WO2020143295A1 - 激光直写系统 - Google Patents

激光直写系统 Download PDF

Info

Publication number
WO2020143295A1
WO2020143295A1 PCT/CN2019/116586 CN2019116586W WO2020143295A1 WO 2020143295 A1 WO2020143295 A1 WO 2020143295A1 CN 2019116586 W CN2019116586 W CN 2019116586W WO 2020143295 A1 WO2020143295 A1 WO 2020143295A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
terminal
laser direct
direct writing
data processing
Prior art date
Application number
PCT/CN2019/116586
Other languages
English (en)
French (fr)
Inventor
朱鹏飞
浦东林
吕帅
朱鸣
张瑾
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2020143295A1 publication Critical patent/WO2020143295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Definitions

  • the invention relates to the technical field of laser direct writing lithography, in particular to a laser direct writing system.
  • Laser direct writing lithography technology does not require the intermediate mask exposure link, and directly draws the desired pattern on the substrate. Compared with the traditional mask exposure lithography, the mask plate needs to be remade every time the pattern is changed, which greatly facilitates scientific researchers. , Reducing the production cost.
  • a typical laser direct writing system includes subsystems such as optical imaging, motion control, exposure metering control, registration alignment, and data processing.
  • subsystems such as optical imaging, motion control, exposure metering control, registration alignment, and data processing.
  • hardware selection for different client-type systems, so for the upper software, different hardware types need to be adapted, which brings certain complexity to the software writing and later maintenance.
  • DMD digital microdrive
  • the typical laser direct writing system uses DMD as the pattern generator, the system has high data resolution (100 nanometers) and a large writing area, so it consumes computer CPU resources and memory when rasterizing the written pattern data Resources often cause the system to freeze, resulting in a decrease in the fluency of the user's host software.
  • the present invention provides a laser direct writing system, which can reduce the complexity of post-maintenance of software and reduce the impact of excessive resource consumption by data processing programs, improve the fluency of the user's main program, so that when users purchase multiple devices, Data resources can be shared and reused to reduce user costs.
  • the present invention provides a laser direct writing system.
  • the laser direct writing system includes a server and a first terminal.
  • a data processing module is deployed on the server.
  • a user main program and an engraved alignment module are deployed on the first terminal.
  • a motion control module, an exposure measurement control module, and a graphics generation module, the server and the first terminal are in communication connection through a local area network, and the user main program is respectively associated with the engraving alignment module and the motion control module ,
  • the exposure measurement control module, the graphics generation module and the data processing module are communicatively connected, and the storage hard disk of the data processing module in the server is mapped to the first terminal through a local area network as a A shared storage disk between the server and the first terminal.
  • the software of the laser direct writing system adopts the .Net Remoting technology framework, and the user main program implements the registration and alignment module, the motion control module, the exposure measurement control module, and the Function call of the graphics generation module and the data processing module.
  • the user main program, the set registration alignment module, the motion control module, the exposure metering control module, the graphics generation module, and the data processing module can all run on .Net Remoting technology. Coordination work is performed on different terminals and between different terminals through network communication.
  • the user main program is used to receive the processing task information input by the user, and transmit the processing task information to the common storage disk of the first terminal.
  • the data processing module is configured to receive a data processing instruction sent by the user main program to perform data processing on the processing task information according to the data processing instruction to obtain a processing task file and task parameters, and The processing task file and the task parameters are stored in the common storage disk.
  • the user main program is also used to process the engraving alignment information according to the task parameter processing, and send the engraving alignment information to the engraving alignment module; the engraving alignment The module is used for performing the overlay registration operation according to the overlay registration information.
  • the user main program is also used to process the exposure measurement parameters according to the task parameters, and send the exposure measurement parameters to the exposure measurement control module; the exposure measurement control module is used to The exposure metering parameter performs the setting of exposure metering.
  • the user main program is further used to process a processing start instruction according to the processing task file, and send the processing start instruction to the graphics generation control module;
  • the graphics generation control module is used to The processing start instruction reads the data of the common storage disk and uploads the corresponding graphics to the graphics generating device.
  • the user main program is also used to process and obtain motion control information according to the task parameters, and send the motion control information to the motion control module;
  • the motion control module is used to control the laser direct writing platform to perform the corresponding motion operation according to the motion control information.
  • the user main program is also used to obtain coordinated instructions according to the task parameter processing, so as to perform motion control, exposure control and graphic generation control on the laser direct writing platform according to the coordinated instructions to perform processing with the processing The lithography operation corresponding to the task file.
  • the laser direct writing system further includes at least one second terminal, the second terminal is in communication connection with the server through a local area network, and the storage hard disks of the data processing modules in the server are separately connected through the local area network Mapped to the first terminal and the second terminal to serve as a common storage disk between the server, the first terminal, and the second terminal, so that when a user purchases multiple devices, data resources can be Share multiplexing to reduce user costs.
  • a data processing module is deployed on the server, and a user main program, registration alignment module, motion control module, exposure measurement control module and The graphics generation module, the server and the first terminal are connected through a local area network, and the user main program is respectively in communication with the registration alignment module, the motion control module, the exposure measurement control module, the graphics generation module and the data processing module, and connects the server
  • the storage hard disk of the data processing module is mapped to the first terminal through the local area network to serve as a shared storage disk between the server and the first terminal, which can reduce the complexity of post-maintenance of the software and reduce the impact of excessive resource consumption by the data processing program. Improve the user's main program fluency.
  • FIG. 1 is a structural block diagram of a laser direct writing system according to a first embodiment of the invention
  • FIG. 2 is a schematic diagram of the connection between the stencil alignment module in FIG. 1 and the CCD;
  • FIG. 3 is a schematic diagram of the connection between the motion control module in FIG. 1 and the laser direct writing platform;
  • FIG. 4 is a schematic diagram of the connection between the exposure measurement control module and the laser in FIG. 1;
  • FIG. 5 is a schematic diagram of the connection between the graphic generation module and the graphic generator in FIG. 1;
  • FIG. 6 is a schematic diagram of the connection between the data processing module in FIG. 1 and GDSII;
  • FIG. 7 is a schematic diagram of the software architecture of the laser direct writing system in FIG. 1;
  • FIG. 8 is a schematic diagram of the software architecture between the user main program and the motion control module in FIG. 1;
  • FIG. 9 is a schematic diagram of the connection between the server and the first terminal in FIG. 1;
  • FIG. 10 is a structural block diagram of a laser direct writing system according to a second embodiment of the present invention.
  • FIG. 1 is a structural block diagram of a laser direct writing system 10 according to a first embodiment of the present invention
  • FIG. 9 is a schematic diagram of the connection between the server 100 and the first terminal 200 in FIG. 1.
  • the laser direct writing system 10 of this embodiment includes a server 100 and a first terminal 200.
  • the server 100 and the first terminal 200 perform communication connection through a local area network.
  • a data processing module 110 is deployed on the server 100, and a user main program 210, a registration alignment module 220, a motion control module 230, and an exposure metering control module are deployed on the first terminal 200. 240 and graphics generation module 250.
  • the user main program 210 is respectively communicatively connected to the registration alignment module 220, the motion control module 230, the exposure measurement control module 240, the pattern generation module 250, and the data processing module 110.
  • the user may, but is not limited to, map the storage hard disk of the data processing module 110 in the server 100 to the first terminal 200 through the local area network to serve as a common storage disk for the server 100 and the first terminal 200, thereby reducing the software post
  • the complexity of maintenance and reduce the impact of the data processing program over-occupying resources improve the fluency of the user's main program 210.
  • FIG. 2 is a schematic diagram of the connection between the overprint alignment module 220 and the CCD 222 in FIG. 1.
  • the overprint alignment module 220 is connected to the CCD 222.
  • the overprint alignment module 220 is used to provide management of the CCD 222 to perform graphic mark recognition measurement alignment.
  • the overlay alignment module 220 acquires a CCD image, and performs recognition measurement on the Mark image.
  • FIG. 3 is a schematic diagram of the connection between the motion control module 230 and the laser direct writing platform 232 in FIG. 1.
  • the motion control module 230 is connected to the laser direct writing platform 232.
  • the motion control module 230 is used to manage the laser direct writing platform 232, and control the motion and focal length of the laser direct writing platform 232.
  • FIG. 4 is a schematic diagram of the connection between the exposure measurement control module 240 and the laser 242 in FIG. 1.
  • the exposure measurement control module 240 is connected to the laser 242.
  • the exposure measurement control module 240 is used to manage the laser 242 and set the exposure measurement of the laser 242.
  • the exposure metering control module 240 is used to control the laser switch of the laser 242, the exposure metering setting, the laser energy monitoring record, and so on.
  • FIG. 5 is a schematic diagram of the connection between the graphic generating module 250 and the graphic generator 252 in FIG. 1.
  • the pattern generation module 250 is connected to the pattern generator 252.
  • the graphics generation module 250 is used to manage the graphics generator 252 to control the playback of the graphics queue.
  • the graphics generation module 250 is used for task assignment to control the sequence and time of graphics playback.
  • FIG. 6 is a schematic diagram of the connection between the data processing module 110 and the GDSII 112 in FIG. 1.
  • the data processing module 110 is connected to the GDSII 112.
  • the data processing module 110 is used to rasterize the pre-processed graphics into a graphics generator 252 format.
  • the data processing module 110 is used to assign tasks to the pre-processed graphics, and rasterize the pre-processed graphics in the order of task assignment to form the graphic format required by the graphic generator 252.
  • FIG. 7 is a schematic diagram of the software architecture of the laser direct writing system 10 in FIG. 1.
  • the software of the laser direct writing system 10 adopts the .Net Remoting technology framework.
  • the user main program realizes the function call with the engraving and aligning module 220, the motion control module 230, the exposure measurement control module 240, the pattern generation module 250, and the data processing module 110 through the interface function.
  • the interface function may be, but not limited to, an API function.
  • the user main program 210, the overlay alignment module 220, the motion control module 230, the exposure measurement control module 240, the pattern generation module 250, and the data processing module 110 can all be run through the .Net Remoting technology. Coordination work is performed on different terminals and between different terminals through network communication.
  • the terminal may be, but not limited to, a PC, a server, a computer, and so on.
  • the user main program 210 is used to provide user login, interface operations, log records, and call coordination functions of each sub-function module.
  • the sub-function module may include, but is not limited to, a registration alignment module 220, a motion control module 230, an exposure measurement control module 240, a pattern generation module 250, and a data processing module 110.
  • the software of the laser direct writing system 10 adopts the .Net Remoting programming framework, and integrates the data processing module 110, the registration alignment module 220, the motion control module 230, the exposure measurement control module 240, and the graphics generation
  • the public functions of the functional modules such as the module 250 are made into API function interfaces to connect with the user main program 210.
  • the user main program 210 is respectively connected to the data processing API function interface 211, the registration alignment API function interface 212, the motion control API function interface 213, the exposure metering control API function interface 214, and the graphics generation API Function interface 215.
  • the data processing API function interface 211 is also connected to the data processing program 114, and the data processing program 114 is also connected to the GDSII 112 and the DXF file.
  • the register alignment API function interface 212 is also connected to the register alignment program 224, and the register alignment program 224 is also connected to the CCD 222.
  • the motion control API function interface 213 is also connected to the motion control program 234, and the motion control program 234 is also connected to the laser direct writing platform 232.
  • the exposure measurement control API function interface 214 is also connected to the exposure measurement control program 244, and the exposure measurement control program 244 is also connected to the laser 242.
  • the graphics generation API function interface 215 is also connected to the graphics generation program 254, and the graphics generation program 254 is also connected to the graphics generator 252.
  • FIG. 8 is a schematic diagram of the software architecture between the user main program 210 and the motion control module 230 in FIG. 1.
  • the motion control module 230 is used as an example for description, and functions such as Jog motion 216, PTP motion 217, and Inposition 218 are designed as public interface functions and encapsulated in iMotion.dll219 .
  • iMotion.dll219 may be connected to one or more of Motion1.exe261, Motion2.exe262, and Motion3.exe263, but Motion1.exe261 is also connected to platform model 1, Motion2.exe262 is also Connected to platform model 2, Motion3.exe263 is also connected to platform model 3.
  • the laser direct writing platform 232 is adapted from platform model 1 to platform model 2.
  • the overall software architecture of the laser direct writing system 10 remains unchanged, and only the motion control part Motion1.exe261 program needs to be changed to Motion2. exe262, to implement the motion control function.
  • the user main program 210 is used to receive the processing task information input by the user, and transmit the processing task information to the common storage disk of the first terminal 200.
  • the data processing module 110 is used to receive the data processing instruction sent by the user main program 210 to perform data processing on the processing task information according to the data processing instruction to obtain a processing task file and task parameters, and convert the processing task Files and task parameters are stored in a common storage disk.
  • the user main program 210 is further used to process the registration registration information according to the task parameter processing, and send the registration registration information to the registration registration module 220.
  • the engraving alignment module 220 is used to perform an engraving alignment operation according to the engraving alignment information.
  • the user main program 210 is further used to process the exposure measurement parameters according to the task parameter processing, and send the exposure measurement parameters to the exposure measurement control module 240.
  • the exposure measurement control module 240 is configured to perform exposure measurement settings according to the exposure measurement parameters.
  • the user main program 210 is further used to obtain a processing start instruction according to the processing task file, and send the processing start instruction to the graphics generation control module.
  • the graphics generation control module is used to read the data of the common storage disk according to the processing start instruction and upload the corresponding graphics to the 252 graphics generators.
  • the user main program 210 is further used to obtain motion control information according to the task parameter processing, and send the motion control information to the motion control module 230.
  • the motion control module 230 is used to control the laser direct writing platform 232 to perform the corresponding motion operation according to the motion control information.
  • the user main program 210 is further used to obtain coordinated instructions according to the task parameter processing, so as to perform motion control, exposure control, and graphic generation control on the laser direct writing platform 232 according to the coordinated instructions to perform and process tasks The lithography operation corresponding to the file.
  • the data processing module 110 is deployed on the server 100, and set The user main program 210, the engraving and aligning module 220, the motion control module 230, the exposure measurement control module 240, the pattern generation module 250 and the data processing module 110 are automatically started for power-on.
  • the first terminal 200 and the server 100 are connected through a high-speed local area network, and the storage hard disk of the data processing module 110 in the server 100 is mapped to the first terminal 200 as a shared storage disk Z through the local area network.
  • the network address of the first terminal 200 is 192.168.0.10.
  • the network address of the server 100 is 192.168.0.20.
  • the network address and port of each module are set in the user main program 210 on the first terminal 200.
  • it can be, but not limited to, the network address of the engraving and alignment module 220 is 192.168.0.10 port 9000, the network address of the motion control module 230 is 192.168.0.10 port 9001, and the network address of the exposure measurement control module 240 is 192.168.0.10 port 9002.
  • the network address of the generating module 250 is 192.168.0.10 port 9003, and the network address of the data processing module 110 is 192.168.0.20 port 9004.
  • the user main program 210 is started on the first terminal 200 to connect various modules, and an initialization instruction is sent to complete the initialization of the device.
  • the user main program 210 receives the user's processing task file and task parameters, and transmits the processing task file to the common storage disk Z of the first terminal 200.
  • the first terminal 200 sends a data processing instruction to the data processing module 110 of the server 100, and the data processing module 110 processes the data and stores it in the common storage disk Z.
  • the user main program 210 sends the engraving alignment information to the engraving alignment module 220 according to the task parameters, and the engraving alignment module 220 completes the engraving alignment of the task.
  • the user main program 210 also sends the exposure measurement parameters to the exposure measurement control module 240 according to the task parameters, and the exposure measurement control module 240 completes the setting of the exposure measurement.
  • the user main program 210 also starts a task to start file processing, the graphics generation module 250 reads the data of the common storage disk Z disk, and uploads graphics to the 252 graphics generators.
  • the user main program 210 coordinates the motion control, exposure control, and graphic generation control of the platform to complete the lithography of the task.
  • FIG. 10 is a structural block diagram of a laser direct writing system 10 according to a second embodiment of the present invention.
  • the laser direct writing system 10 further includes at least one second terminal 300.
  • the second terminal 300 communicates with the server 100 through a local area network, and maps the storage hard disk of the data processing module 110 in the server 100 to the first terminal 200 and the second terminal 300 through the local area network, respectively.
  • a shared storage disk between the server 100, the first terminal 200, and the second terminal 300 when users purchase multiple devices, data resources can be shared and reused, reducing user costs.
  • the laser direct writing system 10 includes multiple devices, and specifically, two devices are used as an example for description.
  • the data processing module 110 is deployed on the server 100 through the high-speed local area network, and the user main program 210 of the first device is deployed on the first terminal 200, and the user main program 210 of the second device is deployed on the second terminal 300, so that the first
  • the resources of the data processing module 110 are shared between the first device and the second device through the network, which can reduce the complexity of post-maintenance of the software and reduce the impact of the data processing program 114 over-occupying resources, improve the fluency of the user's main program 210, and can When users purchase multiple devices, resources of the data processing module 110 are shared and reused, thereby reducing user costs.
  • a data processing module is deployed on the server, and a user main program, registration alignment module, motion control module, exposure measurement control module and The graphics generation module, the server and the first terminal are connected through a local area network, and the user main program is respectively in communication with the registration alignment module, the motion control module, the exposure measurement control module, the graphics generation module and the data processing module, and connects the server
  • the storage hard disk of the data processing module is mapped to the first terminal through the local area network to serve as a shared storage disk between the server and the first terminal, which can reduce the complexity of post-maintenance of the software and reduce the impact of excessive resource consumption by the data processing program.
  • Improve the user's main program fluency so that when users purchase multiple devices, data resources can be shared and reused, reducing user costs.
  • an embodiment of the present invention further provides a computer-readable storage medium in which computer-executable instructions are stored.
  • the computer-readable storage medium is, for example, a non-volatile memory such as an optical disk, a hard disk, or a flash memory.
  • the computer-executable instructions described above are used to allow a computer or similar computing device to perform various operations in the laser direct writing system.

Abstract

一种激光直写系统(10),包括服务器(100)及第一终端(200),该服务器(100)上部署有数据处理模块(110),该第一终端(200)上部署有用户主程序(210)、套刻对准模块(220)、运动控制模块(230)、曝光计量控制模块(240)及图形发生模块(250),该服务器(100)与该第一终端(200)通过局域网络进行通信连接,该用户主程序(210)分别与该套刻对准模块(220)、该运动控制模块(230)、该曝光计量控制模块(240)、该图形发生模块(250)及该数据处理模块(110)通信连接,且将该服务器(100)中的数据处理模块(110)的存储硬盘通过局域网络映射到该第一终端(200)上,以作为该服务器(100)与该第一终端(200)的共用存储盘。能够降低软件后期维护的复杂性,并降低数据处理程序过于占用资源的影响,提升用户主程序(210)流畅度。

Description

激光直写系统
本申请要求了申请日为2019年01月10日,申请号为201910024774.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光直写光刻技术领域,尤其涉及一种激光直写系统。
背景技术
激光直写光刻技术无需中间掩膜曝光环节,直接在基片上绘制出所需图案,与传统掩膜版曝光光刻每改变一次图形就需要重新制作掩膜版相比,大大方便了科研人员,降低了生成制作成本。
但是在方便用户的同时也增加了自身系统的复杂程度,典型激光直写系统包含有光学成像、运动控制、曝光计量控制、套刻对准、数据处理等子系统。一方面,针对不同的客户机型系统的硬件选型又存在差异,因此对于上位软件来讲需要适配不同的硬件类型,这给软件编写与后期的维护带来了一定的复杂性。另一方面,由于典型激光直写系统采用DMD作为图形发生器,该系统数据分辨率高(百纳米)、写入幅面大,因此在写入图形数据光栅化转换时极其占用计算机CPU资源与存储器资源,经常会引起系统卡顿,导致用户上位软件运行流畅度降低。
针对上述问题,本领域技术人员一直在寻求解决办法。
发明内容
有鉴于此,本发明提供了一种激光直写系统,能够降低软件后期维护的复杂性,并降低数据处理程序过于占用资源的影响,提升用户主程序流畅度,使得用户采购多台设备时,数据资源可共享复用,降低用户成本。
本发明提供一种激光直写系统,所述激光直写系统包括服务器及第一终 端,所述服务器上部署有数据处理模块,所述第一终端上部署有用户主程序、套刻对准模块、运动控制模块、曝光计量控制模块及图形发生模块,所述服务器与所述第一终端通过局域网络进行通信连接,所述用户主程序分别与所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块通信连接,且将所述服务器中的数据处理模块的存储硬盘通过局域网络映射到所述第一终端上,以作为所述服务器与所述第一终端的共用存储盘。
具体地,所述激光直写系统的软件采用.Net Remoting技术框架,所述用户主程序通过接口函数实现与所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块的功能调用。
具体地,所述用户主程序、所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块通过.Net Remoting技术均可运行于不同终端上,且不同终端之间通过网络通信进行协调工作。
具体地,所述用户主程序,用于接收用户输入的加工任务信息,并将所述加工任务信息传输至第一终端的所述共用存储盘中。
具体地,所述数据处理模块,用于接收所述用户主程序发送的数据处理指令,以根据所述数据处理指令对所述加工任务信息进行数据处理得到加工任务文件及任务参数,并将所述加工任务文件和所述任务参数存储至所述共用存储盘中。
具体地,所述用户主程序,还用于根据所述任务参数处理得到套刻对准信息,并将所述套刻对准信息发送至所述套刻对准模块;所述套刻对准模块,用于根据所述套刻对准信息执行套刻对准操作。
具体地,所述用户主程序,还用于根据所述任务参数处理得到曝光计量参数,并将所述曝光计量参数发送至所述曝光计量控制模块;所述曝光计量控制模块,用于根据所述曝光计量参数执行曝光计量的设置。
具体地,所述用户主程序,还用于根据所述加工任务文件处理得到加工启动指令,并将所述加工启动指令发送至所述图形发生控制模块;所述图形发生控制模块,用于根据所述加工启动指令读取所述共用存储盘的数据,并 向图形发生器件上载对应的图形。
具体地,所述用户主程序,还用于根据所述任务参数处理得到运动控制信息,并将所述运动控制信息发送至所述运动控制模块;
所述运动控制模块,用于根据所述运动控制信息控制激光直写平台执行对应的运动操作。
具体地,所述用户主程序,还用于根据所述任务参数处理得到协调指令,以根据所述协调指令对激光直写平台进行运动控制、曝光控制及图形发生控制,以执行与所述加工任务文件对应的光刻操作。
具体地,所述激光直写系统还包括至少一台第二终端,所述第二终端通过局域网络与所述服务器通信连接,且将所述服务器中的数据处理模块的存储硬盘通过局域网络分别映射到所述第一终端与所述第二终端上,以作为所述服务器、所述第一终端及所述第二终端之间的共用存储盘,使得用户采购多台设备时,数据资源可共享复用,降低用户成本。
具体地,本实施例提供的激光直写系统,通过在服务器上部署有数据处理模块,并在第一终端上部署有用户主程序、套刻对准模块、运动控制模块、曝光计量控制模块及图形发生模块,服务器与第一终端通过局域网络进行通信连接,用户主程序分别与套刻对准模块、运动控制模块、曝光计量控制模块、图形发生模块及数据处理模块通信连接,且将服务器中的数据处理模块的存储硬盘通过局域网络映射到第一终端上,以作为服务器与第一终端的共用存储盘,从而能够降低软件后期维护的复杂性,并降低数据处理程序过于占用资源的影响,提升用户主程序流畅度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明第一实施例的激光直写系统的结构框图;
图2为图1中的套刻对准模块与CCD的连接示意图;
图3为图1中的运动控制模块与激光直写平台的连接示意图;
图4为图1中的曝光计量控制模块与激光器的连接示意图;
图5为图1中的图形发生模块与图形发生器的连接示意图;
图6为图1中的数据处理模块与GDSII的连接示意图;
图7为图1中的激光直写系统的软件架构示意图;
图8为图1中的用户主程序与运动控制模块之间的软件架构示意图;
图9为图1中服务器与第一终端的连接示意图;
图10为本发明第二实施例的激光直写系统的结构框图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明详细说明如下。
图1为本发明第一实施例的激光直写系统10的结构框图,图9为图1中服务器100与第一终端200的连接示意图。如图1与图9所示,本实施例的激光直写系统10包括服务器100和第一终端200。具体地,服务器100与第一终端200通过局域网络进行通信连接。
具体地,在一实施例中,在服务器100上部署有数据处理模块110,并在第一终端200上部署有用户主程序210、套刻对准模块220、运动控制模块230、曝光计量控制模块240及图形发生模块250。
具体地,在一实施方式中,用户主程序210分别与套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250及数据处理模块110通信连接。具体地,用户可以但不限于将服务器100中的数据处理模块110的存储硬盘通过局域网络映射到第一终端200上,以作为服务器100与第一终端200的共用存储盘,从而能够降低软件后期维护的复杂性,并降低数据处理程序过于占用资源的影响,提升用户主程序210流畅度。
请一并参考图2,图2为图1中的套刻对准模块220与CCD222的连接示意图。如图1与图2所示,套刻对准模块220与CCD222连接。具体地,套刻对准模块220用于提供对CCD222的管理,以进行图形Mark识别测量对准。具体地,在一实施方式中,套刻对准模块220获取CCD图像,并对Mark图像 进行识别测量。
请一并参考图3,图3为图1中的运动控制模块230与激光直写平台232的连接示意图。如图1至图3所示,运动控制模块230与激光直写平台232连接。具体地,运动控制模块230用于对激光直写平台232的管理,并对激光直写平台232的运动控制和焦距控制。
请一并参考图4,图4为图1中的曝光计量控制模块240与激光器242的连接示意图。如图1至图4所示,曝光计量控制模块240与激光器242连接。具体地,曝光计量控制模块240用于对激光器242的管理,并对激光器242的曝光计量进行设定。具体地,在一实施方式中,曝光计量控制模块240用于控制激光器242的激光开关、曝光计量设置及激光能量监控记录等等。
请一并参考图5,图5为图1中的图形发生模块250与图形发生器252的连接示意图。如图1至图5所示,图形发生模块250与图形发生器252连接。具体地,图形发生模块250用于对图形发生器252的管理,以控制图形队列的播放。具体地,在一实施方式中,图形发生模块250用于进行任务分配,以控制图形播放的顺序和时间。
请一并参考图6,图6为图1中的数据处理模块110与GDSII112的连接示意图。如图1至图6所示,数据处理模块110与GDSII112连接。具体地,数据处理模块110用于将预加工图形光栅化成图形发生器252格式。具体地,在一实施方式中,数据处理模块110用于对预加工图形进行任务分配,并按任务分配顺序对预加工图形进行光栅化,以形成图形发生器252所需的图形格式。
请一并参考图7,图7为图1中的激光直写系统10的软件架构示意图。如图1与图7所示,激光直写系统10的软件采用.Net Remoting技术框架。用户主程序通过接口函数实现与套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250及数据处理模块110的功能调用。具体地,在一实施方式中,接口函数可以但不限于为API函数。
具体地,在一实施例中,用户主程序210、套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250及数据处理模块110通过.Net Remoting技术均可运行于不同终端上,且不同终端之间通过网络通 信进行协调工作。具体地,在一实施方式中,终端可以但不限于为PC机、服务器、电脑等等。
具体地,在一实施方式,用户主程序210用于提供用户登录、界面操作、日志记录以及各子功能模块调用协调功能。具体地,子功能模块可以但不限于包括套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250及数据处理模块110。
具体地,在一实施例中,激光直写系统10的软件采用.Net Remoting编程框架,并将数据处理模块110、套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250等功能模块的公共功能做成API函数接口以与用户主程序210连接。具体地,在一实施方式中,用户主程序210分别连接至数据处理API函数接口211、套刻对准API函数接口212、运动控制API函数接口213、曝光计量控制API函数接口214及图形发生API函数接口215。数据处理API函数接口211还与数据处理程序114连接,数据处理程序114还与GDSII112及DXF文件连接。套刻对准API函数接口212还与套刻对准程序224连接,套刻对准程序224还与CCD222连接。运动控制API函数接口213还与运动控制程序234连接,运动控制程序234还与激光直写平台232连接。曝光计量控制API函数接口214还与曝光计量控制程序244连接,曝光计量控制程序244还与激光器242连接。图形发生API函数接口215还与图形发生程序254连接,图形发生程序254还与图形发生器252连接。
请一并参考图8,图8为图1中的用户主程序210与运动控制模块230之间的软件架构示意图。如图1至图8所示,在本实施例中,以运动控制模块230为例进行说明,将Jog运动216、PTP运动217及Inposition218等功能设计成公共接口函数,并封装在iMotion.dll219中。具体地,在一实施方式中,iMotion.dll219可以但不限于与Motion1.exe261、Motion2.exe262、Motion3.exe263中的一个或多个连接,Motion1.exe261还与平台型号1连接,Motion2.exe262还与平台型号2连接,Motion3.exe263还与平台型号3连接。
具体地,在一实施例中,激光直写平台232由平台型号1改编成平台型号2,激光直写系统10的软件整体构架不变,只需要将运动控制部分 Motion1.exe261程序更改为Motion2.exe262,以负责运动控制功能实现。
具体地,在一实施例中,用户主程序210用于接收用户输入的加工任务信息,并将加工任务信息传输至第一终端200的共用存储盘中。
具体地,在一实施例中,数据处理模块110用于接收用户主程序210发送的数据处理指令,以根据数据处理指令对加工任务信息进行数据处理得到加工任务文件及任务参数,并将加工任务文件和任务参数存储至共用存储盘中。
具体地,在一实施例中,用户主程序210还用于根据任务参数处理得到套刻对准信息,并将套刻对准信息发送至套刻对准模块220。套刻对准模块220用于根据套刻对准信息执行套刻对准操作。
具体地,在一实施例中,用户主程序210还用于根据任务参数处理得到曝光计量参数,并将曝光计量参数发送至曝光计量控制模块240。曝光计量控制模块240,用于根据曝光计量参数执行曝光计量的设置。
具体地,在一实施例中,用户主程序210还用于根据加工任务文件处理得到加工启动指令,并将加工启动指令发送至图形发生控制模块。图形发生控制模块,用于根据加工启动指令读取共用存储盘的数据,并向图形发生器252件上载对应的图形。
具体地,在一实施例中,用户主程序210还用于根据任务参数处理得到运动控制信息,并将运动控制信息发送至运动控制模块230。运动控制模块230,用于根据运动控制信息控制激光直写平台232执行对应的运动操作。
具体地,在一实施例中,用户主程序210还用于根据任务参数处理得到协调指令,以根据协调指令对激光直写平台232进行运动控制、曝光控制及图形发生控制,以执行与加工任务文件对应的光刻操作。
具体地,在一实施方式中。通过将用户主程序210、套刻对准模块220、运动控制模块230、曝光计量控制模块240及图形发生模块250部署在第一终端200上,将数据处理模块110部署在服务器100上,同时设置用户主程序210、套刻对准模块220、运动控制模块230、曝光计量控制模块240、图形发生模块250及数据处理模块110为开机自动启动。具体地,第一终端200与服务器100通过高速局域网络连接,并将服务器100中的数据处理模块110 的存储硬盘通过局域网络映射到第一终端200上作为共用存储盘Z盘。
具体地,在一实施方式中,第一终端200的网络地址为192.168.0.10。服务器100的网络地址为192.168.0.20。在第一终端200上的用户主程序210中设置各个模块的网络地址与端口。例如,可以但不限于,套刻对准模块220网络地址为192.168.0.10端口9000,运动控制模块230网络地址为192.168.0.10端口9001,曝光计量控制模块240网络地址为192.168.0.10端口9002,图形发生模块250网络地址为192.168.0.10端口9003,数据处理模块110网络地址为192.168.0.20端口9004。
具体地,在一实施方式中,在第一终端200上启动用户主程序210连接各个模块,并发送初始化指令完成设备的初始化。用户主程序210接收用户加工任务文件及任务参数,并将加工任务文件传送到第一终端200的共用存储盘Z中。
具体地,在一实施方式中,第一终端200向服务器100的数据处理模块110发送数据处理指令,数据处理模块110处理数据并存储在共用存储盘Z中。
具体地,在一实施方式中,用户主程序210根据任务参数向套刻对准模块220发送套刻对准信息,套刻对准模块220完成任务的套刻对准工作。
具体地,在一实施方式中,用户主程序210还根据任务参数向曝光计量控制模块240发送曝光计量参数,曝光计量控制模块240完成曝光计量的设置。
具体地,在一实施方式中,用户主程序210还启动任务开始文件加工,图形发生模块250读取共用存储盘Z盘数据,并向图形发生器252件上载图形。
具体地,在一实施方式中,用户主程序210协调平台的运动控制,曝光控制,图形发生控制,以完成任务的光刻。
请一并参考图10,图10为本发明第二实施例的激光直写系统10的结构框图。如图1至图10所示,具体地,在本实施例中,激光直写系统10还包括至少一台第二终端300。具体地,在一实施方式中,第二终端300通过局域网络与服务器100通信连接,且将服务器100中的数据处理模块110的存 储硬盘通过局域网络分别映射到第一终端200与第二终端300上,以作为服务器100、第一终端200及第二终端300之间的共用存储盘,使得用户采购多台设备时,数据资源可共享复用,降低用户成本。
具体地,在一实施例中,激光直写系统10包括多台设备,具体地,以两台设备为例进行说明。通过高速局域网络部署数据处理模块110在服务器100上,并在第一终端200上部署第一设备的用户主程序210,在第二终端300上部署第二设备的用户主程序210,以使得第一设备与第二设备之间通过网络共享数据处理模块110资源,从而能够降低软件后期维护的复杂性,并降低数据处理程序114过于占用资源的影响,提升用户主程序210流畅度,并能够在用户采购多台设备时实现对数据处理模块110资源共享复用,进而降低用户成本。
本实施例对第二终端300的各功能单元实现各自功能的具体过程,请参见上述图1至图9所示实施例中第二终端200描述的具体内容,在此不再赘述。
具体地,本实施例提供的激光直写系统,通过在服务器上部署有数据处理模块,并在第一终端上部署有用户主程序、套刻对准模块、运动控制模块、曝光计量控制模块及图形发生模块,服务器与第一终端通过局域网络进行通信连接,用户主程序分别与套刻对准模块、运动控制模块、曝光计量控制模块、图形发生模块及数据处理模块通信连接,且将服务器中的数据处理模块的存储硬盘通过局域网络映射到第一终端上,以作为服务器与第一终端的共用存储盘,从而能够降低软件后期维护的复杂性,并降低数据处理程序过于占用资源的影响,提升用户主程序流畅度,使得用户采购多台设备时,数据资源可共享复用,降低用户成本。
此外,本发明实施例还提供一种计算机可读存储介质,其内存储有计算机可执行指令,上述的计算机可读存储介质例如为非易失性存储器例如光盘、硬盘、或者闪存。上述的计算机可执行指令用于让计算机或者类似的运算装置完成上述的激光直写系统中的各种操作。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似 的部分互相参见即可。对于终端类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (11)

  1. 一种激光直写系统,其特征在于,所述激光直写系统包括服务器及第一终端,所述服务器上部署有数据处理模块,所述第一终端上部署有用户主程序、套刻对准模块、运动控制模块、曝光计量控制模块及图形发生模块,所述服务器与所述第一终端通过局域网络进行通信连接,所述用户主程序分别与所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块通信连接,且将所述服务器中的数据处理模块的存储硬盘通过局域网络映射到所述第一终端上,以作为所述服务器与所述第一终端的共用存储盘。
  2. 如权利要求1所述的激光直写系统,其特征在于,所述激光直写系统的软件采用.Net Remoting技术架构,所述用户主程序通过接口函数实现与所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块的功能调用。
  3. 如权利要求1所述的激光直写系统,其特征在于,所述用户主程序、所述套刻对准模块、所述运动控制模块、所述曝光计量控制模块、所述图形发生模块及所述数据处理模块通过.Net Remoting技术均可运行于不同终端上,且不同终端之间通过网络通信进行协调工作。
  4. 如权利要求1所述的激光直写系统,其特征在于,所述用户主程序,用于接收用户输入的加工任务信息,并将所述加工任务信息传输至第一终端的所述共用存储盘中。
  5. 如权利要求4所述的激光直写系统,其特征在于,所述数据处理模块,用于接收所述用户主程序发送的数据处理指令,以根据所述数据处理指令对所述加工任务信息进行数据处理得到加工任务文件及任务参数,并将所述加工任务文件和所述任务参数存储至所述共用存储盘中。
  6. 如权利要求5所述的激光直写系统,其特征在于,所述用户主程序,还用于根据所述任务参数处理得到套刻对准信息,并将所述套刻对准信息发送至所述套刻对准模块;
    所述套刻对准模块,用于根据所述套刻对准信息执行套刻对准操作。
  7. 如权利要求5所述的激光直写系统,其特征在于,所述用户主程序, 还用于根据所述任务参数处理得到曝光计量参数,并将所述曝光计量参数发送至所述曝光计量控制模块;
    所述曝光计量控制模块,用于根据所述曝光计量参数执行曝光计量的设置。
  8. 如权利要求5所述的激光直写系统,其特征在于,所述用户主程序,还用于根据所述加工任务文件处理得到加工启动指令,并将所述加工启动指令发送至所述图形发生控制模块;
    所述图形发生控制模块,用于根据所述加工启动指令读取所述共用存储盘的数据,并向图形发生器件上载对应的图形。
  9. 如权利要求5所述的激光直写系统,其特征在于,所述用户主程序,还用于根据所述任务参数处理得到运动控制信息,并将所述运动控制信息发送至所述运动控制模块;
    所述运动控制模块,用于根据所述运动控制信息控制激光直写平台执行对应的运动操作。
  10. 如权利要求6至9中任一项所述的激光直写系统,其特征在于,所述用户主程序,还用于根据所述任务参数处理得到协调指令,以根据所述协调指令对激光直写平台进行运动控制、曝光控制及图形发生控制,以执行与所述加工任务文件对应的光刻操作。
  11. 如权利要求1所述的激光直写系统,其特征在于,所述激光直写系统还包括至少一台第二终端,所述第二终端通过局域网络与所述服务器通信连接,且将所述服务器中的数据处理模块的存储硬盘通过局域网络分别映射到所述第一终端与所述第二终端上,以作为所述服务器、所述第一终端及所述第二终端之间的共用存储盘。
PCT/CN2019/116586 2019-01-10 2019-11-08 激光直写系统 WO2020143295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910024774.0A CN111427238A (zh) 2019-01-10 2019-01-10 激光直写系统
CN201910024774.0 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143295A1 true WO2020143295A1 (zh) 2020-07-16

Family

ID=71521935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116586 WO2020143295A1 (zh) 2019-01-10 2019-11-08 激光直写系统

Country Status (2)

Country Link
CN (1) CN111427238A (zh)
WO (1) WO2020143295A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189746A1 (en) * 2000-06-08 2003-10-09 Marc Vernackt System, method and article of manufacture for improved laser direct imaging a printed circuit board utilizing a mode locked laser and scophony operation
JP2008203506A (ja) * 2007-02-20 2008-09-04 Shinko Electric Ind Co Ltd マスクレス露光方法及び装置
CN102096318A (zh) * 2011-01-17 2011-06-15 南京航空航天大学 激光直写技术制备多级结构微阵列的方法
CN202472299U (zh) * 2012-03-02 2012-10-03 无锡东领电子有限公司 一种激光成像控制系统
CN102998914A (zh) * 2012-12-31 2013-03-27 苏州大学 一种直写式光刻加工系统及光刻方法
CN106527057A (zh) * 2016-12-30 2017-03-22 江苏九迪激光装备科技有限公司 一种适用于曲面手机玻璃的激光直写系统及方法
CN107065441A (zh) * 2016-12-31 2017-08-18 江苏九迪激光装备科技有限公司 一种激光直写数据处理系统及处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207689B (zh) * 2011-05-20 2013-03-13 合肥芯硕半导体有限公司 一种直写式光刻机的对准系统及对位标记精度提取方法
CN106019858B (zh) * 2016-07-22 2018-05-22 合肥芯碁微电子装备有限公司 一种基于cuda技术的直写式光刻机图像数据按位压缩方法
CN206523740U (zh) * 2016-11-07 2017-09-26 俞庆平 一种直写式丝网制版设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189746A1 (en) * 2000-06-08 2003-10-09 Marc Vernackt System, method and article of manufacture for improved laser direct imaging a printed circuit board utilizing a mode locked laser and scophony operation
JP2008203506A (ja) * 2007-02-20 2008-09-04 Shinko Electric Ind Co Ltd マスクレス露光方法及び装置
CN102096318A (zh) * 2011-01-17 2011-06-15 南京航空航天大学 激光直写技术制备多级结构微阵列的方法
CN202472299U (zh) * 2012-03-02 2012-10-03 无锡东领电子有限公司 一种激光成像控制系统
CN102998914A (zh) * 2012-12-31 2013-03-27 苏州大学 一种直写式光刻加工系统及光刻方法
CN106527057A (zh) * 2016-12-30 2017-03-22 江苏九迪激光装备科技有限公司 一种适用于曲面手机玻璃的激光直写系统及方法
CN107065441A (zh) * 2016-12-31 2017-08-18 江苏九迪激光装备科技有限公司 一种激光直写数据处理系统及处理方法

Also Published As

Publication number Publication date
CN111427238A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
TWI696952B (zh) 資源處理方法及裝置
CN106325975A (zh) 一种利用Docker容器自动化部署与管理大数据集群的方法
CN103268628B (zh) 虚拟表面渲染
CN103227877A (zh) 图像形成装置及图像形成方法
WO2018076882A1 (zh) 存储设备的操作方法及物理服务器
CN112835730A (zh) 图像存储、内存分配、图像合成方法、装置、设备及介质
CN107065441A (zh) 一种激光直写数据处理系统及处理方法
WO2020143295A1 (zh) 激光直写系统
TWI253567B (en) Method of remote controlling computers via network and architecture thereof
CN107807840A (zh) 一种应用于虚拟机网络的设备直通方法以及装置
KR102193821B1 (ko) 기록 장치 및 데이터 생성 방법
CN108769094A (zh) 用户信息的采集方法、装置、pc设备和移动终端
WO2024051122A1 (zh) 一种PCIe中断处理方法、装置、设备及非易失性可读存储介质
JP2009302601A (ja) ネットワークファイル処理システム
JPH04128068A (ja) ページ記述言語処理装置およびページ記述言語処理印刷装置
US6384933B1 (en) Job control in a printing system utilizing object-oriented modules in a distributed object system
JP6834761B2 (ja) 画像ログ保存システム、画像ログ保存方法、画像形成装置及びプログラム
WO2022222494A1 (zh) 直写光刻数据处理系统和方法
CN110136640A (zh) 一种基于全息显示装置的图片处理方法及系统
JP2003510637A (ja) 位置決めおよび露光過程を同時処理する方法
CN116483452A (zh) 基于Java的设备远程开关机及远程控制方法及控制系统
KR20180114667A (ko) 고품질 그래픽의 처리를 지원하는 가상 데스크탑 서버 및 그것을 이용한 고품질 그래픽의 처리 방법
JP4135081B2 (ja) 画像データ処理システム
JP2007249403A (ja) 画像データ処理システムおよびその方法
JPH04130919A (ja) 印刷処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908604

Country of ref document: EP

Kind code of ref document: A1