WO2020143017A1 - 一种新能源汽车用车载变压器及新能源汽车 - Google Patents

一种新能源汽车用车载变压器及新能源汽车 Download PDF

Info

Publication number
WO2020143017A1
WO2020143017A1 PCT/CN2019/071298 CN2019071298W WO2020143017A1 WO 2020143017 A1 WO2020143017 A1 WO 2020143017A1 CN 2019071298 W CN2019071298 W CN 2019071298W WO 2020143017 A1 WO2020143017 A1 WO 2020143017A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
limiting
winding
new energy
skeleton
Prior art date
Application number
PCT/CN2019/071298
Other languages
English (en)
French (fr)
Inventor
张洪伟
张子军
Original Assignee
广东美信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美信科技股份有限公司 filed Critical 广东美信科技股份有限公司
Priority to PCT/CN2019/071298 priority Critical patent/WO2020143017A1/zh
Priority to CN201980000429.1A priority patent/CN110062715B/zh
Publication of WO2020143017A1 publication Critical patent/WO2020143017A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F2027/2857Coil formed from wound foil conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the technical field of transformers, and particularly relates to a vehicle-mounted transformer for new energy vehicles and new energy vehicles.
  • an OBC power transformer and a DC/DC power transformer that are independent of each other are usually provided inside the electric vehicle.
  • the vehicle battery is charged through the transformation of the OBC power transformer, and the vehicle battery is discharged through the DC/DC power transformer. Since the OBC power transformer and the DC/DC power transformer are independent of each other, the OBC power transformer and the DC/DC power transformer The electrical devices inside cannot be shared, so that two independent power supplies are required for processing.
  • the OBC power supply and DC/DC power supply are only the main transformer plus two resonant inductors, so that the main magnetic device needs 4 At the same time, two completely independent power supply extensions are required to achieve the function, which results in a large number of electrical components required, its integration is low, it takes up a lot of car space, and the production cost is high.
  • Embodiments of the present invention provide an on-board transformer for new energy vehicles, which aims to solve the problem of low integration of existing on-board transformers.
  • An embodiment of the present invention provides an on-board transformer for a new energy vehicle, which includes a transformer skeleton, two transformer magnetic cores inserted at both ends of the transformer skeleton, and two inductive skeletons respectively abutting on one end of each of the transformer magnetic cores, Two inductance magnetic cores inserted into one end of each of the inductance skeletons respectively, and a base carrying the transformer skeleton and the inductance skeletons fixed, the transformer skeletons are wound with two first transformer windings insulated and isolated from each other Inductance windings are wound on each of the inductance skeletons respectively, and the end leads of each of the inductance windings are respectively connected to the corresponding first-end leads of the first transformer windings, and two ends of the transformer skeleton are snap-fitted It extends to the second transformer winding fixed to the base.
  • the transformer skeleton includes a first bearing portion, two first abutting portions connected to both ends of the first bearing portion, and first connecting portions respectively connected to upper and lower ends of each first abutting portion A limiting part and a first fixing part, the transformer magnetic core is inserted and accommodated in the internal receiving space of the first bearing part, and the outer wall of the first bearing part is provided with two wire-wound In the first transformer winding, the first limiting portion and the first fixing portion form an accommodating space for accommodating the magnetic core of the transformer, and the first fixing portion is fixed to the base.
  • the transformer magnetic core includes a winding post, and two side bodies that are vertically and symmetrically connected to both ends of the winding post, and the side body includes a first body that is vertically connected to the winding post A bottom plate and a first side plate vertically connected to the other end of the first bottom plate.
  • the inductance skeleton includes a second bearing portion, two second abutting portions connected to both ends of the second bearing portion, and two second limit positions connected to the upper ends of the second abutting portions Part and a second fixing part connected to the lower end of one of the second abutting parts.
  • the first abutting portion is perpendicularly connected to the first bearing portion
  • the first limiting portion is perpendicular to the upper end of the first abutting portion
  • the first abutting portion and the first Limiting slots are provided at both ends of the side connected to the bearing portion
  • the first limiting portion includes a limiting plate, a connecting plate connected to the limiting plate, and a plurality of limiting positions provided on the connecting plate
  • the connecting plate is vertically connected to the top of the first abutting portion.
  • the second transformer winding includes a carrier piece, two connection pieces vertically connected to both ends of the bearing piece, two plug pieces connected to the ends of each connection piece, and connected to the bearing piece A limiting piece at one end, the limiting piece is provided with a plurality of limiting holes matching each of the limiting protrusions, and in use, the connecting piece is inserted into the limiting groove, the limiting The position hole is set into the limiting protrusion.
  • first abutting portion and the first fixing portion are provided with an escape notch at the bottom end of the first bearing portion, and the bottom end of the first fixing portion is provided with an escape groove.
  • a fixing block is provided on an inner wall of the groove away from the avoidance gap, and the fixing block is provided at a position away from the bottom wall of the avoidance groove.
  • the base is provided with a clamping block at a position corresponding to each of the avoidance grooves, and when fixed, the clamping block is accommodated in the avoidance groove, and the clamping block snaps to fix the fixing block .
  • the base is provided with a plug hole at a position corresponding to each of the plug pieces, the base is provided with a plurality of limit blocks, the limit block includes a third bearing portion, and a vertical position A third limiting part in the middle of the third bearing part, and the two ends of the third limiting part connected to the third bearing part are respectively provided with insertion slots for inserting the connecting pieces, when fixed , The plug piece is plugged into the plug hole, and one side of the plug piece is plugged into the plug slot.
  • An embodiment of the present invention also provides a new energy vehicle, including the on-board transformer for a new energy vehicle described above.
  • the on-vehicle transformer for new energy vehicles provided by the present invention has transformer magnetic cores inserted on both sides of the transformer skeleton, so that the transformer magnetic circuit of the on-vehicle transformer for new energy vehicles can be formed through one side of each transformer magnetic core
  • the inductance skeleton and the inserted inductance magnetic core are respectively provided, so that two resonant inductance magnetic circuits located at both ends of the transformer magnetic circuit can be enclosed, so that only four magnetic cores can be used to form three independent magnetic circuits.
  • two first transformer windings and two second transformer windings are wound in parallel in the transformer skeleton, so that the four windings can be wound in the transformer magnetic circuit and located
  • the left first transformer winding on the left side of the transformer skeleton can realize OBC input
  • the right first transformer winding on the right side of the transformer skeleton can realize OBC output and DC/DC input
  • its two second transformer windings can realize DC/DC output
  • the functions of the two sets of power sources of the on-board charger OBC and DC/DC can be realized at the same time, so that only one on-board transformer device can be realized Four magnetic cores form three magnetic circuits.
  • the existing conventional scheme is usually two magnetic cores to form a magnetic circuit, so that four devices and eight magnetic cores are required to realize the two sets of power supply of the OBC and DC/DC power supply of the car charger.
  • the function makes the use of the on-vehicle transformer for new energy vehicles in this embodiment greatly reduce the use space, and solves the problem that the existing on-vehicle transformer is not highly integrated.
  • FIG. 1 is a schematic structural view of an on-board transformer for a new energy vehicle provided by an embodiment of the present invention from a first perspective;
  • FIG. 2 is a schematic diagram of the explosion structure of the on-vehicle transformer for a new energy vehicle from a second perspective provided by an embodiment of the present invention
  • FIG. 3 is a schematic view of the explosion structure of the on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention from a third perspective;
  • FIG. 4 is a schematic diagram of the explosion structure of the on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention from a fourth perspective;
  • FIG. 5 is a schematic structural view of a vehicle-mounted transformer for new energy vehicles according to an embodiment of the present invention from a fifth perspective;
  • FIG. 6 is a cross-sectional view of part A-A in FIG. 5;
  • FIG. 7 is a schematic structural view of a transformer skeleton in an on-board transformer for a new energy vehicle provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a transformer magnetic core in an on-board transformer for a new energy vehicle provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an inductance skeleton in an on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention from a sixth perspective;
  • FIG. 10 is a schematic structural view of an inductance skeleton in an on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention from a seventh perspective;
  • FIG. 11 is a schematic structural view of a second transformer winding in an on-board transformer for a new energy vehicle provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a base in an on-board transformer for a new energy vehicle provided by an embodiment of the present invention
  • FIG. 13 is a schematic diagram of an on-board transformer for new energy vehicles provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention when operating in an ODB mode;
  • 15 is a schematic diagram of the on-vehicle transformer for a new energy vehicle provided by an embodiment of the present invention when operating in a DC/DC mode.
  • the on-board transformer for new energy vehicles includes a transformer skeleton, two transformer magnetic cores inserted at both ends of the transformer skeleton, two inductance skeletons respectively abutting one end of each transformer magnetic core, and respectively inserted at one end of each inductance skeleton
  • the terminal leads are respectively connected to the corresponding first lead windings of the first transformer winding, and the two transformer windings extending to the base are fixedly mounted on the two ends of the transformer frame respectively.
  • Transformer magnetic cores are inserted on both sides of the transformer skeleton, so that the transformer magnetic circuit of the on-board transformer for new energy vehicles can be formed.
  • an inductive skeleton and an inserted inductive magnetic core on one side of each transformer magnetic core, It can enclose two resonant inductance magnetic circuits located at both ends of the transformer magnetic circuit, so that only four magnetic cores can be used to form three independent magnetic circuits.
  • the transformer magnetic circuit is separately wound in parallel in the transformer skeleton.
  • FIG. 1 is a schematic structural diagram of an on-board transformer 10 for a new energy vehicle provided by an embodiment of the present invention.
  • the on-vehicle transformer 10 for new energy vehicles provided by the present invention includes a transformer skeleton 20, two transformer magnetic cores 30 inserted at both ends of the transformer skeleton 20, and respectively abuts one end of each transformer magnetic core 30
  • first transformer windings 70 insulated and isolated from each other are wound on the transformer bobbin 20
  • an inductive winding 80 is wound on each inductive bobbin 40
  • the terminal leads of each inductive winding 80 are respectively connected with the corresponding first transformer
  • the first lead of the winding 70 is connected, and the second transformer winding 90 extending to the base 60 is fixed to the two ends of the transformer frame 20 respectively.
  • the transformer frame 20 includes a first bearing portion 21, two first abutting portions 22 connected to both ends of the first bearing portion 21, and respectively connected to The first limiting portion 23 and the first fixing portion 24 at the upper and lower ends of each first abutting portion 22.
  • the first bearing portion 21 is a center column barrel.
  • the cross section of the first bearing portion 21 is a rounded rectangle. It can be understood that in other embodiments of the present invention, the first bearing portion 21 The cross-section of the can also be circular or other shapes, which can be set according to actual use requirements, which is not limited here.
  • the transformer magnetic core 30 is accommodated in the inner hollow receiving space of the first carrying portion 21, and the outer wall of the first carrying portion 21 is sleeved with two first transformer windings 70 wound in parallel. And the length of the first bearing portion 21 is the same as the length of the first transformer winding 70.
  • first abutting portion 22 is vertically connected with the first bearing portion 21, and two ends on the side connected to the first bearing portion 21 are provided with limiting slots 221.
  • the limiting slot 221 is defined by the first abutting portion 22 The top extends to the bottom.
  • the first limiting portion 23 is located at the upper end of the first abutting portion 22 and is perpendicular to the first abutting portion 22.
  • the first limiting portion 23 includes a limiting plate 231 and a connection to the limiting plate 231 A plate 232 and a plurality of limiting protrusions 233 provided on the connecting plate 232, wherein the connecting plate 232 is vertically connected to the top of the first abutting portion 22, and the limiting plate 231 is formed by bending in multiple stages, and the limiting plate 231 and the connecting plate 232 are substantially enclosed in an isosceles trapezoid shape, which is used to collide with one end of the transformer magnetic core 30 to restrict the movement of the transformer magnetic core 30.
  • the first fixing portion 24 is located at the bottom end of the first abutting portion 22 and is perpendicular to the first abutting portion 22.
  • the top end of the first fixing portion 24 is in contact with the other end of the transformer core 30, and the first An abutment portion 22 and a first fixing portion 24 are located at the bottom end of the first carrying portion 21 and are provided with an escape notch 25.
  • the escape notch 25 is used to avoid space for the interconnected first transformer winding 70 and the inductor winding 80.
  • the bottom end of the first fixing portion 24 is further provided with an escape groove 241.
  • the inner wall of the escape groove 241 away from the escape gap 25 is provided with a fixing block, and the fixing block is provided at a position away from the bottom wall of the escape groove 241.
  • the transformer core 30 is an E-shaped core, which includes a bobbin 31 and two sides that are vertically and symmetrically connected to both ends of the bobbin 31 ⁇ 32 ⁇ 32.
  • the cross section of the bobbin 31 is substantially rectangular with rounded corners
  • the side body 32 includes a first bottom plate 321 vertically connected to the bobbin 31 and a first side plate 322 vertically connected to the other end of the first bottom plate 321.
  • the first bottom plate 321 has a substantially isosceles trapezoid shape.
  • the winding post 31 of the transformer magnetic core 30 is completely accommodated in the internal receiving space of the first bearing portion 21,
  • the first bottom plate 321 is accommodated in the accommodating space formed by the first limiting portion 23 and the first fixing portion 24, and the first bottom plate 321 is in contact with the first limiting portion 23 and the first fixing portion 24, respectively
  • the first transformer winding 70 is accommodated in the accommodating space formed by the first side plate 322 and the first bearing portion 21.
  • the structure of the inductive magnetic core 50 is substantially the same as the structure of the transformer magnetic core 30, the difference is that the length of the first side plate 322 on the inductive magnetic core 50 is shorter than the first side plate 322 on the transformer magnetic core 30 For the length, refer to the above-mentioned transformer core 30, which will not be repeated here.
  • the inductive skeleton 40 includes a second bearing portion 41, two second abutting portions 42 connected to both ends of the second bearing portion 41, and connected to each Two second limiting portions 43 at the upper end of the two abutting portions 42 and a second fixing portion 44 connected to the lower end of one of the second abutting portions 42;
  • the second bearing portion 41 is a center column barrel, the second bearing portion 41 is sleeved on the winding pole 31 of the inductor core 50, and the inductor winding 80 is wound on the second bearing portion 41, and the second bearing The length of the section 41 is the same as the length of the inductor winding 80.
  • the structure of the second abutment portion 42 is the same as the structure of the first abutment portion 22, the length of the second bearing portion 41 is smaller than the length of the first bearing portion 21, and the second limit position
  • the structure of the portion 43 is substantially the same as the structure of the first limiting portion 23, and the difference is that the second limiting portion 43 does not include the limiting protrusion.
  • the second transformer winding 90 is a copper foil
  • the second transformer winding 90 includes a carrier piece 91 and two connecting pieces 92 vertically connected to both ends of the carrier piece 91 2.
  • Two plug-in pieces 93 connected to the ends of each connecting piece 92, and a limiting piece 94 connected to one end of the carrying piece 91, wherein the limiting piece 94 is provided with each limiting position of the first limiting portion 23
  • the plurality of limiting holes 941 matching the protrusion 233.
  • the number of the limiting protrusion 233 and the limiting hole 941 is three. It can be understood that in other embodiments of the present invention, The number of the limiting protrusion 233 and the limiting hole 941 can be set according to actual use requirements.
  • the base 60 is provided with clamping blocks 61 at positions corresponding to the respective avoidance grooves 241 of the transformer frame 20, and when the transformer frame 20 is supported and fixed to the base 60,
  • the locking block 61 on the base 60 is accommodated in the avoiding groove 241 on the transformer skeleton 20, and the locking block 61 snaps to fix the fixing block on the avoiding groove 241, so that the base 60 realizes the bearing and fixing of the transformer framework 20. And the movement of the transformer skeleton 20 is restricted.
  • the base 60 is provided with plug holes 62 at positions corresponding to the respective plugs 93 of the second transformer windings 90.
  • the connecting piece 92 on the second transformer winding 90 is embedded in the limit slot 221 accommodated in the transformer frame 20, and the limiting hole 941 of the upper limit piece 94 of the second transformer winding 90 is fitted to the limit position on the transformer frame 20 In the bump 233, the plug 93 on the second transformer winding 90 is inserted into the plug hole 62 of the base 60.
  • the base 60 is further provided with a plurality of limiting blocks 63.
  • the limiting blocks 63 are generally T-shaped, and the limiting blocks 63 include a third bearing portion 631 and a vertical third bearing portion 631
  • the third limiting portion 632 in the middle, wherein both ends of the side where the third limiting portion 632 is connected to the third carrying portion 631 are respectively provided with insertion slots 633 for inserting the second transformer winding 90, the second transformer winding 90
  • the side of the connecting piece 92 of the second transformer winding 90 is inserted and received in the insertion slot 633 of the limit block 63, so that the bottom ends of the second transformer winding 90 are snapped to
  • the insertion holes 62 and the insertion slots 633 of the base 60 realize the fixed limit of the second transformer winding 90 and the base 60.
  • the base 60 is also provided with a plurality of accommodating holes 64, and each accommodating hole 64 is used for accommodating and fixing the first end lead of each inductor winding 80 and the end lead of the first transformer winding 70 connected thereto, Among them, in this embodiment, the end lead of the inductor winding 80 is connected to the corresponding first lead winding of the first transformer winding 70, and it is formed by the continuous winding of the stranded enameled wire, which is separately wound in different On the skeleton, the inductive winding 80 is wound on the inductance skeleton 40, and the two first transformer windings 70 are wound on the transformer skeleton 20, which can effectively reduce the leakage inductance of the on-board transformer 10 for new energy vehicles and reduce new energy. Automobile transformer 10 for automotive losses.
  • the two transformer cores 30 are inserted into the two ends of the transformer frame 20 until the side body 32 of the transformer core 30 and the first abutment portion 22 of the transformer frame 20 fit;
  • the two first The transformer winding 70 is wound in parallel on the outer wall of the transformer skeleton 20 and is accommodated in the accommodating space formed by the first side plate 322 of the transformer core 30;
  • its two second transformer windings 90 are clamped in the transformer skeleton 20, so that the connecting piece 92 on the second transformer winding 90 is embedded in the limiting groove 221 on the transformer frame 20 and the limiting hole 941 of the limiting piece 94 is fitted to the limiting protrusion 233 on the transformer frame 20
  • each inductance bobbin 40 is inserted against its corresponding transformer core 30, so that each inductance bobbin 40 and the transformer core 30 are close to the second abutting portion 42 and the second limiting portion on one side 43 is attached to the first bottom plate 321 of the transformer core 30; its two inductor windings 80 are respectively wound on
  • the number of the transformer core 30, the inductance bobbin 40, the inductance core 50, the first transformer winding 70, the inductance winding 80, and the second transformer winding 90 are two, in
  • the transformer cores 30 located on the left and right sides of the transformer skeleton 20 are respectively the left transformer core 31 and the right transformer core 32;
  • the inductor skeletons 40 located on the left and right sides of the transformer skeleton 20 are respectively left
  • the inductance cores 50 on the left and right sides of the transformer bobbin 20 are the left inductance core 51 and the right inductance core 52, respectively;
  • the first transformer windings 70 on the left and right sides of the transformer bobbin 20 The left first transformer winding 71 and the right first transformer winding 72 respectively;
  • the inductor windings 80 located on the left and right sides of the transformer bobbin 20 are the left inductor winding 81 and
  • FIG. 13 is a schematic diagram of the on-board transformer 10 for new energy vehicles, in which the left inductor winding 81 (Lr1) and the left first transformer winding 71 (N1) on the left side of the transformer skeleton 20 are connected to form an on-board transformer for new energy vehicles
  • the primary winding of 10 the right inductor winding 82 (Lr2) located on the right side of the transformer skeleton 20 and the right first transformer winding 72 (N2) are connected to form the first secondary winding of the on-board transformer 10 for new energy vehicles, which is clamped to the transformer
  • the two second transformer windings 90 (N3, N4) on the bobbin 20 are connected to form the second secondary winding of the on-board transformer 10 for new energy vehicles, and the left second transformer winding 91 (N3) and the right second transformer winding 92 ( N4) One end is connected together for short circuit use.
  • the on-vehicle transformer 10 for new energy vehicles in this embodiment can realize OBC mode operation and DC/DC mode operation.
  • the on-board transformer 10 for new energy vehicles when the on-board transformer 10 for new energy vehicles performs the ODB mode operation, its primary winding is used as an input winding to input voltage, and its left first transformer winding 71 (N1) starts to operate as an input, and The left inductor winding 81 (Lr1) is used as the resonant inductor of the system; its first secondary winding is used to output high voltage (HVout) at high power and full load, and its right first transformer winding 72 (N2) starts to work as an output to output High power, and its right inductor winding 82 (Lr2) is used as output inductor; its second secondary winding is used for low power output, and its second transformer winding 90 starts to work as output, and because there is no high power when the car is charging For power-consuming equipment, the low power output of the second secondary winding can maintain the basic system working power, and its output power is maintained within 200W.
  • HVout high voltage
  • N2 right first transformer winding 72
  • Lr2 right in
  • the on-board transformer 10 for new energy vehicles performs DC/DC mode operation
  • its primary winding does not work
  • its left first transformer winding 71 (N1) does not work
  • its left inductor winding 81 ( Lr1) does not work
  • its first secondary winding is used as input winding to input voltage
  • its right first transformer winding 72 (N2) starts to work as input
  • right inductor winding 82 (Lr2) is used as resonance of the system Inductance
  • its second secondary winding is used to output low voltage (LVout) at full load
  • its second transformer winding 90 starts to work as an output.
  • the output voltage is low and the current is large.
  • the left second transformer winding (N3) and the right second transformer winding 92 (N4) are made of copper foil using the entire piece of copper, This makes it possible to meet the requirements of the system for large currents, and because the surfaces of the two second transformer windings 90 are large, it can be used for heat dissipation.
  • the on-board transformers for new energy vehicles are equipped with transformer magnetic cores on both sides of the transformer skeleton, so that the transformer magnetic circuit of the on-board transformers for new energy vehicles can be formed by passing
  • the side is provided with an inductance skeleton and an inserted inductance magnetic core, so that two resonant inductance magnetic circuits located at both ends of the transformer magnetic circuit can be enclosed, so that only four magnetic cores can be used to form three independent magnetic circuits, and at the same time
  • the two first transformer windings and the two second transformer windings are wound in parallel in the transformer skeleton, so that the winding of the four windings in the transformer magnetic circuit can be achieved, and
  • the left first transformer winding on the left side of the transformer skeleton can realize OBC input
  • the right first transformer winding on the right side of the transformer skeleton can realize OBC output and DC/DC input
  • its two second transformer windings can realize DC/DC Output, so that the four magnetic cores
  • the on-board transformer for energy vehicles can greatly reduce the use space and solve the problem of low integration of existing on-board transformers.
  • the on-board transformer for new energy vehicles provided by this embodiment changes the existing two sets of power transformers from physical integration to electronic integration, which greatly reduces the size of the transformer, and effectively reduces the size of the power supply, which can reduce the cost of the power supply.
  • the structural design is suitable for automated production, which makes the consistency of the device better and is conducive to the stability of the quality of automotive power supplies.
  • the transformer skeleton and the inductance skeleton are provided, so that the winding can be convenient and fast. Since the skeleton can realize automatic mass production, the consistency of the produced products is higher, and the quality of the on-board transformer for new energy vehicles is more Good control.
  • each first transformer winding and inductor winding are wound on the transformer skeleton and the inductor skeleton, respectively, and the first transformer winding and the inductor winding that are continuously wound at a time use insulated wire materials, making it due to the arrangement of the insulating material and the skeleton
  • the barrier can strengthen the insulation effect between each winding to meet the safety requirements of the vehicle; at the same time, the turns ratio of its inductive winding and transformer winding can be freely adjusted according to the actual use requirements, so that it can meet the needs of different power supply design schemes;
  • the use of the skeleton structure to make the on-board transformer for new energy vehicles makes the outer dimension accuracy of the on-board transformer for new energy vehicles higher, and is regular, suitable for the design and installation of the power supply; at the same time, because the second transformer winding is clamped to the transformer skeleton by a whole piece of copper foil And the connecting piece and the connecting piece at the bottom end are inserted into the base, so that the reinforced transformer skeleton can be fixed to the
  • the invention also provides a new energy vehicle, including the on-board transformer for the new energy vehicle described above.
  • the new energy vehicle uses a vehicle transformer for a new energy vehicle including a transformer skeleton, two transformer magnetic cores inserted at both ends of the transformer skeleton, two inductive skeletons which respectively abut against one end of each transformer magnetic core, and respectively inserted Two inductance magnetic cores mounted on one end of each inductance skeleton, and a base carrying fixed transformer skeleton and inductance skeleton, two first transformer windings insulated and isolated from each other are wound on the transformer skeleton, and inductances are wound on each inductance skeleton For the winding, the end leads of each inductance winding are respectively connected to the corresponding first lead windings of the first transformer winding, and the two transformer windings which are extended to the base and fixed to the base are respectively clamped on both ends of the transformer skeleton.
  • Transformer magnetic cores are inserted on both sides of the transformer skeleton, so that the transformer magnetic circuit of the on-board transformer for new energy vehicles can be formed.
  • an inductive skeleton and an inserted inductive magnetic core on one side of each transformer magnetic core, It can enclose two resonant inductance magnetic circuits located at both ends of the transformer magnetic circuit, so that only four magnetic cores can be used to form three independent magnetic circuits.
  • the transformer magnetic circuit is separately wound in parallel in the transformer skeleton.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

一种新能源汽车用车载变压器(10)及新能源汽车,该新能源汽车用车载变压器(10)包括变压器骨架(20)、插装于变压器骨架(20)两端的两个变压器磁芯(30)、分别抵靠于各个变压器磁芯(30)一端的两个电感骨架(40)、分别插装于各个电感骨架(40)一端的两个电感磁芯(50)、及承载固定变压器骨架(20)和电感骨架(40)的底座(60),变压器骨架(20)上并绕有两个相互绝缘隔离的第一变压器绕组(70),各个电感骨架(40)上分别绕制有电感绕组(80),各个电感绕组(80)的末端引线分别与与其对应的第一变压器绕组(70)的首端引线相连,变压器骨架(20)两端上分别卡装有延伸至与底座(60)固定的第二变压器绕组(90)。上述新能源汽车用车载变压器解决了现有车载变压器集成度不高的问题。

Description

一种新能源汽车用车载变压器及新能源汽车 技术领域
本发明属于变压器技术领域,尤其涉及一种新能源汽车用车载变压器及新能源汽车。
背景技术
随着科学技术的进步以及电子技术的发展,越来越多的电子设备需使用变压器元件,随着电动汽车行业的蓬勃发展,车载电子设备呈小型化、集成化、高功率密度化的趋势。特别是车载OBC(On Board Charge)充电机和车载DC/DC,作为整个电动汽车的电能转换核心部件,迫切需求小型化、高度集成化。
现有技术中,通常在电动汽车内部设置相互独立的OBC电源变压器和DC/DC电源变压器。在实际工作时,通过OBC电源变压器变压以给车载蓄电池充电,通过DC/DC电源变压器实现车载蓄电池放电,由于OBC电源变压器和DC/DC电源变压器相互独立,OBC电源变压器和DC/DC电源变压器内的各电气器件不能共用,使得需要使用两套独立的电源才能进行处理,其OBC电源和DC/DC电源两套电源仅主变压器加配套的两个谐振电感,使得主磁性器件就需要4个,同时还需要两套完全独立的电源拓补才能实现功能,因此导致所需电气器件数量较多,其集成度较低,占用汽车空间大,且生产成本高。
发明内容
本发明实施例提供一种新能源汽车用车载变压器,旨在解决现有车载变压器集成度不高的问题。
本发明实施例提出一种新能源汽车用车载变压器,包括变压器骨架、插装于所述变压器骨架两端的两个变压器磁芯、分别抵靠于各个所述变压器磁芯一端的两个电感骨架、分别插装于各个所述电感骨架一端的两个电感磁芯、及承载固定所述变压器骨架和所述电感骨架的底座,所述变压器骨架上并绕有两个相互绝缘隔离的第一变压器绕组,各个所述电感骨架上分别绕制有电感绕组,各个所述电感绕组的末端引线分别与与其对应的所述第一变压器绕组的首端引线相连,所述变压器骨架两端上分别卡装有延伸至与所述底座固定的第二变压器绕组。
更进一步地,所述变压器骨架包括第一承载部、连接于所述第一承载部两端部的两个第一抵靠部、以及分别连接于各个所述第一抵靠部上下两端的第一限位部和第一固定部,所述变压器磁芯插装容置于所述第一承载部的内部收容空间内,所述第一承载部的外壁套设有并线绕制的两个所述第一变压器绕组,所述第一限位部和所述第一固定部围合形成容置所述变压器磁芯的容置空间,所述第一固定部固定至所述底座。
更进一步地,所述变压器磁芯包括绕线柱、以及垂直且对称连接于所述绕线柱两端部的两个侧体,所述侧体包括垂直连接于所述绕线柱的第一底板、以及垂直连接于所述第一底板另一端部的第一侧板。
更进一步地,所述电感骨架包括第二承载部、连接于所述第二承载部两端的两个第二抵靠部、连接于各个所述第二抵靠部上端的两个第二限位部、及连接于其中一所述第二抵靠部下端的第二固定部。
更进一步地,所述第一抵靠部与所述第一承载部垂直连接,所述第一限位部垂直于所述第一抵靠部的上端,所述第一抵靠部与第一承载部相连接一侧的两端开设有限位槽,所述第一限位部包括限位板、与所述限位板连接的连接板、以及设于所述连接板上的多个限位凸块,所述连接板垂直连接于所述第一抵靠部的顶端。
更进一步地,所述第二变压器绕组包括承载片、垂直连接于所述承载片两端的两个连接片、连接于各个所述连接片端部的两个插接片、及连接于所述承载片一端的限位片,所述限位片上设有与各个所述限位凸块相匹配的多个限位孔,使用时,所述连接片插嵌至所述限位槽中,所述限位孔套装至所述限位凸块中。
更进一步地,所述第一抵靠部及所述第一固定部位于所述第一承载部的底端设有避让缺口,所述第一固定部的底端设有避让槽,所述避让槽远离所述避让缺口的内壁上设有固定块,所述固定块设于远离所述避让槽底壁的位置。
更进一步地,所述底座对应各个所述避让槽的位置上均设有卡块,固定时,所述卡块容置于所述避让槽内,且所述卡块卡扣固定所述固定块。
更进一步地,所述底座上对应各个所述插接片的位置上均设有插接孔,所述底座设有多个限位块,所述限位块包括第三承载部、及垂直所述第三承载部中部的第三限位部,所述第三限位部与所述第三承载部相连一侧的两端分别设有用于插接所述连接片的插接槽,固定时,所述插接片插接至所述插接孔中,所述连接片一侧插接至所述插接槽中。
本发明实施例还提供一种新能源汽车,包括上述所述的新能源汽车用车载变压器。
本发明所提供的新能源汽车用车载变压器,由于在变压器骨架的两侧分别插装有变压器磁芯,使得可组成新能源汽车用车载变压器的变压器磁路,通过在各个变压器磁芯的一侧分别设有电感骨架及插装电感磁芯,使得可围合组成位于变压器磁路两端的两个谐振电感磁路,使得仅使用四个磁芯即能分别组成三个独立的磁路,同时在变压器磁路中通过在变压器骨架中分别并线绕制有两个第一变压器绕组、及卡装的两个第二变压器绕组,使得可在变压器磁路中实现四个绕组的绕制,且位于变压器骨架左侧的左第一变压器绕组可实现OBC输入,且位于变压器骨架右侧的右第一变压器绕组可实现OBC输出及DC/DC输入,其两个第二变压器绕组可实现DC/DC输出,使得通过设置的四个磁芯及三个骨架集成在新能源汽车用车载变压器上即可同时实现车载充电机OBC及DC/DC两套电源的功能,使得只用一个车载变压器器件即可实现四个磁芯组成三个磁路,现有常规方案通常是两个磁芯组成一个磁路,使得需要采用四个器件、八个磁芯才能实现车载充电机OBC和DC/DC两套电源的功能,使得采用本实施例中的新能源汽车用车载变压器可大大的减小了使用空间,解决了现有车载变压器集成度不高的问题。
附图说明
图1是本发明的一实施例提供的新能源汽车用车载变压器在第一视角下的结构示意图;
图2是本发明的一实施例提供的新能源汽车用车载变压器在第二视角下的爆炸结构示意图;
图3是本发明的一实施例提供的新能源汽车用车载变压器在第三视角下的爆炸结构示意图;
图4是本发明的一实施例提供的新能源汽车用车载变压器在第四视角下的爆炸结构示意图;
图5是本发明的一实施例提供的新能源汽车用车载变压器在第五视角下的结构示意图;
图6是图5中A-A部分的剖面图;
图7是本发明的一实施例提供的新能源汽车用车载变压器中变压器骨架的结构示意图;
图8是本发明的一实施例提供的新能源汽车用车载变压器中变压器磁芯的结构示意图;
图9是本发明的一实施例提供的新能源汽车用车载变压器中电感骨架在第六视角下的结构示意图;
图10是本发明的一实施例提供的新能源汽车用车载变压器中电感骨架在第七视角下的结构示意图;
图11是本发明的一实施例提供的新能源汽车用车载变压器中第二变压器绕组的结构示意图;
图12是本发明的一实施例提供的新能源汽车用车载变压器中底座的结构示意图;
图13是本发明的一实施例提供的新能源汽车用车载变压器的原理图;
图14是本发明的一实施例提供的新能源汽车用车载变压器在ODB模式工作时的原理图;
图15是本发明的一实施例提供的新能源汽车用车载变压器在DC/DC模式工作时的原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的新能源汽车用车载变压器包括变压器骨架、插装于变压器骨架两端的两个变压器磁芯、分别抵靠于各个变压器磁芯一端的两个电感骨架、分别插装于各个电感骨架一端的两个电感磁芯、及承载固定变压器骨架和电感骨架的底座,变压器骨架上并绕有两个相互绝缘隔离的第一变压器绕组,各个电感骨架上分别绕制有电感绕组,各个电感绕组的末端引线分别与与其对应的第一变压器绕组的首端引线相连,变压器骨架两端上分别卡装有延伸至与底座固定的第二变压器绕组。通过变压器骨架的两侧分别插装有变压器磁芯,使得可组成新能源汽车用车载变压器的变压器磁路,通过在各个变压器磁芯的一侧分别设有电感骨架及插装电感磁芯,使得可围合组成位于变压器磁路两端的两个谐振电感磁路,使得仅使用四个磁芯即能分别组成三个独立的磁路,同时在变压器磁路中通过在变压器骨架中分别并线绕制有两个第一变压器绕组、及卡装的两个第二变压器绕组,使得可在变压器磁路中实现四个绕组的绕制,且位于变压器骨架左侧的左第一变压器绕组可实现OBC输入,位于变压器骨架右侧的右第一变压器绕组可实现OBC输出及DC/DC输入,其两个第二变压器绕组可实现DC/DC输出,使得通过设置的四个磁芯及三个骨架集成在新能源汽车用车载变压器上即可同时实现OBC及DC/DC功能,使得采用本发明所提供的新能源汽车用车载变压器可大大的减小了使用空间,解决了现有车载变压器集成度不高的问题。
实施例一
如图1所示为本发明实施例提供的新能源汽车用车载变压器10的结构示意图。
请查阅图1至图12,本发明提供的新能源汽车用车载变压器10,包括变压器骨架20、插装于变压器骨架20两端的两个变压器磁芯30、分别抵靠于各个变压器磁芯30一端的两个电感骨架40、分别插装于各个电感骨架40一端的两个电感磁芯50、及承载固定变压器骨架20和电感骨架40的底座60。其中,变压器骨架20上并绕有两个相互绝缘隔离的第一变压器绕组70,各个电感骨架40上分别绕制有电感绕组80,且各个电感绕组80的末端引线分别与与其对应的第一变压器绕组70的首端引线相连,变压器骨架20两端上还分别卡装有延伸至与底座60固定的第二变压器绕组90。
其中,如图7所示,本发明的一个实施例中,变压器骨架20包括第一承载部21、连接于第一承载部21两端部的两个第一抵靠部22、以及分别连接于各个第一抵靠部22上下两端的第一限位部23和第一固定部24。
其中,第一承载部21为一中柱筒,在本实施例中,其第一承载部21截面为圆角矩形,可以理解的,在本发明的其他实施例中,其第一承载部21的截面还可以为圆形等其他形状,可根据实际使用需求进行设置,在此不做限定。使用时,其变压器磁芯30容置于第一承载部21的内部中空收容空间内,且第一承载部21的外壁套设有并线绕制的两个第一变压器绕组70。且第一承载部21的长度与第一变压器绕组70的长度相同。
其中,第一抵靠部22与第一承载部21垂直连接,且与第一承载部21相连接一侧的两端开设有限位槽221,其限位槽221由第一抵靠部22的顶端延伸至底端。
其中,第一限位部23位于第一抵靠部22的上端,且与第一抵靠部22相垂直,其第一限位部23包括限位板231、与限位板231连接的连接板232、以及设于连接板232上的多个限位凸块233,其中连接板232垂直连接于第一抵靠部22的顶端,其限位板231由多段弯折形成,其限位板231与连接板232大致围合呈等腰梯形,用于与变压器磁芯30一端相抵触贴合,以限制变压器磁芯30的运动。
其中,第一固定部24位于第一抵靠部22的底端,且与第一抵靠部22相垂直,其第一固定部24顶端与变压器磁芯30另一端相抵触贴合,其第一抵靠部22及第一固定部24位于第一承载部21的底端设有避让缺口25,其避让缺口25用于对相互连接的第一变压器绕组70和电感绕组80实现空间的避让。其第一固定部24的底端还设有避让槽241,其避让槽241远离避让缺口25的内壁上设有固定块,且该固定块设于远离避让槽241的底壁的位置。
其中,如图8所示,本发明的一个实施例中,变压器磁芯30为E型磁芯,其包括绕线柱31、以及垂直且对称连接于绕线柱31两端部的两个侧体32。其中,绕线柱31的截面大体为圆角矩形,其侧体32包括垂直连接于绕线柱31的第一底板321、以及垂直连接于第一底板321另一端部的第一侧板322。其中第一底板321大致呈等腰梯形,当变压器磁芯30插装于变压器骨架20上时,其变压器磁芯30的绕线柱31完全容置于第一承载部21的内部收容空间内,其第一底板321容置于第一限位部23和第一固定部24围合形成的容置空间内,且第一底板321分别与第一限位部23和第一固定部24相抵触贴合,其第一变压器绕组70容置于第一侧板322与第一承载部21围合形成的容置空间内。其中,需要指出的是,两个变压器磁芯30分别插装至变压器骨架20两端时,其两个变压器磁芯30的第一侧板322相抵触,使得其两个变压器磁芯30可完全包裹绕制有变压器绕组的变压器骨架20。进一步地,其电感磁芯50的结构与变压器磁芯30的结构大体相同,其区别在于,其电感磁芯50上的第一侧板322的长度小于变压器磁芯30上的第一侧板322的长度,其可参照上述所述的变压器磁芯30,在此不予赘述。
其中,如图9-10所示,本发明的一个实施例中,电感骨架40包括第二承载部41、连接于第二承载部41两端的两个第二抵靠部42、连接于各个第二抵靠部42上端的两个第二限位部43、及连接于其中一第二抵靠部42下端的第二固定部44;
其中第二承载部41为一中柱筒,其第二承载部41套设在电感磁芯50的绕线柱31上,且电感绕组80绕制在第二承载部41上,且第二承载部41的长度与电感绕组80的长度相同。当电感磁芯50插装于电感骨架40上时,其电感磁芯50的绕线柱完全容置于第二承载部41的收容空间内。其中本实施例中,具体的,第二抵靠部42的结构与第一抵靠部22的结构相同,其第二承载部41的长度小于第一承载部21的长度,其第二限位部43的结构与第一限位部23的结构大体相同,其区别在于,其第二限位部43不包括限位凸块。
其中,如图11所示,本发明的一个实施例中,第二变压器绕组90为一铜箔,其第二变压器绕组90包括承载片91、垂直连接于承载片91两端的两个连接片92、连接于各个连接片92端部的两个插接片93、及连接于承载片91一端的限位片94,其中该限位片94上设有与第一限位部23的各个限位凸块233相匹配的多个限位孔941,具体的,本实施例中,其限位凸块233及限位孔941的数量为3个,可以理解的,本发明的其他实施例中,其限位凸块233及限位孔941的数量可根据实际使用需求进行设定。
其中,如图12所示,本发明的一个实施例中,其底座60对应变压器骨架20的各个避让槽241的位置上均设有卡块61,其变压器骨架20承载固定至底座60上时,其底座60上的卡块61容置于该变压器骨架20上避让槽241内,且卡块61卡扣固定该避让槽241上的固定块,使得其底座60实现对变压器骨架20的承载固定,且限制变压器骨架20的移动。
进一步地,底座60上对应各个第二变压器绕组90的各个插接片93的位置上均设有插接孔62,第二变压器绕组90卡装至变压器骨架20上且延伸固定至底座60上时,其第二变压器绕组90上的连接片92嵌入容置至变压器骨架20上的限位槽221内,第二变压器绕组90上限位片94的限位孔941套装至变压器骨架20上的限位凸块233中,且该第二变压器绕组90上的插接片93插接嵌入至底座60的插接孔62内。
进一步地,底座60上还设有多个限位块63,本实施例中,限位块63大体呈T型,其限位块63包括一第三承载部631、及垂直第三承载部631中部的第三限位部632,其中第三限位部632与第三承载部631相连一侧的两端分别设有用于插接第二变压器绕组90的插接槽633,第二变压器绕组90固定至底座60上时,其第二变压器绕组90的连接片92的侧边插接容置于限位块63的插接槽633内,使得其第二变压器绕组90的底端分别卡装至底座60的插接孔62及插接槽633内,实现第二变压器绕组90与底座60的固定限位。
进一步地,其底座60上还设有多个容置孔64,其各个容置孔64用于容置固定与其对应连接的各个电感绕组80的首端引线及第一变压器绕组70的末端引线,其中,在本实施例中,电感绕组80的末端引线与与其对应的第一变压器绕组70的首端引线相连,且其由绞合漆包线不断线一次性绕制形成,其分开绕制在不同的骨架上,其电感绕组80绕制在电感骨架40上,其两个第一变压器绕组70并绕在变压器骨架20上,使得能有效的减少新能源汽车用车载变压器10的漏感,降低新能源汽车用车载变压器10损耗。
组装时,其两个变压器磁芯30分别插装于变压器骨架20的两端,直至变压器磁芯30的侧体32与变压器骨架20的第一抵靠部22相贴合;其两个第一变压器绕组70并线绕制在变压器骨架20的外壁,且容置于变压器磁芯30的第一侧板322围合形成的容置空间内;其两个第二变压器绕组90卡装在变压器骨架20上,以使其第二变压器绕组90上的连接片92嵌入至变压器骨架20上的限位槽221内及限位片94的限位孔941套装至变压器骨架20上的限位凸块233中;其各个电感骨架40插装抵靠至与其对应的变压器磁芯30中,以使其各个电感骨架40与变压器磁芯30相靠近一侧的第二抵靠部42和第二限位部43与变压器磁芯30的第一底板321相贴合;其两个电感绕组80分别绕制在对应的电感骨架40的外壁,且电感绕组80与第一变压器绕组70在变压器骨架20的避让缺口25处进行避让连接;其两个电感磁芯50分别插装于与其对应的电感骨架40的一侧,直至电感磁芯50的侧体与电感骨架40的第二抵靠部42相贴合,且电感磁芯50容置于第二限位部43及第二固定部44围合形成的容置空间内;其底座60上的卡块61容置于该变压器骨架20上避让槽241内,且卡块61卡扣固定该避让槽241上的固定块,其底座60上的插接孔62容置固定第二变压器绕组90上的插接片93,其底座60上的插接槽633容置固定第二变压器绕组90上的连接片92,其底座60上的容置孔64容置固定电感绕组80及第一变压器绕组70伸出的引线,使得其新能源汽车用车载变压器10上的各个骨架、磁芯、及绕组可稳固的固定至底座60上,通过在底座60上控制各个引脚的间距和脚长,使得可方便客户电源安装。
具体的,如图2至图4所示,其变压器磁芯30、电感骨架40、电感磁芯50、第一变压器绕组70、电感绕组80及第二变压器绕组90的数量均为两个,在本实施例中,具体的,在位于变压器骨架20左右两侧的变压器磁芯30分别为左变压器磁芯31和右变压器磁芯32;在位于变压器骨架20左右两侧的电感骨架40分别为左电感骨架41和右电感骨架42;在位于变压器骨架20左右两侧的电感磁芯50分别为左电感磁芯51和右电感磁芯52;在位于变压器骨架20左右两侧的第一变压器绕组70分别为左第一变压器绕组71和右第一变压器绕组72;在位于变压器骨架20左右两侧的电感绕组80分别为左电感绕组81和右电感绕组82;在位于变压器骨架20左右两侧的第二变压器绕组90分别为左第二变压器绕组91和右第二变压器绕组92。
如图13所示为新能源汽车用车载变压器10的原理图,其中位于变压器骨架20左侧的左电感绕组81(Lr1)和左第一变压器绕组71(N1)连接形成新能源汽车用车载变压器10的原边绕组,位于变压器骨架20右侧的右电感绕组82(Lr2)和右第一变压器绕组72(N2)连接形成新能源汽车用车载变压器10的第一副边绕组,卡装于变压器骨架20上的两个第二变压器绕组90(N3,N4)连接形成新能源汽车用车载变压器10的第二副边绕组,且左第二变压器绕组91(N3)和右第二变压器绕组92(N4)的一端共同连接,以作短路使用。
其中,其原边绕组用于实现OBC输入,其第一副边绕组用于实现OBC输出以及DC/DC输入,其第二副边绕组用于实现DC/DC输出,其中,第一副边绕组进行电压输出时,其用于实现高压输出(HVout),其第二副边绕组进行电压输出时,其用于实现低压输出(LVout)。其中,本实施例中的新能源汽车用车载变压器10可实现OBC模式工作及DC/DC模式工作。
具体的,如图14所示,新能源汽车用车载变压器10进行ODB模式工作时,其原边绕组用作输入绕组以输入电压,其左第一变压器绕组71(N1)开始工作作为输入,且左电感绕组81(Lr1)用作该系统的谐振电感;其第一副边绕组用于大功率满负荷输出高电压(HVout),其右第一变压器绕组72(N2)开始工作作为输出以输出大功率,且其右电感绕组82(Lr2)用作输出电感;其第二副边绕组用于小功率输出,其第二变压器绕组90开始工作作为输出,同时由于在汽车充电时,无大功率用电设备,此时第二副边绕组小功率输出可保持基本系统工作电量,其输出功率维持在200W以内。
具体的,如图15所示,新能源汽车用车载变压器10进行DC/DC模式工作时,其原边绕组不工作,其左第一变压器绕组71(N1)不工作,其左电感绕组81(Lr1)不工作;此时其第一副边绕组用作输入绕组以输入电压,其右第一变压器绕组72(N2)开始工作作为输入,且右电感绕组82(Lr2)用作该系统的谐振电感;此时其第二副边绕组用于满载输出低电压(LVout),其第二变压器绕组90开始工作作为输出。
具体的,由于DC/DC模式工作时输出电压低,电流较大,此时由于左第二变压器绕组(N3)和右第二变压器绕组92(N4)均分别使用整片紫铜片制作铜箔,使得可满足系统对于大电流的要求,同时由于两个第二变压器绕组90的表面较大,使得可做散热使用。
本发明实施例提供的新能源汽车用车载变压器,由于在变压器骨架的两侧分别插装有变压器磁芯,使得可组成新能源汽车用车载变压器的变压器磁路,通过在各个变压器磁芯的一侧分别设有电感骨架及插装电感磁芯,使得可围合组成位于变压器磁路两端的两个谐振电感磁路,使得仅使用四个磁芯即能分别组成三个独立的磁路,同时在变压器磁路中通过在变压器骨架中分别并线绕制有两个第一变压器绕组、及卡装的两个第二变压器绕组,使得可在变压器磁路中实现四个绕组的绕制,且位于变压器骨架左侧的左第一变压器绕组可实现OBC输入,且位于变压器骨架右侧的右第一变压器绕组可实现OBC输出及DC/DC输入,其两个第二变压器绕组可实现DC/DC输出,使得通过设置的四个磁芯及三个骨架集成在新能源汽车用车载变压器上即可同时实现车载充电机OBC及DC/DC两套电源的功能,使得只用一个车载变压器器件即可实现四个磁芯组成三个磁路。现有常规方案通常是两个磁芯组成一个磁路,使得需要采用四个器件、八个磁芯才能实现车载充电机OBC和DC/DC两套电源的功能,使得采用本实施例中的新能源汽车用车载变压器可大大的减小了使用空间,解决了现有车载变压器集成度不高的问题。本实施例提供的新能源汽车用车载变压器将现有的两套电源变压器从物理集成变成电子集成,大大降低了变压器尺寸,同时有效的将电源尺寸减小,可以实现电源成本降低,同时变压器结构设计适合于自动化生产,使得器件的一致性更好,有利于汽车电源的品质稳定。
进一步地,本实施例中由于设置的变压器骨架及电感骨架,使得可方便快速绕线,由于骨架可实现自动化量产,使生产的产品一致性更高,使得新能源汽车用车载变压器的品质更好控制。同时由于各个第一变压器绕组及电感绕组分别绕制于变压器骨架及电感骨架上,且一次性不断线绕制的第一变压器绕组和电感绕组采用绝缘线材料,使得其由于绝缘材料的设置及骨架的阻挡可强化各个绕组之间的绝缘效果,以满足车载安规需求;同时其电感绕组和变压器绕组的匝数比可根据实际使用需求进行自由调整,使得可满足不同电源设计方案的需要;同时由于采用骨架结构制作新能源汽车用车载变压器,使得新能源汽车用车载变压器外围尺寸精度更高,且规则,适合电源的设计安装;同时由于第二变压器绕组采用整片铜箔卡接至变压器骨架上,且其底端的连接片及插接片插接至底座,使得可实现加固变压器骨架固定至底座,同时其第二变压器绕组完全包裹该第一变压器绕组的外围,可用作低压输出及散热使用;同时其变压器绕组的避让槽容置避让底座的卡块,且卡块卡扣固定至变压器骨架的固定块上,使得变压器骨架可稳固的固定至底座上;同时由于各个磁芯及骨架安装至底座上时,通过控制引脚的间距和脚长,使得可方便客户电源安装。
实施例二
本发明还提供一种新能源汽车,包括上述所述的新能源汽车用车载变压器。
本发明提供的新能源汽车,使用的新能源汽车用车载变压器包括变压器骨架、插装于变压器骨架两端的两个变压器磁芯、分别抵靠于各个变压器磁芯一端的两个电感骨架、分别插装于各个电感骨架一端的两个电感磁芯、及承载固定变压器骨架和电感骨架的底座,变压器骨架上并绕有两个相互绝缘隔离的第一变压器绕组,各个电感骨架上分别绕制有电感绕组,各个电感绕组的末端引线分别与与其对应的第一变压器绕组的首端引线相连,变压器骨架两端上分别卡装有延伸至与底座固定的第二变压器绕组。通过变压器骨架的两侧分别插装有变压器磁芯,使得可组成新能源汽车用车载变压器的变压器磁路,通过在各个变压器磁芯的一侧分别设有电感骨架及插装电感磁芯,使得可围合组成位于变压器磁路两端的两个谐振电感磁路,使得仅使用四个磁芯即能分别组成三个独立的磁路,同时在变压器磁路中通过在变压器骨架中分别并线绕制有两个第一变压器绕组、及卡装的两个第二变压器绕组,使得可在变压器磁路中实现四个绕组的绕制,且位于变压器骨架左侧的左第一变压器绕组可实现OBC输入,位于变压器骨架右侧的右第一变压器绕组可实现OBC输出及DC/DC输入,其两个第二变压器绕组可实现DC/DC输出,使得通过设置的四个磁芯及三个骨架集成在新能源汽车用车载变压器上即可同时实现OBC及DC/DC功能,使得采用本发明所提供的新能源汽车用车载变压器可大大的减小了使用空间,解决了现有车载变压器集成度不高的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种新能源汽车用车载变压器,其特征在于,包括变压器骨架、插装于所述变压器骨架两端的两个变压器磁芯、分别抵靠于各个所述变压器磁芯一端的两个电感骨架、分别插装于各个所述电感骨架一端的两个电感磁芯、及承载固定所述变压器骨架和所述电感骨架的底座,所述变压器骨架上并绕有两个相互绝缘隔离的第一变压器绕组,各个所述电感骨架上分别绕制有电感绕组,各个所述电感绕组的末端引线分别与与其对应的所述第一变压器绕组的首端引线相连,所述变压器骨架两端上分别卡装有延伸至与所述底座固定的第二变压器绕组。
  2. 如权利要求1所述的新能源汽车用车载变压器,其特征在于,所述变压器骨架包括第一承载部、连接于所述第一承载部两端部的两个第一抵靠部、以及分别连接于各个所述第一抵靠部上下两端的第一限位部和第一固定部,所述变压器磁芯插装容置于所述第一承载部的内部收容空间内,所述第一承载部的外壁套设有并线绕制的两个所述第一变压器绕组,所述第一限位部和所述第一固定部围合形成容置所述变压器磁芯的容置空间,所述第一固定部固定至所述底座。
  3. 如权利要求1所述的新能源汽车用车载变压器,其特征在于,所述变压器磁芯包括绕线柱、以及垂直且对称连接于所述绕线柱两端部的两个侧体,所述侧体包括垂直连接于所述绕线柱的第一底板、以及垂直连接于所述第一底板另一端部的第一侧板。
  4. 如权利要求1所述的新能源汽车用车载变压器,其特征在于,所述电感骨架包括第二承载部、连接于所述第二承载部两端的两个第二抵靠部、连接于各个所述第二抵靠部上端的两个第二限位部、及连接于其中一所述第二抵靠部下端的第二固定部。
  5. 如权利要求2所述的新能源汽车用车载变压器,其特征在于,所述第一抵靠部与所述第一承载部垂直连接,所述第一限位部垂直于所述第一抵靠部的上端,所述第一抵靠部与第一承载部相连接一侧的两端开设有限位槽,所述第一限位部包括限位板、与所述限位板连接的连接板、以及设于所述连接板上的多个限位凸块,所述连接板垂直连接于所述第一抵靠部的顶端。
  6. 如权利要求5所述的新能源汽车用车载变压器,其特征在于,所述第二变压器绕组包括承载片、垂直连接于所述承载片两端的两个连接片、连接于各个所述连接片端部的两个插接片、及连接于所述承载片一端的限位片,所述限位片上设有与各个所述限位凸块相匹配的多个限位孔,使用时,所述连接片插嵌至所述限位槽中,所述限位孔套装至所述限位凸块中。
  7. 如权利要求2所述的新能源汽车用车载变压器,其特征在于,所述第一抵靠部及所述第一固定部位于所述第一承载部的底端设有避让缺口,所述第一固定部的底端设有避让槽,所述避让槽远离所述避让缺口的内壁上设有固定块,所述固定块设于远离所述避让槽底壁的位置。
  8. 如权利要求7所述的新能源汽车用车载变压器,其特征在于,所述底座对应各个所述避让槽的位置上均设有卡块,固定时,所述卡块容置于所述避让槽内,且所述卡块卡扣固定所述固定块。
  9. 如权利要求6所述的新能源汽车用车载变压器,其特征在于,所述底座上对应各个所述插接片的位置上均设有插接孔,所述底座设有多个限位块,所述限位块包括第三承载部、及垂直所述第三承载部中部的第三限位部,所述第三限位部与所述第三承载部相连一侧的两端分别设有用于插接所述连接片的插接槽,固定时,所述插接片插接至所述插接孔中,所述连接片一侧插接至所述插接槽中。
  10. 一种新能源汽车,其特征在于,包括如权利要求1-9任一项所述的新能源汽车用车载变压器。
PCT/CN2019/071298 2019-01-11 2019-01-11 一种新能源汽车用车载变压器及新能源汽车 WO2020143017A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/071298 WO2020143017A1 (zh) 2019-01-11 2019-01-11 一种新能源汽车用车载变压器及新能源汽车
CN201980000429.1A CN110062715B (zh) 2019-01-11 2019-01-11 一种新能源汽车用车载变压器及新能源汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071298 WO2020143017A1 (zh) 2019-01-11 2019-01-11 一种新能源汽车用车载变压器及新能源汽车

Publications (1)

Publication Number Publication Date
WO2020143017A1 true WO2020143017A1 (zh) 2020-07-16

Family

ID=67325780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071298 WO2020143017A1 (zh) 2019-01-11 2019-01-11 一种新能源汽车用车载变压器及新能源汽车

Country Status (2)

Country Link
CN (1) CN110062715B (zh)
WO (1) WO2020143017A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879165A (zh) * 2021-11-18 2022-01-04 重庆大学 一种电动车辆单双源充电装置和控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921242A (zh) * 2020-07-09 2022-01-11 比亚迪股份有限公司 绕组组件、车载充电器及车辆
CN113921241A (zh) * 2020-07-09 2022-01-11 比亚迪股份有限公司 绕组组件、车载充电器及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186351A (ja) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd 高周波トランス
CN202549596U (zh) * 2011-12-30 2012-11-21 东软飞利浦医疗设备系统有限责任公司 谐振电感与高压变压器磁集成装置
CN204289058U (zh) * 2014-11-27 2015-04-22 深圳市铭昱达电子有限公司 集成型变压器
CN108109821A (zh) * 2017-12-06 2018-06-01 深圳威迈斯电源有限公司 一种高集成磁元件
CN109003794A (zh) * 2018-08-27 2018-12-14 东莞市大忠电子有限公司 一种低损耗车载变压器
CN109102991A (zh) * 2018-08-27 2018-12-28 东莞市大忠电子有限公司 一种低温升车载变压器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000106B1 (ko) * 1992-01-17 1997-01-04 미쯔비시 덴끼 가부시기가이샤 차량탑재용 변압기
JP3798344B2 (ja) * 2002-06-14 2006-07-19 三菱電機株式会社 車両用変圧器
GB2408634A (en) * 2003-11-17 2005-06-01 Bombardier Transp Gmbh Traction transformer with primary and filter windings connected in series
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
JP5730448B1 (ja) * 2014-01-20 2015-06-10 三菱電機株式会社 車載変圧器
CN106160496A (zh) * 2016-08-17 2016-11-23 深圳市鼎硕同邦科技有限公司 一种用于新能源汽车的平面变压器磁集成串并联电源系统
CN206116167U (zh) * 2016-10-10 2017-04-19 深圳诺维信电子科技有限公司 一种集成漏感谐振变压器
CN106373751B (zh) * 2016-11-11 2018-11-13 深圳市莱福德光电有限公司 高频变压器
CN206116158U (zh) * 2016-11-11 2017-04-19 深圳市莱福德光电有限公司 高频变压器
CN206546771U (zh) * 2017-02-22 2017-10-10 深圳市中电熊猫磁通电子有限公司 一种电动汽车用车载充电机变压器
CN108511160A (zh) * 2017-02-28 2018-09-07 乐金电子研发中心(上海)有限公司 磁集成装置及应用其的双向充电机
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN207458733U (zh) * 2017-08-03 2018-06-05 广州金升阳科技有限公司 一种变压器的骨架及磁性元件
CN107887147A (zh) * 2017-12-26 2018-04-06 天津光电润达电子有限公司 一种磁集成变压器及加工方法
CN207909669U (zh) * 2018-01-10 2018-09-25 台达电子企业管理(上海)有限公司 变压器及使用其的电源装置
CN108538552A (zh) * 2018-01-22 2018-09-14 许继电源有限公司 一种集成谐振电感的磁芯装置及其变压器
CN109087788A (zh) * 2018-07-19 2018-12-25 广东美信科技股份有限公司 一种平板变压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186351A (ja) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd 高周波トランス
CN202549596U (zh) * 2011-12-30 2012-11-21 东软飞利浦医疗设备系统有限责任公司 谐振电感与高压变压器磁集成装置
CN204289058U (zh) * 2014-11-27 2015-04-22 深圳市铭昱达电子有限公司 集成型变压器
CN108109821A (zh) * 2017-12-06 2018-06-01 深圳威迈斯电源有限公司 一种高集成磁元件
CN109003794A (zh) * 2018-08-27 2018-12-14 东莞市大忠电子有限公司 一种低损耗车载变压器
CN109102991A (zh) * 2018-08-27 2018-12-28 东莞市大忠电子有限公司 一种低温升车载变压器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879165A (zh) * 2021-11-18 2022-01-04 重庆大学 一种电动车辆单双源充电装置和控制方法

Also Published As

Publication number Publication date
CN110062715B (zh) 2022-07-15
CN110062715A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020143017A1 (zh) 一种新能源汽车用车载变压器及新能源汽车
KR101259778B1 (ko) 3상 고주파 트랜스포머
US20020057178A1 (en) Bobbin for hybrid coils in planar magnetic components
US6927650B2 (en) Common mode choke coil with vertically arranged edgewise windings of rectangular wire
TWI467609B (zh) 變壓器結構
US20150102893A1 (en) Coil part
JP2014179585A (ja) 電子自動車用変圧器モジュール
JP2010045110A (ja) リアクトル集合体
JP3189670U (ja) 変圧器鉄芯の改良構成
TWI789203B (zh) 磁性元件及其磁芯結構
WO2021147277A1 (zh) 多相变压器
CN111383832B (zh) 一种对扣式变压器骨架、变压器及组装方法
KR200495510Y1 (ko) 슬림형 트랜스포머
WO2021258352A1 (zh) 一种电气元件、电路板及开关电源
KR102558498B1 (ko) 클립 결합식 트랜스포머
KR20140004847A (ko) 단자대를 갖는 보빈 및 이를 이용한 자성체
CN215527401U (zh) 一种平面变压器
KR100444232B1 (ko) 2차코일 고정형 트랜스포머 및 그에 사용되는 트랜스 보빈
TW201428781A (zh) 磁性元件
US20240237217A9 (en) Circuit board having composite magnetic components mounted thereon
CN214254054U (zh) 磁集成器件
US20240138070A1 (en) Circuit board having composite magnetic components mounted thereon
CN220290615U (zh) 谐振变压器
CN220933878U (zh) 一种多相大电流储能电感
US12040124B2 (en) Transformer and DC-DC converter including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908617

Country of ref document: EP

Kind code of ref document: A1