WO2019041698A1 - 螺杆压缩机和空调 - Google Patents

螺杆压缩机和空调 Download PDF

Info

Publication number
WO2019041698A1
WO2019041698A1 PCT/CN2017/119302 CN2017119302W WO2019041698A1 WO 2019041698 A1 WO2019041698 A1 WO 2019041698A1 CN 2017119302 W CN2017119302 W CN 2017119302W WO 2019041698 A1 WO2019041698 A1 WO 2019041698A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
rotor
screw compressor
vent
suction chamber
Prior art date
Application number
PCT/CN2017/119302
Other languages
English (en)
French (fr)
Inventor
刘华
张天翼
张贺龙
李日华
侯芙蓉
许云功
张宝鸽
刘志华
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Publication of WO2019041698A1 publication Critical patent/WO2019041698A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present disclosure relates to the field of air conditioning technology, and in particular, to a screw compressor and an air conditioner.
  • Variable frequency screw compressors are widely used because of their high efficiency and low cost.
  • the rotor of the variable frequency screw compressor is driven in connection with the motor, and the rotation of the rotor is only related to the magnitude of the torque received by the rotor.
  • the motor is controlled by the inverter. In actual engineering applications, it is necessary to make the motor constant torque output. To achieve the constant torque output of the motor, the output current of the inverter must also remain substantially constant.
  • Overcurrent protection is provided in the inverter of the variable frequency screw compressor. When running the extreme working conditions, avoiding the overcurrent protection needs to reduce the speed, but after the speed is reduced, the torque must be kept constant to ensure the normal rotation of the male rotor. If the current is reduced at this time, the male rotor may not be able to rotate.
  • the voltage output from the inverter to the compressor is a variable voltage output, so the output current does not necessarily decrease after the speed is reduced.
  • Figure 1 is a graph showing the power of a variable frequency screw compressor as a function of rotor speed.
  • the three curves in Figure 1 are the protection condition curve, the limit condition curve and the rated condition curve.
  • the protection condition curve is drawn by the power protection value set by the inverter at different speeds of the rotor.
  • the rated operating condition curve indicates that the compressor can operate reliably, and the slope of the curve is smaller than the slope of the protection case curve in Figure 1.
  • the extreme operating condition curve represents a graph of the power speed curve close to the operating condition of the protection operating condition curve. According to the above formula and FIG.
  • a first aspect of the present disclosure provides a screw compressor including a housing, a motor, a spool valve, and a rotor drivingly coupled to the motor, the housing including an air suction chamber including a sliding movement in an axial direction of the rotor relative to the housing
  • the valve body is such that the spool body has a first working state and a second working state. In the first working state, the compression chamber of the rotor is disconnected from the suction chamber; in the second working state, the compression chamber of the rotor is connected to the suction chamber.
  • the power of the screw compressor is reduced by circulating a portion of the compressed gas in the compression chamber to the suction chamber.
  • the housing further includes a spool valve chamber for placing the spool body, the spool body including a rotor mating surface for mating with the rotor and a spool cavity mating surface for mating with the spool chamber, the rotor mating surface being provided with compression a first spool valve vent communicating with the chamber, in the first operating state, the first spool vent is disconnected from the suction chamber to disconnect the compression chamber from the suction chamber; In the second working state, the first spool vent is in communication with the suction chamber to communicate the compression chamber with the suction chamber.
  • the sliding valve cavity mating surface is provided with a second sliding valve venting hole communicating with the suction chamber, and the cavity wall of the sliding valve cavity is provided with a housing venting hole communicating with the suction cavity, in the first work a state, the second spool vent is disconnected from the housing vent to disconnect the first spool vent from the suction chamber; in the second operating state, the second A spool vent is in communication with the housing vent to communicate the first spool vent with the suction chamber.
  • the rotor includes a male rotor and a female rotor that mesh with each other
  • the spool body includes two rotor mating surfaces respectively mating with the male rotor and the female rotor, and at least one of the two rotor mating surfaces is provided with a first slip Valve vent.
  • the rotor mating surface is provided with a plurality of first spool vents spaced apart in the spiral direction of the rotor or a slit-shaped first spool vent extending in the spiral direction of the rotor.
  • the spool body is provided with a gas passage, and the first spool vent and the second spool vent communicate with each other through the gas passage.
  • the spool body has a cavity that forms a gas passage.
  • the first spool vent has a diameter of 2-8 mm.
  • the first spool vent has a diameter of 4-8 mm.
  • the first spool vent has a diameter of 2-6 mm.
  • the spool valve is used to adjust an internal volume ratio of the screw compressor.
  • the internal volume ratio is at a maximum value.
  • the length of the rotor mating surface of the spool body is greater than the compression length of the rotor.
  • a ratio of a pressure at a position where the first spool vent hole communicates with the compression chamber to a pressure of the suction chamber is 1.2 to 1.3.
  • the first spool vent hole is arranged along the axial direction of the rotor, and the second slot of the rotor is from the side of the suction chamber to the penultimate Between the slots.
  • the first spool vent is closer to the side of the suction chamber with respect to the side of the exhaust chamber of the rotor along the axial direction of the rotor.
  • the diameter of the second spool vent is 15-45 mm.
  • the spool valve further includes a limiting structure disposed on the spool body, and the limiting structure limits an extreme position of movement of the spool body.
  • the end surface of the stopper structure close to the exhaust side abuts against the end surface of the exhaust end seat of the screw compressor to limit the limit position of the spool body to the exhaust side.
  • a second aspect of the present disclosure provides an air conditioner comprising the screw compressor as provided in any one of the first aspects of the present disclosure.
  • the screw compressor can control the movement of the spool body to the second working state during the limit operating condition to allow a part of the compressed gas in the compression chamber to flow to the suction chamber, the compressor The power is reduced (the rotor speed is constant), and the load of the compressor can be continuously increased on this basis. When the power after the load is increased reaches the limit power at the speed, the working condition at this time is the new limit condition. This expands the reliable operating range of the screw compressor.
  • Figure 1 is a graph showing the power of a variable frequency screw compressor as a function of the rotational speed
  • FIG. 2 is a schematic structural view showing an angle of a variable frequency screw compressor according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of another angle of a variable frequency screw compressor according to an embodiment of the present disclosure
  • Figure 4 is a partial structural view of the spool valve of Figure 2;
  • variable frequency screw compressor of the embodiment of the present disclosure is a comparative graph of the operating range of the variable frequency screw compressor of the embodiment of the present disclosure and the variable frequency screw compressor of the related art;
  • FIG. 6 is a schematic view showing the position of the vent hole of the first spool when the spool body is in the second working state according to an embodiment of the present disclosure.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used here is interpreted accordingly.
  • a screw compressor of an embodiment of the present disclosure includes a housing, a motor, a spool valve, and a rotor that is drivingly coupled to the motor.
  • the housing includes a suction chamber.
  • the spool valve includes a spool body that moves axially relative to the housing along the rotor to provide the spool valve body with a first operational state and a second operational state. In the first working state, the compression chamber of the rotor is disconnected from the suction chamber; in the second working state, the compression chamber of the rotor communicates with the suction chamber to allow a portion of the compressed gas in the compression chamber to circulate to the suction chamber to reduce the compression of the screw. Machine power.
  • the spool body can be controlled to move to the second working state to allow a portion of the compressed gas in the compression chamber to circulate to the suction chamber, at which time the power of the compressor is reduced.
  • the load of the compressor is continuously increased.
  • the working condition at this time is a new limit condition, thereby expanding the reliable operating range of the screw compressor.
  • the housing further includes a spool valve chamber for placing the spool body.
  • the spool body includes a rotor mating surface that mates with the rotor and a spool cavity mating surface that mates with the spool cavity.
  • the first mating valve venting hole is connected to the compression chamber, and the sliding valve chamber mating surface is provided with a second sliding valve venting hole communicating with the suction chamber.
  • a chamber vent hole communicating with the suction chamber is disposed on the chamber wall of the spool chamber. In the first working state, the second spool vent is disconnected from the housing vent to disconnect the compression chamber from the suction chamber.
  • the second spool vent H2 communicates with the housing vent to communicate the compression chamber with the suction chamber.
  • the compression chamber communicates with the first spool vent, and the second spool vent is in communication with the first spool vent, so that the second spool vent is in constant communication with the compression chamber.
  • the control spool body is moved to a second operational state in which the second spool vent is in communication with the housing vent to bypass the gas of the compression chamber to the suction chamber.
  • an openable gas flow passage can also be provided between the suction chamber and the rotor chamber in which the housing is placed for the rotor.
  • the gas flow passage can be controlled to be disconnected while the compressor is in normal operation. When the compressor is in the extreme working state, the gas flow passage is controlled to communicate to bypass a portion of the compressed gas of the compression chamber to the suction chamber.
  • the flow area of the gas circulation passage should be set according to actual needs.
  • variable frequency screw compressor The structure of the variable frequency screw compressor according to an embodiment of the present disclosure will be described in detail below with reference to Figs. 2 to 5 .
  • the variable frequency screw compressor of this embodiment is a twin screw compressor. As shown in Fig. 2, the screw compressor of this embodiment includes a housing 1, a motor 2, and a male rotor 3 that is drivingly coupled to the motor 2. The female rotor (not shown) and the male rotor 3 mesh to form a compression chamber. The screw compressor also includes a frequency converter that controls the motor speed to control the speed of the rotor.
  • the housing 1 has an air suction chamber S.
  • the screw compressor further includes a spool valve 4 disposed under the male rotor 3 and the female rotor.
  • the spool valve 4 includes a spool body 41 that moves axially relative to the housing 1 along the male and female rotors, and the spool body 41 moves in the axial direction to change the position of the radial exhaust port to change the internal volume ratio.
  • Fig. 2 when the spool body is moved to the right, the distance between the position of the radial exhaust port and the suction side becomes short, that is, the stroke of the compressed gas of the rotor becomes shorter, and the exhaust pressure becomes lower.
  • the spool body moves to the left, the distance between the position of the radial exhaust port and the suction side becomes longer, that is, the stroke of the compressed gas of the rotor becomes longer, and the exhaust pressure becomes higher.
  • the length of the spool body 4 is greater than the compression length of the rotor.
  • the housing 1 also includes a spool valve chamber for placing the spool body 41.
  • the spool body 41 includes a first rotor mating surface 411 that mates with the male rotor, a second rotor mating surface 412 that mates with the female rotor, and a spool cavity mating surface 413 that mates with the spool cavity.
  • the first rotor mating surface 411 and the second rotor mating surface 412 are provided with a first spool vent H1 in communication with the compression chamber.
  • the spool cavity fitting surface 413 is provided with a second spool vent hole H2 communicating with the suction chamber.
  • a chamber vent hole H3 communicating with the suction chamber is disposed on the chamber wall of the spool chamber.
  • the second spool vent H2 is disconnected from the housing vent H3 to disconnect the compression chamber from the suction chamber; in the second working state, as indicated by the arrow in FIG. 3, the second spool
  • the vent hole H2 communicates with the casing vent hole H3 to communicate the compression chamber with the suction chamber.
  • the screw compressor of the embodiment is provided with a casing vent hole communicating with the suction chamber on the cavity wall of the spool valve body, and a second spool valve communicating with the compression chamber is disposed on the sliding valve cavity mating surface of the spool body Vent H2. Moreover, the spool body moves along the spool cavity through the spool cavity mating surface, so when the spool body moves to connect the second spool vent to the housing vent, since the gas in the rotor compression chamber has been compressed, compression The gas pressure of the chamber is greater than the pressure of the suction chamber, and part of the gas in the rotor compression chamber can be bypassed to the suction chamber, thus reducing the power of the screw compressor. At this point, the compressor can be operated at a higher load, thereby increasing the reliable operating range of the compressor.
  • the limit operating conditions of the screw compressor of the related art are an evaporation temperature of 12 ° C and a condensation temperature of 50 ° C.
  • the power of the compressor will be close to the limit power operation, assuming that the power is 130 KW when the speed is 4000 r/min, and the compressor is already close to the limit protection point.
  • the sliding valve body can be controlled to move so that the second spool vent hole communicates with the casing vent hole to bypass a part of the compressed gas of the compression chamber to the suction chamber. The actual compressed gas is reduced, and the actual power at this time is reduced to 100 KW.
  • the screw compressor of the present embodiment reduces the power by bypassing a part of the gas in the compression chamber to the suction chamber, thereby improving the reliable operating range of the compressor.
  • a plurality of first spool vent holes H1 are provided on the first rotor mating surface and the second rotor mating surface.
  • a plurality of first spool vent holes H1 are spaced apart in the spiral direction of the rotor.
  • the plurality of first spool vents are spaced apart on the mating surface of the rotor to ensure a sufficient flow area when the bypass is opened to bypass a certain amount of compressed gas to the suction chamber, thereby reducing the power.
  • the plurality of first spool vent holes H1 in the embodiment are spaced apart along the spiral direction of the rotor to ensure that the rotor can simultaneously rotate through the plurality of first spool vents when rotating the rotor mating surface.
  • the diameter of the first spool vent H1 is in the range of 2-8 mm.
  • one of the more preferable ranges is that the diameter of the first spool vent hole H1 is 4-8 mm, and the other more preferable range is 2-6 mm.
  • the size of the first spool vent H1 is designed not only to consider the leakage problem between the adjacent two slots, but also to consider the processing problem and the total ventilation area of the plurality of first spool vents H1.
  • the diameter of the first spool vent hole of the present embodiment is set to 6 mm.
  • a first spool vent may also be provided on one of the two rotor mating surfaces, and it is also possible to bypass a portion of the compressed gas to the suction chamber. To reduce the power of the compressor.
  • the spool body 41 of the present embodiment is provided with a gas passage.
  • the spool body 41 has a cavity C which forms the above-described gas passage. Both ends of the cavity C are closed. The side of the cavity C remote from the spool is closed by an end cap.
  • the cavity C of the spool body 41 communicates with the compression chamber through the first spool vent hole H1 disposed on the mating surface of the rotor, that is, after the cavity C is filled with compression gas.
  • the second spool vent hole H2 is not in communication with the casing vent hole H3, so that the compressed gas cannot be bypassed to the suction chamber.
  • the cavity C is disposed to provide a pressure buffer space between the compression chamber and the suction chamber S, so that even if the pressure at which the first spool vent hole H1 communicates with the compression chamber fluctuates due to the rotation of the rotor, the cavity may be
  • the buffering action of C maintains the ratio of the pressure at which the first spool vent hole H1 communicates with the compression chamber to the pressure of the suction chamber S in a relatively stable range, thereby making the operation of the screw compressor more stable during the adjustment process.
  • the second spool vent H2 has a diameter of 15-45 mm. Setting the diameter of the second spool vent H2 within the above range satisfies both the requirement of sufficient bypass area and the processing and structural constraints. It should be noted that the size of the second spool vent hole H2 here needs to comprehensively consider the limitation of the size and structure of the spool and the sufficient bypass area, so the above range is only a preferred range. In other embodiments not shown in the drawings, the diameter of the second spool vent may also be set outside the above numerical range.
  • the diameter of the second spool vent hole H2 is 25 mm.
  • the housing vent hole H3 of the present embodiment is a through hole provided in the chamber wall of the spool chamber and extending in the axial direction.
  • the spool valve 4 further includes a spool stem that is coupled to the spool body 41.
  • the spool valve is coupled to the drive mechanism to drive the spool body 41 to move, and the drive mechanism may be an oil piston or the like.
  • the spool 4 further includes a limiting structure 42 disposed on the spool body 41, and the limiting structure 42 limits the extreme position of movement of the spool body 41.
  • the end surface of the stopper structure 42 close to the exhaust side abuts against the end surface of the exhaust end seat of the screw compressor to restrict the limit position of the spool body 41 to the exhaust side.
  • the limit position at which the spool body 41 moves toward the suction side is restricted by the abutment of the oil piston connected to the spool stem and the bearing end seat.
  • the spool valve 4 is used to adjust the internal volume ratio of the screw compressor. Therefore, the spool valve 4 has both the internal volume ratio adjustment function and the power adjustment function under the extreme working conditions, thereby reducing the complexity of the screw compressor.
  • the internal volume ratio when the spool body 41 is in the second operating state, the internal volume ratio is at a maximum value. Thereby, the adjustment of the internal volume ratio of the spool 4 under normal operating conditions and the adjustment of the power under extreme operating conditions can be prevented from interfering with each other.
  • the length of the rotor mating surface of the spool body 41 in this embodiment is greater than the compression length of the rotor.
  • the above settings can achieve the effect of widening the operating range of the screw compressor.
  • the gas pressure at the communication position between the first spool vent hole H1 and the compression chamber is greater than the suction side pressure.
  • the ratio of the pressure of the compression chamber at the position in communication with the first spool vent H1 to the pressure of the suction chamber S is 1.2 to 1.3. This ratio guarantees the normal operation of the compressor and maximizes the operating range of the compressor.
  • the specific position of the first spool vent H1 provided on the spool body 41 has a certain matching relationship with the rotor spiral.
  • FIG. 6 is a schematic view showing the position of the first spool vent hole H1 when the spool body is in the second working state according to an embodiment of the present disclosure.
  • the first spool vent H1 communicates with the second slot starting from the suction chamber S.
  • the curve Lr in Fig. 6 represents the spiral trajectory of the rotor, which shows the fitting position of the crest of the male and female rotors at a certain time to the rotor mating surfaces of the rotor chamber and the spool 4; the curve Lh represents the first spool The spiral where the vent H1 is located.
  • the first curve Lr from the side of the suction chamber S corresponds to a spiral line when the rotor starts to compress (hereinafter referred to as the first spiral line), when the rotor sweeps over the first spiral line
  • the compression process has started, so the gas pressure after the first spiral is greater than the pressure of the suction chamber S;
  • the last curve Lr from the side of the suction chamber S corresponds to a spiral at the end of the compression of the rotor (hereinafter referred to as the last one) Spiral)
  • the last one Spiral
  • the first spool vent H1 needs to be disposed between the first curve Lr and the last curve Lr, corresponding to between the first spiral and the last spiral on the rotor.
  • the first spiral groove is between the first spiral line and the second spiral line on the rotor, and the gas pressure in the first tooth groove is larger than the pressure of the suction chamber S, but the pressure difference is small, if the first The spool vent hole H1 is arranged to communicate with the first tooth groove. Although there is a certain bypass effect, the gas bypass amount is small, the operating range is widened, and the effect is not optimal.
  • the last two spirals on the rotor are the last one, the gas pressure in the last one is the largest, and the differential pressure on the suction side is also the largest. If the first spool vent H1 is set to communicate with the last slot At this time, the bypass amount will be the largest, and the widened compressor has the largest operating range. However, since this is the last cogging, if the gas is bypassed, the discharge pressure of the compressor is greatly affected.
  • the first spool vent H1 along the axial spool body of the rotor is disposed from the second slot to the penultimate slot from the side of the suction chamber S.
  • the first spool vent H1 is axially closer to the side of the suction chamber S with respect to the exhaust chamber side of the rotor in the axial direction of the rotor when the spool body is in the second operational state. This setting facilitates widening the operating range of the compressor to a better extent and has less effect on the discharge pressure of the compressor.
  • a plurality of first spool vents H1 on the first rotor mating surface mated with the male rotor are spaced apart in the helical direction of the male rotor; and a plurality of first mating surfaces on the second rotor mating surface with the female rotor
  • a spool vent H1 is spaced along the helix of the female rotor.
  • the tooth tip of the rotor sweeps through the first spool vent hole H1 to prevent the tooth grooves on both sides of the tooth tip from communicating through the first spool vent hole H1.
  • first spool vent hole H1, the second spool vent hole H2, the first spool vent hole H1 and the second spool vent hole H2 between the gas passage and the housing vent hole H3 may be changed. As long as the corresponding functions can be achieved.
  • a slit-shaped first spool vent hole H1 extending in the spiral direction of the rotor may be provided on the rotor mating surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种螺杆压缩机和包括该螺杆压缩机的空调,其中螺杆压缩机包括壳体(1)、变频器、电机(2)、滑阀(4)以及与电机(2)驱动连接的转子。变频器控制电机(2)的转速以控制转子的转速。壳体(1)包括吸气腔(S),滑阀(4)包括相对于壳体(1)沿转子的轴向移动的滑阀本体(41),滑阀本体(41)具有第一工作状态和第二工作状态。在第一工作状态,转子的压缩腔与吸气腔(S)断开;在第二工作状态,转子的压缩腔与吸气腔(S)连通以使压缩腔内的部分压缩气体流通至吸气腔(S)而降低螺杆压缩机的功率。该螺杆压缩机的可靠运行范围较大。

Description

螺杆压缩机和空调
相关申请
本申请是以申请号为201710759618.X,申请日为2017年8月30日,发明名称为“变频螺杆压缩机和空调”的中国专利申请,以及以申请号为201711121334.4,申请日为2017年11月14日,发明名称为“变频螺杆压缩机和空调”的中国专利申请为基础,并主张其优先权,这两项中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调技术领域,特别涉及一种螺杆压缩机和空调。
背景技术
变频螺杆压缩机具有高效能和低成本的优点,因此被广泛应用。变频螺杆压缩机的转子与电机驱动连接,转子的转动只与转子受到的转矩大小相关。而电机由变频器控制,在实际工程应用中,需要使电机恒转矩输出。要达到电机的恒转矩输出,变频器的输出电流也要保持基本恒定。在变频螺杆压缩机的变频器内设置有过流保护。当运行极限工况时,避免出现过流保护需要降低转速,但降低转速后仍需保持转矩不变才能保证阳转子正常转动。此时如果降低电流,可能会导致阳转子无法转动。另外,变频器输出给压缩机的电压为变电压输出,因此在降低转速后输出电流不一定降低。
对于变频螺杆压缩机,功率与转速之间的关系为:P=n×T/9550(P-功率;n-转速;T-转矩)。图1示出变频螺杆压缩机的功率随转子的转速变化曲线图。图1中的三条曲线分别为保护工况曲线、极限工况曲线和额定工况曲线。其中,保护工况曲线是将变频器设定的在转子不同转速下的功率保护值描绘而成的。额定工况曲线表示压缩机是可以可靠运行的,其曲线的斜率小于图1中的保护工况曲线的斜率。极限工况曲线表示贴近保护工况曲线运行时的工况的功率转速曲线图。根据以上公式及图1可知,在工况不变时,转子受力不变,此时的转矩不变,图1示出的功率-转速曲线中的每一条直线为一个相应确定工况的曲线,因此在工况不变的情况下,降低转速,功率仍沿相应的直线变化。因此,当压缩机在极限工况下运行时,此时功率接近极限功率,当降低转速时,变频器的功率仍在极限值运行。综上可知,当压缩机在极限工况下运行时降低转速并不能改善运行情况,因此相关技术中的变频螺杆压缩机的可靠运行范围 较低。
发明内容
本公开的目的在于提供一种螺杆压缩机和空调,以提高螺杆压缩机的可靠运行范围。
本公开第一方面提供一种螺杆压缩机,包括壳体、电机、滑阀以及与电机驱动连接的转子,壳体包括吸气腔,滑阀包括相对于壳体沿转子的轴向移动的滑阀本体以使滑阀本体具有第一工作状态和第二工作状态,在第一工作状态,转子的压缩腔与吸气腔断开;在第二工作状态,转子的压缩腔与吸气腔连通以使压缩腔内的部分压缩气体流通至吸气腔而降低螺杆压缩机的功率。
进一步地,壳体还包括用于放置滑阀本体的滑阀腔,滑阀本体包括与转子配合的转子配合表面以及与滑阀腔配合的滑阀腔配合表面,转子配合表面上设有与压缩腔连通的第一滑阀通气孔,在所述第一工作状态,所述第一滑阀通气孔与所述吸气腔断开以使所述压缩腔与所述吸气腔断开;在所述第二工作状态,所述第一滑阀通气孔与所述吸气腔连通以使所述压缩腔与所述吸气腔连通。
进一步地,滑阀腔配合表面上设有与吸气腔连通的第二滑阀通气孔,滑阀腔的腔壁上设有与吸气腔连通的壳体通气孔,在所述第一工作状态,所述第二滑阀通气孔与所述壳体通气孔断开以使所述第一滑阀通气孔与所述吸气腔断开;在所述第二工作状态,所述第二滑阀通气孔与所述壳体通气孔连通以使所述第一滑阀通气孔与所述吸气腔连通。
进一步地,转子包括相互啮合的阳转子和阴转子,滑阀本体包括分别与阳转子和阴转子配合的两个转子配合表面,两个转子配合表面中至少一个转子配合表面上设有第一滑阀通气孔。
进一步地,转子配合表面上设有沿转子的螺旋线方向间隔设置的多个第一滑阀通气孔或沿所述转子的螺旋线方向延伸的一个狭缝状的第一滑阀通气孔。
进一步地,滑阀本体上设有气体通道,第一滑阀通气孔与第二滑阀通气孔通过气体通道连通。
进一步地,滑阀本体具有空腔,空腔形成气体通道。
进一步地,第一滑阀通气孔的直径为2-8mm。
进一步地,所述第一滑阀通气孔的直径为4-8mm。
进一步地,所述第一滑阀通气孔的直径为2-6mm。
进一步地,所述滑阀用于调节所述螺杆压缩机的内容积比。
进一步地,在所述第二工作状态,所述内容积比处于最大值。
进一步地,所述滑阀本体的转子配合表面的长度大于所述转子的压缩长度。
进一步地,在所述第二工作状态,所述第一滑阀通气孔与所述压缩腔连通位置处的压力与所述吸气腔的压力之比为1.2至1.3。
进一步地,在所述第二工作状态,沿所述转子的轴向所述第一滑阀通气孔布置于从所述吸气腔一侧数所述转子的第二个齿槽至倒数第二个齿槽之间。
进一步地,在所述第二工作状态,沿所述转子的轴向所述第一滑阀通气孔相对于所述转子的排气腔一侧更靠近所述吸气腔一侧。
进一步地,第二滑阀通气孔的直径为15-45mm。
进一步地,滑阀还包括设置于滑阀本体上的限位结构,限位结构限制滑阀本体移动的极限位置。
进一步地,限位结构的靠近排气侧的端面与螺杆压缩机的排气端座的端面抵接以限制滑阀本体向排气侧移动的极限位置。
本公开第二方面提供一种空调,包括如本公开第一方面中任一项提供的螺杆压缩机。
基于本公开提供的螺杆压缩机和空调,该螺杆压缩机在极限工况运行时,可以控制滑阀本体移动至第二工作状态以使压缩腔内的部分压缩气体流通至吸气腔,压缩机的功率降低(转子转速不变),可以在此基础上继续增加压缩机的负载,当增加负载后的功率达到该转速下的极限功率时,此时的工况即为新的极限工况,从而扩大了螺杆压缩机的可靠运行范围。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为变频螺杆压缩机的功率随转速的变化曲线图;
图2为本公开实施例的变频螺杆压缩机一个角度的结构示意图;
图3为本公开实施例的变频螺杆压缩机的另一个角度的结构示意图;
图4为图2中的滑阀的局部结构示意图;
图5为本公开实施例的变频螺杆压缩机与相关技术中的变频螺杆压缩机的运行范围的对比曲线图;
图6为本公开一实施例在滑阀本体处于第二工作状态时第一滑阀通气孔的设置位置示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相 对描述作出相应解释。
本公开实施例的螺杆压缩机包括壳体、电机、滑阀以及与电机驱动连接的转子。壳体包括吸气腔。滑阀包括相对于壳体沿转子的轴向移动的滑阀本体以使滑阀本体具有第一工作状态和第二工作状态。在第一工作状态,转子的压缩腔与吸气腔断开;在第二工作状态,转子的压缩腔与吸气腔连通以使压缩腔内的部分压缩气体流通至吸气腔而降低螺杆压缩机的功率。
当本公开实施例的压缩机在极限工况运行时,可以控制滑阀本体移动至第二工作状态以使压缩腔内的部分压缩气体流通至吸气腔,此时压缩机的功率降低,可以在此基础上继续增加压缩机的负载,当增加负载后的功率达到该转速下的极限功率时,此时的工况即为新的极限工况,从而扩大了螺杆压缩机的可靠运行范围。
在本公开一些实施例中,壳体还包括用于放置滑阀本体的滑阀腔。滑阀本体包括与转子配合的转子配合表面以及与滑阀腔配合的滑阀腔配合表面。转子配合表面上设有与压缩腔连通的第一滑阀通气孔,滑阀腔配合表面上设有与吸气腔连通的第二滑阀通气孔。滑阀腔的腔壁上设有与吸气腔连通的壳体通气孔。在第一工作状态,第二滑阀通气孔与壳体通气孔断开进而使压缩腔与吸气腔断开。在第二工作状态,第二滑阀通气孔H2与壳体通气孔连通进而使压缩腔与吸气腔连通。转子在转动的过程中压缩腔会与第一滑阀通气孔连通,而第二滑阀通气孔又与第一滑阀通气孔连通,因此第二滑阀通气孔与压缩腔始终连通。当需要降低压缩机的功率时,控制滑阀本体移动到第二滑阀通气孔与壳体通气孔连通的第二工作状态从而使压缩腔的气体旁通至吸气腔。
在一个附图未示出的实施例中,也可以在吸气腔与壳体用于放置转子的转子腔之间设置可通断的气体流通通道。在压缩机处于正常工作状态时,可以控制该气体流通通道断开。在压缩机处于极限工作状态时,控制该气体流通通道连通进而使压缩腔的部分压缩气体旁通至吸气腔。当然,该气体流通通道的通流面积要根据实际需要进行设置。
下面根据图2至图5对本公开一具体实施例的变频螺杆压缩机的结构进行详细说明。
本实施例的变频螺杆压缩机为双螺杆压缩机。如图2所示,本实施例的螺杆压缩机包括壳体1、电机2以及与电机2驱动连接的阳转子3,阴转子(图中未示出)和阳转子3啮合形成压缩腔。螺杆压缩机还包括变频器,变频器控制电机转速,从而控制转子的转速。壳体1具有吸气腔S。
为调节该螺杆压缩机的内容积比,该螺杆压缩机还包括设置于阳转子3和阴转子下方的滑阀4。滑阀4包括相对于壳体1沿阳转子和阴转子的轴向移动的滑阀本体41,滑阀本体41沿轴向移动以改变径向排气口的位置从而改变内容积比。如图2所示,当滑阀本体向右移动时,径向排气口的位置与吸气侧的距离变短,也就是说转子压缩气体的行程变短,排气压力变低。当滑阀本体向左移动时,径向排气口的位置与吸气侧的距离变长,也就是说转子压缩气体的行程变长,排气压力变高。滑阀本体4的长度大于转子的压缩长度。
壳体1还包括用于放置滑阀本体41的滑阀腔。如图4所示,滑阀本体41包括与阳转子配合的第一转子配合表面411、与阴转子配合的第二转子配合表面412以及与滑阀腔配合的滑阀腔配合表面413。
在本公开一些实施例中,第一转子配合表面411和第二转子配合表面412上设有与压缩腔连通的第一滑阀通气孔H1。滑阀腔配合表面413上设有与吸气腔连通的第二滑阀通气孔H2。滑阀腔的腔壁上设有与吸气腔连通的壳体通气孔H3。在第一工作状态,第二滑阀通气孔H2与壳体通气孔H3断开进而使压缩腔与吸气腔断开;在第二工作状态,如图3中箭头所示,第二滑阀通气孔H2与壳体通气孔H3连通进而使压缩腔与吸气腔连通。本实施例的螺杆压缩机通过在滑阀腔的腔壁上设置与吸气腔连通的壳体通气孔,而在滑阀本体的滑阀腔配合表面上设置与压缩腔连通的第二滑阀通气孔H2。而且滑阀本体通过滑阀腔配合表面沿滑阀腔移动,因此在滑阀本体移动到使第二滑阀通气孔与壳体通气孔连通时,由于转子压缩腔的气体已经被压缩,因此压缩腔的气体压力大于吸气腔的压力,转子压缩腔的部分气体就可以旁通至吸气腔,如此可降低螺杆压缩机的功率。此时就可以使压缩机运行负载更高的工况,从而提升压缩机的可靠运行范围。
例如,如图5所示,相关技术中的螺杆压缩机的极限运行工况为蒸发温度12℃,冷凝温度50℃。在该极限工况下,压缩机的功率将一致贴近极限功率运行,假设当转速为4000r/min时功率为130KW,此时压缩机已经贴近极限保护点。而当本实施例的螺杆压缩机运行到上述极限工况时,可以控制滑阀本体移动使其第二滑阀通气孔与壳体通气孔连通使压缩腔的部分压缩气体旁通至吸气腔,实际压缩的气体变少,此时的实际功率降低至100KW。使滑阀本体处于第二工作状态而开启旁通时,压缩机的负载不变,此时的工况仍为蒸发温度12℃,冷凝温度50℃。此时保持蒸发温度12℃不变,增大冷凝温度至60℃,当工况稳定在蒸发温度12℃,冷凝温度60℃时,功率达到 130KW,此时压缩机贴近极限保护点,而压缩机的极限工况已经由原来的蒸发温度12℃,冷凝温度50℃拓宽至蒸发温度12℃,冷凝温度60℃,变化如图5所示。由上可知,本实施例的螺杆压缩机通过将压缩腔的部分气体旁通至吸气腔进而降低功率,从而提高了压缩机的可靠运行范围。
如图4所示,第一转子配合面与第二转子配合面上均设有多个第一滑阀通气孔H1。多个第一滑阀通气孔H1沿转子的螺旋线方向间隔设置。在转子配合面上间隔设置多个第一滑阀通气孔可以保证在开启旁通时具有足够的流通面积以使一定量的压缩气体旁通至吸气腔,进而起到降低功率的作用。而且本实施例中的多个第一滑阀通气孔H1沿转子的螺旋线方向间隔设置可以保证转子在转过转子配合面时可以同时转过多个第一滑阀通气孔。
为了使本实施例的螺杆压缩机在转子齿顶扫过滑阀本体的转子配合面的第一滑阀通气孔时不同齿槽通过第一滑阀通气孔连通量较小以降低泄露量,同时又要保证有足够量的压缩气体旁通至吸气腔,在本公开一些实施例中,第一滑阀通气孔H1的直径处于2-8mm的范围内。例如,其中一个较优选的范围为第一滑阀通气孔H1的直径为4-8mm,其中另一个较优选的范围为2-6mm。
具体地,第一滑阀通气孔H1的大小设计不仅要考虑相邻两个齿槽之间的泄露问题,同时也要考虑加工问题以及多个第一滑阀通气孔H1的总共的通气面积,综合以上多个方面的考虑,本实施例的第一滑阀通气孔的直径设为6mm。
合理设置第一滑阀通气孔H1的直径,还利于减少在第二工作状态时第一滑阀通气孔H1与压缩腔连通处的压力与吸气腔S的压力之比的波动,使螺杆压缩机在调节过程中的运行较为平稳。
在其他附图未示出的实施例中,也可以在两个转子配合表面中的一个转子配合表面上设置第一滑阀通气孔,同样可以实现将部分压缩气体旁通至吸气腔进而起到降低压缩机功率的作用。
为了连通第一滑阀通气孔H1与第二滑阀通气孔H2,在本公开一些实施例中,本实施例的滑阀本体41上设有气体通道。
具体地,如图4所示,滑阀本体41具有空腔C,空腔C形成上述气体通道。空腔C的两端封闭设置。空腔C的远离滑阀杆的一侧通过端盖封闭设置。在滑阀本体41处于第一工作状态时,滑阀本体41的空腔C通过设置在转子配合表面上的第一滑阀通气孔H1与压缩腔相通,即,此时空腔C内部充满压缩后的气体。但是此时第二 滑阀通气孔H2与壳体通气孔H3未连通,因此无法将压缩气体旁通至吸气腔。
空腔C的设置为压缩腔与吸气腔S之间提供了一个压力缓冲空间,使得即使第一滑阀通气孔H1与压缩腔连通处的压力因转子转动而产生波动,也可以因空腔C的缓冲作用维持第一滑阀通气孔H1与压缩腔连通处的压力与吸气腔S的压力之比在一个较为稳定的范围内,从而使螺杆压缩机在调节过程中的运行更加平稳。
在本公开一些实施例中,第二滑阀通气孔H2的直径为15-45mm。将第二滑阀通气孔H2的直径设置在以上范围内既可以满足足够旁通面积的要求,又可以满足加工和结构限制。需要说明的是,此处的第二滑阀通气孔H2的大小需要综合考虑滑阀大小和结构的限制以及足够的旁通面积,因此以上范围只是优选范围。在其他一些附图未示出的实施例中,也可以将第二滑阀通气孔的直径设置在以上数值范围之外。
具体地,在本实施例中,第二滑阀通气孔H2的直径为25mm。
如图3所示,本实施例的壳体通气孔H3为设置在滑阀腔的腔壁上且沿轴向延伸的通孔。
如图4所示,滑阀4还包括与滑阀本体41连接的滑阀杆。滑阀杆与驱动机构连接以驱动滑阀本体41移动,驱动机构可以是油活塞等。为了限制滑阀本体41的移动范围,滑阀4还包括设置于滑阀本体41上的限位结构42,限位结构42限制滑阀本体41移动的极限位置。
如图4所示,限位结构42的靠近排气侧的端面与螺杆压缩机的排气端座的端面抵接以限制滑阀本体41向排气侧移动的极限位置。滑阀本体41向吸气侧移动的极限位置由与滑阀杆连接的油活塞与轴承端座进行抵接来限制。
本实施例中,滑阀4用于调节螺杆压缩机的内容积比。从而,滑阀4兼具内容积比调节功能与极限工况下对功率的调节功能,减少螺杆压缩机的复杂程度。
本实施例中,在滑阀本体41处于第二工作状态时,内容积比处于最大值。从而,可以使滑阀4在正常运行条件下对内容积比的调节与在极限运行工况下对功率的调节互不干扰。
在本公开一些实施例中,本实施例中滑阀本体41的转子配合表面的长度大于转子的压缩长度。该设置使得在滑阀本体41的位置达到内容积比最大之后继续向左移动时,内容积比已不再增加,而向左移动一段距离后,第二滑阀通气孔H2才能到达与壳体通气孔H3连通的位置,此时,压缩腔与吸气腔S方能通过第一滑阀通气孔H1、第二滑阀通气孔H2和壳体通气孔H3连通。从而,可以实现在第二工作状态下内容 积比处于最大值。
以上设置可以达到拓宽螺杆压缩机运行范围的效果。要通过旁通压缩腔气体到吸气腔实现拓宽变频压缩机运行范围的目的,第一滑阀通气孔H1与压缩腔连通位置处的气体压力要大于吸气侧压力。在本公开一些实施例中,在第二工作状态,与第一滑阀通气孔H1连通位置处的压缩腔的压力与吸气腔S的压力之比为1.2至1.3。该比值可以保证压缩机的正常运行,而且可以拓宽压缩机运行范围至最佳。
为了达到最佳的效果,在滑阀本体41上设置的第一滑阀通气孔H1的具体位置与转子螺旋线有一定的配合关系。
图6为本公开一实施例在滑阀本体处于第二工作状态下时第一滑阀通气孔H1的设置位置示意图。
如图6所示,在该实施例中,在第二工作状态下,第一滑阀通气孔H1与从吸气腔S开始的第二个齿槽连通。图6中曲线Lr代表转子的螺旋线轨迹,其示出了在某一时刻阳转子和阴转子的齿顶与转子腔及滑阀4的转子配合表面的配合位置;曲线Lh代表第一滑阀通气孔H1所在的螺旋线。
其中从吸气腔S一侧数(图6中左侧)第一条曲线Lr对应转子开始压缩时的一条螺旋线(下称第一条螺旋线),当转子扫过第一条螺旋线时已开始压缩过程,所以在第一条螺旋线后的气体压力大于吸气腔S的压力;从吸气腔S一侧数最后一条曲线Lr对应转子结束压缩时的一条螺旋线(下称最后一条螺旋线),当转子扫过最后一条螺旋线时,压缩过程结束,压缩机排气。
滑阀本体的的转子配合表面上的第一滑阀通气孔H1与各曲线Lr之间的位置具有如下关系:
第一滑阀通气孔H1需要布置在第一条曲线Lr~最后一条曲线Lr之间,对应于转子上的第一条螺旋线和最后一条螺旋线之间。
转子上第一条螺旋线和第二条螺旋线之间为第一个齿槽,该第一个齿槽内的气体压力虽大于吸气腔S的压力,但压差较小,如果第一滑阀通气孔H1设置为与第一个齿槽连通,虽有一定的旁通效果,但气体旁通量较少,运行范围拓宽的小,效果不是最佳。
转子上最后两条螺旋线之间为最后一个齿槽,该最后一个齿槽内气体压力最大,与吸气侧压差也最大,如果第一滑阀通气孔H1设置为与最后一个齿槽连通,此时的旁通量也会最大,拓宽的压缩机运行范围最大,但是由于此处为最后一个齿槽,如果 旁通掉此处的气体,则对压缩机的排气压力影响较大。
综上所述,在第二工作状态,沿转子的轴向滑阀本体上的第一滑阀通气孔H1布置于从吸气腔S一侧数第二个齿槽至倒数第二个齿槽之间为最佳,此时可以保证压缩机的正常运行,而且可以拓宽压缩机运行范围至较佳。
在本公开一些实施例中,在滑阀本体处于第二工作状态时,沿转子的轴向第一滑阀通气孔H1相对于转子的排气腔一侧更靠近吸气腔S一侧。该设置利于拓宽压缩机运行范围至较佳又对压缩机的排气压力影响较小。
图6中,与阳转子配合的第一转子配合表面上的多个第一滑阀通气孔H1沿阳转子的螺旋线方向间隔设置;与阴转子配合的第二转子配合表面上的多个第一滑阀通气孔H1沿阴转子的螺旋线方向间隔设置。使第一滑阀通气孔H1沿转子的螺旋线方向间隔设置可以避免两个齿槽之间窜气,有利于使每个齿槽均为单独密封的空间,向吸气腔S旁通压缩腔的气体时旁通一个齿槽内的气体即可。例如,当与每一转子对应的各第一滑阀通气孔H1布置在与相应转子的螺旋线方向上,且各第一滑阀通气孔H1的开孔尺寸在Φ2~Φ6之间(例如均为Φ6时),转子的齿顶扫过第一滑阀通气孔H1时可避免齿顶两侧齿槽通过第一滑阀通气孔H1连通。
其中,第一滑阀通气孔H1、第二滑阀通气孔H2、第一滑阀通气孔H1与第二滑阀通气孔H2之间气体通道、壳体通气孔H3等的形式均可以发生变化,只要能实现相应的功能即可。例如,在一个未图示的实施例中,可以在转子配合表面上设置沿转子的螺旋线方向延伸的狭缝状第一滑阀通气孔H1。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保的技术方案范围当中。

Claims (20)

  1. 一种螺杆压缩机,包括:
    壳体(1),包括吸气腔(S);
    电机(2);
    转子,与所述电机(2)驱动连接;以及
    滑阀(4),包括相对于所述壳体(1)沿所述转子的轴向移动的滑阀本体(41),所述滑阀本体(41)具有第一工作状态和第二工作状态,在所述第一工作状态,所述转子的压缩腔与所述吸气腔(S)断开;在所述第二工作状态,所述转子的压缩腔与所述吸气腔(S)连通以使所述压缩腔内的部分压缩气体流通至所述吸气腔(S)而降低所述螺杆压缩机的功率。
  2. 根据权利要求1所述的螺杆压缩机,其中,所述壳体(1)还包括用于放置所述滑阀本体(41)的滑阀腔,所述滑阀本体(41)包括与所述转子配合的转子配合表面以及与所述滑阀腔配合的滑阀腔配合表面(413),所述转子配合表面上设有与所述压缩腔连通的第一滑阀通气孔(H1),其中,
    在所述第一工作状态,所述第一滑阀通气孔(H1)与所述吸气腔(S)断开以使所述压缩腔与所述吸气腔(S)断开;
    在所述第二工作状态,所述第一滑阀通气孔(H1)与所述吸气腔(S)连通以使所述压缩腔与所述吸气腔(S)连通。
  3. 根据权利要求2所述的螺杆压缩机,其中,所述滑阀腔配合表面(413)上设有与所述吸气腔连通的第二滑阀通气孔(H2),所述滑阀腔的腔壁上设有与所述吸气腔(S)连通的壳体通气孔(H3),其中,
    在所述第一工作状态,所述第二滑阀通气孔(H2)与所述壳体通气孔(H3)断开以使所述第一滑阀通气孔(H1)与所述吸气腔(S)断开;
    在所述第二工作状态,所述第二滑阀通气孔(H2)与所述壳体通气孔(H3)连通以使所述第一滑阀通气孔(H1)与所述吸气腔(S)连通。
  4. 根据权利要求2所述的螺杆压缩机,其中,所述转子包括相互啮合的阳转子和 阴转子,所述滑阀本体(41)包括分别与所述阳转子和所述阴转子配合的两个所述转子配合表面,所述两个转子配合表面中至少一个转子配合表面上设有所述第一滑阀通气孔(H1)。
  5. 根据权利要求2所述的螺杆压缩机,其中,所述转子配合表面上设有沿所述转子的螺旋线方向间隔设置的多个所述第一滑阀通气孔(H1)或沿所述转子的螺旋线方向延伸的一个狭缝状的第一滑阀通气孔(H1)。
  6. 根据权利要求3所述的螺杆压缩机,其中,所述滑阀本体(41)上设有气体通道,所述第一滑阀通气孔(H1)与所述第二滑阀通气孔(H2)通过所述气体通道连通。
  7. 根据权利要求6所述的螺杆压缩机,其中,所述滑阀本体(41)具有空腔(C),所述空腔(C)形成所述气体通道。
  8. 根据权利要求2所述的螺杆压缩机,其中,所述第一滑阀通气孔(H1)的直径为2-8mm。
  9. 根据权利要求8所述的螺杆压缩机,其中,所述第一滑阀通气孔(H1)的直径为4-8mm。
  10. 根据权利要求8所述的螺杆压缩机,其中,所述第一滑阀通气孔(H1)的直径为2-6mm。
  11. 根据权利要求1所述的螺杆压缩机,其中,所述滑阀(4)用于调节所述螺杆压缩机的内容积比。
  12. 根据权利要求11所述的螺杆压缩机,其中,在所述第二工作状态,所述内容积比处于最大值。
  13. 根据权利要求2所述的螺杆压缩机,其中,所述滑阀本体(4)的转子配合表面的长度大于所述转子的压缩长度。
  14. 根据权利要求2所述的螺杆压缩机,其中,在所述第二工作状态,所述第一滑阀通气孔(H1)与所述压缩腔连通位置处的压力与所述吸气腔(S)的压力之比为1.2至1.3。
  15. 根据权利要求2所述的螺杆压缩机,其中,在所述第二工作状态,沿所述转子的轴向所述第一滑阀通气孔(H1)布置于从所述吸气腔(S)一侧数所述转子的第二个齿槽至倒数第二个齿槽之间。
  16. 根据权利要求2所述的螺杆压缩机,其中,在所述第二工作状态,沿所述转子的轴向所述第一滑阀通气孔(H1)相对于所述转子的排气腔一侧更靠近所述吸气腔(S)一侧。
  17. 根据权利要求3所述的螺杆压缩机,其中,所述第二滑阀通气孔(H2)的直径为15-45mm。
  18. 根据权利要求1所述的螺杆压缩机,其中,所述滑阀(4)还包括设置于所述滑阀本体(41)上的限位结构,所述限位结构限制所述滑阀本体(41)移动的极限位置。
  19. 根据权利要求18所述的螺杆压缩机,其中,所述限位结构的靠近排气侧的端面与所述螺杆压缩机的排气端座的端面抵接以限制所述滑阀本体(41)向排气侧移动的极限位置。
  20. 一种空调,包括如权利要求1所述的螺杆压缩机。
PCT/CN2017/119302 2017-08-30 2017-12-28 螺杆压缩机和空调 WO2019041698A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710759618.X 2017-08-30
CN201710759618 2017-08-30
CN201711121334.4 2017-11-14
CN201711121334.4A CN107740769A (zh) 2017-08-30 2017-11-14 变频螺杆压缩机和空调

Publications (1)

Publication Number Publication Date
WO2019041698A1 true WO2019041698A1 (zh) 2019-03-07

Family

ID=61234382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119302 WO2019041698A1 (zh) 2017-08-30 2017-12-28 螺杆压缩机和空调

Country Status (2)

Country Link
CN (2) CN107740769A (zh)
WO (1) WO2019041698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047107A1 (zh) * 2019-09-11 2021-03-18 珠海格力电器股份有限公司 压缩机及制冷机组

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740769A (zh) * 2017-08-30 2018-02-27 珠海格力电器股份有限公司 变频螺杆压缩机和空调
CN108644116B (zh) * 2018-07-13 2024-08-20 麦克维尔空调制冷(苏州)有限公司 螺杆压缩机系统以及包含该螺杆压缩机系统的换热系统
US11920594B2 (en) * 2018-09-17 2024-03-05 Xi'an Jiaotong University Screw compressor slide valve and screw compressor with gas pulsation attenuation function
CN109058115B (zh) * 2018-09-17 2019-12-24 西安交通大学 一种具有气流脉动衰减功能的螺杆压缩机滑阀
US11306721B2 (en) * 2018-12-26 2022-04-19 Trane International Inc. Variable volume ratio screw compressor
CN113803251B (zh) * 2020-06-12 2023-02-17 江森自控空调冷冻设备(无锡)有限公司 螺杆压缩机
CN114109823B (zh) * 2021-09-28 2022-11-22 上海履正能源科技有限公司 一种螺杆压缩机变频和容调滑阀结合的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221634A (ja) * 1989-02-23 1990-09-04 Mazda Motor Corp 過給機付エンジンの制御手段
CN101821479A (zh) * 2007-10-10 2010-09-01 开利公司 螺杆压缩机的滑阀系统
WO2011048618A1 (en) * 2009-10-19 2011-04-28 Refcomp Spa Screw compressor with variable compression ratio
CN202833173U (zh) * 2012-06-12 2013-03-27 珠海格力电器股份有限公司 滑阀、滑阀调节机构及螺杆压缩机
CN103486037A (zh) * 2012-06-12 2014-01-01 珠海格力电器股份有限公司 滑阀、滑阀调节机构、螺杆压缩机及其容量调节方法
CN106949051A (zh) * 2017-03-20 2017-07-14 珠海格力电器股份有限公司 压缩机用滑阀及具有其的螺杆压缩机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740769A (zh) * 2017-08-30 2018-02-27 珠海格力电器股份有限公司 变频螺杆压缩机和空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221634A (ja) * 1989-02-23 1990-09-04 Mazda Motor Corp 過給機付エンジンの制御手段
CN101821479A (zh) * 2007-10-10 2010-09-01 开利公司 螺杆压缩机的滑阀系统
WO2011048618A1 (en) * 2009-10-19 2011-04-28 Refcomp Spa Screw compressor with variable compression ratio
CN202833173U (zh) * 2012-06-12 2013-03-27 珠海格力电器股份有限公司 滑阀、滑阀调节机构及螺杆压缩机
CN103486037A (zh) * 2012-06-12 2014-01-01 珠海格力电器股份有限公司 滑阀、滑阀调节机构、螺杆压缩机及其容量调节方法
CN106949051A (zh) * 2017-03-20 2017-07-14 珠海格力电器股份有限公司 压缩机用滑阀及具有其的螺杆压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047107A1 (zh) * 2019-09-11 2021-03-18 珠海格力电器股份有限公司 压缩机及制冷机组

Also Published As

Publication number Publication date
CN207420867U (zh) 2018-05-29
CN107740769A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2019041698A1 (zh) 螺杆压缩机和空调
US11852145B2 (en) Rotary compressors with variable speed and volume control
EP2924299B1 (en) Centrifugal compressor
US20130084202A1 (en) Vane rotary compressor
US20090007590A1 (en) Refrigeration System
JPH1061587A (ja) 遠心圧縮機
US8920149B2 (en) Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber
JP4005035B2 (ja) 容量可変回転圧縮機
CN107975498B (zh) 用于离心压缩机的扩压器及具有其的离心压缩机
WO2018025368A1 (ja) 給油式空気圧縮機
WO2011114636A1 (ja) シングルスクリュー圧縮機
CN110925199B (zh) 螺杆压缩机及其控制方法和制冷系统
CN107514362B (zh) 变频螺杆压缩机及其能量调节控制方法和空调系统
US9631620B2 (en) Stationary volume ratio adjustment mechanism
WO2010035592A1 (ja) スクリュー圧縮機
JP2010038154A (ja) バイパスポートを有するスクロール圧縮機に用いる直接給電永久磁石同期型電動機
WO2020011126A1 (zh) 螺杆压缩机系统以及包含该螺杆压缩机系统的换热系统
US20180163749A1 (en) Adjusting mechanism for centrifugal compressors
US11873817B2 (en) Liquid-feeding rotary-screw compressor
EP3643921B1 (en) Screw compressor
KR20070065440A (ko) Vsd 제어
CN113574279B (zh) 螺杆压缩机
JPWO2020075220A1 (ja) スクリュ圧縮機及び冷凍装置
WO2016124147A1 (zh) 涡旋组件、涡旋式压缩及膨胀一体机器和循环系统
JP5836890B2 (ja) ロータリ圧縮機及び蒸気圧縮式冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17923781

Country of ref document: EP

Kind code of ref document: A1