-10-21
CN111435909B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
CN116390228A (zh) 确定传输资源的方法和装置
WO2020238428A1 (zh) 一种通信方法及装置
CN112566248A (zh) 一种通信方法及装置
TW202017401A (zh) 一種通訊方法、終端設備和網路設備
CN109757131B (zh) 信号传输方法、相关装置及系统
CN112311515B (zh) 一种反馈信息传输方法及装置
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
CN116684977A (zh) 传输资源的确定方法和终端设备
WO2022011699A1 (zh) 一种通信方法及侧行设备
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2021062855A1 (zh) 一种通信方法及装置
WO2022027594A1 (zh) 一种通信方法及通信装置
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021088063A1 (zh) 一种通信方法及装置
CN114747270A (zh) 一种侧行数据传输的方法、装置和系统
WO2024140322A1 (zh) 波束测量方法、装置及系统
WO2021228053A1 (zh) 一种通信方法、装置及存储介质
WO2024093650A1 (zh) 一种资源指示方法和装置
US20240073868A1 (en) Wireless communication method, and device
WO2023030208A1 (zh) 一种资源确定的方法和装置
WO2022155824A1 (zh) 参考信号的传输方法和通信装置
WO2024067092A1 (zh) 通信方法和装置
WO2024007136A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022109881A1 (zh) 重复传输控制信道的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020738953

Country of ref document: EP

Effective date: 20210618

NENP Non-entry into the national phase

Ref country code: DE