WO2020143229A1 - 螺杆压缩机及其控制方法 - Google Patents

螺杆压缩机及其控制方法 Download PDF

Info

Publication number
WO2020143229A1
WO2020143229A1 PCT/CN2019/101576 CN2019101576W WO2020143229A1 WO 2020143229 A1 WO2020143229 A1 WO 2020143229A1 CN 2019101576 W CN2019101576 W CN 2019101576W WO 2020143229 A1 WO2020143229 A1 WO 2020143229A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool valve
head end
suction
screw compressor
screw
Prior art date
Application number
PCT/CN2019/101576
Other languages
English (en)
French (fr)
Inventor
朱煜
喻正祥
曾凡飞
张凤芝
Original Assignee
约克(无锡)空调冷冻设备有限公司
江森自控科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克(无锡)空调冷冻设备有限公司, 江森自控科技公司 filed Critical 约克(无锡)空调冷冻设备有限公司
Priority to JP2021540142A priority Critical patent/JP2022518401A/ja
Priority to EP19908893.1A priority patent/EP3910197A4/en
Priority to KR1020217024960A priority patent/KR20210125489A/ko
Priority to US17/421,699 priority patent/US11953006B2/en
Publication of WO2020143229A1 publication Critical patent/WO2020143229A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/20Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the form of the inner or outer contour of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/09Electric current frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/60Prime mover parameters
    • F04C2270/605Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/86Detection

Definitions

  • the present application relates to a screw compressor, and in particular to a device and method for adjusting or controlling a screw compressor using a slide valve.
  • Screw compressors are common components in refrigeration units.
  • the screw compressor utilizes the tooth groove volume of a pair of screw rotors to mesh with each other, resulting in the change of the elementary volume composed of the tooth space to complete the gas suction, compression and discharge process.
  • a pair of mutually intermeshing screw rotors are arranged in parallel in the body of the screw compressor.
  • One end of the screw rotor is the suction end and communicates with the suction port of the body; the other end is the exhaust end and communicates with the exhaust port of the body. With the rotation of the screw rotor, the gas is sucked in from the suction end, and is compressed and discharged from the exhaust end.
  • the operating frequency F and the internal volume ratio Vi are two important operating parameters of the screw compressor.
  • the suction capacity can be adjusted by changing the working frequency F of the screw compressor. The higher the working frequency F, the faster the rotation speed of the screw rotor and the larger the suction capacity.
  • the internal volume ratio Vi of the screw compressor can be adjusted by adjusting the slide valve.
  • the spool valve is provided along the axis direction of the screw rotor, and can wrap or block a part of the screw rotor along the axis direction. Through the movement of the slide valve in the axial direction, the volume of the suction chamber volume and/or the discharge chamber volume can be changed, thereby adjusting the internal volume ratio Vi.
  • IPLV integrated partial load efficiency
  • the purpose of the present invention is to improve the comprehensive partial load efficiency of the screw compressor under different loads by adjusting the slide valve of the screw compressor.
  • the present application provides a screw compressor that combines the suction capacity adjusted by frequency conversion and the suction capacity adjusted by a spool valve, so that when the operating range of the screw compressor is limited and the suction capacity cannot be adjusted through frequency reduction,
  • the suction capacity can be adjusted through the spool valve, which can effectively solve the problem of motor temperature and exhaust temperature limitation of the conventional variable frequency screw unit, and expand the operating range and load regulation capability of the screw compressor.
  • the present application provides a screw compressor including a screw rotor including a suction head end and an exhaust tail end, wherein the screw rotor is configured to be able to suck gas from the suction head end and discharge it from the exhaust tail end Compressed gas; and spool valve, the spool valve includes a working side for closing the compression chamber of the screw rotor, the working side includes a spool valve head end and a spool valve tail end, wherein, in the direction of the axis of the screw rotor, the spool valve The head end and the tail end of the spool valve are aligned with the suction head end and the exhaust tail end of the screw rotor, and the spool valve is configured to reciprocate along the axis direction of the screw rotor; wherein, the spool valve is configured to move to A suction volume adjustment position, in the suction volume adjustment position, the spool valve head end is located inside the suction head end of the screw rotor, and a suction volume adjustment distance
  • the spool valve is configured to be able to move to an inner volume ratio adjustment position, and when the inner volume ratio adjustment position is set, the spool valve head end is located outside or aligned with the suction head end of the screw rotor , So that the slide valve can adjust the internal volume ratio of the screw compressor.
  • the screw compressor described above further includes: a position sensor, which is located between the suction head end and the exhaust tail end of the screw rotor in the axial direction and contacts the spool valve, and the position sensor is configured to indicate the spool valve s position.
  • the non-working side of the spool valve has a slope inclined with respect to the screw rotor in the axis direction; and the position sensor includes a probe whose position in the axis direction is fixed, wherein one end of the probe and the slope Contact, and can slide relative to the inclined plane with the movement of the spool, so that the probe can move in a direction perpendicular to the axis with the movement of the spool; wherein, the position sensor can be in a direction perpendicular to the axis according to the probe To determine the position of the spool.
  • the non-working side of the slide valve has a groove extending in the axial direction, the bottom surface of the groove is an inclined surface inclined in the axial direction with respect to the screw rotor; and the probe has a contact end and a measuring end, which are in contact The end extends into the groove and contacts the bottom surface of the groove, and can slide relative to the bottom surface as the slide valve moves, and the measuring end extends from the groove; wherein, the position sensor can extend from the groove part according to the probe Length to determine the position of the spool.
  • the screw compressor when the spool valve is in the first position, the spool valve head end is located outside the suction head end of the screw rotor, and a part of the spool valve is used to shield the screw rotor from the suction head end to the exhaust gas A section extending at the tail end, the screw compressor has a practical minimum internal volume ratio Vi min , where the first position is the position of the maximum stroke that the spool valve moves toward the suction head end; when the spool valve is in the second position, the spool valve head The end of the screw compressor is aligned with the suction head end of the screw compressor, and all of the slide valve is used to block the section of the screw rotor that extends from the suction head end to the exhaust tail end.
  • the screw compressor has a practical maximum internal volume ratio Vi max1 ; And when the spool valve is in the third position, the spool valve head end is located inside the suction head end of the screw compressor, and all of the spool valve is used to block a section between the suction head end of the screw rotor and the exhaust tail end, the screw
  • the compressor has a virtual maximum internal volume ratio Vi max2 , where the third position is the position of the maximum stroke that the spool valve moves toward the exhaust tail.
  • the screw compressor is configured to be able to adjust the internal volume ratio Vi of the screw compressor by adjusting the position of the slide valve in the area between the first position and the second position; and, the screw compressor is It is configured to adjust the suction chamber volume of the screw compressor by adjusting the position of the slide valve in the area between the second position and the third position, thereby adjusting the suction capacity of the screw compressor.
  • the screw compressor described above further includes a piston rod connected to the tail end of the spool valve.
  • the piston rod is configured to be hydraulically driven to drive the spool valve to reciprocate along the axis.
  • the screw compressor described above further includes a controller configured to be able to adjust the rotation speed of the screw rotor and to drive the piston rod to adjust the position of the spool valve through the piston rod actuator.
  • the present application also provides a method for controlling a screw compressor, including: a. Setting the working frequency parameter F and the working internal volume ratio parameter Vi of the screw compressor according to the target load, and the working frequency parameter F corresponds to a predetermined Working suction capacity R; and b. Determine whether the working frequency parameter F is lower than the working frequency threshold Ft, the working frequency threshold Ft corresponds to the threshold suction capacity Rt; and c. According to the set working frequency parameter F and working content product ratio parameter Vi to adjust the position of the spool valve, where: c1.
  • the working frequency of the screw compressor is determined as the working frequency parameter F to adjust the rotation speed of the screw rotor of the screw compressor , So that the suction capacity of the screw compressor is adjusted to the predetermined working suction capacity R, and the slide valve is moved to the inner volume ratio corresponding to the working inner volume ratio parameter Vi according to the set working inner volume ratio parameter Vi
  • the displacement L1 of the adjustment position and the spool valve are moved to the inner volume ratio adjustment position according to the displacement L1.
  • the spool head end of the spool valve is located at the suction head end of the screw rotor of the screw compressor The outer side is aligned with the suction head end, so that the slide valve can block the section of the screw rotor starting from the suction head end and extending to the exhaust tail end; and c2.
  • the working frequency of the screw compressor is determined as the working frequency threshold Ft to adjust the rotation speed of the screw rotor, and the slide valve is moved to the predetermined working suction capacity according to the set working internal volume ratio parameter Vi (virtual Vi area)
  • Vi virtual Vi area
  • the displacement amount L2 of the suction volume adjustment position corresponding to R, and the spool valve is moved to the suction volume adjustment position according to the displacement amount L2.
  • the spool valve head end In the suction volume adjustment position, the spool valve head end is located at the suction head end of the screw rotor Inside, a suction volume adjustment distance is formed between the spool head end and the suction head end, so that the threshold suction volume Rt corresponding to the operating frequency threshold Ft can be adjusted to a predetermined working suction volume R.
  • the actual internal volume ratio achieved in step c1 is equal to the set working internal volume ratio parameter Vi, and the compressor operating internal volume ratio parameter Vi is between the actual minimum internal volume ratio Vi min And the actual maximum internal volume ratio Vi max1 ; and the actual internal volume ratio achieved in step c2 is determined by the predetermined working suction capacity R, and the compressor operating internal volume ratio parameter Vi is between the actual maximum internal volume ratio Between Vi max1 and the virtual maximum content product ratio Vi max2 .
  • the operating frequency threshold Ft corresponds to the minimum speed at which the screw compressor can normally operate.
  • FIG. 1A is a cross-sectional view of a screw compressor according to an embodiment of the present application along the axis direction of a screw rotor;
  • FIG. 1B is a cross-sectional view of the screw compressor shown in FIG. 1A along the radial direction of the screw rotor;
  • 2A-2E are simplified schematic diagrams showing the relative positional relationship between the spool valve and screw rotor of the screw compressor shown in FIG. 1A;
  • FIG. 3 is a simplified schematic diagram of the spool valve and probe shown in FIG. 1B;
  • FIG. 4 is a flowchart of an embodiment of a control method of a screw compressor of the present application
  • 5A is a block diagram of an embodiment of a control system of a screw compressor of this application.
  • FIG. 5B is a block diagram of the controller in FIG. 5A.
  • first and second used in this application are only used to distinguish and identify, and do not have any other meanings. If not specified, it does not mean a specific order or a specific association. Sex. For example, the term “first component” itself does not imply the existence of “second component”, and the term “second component” itself does not imply the existence of "first component”.
  • FIG. 1A is a cross-sectional view of the screw compressor 100 along the axis direction of the screw rotor 110 according to an embodiment of the present application
  • FIG. 1B is a cross-sectional view of the screw compressor 100 shown in FIG. 1A along the radial direction of the screw rotor 110
  • the screw compressor 100 includes a rotor housing 150 and a screw rotor 110 and a spool valve 120 provided in the rotor housing 150.
  • the screw rotor 110 includes a pair of male and female rotors 101 and 102 that mesh with each other, and the male and female rotors 101 and 102 rotate under the drive of a rotor actuator (not shown).
  • the male rotor 101 has five spiral-shaped convex teeth, and the female rotor 102 has six spiral-shaped grooves.
  • the male rotor 101 and the female rotor 102 form an intermeshing structure through convex teeth and grooves, and together with the rotor housing 150 and the slide valve 120 form a compression volume 103.
  • the screw rotor 110 Along the axis direction of the screw rotor 110, the screw rotor 110 has an intake head end 111 and an exhaust tail end 112.
  • the gas is drawn into the compression chamber 103 at the suction head end 111, and gradually moves toward the exhaust tail end 112 as the screw rotor 110 rotates.
  • the volume of the compression volume 103 gradually decreases with the rotation of the screw rotor 110, and the gas in the compression volume 103 is gradually compressed.
  • the compressed gas is discharged from the exhaust end 112.
  • the spool valve 120 is located below the screw rotor 110 and can reciprocate along the axis direction of the screw rotor 110.
  • the spool valve 120 In the length direction of the spool valve 120 along the axis direction of the screw rotor 110, the spool valve 120 includes a working side 125 for closing the compression volume 103 together with the rotor housing 150, and a non-operation for not closing the compression volume 103 side.
  • the working side 125 of the spool valve 120 has a spool valve head end 121 and a spool valve tail end 122.
  • the spool valve head end 121 and the spool valve tail end 122 are arranged in the same direction as the suction head end 111 and the exhaust tail end 112 of the screw rotor 110, that is, the spool valve head end 121 is located near the suction On the side of the gas head end 111, the spool end 122 is located on the side close to the exhaust end 112.
  • the spool valve 120 also extends outward from the connecting end 123 on the side of the spool valve tail end 122.
  • the spool valve 120 can close or wrap a part of the compression chamber 103 formed by the screw rotor 110.
  • the working side 125 can block or close different parts of the screw rotor 110, thereby changing the suction chamber volume Vs accordingly And/or the discharge chamber volume Vd to adjust the internal volume ratio Vi of the screw compressor 100.
  • the screw compressor 100 also includes a driving device for driving the slide valve 120 to move.
  • the driving device may be a hydraulic driving device, which includes a piston rod 140 and a hydraulic chamber 141.
  • One end of the piston rod 140 is provided in the hydraulic chamber 141, and the other end of the piston rod 140 is connected to the connecting end 123 of the spool valve 120, so that the piston rod 140 can reciprocate along the axis direction according to the change of the hydraulic pressure in the hydraulic chamber 141, And drive the slide valve 120 to reciprocate.
  • the screw compressor 100 further includes a limit structure for limiting the maximum stroke of the spool valve 120 in the axial direction.
  • a limit block 142 is provided on the side of the suction head end 111 of the screw rotor 110 to limit the maximum stroke of the spool head end 121 to the left.
  • the side wall 143 of the hydraulic chamber 141 can limit the maximum stroke of the piston rod 140 to the right, thereby limiting the maximum stroke of the spool valve 120 to the right.
  • the spool valve 120 can reciprocate between the left and right maximum stroke positions.
  • the screw compressor 100 further includes a position sensor 130 for indicating the position of the spool valve 120.
  • the position sensor 130 In the axial direction of the screw rotor 110, the position sensor 130 is located between the suction head end 111 and the exhaust tail end 112 of the screw rotor 110. The position sensor 130 is in contact with the spool valve 120 and can change accordingly as the spool valve 120 moves to a different position, thereby indicating the position of the spool valve 120.
  • the spool valve 120 has a groove 126 extending in the axial direction on the non-working side, and the bottom surface 301 of the groove 126 is a slope inclined with respect to the screw rotor 110 in the axial direction (see FIG. 3) .
  • the position sensor 130 includes a probe 131 that is fixed in position with respect to the axial direction of the screw compressor and can reciprocate in a direction perpendicular to the axial direction (for example, a radial direction).
  • the probe 131 is mounted on the rotor housing 150, and a bias spring is provided therebetween.
  • the probe 131 has a contact end 132 and a measurement end 133.
  • the contact end 132 extends into the groove 126 and can maintain contact with the bottom surface 301 of the groove 126 during the movement of the spool in the axial direction.
  • the measuring end 133 extends from the groove 126.
  • a magnetic core is provided on the measuring end 133 of the probe 131, and a coil connected to the circuit is provided around the magnetic core.
  • the movement of the probe 131 causes the length or position of the magnetic core to extend into the coil to change, so that the inductance of the coil changes accordingly, and a corresponding voltage or current signal is generated in the circuit, which can be indicated or determined by these electrical signals.
  • the position of the spool valve 120 The position of the spool valve 120.
  • 2A-2E are a series of simplified schematic diagrams of the relative positional relationship between the spool valve 120 and the screw rotor 110 of the screw compressor 100 shown in FIG. 1A, used to show the relative position of the spool valve 120 and the screw rotor 110 during movement The change.
  • the spool valve 120 is located at the maximum stroke position toward the suction head end 111 (to the left), and this position is the first position 210 of the spool valve 120.
  • the spool head end 121 is located outside the suction head end 111 of the screw rotor 110.
  • a part of the working side 125 of the spool valve 120 is located below the screw rotor 110, so that it can block or close a section of the screw rotor 110 extending from the suction head end 111 to the exhaust tail end 112, and the working side 125 of the spool valve 120 The other part is located outside the suction head end 111 of the screw rotor 110.
  • the spool valve end 122 is always located between the suction head end 111 and the exhaust tail end 112 of the screw rotor 110, and is formed between the spool valve tail end 122 and the exhaust tail end 112 A section of exhaust capacity adjustment distance D1.
  • the discharge capacity adjustment distance D1 is the largest, so that the screw compressor 100 has the largest discharge chamber volume Vd, and thus the actual minimum inner volume ratio Vi min is generated.
  • the spool head end 121 is aligned with the suction head end 111 of the screw compressor 100, and this position is the second position 230 of the spool valve 120.
  • the second position 230 all of the working side 125 of the spool valve 120 is located below the screw rotor 110, so that all of the working side 125 can block the extension of the screw rotor 110 from the suction head end 111 to the exhaust tail end 112 A paragraph.
  • the exhaust volume adjustment distance D1 reaches a minimum value, thereby generating an actual maximum internal volume ratio Vimax1 .
  • the spool valve 120 is moved between the first position 210 and the second position 230, and this position is the inner volume ratio adjustment position 220 of the spool valve 120.
  • the spool head end 121 is located outside the suction head end 111 of the screw rotor 110, and a part of the working side 125 of the spool valve 120 is located below the screw rotor 110, so that the screw rotor 110 can be blocked
  • the other part of the working side 125 of the slide valve 120 is located outside the suction head end 111 of the screw rotor 110.
  • the exhaust capacity adjustment distance D1 formed between the spool valve end 122 and the exhaust end 112 Becomes smaller, so that the exhaust chamber volume Vd becomes smaller, but since the intake chamber volume Vs remains unchanged, the internal volume ratio Vi increases instead.
  • the spool valve 120 is located at the maximum stroke position toward the exhaust tail 112 (to the right), and this position is the third position 250 of the spool valve 120.
  • the spool valve head end 121 is located inside the suction head end 111 of the screw compressor 100, and all of the working side 125 of the spool valve 120 is located below the screw rotor 110, so that the working side 125 of the spool valve 120 All of them can block a section between the suction head end 111 and the exhaust tail end 112 of the screw rotor 110.
  • a section of intake capacity adjustment is formed between the spool valve head 121 and the suction head end 111 Distance D2.
  • the suction capacity adjustment distance D2 is the largest, and the screw compressor 100 has the smallest suction chamber volume Vs.
  • the spool valve 120 is located at an intermediate position between the second position 230 and the third position 250. This position is the suction volume adjustment position 240 of the spool valve 120.
  • the suction capacity adjustment position 240 the spool head end 121 is located inside the suction head end 111 of the screw compressor 100, and the entire working side 125 of the spool valve 120 is located below the screw rotor 110, so that the working side of the spool valve 120 All of 125 can block a section between the suction head end 111 and the exhaust tail end 112 of the screw rotor 110.
  • a section of intake capacity adjustment is also formed between the spool valve head end 121 and the suction head end 111 Distance D2.
  • the suction chamber volume Vs becomes smaller due to the existence of the suction volume adjustment distance D2.
  • the suction capacity of the screw compressor 100 is reduced.
  • the suction chamber volume Vs becomes smaller, the discharge volume adjustment distance D1 becomes smaller, and the discharge chamber volume Vd also becomes smaller. Therefore, the actual internal volume ratio Vi will only slightly decrease. The volume ratio Vi remains unchanged.
  • the suction volume adjustment distance D2 decreases.
  • the actual inner volume ratio Vi of the screw compressor 100 can be adjusted.
  • the adjustment range of the actual content volume ratio Vi is greater than or equal to Vi min (at the first position 210) and less than or equal to Vi max1 (at the second position 230). Since when the spool valve 120 moves in the area between the first position 210 and the second position 230, the suction chamber volume Vs remains unchanged, the actual internal volume ratio Vi and the position of the spool valve 120 are in a one-to-one linear relationship .
  • the suction chamber volume Vs of the screw compressor 100 can be adjusted, thereby adjusting the screw compressor 100 Inspiratory capacity.
  • the spool valve 120 moves in the area between the second position 230 and the third position 250, it can be approximated that the actual internal volume ratio Vi remains unchanged.
  • the screw compressor 100 operating under different operating frequencies and internal volume ratio Vi will have different integrated partial load efficiencies.
  • the smaller the load the smaller the suction capacity required and the lower the corresponding operating frequency.
  • the suction frequency can be adjusted by adjusting the operating frequency, it can be The range of adjustment will be limited by the excessive temperature.
  • the operating frequency is reduced to a certain degree, considering the effect of the reduced operating frequency on the temperature of the unit, it is not appropriate to reduce the suction capacity by reducing the operating frequency to meet the load reduction. Claim.
  • FIG. 3 is a simplified schematic diagram of the slide valve 120 and the probe 131 shown in FIG. 1B, and is used to show the relative positional relationship between the groove 126 on the slide valve 120 for accommodating the probe 131 and the probe 131.
  • the bottom surface 301 of the groove 126 of the spool valve 120 is an inclined surface gradually inclined inward in the direction of the screw axis, so that the depth of the groove 126 gradually increases from the spool valve head end 121 to the spool valve tail end 122.
  • the contact end 132 of the probe 131 extends into the groove 126 and contacts the bottom surface 301 of the groove 126, and the measuring end 133 of the probe 131 extends out of the groove 126.
  • the probe 131 cannot move in the direction of the screw axis, but moves in a direction perpendicular to the axis of the screw.
  • the length of the portion of the probe 131 protruding from the groove 126 also changes accordingly, and forms a linear correspondence with the position of the spool valve 120.
  • the inclination direction of the bottom surface 301 of the groove 126 may also be reversed, that is, the depth of the groove 126 gradually increases from the trailing end 122 of the spool to the head end 121 of the spool.
  • the area A represents the area where the probe 131 moves relative to the spool 120 when the spool 120 moves between the first position 210 and the second position 230. Since the spool valve 120 can adjust the internal volume ratio Vi of the screw compressor when moving between the first position 210 and the second position 230, the area A can be regarded as the internal volume ratio Vi adjusting area A.
  • the area B represents the area where the probe 131 moves relative to the spool 120 when the spool 120 moves between the second position 230 and the third position 250. Since the spool valve 120 can adjust the suction capacity of the screw compressor when moving between the second position 230 and the third position 250, the area B can be regarded as the suction capacity adjustment area B.
  • the method for controlling the screw compressor in this application will be described below in conjunction with the internal volume ratio Vi adjustment area A and the suction capacity adjustment area B shown in FIG. 3.
  • the position of the slide valve 120 determines the suction volume Vs and the discharge volume Vd of the screw compressor, there is a linear correspondence between the internal volume ratio Vi and the position of the slide valve 120.
  • the control method of the present application based on the linear correspondence between the internal volume ratio Vi and the position of the spool valve 120, whether the spool valve 120 moves in the internal volume ratio Vi adjustment area A or the suction volume adjustment area B Both use the internal product ratio Vi to calibrate the position of the spool valve 120, so that the position of the spool valve 120 can be adjusted according to the parameter value of the internal product ratio Vi during the control process.
  • the spool valve 120 moves in the suction capacity adjustment area B, the actual internal volume ratio Vi of the screw compressor is approximately unchanged.
  • the virtual internal volume ratio Vi is used to adjust the spool valve 120 in the intake volume.
  • the position when area B moves is calibrated.
  • Both the virtual content product ratio Vi and the actual content product ratio Vi follow the linear correspondence between the content product ratio Vi and the position of the spool 120.
  • the position of the spool valve 120 has a linear correspondence relationship with the actual internal volume ratio Vi.
  • the smallest practical volume ratio Vi min; 230 at the second position with the actual maximum volume ratio Vi max1. Therefore, the position of the slide valve 120 can be adjusted according to the parameter value of the internal volume ratio Vi within the range of [Vi min , Vi max1 ], so that the screw compressor 100 has a corresponding actual internal volume ratio Vi.
  • the actual internal volume ratio Vi can be regarded as approximately unchanged, and the change in the position of the slide valve 120 is used to adjust the suction volume.
  • the corresponding virtual internal volume ratio Vi can be set for the position of the spool 120 according to the same linear correspondence in the adjustment area of the internal volume ratio Vi, so as to adopt a unified control method and control system To adjust the position of the spool valve 120.
  • the suction volume data corresponding to different positions of the spool valve 120 is calculated according to the rotor profile of the screw rotor 110, and a correspondence relationship between the virtual inner volume ratio Vi and the suction volume can be established.
  • Vi max2 there is a virtual maximum content product ratio Vi max2 . Therefore, within the range of [Vi max1 , Vi max2 ], the position of the slide valve 120 can be adjusted according to the parameter value of the internal volume ratio Vi, so that the screw compressor 100 has a corresponding suction capacity.
  • the position sensor 130 can accurately determine the position of the spool valve 120, and can be used to indicate the actual internal volume ratio Vi of the screw compressor 100 in the internal volume ratio Vi adjustment area A so as to match the operating conditions in real time; in the suction volume adjustment area B Can be used to indicate changes in inspiratory volume.
  • the spool valve 120 can be accurately moved to the first position 210 (Vi min ) and the third position 250 (Vi max2 ), thereby facilitating the calibration and calibration of the position sensor 130 , And to facilitate the structural design of the position sensor 130 and the groove 126.
  • step 401 the load has changed, and the internal volume ratio Vi and the operating frequency F need to be adjusted to adapt to the load change.
  • step 402 set or determine the corresponding operating frequency parameter F and operating content product ratio parameter Vi according to the target load, and then go to step 403.
  • the working frequency parameter F corresponds to a predetermined working suction capacity R.
  • the values of these parameters can be determined by a preset formula, algorithm or scale.
  • step 403 the operating frequency parameter F set in step 402 is compared with the operating frequency threshold Ft, if the operating frequency parameter F is not lower than the operating frequency threshold Ft, then go to step 404, if the operating frequency parameter F is lower than If the operating frequency threshold value Ft, then go to step 406.
  • the operating frequency threshold value Ft corresponds to the minimum rotational speed at which the screw compressor 100 can normally operate, is related to the inherent performance of the screw compressor 100, and can be preset by the manufacturer.
  • the operating frequency threshold Ft corresponds to a threshold suction volume Rt.
  • step 404 the actual operating frequency is determined as the operating frequency parameter F, and the corresponding internal volume ratio adjustment position 220 of the spool valve 120 is determined according to the internal volume ratio parameter Vi, and then the process proceeds to step 405.
  • the rotation speed of the screw rotor 110 of the screw compressor 100 can be adjusted, thereby adjusting the suction capacity of the screw compressor 100 to a predetermined working suction capacity R.
  • the displacement amount for moving the spool valve 120 to the corresponding inner volume ratio adjustment position 220 can be determined according to the current position of the spool valve 120 L1.
  • the current position of the spool valve 120 may be determined by the position sensor 130.
  • step 405 the spool valve 120 is moved to the corresponding internal volume ratio adjustment position 220.
  • the spool valve head end 121 is located outside or aligned with the suction head end 111 of the screw rotor 110, so that the spool valve 120 can block the screw rotor 110 from the suction head end 111 to the discharge
  • the length of the gas tail 112 extends so that the actual content ratio is equal to the set content ratio parameter Vi.
  • step 406 the actual operating frequency is determined as the operating frequency threshold value Ft, and the suction volume adjustment position 240 of the spool valve 120 corresponding to the predetermined working suction volume R is determined according to the internal volume ratio parameter Vi, and then the process shifts to step 407 .
  • the rotation speed of the screw rotor 110 can be adjusted by changing the operating frequency.
  • it may be determined to move the spool valve 120 to the corresponding position according to the current position of the spool valve 120
  • the displacement L2 of the suction volume adjustment position 240 may be determined by the position sensor 130.
  • step 407 the spool valve 120 is moved to the corresponding suction volume adjustment position 240.
  • the spool valve head end 121 is located inside the suction head end 111 of the screw rotor 110, and a suction volume adjustment distance D2 is formed between the spool valve head end 121 and the suction head end 111, which will be
  • the threshold suction volume Rt corresponding to the threshold Ft is adjusted to the working suction volume R corresponding to the working frequency parameter F.
  • step 408 the current adjustment is completed.
  • the above steps are repeated to adjust the screw compressor 100 accordingly.
  • FIG. 5A shows a block diagram of an embodiment of the control system of the screw compressor of the present application.
  • the screw compressor 100 further includes a controller 510, a rotor actuator 520 for the screw rotor 110, and a piston rod actuator 530 for the piston rod.
  • the controller 510 is communicatively connected with the rotor actuator 520 of the screw rotor 110 to adjust the rotation speed of the screw rotor 110 by adjusting the operating frequency, thereby adjusting the suction capacity of the screw compressor 100.
  • the controller 510 is also communicatively connected to the position sensor 130 to determine the position of the spool valve 120 according to the signal generated by the position sensor 130.
  • FIG. 5B is a block diagram of the controller 510 shown in FIG. 5A.
  • the controller 510 includes a processor 501, an input interface 502, an output interface 503, a memory 504 with a program 505, and a bus 506.
  • the processor 501, the input interface 502, the output interface 503, and the memory 504 are communicatively connected through the bus 506, so that the processor 501 can control the operations of the input interface 502, the output interface 503, and the memory 504.
  • the memory 504 is used to store programs, instructions, and data, and the processor 501 reads the programs, instructions, and data from the memory 504, and can write data to the memory 504.
  • the input interface 502 receives signals and data through the connection 507, such as a signal from the position sensor 130 indicating the position of the spool 120, various parameters manually input, and the like.
  • the output interface 503 sends signals and data through the connection 508, for example, sends corresponding control signals to the rotor actuator 520 and the piston rod actuator 530.
  • the memory 504 stores a control program, and various preset values or parameters and other data, such as the control program of the screw compressor 100, the operating frequency threshold Ft, and a certain action taken when the threshold is reached or certain conditions are met Instructions etc.
  • Various parameters can be set in advance in the manufacturing process, or can be set by manual input or data import during use.
  • the processor 501 acquires various signals, data, programs, and instructions from the input interface 502 and the memory 504, performs corresponding processing, and outputs through the output interface 503.
  • the inventor of the present application found through long-term observation and experiments that due to the limitation of the working characteristics of the fixed internal pressure ratio of the screw compressor, the overall partial load efficiency deviation of the existing variable frequency screw unit is significantly lower than that of the variable frequency centrifugal unit;
  • the screw unit is limited by the protection of the compressor motor heating at low frequency and the exhaust temperature is too high, its working frequency cannot be too low, the operating range is limited; and the existing screw compressor internal volume ratio Vi adjustment and suction capacity adjustment They are two independent institutions with complex structure and high cost.
  • the screw compressor 100 of the present application can realize the continuous adjustment of the internal volume ratio Vi through the structural design and control of the spool valve 120, and further has the function of adjusting the suction volume, while having the indication of the internal volume ratio Vi and the suction volume
  • the function improves the operation efficiency, and the applicable content volume is wider than the Vi adjustment range, the structure is simple, and it is convenient for standardization.
  • the operating range and load adjustment capability of the screw compressor 100 are expanded, and the coordinated control of the suction capacity adjustment of the spool valve 120 and the screw rotor 110 effectively solves the limitation of excessively high operating temperature.
  • the screw compressor 100 of the present application can be used in an air conditioning system in conjunction with a variable frequency drive, a heat exchanger, and a throttling device. Through the effective combination of variable speed suction capacity adjustment and internal volume ratio Vi adjustment, the real-time operating efficiency is maximized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种螺杆压缩机(100),包括螺杆转子(110)和滑阀(120)。其中螺杆转子(110)包括吸气头端(111)和排气尾端(112),从吸气头端(111)吸入气体并从排气尾端(112)排出压缩后的气体。滑阀(120)包括用于封闭螺杆转子(110)的压缩容腔的工作侧(125),工作侧(125)包括滑阀头端(121)和滑阀尾端(122),并能够沿螺杆转子(110)的轴线方向往复移动。当滑阀(120)移动到一个吸气容量调节位置(240)时,滑阀头端(121)位于螺杆转子(110)的吸气头端(111)的内侧,并在滑阀头端(121)与吸气头端(111)之间形成一段吸气容量调节距离(D2),从而调节螺杆压缩机的吸气容量。该螺杆压缩机(100)可以通过滑阀(120)来调节吸气容量,从而能够有效解决常规变频螺杆机组的电机温度和排气温度限制问题,扩展了螺杆压缩机的运行范围和负载调节能力。

Description

螺杆压缩机及其控制方法 技术领域
本申请涉及螺杆压缩机,尤其涉及使用滑阀对螺杆压缩机进行调节或控制的装置和方法。
背景技术
螺杆压缩机是制冷机组中的常用部件。螺杆压缩机是利用一对螺杆转子的齿槽容积相互啮合,造成由齿形空间组成的基元容积的变化来完成气体的吸入、压缩和排出过程。在螺杆压缩机的机体中平行地配置有一对相互啮合的螺杆转子,螺杆转子的一端为吸气端,与机体的吸气口连通;另一端为排气端,与机体的排气口连通。随着螺杆转子的旋转,气体从吸气端被吸入,并经过压缩后从排气端被排出。
工作频率F和内容积比Vi是螺杆压缩机的两个重要的工作参数。改变螺杆压缩机的工作频率F可以调节吸气容量,工作频率F越高,螺杆转子的转速越快,吸气容量就越大。合理地设置吸气端和排气端的有效腔体容积,可以调节螺杆压缩机的内容积比Vi(Vi=Vs/Vd),其中,Vs为吸气腔容积,Vd为排气腔容积。
通过调节滑阀可以调节螺杆压缩机的内容积比Vi。具体而言,滑阀沿螺杆转子的轴线方向设置,能够包裹或遮挡螺杆转子沿轴线方向的一部分。通过滑阀沿轴线方向的移动,能够改变吸气腔容积和/或排气腔容积的大小,从而调节内容积比Vi。
综合部分负荷效率(IPLV)是用于评价机组实时运行效率高低的指标。对应不同的负载,相应地调整工作频率F和内容积比Vi的参数值,可以使螺杆压缩机工作在最佳效率点,从而提高整个机组的运行性能。例如,对于用于楼宇制冷系统的机组,由于季节的变化导致的室内外温差的变化,或者对应不同楼层的不同的制冷需求,使得负载的变化范围较大,就需要螺杆压缩机能够在较大的范围内进行相应的调节。
发明内容
本发明的目的是通过对螺杆压缩机的滑阀进行调节来提高螺杆压缩机在不同负载下的综合部分负荷效率。
为此,本申请提供一种螺杆压缩机,将变频调节吸气容量与滑阀调节吸气容量相结合,使得当受到螺杆压缩机运行范围限制,无法继续通过降频实现吸气容量调节时,可以通过滑阀来调节吸气容量,从而能够有效解决常规变频螺杆机组的电机温度和排气温度限制问题,扩展了螺杆压缩机的运行范围和负载调节能力。
本申请提供一种螺杆压缩机,包括:螺杆转子,螺杆转子包括吸气头端和排气尾端,其中,螺杆转子被配置为能够从吸气头端吸入气体,并从排气尾端排出压缩后的气体;以及滑阀,滑阀包括用于封闭螺杆转子的压缩容腔的工作侧,工作侧包括滑阀头端和滑阀尾端,其中,在螺杆转子的轴线方向上,滑阀头端和滑阀尾端与螺杆转子的吸气头端和排气尾端设置方向一致,以及滑阀被配置为能够沿螺杆转子的轴线方向往复移动;其中,滑阀被配置为能够移动到一个吸气容量调节位置,在吸气容量调节位置时,滑阀头端位于螺杆转子的吸气头端的内侧,并在滑阀头端与吸气头端之间形成一段吸气容量调节距离,吸气容量调节距离使得滑阀能够在不改变螺杆转子的转速时调节螺杆压缩机的吸气容量。
根据上述的螺杆压缩机,滑阀被配置为能够移动到一个内容积比调节位置,在内容积比调节位置时,滑阀头端位于螺杆转子的吸气头端的外侧或与吸气头端对齐,使得滑阀能够调节螺杆压缩机的内容积比。
根据上述的螺杆压缩机,还包括:位置传感器,位置传感器在轴线方向上位于螺杆转子的吸气头端和排气尾端之间,并与滑阀接触,位置传感器被配置为能够指示滑阀的位置。
根据上述的螺杆压缩机,滑阀的非工作侧具有相对于螺杆转子沿轴线方向倾斜的斜面;以及位置传感器包括探针,探针在轴线方向上的位置固定,其中,探针的一端与斜面接触,并能够随着滑阀的移动而相对于斜面滑动,从而使得探针能够随着滑阀的移动沿垂直于轴线的方向移动;其中,位置传感器能够根据探针在垂直于轴线的方向上的移动距离来确定滑阀的位置。
根据上述的螺杆压缩机,滑阀的非工作侧具有沿轴线方向延伸的凹槽,凹槽的底面为相对于螺杆转子在轴线方向上倾斜的斜面;以及探针具有接触端和测量端,接触端伸入凹槽并与凹槽的底面接触,并能够随着滑阀的移动而相对于底面滑动,以及测量端从凹槽伸出;其中,位置传感器能够根据探针伸出凹槽部分的长度来确定滑阀的位置。
根据上述的螺杆压缩机,当滑阀位于第一位置时,滑阀头端位于螺杆转子的吸气头端的外侧,滑阀的一部分用于遮挡螺杆转子的从吸气头端开始的向排气尾端延伸的一段,螺杆压 缩机具有实际最小内容积比Vi min,其中,第一位置为滑阀朝向吸气头端移动的最大行程的位置;当滑阀位于第二位置时,滑阀头端与螺杆压缩机的吸气头端对齐,滑阀的全部用于遮挡螺杆转子的从吸气头端开始的向排气尾端延伸的一段,螺杆压缩机具有实际最大内容积比Vi max1;以及当滑阀位于第三位置时,滑阀头端位于螺杆压缩机的吸气头端的内侧,滑阀的全部用于遮挡螺杆转子的吸气头端和排气尾端之间的一段,螺杆压缩机具有虚拟最大内容积比Vi max2,其中,第三位置为滑阀朝向排气尾端移动的最大行程的位置。
根据上述的螺杆压缩机,螺杆压缩机被配置为能够通过在第一位置和第二位置之间的区域调节滑阀的位置,来调节螺杆压缩机的内容积比Vi;以及,螺杆压缩机被配置为能够通过在第二位置和第三位置之间的区域调节滑阀的位置,来调节螺杆压缩机的吸气腔容积,从而调节螺杆压缩机的吸气容量。
根据上述的螺杆压缩机,还包括:活塞杆,活塞杆与滑阀尾端连接,活塞杆被配置为能够被液压驱动从而带动滑阀沿轴线方向往复移动。
根据上述的螺杆压缩机,还包括:控制器,控制器被配置为能够调节螺杆转子的转速,并能够通过活塞杆致动器驱动活塞杆调节滑阀的位置。
另一方面,本申请还提供一种螺杆压缩机的控制方法,包括:a.根据目标负载设定螺杆压缩机的工作频率参数F和工作内容积比参数Vi,工作频率参数F对应一预定的工作吸气容量R;以及b.判断工作频率参数F是否低于工作频率阈值Ft,工作频率阈值Ft对应阈值吸气容量Rt;以及c.根据设定的工作频率参数F和工作内容积比参数Vi来调节滑阀的位置,其中:c1.当工作频率参数F不低于工作频率阈值Ft时,将螺杆压缩机的工作频率确定为工作频率参数F,以调节螺杆压缩机的螺杆转子的转速,从而将螺杆压缩机的吸气容量调节至预定的工作吸气容量R,并且按照设定的工作内容积比参数Vi来确定滑阀移动到与工作内容积比参数Vi相对应的内容积比调节位置的位移量L1,以及根据位移量L1将滑阀移动到内容积比调节位置,在内容积比调节位置时,滑阀的滑阀头端位于螺杆压缩机的螺杆转子的吸气头端的外侧或与吸气头端对齐,从而使得滑阀能够遮挡螺杆转子的从吸气头端开始并向排气尾端延伸的一段;以及c2.当工作频率参数F低于工作频率阈值Ft时,将螺杆压缩机的工作频率确定为工作频率阈值Ft,以调节螺杆转子的转速,并且按照设定的工作内容积比参数Vi(虚拟Vi区域)来确定滑阀移动到与预定的工作吸气容量R相对应的吸气容量调节位置的位移量L2,以及根据位移量L2将滑阀移动到吸气容量调节位置,在吸气容量调节位置时,滑阀头端位于 螺杆转子的吸气头端的内侧,并在滑阀头端与吸气头端之间形成一段吸气容量调节距离,从而能够将与工作频率阈值Ft对应的阈值吸气容量Rt调节至预定的工作吸气容量R。
根据上述螺杆压缩机的控制方法,在步骤c1中达到的实际内容积比等于所述设定的工作内容积比参数Vi,压缩机的工作内容积比参数Vi介于实际最小内容积比Vi min和实际最大内容积比Vi max1之间;以及在步骤c2中达到的实际内容积比由所述预定的工作吸气容量R确定,压缩机的工作内容积比参数Vi介于实际最大内容积比Vi max1和虚拟最大内容积比Vi max2之间。
根据上述螺杆压缩机的控制方法,工作频率阈值Ft对应螺杆压缩机能够正常工作的最小转速。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
当结合附图阅读以下详细说明时,本申请将变得更易于理解,在整个附图中,相同的附图标记代表相同的零件,其中:
图1A为根据本申请的一个实施例的螺杆压缩机沿螺杆转子的轴线方向的剖面图;
图1B为图1A所示的螺杆压缩机沿螺杆转子的径向方向的剖面图;
图2A-2E为图1A所示的螺杆压缩机的滑阀与螺杆转子的相对位置关系一些列简化示意图;
图3为图1B所示的滑阀及探针的简化示意图;
图4为本申请的螺杆压缩机的控制方法的一个实施例的流程图;
图5A为本申请的螺杆压缩机的控制系统的一个实施例框图;
图5B为图5A中的控制器的框图。
具体实施方式
本申请涉及于2014年9月23日提交的申请号为201420548889.2、名称为“可调内容积比的螺杆压缩机”的中国专利申请,以及涉及于2017年8月1日提交的申请号为 PCT/CN2017/095491、名称为“A Screw Compressor with Male and Female Rotors”的PCT专利申请,并将上述专利申请的全文以引用方式并入本申请。
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”、“正”、“反”、“近端”、“远端”、“横向”、“纵向”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,这些术语是基于附图中显示的示例性方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
本申请中所使用的诸如“第一”和“第二”等序数词仅仅用于区分和标识,而不具有任何其他含义,如未特别指明则不表示特定的顺序,也不具有特定的关联性。例如,术语“第一部件”本身并不暗示“第二部件”的存在,术语“第二部件”本身也不暗示“第一部件”的存在。
图1A为根据本申请的一个实施例的螺杆压缩机100沿螺杆转子110的轴线方向的剖面图,图1B为图1A所示的螺杆压缩机100沿螺杆转子110的径向方向的剖面图。如图1A-1B所示,螺杆压缩机100包括转子壳体150和设置在转子壳体150中的螺杆转子110和滑阀120。螺杆转子110包括一对相互啮合的阳转子101和阴转子102,阳转子101和阴转子102在转子致动器(未示出)的驱动下转动。阳转子101具有五个螺旋状的凸齿,阴转子102具有六个螺旋状的凹槽。阳转子101和阴转子102通过凸齿和凹槽组成相互啮合结构,并与转子壳体150以及滑阀120共同组成一压缩容腔103。
沿螺杆转子110的轴线方向,螺杆转子110具有吸气头端111和排气尾端112。气体在吸气头端111处被吸入压缩容腔103,并随着螺杆转子110的旋转逐渐朝向排气尾端112移动。同时,压缩容腔103的体积也随着螺杆转子110的旋转逐渐变小,压缩容腔103中的气体也就被逐渐压缩。压缩后的气体从排气尾端112排出。
滑阀120位于螺杆转子110的下方,并能够沿螺杆转子110的轴线方向往复移动。在滑阀120的沿螺杆转子110的轴线方向的长度方向上,滑阀120包括用于与转子壳体150一起封闭压缩容腔103的工作侧125,以及不用于封闭压缩容腔103的非工作侧。滑阀120的工作侧125具有滑阀头端121和滑阀尾端122。在螺杆转子110的轴线方向上,滑阀头端121和滑阀尾端122与螺杆转子110的吸气头端111和排气尾端112的设置方向一致,即滑阀头 端121位于靠近吸气头端111的一侧,滑阀尾端122位于靠近排气尾端112的一侧。滑阀120在滑阀尾端122的一侧还向外延伸出连接端123。
通过工作侧125,滑阀120能够封闭或包裹螺杆转子110所形成的压缩容腔103的一部分。通过将滑阀120沿螺杆转子110的轴线方向移动至不同的位置(参见图2A‐2E),能够使得工作侧125遮挡或封闭住螺杆转子110不同的部分,从而相应地改变吸气腔容积Vs和/或排气腔容积Vd,以调节螺杆压缩机100的内容积比Vi。
螺杆压缩机100还包括用于驱动滑阀120移动的驱动装置。根据本申请的一个实施例,驱动装置可以是液压驱动装置,其包括活塞杆140和液压腔141。活塞杆140的一端设置在液压腔141中,活塞杆140的另一端与滑阀120的连接端123连接,从而活塞杆140能够根据液压腔141中的液体压力的变化而沿轴线方向往复移动,并带动滑阀120往复移动。
螺杆压缩机100还包括限位结构,用于限制滑阀120沿轴向方向移动的最大行程。如图1A所示,在螺杆转子110的吸气头端111一侧设有限位块142,用于限制滑阀头端121向左移动的最大行程。液压腔141的侧壁143,能够限制活塞杆140向右移动的最大行程,从而限制滑阀120向右移动的最大行程。滑阀120在活塞杆140的带动下,能够在向左和向右的最大行程位置之间往复移动。
如图1B所示,螺杆压缩机100还包括位置传感器130,用于指示滑阀120的位置。在螺杆转子110的轴线方向上,位置传感器130位于螺杆转子110的吸气头端111和排气尾端112之间。位置传感器130与滑阀120接触,能够随着滑阀120移动至不同的位置而产生相应的变化,从而指示滑阀120的位置。
在图1A‐1B的实施例中,滑阀120在非工作侧具有沿轴线方向延伸的凹槽126,凹槽126的底面301为相对于螺杆转子110沿轴线方向倾斜的斜面(参见图3)。位置传感器130包括探针131,探针131相对于螺杆压缩机的轴线方向位置固定,并能够沿垂直于轴线方向的方向(例如径向方向)往复移动。例如将探针131安装在转子壳体150上,并在其之间设置偏置弹簧。探针131具有接触端132和测量端133。接触端132伸入凹槽126,并能够在滑阀沿轴向方向移动的过程中保持与凹槽126的底面301接触。测量端133从凹槽126伸出。当滑阀120沿轴线方向移动时,探针131的接触端132能够随着滑阀120的移动而相对于凹槽126的底面301滑动,从而使得探针131沿径向方向移动。这样就能够根据探针131伸出凹槽126的部分的长度的变化来确定滑阀120的位置。
在一些实施例中,在探针131的测量端133上设有磁芯,围绕磁芯设有与电路连接的线圈。探针131的移动使得磁芯伸入线圈的长度或位置发生变化,以使得线圈的电感发生相应的变化,并在电路中产生相应的电压或电流信号,从而能够通过这些电信号来指示或确定滑阀120的位置。
图2A-2E为图1A所示的螺杆压缩机100的滑阀120与螺杆转子110的相对位置关系的一系列简化示意图,用于示出滑阀120在移动过程中与螺杆转子110的相对位置的变化。
如图2A所示,滑阀120位于朝向吸气头端111(向左)移动的最大行程的位置,此位置为滑阀120的第一位置210。在第一位置210处,滑阀头端121位于螺杆转子110的吸气头端111的外侧。滑阀120的工作侧125的一部分位于螺杆转子110的下方,从而能够遮挡或封闭螺杆转子110的从吸气头端111开始的向排气尾端112延伸的一段,滑阀120的工作侧125的另一部分位于螺杆转子110的吸气头端111的外侧。当滑阀120在其移动行程中移动时,滑阀尾端122始终位于螺杆转子110的吸气头端111和排气尾端112之间,滑阀尾端122与排气尾端112之间形成一段排气容量调节距离D1。而当滑阀120处于图2A所示的第一位置210时,排气容量调节距离D1最大,从而螺杆压缩机100具有最大的排气腔容积Vd,并从而产生实际最小内容积比Vi min
如图2C所示,滑阀头端121与螺杆压缩机100的吸气头端111对齐,此位置为滑阀120的第二位置230。在第二位置230处,滑阀120的工作侧125的全部位于螺杆转子110的下方,从而工作侧125的全部能够遮挡螺杆转子110的从吸气头端111开始的向排气尾端112延伸的一段。在滑阀120位于图2C所示的第二位置230时,在不改变吸气腔容积Vs的情况下,排气容量调节距离D1达到最小值,从而产生实际最大内容积比Vi max1
如图2B所示,滑阀120移动至位于第一位置210和第二位置230之间,此位置为滑阀120的内容积比调节位置220。在内容积比调节位置220处,滑阀头端121位于螺杆转子110的吸气头端111的外侧,滑阀120的工作侧125的一部分位于螺杆转子110的下方,从而能够遮挡螺杆转子110的从吸气头端111开始的向排气尾端112延伸的一段,滑阀120的工作侧125的另一部分位于螺杆转子110的吸气头端111的外侧。与在图2A所示的第一位置210处相比,在图2B所示的内容积比调节位置220处,滑阀尾端122与排气尾端112之间形成的排气容量调节距离D1变小,从而排气腔容积Vd变小,但由于吸气腔容积Vs保持不变,内容积比Vi反而增大。
如图2E所示,滑阀120位于朝向排气尾端112(向右)移动的最大行程的位置,此位置为滑阀120的第三位置250。在第三位置250处,滑阀头端121位于螺杆压缩机100的吸气头端111的内侧,滑阀120的工作侧125的全部位于螺杆转子110的下方,从而滑阀120的工作侧125的全部能够遮挡螺杆转子110的吸气头端111和排气尾端112之间的一段。此时,除了在滑阀尾端122与排气尾端112之间所形成的排气容量调节距离D1以外,在滑阀头端121与吸气头端111之间还形成一段吸气容量调节距离D2。此时,吸气容量调节距离D2最大,螺杆压缩机100具有最小的吸气腔容积Vs。
如图2D所示,滑阀120位于第二位置230和第三位置250之间的一中间位置,此位置为滑阀120的吸气容量调节位置240。在吸气容量调节位置240处,滑阀头端121位于螺杆压缩机100的吸气头端111的内侧,滑阀120的工作侧125的全部位于螺杆转子110下方,从而滑阀120的工作侧125的全部能够遮挡螺杆转子110的吸气头端111和排气尾端112之间的一段。此时,除了在滑阀尾端122与排气尾端112之间所形成的排气容量调节距离D1以外,在滑阀头端121与吸气头端111之间也形成一段吸气容量调节距离D2。与位于图2C所示的第二位置230相比,当滑阀120位于图2D所示的吸气容量调节位置240时,由于吸气容量调节距离D2的存在,吸气腔容积Vs变小,从而减小了螺杆压缩机100的吸气容量。此外,虽然吸气腔容积Vs变小了,但由于排气容量调节距离D1变小,排气腔容积也Vd变小,因此实际内容积比Vi仅会略有下降,可近似地认为实际内容积比Vi保持不变。与位于图2E所示的第三位置250相比,当滑阀120位于图2D所示的吸气容量调节位置240时,吸气容量调节距离D2减小。
通过在第一位置210和第二位置230之间的区域(即内容积比调节位置220)调节滑阀120的位置,可以调节螺杆压缩机100的实际内容积比Vi。实际内容积比Vi的调节范围是大于等于Vi min(第一位置210处)且小于等于Vi max1(第二位置230处)。由于当滑阀120在第一位置210和第二位置230之间的区域移动时,吸气腔容积Vs保持不变,因此实际内容积比Vi与滑阀120的位置为一一对应的线性关系。
通过在第二位置230和第三位置250之间的区域(即吸气容量调节位置240)调节滑阀120的位置,可以调节螺杆压缩机100的吸气腔容积Vs,从而调节螺杆压缩机100的吸气容量。如前所述,当滑阀120在第二位置230和第三位置250之间的区域移动时,可近似地认为实际内容积比Vi保持不变。
对应于不同的负载,螺杆压缩机100运行在不同的工作频率和内容积比Vi的工况下,会具有不同的综合部分负荷效率。为了提高性能和效率,需要根据不同的负载情况调节螺杆压缩机100的工作频率和内容积比Vi,以使其尽可能地运行在最佳效率点。通常来说,负载越小,所需要的吸气容量就越小,相对应所需的工作频率也就越低。例如,在以下不同的负载时,对应不同的内容积比Vi和工作频率F,螺杆压缩机100的综合部分负荷效率值可达到最大值:在100%负载时,Vi=2.3,F=50Hz;在75%负载时,Vi=1.8,F=35Hz;在50%负载时,Vi=1.65,F=22.5Hz;在25%负载时,Vi=1.65,F=12.5Hz。
由于随着工作频率的下降和吸气容量的减少,螺杆压缩机100的冷却效率会下降,从而导致排气温度和机组温度上升,因此,虽然可以通过调节工作频率来调节吸气容量,但可调节的范围会受到温度过高的限制,当工作频率降低到一定程度时,考虑到工作频率降低对机组温度的影响,就不适宜再通过降低工作频率来减少吸气容量以满足负载减小的要求。
在本申请中,当螺杆压缩机100运行在最小工作频率(即工作频率阈值Ft)时,如果负载继续减小,则不再降低工作频率,而是将工作频率保持在工作频率阈值Ft,以及将滑阀120移动至一合适的吸气容量调节位置240。由此,能够在不降低工作频率的情况下继续减少吸气容量,以适应负载的变化,从而突破了工作频率调节的限制,拓宽了螺杆压缩机100的应用范围。
图3为图1B中所示的滑阀120及探针131的简化示意图,用于示出滑阀120上用于容纳探针131的凹槽126与探针131的相对位置关系。如图3所示,滑阀120的凹槽126的底面301是沿螺杆轴线方向逐渐朝向内倾斜的斜面,从而使得凹槽126的深度从滑阀头端121向滑阀尾端122逐渐增加。探针131的接触端132伸入到凹槽126中并与凹槽126的底面301接触,探针131的测量端133伸出凹槽126之外。如前所述,当滑阀120沿螺杆轴线方向移动时,探针131不能沿螺杆轴线方向移动,但是会沿垂直于螺杆轴线的方向移动。随着滑阀120沿轴线方向的移动,探针131伸出凹槽126的部分的长度也相应地变化,并与滑阀120的位置形成线性的对应关系。在其他的实施例中,凹槽126的底面301的倾斜方向也可以是相反的,即凹槽126的深度从滑阀尾端122向滑阀头端121逐渐增加。
在图3中,区域A表示滑阀120在第一位置210和第二位置230之间移动时,探针131相对于滑阀120所移动的区域。由于滑阀120在第一位置210和第二位置230之间移动时能够调节螺杆压缩机的内容积比Vi,因此可将区域A视作内容积比Vi调节区域A。区域B表示滑阀120在第二位置230和第三位置250之间移动时,探针131相对于滑阀120所移动的区 域。由于滑阀120在第二位置230和第三位置250之间移动时能够调节螺杆压缩机的吸气容量,因此可将区域B视作吸气容量调节区域B。以下将结合图3所示的内容积比Vi调节区域A和吸气容量调节区域B来介绍本申请中用于控制螺杆压缩机的方法。
由于滑阀120的位置决定了螺杆压缩机的吸气容积Vs和排气容积Vd,因此内容积比Vi与滑阀120的位置之间呈线性对应关系。根据本申请的控制方法,基于内容积比Vi与滑阀120的位置之间的线性对应关系,不管是当滑阀120在内容积比Vi调节区域A移动,还是在吸气容量调节区域B移动,都采用内容积比Vi来标定滑阀120的位置,从而在控制过程中可以根据内容积比Vi的参数值来调节滑阀120的位置。但是由于滑阀120在吸气容量调节区域B移动时,螺杆压缩机的实际内容积比Vi是近似不变的,因此,本申请采用虚拟内容积比Vi来对滑阀120在吸气容量调节区域B移动时的位置进行标定。虚拟内容积比Vi和实际内容积比Vi都遵循内容积比Vi与滑阀120的位置之间的线性对应关系。
具体而言,在内容积比Vi调节区域A内,滑阀120的位置与实际内容积比Vi成线性对应关系。在第一位置210处,具有实际最小内容积比Vi min;在第二位置230处,具有实际最大内容积比Vi max1。因此,可在[Vi min,Vi max1]的范围内根据内容积比Vi的参数值调节滑阀120的位置,以使螺杆压缩机100具有相应的实际内容积比Vi。
在吸气容量调节区域B内,实际内容积比Vi可近似地视为保持不变,滑阀120的位置的变化用于调节吸气容量。为了保持控制方式的一致性,可以根据在内容积比Vi调节区域内相同的线性对应关系,为滑阀120的位置设定相应的虚拟内容积比Vi,以便于采用统一的控制方法和控制系统来调节滑阀120的位置。根据螺杆转子110的转子型线计算出滑阀120的不同位置所对应的吸气容量数据,可以建立虚拟内容积比Vi与吸气容量的对应关系。在第三位置250处,具有虚拟最大内容积比Vi max2。因此,可在[Vi max1,Vi max2]的范围内,根据内容积比Vi的参数值调节滑阀120的位置,以使螺杆压缩机100具有相应的吸气容量。
位置传感器130能够精准地确定滑阀120的位置,在内容积比Vi调节区域A中可用于指示螺杆压缩机100的实际内容积比Vi,以便与工况实时匹配;在吸气容量调节区域B中可用于指示吸气容量的变化。
通过限位结构142、143(参见图1A),可以准确地将滑阀120移动至第一位置210(Vi min)和第三位置250(Vi max2)处,从而便于位置传感器130的标定和校准,以及便于位置传感器130和凹槽126的结构设计。
图4为螺杆压缩机的控制方法的一个实施例的流程图。如图4所示,在步骤401中,负载发生了变化,需要调节内容积比Vi和工作频率F以适应负载的变化。
在步骤402中,根据目标负载设定或确定相应的工作频率参数F和工作内容积比参数Vi,然后转向步骤403。其中,工作频率参数F对应一预定的工作吸气容量R。这些参数的值可以通过预先设定的公式、算法或量表来确定。
在步骤403中,将步骤402中所设定的工作频率参数F与工作频率阈值Ft进行比较,如果工作频率参数F不低于工作频率阈值Ft,则转向步骤404,如果工作频率参数F低于工作频率阈值Ft,则转向步骤406。工作频率阈值Ft对应螺杆压缩机100能够正常工作的最小转速,与螺杆压缩机100的固有性能有关,可以由生产商预先设定。工作频率阈值Ft对应一阈值吸气容量Rt。
在步骤404中,将实际的工作频率确定为工作频率参数F,并根据内容积比参数Vi确定对应的滑阀120的内容积比调节位置220,随后转向步骤405。通过将实际的工作频率改变为工作频率参数F,可以调节螺杆压缩机100的螺杆转子110的转速,从而将螺杆压缩机100的吸气容量调节至预定的工作吸气容量R。并且,在根据内容积比参数Vi确定对应的滑阀120的内容积比调节位置220后,可以根据滑阀120的当前位置确定将滑阀120移动到相应的内容积比调节位置220的位移量L1。滑阀120的当前位置可以通过位置传感器130确定。
在步骤405中,将滑阀120移动到相应的内容积比调节位置220。此时,滑阀头端121位于螺杆转子110的吸气头端111的外侧或与吸气头端111对齐,从而使得滑阀120能够遮挡螺杆转子110的从吸气头端111开始的向排气尾端112延伸的一段,以使得实际内容积比等于设定的内容积比参数Vi。
在步骤406中,将实际工作频率确定为工作频率阈值Ft,并根据内容积比参数Vi确定与预定的工作吸气容量R相对应的滑阀120的吸气容量调节位置240,随后转向步骤407。通过改变工作频率可以调节螺杆转子110的转速。并且,在根据内容积比参数Vi确定与预定的工作吸气容量R相对应的滑阀120的吸气容量调节位置240之后,可以根据滑阀120的当前位置确定将滑阀120移动到相应的吸气容量调节位置240的位移量L2。滑阀120的当前位置可以通过位置传感器130确定。
在步骤407中,将滑阀120移动到相应的吸气容量调节位置240。此时,滑阀头端121位于螺杆转子110的吸气头端111的内侧,并在滑阀头端121与吸气头端111之间形成一段 吸气容量调节距离D2,从而将与工作频率阈值Ft对应的阈值吸气容量Rt调节至与工作频率参数F对应的工作吸气容量R。
在步骤408中,本次调节结束,当负载再次发生变化时,重复上述步骤以对螺杆压缩机100进行相应的调节。
图5A示出了本申请的螺杆压缩机的控制系统的一个实施例的框图。如图5A所示,螺杆压缩机100还包括控制器510,用于螺杆转子110的转子致动器520,以及用于活塞杆的活塞杆致动器530。控制器510与螺杆转子110的转子致动器520通信连接,以通过调节工作频率来调节螺杆转子110的转速,从而调节螺杆压缩机100的吸气容量。控制器510还与位置传感器130通信连接,以根据位置传感器130产生的信号确定滑阀120的位置。控制器510还与活塞杆致动器530通信连接,以通过活塞杆致动器530驱动活塞杆140来带动滑阀120移动,从而调节滑阀120的位置。在一些实施例中,活塞杆致动器530是液压传动装置。图5B为图5A所示的控制器510的框图。如图5B所示,控制器510包括处理器501、输入接口502、输出接口503、具有程序505的存储器504和总线506。处理器501、输入接口502、输出接口503和存储器504通过总线506通信连接,使得处理器501能够控制输入接口502、输出接口503和存储器504的运行。存储器504用于存储程序、指令和数据,处理器501从存储器504读取程序、指令和数据,并且能够向存储器504写入数据。
输入接口502通过连接507接收信号和数据,例如来自位置传感器130的指示滑阀120的位置的信号、人工输入的各种参数等。输出接口503通过连接508发送信号和数据,例如向转子致动器520、活塞杆致动器530发送相应的控制信号等。存储器504中存储有控制程序、以及预先设定的各类数值或参数等数据,例如螺杆压缩机100的控制程序、工作频率阈值Ft,以及当达到阈值或满足某种条件时采取某种动作的指令等。可以在生产制造的工程中预先设定各类参数,也可以在使用时通过人工输入或数据导入的方式来设定各类参数。处理器501从输入接口502和存储器504获取各种信号、数据、程序和指令,进行相应的处理,并通过输出接口503进行输出。
本申请的发明人通过长期的观察和实验发现,受螺杆压缩机定内压比工作特性限制,现有的变频螺杆机组的综合部分负荷效率偏差,明显低于变频调节离心机组;现有的变频螺杆机组受低频下压缩机电机升温和排气温度过高的保护限制,其工作频率不能过低,运行范围受到一定限制;以及现有的螺杆压缩机的内容积比Vi调节和吸气容量调节是两套独立的机构,结构复杂,成本较高。
本申请的螺杆压缩机100通过对滑阀120的结构设计和控制,能够实现连续的内容积比Vi调节,并进一步具有吸气容量调节的功能,同时具有内容积比Vi和吸气容量的指示功能,提高了运行效率,且适用的内容积比Vi调节范围广,结构简单,便于标准化。同时,扩展了螺杆压缩机100的运行范围和负载调节能力,通过滑阀120和螺杆转子110的吸气容量调节的协调控制,有效解决了工作温度过高的限制问题。本申请的螺杆压缩机100可以与变频驱动器、换热器和节流装置配合用于空调系统,通过变频转速吸气容量调节和内容积比Vi调节的有效结合,实现实时运行效率的最大化。
本说明书使用示例来公开本申请,其中的一个或多个示例被图示于附图中。每个示例都是为了解释本申请而提供,而不是为了限制本申请。事实上,对于本领域技术人员而言显而易见的是,不脱离本申请的范围或精神的情况下可以对本申请进行各种修改和变型。例如,作为一个实施例的一部分的图示的或描述的特征可以与另一个实施例一起使用,以得到更进一步的实施例。因此,其意图是本申请涵盖在所附权利要求书及其等同物的范围内进行的修改和变型。

Claims (12)

  1. 一种螺杆压缩机(100),其特征在于包括:
    螺杆转子(110),所述螺杆转子(110)包括吸气头端(111)和排气尾端(112),其中,所述螺杆转子(110)被配置为能够从所述吸气头端(111)吸入气体,并从所述排气尾端(112)排出压缩后的气体;以及
    滑阀(120),所述滑阀(120)包括用于封闭所述螺杆转子(110)的压缩容腔(103)的工作侧(125),所述工作侧(125)包括滑阀头端(121)和滑阀尾端(122),其中,在所述螺杆转子(110)的轴线方向上,所述滑阀头端(121)和所述滑阀尾端(122)与所述螺杆转子(110)的所述吸气头端(111)和所述排气尾端(112)设置方向一致,以及所述滑阀(120)被配置为能够沿所述螺杆转子(110)的轴线方向往复移动;
    其中,所述滑阀(120)被配置为能够移动到一个吸气容量调节位置(240),在所述吸气容量调节位置(240)时,所述滑阀头端(121)位于所述螺杆转子(110)的所述吸气头端(111)的内侧,并在所述滑阀头端(121)与所述吸气头端(111)之间形成一段吸气容量调节距离(D2),所述吸气容量调节距离(D2)使得所述滑阀(120)能够在不改变所述螺杆转子(110)的转速时调节所述螺杆压缩机(100)的吸气容量。
  2. 根据权利要求1所述的螺杆压缩机(100),其特征在于:
    所述滑阀(120)被配置为能够移动到一个内容积比调节位置(220),在所述内容积比调节位置(220)时,所述滑阀头端(121)位于所述螺杆转子(110)的所述吸气头端(111)的外侧或与所述吸气头端(111)对齐,使得所述滑阀(120)能够调节所述螺杆压缩机(100)的内容积比。
  3. 根据权利要求1所述的螺杆压缩机(100),其特征在于还包括:
    位置传感器(130),所述位置传感器(130)在所述轴线方向上位于所述螺杆转子(110)的吸气头端(111)和排气尾端(112)之间,并与所述滑阀(120)接触,所述位置传感器(130)被配置为能够指示所述滑阀(120)的位置。
  4. 根据权利要求3所述的螺杆压缩机(100),其特征在于:
    所述滑阀(120)的非工作侧具有相对于所述螺杆转子(110)沿所述轴线方向倾斜的斜面;以及
    所述位置传感器(130)包括探针,所述探针在所述轴线方向上的位置固定,其中,所述探针的一端与所述斜面接触,并能够随着所述滑阀(120)的移动而相对于所述斜面滑动,从而使得所述探针能够随着所述滑阀(120)的移动沿垂直于所述轴线的方向移动;
    其中,所述位置传感器(130)能够根据所述探针在垂直于所述轴线的方向上的移动距离来确定所述滑阀(120)的位置。
  5. 根据权利要求4所述的螺杆压缩机(100),其特征在于:
    所述滑阀(120)的非工作侧具有沿所述轴线方向延伸的凹槽,所述凹槽的底面为相对于所述螺杆转子(110)在所述轴线方向上倾斜的斜面;以及
    所述探针具有接触端和测量端,所述接触端伸入所述凹槽并与所述凹槽的底面接触,并能够随着所述滑阀(120)的移动而相对于所述底面滑动,以及所述测量端从所述凹槽伸出;
    其中,所述位置传感器(130)能够根据所述探针伸出所述凹槽部分的长度来确定所述滑阀(120)的位置。
  6. 根据权利要求1所述的螺杆压缩机(100),其特征在于:
    当所述滑阀(120)位于第一位置(210)时,所述滑阀头端(121)位于所述螺杆转子(110)的所述吸气头端(111)的外侧,所述滑阀(120)的一部分用于遮挡所述螺杆转子(110)的从所述吸气头端(111)开始的向所述排气尾端(112)延伸的一段,所述螺杆压缩机(100)具有实际最小内容积比Vi min,其中,所述第一位置(210)为所述滑阀(120)朝向所述吸气头端(111)移动的最大行程的位置;
    当所述滑阀(120)位于第二位置(230)时,所述滑阀头端(121)与所述螺杆压缩机(100)的所述吸气头端(111)对齐,所述滑阀(120)的全部用于遮挡所述螺杆转子(110)的从所述吸气头端(111)开始的向所述排气尾端(112)延伸的一段,所述螺杆压缩机(100)具有实际最大内容积比Vi max1;以及
    当所述滑阀(120)位于第三位置(250)时,所述滑阀头端(121)位于所述螺杆压缩机(100)的所述吸气头端(111)的内侧,所述滑阀(120)的全部用于遮挡所述螺杆转子(110)的所述吸气头端(111)和所述排气尾端(112)之间的一段,所述螺杆压缩机(100)具有虚拟最大内容积比Vi max2,其中,所述第三位置(250)为所述滑阀(120)朝向所述排气尾端(112)移动的最大行程的位置。
  7. 根据权利要求6所述的螺杆压缩机(100),其特征在于:
    所述螺杆压缩机(100)被配置为能够通过在所述第一位置(210)和所述第二位置(230)之间的区域调节所述滑阀(120)的位置,来调节所述螺杆压缩机(100)的内容积比Vi;以及,
    所述螺杆压缩机(100)被配置为能够通过在所述第二位置(230)和所述第三位置(250)之间的区域调节所述滑阀(120)的位置,来调节所述螺杆压缩机(100)的吸气腔容积,从而调节所述螺杆压缩机(100)的吸气容量。
  8. 根据权利要求1所述的螺杆压缩机(100),其特征在于还包括:
    活塞杆(140),所述活塞杆(140)与所述滑阀尾端(122)连接,所述活塞杆(140)被配置为能够被液压驱动从而带动所述滑阀(120)沿所述轴线方向往复移动。
  9. 根据权利要求8所述的螺杆压缩机(100),其特征在于还包括:
    控制器(510),所述控制器(510)被配置为能够调节所述螺杆转子(110)的转速,并能够通过活塞杆致动器(530)驱动所述活塞杆(140)调节所述滑阀(120)的位置。
  10. 一种螺杆压缩机(100)的控制方法,其特征在于包括:
    a.根据目标负载设定所述螺杆压缩机(100)的工作频率参数F和工作内容积比参数Vi,所述工作频率参数F对应一预定的工作吸气容量R;以及
    b.判断所述工作频率参数F是否低于工作频率阈值Ft,所述工作频率阈值Ft对应阈值吸气容量Rt;以及
    c.根据设定的工作频率参数F和工作内容积比参数Vi来调节滑阀(120)的位置,其中:
    c1.当所述工作频率参数F不低于所述工作频率阈值Ft时,
    (i)将所述螺杆压缩机(100)的工作频率确定为所述工作频率参数F,以调节所述螺杆压缩机(100)的螺杆转子(110)的转速,从而将所述螺杆压缩机(100)的吸气容量调节至所述预定的工作吸气容量R,并且按照设定的工作内容积比参数Vi来确定所述滑阀(120)移动到与所述工作内容积比参数Vi相对应的内容积比调节位置(220)的位移量L1,以及
    (ii)根据所述位移量L1将所述滑阀(120)移动到所述内容积比调节位置(220),在所述内容积比调节位置(220)时,所述滑阀(120)的滑阀头端(121)位于所述螺杆压缩机(100)的螺杆转子(110)的吸气头端(111)的外侧或与所述吸气头端(111)对齐,从而使得所述滑阀(120)能够遮挡所述螺杆转子(110)的从所述吸气头端(111)开始并向排气尾端(112)延伸的一段;以及
    c2.当所述工作频率参数F低于所述工作频率阈值Ft时,
    (i)将所述螺杆压缩机(100)的工作频率确定为所述工作频率阈值Ft,以调节所述螺杆转子(110)的转速,并且按照设定的工作内容积比参数Vi来确定所述滑阀(120)移动到与所述预定的工作吸气容量R相对应的吸气容量调节位置(240)的位移量L2,以及
    (ii)根据所述位移量L2将所述滑阀(120)移动到所述吸气容量调节位置(240),在所述吸气容量调节位置(240)时,所述滑阀头端(121)位于所述螺杆转子(110)的所述吸气头端(111)的内侧,并在所述滑阀头端(121)与所述吸气头端(111)之间形成一段吸气容量调节距离(D2),从而能够将与所述工作频率阈值Ft对应的所述阈值吸气容量Rt调节至所述预定的工作吸气容量R。
  11. 根据权利要求10所述的螺杆压缩机(100)的控制方法,其特征在于:
    在步骤c1中达到的实际内容积比等于所述设定的工作内容积比参数Vi,压缩机的工作内容积比参数Vi介于实际最小内容积比Vi min和实际最大内容积比Vi max1之间;以及
    在步骤c2中达到的实际内容积比由所述预定的工作吸气容量R确定,压缩机的工作内容积比参数Vi介于实际最大内容积比Vi max1和虚拟最大内容积比Vi max2之间。
  12. 根据权利要求10所述的螺杆压缩机(100)的控制方法,其特征在于:
    所述工作频率阈值Ft对应所述螺杆压缩机(100)能够正常工作的最小转速。
PCT/CN2019/101576 2019-01-09 2019-08-20 螺杆压缩机及其控制方法 WO2020143229A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021540142A JP2022518401A (ja) 2019-01-09 2019-08-20 スクリュー圧縮機及びその制御方法
EP19908893.1A EP3910197A4 (en) 2019-01-09 2019-08-20 SCREW COMPRESSORS AND CONTROL METHOD THEREOF
KR1020217024960A KR20210125489A (ko) 2019-01-09 2019-08-20 스크류 압축기 및 그 제어 방법
US17/421,699 US11953006B2 (en) 2019-01-09 2019-08-20 Screw compressor and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910018609.4A CN111425396B (zh) 2019-01-09 2019-01-09 螺杆压缩机及其控制方法
CN201910018609.4 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020143229A1 true WO2020143229A1 (zh) 2020-07-16

Family

ID=71521942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101576 WO2020143229A1 (zh) 2019-01-09 2019-08-20 螺杆压缩机及其控制方法

Country Status (6)

Country Link
US (1) US11953006B2 (zh)
EP (1) EP3910197A4 (zh)
JP (1) JP2022518401A (zh)
KR (1) KR20210125489A (zh)
CN (1) CN111425396B (zh)
WO (1) WO2020143229A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457681A (en) * 1981-06-16 1984-07-03 Frick Company Volume ratio control means for axial flow helical screw type compressor
JP2000199491A (ja) * 1998-12-28 2000-07-18 Kobe Steel Ltd 油冷式スクリュ圧縮機
CN103486037A (zh) * 2012-06-12 2014-01-01 珠海格力电器股份有限公司 滑阀、滑阀调节机构、螺杆压缩机及其容量调节方法
CN204099200U (zh) * 2014-09-23 2015-01-14 江森自控空调冷冻设备(无锡)有限公司 可调内容积比的螺杆压缩机
CN108035877A (zh) * 2018-01-15 2018-05-15 福建雪人股份有限公司 一种螺杆压缩机内容积比调节机构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281975A (en) * 1979-10-09 1981-08-04 Blackwell Thomas D Anti-friction slide valve support for screw compressor
JPS60165803U (ja) 1984-04-12 1985-11-02 日本軽金属株式会社 ダイキヤスト機におけるプランジヤの位置検出装置
JP3159762B2 (ja) * 1992-02-20 2001-04-23 株式会社前川製作所 Vi可変スクリュー型圧縮機
US5832737A (en) * 1996-12-11 1998-11-10 American Standard Inc. Gas actuated slide valve in a screw compressor
JP4147891B2 (ja) * 2002-10-16 2008-09-10 ダイキン工業株式会社 可変vi式インバータスクリュー圧縮機
JP4949768B2 (ja) * 2006-08-10 2012-06-13 日立アプライアンス株式会社 スクリュー圧縮機
CN201943955U (zh) * 2011-01-05 2011-08-24 上海维尔泰克螺杆机械有限公司 一种具有柔性容积比滑阀的螺杆压缩机
CN202100461U (zh) * 2011-05-17 2012-01-04 珠海格力电器股份有限公司 一种适用于高温工况的高温螺杆式制冷压缩机
DE102015116324A1 (de) * 2014-10-08 2016-04-14 Bitzer Kühlmaschinenbau Gmbh Schraubenverdichter
WO2017094057A1 (ja) 2015-11-30 2017-06-08 三菱電機株式会社 シングルスクリュー圧縮機および冷凍サイクル装置
EP4245997A3 (de) * 2016-04-06 2023-12-27 BITZER Kühlmaschinenbau GmbH Verdichtereinheit und verfahren zum betreiben einer verdichtereinheit
CN205937114U (zh) 2016-08-02 2017-02-08 江森自控空调冷冻设备(无锡)有限公司 一种阳转子对称布置的螺杆压缩机
US10883744B2 (en) * 2017-06-12 2021-01-05 Trane International Inc. Converting compressor to variable VI compressor
US11306721B2 (en) * 2018-12-26 2022-04-19 Trane International Inc. Variable volume ratio screw compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457681A (en) * 1981-06-16 1984-07-03 Frick Company Volume ratio control means for axial flow helical screw type compressor
JP2000199491A (ja) * 1998-12-28 2000-07-18 Kobe Steel Ltd 油冷式スクリュ圧縮機
CN103486037A (zh) * 2012-06-12 2014-01-01 珠海格力电器股份有限公司 滑阀、滑阀调节机构、螺杆压缩机及其容量调节方法
CN204099200U (zh) * 2014-09-23 2015-01-14 江森自控空调冷冻设备(无锡)有限公司 可调内容积比的螺杆压缩机
CN108035877A (zh) * 2018-01-15 2018-05-15 福建雪人股份有限公司 一种螺杆压缩机内容积比调节机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910197A4

Also Published As

Publication number Publication date
CN111425396B (zh) 2021-09-10
JP2022518401A (ja) 2022-03-15
EP3910197A1 (en) 2021-11-17
KR20210125489A (ko) 2021-10-18
EP3910197A4 (en) 2022-09-21
US11953006B2 (en) 2024-04-09
CN111425396A (zh) 2020-07-17
US20220090601A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
ES2503716T3 (es) Compresor de tornillo de tipo de relación de volumen interior variable controlado por un convertidor de frecuencia
CN107940843A (zh) 一种变频压缩机降低压缩比的控制方法与装置
CN1210205A (zh) 涡旋式压缩机
EP2662569A1 (en) Screw compressor having slide valve with flexible volume ratio
WO2019041698A1 (zh) 螺杆压缩机和空调
CN107514362B (zh) 变频螺杆压缩机及其能量调节控制方法和空调系统
CN101086258A (zh) 变频螺杆式制冷压缩机
TWI759548B (zh) 一種用於雙螺桿壓縮機的滑閥
WO2020143229A1 (zh) 螺杆压缩机及其控制方法
CN108332406A (zh) 消音装置及应用其的变频空调器
CN105715548A (zh) 带柔性滑阀的两级螺杆压缩机
JP2016513766A (ja) ロータリ圧縮機及びその圧縮装置、エアコン
JPH021998B2 (zh)
JP4735757B2 (ja) シングルスクリュー圧縮機
JP3778460B2 (ja) スクリュー式流体機械のスライド弁
CN114352523A (zh) 螺杆压缩机及其控制方法以及空调设备
CN208090925U (zh) 消音装置及应用其的变频空调器
JP4092040B2 (ja) スクリュ圧縮機
CN218093441U (zh) 一种双级压缩机
CN207437353U (zh) 带内压缩罗茨真空泵
CN219242208U (zh) 一种变容量及变容积比压缩机
CN219119452U (zh) 一种双极螺杆压缩机
CN218760417U (zh) 一种内容积比可调的螺杆压缩机
CN115898869A (zh) 一种双级压缩机
CN211670714U (zh) 一种垂直气道式空压机电机结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908893

Country of ref document: EP

Effective date: 20210809