WO2020142968A1 - 测距装置及移动平台 - Google Patents

测距装置及移动平台 Download PDF

Info

Publication number
WO2020142968A1
WO2020142968A1 PCT/CN2019/071056 CN2019071056W WO2020142968A1 WO 2020142968 A1 WO2020142968 A1 WO 2020142968A1 CN 2019071056 W CN2019071056 W CN 2019071056W WO 2020142968 A1 WO2020142968 A1 WO 2020142968A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
optical element
arm
distance measuring
measuring device
Prior art date
Application number
PCT/CN2019/071056
Other languages
English (en)
French (fr)
Inventor
王昊
黄淮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005742.4A priority Critical patent/CN111670337B/zh
Priority to PCT/CN2019/071056 priority patent/WO2020142968A1/zh
Publication of WO2020142968A1 publication Critical patent/WO2020142968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Definitions

  • This application relates to the technical field of laser ranging, in particular to a ranging device and a mobile platform.
  • the existing distance measuring device includes a scanning module.
  • the scanning module includes a driver and an optical element.
  • the driver is used to drive the optical element to rotate to change the laser light passing through the optical element.
  • the scanning module inevitably generates vibration and noise, and when the scanning module vibrates, it is easy to cause the ranging accuracy of the ranging device to decrease.
  • the embodiments of the present application provide a distance measuring device and a mobile platform.
  • the distance measuring device of the present application includes a base, two brackets, a distance measuring module, a scanning module, and a plurality of flexible connection components, both of which are fixed on the base; the distance measuring module is used for launching Light pulses; the scanning module is used to change the transmission direction of the light pulses before exiting, the scanning module and the distance measuring module are spaced apart, the scanning module includes a scanning housing, two The brackets are respectively located on opposite sides of the scanning housing; each of the brackets is connected to the scanning housing through at least two flexible connecting components.
  • the mobile platform of the present application includes a mobile platform body and the above-mentioned distance measuring device, and the distance measuring device is installed on the mobile platform body.
  • the bracket of the mobile platform and the distance measuring device of the present application is fixed on the base, and the scanning module is installed on the bracket through a flexible connection component.
  • the flexible connection component causes no direct contact between the scanning module and the base, which can reduce or even avoid scanning
  • the vibration of the module is transmitted to the base; and because the scanning module and the distance measuring module are spaced apart, the vibration of the scanning module can be reduced or even prevented from being transmitted to the distance measuring module, thereby improving the detection accuracy of the distance measuring device.
  • FIG. 1 is a partially exploded schematic diagram of a distance measuring device according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of a partial stereo structure of the distance measuring device shown in FIG. 1.
  • FIG. 3 is a partial perspective exploded view of the distance measuring device shown in FIG. 2.
  • FIG. 4 is a schematic perspective view of a bracket of the distance measuring device shown in FIG. 3.
  • FIG. 5 is an exploded perspective view of the scanning module of the distance measuring device shown in FIG. 3.
  • FIG. 6 is a partial perspective exploded view of the distance measuring device shown in FIG. 3.
  • FIG. 7 is an exploded perspective view of three supports of the scanning module shown in FIG. 5.
  • FIG. 8 is an exploded perspective view of the three supports of the scanning module shown in FIG. 5 from another perspective.
  • FIG. 9 is a schematic cross-sectional view of a partial structure of the scanning module shown in FIG. 4.
  • FIG. 10 is a schematic cross-sectional view of a partial structure of the scanning module shown in FIG. 4.
  • FIG. 11 is an enlarged schematic view of the scanning module XI shown in FIG. 10.
  • FIG. 12 is an enlarged schematic view of the scanning module XII shown in FIG. 10.
  • FIG. 13 and 14 are schematic cross-sectional views of some structures of the scanning module in some embodiments.
  • FIG. 15 is a schematic perspective view of the rotor of the scanning module shown in FIG. 9.
  • FIG. 16 is a schematic perspective view of the rotor of the scanning module shown in FIG. 9 from another perspective.
  • 17 and 18 are schematic diagrams of the optical path of the scanning module in some embodiments.
  • FIG. 19 is a schematic diagram of the phase angle of the scanning module of some embodiments.
  • FIG. 20 is a schematic diagram of the optical path of the scanning module in some embodiments.
  • 21 is a top view of the distance measuring module shown in FIG. 2.
  • FIG. 22 is a schematic cross-sectional view of the distance measuring module shown in FIG. 21 along the line XXII-XXII.
  • FIG. 23 is an enlarged schematic view of XXIII in the ranging module shown in FIG. 22.
  • FIG. 24 is an enlarged schematic view of XXIV in the ranging module shown in FIG. 22.
  • FIG. 25 is a schematic diagram of the ranging principle of the ranging device of some embodiments of the present application.
  • 26 is a circuit schematic diagram of a distance measuring module of a distance measuring device according to some embodiments of the present application.
  • FIG. 27 is another schematic diagram of the ranging principle of the ranging device of some embodiments of the present application.
  • FIG. 28 is a schematic plan view of a mobile platform according to some embodiments of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or integrally connected; may be mechanical, electrical, or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction of two elements relationship.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the distance measuring device 100 of the present application includes a base 10, two brackets 30, a distance measuring module 60, a scanning module 40, and a plurality of flexible connection components 50. Both brackets 30 are fixed on the base 10.
  • the distance measuring module 60 is used to emit light pulses.
  • the scanning module 40 is used to change the transmission direction of the light pulse and exit.
  • the scanning module 40 and the distance measuring module 60 are spaced apart.
  • the scanning module 40 includes a scanning housing 41, and two brackets 30 are respectively located in the phase of the scanning housing 41. Back sides. Each bracket 30 is connected to the scan housing 41 through at least two flexible connection assemblies 50.
  • the bracket 30 in the distance measuring device 100 of the present application is fixed on the base 10, and the scanning module 40 is installed on the bracket 30 through a flexible connection assembly 50.
  • the flexible connection assembly 50 prevents the direct contact between the scanning module 40 and the base 10. Therefore, it is possible to reduce or even prevent the vibration of the scanning module 40 from being transmitted to the base 10; and because the scanning module 40 and the distance measuring module 60 are spaced apart, the vibration of the scanning module 40 is transmitted to the distance measuring module 60 In this way, the detection accuracy of the distance measuring device 100 is improved.
  • the distance measuring device 100 includes a base 10, a cover 20, two brackets 30, a scanning module 40, a plurality of flexible connection components 50, and a distance measuring module 60. Both brackets 30 are fixed on opposite sides of the base 10.
  • the scanning module 40 and the distance measuring module 60 are spaced apart on the base 10 and between the two brackets 30, and each bracket 30 is connected to the scanning module 40 through at least two flexible connection components 50.
  • the distance measuring module 60 is used to emit laser pulses to the scanning module 40.
  • the scanning module 40 is used to change the transmission direction of the laser pulses and then exit.
  • the laser pulses reflected by the detection object pass through the scanning module 40 and enter the distance measuring module Group 60, the ranging module 60 is used to determine the distance between the detected object and the ranging device 100 according to the reflected laser pulse.
  • the distance measuring device 100 can detect the distance between the detecting object and the distance measuring device 100 by measuring the time of light propagation between the distance measuring device 100 and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device 100 can also detect the distance between the detected object and the distance measuring device 100 through other techniques, such as a distance measuring method based on phase shift measurement, or a distance measuring method based on frequency shift measurement , No restrictions here.
  • the base 10 includes a base body 11, a first mounting base 12 and a second mounting base 13, and the base body 11 has a plate-like structure.
  • the first mount 12 and the second mount 13 are formed on the top 111 of the base body 11.
  • the first mounting base 12 may be a mounting wall protruding from the top 111 of the base body 11.
  • the mounting wall is provided with a first base mounting hole 121.
  • the axis direction of the first base mounting hole 121 is parallel to the top 111 of the base body 11.
  • the second mounting base 13 may be a base boss formed from the top 111 of the base body 11.
  • the base boss is provided with a base mounting groove 131, and the bottom of the base mounting groove 131 is provided with a first Two base mounting holes 132, the axis direction of the second base mounting hole 132 is perpendicular to the top 111 of the base body 11, and the axis direction of the second base mounting hole 132 is perpendicular to the axis direction of the first base mounting hole 121.
  • the base body 11 of this embodiment has a rectangular plate-like structure.
  • the number of the first mounting seat 12 and the second mounting seat 13 are two.
  • the two first mounting seats 12 are located on opposite sides of the base body 11 and relate to the base.
  • a symmetrical plane of the body 11 is symmetrical.
  • Two second mounting seats 13 are also located on opposite sides of the base body 11 and symmetrical about the plane of symmetry of the base body 11.
  • the first mounting seat 12 and the second mount on the same side The bases 13 are spaced along the long side of the base body 11.
  • the above-mentioned symmetry plane is a plane parallel to the long side of the base body 11 and perpendicular to the short side of the base body 11.
  • the cover 20 is disposed on the base 10 and forms a receiving space with the base 10.
  • the cover 20 includes a cover top wall 21 and an annular cover side wall 22.
  • the cover top wall 21 has a plate-like structure, and the shape of the cover top wall 21 matches the shape of the base body 11.
  • the shape of the top wall 21 of the cover body matches the shape of the base 10 and has a rectangular plate-like structure.
  • the side wall 22 of the cover body extends from a surface of the top wall 21 of the cover body.
  • the side wall 22 of the cover body is disposed at the edge of the top wall 21 of the cover body and surrounds the top wall 21 of the cover body.
  • the end of the side wall 22 of the cover away from the top wall 21 of the cover can be mounted on the base 10 and surrounds the center of the base body 11 by any one or more methods such as screw connection, clamping, gluing, welding, and the like.
  • the cover 20 of this embodiment is fixed to the base 10 by a locking member 14. More specifically, the locking member 14 passes through the base body 11 from the bottom side of the base 10 and is combined with the side wall 22 of the cover.
  • the locking member 14 can be a screw.
  • the cover side wall 22 includes a first cover side wall 221 and a second cover side wall 222.
  • the first lid side wall 221 and the second lid side wall 222 are located at opposite ends of the lid top wall 21.
  • the first lid side wall 221 and the second lid side wall 222 are respectively disposed on the short sides of the lid top wall 21.
  • the first cover sidewall 221 is formed with a light-transmitting area 2211.
  • the area of the first cover sidewall 221 except the light-transmitting area 2211 is a non-light-transmitting area 2212.
  • the light-transmitting area 2211 is used by the distance measuring module 60 to emit The ranging signal passes through.
  • the light-transmitting area 2211 may be made of materials with high light transmittance such as plastic, resin, glass, etc., while the non-light-transmitting area 2212 may be made of copper, aluminum and other metals with low heat transmittance, of which, the preferred Ground, the light-transmitting area 2211 may be made of thermally conductive plastic, which not only meets the light-transmitting requirements, but also meets the heat dissipation requirements.
  • the light-transmitting area 2211 has a substantially circular shape.
  • the light-transmitting area 2211 is substantially rectangular, for example, square.
  • the bracket 30 is installed on the base 10.
  • the number of the brackets 30 in the embodiment of the present application is two, and the two brackets 30 are respectively installed on opposite sides of the base 10.
  • Each bracket 30 includes a fixed arm 31, a connecting arm 33 and a coupling arm 32.
  • the fixing arm 31 includes a plurality of fixing portions 310 and a second coupling portion 313, and the fixing arm 31 is mounted on the base 10 through the plurality of fixing portions 310.
  • the number of the fixing portions 310 of the present embodiment is two.
  • the two fixing portions 310 are a first fixing portion 311 and a second fixing portion 312, respectively.
  • the first fixing portion 311 and the second fixing portion 312 are located opposite to the fixing arm 31, respectively. At both ends, the first fixing portion 311 and the second fixing portion 312 are rigidly connected to the base 10.
  • the first fixing portion 311 and the second fixing portion 312 are respectively fixed to the first mounting seat 12 and the second mounting seat 13 on the same side of the base 10 by a fixing piece 36 (for example, a locking screw).
  • the first fixing portion 311 is provided On the base body 11 and on the side of the mounting wall, the fixing piece 36 passes through the first base mounting hole 121 and is combined with the first fixing portion 311 to fix the first fixing portion 311 on the first mounting base 12;
  • the fixing portion 312 is disposed in the base mounting groove 131, and the fixing piece 36 passes through the second fixing portion 312 and is combined with the second base mounting hole 132 to mount the second fixing portion 312 on the second mounting base 13.
  • the second coupling portion 313 is located between the first fixing portion 311 and the second fixing portion 312.
  • the second coupling portion 313 is spaced from the top 111 of the base body 11.
  • the second coupling portion 313 is provided with a bracket mounting hole.
  • the bracket mounting hole defined by the coupling portion 313 is defined as the second bracket mounting hole 3131.
  • One end of the connecting arm 33 is connected to the first fixing portion 311, and the other end of the connecting arm 33 extends away from the base body 11.
  • One end of the coupling arm 32 is connected to the end of the connecting arm 33 away from the first fixing portion 311, the other end of the coupling arm 32 extends toward the side away from the fixing arm 31 and is a free end, and the coupling arm 32 is parallel to the top of the base body 11 111.
  • a first coupling portion 321 is provided at an end of the coupling arm 32 away from the connecting arm 33, and the second coupling portion 313 is closer to the base body 11 than the first coupling portion 321.
  • a bracket mounting hole is defined in the first coupling portion 321, and the bracket mounting hole defined in the first coupling portion 321 is defined as a first bracket mounting hole 3211.
  • the center of the first fixing portion 311, the center of the second fixing portion 312, the center of the first coupling portion 321, and the center of the second coupling portion 313 are in the same plane.
  • the rotation torque of the bracket 30 and the scanning module 40 connected to the bracket 30 is small, and the direction of the torque is perpendicular to the center of the fixing portion 310 and the first coupling portion 321
  • the plane on which the center and the center of the second coupling portion 313 are located can reduce or even prevent the distance measuring device 100 from being flipped due to external impact.
  • the scanning module 40 is installed on the base 10 through the bracket 30 and received in the receiving space.
  • the scanning module 40 is spaced from the base 10.
  • the scanning module 40 includes a scanning housing 41, a first driver 42, a second driver 43, a third driver 44, a first optical element 45, a second optical element 46, a third optical element 47, a controller 49a, and a detector 49b .
  • the first driver 42 is used to drive the first optical element 45 to change the transmission direction of the laser pulse passing through the first optical element 45.
  • the second driver 43 is used to drive the second optical element 46 to change the transmission direction of the laser pulse passing through the second optical element 46.
  • the third driver 44 is used to drive the third optical element 47 to change the transmission direction of the laser pulse passing through the third optical element 47.
  • the three optical elements (the first optical element 45, the second optical element 46, and the third optical element 47) cooperate with each other, and can be used to change the propagation direction of the optical path and make the scanning module 40 have a larger field of view.
  • the first optical element 45, the second optical element 46, and the third optical element 47 may include a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or the above optical elements Any combination.
  • at least one of the first optical element 45, the second optical element 46, and the third optical element 47 is a light refraction element having a non-parallel light exit surface and light entrance surface, when the light refraction element rotates , Can refract the beam to exit in different directions.
  • the light refraction element is a wedge prism.
  • At least part of the optical elements are moving, for example, by a driver (the first driver 42, the second driver 43, and the third driver 44) To drive the at least part of the optical element to move, and the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • a driver the first driver 42, the second driver 43, and the third driver 44
  • multiple optical elements of the scanning module 40 may rotate or vibrate about a common axis, and each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 40 may rotate at different rotation speeds, or vibrate at different speeds.
  • At least part of the optical elements of the scanning module 40 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module 40 may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the first driver 42, the second driver 43, and the third driver 44 can drive the rotation, vibration, cyclic movement of the optical element (the first optical element 45, the second optical element 46, and the third optical element 47), along the predetermined trajectory, or along the predetermined The trajectory moves back and forth without restriction.
  • the optical elements include prisms as an example for description below.
  • the scanning housing 41 can be used as the housing of the scanning module 40.
  • the scanning housing 41 can be used to install the first driver 42, the second driver 43, the third driver 44, the first optical element 45, the second optical element 46, the first Three optical elements 47, a controller 49a, a detector 49b and other elements.
  • the scanning housing 41 may be an integral whole structure, or the scanning housing 41 may be composed of a plurality of separate structures. For example, please refer to FIGS.
  • the scanning housing 41 may include a first support 411, a At least any two of the second support 412 and the third support 413 also include a first mounting portion 414 and a second mounting portion 415, for example, the scanning housing 41 includes a first mounting portion 414, a second mounting portion 415, The first support 411 and the second support 412; or, the scan housing 41 includes a first mounting portion 414, a second mounting portion 415, a second support 412, and a third support 413; or, the scan housing 41 includes The first mounting portion 414, the second mounting portion 415, the first support 411, and the third support 413; or, the scan housing 41 includes the first mounting portion 414, the second mounting portion 415, the first support 411, the first The second support 412 and the third support 413.
  • the following only takes the scanning housing 41 including the first mounting portion 414, the second mounting portion 415, the first support 411, the second support 412, and the third support 413 as examples.
  • the first support 411 can be used to install the first driver 42 and the first optical element 45.
  • the first support 411 may be the support on the scanning housing 41 that is farthest from the distance measuring module 60.
  • the first support 411 includes a first support body 4111.
  • the first support body 4111 may have a hollow structure, and the hollow portion forms a first receiving cavity 4119.
  • the outer contour of the first support body 4111 is generally rectangular, and the shape of the hollow portion may be circular
  • the first driver 42 and the first optical element 45 can be installed in the first receiving cavity 4119.
  • the first support body 4111 includes a first support top surface 4115 and two first support side surfaces 4116, and the two first support side surfaces 4116 are respectively located opposite to the first support body 4111 Both sides are connected to the top surface 4115 of the first support.
  • the top surface 4115 of the first support is provided with a support mounting groove 4117
  • the bottom surface of the support mounting groove 4117 is provided with a shell mounting hole
  • the shell mounting hole formed on the bottom surface of the support mounting groove 4117 is defined as the first shell mounting hole 4118.
  • the second support 412 can be used to mount the second driver 43 and the second optical element 46.
  • the second support 412 may cooperate with the first support 411, for example, the second support 412 is nested in the first support 411, and the second support 412 may be coaxial with the first support 411 or different axes Settings.
  • the second support 412 and the first support 411 are arranged coaxially, which means that the central axis of the second support 412 coincides with the central axis of the first support 411, and the setting of different axes refers to the second support 412
  • the central axis of ⁇ and the central axis of the first support 411 do not coincide, for example, they are spaced in parallel or intersect at any angle.
  • the second support 412 includes a second support body 4121 and a protrusion 4120.
  • the protrusion 4120 may be used to mount the second support 412 on the bracket 30.
  • the second support body 4121 may have a hollow structure, the hollow portion forms a second receiving cavity 4126, and the second driver 43 and the second optical element 46 may be installed in the second receiving cavity 4126.
  • the second support body 4121 includes a second support bottom surface 41211 and two second support side surfaces 41212, and the two second support side surfaces 41212 are respectively located on opposite sides of the second support body 4121 It is connected to the second support bottom surface 41211 side by side, and the two second support side surfaces 41212 correspond to the two first support side surfaces 4116, respectively.
  • the protruding portion 4120 may be disposed at a position of the first support body 4111 close to the second support bottom surface 41211. It can be understood that the protruding portion 4120 is close to the second support bottom surface from the second support side surface 41212 The position of 41211 extends outward.
  • the protruding portion 4120 defines a housing mounting hole, and the housing mounting hole defined by the protruding portion 4120 is defined as a second housing mounting hole 41201.
  • the third support 413 can be used to mount the third driver 44 and the third optical element 47.
  • the third support 413 may cooperate with the second support 412, the third support 413 may be sleeved in the second support 412, the third support 413 may be coaxially arranged with the second support 412 or different axes Settings.
  • the third support 413 includes a third support body 4130.
  • the third support body 4130 may have a hollow structure.
  • the hollow portion forms a third receiving cavity 4134.
  • the third driver 44 and the third optical element 47 may be installed in the third Within the containment cavity 4134.
  • the third support 413 and the first support 411 may be respectively disposed on opposite sides of the second support 412, and the light pulses emitted by the ranging module 60 may pass through the third support 413 and the second support successively 412 and the first support 411 enter the outside world, and the light pulse reflected by the target object can pass through the first support 411, the second support 412, and the third support 413 successively and then be received by the distance measuring module 60.
  • the third support body 4130 includes two third support sides 4133 opposite to each other. At this time, the opposite sides of the first support 411 are opposite to the opposite sides of the second support 412 and the opposite sides of the third support 413 to form two installation spaces 416.
  • the opposite sides of the third support 413 may not exceed the opposite sides of the second support 412.
  • the opposite sides of the third support 413 correspond to the phases of the second support 412, respectively.
  • the back sides are flush.
  • the opposite sides of the third support 413 do not exceed the opposite sides of the second support 412, thereby facilitating the formation of the second mounting base 13 in the installation space 416.
  • the opposite sides of the third support 413 may also exceed the opposite sides of the second support 412, so that the first mounting base 12 is formed in the installation space 416.
  • the first mounting portion 414 may be located at an end of the first support 411 away from the base 10. Specifically, the first mounting portion 414 is located near the top surface 4115 of the first support body 4111. The first mounting portion 414 is used to mount the first support 411 on the bracket 30.
  • the first mounting portion 414 of the present application may be a part of the first support body 4111. Specifically, the first mounting portion 414 may be understood as forming a support mounting groove 4117 and a first housing on the first support body 4111 The structure of the mounting hole 4118.
  • the first mounting portion 414 may be a flange provided on the first support body 4111, and the flange is provided with a first housing mounting hole 4118.
  • the second mounting portion 415 is located at the end of the second support 412 close to the base 10. Specifically, the second mounting portion 415 is located near the bottom surface 41211 of the second support body 4121.
  • the second mounting base 414 is used to mount the second support 412 on the bracket 30.
  • the second mounting portion 415 of the present application may be a part of the second support 412, and specifically, the second mounting portion 415 may be the protruding portion 4120.
  • the scanning housing 41 can be mounted on the bracket 30 through the first mounting base 12 and the second mounting base 13.
  • the first driver 42 is installed in the scanning housing 41. Specifically, the first driver 42 may be installed in the first receiving cavity 4119.
  • the first drive 42 includes a first stator assembly 421, a first positioning assembly 422 and a first rotor assembly 423.
  • the first stator assembly 421 can be relatively fixed to the first support body 4111.
  • the first stator assembly 421 can be used to drive the first rotor assembly 423 to rotate.
  • the first stator assembly 421 includes a first winding body and is mounted on the first winding The first winding on the body.
  • the first winding body may be a stator core, and the first winding may be a coil.
  • the first winding can generate a specific magnetic field under the action of current, and the direction and intensity of the magnetic field can be changed by changing the direction and intensity of the current.
  • the first stator assembly 421 is sleeved on the first rotor assembly 423.
  • the first rotor assembly 423 can rotate under the drive of the first stator assembly 421.
  • the first rotor assembly 423 includes a first rotor 4231.
  • the axis of rotation of the first rotor 4231 relative to the first stator assembly 421 is called a first rotating shaft 4236.
  • the first rotating shaft 4236 may be a solid rotating shaft , Can also be a virtual shaft.
  • the first rotor 4231 includes a first yoke 4233a and a first magnet 4233b.
  • the first magnet 4233b is sleeved on the first yoke 4233a and is located between the first yoke 4233a and the first winding.
  • the magnetic field generated by the first magnet 4233b interacts with the magnetic field generated by the first winding and generates a force.
  • the first magnet 4233b drives the first yoke 4233a to rotate under the force.
  • the first rotor 4231 has a hollow shape.
  • the hollow portion of the first rotor 4231 forms a first storage cavity 4235.
  • the laser pulse can pass through the first storage cavity 4235 and pass through the scanning module 40.
  • the first storage cavity 4235 is surrounded by the first side wall 4234 of the first rotor 4231.
  • the first yoke 4233a may have a hollow cylindrical shape, and the first yoke 4233a
  • the hollow portion of the first storage cavity 4235 forms a first storage cavity 4235
  • the side wall of the first yoke 4233a may serve as a side wall surrounding the first storage cavity 4235.
  • the first storage cavity 4235 may not be formed on the first yoke 4233a, or may be formed on the first magnet 4233b, etc.
  • the first side wall 4234 may also be the first magnet 4233b, etc.
  • the side walls of the structure are not limited here.
  • the first side wall 4234 has a ring structure or is a part of a ring structure.
  • the first winding of the first stator assembly 421 may be ring-shaped and surround the outer surface of the first side wall 4234.
  • the first positioning assembly 422 is located on the outer surface of the first side wall 4234.
  • the first positioning assembly 422 is used to restrict the first rotor assembly 423 from rotating around the fixed first rotating shaft 4236.
  • the first stator assembly 421 and the first positioning assembly 422 surround the outer surface of the first side wall 4234 side by side.
  • the first positioning assembly 422 includes an annular first bearing 422 that surrounds the outer surface of the first side wall 4234.
  • the first bearing 422 includes a first inner ring structure 4221, a first outer ring structure 4222, and a first rolling element 4223.
  • the outer surface of the first inner ring structure 4221 and the first side wall 4234 are fixed to each other.
  • the first outer ring structure 4222 and the scanning housing 41 are fixed to each other, specifically, the first outer ring structure 4222 and the first support 411 are fixed to each other.
  • the first rolling body 4223 is located between the first inner ring structure 4221 and the first outer ring structure 4222, and the first rolling body 4223 is used for rolling connection with the first outer ring structure 4222 and the first inner ring structure 4221, respectively.
  • the first optical element 45 is installed in the first storage cavity 4235. Specifically, the first optical element 45 can be installed in cooperation with the first side wall 4234 and fixedly connected to the first rotor 4231. The first optical element 45 is located at the exit of the laser pulse And incident light path. The first optical element 45 can rotate in synchronization with the first rotor 4231 about the first rotation axis 4236. When the first optical element 45 rotates, the transmission direction of the laser light passing through the first optical element 45 can be changed.
  • the second driver 43 is installed in the scanning housing 41. Specifically, the second driver 43 may be installed in the second receiving cavity 4126.
  • the second driver 43 includes a second stator assembly 431, a second positioning assembly 432, and a second rotor assembly 433.
  • the second stator assembly 431 can be relatively fixed to the second support body 4121.
  • the second stator assembly 431 can be used to drive the second rotor assembly 433 to rotate.
  • the second stator assembly 431 includes a second winding body and a second winding body mounted on the second winding body The second winding.
  • the second winding body may be a stator core, and the second winding may be a coil.
  • the second winding can generate a specific magnetic field under the action of current, and the direction and intensity of the magnetic field can be changed by changing the direction and intensity of the current.
  • the second rotor assembly 433 can rotate under the drive of the second stator assembly 431.
  • the second rotor assembly 433 includes a second rotor 4331.
  • the axis of rotation of the second rotor 4331 relative to the second stator assembly 431 is called a second rotating shaft 4337.
  • the second rotating shaft 4337 may be a solid rotating shaft. It can also be a virtual shaft.
  • the second rotor 4331 includes a second yoke 4333 and a second magnet 4334.
  • the second magnet 4334 is sleeved on the second yoke 4333 and is located between the second yoke 4333 and the second winding.
  • the magnetic field generated by the second magnet 4334 interacts with the magnetic field generated by the second winding and generates a force.
  • the second winding is fixed, and the second magnet 4334 drives the second yoke 4333 to rotate under the force.
  • the second rotor 4331 has a hollow shape.
  • a hollow portion of the second rotor 4331 is formed with a second storage cavity 4336, and a laser pulse can pass through the second storage cavity 4336 and pass through the scanning module 40.
  • the second accommodating cavity 4336 is surrounded by the second side wall 4335 of the second rotor 4331.
  • the second yoke 4333 may have a hollow cylindrical shape, and the second yoke 4333
  • the hollow portion of the formed a second storage cavity 4336, and the side wall of the second yoke 4333 may serve as a side wall surrounding the second storage cavity 4336.
  • the second storage cavity 4336 may not be formed on the second yoke 4333, or may be formed on the structure of the second magnet 4334, etc.
  • the second side wall 4335 may also be the second magnet 4334, etc.
  • the side walls of the structure are not limited here.
  • the second side wall 4335 has a ring structure or is a part of a ring structure.
  • the second winding of the second stator assembly 431 may be ring-shaped and surround the outer surface of the second side wall 4335.
  • the second positioning assembly 432 is disposed on the second rotor 4331 and is located on the side of the second stator assembly 431 away from the first rotor assembly 423.
  • the second positioning assembly 432 is used to restrict the rotation of the second rotor assembly 433 about the fixed second rotating shaft 4337.
  • the second stator assembly 431 and the second positioning assembly 432 surround the outer surface of the second side wall 4335 side by side.
  • the second positioning assembly 432 includes an annular second bearing 432 that surrounds the outer surface of the second side wall 4335.
  • the second bearing 432 includes a second inner ring structure 4321, a second outer ring structure 4322, and a second rolling body 4323. The outer surfaces of the second inner ring structure 4321 and the second side wall 4335 are fixed to each other.
  • the second outer ring structure 4322 and the scanning housing 41 are fixed to each other, specifically the second outer ring structure 4322 and the second support 412 are fixed to each other.
  • the second rolling body 4323 is located between the second inner ring structure 4321 and the second outer ring structure 4322, and the second rolling body 4323 is used for rolling connection with the second outer ring structure 4322 and the second inner ring structure 4321, respectively.
  • the second optical element 46 is installed in the second receiving cavity 4336. Specifically, the second optical element 46 can be installed in cooperation with the second side wall 4335 and fixedly connected to the second rotor 4331. The second optical element 46 is located in the light emitted from the light source On the road and the incident light path of the return light. The second optical element 46 can rotate synchronously with the second rotor 4331 about the second rotation axis. When the second optical element 46 rotates, the transmission direction of the laser light passing through the second optical element 46 can be changed.
  • the third driver 44 is installed in the scanning housing 41. Specifically, the third driver 44 may be installed in the third receiving cavity 4134.
  • the third drive 44 includes a third stator assembly 441, a third positioning assembly 442, and a third rotor assembly 443.
  • the third stator assembly 441 can be relatively fixed to the third support body 4130.
  • the third stator assembly 441 can be used to drive the third rotor assembly 443 to rotate.
  • the third stator assembly 441 includes a third winding body and a third winding body mounted on the third winding body The third winding.
  • the third winding body may be a stator core, and the third winding may be a coil.
  • the third winding can generate a specific magnetic field under the action of current, and the direction and intensity of the magnetic field can be changed by changing the direction and intensity of the current.
  • the third rotor assembly 443 can rotate under the drive of the third stator assembly 441.
  • the third rotor assembly 443 includes a third rotor 4431.
  • the axis of rotation of the third rotor 4431 relative to the third stator assembly 441 is called a third rotating shaft 4437.
  • the third rotating shaft 4437 may be a solid rotating shaft. It can also be a virtual shaft.
  • the third rotor 4431 includes a third yoke 4433 and a third magnet 4434.
  • the third magnet 4434 is sleeved on the third yoke 4433 and is located between the third yoke 4433 and the third winding.
  • the magnetic field generated by the third magnet 4434 interacts with the magnetic field generated by the third winding and generates a force.
  • the third magnet 4434 drives the third yoke 4433 to rotate under the applied force.
  • the third rotor 4431 has a hollow shape.
  • the hollow portion of the third rotor 4431 is formed with a third storage cavity 4436, and the laser pulse can pass through the third storage cavity 4436 and pass through the scanning module 40.
  • the third storage cavity 4436 is surrounded by the third side wall 4435 of the third rotor 4431.
  • the third yoke 4433 may be a hollow cylindrical shape, and the third yoke 4433
  • the hollow portion of the second cavity forms a third storage cavity 4436, and the side wall of the third yoke 4433 can serve as a side wall surrounding the third storage cavity 4436.
  • the third storage cavity 4436 may not be formed on the third yoke 4433, or may be formed on the structure of the third magnet 4434, etc., and the third side wall 4435 may also be the third magnet 4434, etc.
  • the side walls of the structure are not limited here.
  • the third side wall 4435 has a ring structure or is a part of a ring structure.
  • the third winding of the third stator assembly 441 may be ring-shaped and surround the outer surface of the third side wall 4435.
  • the third positioning assembly 442 is disposed on the third rotor 4431.
  • the third positioning assembly 442 is located on the side of the third stator assembly 441 close to the second rotor assembly 433, or the third positioning assembly 442 is relative to the third stator assembly 441 Closer to the second rotor assembly 433.
  • the third positioning assembly 442 is used to restrict the rotation of the third rotor assembly 443 about the fixed third rotating shaft 4437.
  • the third stator assembly 441 and the third positioning assembly 442 surround the outer surface of the third side wall 4435 side by side.
  • the third positioning assembly 442 includes an annular third bearing 442 that surrounds the outer surface of the third side wall 4435.
  • the third bearing 442 includes a third inner ring structure 4421, a third outer ring structure 4422, and a third rolling element 4423.
  • the outer surface of the third inner ring structure 4421 and the third side wall 4435 are fixed to each other.
  • the third outer ring structure 4422 and the scanning housing 41 are fixed to each other, specifically, the third outer ring structure 4422 and the third support 413 are fixed to each other.
  • the third rolling element 4423 is located between the third inner ring structure 4421 and the third outer ring structure 4422.
  • the third rolling element 4423 is used for rolling connection with the third outer ring structure 4422 and the third inner ring structure 4421, respectively.
  • the third optical element 47 is installed in the third storage cavity 4436. Specifically, the third optical element 47 can be installed in cooperation with the third side wall 4435 and fixedly connected to the third rotor 4431. The third optical element 47 is located at the exit of the laser pulse And incident light path. The third optical element 47 can rotate synchronously with the third rotor 4431 around the third rotation axis 4437. When the third optical element 47 rotates, the transmission direction of the laser light passing through the third optical element 47 can be changed.
  • the controller 49a is connected to the driver (the first driver 42, the second driver 43, and the third driver 44), and the controller 49a is used to control the driver to drive the optical element (the first optical element 45) according to the control instruction ,
  • the second optical element 46 and the third optical element 47) rotate.
  • the controller may be connected to the windings (first winding, second winding, and third winding) and used to control the magnitude and direction of the current on the winding to control the rotor assembly (first rotor assembly 423, second rotor assembly 433.
  • the rotation parameters (rotation direction, rotation angle, rotation duration, etc.) of the third rotor assembly 443) to achieve the purpose of controlling the rotation parameters of the optical element.
  • the controller 49a includes an electronic governor, and the controller 49a may be provided on an electric regulating board.
  • the detector 49b is used to detect the rotation parameters of the optical element.
  • the rotation parameters of the optical element may be the rotation direction, rotation angle, and rotation speed of the optical element.
  • the number of detectors 49b may be plural, and each detector 49b includes a code wheel and a photoelectric switch.
  • the code wheel is fixedly connected to one rotor (the first rotor 4231 or the second rotor 4331 or the third rotor 4431) and rotates synchronously with the rotor assembly (the first rotor assembly 423 or the second rotor assembly 433 or the third rotor assembly 443).
  • the rotation parameter of the optical element can be obtained by detecting the rotation parameter of the code wheel.
  • the rotation parameters of the code wheel can be detected through the cooperation of the code wheel and the photoelectric switch.
  • the two brackets 30 are respectively located outside the two second support side surfaces 41212, and the two brackets 30 are respectively installed in the two installation spaces 416 Inside.
  • the first mounting base 12 and the second mounting base 13 are both located in the mounting space 416, and the fixed arm 31
  • the connecting arm 33, the first reinforcing arm 34, and the second reinforcing arm 35 are all accommodated in the installation space 416, and the coupling arm 32 is accommodated in the support installation groove 4117.
  • the scanning housing 41 forms an installation space 416, so that the bracket 30 is easily installed in the installation space 416 to reduce the volume of the distance measuring device 100; further, the first support 411 defines a support installation slot 4117, and integrates the arm 32 accommodated in the support mounting groove 4117 can further reduce the volume of the distance measuring device 100.
  • the flexible connecting component 50 is used to connect the scanning housing 41 to the bracket 30.
  • the flexible connecting component 50 provides a gap between the scanning housing 41 and the base 10 to provide a vibration space for the scanning module 40.
  • the scanning module 40 is installed on the bracket 30 through the flexible connecting assembly 50, which makes the scanning module 40 and the base 10 have no direct contact, thereby reducing or even preventing the vibration of the scanning module 40 from being transmitted to the base 10, Furthermore, the vibration of the scanning assembly 40 can be reduced or even prevented from being transmitted to the distance measuring module 60 through the base 10.
  • the flexible connection assembly 50 includes a flexible connection 51 and a fastener 52, and the scan housing 41 and the bracket 30 are connected by the flexible connection 51 and the fastener 52.
  • each flexible connection assembly 50 includes a flexible first support portion 511, a flexible connection portion 513 and a flexible second support portion 512.
  • the first support portion 511 and the second support portion 512 are respectively connected to opposite ends of the connection portion 513.
  • the flexible connector 51 has a through hole 514 penetrating the first support portion 511, the connection portion 513 and the second support portion 512.
  • Each bracket 30 is connected to the scan housing 41 through at least two flexible connection assemblies 50, and the at least two flexible connection assemblies 50 include a first flexible connection assembly 53 and a second flexible connection assembly 54.
  • the first flexible connecting component 53 connects the bracket 30 (the first coupling portion 321) and the first mounting portion 414. Specifically, the connecting portion 513 of the first flexible connecting component 53 passes through the first bracket In the mounting hole 3211, the first support portion 511 and the second support portion 512 of the first flexible connection assembly 53 are located on opposite sides of the first coupling portion 321, and the second support portion 512 of the first flexible connection assembly 53 is located on the first Between a coupling portion 321 and the bottom surface of the support mounting groove 4117, the fastener 52 of the first flexible connecting component 53 passes through the through hole 514 and is combined with the inner wall of the first housing mounting hole 4118, the first flexible connecting component 53 It is accommodated in the support mounting groove 4117.
  • the cross-sectional dimension of the first support portion 511 and the cross-sectional dimension of the second support portion 512 are both larger than the cross-sectional dimension of the first bracket mounting hole 3211, so that when the first flexible connecting component 53 is installed into the first bracket mounting hole 3211 At this time, the first support portion 511 is located between the end of the fastener 52 and the first coupling portion 321, and the first support portion 512 can absorb the vibration generated by the first support 411 and transmitted to the fastener 52;
  • the second support portion 512 can be located between the bottom surface of the support mounting groove 4117 and the first coupling portion 321, and the second support portion 512 can absorb the vibration generated by the first support 411 and reduce the transmission of the vibration to the bracket 30.
  • the cross-sectional dimension of the connecting portion 513 may be greater than, less than, or equal to the cross-sectional dimension of the first bracket mounting hole 3211.
  • the second flexible connecting assembly 54 connects the bracket 30 (the second joint portion 313) and the second mounting portion 415, specifically, the connecting portion 513 of the second flexible connecting assembly 54 is inserted into the second housing mounting hole 41201, the second The first support portion 511 and the second support portion 512 of the flexible connection assembly 54 are respectively located on opposite sides of the protrusion 4120, and the first support portion 511 of the second flexible connection assembly 54 is located between the protrusion 4120 and the second joint portion Between 313, the fastener 52 of the second flexible connecting assembly 54 passes through the through hole 514 and is combined with the inner wall of the second bracket mounting hole 3131.
  • the cross-sectional dimensions of the first support portion 511 and the second support portion 512 are both larger than the cross-sectional dimensions of the second housing mounting hole 41201, so that when the second flexible connection assembly 54 is mounted to the second bracket mounting hole 3131 When inward, the first support portion 511 can be located between the protruding portion 4120 and the second coupling portion 313, the first support portion 511 can absorb the vibration generated by the second support 412 and reduce the transmission of the vibration to the bracket 30; the second support The portion 512 is located between the end of the fastener 52 and the second coupling portion 313, and the second support portion 512 can absorb the vibration generated by the second support 412 and transmitted to the fastener 52.
  • the cross-sectional dimension of the connecting portion 513 may be greater than, less than, or equal to the cross-sectional dimension of the second housing mounting hole 41201. Since the first coupling portion 321 is located on the side of the bracket 30 away from the base 10, and the second coupling portion 313 is located on the side of the bracket 30 near the base 10, the scan housing 41 is connected to the first coupling portion 321 and the first through the flexible connector 51 On the second joint portion 313, when the distance measuring device 100 is shocked by external impact, the rotating torque received by the scanning housing 41 is small, and the direction of the torque is perpendicular to the plane where the bracket 30 is located, which can be reduced or even avoided The distance measuring device 100 is flipped due to external impact.
  • the bracket 30 in the distance measuring device 100 of the present application is fixed on the base 10, and the scanning module 40 is installed on the bracket 30 through a flexible connection assembly 50.
  • the flexible connection assembly 50 prevents the direct contact between the scanning module 40 and the base 10. Therefore, it is possible to reduce or even prevent the vibration of the scanning module 40 from being transmitted to the base 10.
  • the cross section of the flexible connector 51 taken by the surface passing through the axis of the through hole 514 is in the shape of an "I".
  • the flexible connector 51 may be a rubber pad.
  • the distance measuring module 60 is disposed on the base 10 and spaced apart from the scanning module 40. Specifically, the distance measuring module 60 is rigidly fixed on the base 10.
  • the base 10 may be an integrated structure.
  • the distance measuring module 60 is installed on the same base 10.
  • the base 10 may be a split structure, and the ranging module 60 and the scanning module 40 are installed on two different split structures of the base 10. Since the scanning module 40 and the distance measuring module 60 are spaced apart, the vibration of the scanning module 40 can be reduced or even prevented from being transmitted to the distance measuring module 60, thereby improving the detection accuracy of the distance measuring device 100. Since the distance measuring module 60 is rigidly fixed on the base 10, the vibration of the scanning module 40 has little effect on the distance measuring module 60, thereby ensuring the stability of the relative installation positions of the distance measuring module 60 and the distance measuring device 100 , To further improve the detection accuracy.
  • the distance measuring module 60 includes a light source 61, an optical path changing element 62, a collimating element 63, and a detector 64.
  • the distance measuring module 60 may use a coaxial optical path, that is, the laser beam emitted by the distance measuring module 60 and the reflected laser beam share at least part of the optical path in the distance measuring module 60.
  • the distance measuring module 60 may also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring module 60 and the reflected light beam are respectively transmitted along different optical paths in the distance measuring module 60.
  • the following uses the distance measuring module 60 to adopt a coaxial optical path to explain the light source 61, the optical path changing element 62, the collimating element 63, and the detector 64.
  • the light source 61 can be used to emit a sequence of light pulses.
  • the light beam emitted by the light source 61 is a narrow-bandwidth light beam with a wavelength outside the visible light range.
  • the light source 61 may include a laser diode (Laser diode) through which laser light in the nanosecond level is emitted.
  • the laser pulse emitted by the light source 61 lasts for 10 ns.
  • the collimating element 63 is disposed on the light exiting light path of the light source 61, and is used to collimate the laser beam emitted from the light source 61, that is, collimate the laser beam emitted from the light source 61, and collimate the light pulse from the light source 61 to project Scanning module 40.
  • the collimating element 63 is located between the light source 61 and the scanning module 40.
  • the collimating element 63 is also used to converge at least a part of the return light reflected by the detection object and passing through the scanning module 40 to the detector 64.
  • the collimating element 63 may be a collimating lens or other element capable of collimating the light beam.
  • the collimating element 63 is coated with an AR coating, which can increase the intensity of the transmitted beam.
  • the optical path changing element 62 is provided on the light exiting light path of the light source 61 and is used to combine the exit light path of the light source 61 and the receiving light path of the detector 64. Specifically, the optical path changing element 62 is located on the side of the collimating element 63 opposite to the scanning module 40.
  • the optical path changing element 62 may be a mirror or a half mirror. In one example, the optical path changing element 62 is a small mirror, which can change the optical path direction of the laser beam emitted by the light source 61 by 90 degrees or other angles.
  • the detector 64 and the light source 61 are placed on the same side of the collimating element 63.
  • the detector 64 is directly opposite the collimating element 63.
  • the scanning module 40 can change the light pulse sequence to different transmission directions at different times, and the light pulse reflected by the detection object can enter the detector 64 after passing through the scanning module 40, and the detector 64 can be used to At least part of the returned light passing through the collimating element 63 is converted into an electrical signal, and the electrical signal may specifically be an electrical pulse.
  • the detector 64 may also determine the distance between the detection object and the distance measuring device 100 based on the electrical pulse.
  • the light source 61 emits laser pulses.
  • the laser pulses are collimated by the collimating element 63 after the optical path changing element 62.
  • the collimated laser pulses are emitted by the scanning module 40 after changing the transmission direction and projected to the detection
  • On the object at least a part of the returned light after the laser pulse reflected by the detected object passes through the scanning module 40 is converged on the detector 64 by the collimating element 63.
  • the detector 64 converts at least part of the returned light passing through the collimating element 63 into electrical signal pulses.
  • the distance measuring device 100 of the present application includes a transmitting circuit 611, a receiving circuit 641, a sampling circuit 642, and an arithmetic circuit 643.
  • the transmission circuit 611 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 641 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 642 after processing the electrical signal.
  • the sampling circuit 642 can process the electrical signal Perform sampling to obtain sampling results.
  • the arithmetic circuit 643 may determine the distance between the distance device 100 and the detected object based on the sampling result of the sampling circuit 642.
  • the transmitting circuit 611 includes a light source 61
  • the detector 64 includes a receiving circuit 641, a sampling circuit 642, and an arithmetic circuit 643.
  • the distance measuring device 100 may further include a control circuit 644, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the detector 64 may further include a control circuit 644.
  • the distance device 100 shown in FIG. 26 includes a transmitting circuit 611, a receiving circuit 641, a sampling circuit 642, and an arithmetic circuit 643, the embodiments of the present application are not limited thereto, the transmitting circuit 611, the receiving circuit
  • the number of any of the circuits 641, the sampling circuit 642, and the arithmetic circuit 643 may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light-emitting chips in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the die in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the following uses the distance measuring module 60 to adopt the second coaxial optical path to explain the light source 61, the optical path changing element 62, the collimating element 63, and the detector 64.
  • the structure and position of the collimating element 63 are the same as the structure and position of the collimating element 63 in the first type of coaxial optical path, the difference is that the optical path changing element 62 is a large mirror, which includes a reflection There is a surface 621, and a light hole is opened in the middle of the large reflector.
  • the detector 64 and the light source 61 are still placed on the same side of the collimating element 63.
  • the positions of the detector 64 and the light source 61 are interchanged, that is, the light source 61 and the collimating element 63 are directly opposite
  • the detector 64 is opposite to the reflecting surface 621, and the optical path changing element 62 is located between the light source 61 and the collimating element 63.
  • the light source 61 emits laser pulses, which are collimated by the collimating element 63 after passing through the through hole of the optical path changing element 62, and the collimated laser pulses are changed by the scanning module 40 after changing the transmission direction
  • the scanning module 40 After being emitted and projected on the detection object, at least a part of the return light after the laser pulse reflected by the detection object passes through the scanning module 40 is converged by the collimating element 63 onto the reflection surface 621 of the optical path changing element 62.
  • the reflecting surface 621 reflects the at least a portion of the returned light to the detector 64.
  • the detector 64 converts the reflected at least a portion of the returned light into an electrical signal pulse.
  • the distance measuring device 100 passes the rising edge time of the electrical signal pulse and/or Or the falling edge time determines the laser pulse reception time. In this way, the distance measuring device 100 can use the pulse reception time information and the pulse emission time information to calculate the time of flight, thereby determining the distance of the detected object to the distance measuring device 100.
  • the size of the optical path changing element 62 is large, and can cover the entire field of view of the light source 61.
  • the return light is directly reflected by the optical path changing element 62 to the detector 64, which avoids the optical path changing element 62 itself to the return optical path. Blocking increases the intensity of the detector 64 to detect the return light, and improves the accuracy of the ranging.
  • the bracket 30 further includes a first reinforcement arm 34, one end of the first reinforcement arm 34 is connected to the second fixing portion 312, the other end of the first reinforcement arm 34 is connected At the end of the connecting arm 33 away from the first fixing portion 311, the fixing arm 31, the connecting arm 33, and the first reinforcing arm 34 together form a triangle.
  • one end of the first reinforcing arm 34 is connected to the second fixing portion 312, and the other end of the first reinforcing arm 34 is connected between the opposite ends of the connecting arm 33.
  • the fixing portion 310, The first reinforcing arm 34 and the partial connecting arm 33 together form a triangle.
  • the fixed arm 31, the connecting arm 33, the coupling arm 32, and the first reinforcing arm 34 of this embodiment are located in the same plane.
  • the bracket 30 of the present embodiment is provided with a first reinforcing arm 34 to enhance the strength of the bracket 30. When the distance measuring device 100 is impacted by the outside world, the vibration of the bracket 30 is small.
  • the bracket 30 further includes a first reinforcement arm 34 and a second reinforcement arm 35.
  • One end of the first reinforcing arm 34 is connected to the second fixing portion 312, and the other end of the first reinforcing arm 34 is connected to the connecting arm 33.
  • the fixing arm 31, the connecting arm 33, and the first reinforcing arm 34 together form a triangle.
  • the second reinforcement arm 35 connects the first reinforcement arm 34 and the connection arm 33.
  • the second reinforcement arm 35 is located in the space enclosed by the first reinforcement arm 34, the fixed arm 31 and the connection arm 33.
  • the fixed arm 31, the connecting arm 33, the coupling arm 32, the first reinforcement arm 34, and the second reinforcement arm 35 of this embodiment are located in the same plane.
  • the bracket 30 of the present embodiment is provided with a first reinforcing arm 34 and a second reinforcing arm 35 to enhance the strength of the bracket 30.
  • the scan housing 41 includes a first support 411 and a second support 412
  • the bracket 30 includes a fixed arm 31, a connecting arm 33 and a combination
  • the arm 32 and the fixed arm 31 are fixed on the base 10 and located on the same side of the first support 411 and the second support 412.
  • Each bracket 30 is connected to the scanning housing 41 through at least two flexible connection assemblies 50.
  • the at least two flexible connection assemblies 50 include a first flexible connection assembly 53 and a second flexible connection assembly 54, and the first flexible connection assembly 53 is connected to the coupling arm 32 and the first support 411, and the second flexible connecting component 54 connects the fixed arm 31 and the second support 412.
  • the scan housing 41 may not be formed with the installation space 416.
  • the length of the coupling arm 32 in this embodiment can be made shorter than the length of the coupling arm 32 in the above embodiment, so as to be compared with the bracket 30 in the above embodiment (the bracket 30 includes only the fixed arm 31, the connecting arm 33 and the coupling The arm 32 and the bracket 30 are installed in the installation space 416).
  • the strength of the bracket 30 of this embodiment is greater, so that the shaking of the bracket 30 due to the vibration of the scanning module 40 can be reduced.
  • the fixing arm 31 includes a first fixing portion 311, a second fixing portion 312, and a second combining portion 313, the first fixing portion 311 and the second fixing portion 312 are located in the fixed The opposite ends of the arm 31 are fixed to the base 10, the first fixing portion 311 is located on the side of the first support 411, the second fixing portion 312 is located on the side of the second support 412, and the second coupling portion 313 Located between the first fixing portion 311 and the second fixing portion 312, the second flexible connecting component 54 connects the second coupling portion 313 and the second support 412.
  • the length of the coupling arm 32 in this embodiment can be made shorter than the length of the coupling arm 32 in the above embodiment, so as to be compared with the bracket 30 in the above embodiment (the bracket 30 includes only the fixed arm 31, the connecting arm 33 and the coupling The arm 32 and the bracket 30 are installed in the installation space 416).
  • the strength of the bracket 30 of this embodiment is greater, so that the shaking of the bracket 30 due to the vibration of the scanning module 40 can be reduced.
  • the scanning housing 41 includes a first support 411 and a second support 412
  • the bracket 30 includes a fixed arm 31, a connecting arm 33, a coupling arm 32 and First strengthening arm 34.
  • the fixed arm 31, the connecting arm 33, and the coupling arm 32 are connected in this order.
  • the fixing arm 31 is fixed on the base 10 and located on the same side of the first support 411 and the second support 412.
  • One end of the first reinforcing arm 34 is connected to the end of the fixing arm 31 away from the connecting arm 33, and the other end of the first reinforcing arm 34 is connected to the end of the connecting arm 33 away from the fixing arm 31.
  • Each bracket 30 is connected to the scanning housing 41 through at least two flexible connection assemblies 50.
  • the at least two flexible connection assemblies 50 include a first flexible connection assembly 53 and a second flexible connection assembly 54, and the first flexible connection assembly 53 is connected to the coupling arm 32 and the first support 411, and the second flexible connecting component 54 connects the fixed arm 31 and the second support 412.
  • one end of the first reinforcement arm 34 is connected to the end of the fixing arm 31 away from the connection arm 33, and the other end of the first reinforcement arm 34 is connected between opposite ends of the connection arm 33.
  • the length of the coupling arm 32 in this embodiment can be made shorter than the length of the coupling arm 32 in the above embodiment, so as to be compared with the bracket 30 in the above embodiment (the bracket 30 includes only the fixed arm 31, the connecting arm 33, and the coupling The arm 32 and the first reinforcing arm 34, and the bracket 30 is installed in the installation space 416), the strength of the bracket 30 of this embodiment is greater, so that the vibration of the bracket 30 due to the vibration of the scanning module 40 can be reduced.
  • the scan housing 41 includes a first support 411 and a second support 412
  • the bracket 30 includes a fixed arm 31, a connecting arm 33, a coupling arm 32, The first reinforcement arm 34 and the second reinforcement arm 35.
  • the fixed arm 31, the connecting arm 33, and the coupling arm 32 are connected in this order.
  • the fixing arm 31 is fixed on the base 10 and located on the same side of the first support 411 and the second support 412.
  • One end of the first reinforcement arm 34 is connected to the end of the fixing arm 31 away from the connection arm 33, and the other end of the first reinforcement arm 34 is connected to the connection arm 33.
  • the second reinforcement arm 35 connects the first reinforcement arm 34 and the connection arm 33.
  • the second reinforcement arm 35 is located in the space enclosed by the first reinforcement arm 34 and the connection arm 33.
  • Each bracket 30 is connected to the scanning housing 41 through at least two flexible connection assemblies 50.
  • the at least two flexible connection assemblies 50 include a first flexible connection assembly 53 and a second flexible connection assembly 54, and the first flexible connection assembly 53 is connected to the coupling arm 32 and the first support 411, and the second flexible connecting component 54 connects the fixed arm 31 and the second support 412.
  • one end of the first reinforcement arm 34 is connected to the end of the fixing arm 31 away from the connection arm 33, and the other end of the first reinforcement arm 34 is connected between opposite ends of the connection arm 33.
  • the length of the coupling arm 32 in this embodiment can be made shorter than the length of the coupling arm 32 in the above embodiment, so as to be compared with the bracket 30 in the above embodiment (the bracket 30 includes only the fixed arm 31, the connecting arm 33, and the coupling The arm 32, the first reinforcement arm 34 and the second reinforcement arm 35, and the bracket 30 is installed in the installation space 416), the strength of the bracket 30 of this embodiment is greater, so that the vibration caused by the scanning module 40 can be reduced Shake generated by the bracket 30.
  • the flexible connecting member 51 further includes a limiting protrusion 515, and the limiting protrusion 515 protrudes from the first support portion 511.
  • the flexible connector 51 is installed from one end of the second support portion 512 into the bracket mounting hole (first bracket mounting hole 3211) or the housing mounting hole (second housing mounting hole 41201), specifically, the flexible connector 51 is installed At this time, the flexible second support portion 512 can elastically deform under the action of a pulling force and can pass through the first bracket mounting hole 3211 or the second housing mounting hole 41201.
  • the flexible connector 51 is provided with a limiting protrusion 515, which can avoid the first support portion from being pulled too much when the flexible connector 51 is installed in the first bracket mounting hole 3211 or the second housing mounting hole 41201 511 also passes through the first bracket mounting hole 3211 or the second housing mounting hole 41201.
  • the number of flexible connection components 50 is at least four, and each bracket 30 is connected to the scanning housing 41 through at least two flexible connection components 50 and forms a plurality of connection points, and the plurality of connection points on the base 10
  • the projection forms an auxiliary surface P (as shown in FIG. 21).
  • the center of gravity of the scanning housing 41 (or the center of gravity of the scanning module 40) is located in the center of the auxiliary surface P.
  • a plurality of connection points on the same side of the scanning housing 41 include The two connection points provided at the corner and the two connection points provided at the diagonal form a connection line L.
  • the distance from the midpoint of the connection line L to the base 10 is the same as the distance from the center of gravity to the base 10.
  • each support 30 is connected to the scan housing 41 through two flexible connection components 50 and forms two connection points, and the projections of the four connection points on the base 10 are formed
  • the auxiliary surface P (as shown in FIG. 21 ), two connection points on the same side of the scan housing 41 are diagonally arranged and form a connection line L.
  • Two flexible connection assemblies 50 for connecting one bracket 30 and the scanning housing 41 include a first flexible connection assembly 53 and a second flexible connection assembly 54, and the first flexible connection assembly 53 connects the first coupling portion 321 and the first The mounting portion 414 and the second flexible connection assembly 54 connect the second coupling portion 313 and the second mounting portion 415.
  • the center line of the first flexible connecting component 53 and the second flexible connecting component 54 forms a connecting line L.
  • the distance from the midpoint of the connection line L to the base 10 is the same as the distance from the center of gravity of the scan housing 41 (or the center of gravity of the scanning module 40) to the base 10, thereby further reducing the transmission of the vibration of the scanning module 40 to the base 10 , And when the distance measuring device 100 is shocked by external impact, the rotating torque received by the scanning housing 41 is small, and the direction of the torque is perpendicular to the center of the fixing portion 310, the center of the first coupling portion 321, and the second coupling portion
  • the plane on which the center of 313 is located can reduce or even prevent the distance measuring device 100 from being flipped due to external impact.
  • each bracket 30 is connected to the scan housing 41 through four flexible connection components 50 and forms four connection points, and the projection of the eight connection points on the base 10 is formed Auxiliary surface, four connection points located on the same side of the scanning housing 41 are arranged at opposite angles, two connection points arranged diagonally form a first connection line, and the other two connection points arranged diagonally form a second connection line,
  • the distance from the midpoint of the first connection line to the base 10 is the same as the distance from the center of gravity to the base 10
  • the distance from the midpoint of the second connection line to the base 10 is the same as the distance from the center of gravity to the base 10.
  • two of the flexible connection assemblies 50 may connect the coupling arm 32 and the first support 411, and the other two flexible connection assemblies 50 connect the fixed arm 31 and the second support 412.
  • Each bracket 30 is connected to the scan housing 41 through four flexible connection components 50, so that the scan housing 41 can be more firmly installed on the bracket 30.
  • the four connection points formed by each bracket 30 include a first connection point, a second connection point, a third connection point, and a fourth connection point, the first connection point and the third connection point are located on the bracket
  • the second connection point and the third connection point are located on the side of the bracket 30 close to the base 10, the fourth connection point is closer to the first connection point than the second connection point, and the first connection is connected in turn
  • the shape formed by the point, the third connection point, the second connection point, the fourth connection point and the first connection point is a rectangle or a parallelogram.
  • first connection point and the second connection point form a first connection line
  • third connection point and the fourth connection point form a second connection line
  • the midpoint of the first connection line and the second connection line The midpoints coincide.
  • Each bracket 30 is connected to the scan housing 41 through four flexible connection components 50, so that the scan housing 41 can be more firmly installed on the bracket 30.
  • a first positioning member 4112 is formed on the first support 411.
  • a second positioning member 4122 is formed on the second support 412.
  • the first support 411 is connected to the second support 412, and the first positioning member 4112 and the second positioning member 4122 cooperate so that the first rotating shaft 4236 and the second rotating shaft 4337 are spaced in parallel at a predetermined distance.
  • the first optical element 45 is installed in the first driver 42
  • the first driver 42 is installed in the first holder 411
  • the second optical element 46 is installed in the second driver 43
  • the second driver 43 is installed in the second holder
  • the positions of the rotation axes of the first optical element 45 and the second optical element 46 are not easily displaced, and the ranging accuracy of the ranging device 100 is high .
  • the predetermined distance between the first rotation axis 4236 and the second rotation axis 4337 can be set according to the actual needs of the scanning module 40.
  • the first rotation axis 4236 and the second rotation axis 4337 coincide, that is The predetermined distance between the first rotating shaft 4236 and the second rotating shaft 4337 is zero.
  • the first positioning member 4112 may be formed at the end of the first support body 4111 close to the second support 412
  • the second positioning member 4122 may be formed at the end of the second support body 4121 close to the first support 411, during installation At this time, the installation angle of the first support 411 and the second support 412 can be determined by the first positioning element 4112 and the second positioning element 4122.
  • the first support Only the seat 411 and the second support 412 can be correctly matched, that is, the first positioning member 4112 and the second positioning member 4122 can be properly matched together.
  • first positioning member 4112 and the second positioning member 4122 can be appropriately adjusted according to the differences in the shapes and coupling methods of the first supporting member 411 and the second supporting member 412.
  • the first positioning member 4112 and the second positioning member 4122 may be a buckle and a slot respectively, and the first positioning member 4112 and the second positioning member 4122 may be an internal thread and an external thread, respectively.
  • the first positioning member 4112 includes a positioning groove 4114
  • the second positioning member 4122 includes a positioning protrusion 4127
  • the positioning protrusion 4127 extends into the positioning groove 4114 to cooperate with each other.
  • the positioning groove 4114 can communicate with the first receiving cavity 4119.
  • the depth direction of the positioning groove 4114 can be the same as the direction of the first rotating shaft 4236.
  • the positioning protrusion 4127 extends from one end of the second support body 4121. The extending direction may be the same as the direction of the second rotating shaft 4337.
  • the inner wall of the positioning groove 4114 is ring-shaped or part of a ring shape
  • the positioning protrusion 4127 includes a plurality of spaced-apart positioning protrusions 4127a
  • the outer walls of the plurality of positioning protrusions 4127a form a ring-shaped or In a part of the ring shape, the outer walls of the plurality of positioning protrusions 4127a abut against the inner walls of the positioning groove 4114.
  • the central axis of the inner wall of the positioning groove 4114 may coincide with the first rotating shaft 4236, and the central axis of the outer wall of the plurality of positioning protrusions 4127a may coincide with the second rotating shaft 4337.
  • the plurality of positioning protrusions 4127a may be distributed at equal angular intervals around the circumference of the second rotation axis 4337.
  • the outer walls of the plurality of positioning protrusions 4127a can be interference fit with the inner walls of the positioning grooves 4114, so that the first positioning member 4112 and the second positioning member 4122 are not likely to shake after cooperation.
  • the second positioning member 4122 is formed at one end of the second support 412
  • the third positioning member 4123 is formed at the other end of the second support 412.
  • a fourth positioning member 4131 is formed on the third support 413.
  • the third positioning member 4123 cooperates with the fourth positioning member 4131 so that the second rotating shaft 4337 and the third rotating shaft 4437 are spaced in parallel at a predetermined distance.
  • the second optical element 46 is installed in the second driver 43
  • the second driver 43 is installed in the second holder 412
  • the third optical element 47 is installed in the third driver 44
  • the third driver 44 is installed in the third holder
  • the positions of the rotation axes of the second optical element 46 and the third optical element 47 are not easily shifted, and the ranging accuracy of the ranging device is high.
  • the predetermined distance between the second rotation axis 4337 and the third rotation axis 4437 can be set according to the actual needs of the scanning module 40.
  • the second rotation axis 4337 and the third rotation axis 4437 coincide, that is The predetermined distance between the second rotation shaft 4337 and the third rotation shaft 4437 is zero.
  • the first rotating shaft 4236, the second rotating shaft 4337 and the third rotating shaft 4437 can all be coincidently arranged, so that the optical path receiving system of the first optical element 45, the second optical element 46 and the third optical element 47 The light collection efficiency is higher.
  • the third positioning member 4123 may be formed at the end of the second support body 4121 near the third support 413, and the fourth positioning member 4131 may be formed at the end of the third support body 4130 near the second support 412, during installation At this time, the installation angle of the first support 411 and the second support 412 can be determined by the third positioning element 4123 and the fourth positioning element 4131. Only when the second rotation axis 4337 and the third rotation axis 4437 coincide, the second support Only the seat 412 and the third support 413 can be correctly matched, that is, the third positioning member 4123 and the fourth positioning member 4131 can be properly matched together.
  • the specific forms of the third positioning member 4123 and the fourth positioning member 4131 can be adjusted appropriately according to the differences in the shapes and combination methods of the second supporting member 412 and the third supporting member 413.
  • the third positioning member 4123 and the fourth positioning member 4131 can be a buckle and a slot respectively, and the third positioning member 4123 and the fourth positioning member 4131 can be an internal thread and an external thread, respectively.
  • the third positioning member 4123 includes a positioning groove 4128
  • the fourth positioning member 4131 includes a positioning protrusion 4132 that extends into the positioning groove 4128 to cooperate with each other.
  • the positioning groove 4128 may communicate with the second receiving cavity 4126
  • the depth direction of the positioning groove 4128 may be the same as the direction of the second rotating shaft 4337
  • the positioning protrusion 4132 extends from one end of the third support body 4130
  • the positioning protrusion The extending direction of 4132 may be the same as the direction of the third rotating shaft 4437.
  • the inner wall of the positioning groove 4128 is ring-shaped or a part of the ring shape
  • the positioning protrusion 4132 includes a plurality of spaced positioning sub-protrusions 4132a
  • the outer walls of the plurality of positioning sub-protrusions 4132a are ring-shaped Or a part of the ring shape, the outer walls of the plurality of positioning protrusions 4132a abut the inner walls of the positioning grooves 4128.
  • the central axis of the inner wall of the positioning groove 4128 may coincide with the first rotating shaft 4236
  • the central axis of the outer wall of the plurality of positioning protrusions 4132a may coincide with the third rotating shaft 4437.
  • the plurality of positioning protrusions 4132a may be distributed at equal angular intervals around the circumference of the third rotation axis 4437.
  • the outer walls of the plurality of positioning sub-protrusions 4132a may be interference fit with the inner walls of the positioning groove 4128, so that the third positioning member 4123 and the fourth positioning member 4131 are not prone to wobbling when they cooperate.
  • the first support 411 further includes a support ring 4113, the first support body 4111 forms a first receiving cavity 4119, and the support ring 4113 is received from the inner wall of the first support body 4111 Cavity extension.
  • the first support body 4111 has a hollow structure, and the hollow portion forms a first receiving cavity 4119.
  • the inner wall of the first support body 4111 is usually made thinner. And this may cause the strength of the first support body 4111 to be reduced, and it is easy to deform when subjected to compression and impact.
  • the support ring 4113 extends from the inner wall of the first support body 4111 to the receiving cavity, which can increase the strength of the first support 411 as a whole, and the first support 411 is less likely to be deformed.
  • the first receiving cavity 4119 is cylindrical, and the supporting ring 4113 is also circular. The supporting ring 4113 can ensure the roundness of the first receiving cavity 4119.
  • the first driver 42 is installed in the first receiving cavity 4119, and the first stator assembly 421 and the first positioning assembly 422 are respectively installed on two opposite sides of the support ring 4113. side.
  • the first stator assembly 421 can be installed in the first receiving cavity 4119 from one side of the support ring 4113, and the first positioning assembly 422 can be installed in the first from the other side of the support ring 4113
  • the two can be installed at the same time without installing the first positioning assembly 422 and the first stator assembly 421 from the same side of the support ring 4113, which improves the installation efficiency.
  • the scanning module 40 further includes a pre-tensioning component 48.
  • the pretension assembly 48 includes a first pretension 481 and a second pretension 482.
  • the first pretension 481 is fixed on the first rotor 4231
  • the second pretension 482 is fixed on the second support 412.
  • the first pretension 481 and the second pretension 482 are oppositely arranged, and the first pretension 481 and the second pretension 482 generate an interaction force along the axial direction of the first bearing 422, so that the first inner The ring structure 4221 and the first outer ring structure 4222 jointly resist the first rolling element 4223.
  • the second support 412 is relatively fixed to the first support 411
  • the first outer ring structure 4222 is relatively fixed to the first support 411, that is, the first outer ring structure 4222 is relatively fixed to the second support 412.
  • the pre-tensioning component 48 there may be play between the first inner ring structure 4221 and the first rolling element 4223. The play may cause the first inner ring structure 4221 to rotate easily when the first inner ring structure 4221 rotates. The axial movement of the first bearing 422 generates noise.
  • the interaction force generated by the first pretension 481 and the second pretension 482 acts on the first inner ring structure 4221 and the second support 412, respectively. Under the action of the force, the first rolling body 4223 is resisted, the clearance of the first bearing 422 is eliminated, and the rotation of the first rotating shaft is ensured.
  • the interaction force between the first pretension 481 and the second pretension 482 may be a mutual attraction force or a mutual repulsion force.
  • both the first pretensioning piece 481 and the second pretensioning piece 482 may be made of ferromagnetic specially, for example, both are magnets.
  • the above-mentioned mutual repulsive force can be generated by opposing the same stage of the magnet, and the above-mentioned mutual attraction can be generated by opposing the different stages of the magnet.
  • the first pretension 481 is ring-shaped, and the first pretension 481 is sleeved on the first rotor 4231. After receiving the interaction force, the first preload 481 is transmitted to the first rotor 4231, and then transmitted to the first inner ring structure 4221.
  • the interaction force received by the ring-shaped first pretension 481 is relatively uniform, so as to prevent the first inner ring structure 4221 from tilting.
  • the first pretension 481 may also include a plurality of first sub-pretensions, which are arranged at equal angular intervals in the circumferential direction of the first rotor 4231.
  • the second pretensioning member 482 includes a plurality of second sub-pretensioning members 482a, and the plurality of second sub-pretensioning members 482a along the circumference of the second support 412 Set at equal angular intervals.
  • the second pre-tensioners 482 arranged at equal angular intervals can provide a more uniform interaction force for the first pre-tensioner 481.
  • the second pretension 482 may have a ring shape.
  • the second support 412 includes a first end face 4124 facing the first driver 42, a receiving groove 4125 is defined in the first end face 4124, and the second pretension 482 is at least partially accommodated in the receptacle Place in slot 4125.
  • the second pretension 482 is easily fixed on the second support 412, and the second pretension 482 does not protrude too much from the second support 412 to increase the axial dimension of the scanning module 40.
  • the pretension assembly 48 further includes a third pretension 483 and a fourth pretension 484.
  • the third pretension 483 is fixed to the second rotor 4331
  • the fourth pretension 484 is fixed to the fourth rotor
  • the third pretension 483 is disposed opposite to the fourth pretension 484.
  • the third pretension 483 and the fourth pretension 484 generate an interaction force along the axial direction of the second bearing 432 and the third bearing 442, so that the second inner ring structure 4321 and the second outer ring structure 4322 share Resisting the second rolling element 4323, the third inner ring structure 4421 and the third outer ring structure 4422 jointly resist the third rolling element 4423.
  • the second outer ring structure 4322 and the second support 412 are fixed to each other, the third outer ring structure 4422 and the third support 413 are fixed to each other, and the second support 412 and the third support 413 are fixed to each other, then the second outer ring The structure 4322 and the third outer ring structure 4422 are fixed to each other.
  • the interaction force between the third pretension 483 and the fourth pretension 484 first acts on the second rotor 4331 and the third rotor 4431 respectively, and then transmits to the second inner ring structure 4321 and the third inner ring structure respectively 4421, the second inner ring structure 4321 resists the second rolling element 4323 to eliminate the clearance of the second bearing 432, and the third inner ring structure 4421 resists the third rolling element 4423 to eliminate the clearance of the third bearing 442, Ensure that the second bearing 432 and the third bearing 442 rotate smoothly.
  • the interaction force between the third pretension 483 and the fourth pretension 484 may be a mutual attraction force or a mutual repulsion force.
  • both the third pretensioning member 483 and the fourth pretensioning member 484 can be made of ferromagnetic, for example, they are both magnets.
  • Mutual repulsive force can be generated by comparing the same stage of the magnet, and mutual attraction can be generated by comparing the different stage of the magnet.
  • the third pretension 483 may be ring-shaped and sleeved on the third rotor 4431, and the fourth pretension 484 may be ring-shaped and sleeved on the fourth rotor.
  • first bearing 422, the second bearing 432, and the third bearing 442 are coaxially disposed. That is, the first rotation shaft 4236, the second rotation shaft 4337, and the third rotation shaft 4437 are coaxially provided.
  • the first optical element 45, the second optical element 46 and the third optical element 47 are sequentially arranged side by side.
  • the scanning module 40 is used for receiving light pulses, emitting the light pulses after changing the propagation direction, and for receiving light pulses reflected back by the object.
  • the optical pulse passes through the third optical element 47, the second optical element 46, and the first optical element 45 successively.
  • the aperture of the first optical element 45 is larger than the aperture of the third optical element 47.
  • the three optical elements can be combined with more refractive angles, and the aperture of the first optical element 45 is larger than the aperture of the third optical element 47, and the first optical element 45 can receive more reflected from the object Optical pulses, and the optical pulses passing through the second optical element 46 can be deflected by the first optical element 45 to a greater angle, which improves the field of view of the scanning module 40.
  • the aperture of the first optical element 45 is greater than the aperture of the second optical element 46, and the aperture of the second optical element 46 is equal to the aperture of the third optical element 47.
  • the second driver 43 on which the second optical element 46 is mounted, and the third driver 44 on which the third optical element 47 is mounted can be set the same, and the second support 412 on which the second driver 43 is mounted, and the third The sizes of the three supports 413 can also be set to be similar or the same.
  • the aperture of the first optical element 45 may be greater than the aperture of the second optical element 46, and the aperture of the second optical element 46 is greater than the aperture of the third optical element 47.
  • the range to which the optical pulse can be refracted can gradually increase without being affected by the rotor (third rotor 4431 , The second rotor 4331, the first rotor 4231) is blocked.
  • the aperture of the first optical element 45 may also be equal to the aperture of the second optical element 46, and the aperture of the second optical element 46 is larger than the aperture of the third optical element 47.
  • the second rotor 4331 extends into the first receiving cavity 4235. Specifically, it may be that the second yoke 4333 extends into the first storage cavity. Since the first optical element 45 is installed in the first storage cavity 4235, the second optical element 46 is installed in the second storage cavity formed by the second rotor 4331 In 4336, the second rotor 4331 extends into the first receiving cavity 4235, which can actually make the second optical element 46 and the first optical element 45 relatively close, reducing the laser light between the second optical element 46 and the first optical element 45 The light path between. Please refer to FIG. 9 and FIG. 17, taking the emitted laser as an example, the laser beam is refracted after passing through the second optical element 46.
  • the second optical element 46 Since the second optical element 46 is relatively close to the first optical element 45, the laser light shines on the The range of an optical element 45 is small, which prevents the laser beam from being irradiated onto the first rotor 4231 and is blocked, which improves the efficiency of light emission and light collection. At the same time, it can also reduce the size of the scanning module 40 in the axial direction.
  • the second optical element 46 at least partially extends into the first receiving cavity 4235, so that the second optical element 46 and the first optical element 45 are close to each other, further improving the efficiency of light extraction and light collection.
  • the inner wall of the first rotor 4231 forms a first receiving cavity 4235
  • the first rotor 4231 includes an outer end 4239 away from the second driver 43, the outer end 4239 and the first rotor
  • the intersection of the inner walls of 4231 is formed with an escape chamfer 4230.
  • Forming the avoidance chamfer 4230 does not reduce the length of the first rotor 4231 in the axial direction, so that the first stator assembly 421 can be disposed on the outer circumferential surface of the first yoke 4233a, and forms the avoidance chamfer 4230 This facilitates light to pass through the avoidance chamfer 4230 without being blocked by the inner wall of the first rotor 4231, and improves the efficiency of the light output and light collection of the scanning module 40.
  • the angle ⁇ of the avoidance chamfer 4230 may be in the range of (0, 40) degrees, for example, 10 degrees, 12 degrees, 15.5 degrees, 23 degrees, 37 degrees, 40 degrees, etc. within the range of any degree, In this way, the strength of the first rotor 4231 is not greatly weakened, and the first stator assembly 421 has a better supporting effect.
  • the optical pulse first passes through the first optical element 45, and then passes through the second optical element 46 and the third optical element 47.
  • the first optical element 45, the second optical element 46, and the third optical element 47 are all light refracting elements, that is, the first optical element 45, the second optical element 46, and the third optical element can all be separate Refracts the passing light to change the original direction of light propagation.
  • the optical axes of the first optical element 45, the second optical element 46, and the third optical element 47 are coaxially arranged, so that the laser pulse is not easily diffracted by the first rotor 4231 and the second rotor 4331 after being refracted Or the third rotor 4431 is blocked to improve the light emitting and entering efficiency of the scanning module 40.
  • the optical axes of the first optical element 45, the second optical element 46, and the third optical element 47 may not be arranged coaxially.
  • devices such as reflective elements may be added, which is not limited herein.
  • the distance between the first optical element 45 and the second optical element 46 may be smaller than the distance between the second optical element 46 and the third optical element 47; or between the first optical element 45 and the second optical element 46 The distance between them may be equal to or greater than the distance between the second optical element 46 and the third optical element 47.
  • the field of view of the scanning module 40 in the horizontal direction is greater than the field of view in the vertical direction, so that the distance measuring device can more easily detect the depth information of the objects to be measured around.
  • the field of view of the scanning module 40 in the horizontal direction is between [60 degrees, 80 degrees], such as 60 degrees, 65 degrees, 70 degrees, 71 degrees, 75 degrees, 75.8 degrees, 78 degrees, 80 degrees Any angle within the above range;
  • the vertical angle of view of the scanning module 40 is between [25 degrees, 35 degrees], such as 25 degrees, 26 degrees, 26.5 degrees, 27.4 degrees, 28 degrees, Any angle within the above range, such as 29 degrees, 32 degrees, and 35 degrees.
  • the field of view of the scanning module 40 is elongated, such as rectangular, and the long side of the rectangle can be parallel to the horizontal or vertical line; or elliptical, the long axis of the ellipse can be parallel to the horizontal or vertical line parallel.
  • the second drive 43 can rotate to drive the second optical element 46 to rotate about the second rotation axis 4337
  • the third drive 44 can rotate to drive the third optical element 47 to rotate about the third rotation axis 4437.
  • the second drive 43 and the third drive 44 can be independently controlled to rotate, then the second optical element 46 can rotate simultaneously with the third optical element 47, and the direction and speed of rotation can be the same or different; it can also be the second The optical element 46 rotates and the third optical element 47 does not rotate; it may be that the second optical element 46 does not rotate and the third optical element 47 rotates.
  • the light pulse is changed by the second optical element 46 and/or the third optical element 47 to different directions and exits.
  • first driver 42 can rotate to drive the first optical element 45 to rotate about the first rotation axis 4236.
  • the first driver 42, the second driver 43, and the third driver 44 can be independently controlled to rotate, the rotation speed and direction of the second optical element 46 and the third optical element 47 will not affect the rotation speed of the first optical element 45 And directions.
  • the angle between the light exit surface of the first optical element 45 and the plane perpendicular to the first rotation axis 4236 is less than 10 degrees.
  • the angle between the light exit surface of the third optical element 47 and the plane perpendicular to the third rotation axis 4437 is less than 10 degrees.
  • the angle between the light exit surface of the first optical element 45 and the first rotation axis 4236 is between 80 degrees and 90 degrees.
  • the angle between the light exit surface of the third optical element 47 and the third rotation axis 4437 is between 80 degrees and 90 degrees.
  • the light exit surface of the first optical element 45 is perpendicular to the first rotation axis 4236.
  • the light exit surface of the third optical element 47 is perpendicular to the third rotation axis 4437.
  • the light emitting surface refers to the surface that the laser pulse last passes when the laser pulse is passed through the optical element when the distance measuring device emits the laser pulse, for example, the light emitting surface of the first optical element 45 indicates that the emitted laser pulse passes through the first optical element The surface last crossed at 45 o'clock.
  • the light exit surface of the first optical element 45 is perpendicular to the third rotation axis 4437, so that for the same light exit surface area, the effective light receiving area of the first optical element 45 is larger.
  • first optical element 45, the second optical element 46, and the third optical element 47 are arranged side by side, and there are opposite surfaces and opposite surfaces between two adjacent optical elements.
  • the two opposite surfaces of the second optical element 46 and the third optical element 47 are parallel.
  • the distance between the two opposite surfaces of the second optical element 46 and the third optical element 47 is located between [1.5 mm, 5 mm], which can be specifically 1.5 mm, 2 mm, 2.7 mm, 3.4 mm, 4 mm, 4.9 mm , 5 mm, etc., any value within the above range.
  • the distance between the opposing two surfaces of the first optical element 45 and the second optical element 46 is located between [10 mm, 25 mm], which can be specifically 10 mm, 15 mm, 17.3 mm, 17.5 mm, 20 mm, 22.5 mm , 24 mm, 25 mm, etc., any value within the above range.
  • the surfaces of the first optical element 45 and the third optical element 47 are not parallel, and the surface of the first optical element 45 and the third optical element 47 refers to the surface where the first optical element 45 and the third optical element 47 are close to each other.
  • the distance between the two opposing surfaces may refer to the distance between the two opposing surfaces, and the intersection between the two surfaces and the respective optical axes.
  • the wedge angles of the second optical element 46 and the third optical element 47 may be between [19 degrees, 21 degrees], for example 19 degrees, 19.5 degrees, 20 degrees, 20.5 degrees, 20.8 degrees, 21 degrees, etc. can be any value within the above range.
  • the wedge angles of the second optical element 46 and the third optical element 47 may be equal, for example, 20 degrees or 21 degrees, etc.
  • the wedge angles of the second optical element 46 and the third optical element 47 may also be unequal, for example, the first The wedge angle of the second optical element 46 is 20 degrees and the wedge angle of the third optical element 47 is 21 degrees.
  • the wedge angle of the first optical element 45 is located between [17 degrees, 19 degrees], such as 17 degrees, 17.7 degrees, 18 degrees, 18.3 degrees, 18.5 degrees, 19 degrees, etc., which are arbitrarily within the above range.
  • the surface of the third optical element 47 away from the first optical element 45 is not perpendicular to the optical axis of the third optical element 47.
  • Non-vertical can be understood as inclined, and the optical axis of the third optical element 47 can coincide with the third rotation axis 4437, which can prevent the surface of the third optical element 47 away from the first optical element 45 from exiting the distance measuring module 60 Of the light is reflected back to the detector 64 to avoid interference with the light received by the detector 64.
  • the difference between the refractive power of the second optical element 46 and the third optical element 47 to the light pulse is less than 10 degrees, for example, the difference in refractive power is 0 degrees, 2 degrees, 5 degrees, 7 degrees, 8.3 degrees, 10 degrees, etc. arbitrarily less than 10 degrees.
  • the second optical element 46 and the third optical element 47 have the same refractive power to the optical pulse, that is, the difference between the second optical element 46 and the third optical element 47 to the optical pulse is 0 degrees.
  • the refractive power of the optical element refers to the deflection angle of the emitted light compared to the incident light when the incident light is perpendicular to the light incident surface.
  • the difference in refractive power is less than 10 degrees, which can mean that the deflection direction of the incident light is the same when the incident light is perpendicular to the light incident surface, but the difference of the deflection angle is less than 10 degrees; or the deflection direction is different, but the deviation The angle of the folding direction is less than 10 degrees.
  • the materials of the second optical element 46 and the third optical element 47 may be the same, the second optical element 46 and the third optical element 47 may both be wedge prisms, and the wedge angles of the two may be the same.
  • the two opposite surfaces of the second optical element 46 and the third optical element 47 may be parallel to each other.
  • the second optical element 46 and the third optical element 47 may rotate at the same speed in reverse, for example, the second optical element 46 rotates forward and the third optical element 47 The same speed reverses, or the second optical element 46 reverses and the third optical element 47 rotates forward at the same speed.
  • the sum of the phase angle of the second optical element 46 and the phase angle of the third optical element 47 floats around a fixed value, The floating range does not exceed 20 degrees.
  • the phase angle refers to the angle between the zero position of the light refraction element and a reference direction.
  • the reference direction may be indicated by the direction X
  • the zero position of the second optical element 46 may be indicated by ⁇ 1
  • the zero position of the third optical element 47 can be represented by ⁇ 2
  • the phase angle of the second optical element 46 can be represented by ⁇ 1
  • the phase angle of the third optical element 47 can be represented by ⁇ 2
  • the phase angle of the second optical element 46 is the same as the third
  • the sum of the phase angles of the optical element 47 can be expressed by ⁇ 1+ ⁇ 2.
  • the phase angle formed in the reference direction is positive and the clockwise direction is negative; or the phase angle formed in the reference direction is clockwise and the counterclockwise direction is positive.
  • the sum of the phase angle of the second optical element 46 and the phase angle of the third optical element 47 is a fixed value.
  • the above-mentioned reference direction is the horizontal direction, and the sum of the phase angle of the second optical element 46 and the phase angle of the third optical element 47 floats around 0 degrees, enabling the scanning module 40 to scan horizontally Extended band-shaped field of view to make the distance measuring device more suitable for certain scenes, such as obstacle avoidance for self-driving cars.
  • the radial dimension of the second rotor 4331 is smaller than the radial dimension of the first rotor 4231.
  • the second rotor 4331 is disposed coaxially with the first rotor 4231, that is, the second rotating shaft 4337 overlaps the first rotating shaft 4236.
  • the second rotor assembly 433 and the first rotor assembly 423 are distributed in the same rotation axis direction, and the second rotor assembly 433 is located toward the first face 453 of the first optical element 45 in the first rotor assembly 423.
  • the radial dimension of the third rotor 4431 is equal to the radial dimension of the second rotor 4331, and the axial dimension of the third rotor 4431 may be less than or equal to or greater than the axial dimension of the second rotor 4331.
  • the third rotor 4431 is disposed coaxially with the second rotor 4331, that is, the third rotating shaft 4437, the second rotating shaft 4337, and the first rotating shaft 4236 coincide.
  • the third rotor assembly 443 and the second rotor assembly 433 are distributed in the same rotation axis direction, and the third rotor assembly 443 is located toward the second face 464 of the second optical element 46 in the second rotor assembly 433.
  • the first optical element 45 is formed with a first surface 453 and a second surface 454 opposite to each other.
  • the first surface 453 is inclined with respect to the first rotation axis 4236, that is, the angle between the first surface 453 and the first rotation axis 4236 is not 0 degrees or 90 degrees;
  • the second surface 454 is perpendicular to the first rotation axis 4236, that is, the second The angle between the surface 454 and the first rotation axis 4236 is 90 degrees.
  • the thickness of the first optical element 45 is not uniform, that is, the thickness of the first optical element 45 is not equal everywhere, and there is a position with a large thickness and a small thickness s position.
  • the first optical element 45 includes a first end 451 and a second end 452, and the first end 451 and the second end 452 are located at both ends of the first optical element 45 in the radial direction.
  • the thickness of the first optical element 45 gradually increases in one direction, and the thickness of the first end 451 is greater than the thickness of the second end 452, or the first optical element 45 may be a wedge mirror (wedge prism).
  • the dynamic balance of the scanning module 40 is improved by reducing the weight of the scanning module 40 and increasing the weight of the scanning module 40.
  • the weight of the scanning module 40 when reducing the weight of the scanning module 40 is used to improve the dynamic balance of the scanning module 40, in some embodiments below by forming a gap in the first optical element 45 and/or the first rotor 4231 Improve the dynamic balance of the scanning module 40.
  • the notch includes a cut corner 455 formed on the first optical element 45.
  • the cut corner 455 is located at the edge of the first end 451.
  • the inner surface of the first side wall 4234 is opposite and is located at a position of the first optical element 45 away from the optical path of the first optical element 45, or, the cut angle 455 is located at a position in the first optical element 45 where light does not pass. In this way, the chamfered angle 455 does not affect the transmission of laser light in the first optical element 45 while improving the dynamic balance of the scanning module 40.
  • the first optical element 45 includes a first area and a second area.
  • the first area is opposite to the second optical element 46, and the second area extends from the first area beyond the periphery of the second optical element 46.
  • the notch includes a chamfered corner 455 opened on the second area of the first optical element 45 and close to the first end.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231, the third end 4237a and the fourth end The 4237b is disposed oppositely.
  • the third end 4237a of the first rotor 4231 is close to the second surface 454 of the first optical element 45, and the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the notch includes an inscribed groove 4234a formed on the inner surface of the first side wall 4234 of the first rotor 4231, the inscribed groove 4234a is close to the first end 451 side of the first optical element 45, and the inscribed groove 4234a is opposite to the third end 4237a is closer to the fourth end 4237b, or the inscribed groove 4234a extends from the third end 4237a toward the fourth end 4237b.
  • the inner cut groove 4234a is opposite to the cut angle 455, and the projection range of the inner cut groove 4234a on the first rotation axis 4236 covers the projection range of the cut angle 455 on the first rotation axis 4236.
  • the number of the inner cut grooves 4234a may be plural (greater than or equal to two), and the plural inner cut grooves 4234a are arranged at intervals. In this way, it can be avoided that the single inscribed groove 4234a with a large area has a great influence on the strength of the first side wall 4234.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231, the third end 4237a and the fourth end The 4237b is disposed oppositely.
  • the third end 4237a of the first rotor 4231 is close to the second surface 454 of the first optical element 45, and the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the notch includes a groove 4234c formed in the middle (between the outer surface and the inner surface) of the first side wall 4234 of the first rotor 4231, that is, the groove 4234c does not penetrate the inner surface and the outer surface of the first side wall 4234.
  • the groove 4234c is closer to the first end 451 side of the first optical element 45, and the groove 4234c is closer to the fourth end 4237b than the third end 4237a, or the groove 4234c is directed from the third end 4237a toward the fourth end 4237b extend.
  • the number of grooves 4234c may be plural (greater than or equal to two), and the plurality of grooves 4234c are arranged at intervals. In this way, it can be avoided that a single groove 4234c with a larger area has a greater influence on the strength of the first side wall 4234.
  • the projection range of the groove 4234c on the first rotation axis 4236 covers the projection range of the cut angle on the first rotation axis 4236.
  • the projection range of the groove 4234c on the first rotation axis 4236 covers the projection range of the inscribed groove 4234a on the first rotation axis 4236.
  • the projection range of the groove 4234c on the first rotation axis 4236 both covers the projection range of the chamfered angle and the inscribed groove 4234a on the first rotation axis 4236.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231, the third end 4237a is disposed opposite to the fourth end 4237b, and the first rotor
  • the third end 4237a of 4231 is close to the second surface 454 of the first optical element 45
  • the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the notch includes an outer notch 4234b formed on the outer surface of the first side wall 4234 of the first rotor 4231, the outer notch 4234b is close to the first end 451 side of the first optical element 45, and the outer notch 4234b is opposite the fourth end 4237b is closer to the third end 4237a, or the outer notch 4234b extends from the fourth end 4237b toward the third end 4237a.
  • the number of outer cut grooves 4234b may be multiple (greater than or equal to two), and the multiple outer cut grooves 4234b are arranged at intervals. In this way, it is possible to avoid that a single outer-groove 4234b with a larger area has a greater influence on the strength of the first side wall 4234.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231, the third end 4237a and The fourth end 4237b is disposed opposite to each other.
  • the third end 4237a of the first rotor 4231 is close to the second surface 454 of the first optical element 45, and the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the outer surface of the first side wall 4234 of the first rotor 4231 extends radially outward to form a rib 4238.
  • the rib 4238 is disposed around the first side wall 4234 of the first rotor 4231, and the rib 4238 is more opposite to the third end 4237a. Close to the fourth end 4237b.
  • the notch includes an opening 4238a formed in the rib 4238, and the opening 4238a is close to the first end 451 side of the first optical element 45.
  • the number of openings 4238a may be multiple (greater than or equal to two), and the multiple openings 4238a are arranged at intervals. In this way, it can be avoided that the single opening 4238a having a large area has a great influence on the strength of the rib 4238.
  • the notch (cut corner 455, inner cut groove 4234a, outer cut groove 4234b, groove 4234c, and opening 4238a) may be symmetrical about the third auxiliary plane, which passes through the first rotation axis 4236, The plane of the first end and the second end.
  • the arrangement of the above-mentioned notch is helpful to reduce the shaking caused by the uneven thickness when the first optical element 45 rotates, and is conducive to making the entire first rotor assembly 423 more stable when rotating.
  • the position of the above-mentioned notch is that the light path does not pass through the position, does not affect the propagation of the light beam, and does not reduce the light emitting and receiving efficiency of the optical element.
  • the dynamic balance of the scanning module 40 is improved by adding a bump 4232 to the first rotor 4231.
  • the first rotor assembly 423 further includes a projection 4232, which is used to improve the smoothness of the first rotor assembly 423 when it rotates.
  • the protrusion 4232 is disposed on the first side wall 4234 of the first rotor 4231 and is located in the first storage cavity 4235, the protrusion 4232 extends from the first side wall 4234 toward the center of the first storage cavity 4235, and the protrusion 4232
  • the height extending toward the center of the first storage cavity 4235 may be lower than a predetermined ratio of the radial width of the first storage cavity 4235, and the predetermined ratio may be 0.1, 0.22, 0.3, 0.33, etc. to avoid the projection 4232 blocking the first storage cavity 4235 is too much and affects the transmission path of the laser pulse.
  • the protrusion 4232 may be fixedly connected to the first rotor 4231, so that the protrusion 4232 and the first rotor 4231 rotate synchronously.
  • the bump 4232 may be integrally formed with the first rotor 4231, for example, by injection molding or other processes.
  • the bump 4232 can also be formed separately from the first rotor 4231.
  • the bump 4232 can be fixed on the first side wall 4234 of the first rotor 4231, such as The bump 4232 is bonded to the first side wall 4234, or the bump 4232 is fixed to the first side wall 4234 of the first rotor 4231 by fasteners such as screws, wherein the bump 4232 is attached to the first side wall 4234
  • the combined surface is a curved surface.
  • the bump 4232 rotates synchronously with the first yoke 4233a, and the bump 4232 is fixedly connected to the first yoke 4233a.
  • the bump 4232 when the bump 4232 is installed in the first storage cavity 4235, the bump 4232 and the first optical element 45 are distributed along the radial direction of the first rotor 4231
  • the first end 451 of the element 45 may be in contact with the inner surface of the first side wall 4234, the second end 452 forms a gap with the first side wall 4234, and the protrusion 4232 extends into the gap.
  • the second end 452 and the bump 4232 are located on the same side of the first rotation axis 4236, and the first end 451 and the bump 4232 are located on opposite sides of the first rotation axis 4236, when the first optical element 45 and the first When a rotor assembly 423 rotates together, the overall rotation formed by the first optical element 45 and the protrusion 4232 is stable, thereby avoiding the shaking of the first rotor assembly 423, which is beneficial to the smoothness of the entire first rotor assembly 423 when rotating.
  • the bump 4232 is spaced from the first optical element 45, and the surface of the bump 4232 facing the first optical element 45 is flat.
  • the projection range of the projection 4232 on the first rotation axis 4236 covers the projection range of the first optical element 45 on the first rotation axis 4236.
  • the bump 4232 and the first optical element 45 are arranged side by side along the direction of the first rotation axis 4236 of the first rotor 4231. Both the first end 451 and the second end 452 of an optical element 45 can be in contact with the inner surface of the first side wall 4234, and the bump 4232 can be in contact with the first optical element 45 to make the bump 4232 as close as possible to the first The optical element 45 is close.
  • the bump 4232 is located on the side where the first surface 453 of the first optical element 45 is located, and the bump 4232 may resist the first surface 453 of the first optical element 45.
  • the first optical element 45 When the first optical element 45 is installed, when the first surface 453 abuts against the bump 4232, it can be considered that the first optical element 45 is installed in place in the depth direction of the first storage cavity 4235. More specifically, the bump 4232 includes a bump side wall 1232a, and the bump side wall 1232a abuts the first surface 453. In another example, the projection range of the first optical element 45 on the first rotation axis 4236 covers the projection range of the projection 4232 on the first rotation axis 4236.
  • the protrusion 4232 and the first optical element 45 are arranged side by side along the direction of the first rotation axis 4236 of the first rotor 4231. Both the first end 451 and the second end 452 may be in contact with the inner surface of the first side wall 4234, the bump side wall 1232a may have a flat plate shape perpendicular to the first rotation axis 4236, and the bump side wall 1232a may also have a step shape In order to simplify the process flow when the bump 4232 and the first rotor 4231 are integrally formed.
  • the bump sidewall 1232a may also be inclined with respect to the first rotation axis 4236, that is, the bump sidewall 1232a is not perpendicular to the first rotation axis 4236.
  • the tilt direction of the bump sidewall 1232a is opposite to the first surface 453 The direction of the bump is the same, the bump side wall 1232a and the first surface 453 are bonded, so that the bump side wall 1232a and the first surface 453 are as close as possible to maximize the weight of the bump 4232 and reduce the bump 4232 Height, thereby reducing the obstruction of the light path by the bump 4232.
  • the projection range of the first optical element 45 on the first rotation axis 4236 covers the projection range of the projection 4232 on the first rotation axis 4236.
  • the projection 4232 can function as a counterweight.
  • the projection 4232 rotates synchronously with the first optical element 45, and the torque relative to the first rotation axis 4236 when the projection 4232 and the second end 452 rotate together, It is equal to the torque with respect to the first rotating shaft 4236 when the first end 451 rotates, that is to say, the torque generated when the projection 4232 and the second end 452 rotate together can be equal to the first end of the first optical element 45
  • the torque generated when the 451 rotates cancels out without affecting the smoothness when the remaining positions of the first rotor 4231 rotate.
  • the protrusion 4232 is symmetrical about the third auxiliary surface, which is a plane passing through the first rotation axis 4236, the first end 451, and the second end 452.
  • the bump 4232 may also be symmetrical about the first auxiliary surface, where the first auxiliary surface is a plane perpendicular to the first rotation axis 4236 and passing through the center of the first surface 453. In this way, the bump 4232 can better fit the first optical element 45 with a weight.
  • the density of the protrusion 4232 is greater than the density of the first rotor 4231, so that when the protrusion 4232 is disposed in the first storage cavity 4235, the same quality, that is, the same weight, guarantees that the protrusion 4232
  • the volume can be set smaller to reduce the influence of the bump 4232 on the laser pulse passing through the first receiving cavity 4235.
  • the density of the bump 4232 can also be greater than the density of the first optical element 45, so that the volume of the same bump 4232 can be designed as small as possible.
  • the arrangement of the above-mentioned bumps 4232 is beneficial to reduce the shaking caused by the uneven thickness when the first optical element 45 rotates, and is conducive to making the entire first rotor assembly 423 more stable when rotating.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231.
  • the third end 4237a is opposite to the fourth end 4237b It is provided that the third end 4237a of the first rotor 4231 is close to the second surface 454 of the first optical element 45, and the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the inner surface of the first side wall 4234 of the first rotor 4231 defines an avoidance chamfer 4230, and the avoidance chamfer 4230 is close to the side of the third end 4237a. In this way, avoiding chamfering 4230 not only helps the first optical element 45 to be easily installed in the first receiving cavity 4235, but also helps increase the angle at which the first optical element 45 receives the reflected laser pulse.
  • the first rotor 4231 includes a third end 4237a and a fourth end 4237b distributed along the direction of the first rotation axis 4236 of the first rotor 4231, the third end 4237a is disposed opposite to the fourth end 4237b, and the first rotor
  • the third end 4237a of 4231 is close to the second surface 454 of the first optical element 45
  • the fourth end 4237b of the first rotor 4231 is close to the first surface 453 of the first optical element 45.
  • the first rotor 4231 further includes a protrusion 4234d provided on the inner surface of the first side wall 4234 of the first rotor 4231 and on the side near the third end 4237a, and the first end 451 is mounted on the protrusion 4234d.
  • the first optical element 45 is coated with an antireflection film, and the thickness of the antireflection film is equal to the wavelength of the laser pulse emitted by the light source, which can reduce the loss when the laser pulse passes through the first optical element 45.
  • the second optical element 46 is formed with a first surface 463 and a second surface 464 opposite to each other.
  • the first surface 463 of the second optical element 46 faces the first surface 453 of the first optical element 45, and the first surface 463 of the second optical element 46 is inclined with respect to the second rotation axis 4337, that is, the first surface 463 and the second The angle of the rotating shaft 4337 is not 0 degrees or 90 degrees.
  • the second surface 464 of the second optical element 46 is opposite to the first surface 453 of the first optical element 45, and the second surface 464 of the second optical element 46 is perpendicular to the second rotation axis 4337, that is, the second surface 464 is
  • the included angle of the two rotating shafts 4337 is 90 degrees, or in other words, the second surface 464 of the second optical element 46 is parallel to the second surface 454 of the first optical element 45.
  • the second optical element 46 includes a first end 461 and a second end 462, and the first end 461 and the second end 462 are located at both ends in the radial direction of the second optical element 46, respectively.
  • the thickness of the second optical element 46 gradually increases in one direction.
  • the thickness of the first end 461 is greater than the thickness of the second end 462, or the second optical element 46 may be a wedge mirror (wedge prism).
  • the dynamic balance of the scanning module 40 is improved by adding the scanning module 40 and the weight.
  • the dynamic balance of the scanning module 40 can be improved by adding a boss 4332 in the second rotor 4331.
  • the second rotor assembly 433 further includes a boss 4332.
  • the boss 4332 is disposed on the second side wall 4335 of the second rotor 4331 and is located in the second receiving cavity 4336.
  • the boss 4332 is used for In order to improve the stability of the second rotor assembly 433 when rotating.
  • the boss 4332 extends from the second side wall 4335 toward the center of the second storage cavity 4336, and the height of the boss 4332 extending toward the center of the second storage cavity 4336 may be lower than the predetermined radial width of the second storage cavity 4336 Ratio, the predetermined ratio may be 0.1, 0.22, 0.3, 0.33, etc., to avoid that the boss 4332 blocks the second receiving cavity 4336 too much and affects the transmission path of the laser pulse.
  • the boss 4332 may be fixedly connected to the second rotor 4331, so that the boss 4332 and the second rotor 4331 rotate synchronously.
  • the boss 4332 may be integrally formed with the second rotor 4331, for example, by injection molding or other processes.
  • the boss 4332 can also be formed separately from the second rotor 4331.
  • the boss 4332 can be fixed on the second side wall 4335 of the second rotor 4331, such as The boss 4332 is bonded to the second side wall 4335, or the boss 4332 is fixed to the second side wall 4335 of the second rotor 4331 by fasteners such as screws, wherein the boss 4332 is attached to the second side wall 4335
  • the combined surface is a curved surface.
  • the boss 4332 and the second yoke 4333 rotate synchronously, and the boss 4332 and the second yoke 4333 are fixedly connected.
  • the boss 4332 and the second optical element 46 are distributed along the radial direction of the second rotor 4331.
  • the first end 461 may be in contact with the inner surface of the second side wall 4335, the second end 462 forms a gap with the second side wall 4335, and the boss 4332 extends into the gap.
  • the second end 462 and the boss 4332 are located on the same side of the second rotating shaft 4337, and the first end 461 and the boss 4332 are located on opposite sides of the second rotating shaft 4337, when the second optical element 46 and the second When the two rotor assemblies 433 rotate together, the overall rotation formed by the second optical element 46 and the boss 4332 is stable, thereby avoiding the shaking of the second rotor assembly 433, which is beneficial to the smoother rotation of the entire second rotor assembly 433.
  • the boss 4332 is spaced from the second optical element 46, and the surface of the boss 4332 facing the second optical element 46 is flat.
  • the projection range of the boss 4332 on the second rotation axis 4337 covers the projection range of the second optical element 46 on the second rotation axis 4337.
  • the boss 4332 and the second optical element 46 are arranged side by side along the direction of the second rotation axis 4337 of the second rotor 4331. Both the first end 461 and the second end 462 of the two optical elements 46 may be in contact with the inner surface of the second side wall 4335, and the boss 4332 may be in contact with the second optical element 46 to make the boss 4332 as close as possible to the second The optical element 46 is close.
  • the boss 4332 is located on the side where the first surface 463 of the second optical element 46 is located, and the boss 4332 can resist the first surface 463 of the second optical element 46.
  • the boss 4332 includes a boss side wall 1332a, and the boss side wall 1332a abuts the first surface 463.
  • the projection range of the second optical element 46 on the second rotation axis 4337 covers the projection range of the boss 4332 on the second rotation axis 4337.
  • the boss 4332 and the second optical element 46 are arranged side by side along the direction of the second rotation axis 4337 of the second rotor 4331. Both the first end 461 and the second end 462 of the two optical elements 46 can be in contact with the inner surface of the second side wall 4335, the boss side wall 1332a can be in the form of a flat plate perpendicular to the second rotation axis 4337, and the boss side wall 1332a It may also be stepped to simplify the process flow when the boss 4332 and the second rotor 4331 are integrally formed.
  • the boss side wall 1332a may also be inclined with respect to the second rotation axis 4337, that is, the boss side wall 1332a is not perpendicular to the second rotation axis 4337.
  • the inclination direction of the boss side wall 1332a and the first surface 463 The direction of the boss is the same, the side wall 1332a of the boss is attached to the first surface 463, so that the side wall 1332a of the boss and the first surface 463 are as close as possible, so as to maximize the weight of the boss 4332 and reduce the weight of the boss 4332 Height, thereby reducing the obstruction of the optical path by the boss 4332.
  • the projection range of the second optical element 46 on the second rotation axis 4337 covers the projection range of the boss 4332 on the second rotation axis 4337.
  • the boss 4332 can function as a counterweight.
  • the boss 4332 rotates synchronously with the second optical element 46, and the torque relative to the second rotating shaft 4337 when the boss 4332 and the second end 462 rotate together, It is equal to the torque with respect to the second rotating shaft 4337 when the first end 461 rotates, that is, the torque generated when the boss 4332 and the second end 462 rotate together can be equal to the first end of the second optical element 46
  • the torque generated during the rotation of the 461 cancels out without affecting the smoothness of the rotation of the remaining position of the second rotor 4331.
  • the boss 4332 is symmetrical about the third auxiliary surface, and the third auxiliary surface is a plane passing through the second rotation axis 4337, the first end 461, and the second end 462.
  • the boss 4332 may also be symmetrical about the first auxiliary surface, where the first auxiliary surface is a plane perpendicular to the second rotation axis 4337 and passing through the center of the first surface 463. In this way, the boss 4332 can better match the weight of the second optical element 46.
  • the density of the boss 4332 is greater than the density of the second rotor 4331, so that when the boss 4332 is disposed in the second storage cavity 4336, the same quality, that is, the same weight, guarantees that the boss 4332
  • the volume can be set smaller to reduce the influence of the boss 4332 on the laser pulse passing through the second receiving cavity 4336.
  • the density of the boss 4332 can also be greater than the density of the second optical element 46, so that the volume of the same boss 4332 can be designed as small as possible.
  • the arrangement of the above-mentioned boss 4332 is helpful to reduce the shaking caused by the uneven thickness when the second optical element 46 rotates, and to make the entire second rotor assembly 433 more stable when rotating.
  • the second optical element 46 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the laser pulse emitted by the light source, which can reduce the second optical element 46 through which the laser pulse passes Time loss.
  • the size of the aperture of the second optical element 46 is 50%-70% of the size of the aperture of the first optical element 45.
  • the difference between the aperture sizes of the two optical elements (the first optical element 45 and the second optical element 46) may be 50%, and the aperture sizes of the two optical elements (the first optical element 45 and the second optical element 46) The difference can be 60%. In this way, the aperture size of the two optical elements (the first optical element 45 and the second optical element 46) is in an appropriate range, which is conducive to the propagation of light.
  • the third optical element 47 is formed with a first surface 473 and a second surface 474 opposite to each other.
  • the first surface 473 of the third optical element 47 is opposite to the second surface 464 of the second optical element 46, and the first surface 473 of the third optical element 47 is inclined with respect to the third rotation axis 4437, that is, the first surface 473 is
  • the angle of the third rotating shaft 4437 is not 0 degrees or 90 degrees.
  • the second surface 474 of the third optical element 47 is opposite to the second surface 464 of the second optical element 46, and the second surface 474 of the third optical element 47 is perpendicular to the third rotation axis 4437, that is, the second surface 474 and the third
  • the angle of the rotation axis 4437 is 90 degrees, or the second surface 474 of the third optical element 47 is parallel to the second surface 464 of the second optical element 46, or the second surface 474 of the third optical element 47,
  • the second surface 464 of the second optical element 46 and the second surface 454 of the first optical element 45 are parallel to each other.
  • the third optical element 47 includes a first end 471 and a second end 472, and the first end 471 and the second end 472 are located at both ends of the third optical element 47 in the radial direction.
  • the thickness of the third optical element 47 gradually increases in one direction.
  • the thickness of the first end 471 is greater than the thickness of the second end 472, or the third optical element 47 may be a wedge mirror (wedge prism).
  • the dynamic balance of the scanning module 40 is improved by adding the scanning module 40 and the weight.
  • the dynamic balance of the scanning module 40 can be improved by adding a boss 4332 in the second rotor 4331.
  • the dynamic balance of the scanning module 40 can be improved by adding a boss 4432 in the third rotor 4431.
  • the third rotor assembly 443 further includes a boss 4432.
  • the boss 4432 is disposed on the third side wall 4435 of the third rotor 4431 and is located in the third storage cavity 4436.
  • the boss 4432 is used for In order to improve the stability of the third rotor assembly 443 when rotating.
  • the boss 4432 extends from the third side wall 4435 to the center of the third storage cavity 4436, and the height of the boss 4432 extending to the center of the third storage cavity 4436 may be lower than the predetermined radial width of the third storage cavity 4436 Ratio, the predetermined ratio may be 0.1, 0.22, 0.3, 0.33, etc., to avoid the projection 4432 blocking the third receiving cavity 4436 too much and affecting the transmission path of the laser pulse.
  • the boss 4432 may be fixedly connected to the third rotor 4431, so that the boss 4432 and the third rotor 4431 rotate synchronously.
  • the boss 4432 may be integrally formed with the third rotor 4431, for example, integrally formed by a process such as injection molding.
  • the boss 4432 can also be formed separately from the third rotor 4431. After the boss 4432 and the third rotor 4431 are formed separately, the boss 4432 can be fixed on the third side wall 4435 of the third rotor 4431.
  • the boss 4432 is bonded to the third side wall 4435, or the boss 4432 is fixed to the third side wall 4435 of the third rotor 4431 by fasteners such as screws, wherein the boss 4432 is attached to the third side wall 4435
  • the combined surface is a curved surface.
  • the boss 4432 and the third yoke 4433 rotate synchronously, and the boss 4432 and the third yoke 4433 are fixedly connected.
  • the boss 4432 when the boss 4432 is installed in the third storage cavity 4436, the boss 4432 and the third optical element 47 are distributed along the radial direction of the third rotor 4431.
  • the first end 471 may be in contact with the inner surface of the third side wall 4435, the second end 472 and the third side wall 4435 form a gap, and the boss 4432 extends into the gap.
  • the second end 472 and the boss 4432 are located on the same side of the third rotating shaft 4437, and the first end 471 and the boss 4432 are located on opposite sides of the third rotating shaft 4437, when the third optical element 47 and the fourth When the three rotor assemblies 443 rotate together, the overall rotation formed by the third optical element 47 and the boss 4432 is stable, thereby avoiding the shaking of the third rotor assembly 443, which is beneficial to the stability of the entire third rotor assembly 443 when rotating.
  • the boss 4432 is spaced from the third optical element 47, and the surface of the boss 4432 facing the third optical element 47 is flat.
  • the projection range of the boss 4432 on the third rotation axis 4437 covers the projection range of the third optical element 47 on the third rotation axis 4437.
  • the boss 4432 and the third optical element 47 are arranged side by side along the direction of the third rotation axis 4437 of the third rotor 4431. Both the first end 471 and the second end 472 of the three optical elements 47 can be in contact with the inner surface of the third side wall 4435, and the boss 4432 can be in contact with the third optical element 47 to make the boss 4432 as close as possible to the third The optical element 47 is close. Specifically, the boss 4432 is located on the side where the first surface 473 of the third optical element 47 is located, and the boss 4432 can resist the first surface 473 of the third optical element 47.
  • the boss 4432 includes a boss side wall 1432a, and the boss side wall 1432a abuts the first surface 473.
  • the projection range of the third optical element 47 on the third rotation axis 4437 covers the projection range of the boss 4432 on the third rotation axis 4437.
  • the boss 4432 and the third optical element 47 are arranged side by side along the direction of the third rotation axis 4437 of the third rotor 4431. Both the first end 471 and the second end 472 of the three optical elements 47 may be in contact with the inner surface of the third side wall 4435, the boss side wall 1432a may have a flat shape perpendicular to the third rotation axis 4437, and the boss side wall 1432a It may also be stepped to simplify the process flow when the boss 4432 and the third rotor 4431 are integrally formed.
  • the boss side wall 1432a may also be inclined with respect to the third rotation axis 4437, that is, the boss side wall 1432a is not perpendicular to the third rotation axis 4437.
  • the inclination direction of the boss side wall 1432a is opposite to the first surface 473
  • the direction of the boss is the same, the side wall 1432a of the boss is attached to the first surface 473, so that the side wall 1432a of the boss is as close as possible to the first surface 473, so as to maximize the weight of the boss 4432 and reduce the weight of the boss 4432 Height, thereby reducing the blocking of the optical path by the boss 4432.
  • the projection range of the third optical element 47 on the third rotation axis 4437 covers the projection range of the boss 4432 on the third rotation axis 4437.
  • the boss 4432 can function as a counterweight.
  • the boss 4432 and the third optical element 47 rotate synchronously, and the boss 4432 and the second end 472 rotate relative to the third rotation axis
  • the torque of 4437 is equal to the torque relative to the third rotating shaft 4437 when the first end 471 rotates, that is, the torque generated when the boss 4432 and the second end 472 rotate together can be combined with the third optical element
  • the torque generated when the first end 471 of 47 rotates cancels out without affecting the smoothness when the remaining positions of the third rotor 4431 rotate.
  • the boss 4432 is symmetrical about the third auxiliary surface, which is a plane passing through the third rotation axis 4437, the first end 471, and the second end 472.
  • the boss 4432 may also be symmetrical about the first auxiliary surface, where the first auxiliary surface is a plane perpendicular to the third rotation axis 4437 and passing through the center of the first surface 473. In this way, the boss 4432 can better fit the third optical element 47 with weight.
  • the density of the boss 4432 is greater than the density of the third rotor 4431, so that when the boss 4432 is disposed in the third storage cavity 4436, the same quality is ensured, that is, under the same weight
  • the volume of the boss 4432 can be set smaller to reduce the influence of the boss 4432 on the laser pulse passing through the third storage cavity 4436.
  • the density of the boss 4432 can also be greater than the density of the third optical element 47, so that the volume of the same boss 4432 can be designed as small as possible.
  • the above-mentioned arrangement of the boss 4432 is beneficial to reduce the shaking caused by the uneven thickness when the third optical element 47 rotates, and is conducive to making the entire third rotor assembly 443 more stable when rotating.
  • the third optical element 47 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the laser pulse emitted by the light source, which can reduce the loss when the laser pulse passes through the third optical element 47.
  • the difference in the aperture sizes of the two optical elements is less than or equal to 10% of the respective aperture sizes, for example, two optical elements (second optical element 46 And the third optical element 47) can have the same aperture size, and the difference between the aperture sizes of the two optical elements (second optical element 46 and third optical element 47) can be equal to one of the optical elements (second optical element 46 or third 10% of the aperture size of the three optical elements 47).
  • the scanning module 40 does not include the third driver 44 and the third optical element 47, but includes a plurality of second rotor assemblies 433, a plurality of second stator assemblies 431 and more ⁇ 46 ⁇ A second optical element 46.
  • Each second optical element 46 is mounted on a corresponding second rotor assembly 433, and each second stator assembly 431 is used to drive a corresponding second rotor assembly 433 to drive the second optical element 46 to rotate.
  • Each second rotor assembly 433, each second stator assembly 431, and each second optical element 46 may be the second rotor assembly 433, the second stator assembly 431, and the second optical element 46 in any of the foregoing embodiments. No more detailed description here.
  • each second rotor assembly 433 includes a boss (1332/1432), and each boss (1332/1432) is fixed on the second side wall 4335 of the corresponding second rotor assembly 433 for improving The dynamic balance of the second rotor assembly 433 when it rotates.
  • the second rotation shafts 4337 of the plurality of second rotor assemblies 433 may be the same, and the plurality of second optical elements 46 all rotate around the same second rotation shaft 4337; the second rotation shafts 4337 of the plurality of second rotor assemblies 433 may also be Differently, the plurality of second optical elements 46 rotate around different second rotation shafts 4337. In another example, the plurality of second optical elements 46 may also vibrate in the same direction or in different directions, which is not limited herein.
  • the plurality of second rotor assemblies 433 can rotate relative to the corresponding second stator assembly 431 at different rotation speeds to drive the plurality of second optical elements 46 to rotate at different rotation speeds; the plurality of second rotor assemblies 433 can also Different rotation directions rotate relative to the corresponding second stator assembly 431 to drive the plurality of second optical elements 46 to rotate in different rotation directions; the plurality of second rotor assemblies 433 can rotate at the same size and in opposite speeds.
  • At least one second rotor assembly 433 rotates forward relative to the second stator assembly 431, and at least one second rotor assembly 433 rotates reversely relative to the second stator assembly 431; at least one second rotor assembly 433 rotates at a first speed relative to the second
  • the two stator assemblies 431 rotate, and at least one second rotor assembly 433 rotates relative to the second stator assembly 431 at a second speed, and the first speed and the second speed may be the same or different.
  • the number of the second rotor assembly 433, the second stator assembly 431, and the second optical element 46 are two.
  • the two second rotor assemblies 433 rotate coaxially, and both the second rotor assemblies 433 and the first rotor assembly 423 rotate coaxially.
  • the first surface 463 of one of the second optical elements 46 faces the fourth end 4237b of the first rotor 4231 and is opposed to the first surface 453 of the first optical element 45, and the second surface 454 of the second optical element 46 faces the other The second surface 454 of the optical element.
  • an embodiment of the present application further provides a mobile platform 1000.
  • the mobile platform 1000 includes a mobile platform body 200 and the distance measuring device 100 of any of the foregoing embodiments.
  • the mobile platform 1000 may be a mobile platform such as an unmanned aerial vehicle, unmanned vehicle, or unmanned boat.
  • One mobile platform 1000 may be configured with one or more distance measuring devices 100.
  • the distance measuring device 100 can be used to detect the environment around the mobile platform 1000, so that the mobile platform 1000 can further perform operations such as obstacle avoidance and trajectory selection according to the surrounding environment.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Abstract

一种移动平台(1000)及测距装置(100)。测距装置(100)包括底座(10)、两个支架(30)、测距模组(60)、扫描模组(40)及多个柔性连接组件(50),两个支架(30)均固定在底座(10)上,测距模组60)用于发射光脉冲,扫描模组(40)用于改变光脉冲的传输方向后出射,扫描模组(40)与测距模组(60)间隔设置,扫描模组(40)包括扫描壳体(41),两个支架(30)分别位于扫描壳体(41)的相背两侧,每个支架(30)通过至少两个柔性连接组件(50)与扫描壳体(41)连接。

Description

测距装置及移动平台 技术领域
本申请涉及激光测距技术领域,特别涉及一种测距装置及移动平台。
背景技术
现有的测距装置包括扫描模组,扫描模组包括驱动器及光学元件,驱动器用于驱动光学元件转动以改变经过光学元件的激光。当驱动器驱动光学元件转动时,扫描模组不可避免的产生振动和噪声,而扫描模组在振动时容易导致测距装置的测距精度降低。
发明内容
本申请实施方式提供一种测距装置及移动平台。
本申请的测距装置包括底座、两个支架、测距模组、扫描模组及多个柔性连接组件,两个所述支架均固定在所述底座上;所述测距模组用于发射光脉冲;所述扫描模组用于改变所述光脉冲的传输方向后出射,所述扫描模组与所述测距模组间隔设置,所述扫描模组包括扫描壳体,两个所述支架分别位于所述扫描壳体的相背两侧;每个所述支架通过至少两个所述柔性连接组件与所述扫描壳体连接。
本申请的移动平台包括移动平台本体及上述所述的测距装置,所述测距装置安装在所述移动平台本体上。
本申请的移动平台及测距装置中的支架固定在底座上,扫描模组通过柔性连接组件安装在支架上,柔性连接组件使得扫描模组与底座之间无直接接触,从而能够减少甚至避免扫描模组的振动传递到底座上;并且由于扫描模组与测距模组间隔设置,因而能够减少甚至避免扫描模组的振动传递到测距模组上,从而提升了测距装置的检测精度。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的测距装置的部分分解示意图。
图2是图1所示的测距装置的部分立体结构示意图。
图3是图2所示的测距装置的部分立体分解示意图。
图4是图3所示的测距装置的支架的立体示意图。
图5是图3所示的测距装置的扫描模组的立体分解示意图。
图6是图3所示的测距装置的部分立体分解示意图。
图7是图5所示的扫描模组的三个支座的立体分解示意图。
图8是图5所示的扫描模组的三个支座另一视角的立体分解示意图。
图9是图4所示的扫描模组的部分结构的剖面示意图。
图10是图4所示的扫描模组的部分结构的剖面示意图。
图11是图10所示的扫描模组XI处的放大示意图。
图12是图10所示的扫描模组XII处的放大示意图。
图13和图14是某些实施方式的扫描模组的部分结构的剖面示意图。
图15是图9所示的扫描模组的转子的立体示意图。
图16是图9所示的扫描模组的转子另一视角的立体示意图。
图17和图18是某些实施方式的扫描模组的光路示意图。
图19是某些实施方式的扫描模组的相位角度的示意图。
图20是某些实施方式的扫描模组的光路示意图。
图21是图2所示的测距模组的俯视图。
图22是图21所示的测距模组沿着XXII-XXII线的剖面示意图。
图23是图22所示的测距模组中XXIII处的放大示意图。
图24是图22所示的测距模组中XXIV处的放大示意图。
图25是本申请某些实施方式的测距装置的测距原理示意图。
图26是本申请某些实施方式的测距装置的测距模组的电路示意图。
图27是本申请某些实施方式的测距装置的另一测距原理示意图。
图28是本申请某些实施方式的移动平台的平面示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请的测距装置100包括底座10、两个支架30、测距模组60、扫描模组40及多个柔性连接组件50,两个支架30均固定在底座10上。测距模组60用于发射光脉冲。扫描模组40用于改变光脉冲的传输方向后出射,扫描模组40与测距模组60间隔设置,扫描模组40包括扫描壳体41,两个支架30分别位于扫描壳体41的相背两侧。每个支架30通过至少两个柔性连接组件50与扫描壳体41连接。
本申请的测距装置100中的支架30固定在底座10上,扫描模组40通过柔性连接组件50安装在支架30上,柔性连接组件50使得扫描模组40与底座10之间无直接接触,从而能够减少甚至避免扫描模组40的振动传递到底座10上;并且由于扫描模组40与测距模组60间隔设置,因而能够减少甚至避免扫描模组40的振动传递到测距模组60上,从而提升了测距装置100的检测精度。
请参阅图1及图25,测距装置100包括底座10、盖体20、两个支架30、扫描模组40、多个柔性连接组件50、和测距模组60。两个支架30均固定在底座10上的相背两侧。扫描模组40与测距模组60 间隔设置在底座10上并位于两个支架30之间,每个支架30通过至少两个柔性连接组件50与扫描模组40连接。测距模组60用于向扫描模组40发射激光脉冲,扫描模组40用于改变激光脉冲的传输方向后出射,经探测物反射回来的激光脉冲经过扫描模组40后入射至测距模组60,测距模组60用于根据反射回来的激光脉冲确定探测物与测距装置100之间的距离。测距装置100可以通过测量测距装置100和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置100的距离。或者,测距装置100也可以通过其他技术来探测探测物到测距装置100的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
请参阅图2和图3,底座10包括底座本体11、第一安装座12和第二安装座13,底座本体11呈板状结构。第一安装座12和第二安装座13形成在底座本体11的顶部111上。第一安装座12可以为自底座本体11的顶部111凸出形成的安装壁,安装壁开设有第一底座安装孔121,第一底座安装孔121的轴线方向平行于底座本体11的顶部111。
请结合图22至图24,第二安装座13可以为自底座本体11的顶部111凸出形成的底座凸台,底座凸台上开设有底座安装槽131,底座安装槽131的底部开设有第二底座安装孔132,第二底座安装孔132的轴线方向垂直于底座本体11的顶部111,第二底座安装孔132的轴线方向垂直于第一底座安装孔121的轴线方向。本实施方式的底座本体11呈矩形板状结构,第一安装座12和第二安装座13的数量均为两个,两个第一安装座12分别位于底座本体11的相对两侧并关于底座本体11的一对称面对称,两个第二安装座13也分别位于底座本体11的相对两侧并关于底座本体11的该对称面对称,同一侧的第一安装座12和第二安装座13沿着底座本体11的长边间隔设置,上述的对称面为平行于底座本体11的长边并垂直于底座本体11的短边的面。
请再参阅图1至图3,盖体20设置在底座10上并与底座10共同形成收容空间,盖体20包括盖体顶壁21及环形的盖体侧壁22。具体地,盖体顶壁21呈板状结构,盖体顶壁21的形状与底座本体11的形状相匹配。本实施例中,盖体顶壁21的形状与底座10的形状相匹配并呈矩形板状结构。盖体侧壁22自盖体顶壁21的一表面延伸形成,盖体侧壁22设置在盖体顶壁21的边缘并环绕盖体顶壁21。盖体侧壁22的远离盖体顶壁21的一端可通过螺纹连接、卡合、胶合、焊接等任意一种或多种方式相结合的方式安装在底座10上并环绕底座本体11的中心。本实施方式的盖体20通过锁紧件14固定在底座10上,更具体地,锁紧件14由底座10的底部一侧穿过底座本体11并与盖体侧壁22结合,锁紧件14可为螺钉。
盖体侧壁22包括第一盖体侧壁221及第二盖体侧壁222。第一盖体侧壁221与第二盖体侧壁222位于盖体顶壁21的相对两端。一个示例中,第一盖体侧壁221和第二盖体侧壁222分别设置在盖体顶壁21的短边上。第一盖体侧壁221形成有透光区2211,第一盖体侧壁221除透光区2211之外的区域为非透光区2212,透光区2211用于供测距模组60发出的测距信号穿过。透光区2211可以由塑料、树脂、玻璃等透光率较高的材料制成,而非透光区2212可以由铜、铝等导热且透光率较低的金属制成,其中,较佳地,透光区2211可采用导热塑料,既满足了透光需求,又能满足散热需求。一个示例中,该透光区2211大致呈圆形状。一个示例中,该透光区2211大致呈矩形状,例如方形状。
请参阅图3及图4,支架30安装在底座10上。本申请实施方式中的支架30的数量为两个,两个支架30分别安装在底座10的相对两侧。每个支架30均包括固定臂31、连接臂33和结合臂32。
固定臂31包括多个固定部310和第二结合部313,固定臂31通过多个固定部310安装在底座10上。本实施方式的固定部310的数量为两个,两个固定部310分别为第一固定部311和第二固定部312,第一固定部311和第二固定部312分别位于固定臂31的相对两端,第一固定部311和第二固定部312均与底座10刚性连接。第一固定部311和第二固定部312通过固定件36(例如锁紧螺钉)分别固定在底座10同一侧的第一安装座12和第二安装座13上具体地,第一固定部311设置在底座本体11上并位于安装壁的一侧,固定件36穿过第一底座安装孔121并与第一固定部311结合以将第一固定部311固定在第一安装座12上;第二固定部312设置在底座安装槽131内,固定件36穿过第二固定部312并与第二底座安装孔132结合以将第二固定部312安装在第二安装座13上。第二结合部313位于第一固定部311和第二固定部312之间,第二结合部313与底座本体11的顶部111相间隔,第二结合部313上开设在有支架安装孔,第二结合部313开设的支架安装孔定义为第二支架安装孔3131。
连接臂33的一端连接在第一固定部311上,连接臂33的另一端朝远离底座本体11的方向延伸。
结合臂32的一端连接在连接臂33的远离第一固定部311的一端,结合臂32的另一端朝远离固定臂31的一侧延伸并为自由端,结合臂32平行于底座本体11的顶部111。结合臂32的远离连接臂33的一端设置有第一结合部321,第二结合部313较第一结合部321更靠近底座本体11。第一结合部321上开设有支架安装孔,第一结合部321开设的支架安装孔定义为第一支架安装孔3211。一个示例中,第一固定部311的中心、第二固定部312的中心、第一结合部321的中心和第二结合部313的中心位于同一平面内。当测距装置100受到外界冲击而产生震动时,支架30及与支架30连接的扫描模组40受到的转动力矩较小,该力矩的方向垂直于固定部310的中心、第一结合部321的中心及第二结合部313的中心所在的平面,从而能够减小甚至避免因测距装置100受到外界冲击而产生翻转。
请一并参阅图3、图5、图9及图25,扫描模组40通过支架30安装在底座10上并收容在收容空间内,扫描模组40与底座10相间隔。扫描模组40包括扫描壳体41、第一驱动器42、第二驱动器43、第三驱动器44、第一光学元件45、第二光学元件46、第三光学元件47、控制器49a及检测器49b。其中,第一驱动器42用于驱动第一光学元件45运动,以改变经过第一光学元件45的激光脉冲的传输方向。第二驱动器43用于驱动第二光学元件46运动,以改变经过第二光学元件46的激光脉冲的传输方向。第三驱动器44用于驱动第三光学元件47运动,以改变经过第三光学元件47的激光脉冲的传输方向。三个光学元件(第一光学元件45、第二光学元件46和第三光学元件47)相互配合工作,能够用于改变光路的传播方向以及使得扫描模组40具有较大的视场。
一个示例中,第一光学元件45、第二光学元件46及第三光学元件47可以包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,第一光学元件45、第二光学元件46及第三光学元件47中的至少一个光学元件是具有不平行的出光面和入光面的光折射元件,在该光折射元件旋转时,可以将光束折射至不同方向出射。一个示例中,该光折射元件为楔形棱镜。
一个示例中,至少部分光学元件(第一光学元件45、第二光学元件46及第三光学元件47)是运动的,例如通过驱动器(第一驱动器42、第二驱动器43及第三驱动器44)来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模组40的多个光学元件可以绕共同的轴旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模组40的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模组40的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模组40的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
第一驱动器42、第二驱动器43及第三驱动器44可以驱动光学元件(第一光学元件45、第二光学元件46和第三光学元件47)的转动、振动、沿预定轨迹循环移动或者沿预定轨迹来回移动,在此不做限制。下面以光学元件(第一光学元件45、第二光学元件46和第三光学元件47)包括棱镜为例,进行举例描述。
扫描壳体41可以作为扫描模组40的外壳,扫描壳体41内可以用于安装第一驱动器42、第二驱动器43、第三驱动器44、第一光学元件45、第二光学元件46、第三光学元件47、控制器49a及检测器49b等元件。扫描壳体41可以是一体的整体结构,扫描壳体41也可以由多个分体结构组合而成,例如,请结合图6至图8,扫描壳体41可以包括第一支座411、第二支座412及第三支座413中的至少任意两个的同时还包括第一安装部414及第二安装部415,例如扫描壳体41包括第一安装部414、第二安装部415、第一支座411及第二支座412;或者,扫描壳体41包括第一安装部414、第二安装部415、第二支座412及第三支座413;或者,扫描壳体41包括第一安装部414、第二安装部415、第一支座411及第三支座413;或者,扫描壳体41包括第一安装部414、第二安装部415、第一支座411、第二支座412及第三支座413。以下仅以扫描壳体41包括第一安装部414、第二安装部415、第一支座411、第二支座412及第三支座413为例进行描述。
请结合图5至图8,第一支座411可以用于安装第一驱动器42及第一光学元件45。第一支座411可以是扫描壳体41上最远离测距模组60的一个支座。第一支座411包括第一支座本体4111。第一支座本体4111可以为中空的结构,中空的部分形成第一收容腔4119,在本申请实施例中,第一支座本体4111 的外轮廓整体呈矩形,中空部分的形状可以是圆形,第一驱动器42及第一光学元件45可以安装在第一收容腔4119内。在本申请实施例中,第一支座本体4111包括第一支座顶面4115及两个第一支座侧面4116,两个第一支座侧面4116分别位于第一支座本体4111的相背两侧并连接第一支座顶面4115。第一支座顶面4115开设有支座安装槽4117,支座安装槽4117的底面开设有壳体安装孔,支座安装槽4117的底面开设的壳体安装孔定义为第一壳体安装孔4118。
第二支座412可以用于安装第二驱动器43及第二光学元件46。第二支座412可以与第一支座411相互配合,例如第二支座412套设在第一支座411内,第二支座412可以与第一支座411同轴设置或者不同轴设置。其中,第二支座412与第一支座411同轴设置指的是第二支座412的中轴线与第一支座411的中轴线重合,不同轴设置指的是第二支座412的中轴线与第一支座411的中轴线不重合,例如平行间隔或者以任意角度相交。第二支座412包括第二支座本体4121及凸出部4120。一个示例中,凸出部4120可用于将第二支座412安装在支架30上。第二支座本体4121可以为中空的结构,中空的部分形成第二收容腔4126,第二驱动器43及第二光学元件46可以安装在第二收容腔4126内。在本申请实施例中,第二支座本体4121包括第二支座底面41211及两个第二支座侧面41212,两个第二支座侧面41212分别位于第二支座本体4121的相背两侧并连接第二支座底面41211,两个第二支座侧面41212分别与两个第一支座侧面4116对应。一个示例中,凸出部4120可以设置在第一支座本体4111的靠近第二支座底面41211的位置上,可以理解,凸出部4120自第二支座侧面41212的靠近第二支座底面41211的位置向外延伸形成。凸出部4120开设有壳体安装孔,凸出部4120开设的壳体安装孔定义为第二壳体安装孔41201。
第三支座413可以用于安装第三驱动器44及第三光学元件47。第三支座413可以与第二支座412相互配合,第三支座413可以套设在第二支座412内,第三支座413可以与第二支座412同轴设置或者不同轴设置。第三支座413包括第三支座本体4130,第三支座本体4130可以为中空的结构,中空的部分形成第三收容腔4134,第三驱动器44及第三光学元件47可以安装在第三收容腔4134内。第三支座413与第一支座411可以分别设置在第二支座412的相背的两侧,测距模组60发射的光脉冲可以先后穿过第三支座413、第二支座412及第一支座411后进入外界,被目标物体反射的光脉冲可以先后穿过第一支座411、第二支座412及第三支座413后再由测距模组60接收。第三支座本体4130包括相背的两个第三支座侧面4133。此时,第一支座411的相背两侧相对第二支座412对应的相背两侧及第三支座413对应的相背两侧均凸出以形成两个安装空间416。第三支座413的相背两侧可以不超出第二支座412对应的相背两侧,本实施例中,第三支座413的相背两侧分别与第二支座412对应的相背两侧齐平。第三支座413的相背两侧不超出第二支座412对应的相背两侧,从而便于第二安装座13形成在安装空间416内。在其他实施方式中,第三支座413的相背两侧也可以超出第二支座412对应的相背两侧,如此,便于第一安装座12形成在安装空间416内。
第一安装部414可以位于第一支座411的远离底座10的一端,具体地,第一安装部414位于第一支座本体4111的靠近第一支座顶面4115的位置上。第一安装部414用于将第一支座411安装在支架30上。本申请的第一安装部414可以为第一支座本体4111的一部分,具体地,第一安装部414可以为理解为第一支座本体4111上的形成支座安装槽4117和第一壳体安装孔4118的结构。在其他实施方式中,第一安装部414可以为设置在第一支座本体4111上的凸缘,该凸缘开设有第一壳体安装孔4118。
第二安装部415位于第二支座412的靠近底座10的一端,具体地,第二安装部415位于第二支座本体4121的靠近第二支座底面41211的位置上。第二安装座414用于将第二支座412安装在支架30上。本申请的第二安装部415可以为第二支座412的一部分,具体地,第二安装部415可以为凸出部4120。扫描壳体41可以通过第一安装座12和第二安装座13安装在支架30上。
请参阅图5、图9及图10,第一驱动器42安装在扫描壳体41内,具体地,第一驱动器42可以安装在第一收容腔4119内。第一驱动器42包括第一定子组件421、第一定位组件422及第一转子组件423。第一定子组件421可以与第一支座本体4111相对固定,第一定子组件421可用于驱动第一转子组件423转动,第一定子组件421包括第一绕组本体及安装在第一绕组本体上的第一绕组。其中,第一绕组本体可以为定子铁芯,第一绕组可以为线圈。第一绕组在电流的作用下能够产生特定的磁场,通过改变电流的方向及强度可以改变磁场的方向和强度。第一定子组件421套设第一转子组件423上。
第一转子组件423可以在第一定子组件421的驱动下转动。具体地,第一转子组件423包括第一转子4231,第一转子4231相对于第一定子组件421转动的轴线称为第一旋转轴4236,可以理解,第一旋 转轴4236可以是实体的转轴,也可以是虚拟的转轴。第一转子4231包括第一磁轭4233a及第一磁铁4233b。第一磁铁4233b套设在第一磁轭4233a上并位于第一磁轭4233a与第一绕组之间,第一磁铁4233b产生的磁场与第一绕组产生的磁场相互作用并产生作用力,由于第一绕组被固定不动,则第一磁铁4233b在作用力下带动第一磁轭4233a转动。第一转子4231呈中空的形状,第一转子4231的中空的部分形成有第一收纳腔4235,激光脉冲可以穿过第一收纳腔4235而从扫描模组40中穿过。具体地,第一收纳腔4235由第一转子4231的第一侧壁4234围成,更具体地,在本申请实施方式中,第一磁轭4233a可以呈中空的筒状,第一磁轭4233a的中空的部分形成第一收纳腔4235,第一磁轭4233a的侧壁可以作为围成第一收纳腔4235的侧壁。当然,在其他实施方式中,第一收纳腔4235也可以不是形成在第一磁轭4233a上,也可以形成在第一磁铁4233b等结构上,第一侧壁4234也可以是第一磁铁4233b等结构的侧壁,在此不做限制。第一侧壁4234呈环状结构或者为一个环状结构的一部分。第一定子组件421的第一绕组可以呈环状并环绕在第一侧壁4234的外表面。
第一定位组件422位于第一侧壁4234的外表面,第一定位组件422用于限制第一转子组件423以固定的第一旋转轴4236为中心转动。第一定子组件421和第一定位组件422并列环绕在第一侧壁4234的外表面。第一定位组件422包括环形的第一轴承422,第一轴承422环绕在第一侧壁4234的外表面。第一轴承422包括第一内环结构4221、第一外环结构4222及第一滚动体4223。第一内环结构4221与第一侧壁4234的外表面相互固定。第一外环结构4222与扫描壳体41相互固定,具体为第一外环结构4222与第一支座411相互固定。第一滚动体4223位于第一内环结构4221和第一外环结构4222之间,第一滚动体4223用于分别与第一外环结构4222和第一内环结构4221滚动连接。
第一光学元件45安装在第一收纳腔4235内,具体地,第一光学元件45可以与第一侧壁4234配合安装并与第一转子4231固定连接,第一光学元件45位于激光脉冲的出射及入射光路上。第一光学元件45能够与第一转子4231绕第一旋转轴4236同步转动。第一光学元件45转动时可以改变经过第一光学元件45的激光的传输方向。
第二驱动器43安装在扫描壳体41内,具体地,第二驱动器43可以安装在第二收容腔4126内,第二驱动器43包括第二定子组件431、第二定位组件432及第二转子组件433。第二定子组件431可以与第二支座本体4121相对固定,第二定子组件431可用于驱动第二转子组件433转动,第二定子组件431包括第二绕组本体及安装在第二绕组本体上的第二绕组。其中,第二绕组本体可以为定子铁芯,第二绕组可以为线圈。第二绕组在电流的作用下能够产生特定的磁场,通过改变电流的方向及强度可以改变磁场的方向和强度。
第二转子组件433可以在第二定子组件431的驱动下转动。具体地,第二转子组件433包括第二转子4331,第二转子4331相对于第二定子组件431转动的轴线称为第二旋转轴4337,可以理解,第二旋转轴4337可以是实体的转轴,也可以是虚拟的转轴。第二转子4331包括第二磁轭4333及第二磁铁4334。第二磁铁4334套设在第二磁轭4333上并位于第二磁轭4333与第二绕组之间,第二磁铁4334产生的磁场与第二绕组产生的磁场相互作用并产生作用力,由于第二绕组被固定不动,则第二磁铁4334在作用力下带动第二磁轭4333转动。第二转子4331呈中空的形状,第二转子4331的中空的部分形成有第二收纳腔4336,激光脉冲可以穿过第二收纳腔4336而从扫描模组40中穿过。具体地,第二收纳腔4336由第二转子4331的第二侧壁4335围成,更具体地,在本申请实施方式中,第二磁轭4333可以呈中空的筒状,第二磁轭4333的中空的部分形成第二收纳腔4336,第二磁轭4333的侧壁可以作为围成第二收纳腔4336的侧壁。当然,在其他实施方式中,第二收纳腔4336也可以不是形成在第二磁轭4333上,也可以形成在第二磁铁4334等结构上,第二侧壁4335也可以是第二磁铁4334等结构的侧壁,在此不做限制。第二侧壁4335呈环状结构或者为一个环状结构的一部分。第二定子组件431的第二绕组可以呈环状并环绕在第二侧壁4335的外表面。
第二定位组件432设置在第二转子4331上且位于第二定子组件431的远离第一转子组件423的一侧。第二定位组件432用于限制第二转子组件433以固定的第二旋转轴4337为中心转动。第二定子组件431和第二定位组件432并列环绕在第二侧壁4335的外表面。第二定位组件432包括环形的第二轴承432,第二轴承432环绕在第二侧壁4335的外表面。第二轴承432包括第二内环结构4321、第二外环结构4322及第二滚动体4323。第二内环结构4321与第二侧壁4335的外表面相互固定。第二外环结构4322与扫描壳体41相互固定,具体为第二外环结构4322与第二支座412相互固定。第二滚动体4323 位于第二内环结构4321和第二外环结构4322之间,第二滚动体4323用于分别与第二外环结构4322和第二内环结构4321滚动连接。
第二光学元件46安装在第二收纳腔4336内,具体地,第二光学元件46可以与第二侧壁4335配合安装并与第二转子4331固定连接,第二光学元件46位于光源的出射光路上及回光的入射光路上。第二光学元件46能够与第二转子4331绕第二转轴同步转动。第二光学元件46转动时可以改变经过第二光学元件46的激光的传输方向。
第三驱动器44安装在扫描壳体41内,具体地,第三驱动器44可以安装在第三收容腔4134内。第三驱动器44包括第三定子组件441、第三定位组件442及第三转子组件443。第三定子组件441可以与第三支座本体4130相对固定,第三定子组件441可用于驱动第三转子组件443转动,第三定子组件441包括第三绕组本体及安装在第三绕组本体上的第三绕组。其中,第三绕组本体可以为定子铁芯,第三绕组可以为线圈。第三绕组在电流的作用下能够产生特定的磁场,通过改变电流的方向及强度可以改变磁场的方向和强度。
第三转子组件443可以在第三定子组件441的驱动下转动。具体地,第三转子组件443包括第三转子4431,第三转子4431相对于第三定子组件441转动的轴线称为第三旋转轴4437,可以理解,第三旋转轴4437可以是实体的转轴,也可以是虚拟的转轴。第三转子4431包括第三磁轭4433及第三磁铁4434。第三磁铁4434套设在第三磁轭4433上并位于第三磁轭4433与第三绕组之间,第三磁铁4434产生的磁场与第三绕组产生的磁场相互作用并产生作用力,由于第三绕组被固定不动,则第三磁铁4434在作用力下带动第三磁轭4433转动。第三转子4431呈中空的形状,第三转子4431的中空的部分形成有第三收纳腔4436,激光脉冲可以穿过第三收纳腔4436而从扫描模组40中穿过。具体地,第三收纳腔4436由第三转子4431的第三侧壁4435围成,更具体地,在本申请实施方式中,第三磁轭4433可以呈中空的筒状,第三磁轭4433的中空的部分形成第三收纳腔4436,第三磁轭4433的侧壁可以作为围成第三收纳腔4436的侧壁。当然,在其他实施方式中,第三收纳腔4436也可以不是形成在第三磁轭4433上,也可以形成在第三磁铁4434等结构上,第三侧壁4435也可以是第三磁铁4434等结构的侧壁,在此不做限制。第三侧壁4435呈环状结构或者为一个环状结构的一部分。第三定子组件441的第三绕组可以呈环状并环绕在第三侧壁4435的外表面。
第三定位组件442设置在第三转子4431上,第三定位组件442位于第三定子组件441的靠近第二转子组件433的一侧,或者说,第三定位组件442相对于第三定子组件441更靠近第二转子组件433。第三定位组件442用于限制第三转子组件443以固定的第三旋转轴4437为中心转动。第三定子组件441和第三定位组件442并列环绕在第三侧壁4435的外表面。第三定位组件442包括环形的第三轴承442,第三轴承442环绕在第三侧壁4435的外表面。第三轴承442包括第三内环结构4421、第三外环结构4422及第三滚动体4423。第三内环结构4421与第三侧壁4435的外表面相互固定。第三外环结构4422与扫描壳体41相互固定,具体为第三外环结构4422与第三支座413相互固定。第三滚动体4423位于第三内环结构4421和第三外环结构4422之间,第三滚动体4423用于分别与第三外环结构4422和第三内环结构4421滚动连接。
第三光学元件47安装在第三收纳腔4436内,具体地,第三光学元件47可以与第三侧壁4435配合安装并与第三转子4431固定连接,第三光学元件47位于激光脉冲的出射及入射光路上。第三光学元件47能够与第三转子4431绕第三旋转轴4437同步转动。第三光学元件47转动时可以改变经过第三光学元件47的激光的传输方向。
请参阅图5及图25,控制器49a与驱动器(第一驱动器42、第二驱动器43、第三驱动器44)连接,控制器49a用于依据控制指令控制驱动器驱动光学元件(第一光学元件45、第二光学元件46、第三光学元件47)转动。具体地,控制器可以与绕组(第一绕组、第二绕组、第三绕组)连接,并用于控制绕组上的电流的大小及方向,以控制转子组件(第一转子组件423、第二转子组件433、第三转子组件443)的转动参数(转动方向、转动角度、转动持续时间等)以达到控制光学元件的转动参数的目的。在一个例子中,控制器49a包括电子调速器,控制器49a可以设置在电调板上。
请参阅图9,检测器49b用于检测光学元件的转动参数,光学元件的转动参数可以是光学元件的转动方向、转动角度及转动速度等。检测器49b的数量可以为多个,每个检测器49b包括码盘及光电开关。码盘与一个转子(第一转子4231或第二转子4331或第三转子4431)固定连接并与转子组件(第一转子 组件423或第二转子组件433或第三转子组件443)同步转动,可以理解,由于光学元件与转子同步转动,则码盘与光学元件同步转动,通过检测码盘的转动参数则可以得到光学元件的转动参数。具体地,通过码盘与光电开关的配合可以检测码盘的转动参数。
当扫描壳体41(扫描模组40)安装在两个支架30上时,两个支架30分别位于两个第二支座侧面41212的外侧,并且两个支架30分别安装在两个安装空间416内。具体地,当两个支架30均安装在底座10上,并且扫描壳体41安装在两个支架30上时,第一安装座12和第二安装座13均位于安装空间416内,固定臂31、连接臂33、第一加强臂34和第二加强臂35均收容在安装空间416内,结合臂32收容在支座安装槽4117内。扫描壳体41通过形成安装空间416,从而便于将支架30安装在安装空间416内以减小测距装置100的体积;进一步地,第一支座411开设支座安装槽4117,并将结合臂32收容在支座安装槽4117内能够进一步减小测距装置100的体积。
请参阅图21至图23,柔性连接组件50用于将扫描壳体41连接在支架30上,柔性连接组件50使得扫描壳体41与底座10之间具有间隙以为扫描模组40提供振动空间。扫描模组40通过柔性连接组件50安装在支架30上,柔性连接组件50使得扫描模组40与底座10之间无直接接触,从而能够减少甚至避免扫描模组40的振动传递到底座10上,进而能够减少甚至避免扫描组件40的振动通过底座10传递到测距模组60上。
具体地,柔性连接组件50包括柔性连接件51和紧固件52,扫描壳体41和支架30通过柔性连接件51和紧固件52连接。具体地,每个柔性连接组件50均包括柔性的第一支撑部511、柔性的连接部513及柔性的第二支撑部512。第一支撑部511和第二支撑部512分别连接在连接部513的相对两端。柔性连接件51开设有贯穿第一支撑部511、连接部513及第二支撑部512的贯穿孔514。
每个支架30通过至少两个柔性连接组件50与扫描壳体41连接,至少两个柔性连接组件50包括第一柔性连接组件53和第二柔性连接组件54。
请参阅图23和图24,第一柔性连接组件53连接支架30(第一结合部321)及第一安装部414,具体地,第一柔性连接组件53的连接部513穿设在第一支架安装孔3211内,第一柔性连接组件53的第一支撑部511和第二支撑部512分别位于第一结合部321的相背两侧,第一柔性连接组件53的第二支撑部512位于第一结合部321与支座安装槽4117的底面之间,第一柔性连接组件53的紧固件52穿过贯穿孔514并与第一壳体安装孔4118的内壁结合,第一柔性连接组件53收容在支座安装槽4117内。第一支撑部511的横截面尺寸和第二支撑部512的横截面尺寸均大于第一支架安装孔3211的横截面尺寸,如此,当第一柔性连接组件53安装到第一支架安装孔3211内时,第一支撑部511位于紧固件52的端部与第一结合部321之间,第一支撑部512能够吸收由第一支座411产生的并传递到紧固件52上的振动;第二支撑部512能够位于支座安装槽4117的底面与第一结合部321之间,第二支撑部512能够吸收第一支座411产生的振动并减少振动传递到支架30上。连接部513的横截面尺寸可以大于、小于或等于第一支架安装孔3211的横截面尺寸。
第二柔性连接组件54连接支架30(第二结合部313)及第二安装部415,具体地,第二柔性连接组件54的连接部513穿设在第二壳体安装孔41201内,第二柔性连接组件54的第一支撑部511和第二支撑部512分别位于凸出部4120的相背两侧,第二柔性连接组件54的第一支撑部511位于凸出部4120与第二结合部313之间,第二柔性连接组件54的紧固件52穿过贯穿孔514并与第二支架安装孔3131的内壁结合。第一支撑部511的横截面尺寸和第二支撑部512的横截面尺寸均大于第二壳体安装孔41201的横截面尺寸,如此,当第二柔性连接组件54安装到第二支架安装孔3131内时,第一支撑部511能够位于凸出部4120与第二结合部313之间,第一支撑部511能够吸收第二支座412产生的振动并减少振动传递到支架30上;第二支撑部512位于紧固件52的端部与第二结合部313之间,第二支撑部512能够吸收由第二支座412产生的并传递到紧固件52上的振动。连接部513的横截面尺寸可以大于、小于或等于第二壳体安装孔41201的横截面尺寸。由于第一结合部321位于支架30的远离底座10的一侧,第二结合部313位于支架30的靠近底座10一侧,扫描壳体41通过柔性连接件51连接在第一结合部321和第二结合部313上,因而,当测距装置100受到外界冲击而产生震动时,扫描壳体41受到的转动力矩较小,该力矩的方向垂直于支架30所在的平面,从而能够减小甚至避免因测距装置100受到外界冲击而产生翻转。本申请的测距装置100中的支架30固定在底座10上,扫描模组40通过柔性连接组件50安装在支架30上,柔性连接组件50使得扫描模组40与底座10之间无直接接触,从而能够减少甚至 避免扫描模组40的振动传递到底座10上。
请参阅图23,本实施例中,柔性连接件51的被经过贯穿孔514的轴线的面所截得的截面呈“工”字形。柔性连接件51可以是橡胶垫。
测距模组60设置在底座10上并与扫描模组40间隔设置,具体地,测距模组60刚性固定在底座10上,一些示例中,底座10可以为一体结构,扫描模组40与测距模组60安装在同一底座10上。一些示例中,底座10可以为分体结构,测距模组60和扫描模组40安装在底座10的两个不同的分体结构上。由于扫描模组40与测距模组60间隔设置,因而能够减少甚至避免扫描模组40的振动传递到测距模组60上,从而提升了测距装置100的检测精度。由于测距模组60刚性固定在底座10上,扫描模组40的振动对测距模组60的影响很小,从而保证测距模组60和测距装置100整机安装相对位置的稳定性,进一步提高了检测精度。
请参阅图25和图27,测距模组60包括光源61、光路改变元件62、准直元件63、及探测器64。测距模组60中可以采用同轴光路,也即测距模组60出射的激光光束和经反射回来的激光光束在测距模组60内共用至少部分光路。或者,测距模组60也可以采用异轴光路,也即测距模组60出射的光束和经反射回来的光束在测距模组60内分别沿不同的光路传输。
请参阅图25,下面以测距模组60采用一种同轴光路来进行说明光源61、光路改变元件62、准直元件63、及探测器64。
光源61可以用于发射光脉冲序列,可选地,光源61发射出的光束为波长在可见光范围之外的窄带宽光束。在一些实施例中,光源61可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的激光。例如,光源61发射的激光脉冲持续10ns。
准直元件63设置在光源61的出光光路上,用于准直从光源61发出的激光光束,即,对光源61发出的激光光束准直,并将来自光源61的光脉冲准直后投射至扫描模组40。准直元件63位于光源61与扫描模组40之间。准直元件63还用于会聚经探测物反射、并经过扫描模组40的回光的至少一部分至探测器64。准直元件63可以是准直透镜或者是其他能够准直光束的元件。在一个实施例中,准直元件63上镀有增透膜,能够增加透射光束的强度。
光路改变元件62设置在光源61的出光光路上,用于将光源61的出射光路和探测器64的接收光路合并。具体地,光路改变元件62位于准直元件63的与扫描模组40相背的一侧。光路改变元件62可以为反射镜或半反半透镜。在一个例子中,光路改变元件62为小反射镜,能够将光源61发出的激光光束的光路方向改变90度或其他角度。
探测器64与光源61放置于准直元件63的同一侧。一个示例中,探测器64与准直元件63正对。可以理解,扫描模组40可以将光脉冲序列在不同时刻改变至不同传输方向出射,经探测物反射回的光脉冲经过扫描模组40后可入射至探测器64,而探测器64可用于将穿过准直元件63的至少部分回光转换为电信号,电信号具体可以为电脉冲,探测器64还可基于电脉冲确定探测物与测距装置100之间的距离。
测距装置100工作时,光源61发出激光脉冲,该激光脉冲经光路改变元件62后被准直元件63准直,准直后的激光脉冲被扫描模组40改变传输方向后出射并投射到探测物上,经探测物反射回的激光脉冲经过扫描模组40后至少一部分的回光被准直元件63会聚到探测器64上。探测器64将穿过准直元件63的至少部分回光转换为电信号脉冲。
请参阅图25和图26,本申请的测距装置100包括发射电路611、接收电路641、采样电路642和运算电路643。发射电路611可以发射光脉冲序列(例如激光脉冲序列)。接收电路641可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路642采样电路642可以对电信号进行采样,以获取采样结果。运算电路643可以基于采样电路642的采样结果,以确定距离装置100与被探测物之间的距离。本实施例中,发射电路611包括光源61,探测器64包括接收电路641、采样电路642和运算电路643。
可选地,该测距装置100还可以包括控制电路644,该控制电路644可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。此时,探测器64还可包括控制电路644。
应理解,虽然图26示出的距离装置100中包括一个发射电路611、一个接收电路641、一个采样电 路642和一个运算电路643,但是本申请实施例并不限于此,发射电路611、接收电路641、采样电路642、运算电路643中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
请参阅图27,下面以测距模组60采用第二种同轴光路来进行说明光源61、光路改变元件62、准直元件63、及探测器64。此时,准直元件63的结构及位置与第一种同轴光路中的准直元件63的结构及位置相同,不同之处在于:光路改变元件62为大反射镜,该大反射镜包括反射面621,且该大反射镜的中间位置开设有通光孔。探测器64与光源61仍旧放置于准直元件63的同一侧,相较前述的第一种同轴光路,探测器64与光源61的位置互换,即,光源61与准直元件63正对,探测器64与反射面621相对,光路改变元件62位于光源61与准直元件63之间。
测距装置100工作时,光源61发出激光脉冲,该激光脉冲从光路改变元件62的通光孔穿过后被准直元件63准直,准直后的激光脉冲被扫描模组40改变传输方向后出射并投射到探测物上,经探测物反射回的激光脉冲经过扫描模组40后至少一部分的回光被准直元件63会聚到光路改变元件62的反射面621上。反射面621将该至少一部分的回光反射至探测器64上,探测器64将该被反射的至少部分回光转换为电信号脉冲,测距装置100通过该电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物到测距装置100的距离。本实施方式中,光路改变元件62的尺寸较大,能够覆盖光源61的整个视场范围,回光被光路改变元件62直接反射至探测器64,避免了光路改变元件62本身对回光光路的遮挡,增加了探测器64能够探测到回光的强度,提高了测距精度。
请结合图4和图22,在某些实施方式中,支架30还包括第一加强臂34,第一加强臂34的一端连接在第二固定部312上,第一加强臂34的另一端连接连接臂33的远离第一固定部311的一端,固定臂31、连接臂33和第一加强臂34共同围成一个三角形。在其他实施方式中,第一加强臂34的一端连接在第二固定部312上,第一加强臂34的另一端连接在连接臂33的相背两端之间,此时,固定部310、第一加强臂34和部分连接臂33共同围成一个三角形。本实施方式的固定臂31、连接臂33、结合臂32和第一加强臂34位于同一平面内。本实施方式的支架30通过设置第一加强臂34,从而增强了支架30的强度,当测距装置100受到外界冲击时,支架30产生的晃动较小。
请结合图4和图22,在某些实施方式中,支架30还包括第一加强臂34和第二加强臂35。第一加强臂34的一端连接在第二固定部312上,第一加强臂34的另一端连接连接臂33,固定臂31、连接臂33和第一加强臂34共同围成一个三角形。第二加强臂35连接第一加强臂34及连接臂33,第二加强臂35位于第一加强臂34、固定臂31及连接臂33所围成的空间内。本实施方式的固定臂31、连接臂33、结合臂32、第一加强臂34和第二加强臂35位于同一平面内。本实施方式的支架30通过设置第一加强臂34和第二加强臂35,从而增强了支架30的强度,当测距装置100受到外界冲击时,支架30产生的晃动较小。
请结合图4和图22,在某些实施方式中,扫描壳体41包括相接的第一支座411及第二支座412,支架30包括依次连接的固定臂31、连接臂33及结合臂32,固定臂31固定在底座10上并位于第一支座411及第二支座412的同一侧。每个支架30通过至少两个柔性连接组件50与扫描壳体41连接,至少两个柔性连接组件50包括第一柔性连接组件53和第二柔性连接组件54,第一柔性连接组件53连接结合臂32与第一支座411,第二柔性连接组件54连接固定臂31与第二支座412。此时,扫描壳体41可以不形成有安装空间416。本实施方式中结合臂32的长度较上述实施方式中结合臂32的长度可以做得更短,从而相较于上述实施方式中的支架30(支架30仅包括固定臂31、连接臂33和结合臂32,且支架30安装在安装空间416内),本实施方式的支架30的强度更大,从而能够减小因扫描模组40的振动而使支架30产生的晃动。
请结合图4和图22,在某些实施方式中,固定臂31包括第一固定部311、第二固定部312及第二结合部313,第一固定部311和第二固定部312位于固定臂31的相背两端并均固定在底座10上,第一固定部311位于第一支座411的一侧,第二固定部312位于第二支座412的一侧,第二结合部313位于第一固定部311与第二固定部312之间,第二柔性连接组件54连接第二结合部313与第二支座412。本 实施方式中结合臂32的长度较上述实施方式中结合臂32的长度可以做得更短,从而相较于上述实施方式中的支架30(支架30仅包括固定臂31、连接臂33和结合臂32,且支架30安装在安装空间416内),本实施方式的支架30的强度更大,从而能够减小因扫描模组40的振动而使支架30产生的晃动。
请结合图4和图22,在某些实施方式中,扫描壳体41包括相接的第一支座411及第二支座412,支架30包括固定臂31、连接臂33、结合臂32及第一加强臂34。固定臂31、连接臂33和结合臂32依次连接。固定臂31固定在底座10上并位于第一支座411及第二支座412的同一侧。第一加强臂34的一端连接固定臂31的远离连接臂33的一端,第一加强臂34的另一端连接连接臂33的远离固定臂31的一端。每个支架30通过至少两个柔性连接组件50与扫描壳体41连接,至少两个柔性连接组件50包括第一柔性连接组件53和第二柔性连接组件54,第一柔性连接组件53连接结合臂32与第一支座411,第二柔性连接组件54连接固定臂31与第二支座412。在其他实施方式中,第一加强臂34的一端连接固定臂31的远离连接臂33的一端,第一加强臂34的另一端连接在连接臂33的相背两端之间。本实施方式中结合臂32的长度较上述实施方式中结合臂32的长度可以做得更短,从而相较于上述实施方式中的支架30(支架30仅包括固定臂31、连接臂33、结合臂32和第一加强臂34,且支架30安装在安装空间416内),本实施方式的支架30的强度更大,从而能够减小因扫描模组40的振动而使支架30产生的晃动。
请结合图4和图22,在某些实施方式中,扫描壳体41包括相接的第一支座411及第二支座412,支架30包括固定臂31、连接臂33、结合臂32、第一加强臂34及第二加强臂35。固定臂31、连接臂33和结合臂32依次连接。固定臂31固定在底座10上并位于第一支座411及第二支座412的同一侧。第一加强臂34的一端连接固定臂31的远离连接臂33的一端,第一加强臂34的另一端连接在连接臂33上。第二加强臂35连接第一加强臂34及连接臂33,第二加强臂35位于第一加强臂34及连接臂33所围成的空间内。每个支架30通过至少两个柔性连接组件50与扫描壳体41连接,至少两个柔性连接组件50包括第一柔性连接组件53和第二柔性连接组件54,第一柔性连接组件53连接结合臂32与第一支座411,第二柔性连接组件54连接固定臂31与第二支座412。在其他实施方式中,第一加强臂34的一端连接固定臂31的远离连接臂33的一端,第一加强臂34的另一端连接在连接臂33的相背两端之间。本实施方式中结合臂32的长度较上述实施方式中结合臂32的长度可以做得更短,从而相较于上述实施方式中的支架30(支架30仅包括固定臂31、连接臂33、结合臂32、第一加强臂34和第二加强臂35,且支架30安装在安装空间416内),本实施方式的支架30的强度更大,从而能够减小因扫描模组40的振动而使支架30产生的晃动。
请结合图21至图24,在某些实施方式中,柔性连接件51还包括限位凸块515,限位凸块515自第一支撑部511凸出。柔性连接件51从第二支撑部512一端安装至支架安装孔(第一支架安装孔3211)内或壳体安装孔(第二壳体安装孔41201)内,具体地,在安装柔性连接件51时,柔性的第二支撑部512在拉扯力的作用下能发生弹性形变并能够穿过第一支架安装孔3211或第二壳体安装孔41201。柔性连接件51设置限位凸块515,能够避免在将柔性连接件51安装在第一支架安装孔3211内或第二壳体安装孔41201内时,因为拉扯力过大而使第一支撑部511也穿过第一支架安装孔3211或第二壳体安装孔41201。
本实施例中,柔性连接组件50的数量至少为四个,每个支架30通过至少两个柔性连接组件50与扫描壳体41连接并形成多个连接点,多个连接点在底座10上的投影形成一辅助面P(如图21所示),扫描壳体41的重心(或扫描模组40的重心)位于辅助面P的中心,位于扫描壳体41同侧的多个连接点包括对角设置的两个连接点,对角设置的两个连接点形成一连接线L,连接线L的中点到底座10的距离与重心到底座10的距离相同。
请结合图21至图24,在某些实施方式中,每个支架30通过两个柔性连接组件50与扫描壳体41连接并形成两个连接点,四个连接点在底座10上的投影形成辅助面P(如图21所示),位于扫描壳体41同侧的两个连接点对角设置并形成连接线L。用于连接将一个支架30与扫描壳体41连接的两个柔性连接组件50包括第一柔性连接组件53和第二柔性连接组件54,第一柔性连接组件53连接第一结合部321和第一安装部414,第二柔性连接组件54连接第二结合部313和第二安装部415。第一柔性连接组件53与第二柔性连接组件54的中心连线形成连接线L。连接线L的中点到底座10的距离与扫描壳体41的重心(或扫描模组40的重心)到底座10的距离相同,从而能够进一步减小扫描模组40的振动传 递到底座10上,并且当测距装置100受到外界冲击而产生震动时,扫描壳体41受到的转动力矩较小,该力矩的方向垂直于固定部310的中心、第一结合部321的中心及第二结合部313的中心所在的平面,从而能够减小甚至避免因测距装置100受到外界冲击而产生翻转。
请结合图21至图24,在某些实施方式中,每个支架30通过四个柔性连接组件50与扫描壳体41连接并形成四个连接点,八个连接点在底座10上的投影形成辅助面,位于扫描壳体41同侧的四个连接点两两相对角设置,两个对角设置的连接点形成第一连接线,另外两个对角设置的连接点形成第二连接线,第一连接线的中点到底座10的距离与重心到所述底座10的距离相同,第二连接线的中点到底座10的距离与重心到底座10的距离相同。此时,其中两个柔性连接组件50可以连接结合臂32和第一支座411,另外两个柔性连接组件50连接固定臂31和第二支座412。每个支架30通过四个柔性连接组件50与扫描壳体41连接,从而能够将扫描壳体41更加稳固地安装在支架30上。
请结合图21至图24,每个支架30形成的四个连接点包括第一连接点、第二连接点、第三连接点及第四连接点,第一连接点和第三连接点位于支架30的远离底座10的一侧,第二连接点和第三连接点位于支架30的靠近底座10的一侧,第四连接点较第二连接点更靠近第一连接点,依次连接第一连接点、第三连接点、第二连接点、第四连接点及第一连接点所形成的形状为矩形或平行四边形。此时,第一连接点与第二连接点连线形成第一连接线,第三连接点与第四连接点连线形成第二连接线,第一连接线的中点与第二连线的中点重合。每个支架30通过四个柔性连接组件50与扫描壳体41连接,从而能够将扫描壳体41更加稳固地安装在支架30上。
请参阅图7和图8,在某些实施方式中,第一支座411上形成有第一定位件4112。第二支座412上形成有第二定位件4122。第一支座411与第二支座412相接,第一定位件4112与第二定位件4122配合,以使第一旋转轴4236与第二旋转轴4337以预定距离平行间隔。由于第一光学元件45安装在第一驱动器42内,第一驱动器42安装在第一支座411上,第二光学元件46安装在第二驱动器43内,第二驱动器43安装在第二支座412上,通过第一定位件4112与第二定位件4122的定位作用,第一光学元件45与第二光学元件46的旋转轴的位置不易发生偏移,测距装置100的测距精度较高。
其中,第一旋转轴4236与第二旋转轴4337间隔的预定距离可以依据扫描模组40实际的需求进行设置,在本申请实施例中,第一旋转轴4236与第二旋转轴4337重合,即,第一旋转轴4236与第二旋转轴4337之间的预定距离为零。第一定位件4112可以形成在第一支座本体4111的靠近第二支座412的一端,第二定位件4122可以形成在第二支座本体4121的靠近第一支座411的一端,在安装时,可以通过第一定位件4112与第二定位件4122确定第一支座411与第二支座412的安装角度,仅在第一旋转轴4236与第二旋转轴4337重合时,第一支座411与第二支座412才能正确配合,即,第一定位件4112与第二定位件4122正确地配合在一起。
依据第一支座411与第二支座412的形状、结合方式等差异,第一定位件4112与第二定位件4122的具体形式可以适当地作出调整,第一定位件4112与第二定位件4122可以分别为卡扣及卡槽,第一定位件4112与第二定位件4122可以分别为内螺纹及外螺纹等。
在如图8所示的例子中,第一定位件4112包括定位槽4114,第二定位件4122包括定位凸出4127,定位凸出4127伸入定位槽4114内以相互配合。定位槽4114可以与第一收容腔4119相通,定位槽4114的深度方向可以与第一旋转轴4236的方向相同,定位凸出4127自第二支座本体4121的一端延伸形成,定位凸出4127的延伸方向可以与第二旋转轴4337的方向相同。
具体地,请参阅图7和图8,定位槽4114的内壁呈环形或环形的一部分,定位凸出4127包括多个间隔的定位子凸出4127a,多个定位子凸出4127a的外壁组成环形或环形的一部分,多个定位子凸出4127a的外壁抵持定位槽4114的内壁。定位槽4114的内壁的中轴线可以与第一旋转轴4236重合,多个定位子凸出4127a的外壁的中轴线可以与第二旋转轴4337重合。多个定位子凸出4127a可以绕第二旋转轴4337的周向等角度间隔分布。多个定位子凸出4127a的外壁可以与定位槽4114的内壁过盈配合,以使第一定位件4112与第二定位件4122配合后不易发生晃动。
请参阅图7和图8,在某些实施方式中,第二定位件4122形成在第二支座412的一端,第二支座412的另一端形成有第三定位件4123。第三支座413上形成有第四定位件4131,第三定位件4123与第四定位件4131配合,以使第二旋转轴4337与第三旋转轴4437以预定距离平行间隔。由于第二光学元件46安装在第二驱动器43内,第二驱动器43安装在第二支座412上,第三光学元件47安装在第三驱 动器44内,第三驱动器44安装在第三支座413上,通过第三定位件4123与第四定位件4131的定位作用,第二光学元件46与第三光学元件47的旋转轴的位置不易发生偏移,测距装置的测距精度较高。
其中,第二旋转轴4337与第三旋转轴4437间隔的预定距离可以依据扫描模组40实际的需求进行设置,在本申请实施例中,第二旋转轴4337与第三旋转轴4437重合,即,第二旋转轴4337与第三旋转轴4437之间的预定距离为零。同时,第一旋转轴4236、第二旋转轴4337与第三旋转轴4437均可以重合设置,以使第一光学元件45、第二光学元件46及第三光学元件47组成的光路收光系统的收光效率较高。
第三定位件4123可以形成在第二支座本体4121的靠近第三支座413的一端,第四定位件4131可以形成在第三支座本体4130的靠近第二支座412的一端,在安装时,可以通过第三定位件4123与第四定位件4131确定第一支座411与第二支座412的安装角度,仅在第二旋转轴4337与第三旋转轴4437重合时,第二支座412与第三支座413才能正确配合,即,第三定位件4123与第四定位件4131正确地配合在一起。
依据第二支座412与第三支座413的形状、结合方式等差异,第三定位件4123与第四定位件4131的具体形式可以适当地作出调整,第三定位件4123与第四定位件4131可以分别为卡扣及卡槽,第三定位件4123与第四定位件4131可以分别为内螺纹及外螺纹等。
在如图7和图8所示的例子中,第三定位件4123包括定位凹槽4128,第四定位件4131包括定位凸起4132,定位凸起4132伸入定位凹槽4128内以相互配合。定位凹槽4128可以与第二收容腔4126相通,定位凹槽4128的深度方向可以与第二旋转轴4337的方向相同,定位凸起4132自第三支座本体4130的一端延伸形成,定位凸起4132的延伸方向可以与第三旋转轴4437的方向相同。
具体地,请参阅图7和图8,定位凹槽4128的内壁呈环形或环形的一部分,定位凸起4132包括多个间隔的定位子凸起4132a,多个定位子凸起4132a的外壁呈环形或环形的一部分,多个定位子凸起4132a的外壁抵持定位凹槽4128的内壁。定位凹槽4128的内壁的中轴线可以与第一旋转轴4236重合,多个定位子凸起4132a的外壁的中轴线可以与第三旋转轴4437重合。多个定位子凸起4132a可以绕第三旋转轴4437的周向等角度间隔分布。多个定位子凸起4132a的外壁可以与定位凹槽4128的内壁过盈配合,以使第三定位件4123与第四定位件4131配合后不易发生晃动。
请参阅图7,在某些实施方式中,第一支座411还包括支撑环4113,第一支座本体4111形成第一收容腔4119,支撑环4113自第一支座本体4111的内壁向收容腔延伸。如前述,第一支座本体4111为中空的结构,中空的部分形成第一收容腔4119,为了增加第一收容腔4119的体积,通常会使得第一支座本体4111的内壁设置得较薄,而这可能会导致第一支座本体4111的强度降低,在受到挤压和撞击时容易发生形变。支撑环4113自第第一支座本体4111的内壁向收容腔延伸,能够增加第一支座411整体的强度,第一支座411不易发生形变。在本申请实施例中,第一收容腔4119呈圆筒状,支撑环4113也呈圆环状,支撑环4113可以保证第一收容腔4119的圆度。
请参阅图5和图7,在某些实施方式中,第一驱动器42安装在第一收容腔4119内,第一定子组件421与第一定位组件422分别安装在支撑环4113相背的两侧。在安装第一驱动器42时,可以从支撑环4113的一侧将第一定子组件421安装在第一收容腔4119内,从支撑环4113的另一侧将第一定位组件422安装在第一收容腔4119内,二者可以同时安装,而不需要从支撑环4113的同一侧安装第一定位组件422及第一定子组件421,提高安装效率。
请参阅图6和图9,在某些实施方式中,扫描模组40还包括预紧组件48。预紧组件48包括第一预紧件481及第二预紧件482。第一预紧件481固定在第一转子4231上,第二预紧件482固定在第二支座412上。第一预紧件481与第二预紧件482相对设置,且第一预紧件481与第二预紧件482产生沿第一轴承422的轴向方向的相互作用力,以使第一内环结构4221与第一外环结构4222共同抵持第一滚动体4223。
可以理解,第二支座412与第一支座411相对固定,第一外环结构4222与第一支座411相对固定,即,第一外环结构4222与第二支座412相对固定。未设置预紧组件48之前,第一内环结构4221与第一滚动体4223之间可能存在有游隙,游隙会导致第一内环结构4221在转动时,第一内环结构4221容易在第一轴承422的轴向上蹿动而产生噪音。设置预紧组件48后,第一预紧件481与第二预紧件482产生的相互作用力分别作用在第一内环结构4221与第二支座412上,第一内环结构4221在相互作用力 的作用下抵持第一滚动体4223,消除第一轴承422的游隙,确保第一转轴转动平稳。
具体地,第一预紧件481与第二预紧件482之间的相互作用力可以是相互吸引力,也可以是相互排斥力。在本申请实施例中,第一预紧件481与第二预紧件482可以均由铁磁性特制制成,例如均为磁铁。通过将磁铁的同级相对可以产生上述的相互排斥力,通过将磁铁的异级相对可以产生上述的相互吸引力。
请参阅图6和图9,在某些实施方式中,第一预紧件481呈环状,第一预紧件481套设在第一转子4231上。第一预紧件481受到相互作用力后传递到第一转子4231上,再传递到第一内环结构4221上。环状的第一预紧件481受到的相互作用力较均匀,避免第一内环结构4221发生倾斜。在另一个例子中,第一预紧件481也可以包括多个第一子预紧件,多个第一子预紧件沿第一转子4231的周向等角度间隔设置。
请再参阅图6和图7,在某些实施方式中,第二预紧件482包括多个第二子预紧件482a,多个第二子预紧件482a沿第二支座412的周向等角度间隔设置。等角度间隔设置的第二预紧件482能为第一预紧件481提供较均匀的相互作用力。在另一个例子中,第二预紧件482与可以呈环状。在如图7所示的例子中,第二支座412包括朝向第一驱动器42的第一端面4124,第一端面4124上开设有容置槽4125,第二预紧件482至少部分收容在容置槽4125内。第二预紧件482容易固定在第二支座412上,且第二预紧件482不会从第二支座412中凸出太多而增加扫描模组40的轴向尺寸。
请参阅图9,在某些实施方式中,预紧组件48还包括第三预紧件483及第四预紧件484。第三预紧件483固定在第二转子4331上,第四预紧件484固定在第四转子上,第三预紧件483与第四预紧件484相对设置。第三预紧件483与第四预紧件484之间产生沿第二轴承432与第三轴承442的轴向的相互作用力,以使第二内环结构4321与第二外环结构4322共同抵持第二滚动体4323,第三内环结构4421与第三外环结构4422共同抵持第三滚动体4423。
第二外环结构4322与第二支座412相互固定,第三外环结构4422与第三支座413相互固定,且第二支座412与第三支座413相互固定,则第二外环结构4322与第三外环结构4422相互固定。第三预紧件483与第四预紧件484之间的相互作用力首先分别作用在第二转子4331与第三转子4431上,再分别传递到第二内环结构4321与第三内环结构4421上,使得第二内环结构4321抵持第二滚动体4323以消除第二轴承432的游隙,第三内环结构4421抵持第三滚动体4423以消除第三轴承442的游隙,保证第二轴承432与第三轴承442转动平稳。
具体地,第三预紧件483与第四预紧件484之间的相互作用力可以是相互吸引力,也可以是相互排斥力。在本申请实施例中,第三预紧件483与第四预紧件484可以均由铁磁性特制制成,例如均为磁铁。通过将磁铁的同级相对可以产生相互排斥力,通过将磁铁的异级相对可以产生相互吸引力。第三预紧件483可以呈环状并套设在第三转子4431上,第四预紧件484可以呈环状并套设在第四转子上。
在本申请实施例中,第一轴承422、第二轴承432及第三轴承442同轴设置。即,第一旋转轴4236、第二旋转轴4337及第三旋转轴4437同轴设置。
请参阅图9,在某些实施方式中,第一光学元件45、第二光学元件46及第三光学元件47依次并排设置。扫描模组40用于接收光脉冲,将光脉冲改变传播方向后出射,以及用于接收经物体反射回的光脉冲。其中,在改变光脉冲传播方向后出射的过程中,光脉冲先后经过第三光学元件47、第二光学元件46及第一光学元件45。在本申请实施例中,第一光学元件45的口径大于第三光学元件47的口径。
通过设置三个光学元件,三个光学元件可以组合的折射角度更多,且第一光学元件45的口径大于第三光学元件47的口径,第一光学元件45能够接收更多由物体反射回的光脉冲,且经过第二光学元件46的光脉冲能够被第一光学元件45偏转更大的角度,提高了扫描模组40的视场范围。
一个示例中,第一光学元件45的口径大于第二光学元件46的口径,且第二光学元件46的口径等于第三光学元件47的口径。安装第二光学元件46的第二驱动器43、及安装第三光学元件47的第三驱动器44可以设置得一样,且安装第二驱动器43的第二支座412、及安装第三驱动器44的第三支座413的大小也可以设置得相近或相同。
在另外的实施例中,第一光学元件45的口径可以大于第二光学元件46的口径,且第二光学元件46的口径大于第三光学元件47的口径。光脉冲在出射的过程中,先后经过第三光学元件47、第二光学元件46及第一光学元件45,光脉冲能够被折射到的范围能够逐渐增大且不会被转子(第三转子4431、第二转子4331、第一转子4231)遮挡。当然,第一光学元件45的口径也可以等于第二光学元件46的口 径,且第二光学元件46的口径大于第三光学元件47的口径。
请参阅图9,在某些实施方式中,第二转子4331伸入第一收纳腔4235内。具体地,可以是第二磁轭4333伸入到第收纳腔内,由于第一光学元件45安装在第一收纳腔4235内,第二光学元件46安装在第二转子4331形成的第二收纳腔4336内,第二转子4331伸入第一收纳腔4235内,实际上可以使得第二光学元件46与第一光学元件45相对靠近,减小激光在第二光学元件46与第一光学元件45之间的光程。请参阅图9及图17,以出射激光为例,激光经过第二光学元件46后折射,由于第二光学元件46与第一光学元件45相对靠近,使得在相同折射角度下,激光照在第一光学元件45上的范围较小,避免激光照射到第一转子4231上而被遮挡,提高了出光和收光的效率,同时,还能够减小扫描模组40在轴向上的尺寸。在一个例子中,第二光学元件46至少部分伸入第一收纳腔4235内,使得第二光学元件46与第一光学元件45相互靠近,进一步提高出光和收光的效率。
请参阅图9和图12,在某些实施方式中,第一转子4231的内壁形成第一收纳腔4235,第一转子4231包括远离第二驱动器43的外端4239,外端4239与第一转子4231的内壁的相交处形成有避让倒角4230。形成避让倒角4230一方面不会削减第一转子4231沿轴向上的长度,使得第一定子组件421可以设置在第一磁轭4233a的外周面上,另一方面,形成避让倒角4230与有利于光线从避让倒角4230中经过,而不会被第一转子4231的内壁遮挡,提高扫描模组40出光和收光的效率。具体地,避让倒角4230的角度α可以是范围可以是(0,40]度,例如为10度、12度、15.5度、23度、37度、40度等在该范围内的任意度数,如此,不会对第一转子4231的强度造成太大的削弱,对第一定子组件421有较好的支撑作用。
对应地,在接收经物体反射回的光脉冲的过程中,光脉冲先经过第一光学元件45后再经过第二光学元件46及第三光学元件47。在本申请实施例中,第一光学元件45、第二光学元件46及第三光学元件47均为光折射元件,即,第一光学元件45、第二光学元件46及第三光学均能单独对经过的光产生折射作用,以改变光原有的传播方向。
在本申请实施例中,第一光学元件45、第二光学元件46及第三光学元件47的光轴同轴设置,以使激光脉冲在被折射后不易被第一转子4231、第二转子4331或第三转子4431遮挡,提高扫描模组40的出光及入光效率。当然,在其他实施例中,第一光学元件45、第二光学元件46及第三光学元件47的光轴也可以不是同轴设置,另外,还可以增设反射元件等器件,在此不作限制。
一个示例中,第一光学元件45与第二光学元件46之间的距离可以小于第二光学元件46与第三光学元件47之间的距离;或者第一光学元件45与第二光学元件46之间的距离可以等于或者大于第二光学元件46与第三光学元件47之间的距离。
在某些实施方式中,扫描模组40在水平方向上的视场角大于在竖直方向上的视场角,以使测距装置更容易探测到四周的待测物的深度信息。例如,扫描模组40在水平方向上的视场角为[60度,80度]之间,例如为60度、65度、70度、71度、75度、75.8度、78度、80度等任意在上述范围内的角度;扫描模组40在竖直方向上的视场角位于[25度,35度]之间,例如为25度、26度、26.5度、27.4度、28度、29度、32度、35度等任意在上述范围内的角度。在一个例子中,扫描模组40的视场范围呈长条状,例如呈矩形,矩形的长边可以与水平线或者竖直线平行;或者椭圆形,椭圆的长轴可以与水平线或者竖直线平行。
在某些实施方式中,第二驱动器43能够转动以带动第二光学元件46绕第二旋转轴4337旋转,第三驱动器44能够转动以带动第三光学元件47绕第三旋转轴4437旋转。可以理解,第二驱动器43与第三驱动器44能够被独立控制转动,则第二光学元件46可以与第三光学元件47同时旋转,旋转的方向和速度可以相同或不相同;也可以是第二光学元件46旋转且第三光学元件47不旋转;也可以是第二光学元件46不旋转且第三光学元件47旋转。第二光学元件46和/或第三光学元件47在旋转的过程中,光脉冲由第二光学元件46和/或第三光学元件47改变至不同的方向出射。
进一步地,第一驱动器42能够转动以带动第一光学元件45绕第一旋转轴4236旋转。第一驱动器42、第二驱动器43及第三驱动器44均能够被独立控制转动,则第二光学元件46与第三光学元件47的转动速度及方向并不会影响第一光学元件45的转动速度及方向。
请参阅图17,在某些实施方式中,第一光学元件45的出光面与垂直于第一旋转轴4236的平面的夹角小于10度。另外,第三光学元件47的出光面与垂直于第三旋转轴4437的平面的夹角小于10度。
或者说,第一光学元件45的出光面与第一旋转轴4236的夹角位于80度至90度之间。另外,第三光学元件47的出光面与第三旋转轴4437的夹角位于80度与90度之间。
在如图17所示的例子中,第一光学元件45的出光面与第一旋转轴4236垂直。第三光学元件47出光面与第三旋转轴4437垂直。其中,出光面指的是在测距装置出射激光脉冲时,激光脉冲在穿过光学元件时最后穿过的表面,例如第一光学元件45的出光面指出射的激光脉冲穿过第一光学元件45时最后穿过的表面。第一光学元件45的出光面与第三旋转轴4437垂直,使得对于相同的出光面的面积,第一光学元件45的有效光接收面积较大。
可以理解,第一光学元件45、第二光学元件46及第三光学元件47并排设置,相邻的两个光学元件之间存在相对的表面及相背的表面。在如图17所示的例子中,第二光学元件46与第三光学元件47的相对的两个面平行。第二光学元件46与第三光学元件47的相对的两个面的距离位于[1.5毫米,5毫米]之间,具体可以是1.5毫米、2毫米、2.7毫米、3.4毫米、4毫米、4.9毫米、5毫米等任意在上述范围内的取值。第一光学元件45与第二光学元件46的相对的两个面的距离位于[10毫米,25毫米]之间,具体可以是10毫米、15毫米、17.3毫米、17.5毫米、20毫米、22.5毫米、24毫米、25毫米等任意在上述范围内的取值。第一光学元件45与第三光学元件47相对的面不平行,第一光学元件45与第三光学元件47相对的面指第一光学元件45与第三光学元件47相互靠近的面。其中,相对的两个面的距离,可以是指相对的两个面之间,两个面与各自的光轴的交点之间的距离。
第一光学元件45、第二光学元件46与第三光学元件47均为楔形棱镜时,第二光学元件46与第三光学元件47的楔角可以位于[19度,21度]之间,例如19度、19.5度、20度、20.5度、20.8度、21度等任意在上述范围内的取值。第二光学元件46与第三光学元件47的楔角可以相等,例如均为20度或者均为21度等,第二光学元件46与第三光学元件47的楔角也可以不相等,例如第二光学元件46的楔角为20度且第三光学元件47的楔角为21度。第一光学元件45的楔角位于[17度,19度]之间,例如17度、17.7度、18度、18.3度、18.5度、19度等任意在上述范围内的取值。
请参阅图17和图20,第三光学元件47上远离第一光学元件45的面与第三光学元件47的光轴不垂直。其中,不垂直可以理解为倾斜,第三光学元件47的光轴可以与第三旋转轴4437重合,可以避免第三光学元件47上远离第一光学元件45的面将从测距模组60出射的光反射回探测器64,避免对探测器64接收的光造成干扰。
请参阅图18,在某些实施方式中,第二光学元件46与第三光学元件47对光脉冲的折射能力之差小于10度,例如折射能力之差为0度、2度、5度、7度、8.3度、10度等任意小于10度的范围。在一个例子中,第二光学元件46与第三光学元件47对光脉冲的折射能力相同,即,第二光学元件46与第三光学元件47对光脉冲的折射能力之差为0度。其中,光学元件的折射能力指在入射光垂直入光面的情况下,出射光相比入射光的偏折角度。折射能力之差小于10度,可以是指在入射光垂直入光面的情况下,对入射光的偏折方向相同,但偏折角度之差小于10度;或者是偏折方向不同,但偏折方向的夹角小于10度。
第二光学元件46与第三光学元件47的材料可以是相同的,第二光学元件46与第三光学元件47可以均为楔形棱镜,且二者的楔角可以相同。第二光学元件46与第三光学元件47的相背的两个面可以互相平行。
在旋转第二光学元件46与第三光学元件47时,第二光学元件46与第三光学元件47可以是等速反向旋转的,例如第二光学元件46正转且第三光学元件47以相同的速度反转,或者第二光学元件46反转且第三光学元件47以相同的速度正转。
在某些实施方式中,在第二光学元件46与第三光学元件47旋转的过程中,第二光学元件46的相位角度与第三光学元件47的相位角度之和在一固定值附近浮动,浮动范围不超过20度。其中,相位角度指光折射元件的零位与一个基准方向之间的夹角。请参阅图18和图19,沿所述第二光学元件46及第三光学元件47的光轴的方向,基准方向可以由方向X所示,第二光学元件46的零位可以由μ1表示,第三光学元件47的零位可以由μ2表示,第二光学元件46的相位角度可以由θ1表示,第三光学元件47的相位角度可以由θ2表示,第二光学元件46的相位角度与第三光学元件47的相位角度之和可以由θ1+θ2表示。其中,相位角度形成在基准方向的逆时针方向为正,顺时针方向为负;或者相位角度形成在基准方向的顺时针方向为负,逆时针方向为正。
一个例子中,在第二光学元件46与第三光学元件47旋转的过程中,第二光学元件46的相位角度与第三光学元件47的相位角度之和为固定值。在另一个例子中,上述的基准方向为水平方向,第二光学元件46的相位角度与第三光学元件47的相位角度之和在0度附近浮动,能够使扫描模组40扫描出沿水平方向延伸的带状视场,以使测距装置更适应于某些场景,例如更适应于自动驾驶汽车的避障。
请参阅图9和图10,本实施例中,第二转子4331的径向尺寸小于第一转子4231的径向尺寸。第二转子4331与第一转子4231同轴设置,即第二旋转轴4337与第一旋转轴4236重合。第二转子组件433与第一转子组件423沿相同的转轴的方向分布,并且第二转子组件433位于朝向第一转子组件423中的第一光学元件45的第一面453的位置。
第三转子4431的径向尺寸等于第二转子4331的径向尺寸,第三转子4431的轴向尺寸可以小于或等于或大于第二转子4331的轴向尺寸。第三转子4431与第二转子4331同轴设置,即第三旋转轴4437、第二旋转轴4337和第一旋转轴4236重合。第三转子组件443与第二转子组件433沿相同的转轴的方向分布,并且第三转子组件443位于朝向第二转子组件433中的第二光学元件46的第二面464的位置。
请参阅图9和图10,在本申请实施方式中,第一光学元件45形成有相背的第一面453及第二面454。第一面453相对于第一旋转轴4236倾斜,即第一面453与第一旋转轴4236的夹角不呈0度或90度;第二面454与第一旋转轴4236垂直,即第二面454与第一旋转轴4236的夹角呈90度。
可以理解,由于第一面453与第二面454不平行,第一光学元件45的厚度不均匀,即第一光学元件45的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第一光学元件45包括第一端451及第二端452,第一端451与第二端452分别位于第一光学元件45的径向方向上的两端。第一光学元件45的厚度沿一个方向逐渐增大,并且第一端451的厚度大于第二端452的厚度,或者说,第一光学元件45可以为楔镜(楔形棱镜)。
由于各光学元件本身的重量分布不均匀,当高速转动时,会导致容易晃动而不够平稳,进而限制了转动的速度。为解决这一技术问题,本申请实施例的一些实现方式中,通过降低扫描模组40的重量和增加扫描模组40和重量的方式来改善扫描模组40的动平衡。
例如,当采用降低扫描模组40的重量的方式来改善扫描模组40的动平衡时,下面的一些实施例中通过在第一光学元件45和/或第一转子4231上形成缺口的方式以改善扫描模组40的动平衡。
下面将介绍第一光学元件45与第一转子4231的缺口的位置:
请参阅图9和图10,在一个例子中,缺口包括开设在第一光学元件45上的切角455,切角455位于的第一端451的边缘位置,切角455与第一转子4231的第一侧壁4234的内表面相对并且位于第一光学元件45的远离第一光学元件45的光路的位置,或者说,切角455位于第一光学元件45中光线不经过的位置。如此,切角455在改善扫描模组40的动平衡的情况下,亦不影响激光在第一光学元件45中传输。
请参阅图9和图10,在一个例子中,第一光学元件45包括第一区域与第二区域。第一区域与第二光学元件46相对,第二区域自第一区域延伸至第二光学元件46的周缘之外。缺口包括开设在第一光学元件45的第二区域上且靠近第一端的一侧的切角455。
请参阅图9和图10,在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。缺口包括形成在第一转子4231的第一侧壁4234的内表面上的内切槽4234a,内切槽4234a靠近第一光学元件45的第一端451一侧,内切槽4234a相对第三端4237a更靠近第四端4237b,或者说,内切槽4234a自第三端4237a朝第四端4237b的方向延伸。在另一个例子中,内切槽4234a与切角455相对,内切槽4234a在第一旋转轴4236上的投影范围覆盖切角455在第一旋转轴4236上的投影范围。在另一个例子中,内切槽4234a的数量可以多个(大于或等于两个),多个内切槽4234a间隔设置。如此,能够避免单个面积较大的内切槽4234a对第一侧壁4234的强度造成较大的影响。
请参阅图9和图13,在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。缺口包括形成在第一转子4231的第一侧壁4234的中部(外表面与内表面之间)的凹槽4234c, 即凹槽4234c不贯穿第一侧壁4234的内表面与外表面。凹槽4234c靠近第一光学元件45的第一端451一侧,凹槽4234c相对第三端4237a更靠近第四端4237b,或者说,凹槽4234c自第三端4237a朝第四端4237b的方向延伸。在另一个例子中,凹槽4234c的数量可以多个(大于或等于两个),多个凹槽4234c间隔设置。如此,能够避免单个面积较大的凹槽4234c对第一侧壁4234的强度造成较大的影响。
请参阅图9和图13,在一个例子中,凹槽4234c在第一旋转轴4236上的投影范围覆盖切角在第一旋转轴4236上的投影范围。在另一个例子中,凹槽4234c在第一旋转轴4236上的投影范围覆盖内切槽4234a在第一旋转轴4236上的投影范围。在另一个例子中,凹槽4234c在第一旋转轴4236上的投影范围均覆盖切角和内切槽4234a在第一旋转轴4236上的投影范围。
在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。缺口包括形成在第一转子4231的第一侧壁4234的外表面上的外切槽4234b,外切槽4234b靠近第一光学元件45的第一端451一侧,外切槽4234b相对第四端4237b更靠近第三端4237a,或者说,外切槽4234b自第四端4237b朝第三端4237a的方向延伸。在另一个例子中,外切槽4234b的数量可以多个(大于或等于两个),多个外切槽4234b间隔设置。如此,能够避免单个面积较大的外切槽4234b对第一侧壁4234的强度造成较大的影响。
请参阅图10、图15和图16,在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。第一转子4231的第一侧壁4234的外表面上沿径向向外延伸形成凸筋4238,凸筋4238环绕第一转子4231的第一侧壁4234设置,凸筋4238相对第三端4237a更靠近第四端4237b。缺口包括开设在凸筋4238上的开口4238a,开口4238a靠近第一光学元件45的第一端451一侧。在另一个例子中,开口4238a的数量可以多个(大于或等于两个),多个开口4238a间隔设置。如此,能够避免单个面积较大的开口4238a对凸筋4238的强度造成较大的影响。
在一个例子中,缺口(切角455、内切槽4234a、外切槽4234b、凹槽4234c和开口4238a)可以关于第三辅助面对称,第三辅助面为穿过第一旋转轴4236、第一端及第二端的平面。
如此,上述缺口的设置有利于降低第一光学元件45转动时由于厚度不均匀而引起的晃动,有利于整个第一转子组件423在转动时更加平稳。
请参阅图20,可以理解,上述缺口的位置为光路不经过位置,不影响光束的传播,不会降低光学元件的出光及收光效率。
当采用增加扫描模组40的重量的方式来改善扫描模组40的动平衡时,下面的一些实施例中通过在第一转子4231增添凸块4232的方式以改善扫描模组40的动平衡。
请参阅图9和图10,下面将介绍第一转子4231与凸块4232的位置:
第一转子组件423还包括凸块4232,凸块4232用于提高第一转子组件423转动时的动平稳。具体地,凸块4232设置在第一转子4231的第一侧壁4234上且位于第一收纳腔4235内,凸块4232从第一侧壁4234向第一收纳腔4235的中心延伸,凸块4232向第一收纳腔4235的中心延伸的高度可以低于第一收纳腔4235的径向宽度的预定比例,预定比例可以是0.1、0.22、0.3、0.33等,以避免凸块4232遮挡第一收纳腔4235太多而影响激光脉冲的传输光路。
凸块4232可以与第一转子4231固定连接,从而实现凸块4232与第一转子4231同步转动。凸块4232可以与第一转子4231一体成型,例如通过注塑等工艺一体成型。凸块4232也可以与第一转子4231分体成型,凸块4232与第一转子4231分别成型后,再将凸块4232固定在第一转子4231的第一侧壁4234上,如通过粘胶将凸块4232粘结在第一侧壁4234上,或者凸块4232通过紧固件例如螺钉固定在第一转子4231的第一侧壁4234上,其中,凸块4232的与第一侧壁4234贴合的表面为曲面。在本申请实施方式中,凸块4232与第一磁轭4233a同步转动,凸块4232与第一磁轭4233a固定连接。
请参阅图10和图11,在一个例子中,凸块4232安装在第一收纳腔4235内时,凸块4232与第一光学元件45沿第一转子4231的径向分布,此时第一光学元件45的第一端451可以与第一侧壁4234的内表面接触,第二端452与第一侧壁4234形成间隙,凸块4232伸入该间隙内。如此,由于第二端452与 凸块4232位于第一旋转轴4236的同一侧,且第一端451与凸块4232位于第一旋转轴4236的相对的两侧,当第一光学元件45与第一转子组件423共同转动时,第一光学元件45与凸块4232形成的整体转动平稳,从而避免第一转子组件423发生晃动,有利于整个第一转子组件423在转动时更加平稳。在另一个例子中,凸块4232与第一光学元件45间隔,凸块4232的朝向第一光学元件45的表面为平面。在另一个例子中,凸块4232在第一旋转轴4236上的投影范围覆盖第一光学元件45在第一旋转轴4236上的投影范围。
请参阅图14,在一个例子中,凸块4232安装在第一收纳腔4235内时,凸块4232与第一光学元件45沿第一转子4231的第一旋转轴4236方向并列设置,此时第一光学元件45的第一端451和第二端452均可以与第一侧壁4234的内表面接触,凸块4232可以与第一光学元件45相接触以使凸块4232尽可能地与第一光学元件45靠近。具体地,凸块4232位于第一光学元件45的第一面453所在的一侧,凸块4232可以与第一光学元件45的第一面453抵持。在安装第一光学元件45时,当第一面453与凸块4232抵持,则可以认为第一光学元件45在第一收纳腔4235的深度方向上安装到位。更具体地,凸块4232包括凸块侧壁1232a,凸块侧壁1232a与第一面453抵持。在另一个例子中,第一光学元件45在第一旋转轴4236上的投影范围覆盖凸块4232在第一旋转轴4236上的投影范围。
在一个例子中,凸块4232安装在第一收纳腔4235内时,凸块4232与第一光学元件45沿第一转子4231的第一旋转轴4236方向并列设置,此时第一光学元件45的第一端451和第二端452均可以与第一侧壁4234的内表面接触,凸块侧壁1232a可以呈与第一旋转轴4236垂直的平板状,凸块侧壁1232a也可以呈阶梯状,以简化凸块4232与第一转子4231在一体成型时的工艺流程。凸块侧壁1232a还可以相对于第一旋转轴4236倾斜,即凸块侧壁1232a与第一旋转轴4236不垂直,在另一个例子中,凸块侧壁1232a的倾斜方向与第一面453的方向相同,凸块侧壁1232a与第一面453贴合,使得凸块侧壁1232a与第一面453尽量靠近,以最大限度地发挥凸块4232的配重作用,减小凸块4232的高度,从而减小凸块4232对光路的遮挡。在另一个例子中,第一光学元件45在第一旋转轴4236上的投影范围覆盖凸块4232在第一旋转轴4236上的投影范围。
在一个例子中,凸块4232可以起到配重的作用,凸块4232与第一光学元件45同步转动,凸块4232与第二端452共同转动时相对于第一旋转轴4236的转矩,等于第一端451转动时相对于第一旋转轴4236的转矩,也即是说,凸块4232与第二端452共同转动时产生的转矩均能够与第一光学元件45的第一端451转动时产生的转矩相抵消,而不会影响第一转子4231的其余位置转动时的平稳性。
在一个例子中,凸块4232关于第三辅助面对称,第三辅助面为穿过第一旋转轴4236、第一端451及第二端452的平面。在另一个例子中,凸块4232还可以关于第一辅助面对称,其中,第一辅助面为垂直于第一旋转轴4236且穿过第一面453的中心的平面。如此,凸块4232能够较好地与第一光学元件45能够更好地进行重量配合。
在一个例子中,凸块4232的密度大于第一转子4231的密度,使得凸块4232设置在第一收纳腔4235内时,在保证相同的质量,即相同的配重作用下,凸块4232的体积可以设置得较小,以减少凸块4232对通过第一收纳腔4235的激光脉冲的影响。在另一个例子中,凸块4232的密度还可以大于第一光学元件45的密度,以使相同凸块4232的体积可以设计得尽量小。
如此,上述凸块4232的设置有利于降低第一光学元件45转动时由于厚度不均匀而引起的晃动,有利于整个第一转子组件423在转动时更加平稳。
请参阅图14,在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。第一转子4231的第一侧壁4234的内表面开设有避让倒角4230,避让倒角4230靠近第三端4237a的一侧。如此,避让倒角4230不仅有利于第一光学元件45易于安装在第一收纳腔4235内,而且还有利于增加第一光学元件45接收反射回来的激光脉冲的角度。
在一个例子中,第一转子4231包括沿第一转子4231的第一旋转轴4236方向分布的第三端4237a及第四端4237b,第三端4237a与第四端4237b相背设置,第一转子4231的第三端4237a靠近第一光学元件45的第二面454,第一转子4231的第四端4237b靠近第一光学元件45的第一面453。第一转子4231还包括凸起4234d,凸起4234d设置在第一转子4231的第一侧壁4234的内表面上且靠近第三端4237a 的一侧,第一端451安装在凸起4234d上。
在一个例子中,第一光学元件45上镀有增透膜,增透膜的厚度与光源发射出的激光脉冲的波长相等,能够减少激光脉冲穿过的第一光学元件45时的损耗。
请参阅图10,在本申请实施方式中,第二光学元件46形成有相背的第一面463及第二面464。第二光学元件46的第一面463朝向第一光学元件45的第一面453,并且第二光学元件46的第一面463相对于第二旋转轴4337倾斜,即第一面463与第二旋转轴4337的夹角不呈0度或90度。第二光学元件46的第二面464与第一光学元件45的第一面453相背,并且第二光学元件46的第二面464与第二旋转轴4337垂直,即第二面464与第二旋转轴4337的夹角呈90度,或者说,第二光学元件46的第二面464与第一光学元件45的第二面454平行。
可以理解,由于第二光学元件46的第一面463与第二面464不平行,第二光学元件46的厚度不均匀,即第二光学元件46的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第二光学元件46包括第一端461及第二端462,第一端461与第二端462分别位于第二光学元件46的径向方向上的两端。第二光学元件46的厚度沿一个方向逐渐增大。并且第一端461的厚度大于第二端462的厚度,或者说,第二光学元件46可以为楔镜(楔形棱镜)。
由于楔镜本身的重量分布不均匀,当高速转动楔镜时,可能会导致整个扫描模组40容易晃动而不够平稳。为解决这一技术问题,本申请实施例的一些实现方式中,通过增加扫描模组40和重量的方式来改善扫描模组40的动平衡。例如,可以通过在第二转子4331内增添凸台4332的方式以改善扫描模组40的动平衡。
请参阅图10,在一个例子中,第二转子组件433还包括凸台4332,凸台4332设置在第二转子4331的第二侧壁4335上且位于第二收纳腔4336内,凸台4332用于提高第二转子组件433转动时的动平稳。具体地,凸台4332从第二侧壁4335向第二收纳腔4336的中心延伸,凸台4332向第二收纳腔4336的中心延伸的高度可以低于第二收纳腔4336的径向宽度的预定比例,预定比例可以是0.1、0.22、0.3、0.33等,以避免凸台4332遮挡第二收纳腔4336太多而影响激光脉冲的传输光路。
凸台4332可以与第二转子4331固定连接,从而实现凸台4332与第二转子4331同步转动。凸台4332可以与第二转子4331一体成型,例如通过注塑等工艺一体成型。凸台4332也可以与第二转子4331分体成型,凸台4332与第二转子4331分别成型后,再将凸台4332固定在第二转子4331的第二侧壁4335上,如通过粘胶将凸台4332粘结在第二侧壁4335上,或者凸台4332通过紧固件例如螺钉固定在第二转子4331的第二侧壁4335上,其中,凸台4332的与第二侧壁4335贴合的表面为曲面。在本申请实施方式中,凸台4332与第二磁轭4333同步转动,凸台4332与第二磁轭4333固定连接。
请参阅图10,在一个例子中,凸台4332安装在第二收纳腔4336内时,凸台4332与第二光学元件46沿第二转子4331的径向分布,此时第二光学元件46的第一端461可以与第二侧壁4335的内表面接触,第二端462与第二侧壁4335形成间隙,凸台4332伸入该间隙内。如此,由于第二端462与凸台4332位于第二旋转轴4337的同一侧,且第一端461与凸台4332位于第二旋转轴4337的相对的两侧,当第二光学元件46与第二转子组件433共同转动时,第二光学元件46与凸台4332形成的整体转动平稳,从而避免第二转子组件433发生晃动,有利于整个第二转子组件433在转动时更加平稳。在另一个例子中,凸台4332与第二光学元件46间隔,凸台4332的朝向第二光学元件46的表面为平面。在另一个例子中,凸台4332在第二旋转轴4337上的投影范围覆盖第二光学元件46在第二旋转轴4337上的投影范围。
请参阅图14,在一个例子中,凸台4332安装在第二收纳腔4336内时,凸台4332与第二光学元件46沿第二转子4331的第二旋转轴4337方向并列设置,此时第二光学元件46的第一端461和第二端462均可以与第二侧壁4335的内表面接触,凸台4332可以与第二光学元件46相接触以使凸台4332尽可能地与第二光学元件46靠近。具体地,凸台4332位于第二光学元件46的第一面463所在的一侧,凸台4332可以与第二光学元件46的第一面463抵持。在安装第二光学元件46时,当第一面463与凸台4332抵持,则可以认为第二光学元件46在第二收纳腔4336的深度方向上安装到位。更具体地,凸台4332包括凸台侧壁1332a,凸台侧壁1332a与第一面463抵持。在另一个例子中,第二光学元件46在第二旋转轴4337上的投影范围覆盖凸台4332在第二旋转轴4337上的投影范围。
请参阅图14,在一个例子中,凸台4332安装在第二收纳腔4336内时,凸台4332与第二光学元件 46沿第二转子4331的第二旋转轴4337方向并列设置,此时第二光学元件46的第一端461和第二端462均可以与第二侧壁4335的内表面接触,凸台侧壁1332a可以呈与第二旋转轴4337垂直的平板状,凸台侧壁1332a也可以呈阶梯状,以简化凸台4332与第二转子4331在一体成型时的工艺流程。凸台侧壁1332a还可以相对于第二旋转轴4337倾斜,即凸台侧壁1332a与第二旋转轴4337不垂直,在另一个例子中,凸台侧壁1332a的倾斜方向与第一面463的方向相同,凸台侧壁1332a与第一面463贴合,使得凸台侧壁1332a与第一面463尽量靠近,以最大限度地发挥凸台4332的配重作用,减小凸台4332的高度,从而减小凸台4332对光路的遮挡。在另一个例子中,第二光学元件46在第二旋转轴4337上的投影范围覆盖凸台4332在第二旋转轴4337上的投影范围。
在一个例子中,凸台4332可以起到配重的作用,凸台4332与第二光学元件46同步转动,凸台4332与第二端462共同转动时相对于第二旋转轴4337的转矩,等于第一端461转动时相对于第二旋转轴4337的转矩,也即是说,凸台4332与第二端462共同转动时产生的转矩均能够与第二光学元件46的第一端461转动时产生的转矩相抵消,而不会影响第二转子4331的其余位置转动时的平稳性。
在一个例子中,凸台4332关于第三辅助面对称,第三辅助面为穿过第二旋转轴4337、第一端461及第二端462的平面。在另一个例子中,凸台4332还可以关于第一辅助面对称,其中,第一辅助面为垂直于第二旋转轴4337且穿过第一面463的中心的平面。如此,凸台4332能够较好地与第二光学元件46能够更好地进行重量配合。
在一个例子中,凸台4332的密度大于第二转子4331的密度,使得凸台4332设置在第二收纳腔4336内时,在保证相同的质量,即相同的配重作用下,凸台4332的体积可以设置得较小,以减少凸台4332对通过第二收纳腔4336的激光脉冲的影响。在另一个例子中,凸台4332的密度还可以大于第二光学元件46的密度,以使相同凸台4332的体积可以设计得尽量小。
如此,上述凸台4332的设置有利于降低第二光学元件46转动时由于厚度不均匀而引起的晃动,有利于整个第二转子组件433在转动时更加平稳。
请参阅图10,在一个例子中,第二光学元件46上镀有增透膜,增透膜的厚度与光源发射出的激光脉冲的波长相等,能够减少激光脉冲穿过的第二光学元件46时的损耗。
在一个例子中,第二光学元件46的口径的大小为第一光学元件45的口径的大小的50%-70%。例如,两个光学元件(第一光学元件45和第二光学元件46)的口径大小的差值可以为50%,两个光学元件(第一光学元件45和第二光学元件46)的口径大小的差值可以为60%。如此,两个光学元件(第一光学元件45和第二光学元件46)的口径尺寸在适当的范围内有利于光线的传播。
请参阅图10,在本申请实施方式中,第三光学元件47形成有相背的第一面473及第二面474。第三光学元件47的第一面473与第二光学元件46的第二面464相背,并且第三光学元件47的第一面473相对于第三旋转轴4437倾斜,即第一面473与第三旋转轴4437的夹角不呈0度或90度。第三光学元件47的第二面474与第二光学元件46的第二面464相对,并且第三光学元件47的第二面474与第三旋转轴4437垂直,即第二面474与第三旋转轴4437的夹角呈90度,或者说,第三光学元件47的第二面474与第二光学元件46的第二面464平行,或者说,第三光学元件47的第二面474、第二光学元件46的第二面464以及第一光学元件45的第二面454三者相互平行。
可以理解,由于第三光学元件47的第一面473与第二面474不平行,第三光学元件47的厚度不均匀,即第三光学元件47的厚度并不是处处相等的,存在厚度较大的位置及厚度较小的位置。在一个例子中,第三光学元件47包括第一端471及第二端472,第一端471与第二端472分别位于第三光学元件47的径向方向上的两端。第三光学元件47的厚度沿一个方向逐渐增大。并且第一端471的厚度大于第二端472的厚度,或者说,第三光学元件47可以为楔镜(楔形棱镜)。
由于楔镜本身的重量分布不均匀,当高速转动楔镜时,可能会导致整个扫描模组40容易晃动而不够平稳。为解决这一技术问题,本申请实施例的一些实现方式中,通过增加扫描模组40和重量的方式来改善扫描模组40的动平衡。例如,可以通过在第二转子4331内增添凸台4332的方式以改善扫描模组40的动平衡。
当采用增加扫描模组40的重量的方式来改善扫描模组40的动平衡时,可以通过在第三转子4431内增添凸台4432的方式以改善扫描模组40的动平衡。
请参阅图10,在一个例子中,第三转子组件443还包括凸台4432,凸台4432设置在第三转子4431 的第三侧壁4435上且位于第三收纳腔4436内,凸台4432用于提高第三转子组件443转动时的动平稳。具体地,凸台4432从第三侧壁4435向第三收纳腔4436的中心延伸,凸台4432向第三收纳腔4436的中心延伸的高度可以低于第三收纳腔4436的径向宽度的预定比例,预定比例可以是0.1、0.22、0.3、0.33等,以避免凸台4432遮挡第三收纳腔4436太多而影响激光脉冲的传输光路。
凸台4432可以与第三转子4431固定连接,从而实现凸台4432与第三转子4431同步转动。凸台4432可以与第三转子4431一体成型,例如通过注塑等工艺一体成型。凸台4432也可以与第三转子4431分体成型,凸台4432与第三转子4431分别成型后,再将凸台4432固定在第三转子4431的第三侧壁4435上,如通过粘胶将凸台4432粘结在第三侧壁4435上,或者凸台4432通过紧固件例如螺钉固定在第三转子4431的第三侧壁4435上,其中,凸台4432的与第三侧壁4435贴合的表面为曲面。在本申请实施方式中,凸台4432与第三磁轭4433同步转动,凸台4432与第三磁轭4433固定连接。
请参阅图10,在一个例子中,凸台4432安装在第三收纳腔4436内时,凸台4432与第三光学元件47沿第三转子4431的径向分布,此时第三光学元件47的第一端471可以与第三侧壁4435的内表面接触,第二端472与第三侧壁4435形成间隙,凸台4432伸入该间隙内。如此,由于第二端472与凸台4432位于第三旋转轴4437的同一侧,且第一端471与凸台4432位于第三旋转轴4437的相对的两侧,当第三光学元件47与第三转子组件443共同转动时,第三光学元件47与凸台4432形成的整体转动平稳,从而避免第三转子组件443发生晃动,有利于整个第三转子组件443在转动时更加平稳。在另一个例子中,凸台4432与第三光学元件47间隔,凸台4432的朝向第三光学元件47的表面为平面。在另一个例子中,凸台4432在第三旋转轴4437上的投影范围覆盖第三光学元件47在第三旋转轴4437上的投影范围。
请参阅图14,在一个例子中,凸台4432安装在第三收纳腔4436内时,凸台4432与第三光学元件47沿第三转子4431的第三旋转轴4437方向并列设置,此时第三光学元件47的第一端471和第二端472均可以与第三侧壁4435的内表面接触,凸台4432可以与第三光学元件47相接触以使凸台4432尽可能地与第三光学元件47靠近。具体地,凸台4432位于第三光学元件47的第一面473所在的一侧,凸台4432可以与第三光学元件47的第一面473抵持。在安装第三光学元件47时,当第一面473与凸台4432抵持,则可以认为第三光学元件47在第三收纳腔4436的深度方向上安装到位。更具体地,凸台4432包括凸台侧壁1432a,凸台侧壁1432a与第一面473抵持。在另一个例子中,第三光学元件47在第三旋转轴4437上的投影范围覆盖凸台4432在第三旋转轴4437上的投影范围。
请参阅图14,在一个例子中,凸台4432安装在第三收纳腔4436内时,凸台4432与第三光学元件47沿第三转子4431的第三旋转轴4437方向并列设置,此时第三光学元件47的第一端471和第二端472均可以与第三侧壁4435的内表面接触,凸台侧壁1432a可以呈与第三旋转轴4437垂直的平板状,凸台侧壁1432a也可以呈阶梯状,以简化凸台4432与第三转子4431在一体成型时的工艺流程。凸台侧壁1432a还可以相对于第三旋转轴4437倾斜,即凸台侧壁1432a与第三旋转轴4437不垂直,在另一个例子中,凸台侧壁1432a的倾斜方向与第一面473的方向相同,凸台侧壁1432a与第一面473贴合,使得凸台侧壁1432a与第一面473尽量靠近,以最大限度地发挥凸台4432的配重作用,减小凸台4432的高度,从而减小凸台4432对光路的遮挡。在另一个例子中,第三光学元件47在第三旋转轴4437上的投影范围覆盖凸台4432在第三旋转轴4437上的投影范围。
请参阅图14,在一个例子中,凸台4432可以起到配重的作用,凸台4432与第三光学元件47同步转动,凸台4432与第二端472共同转动时相对于第三旋转轴4437的转矩,等于第一端471转动时相对于第三旋转轴4437的转矩,也即是说,凸台4432与第二端472共同转动时产生的转矩均能够与第三光学元件47的第一端471转动时产生的转矩相抵消,而不会影响第三转子4431的其余位置转动时的平稳性。
在一个例子中,凸台4432关于第三辅助面对称,第三辅助面为穿过第三旋转轴4437、第一端471及第二端472的平面。在另一个例子中,凸台4432还可以关于第一辅助面对称,其中,第一辅助面为垂直于第三旋转轴4437且穿过第一面473的中心的平面。如此,凸台4432能够较好地与第三光学元件47能够更好地进行重量配合。
请参阅图14,在一个例子中,凸台4432的密度大于第三转子4431的密度,使得凸台4432设置在第三收纳腔4436内时,在保证相同的质量,即相同的配重作用下,凸台4432的体积可以设置得较小, 以减少凸台4432对通过第三收纳腔4436的激光脉冲的影响。在另一个例子中,凸台4432的密度还可以大于第三光学元件47的密度,以使相同凸台4432的体积可以设计得尽量小。
如此,上述凸台4432的设置有利于降低第三光学元件47转动时由于厚度不均匀而引起的晃动,有利于整个第三转子组件443在转动时更加平稳。
在一个例子中,第三光学元件47上镀有增透膜,增透膜的厚度与光源发射出的激光脉冲的波长相等,能够减少激光脉冲穿过的第三光学元件47时的损耗。
在一个例子中,两个光学元件(第二光学元件46和第三光学元件47)的口径大小的差值小于或等于各自口径大小的10%,例如,两个光学元件(第二光学元件46和第三光学元件47)的口径大小可以相同,两个光学元件(第二光学元件46和第三光学元件47)的口径大小的差值可以等于其中一个光学元件(第二光学元件46或第三光学元件47)的口径大小的10%。
请结合图9和图10,在一个例子中,扫描模组40不包括第三驱动器44和第三光学元件47,而是包括多个第二转子组件433、多个第二定子组件431及多个第二光学元件46。每个第二光学元件46安装在对应的一个第二转子组件433上,每个第二定子组件431用于驱动对应的一个第二转子组件433带动第二光学元件46转动。每个第二转子组件433、每个第二定子组件431及每个第二光学元件46可以为上述任一实施方式中的第二转子组件433、第二定子组件431及第二光学元件46,在此不再具体描述。其中,本文中的“多个”均指至少两个或两个以上。激光光束经一个第二光学元件46改变方向后,还可以由另一个第二光学元件46再一次改变方向,以增加扫描模组40整体改变激光传播方向的能力,以扫描较大的空间范围,并且,可以通过设置不同的第二转子组件433的转动方向和/或转动速度,使得激光光束扫描出预定的扫描形状。另外,每个第二转子组件433都包括有凸台(1332/1432),每个凸台(1332/1432)固定在对应的第二转子组件433的第二侧壁4335上,以用于提高第二转子组件433转动时的动平衡。
多个第二转子组件433的第二旋转轴4337可以相同,多个第二光学元件46均绕该相同的第二旋转轴4337转动;多个第二转子组件433的第二旋转轴4337也可以不相同,多个第二光学元件46绕不同的第二旋转轴4337转动。在另一个例子中,多个第二光学元件46还可以沿相同的方向振动、或者沿不同的方向振动,在此不做限制。
多个第二转子组件433能够以不同的转动速度相对于对应的第二定子组件431转动,以带动多个第二光学元件46以不同的转动速度转动;多个第二转子组件433也可以以不同的转动方向相对于对应的第二定子组件431转动,以带动多个第二光学元件46以不同的转动方向转动;多个第二转子组件433能够以大小相同且方向相反的速度转动。例如至少一个第二转子组件433相对于第二定子组件431正转,且至少一个第二转子组件433相对于第二定子组件431反转;至少一个第二转子组件433以第一速度相对于第二定子组件431转动,且至少一个第二转子组件433以第二速度相对于第二定子组件431转动,第一速度与第二速度可以相同也可以不同。
在一个例子中,第二转子组件433、第二定子组件431及第二光学元件46的数量均为两个。两个第二转子组件433同轴转动,并且两个第二转子组件433与第一转子组件423均同轴转动。其中一个第二光学元件46的第一面463朝向第一转子4231的第四端4237b且与第一光学元件45的第一面453相对,该第二光学元件46的第二面454朝向另一个光学元件的第二面454。
请参阅图28,本申请实施方式还提供一种移动平台1000,移动平台1000包括移动平台本体200及上述任一实施方式的测距装置100。移动平台1000可以是无人飞行器、无人车、无人船等移动平台。一个移动平台1000可以配置有一个或多个测距装置100。测距装置100可以用于探测移动平台1000周围的环境,以便于移动平台1000进一步依据周围的环境进行避障、轨迹选择等操作。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所 述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (36)

  1. 一种测距装置,其特征在于,包括:
    底座;
    两个支架,两个所述支架均固定在所述底座上;
    测距模组,用于发射光脉冲;
    扫描模组,用于改变所述光脉冲的传输方向后出射,所述扫描模组与所述测距模组间隔设置,所述扫描模组包括扫描壳体,两个所述支架分别位于所述扫描壳体的相背两侧;及
    多个柔性连接组件,每个所述支架通过至少两个所述柔性连接组件与所述扫描壳体连接。
  2. 根据权利要求1所述的测距装置,其特征在于,所述支架包括第一结合部及第二结合部,所述第一结合部位于所述支架的远离所述底座的一侧,所述第二结合部位于所述支架的靠近所述底座的一侧;至少两个所述柔性连接组件包括第一柔性连接组件和第二柔性连接组件,所述第一柔性连接组件连接所述第一结合部及所述扫描壳体,所述第二柔性连接组件连接所述第二结合部及所述扫描壳体。
  3. 根据权利要求2所述的测距装置,其特征在于,所述支架包括多个固定部,多个所述固定部均与所述底座结合以将所述支架固定在所述底座上。
  4. 根据权利要求3所述的测距装置,其特征在于,所述固定部均与所述底座刚性连接。
  5. 根据权利要求3所述的测距装置,其特征在于,所述第二结合部位于两个所述固定部之间。
  6. 根据权利要求5所述的测距装置,其特征在于,所述固定部的中心、所述第一结合部的中心及所述第二结合部的中心在同一平面内。
  7. 根据权利要求1所述的测距装置,其特征在于,所述扫描壳体包括相接的第一支座及第二支座,所述第一支座的相背两侧相对所述第二支座对应的相背两侧凸出以形成两个安装空间,两个所述支架分别安装在两个所述安装空间内。
  8. 根据权利要求7所述的测距装置,其特征在于,所述测距装置还包括第一光学元件和第二光学元件,所述第一光学元件安装在所述第一支座内,所述第二光学元件安装在所述第二支座内,所述第一光学元件的口径大于所述第二光学元件的口径。
  9. 根据权利要求8所述的测距装置,其特征在于,所述扫描模组还包括第一驱动器和第二驱动器,所述第一驱动器安装在所述第一支座内,所述第一光学元件安装在所述第一驱动器内,所述第一驱动器用于驱动所述第一光学元件运动;所述第二驱动器安装在所述第二支座内,所述第二光学元件安装在所述第二驱动器内,所述第二驱动器用于驱动所述第二光学元件运动。
  10. 根据权利要求1所述的测距装置,其特征在于,所述扫描壳体包括依次相接的第一支座、第二支座、及第三支座,所述第一支座的相背两侧相较所述第二支座的相背两侧及所述第三支座对应的相背两侧均凸出以形成两个安装空间,两个所述支架分别安装在两个所述安装空间内。
  11. 根据权利要求10所述的测距装置,其特征在于,所述第三支座的相背两侧不超出所述第二支座对应的相背两侧;或
    所述第三支座的相背两侧超出所述第二支座对应的相背两侧。
  12. 根据权利要求10所述的测距装置,其特征在于,所述测距装置还包括第一光学元件、第二光学元件和第三光学元件,所述扫描模组还包括第一驱动器、第二驱动器和第三驱动器,所述第一驱动器安装在所述第一支座内,所述第一光学元件安装在所述第一驱动器内,所述第一驱动器用于驱动所述第一光学元件运动;所述第二驱动器安装在所述第二支座内,所述第二光学元件安装在所述第二驱动器内,所述第二驱动器用于驱动所述第二光学元件运动;所述第三驱动器安装在所述第三支座内,所述第三光学元件安装在所述第三驱动器内,所述第三驱动器用于驱动所述第三光学元件运动。
  13. 根据权利要求12所述的测距装置,其特征在于,所述第一光学元件的口径大于所述第二光学元件的口径;所述第二光学元件的口径与所述第三光学元件的口径相同。
  14. 根据权利要求7至11任意一项所述的测距装置,其特征在于,所述扫描壳体包括第一安装部和第二安装部,所述第一安装部位于所述第一支座的远离所述底座的一端,所述第二安装部位于所述第二支座的靠近所述底座的一端;至少两个所述柔性连接组件包括第一柔性连接组件和第二柔性连接组件,所述第一柔性连接组件连接所述支架及所述第一安装部,所述第二柔性连接组件连接所述支架及所述第 二安装部。
  15. 根据权利要求7至11任意一项所述的测距装置,其特征在于,所述第一支座包括第一支座本体,所述第一支座本体的顶面开设有支座安装槽,至少两个所述柔性连接组件包括第一柔性连接组件,所述第一柔性连接组件收容在所述支座安装槽内并连接所述支架及所述第一支架本体。
  16. 根据权利要求15所述的测距装置,其特征在于,所述第二支座包括第二支座本体及凸出部,所述凸出部自所述第二支座本体的靠近所述底座一侧向外延伸形成,至少两个所述柔性连接组件还包括第二柔性连接组件,所述第二柔性连接组件连接所述支架及所述凸出部。
  17. 根据权利要求7至11任意一项所述的测距装置,其特征在于,所述支架包括依次连接的固定臂、连接臂及结合臂,所述固定臂固定在所述底座上并收容在所述安装空间内,所述结合臂位于所述第一支座的远离所述底座的一侧;至少两个所述柔性连接组件包括第一柔性连接组件和第二柔性连接组件,所述第一柔性连接组件连接所述结合臂与所述第一支座,所述第二柔性连接组件连接所述固定臂与所述第二支座。
  18. 根据权利要求17所述的测距装置,其特征在于,所述固定臂包括第一固定部、第二固定部及第二结合部,所述第一固定部和所述第二固定部位于所述固定臂的相对两端并均固定在所述底座上,所述第二结合部位于所述第一固定部与所述第二固定部之间,所述第二柔性连接组件连接所述第二结合部与所述第二支座。
  19. 根据权利要求17所述的测距装置,其特征在于,所述支架还包括第一加强臂,所述第一加强臂的一端连接所述固定臂的远离所述连接臂的一端,所述第一加强臂的另一端连接所述连接臂的远离所述固定臂的一端;或
    所述支架还包括第一加强臂,所述第一加强臂的一端连接所述固定臂的远离所述连接臂的一端,所述第一加强臂的另一端连接在所述连接臂的相背两端之间。
  20. 根据权利要求19所述的测距装置,其特征在于,所述支架还包括第二加强臂,所述第二加强臂连接所述第一加强臂及所述连接臂,所述第二加强臂位于所述第一加强臂、所述固定臂及所述连接臂所围成的空间内。
  21. 根据权利要求1所述的测距装置,其特征在于,所述扫描壳体包括相接的第一支座及第二支座,所述支架包括依次连接的固定臂、连接臂及结合臂,所述固定臂固定在所述底座上并位于所述第一支座及所述第二支座的同一侧;至少两个所述柔性连接组件包括第一柔性连接组件和第二柔性连接组件,所述第一柔性连接组件连接所述结合臂与所述第一支座,所述第二柔性连接组件连接所述固定臂与所述第二支座。
  22. 根据权利要求21所述的测距装置,其特征在于,所述固定臂包括第一固定部、第二固定部及第二结合部,所述第一固定部和所述第二固定部位于所述固定臂的相背两端并均固定在所述底座上,所述第一固定部位于所述第一支座的一侧,所述第二固定部位于所述第二支座的一侧,所述第二结合部位于所述第一固定部与所述第二固定部之间,所述第二柔性连接组件连接所述第二结合部与所述第二支座。
  23. 根据权利要求21所述的测距装置,其特征在于,所述支架还包括第一加强臂,所述第一加强臂的一端连接所述固定臂的远离所述连接臂的一端,所述第一加强臂的另一端连接所述连接臂的远离所述固定臂的一端;或
    所述支架还包括第一加强臂,所述第一加强臂的一端连接所述固定臂的远离所述连接臂的一端,所述第一加强臂的另一端连接在所述连接臂的相背两端之间。
  24. 根据权利要求23所述的测距装置,其特征在于,所述支架还包括第二加强臂,所述第二加强臂连接所述第一加强臂及所述连接臂,所述第二加强臂位于所述第一加强臂、所述固定臂及所述连接臂所围成的空间内。
  25. 根据权利要求1所述的测距装置,其特征在于,所述柔性连接组件包括柔性连接件及紧固件,所述扫描壳体和所述支架通过所述柔性连接件及所述紧固件连接。
  26. 根据权利要求25所述的测距装置,其特征在于,所述柔性连接件包括柔性的第一支撑部、柔性的连接部及柔性的第二支撑部,所述第一支撑部和所述第二支撑部分别连接在所述连接部的相对两端,所述柔性连接件开设有贯穿所述第一支撑部、所述连接部及所述第二支撑部的贯穿孔;
    所述扫描壳体开设有壳体安装孔,所述连接部穿设在所述壳体安装孔内,所述第一支撑部及所述第 二支撑部分别位于所述扫描壳体的相背两侧,所述紧固件穿过所述贯穿孔并与所述支架结合;和/或
    所述支架上开设有支架安装孔,所述连接部穿设在所述支架安装孔内,所述第一支撑部及所述第二支撑部分别位于所述支架的相背两侧,所述紧固件穿过所述贯穿孔并与所述扫描壳体结合。
  27. 根据权利要求26所述的测距装置,其特征在于,所述柔性连接件的被经过所述贯穿孔的轴线的面所截得的截面呈“工”字形。
  28. 根据权利要求26所述的测距装置,其特征在于,所述柔性连接件还包括限位凸块,所述限位凸块自所述第一支撑部凸出。
  29. 根据权利要求1所述的测距装置,其特征在于,每个所述支架通过至少两个所述柔性连接组件与所述扫描壳体连接并形成多个连接点,多个所述连接点在所述底座上的投影形成一辅助面,所述扫描壳体的重心位于所述辅助面的中心,位于所述扫描壳体同侧的多个所述连接点包括对角设置的两个连接点,对角设置的两个所述连接点形成一连接线,所述连接线的中点到所述底座的距离与所述重心到所述底座的距离相同。
  30. 根据权利要求29所述的测距装置,其特征在于,每个所述支架通过两个所述柔性连接组件与所述扫描壳体连接并形成两个所述连接点,四个所述连接点在所述底座上的投影形成所述辅助面,位于所述扫描壳体同侧的两个所述连接点对角设置并形成所述连接线。
  31. 根据权利要求30所述的测距装置,其特征在于,至少两个所述柔性连接组件包括第一柔性连接组件和第二柔性连接组件,所述第一柔性连接组件与所述第二柔性连接组件的中心连线形成所述连接线。
  32. 根据权利要求29所述的测距装置,其特征在于,每个所述支架通过四个所述柔性连接组件与所述扫描壳体连接并形成四个所述连接点,八个所述连接点在所述底座上的投影形成所述辅助面,位于所述扫描壳体同侧的四个所述连接点两两相对角设置,两个对角设置的所述连接点形成第一连接线,另外两个对角设置的所述连接点形成第二连接线,所述第一连接线的中点到所述底座的距离与所述重心到所述底座的距离相同,所述第二连接线的中点到所述底座的距离与所述重心到所述底座的距离相同。
  33. 根据权利要求32所述的测距装置,其特征在于,每个所述支架形成的四个所述连接点包括第一连接点、第二连接点、第三连接点及第四连接点,所述第一连接点和所述第三连接点位于所述支架的远离所述底座的一侧,所述第二连接点和所述第三连接点位于所述支架的靠近所述底座的一侧,所述第四连接点较所述第二连接点更靠近所述第一连接点,依次连接所述第一连接点、所述第三连接点、所述第二连接点、所述第四连接点及所述第一连接点所形成的形状为矩形或平行四边形。
  34. 根据权利要求1所述的测距装置,其特征在于,经探测物反射回的激光脉冲经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据反射回的激光脉冲确定所述探测物与所述测距装置之间的距离。
  35. 根据权利要求1所述的测距装置,其特征在于,所述测距模组刚性固定在所述底座上。
  36. 一种移动平台,其特征在于,所述移动平台包括:
    移动平台本体;及
    权利要求1至35任意一项所述的测距装置,所述测距装置安装在所述移动平台本体上。
PCT/CN2019/071056 2019-01-09 2019-01-09 测距装置及移动平台 WO2020142968A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005742.4A CN111670337B (zh) 2019-01-09 2019-01-09 测距装置及移动平台
PCT/CN2019/071056 WO2020142968A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071056 WO2020142968A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Publications (1)

Publication Number Publication Date
WO2020142968A1 true WO2020142968A1 (zh) 2020-07-16

Family

ID=71521884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071056 WO2020142968A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Country Status (2)

Country Link
CN (1) CN111670337B (zh)
WO (1) WO2020142968A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651932A (zh) * 2004-02-04 2005-08-10 日本电产株式会社 扫描测距仪
CN202255357U (zh) * 2011-10-24 2012-05-30 陆建生 激光测距仪
CN104132639A (zh) * 2014-08-15 2014-11-05 上海思岚科技有限公司 一种微型光学扫描测距装置及方法
CN105954738A (zh) * 2016-06-28 2016-09-21 北醒(北京)光子科技有限公司 一种直驱小型旋转扫描测距装置
CN207191469U (zh) * 2017-09-21 2018-04-06 黄仁杰 一种用于航拍测距的无人机系统
EP2533068B1 (en) * 2011-06-10 2018-08-08 Airbus Defence and Space GmbH Near field navigation system
CN108496298A (zh) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 驱动装置、激光测量装置及移动平台

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663736B2 (en) * 2007-04-10 2010-02-16 Sanyo Electric Co., Ltd. Laser radar driving apparatus
DE102009028068B4 (de) * 2009-07-29 2023-05-25 Dr. Johannes Heidenhain Gmbh Positionsmessvorrichtung
US9784838B1 (en) * 2014-11-26 2017-10-10 Apple Inc. Compact scanner with gimbaled optics
EP3452861A1 (en) * 2016-05-03 2019-03-13 Datalogic IP Tech S.r.l. Laser scanner
CN106094889B (zh) * 2016-07-27 2023-07-14 中国电子科技集团公司第三十八研究所 一种激光反射靶球主动自适应调节装置
CN206073988U (zh) * 2016-08-31 2017-04-05 蒋海洋 激光标线仪的抗摔结构及激光标线仪
WO2018055513A2 (en) * 2016-09-20 2018-03-29 Innoviz Technologies Ltd. Methods circuits devices assemblies systems and functionally associated machine executable code for light detection and ranging based scanning
US10690754B2 (en) * 2016-12-23 2020-06-23 Cepton Technologies, Inc. Scanning apparatuses and methods for a lidar system
CN206387904U (zh) * 2017-01-23 2017-08-08 邹冠华 一种测绘用激光测距仪
CN206627626U (zh) * 2017-02-22 2017-11-10 深圳乐行天下科技有限公司 测距模组及测距雷达
CN207067400U (zh) * 2017-06-12 2018-03-02 宁夏启迪高科新农技术有限公司 一种无人驾驶设备的扫描装置
CN207366745U (zh) * 2017-11-13 2018-05-15 杭州联和工具制造有限公司 一种激光测距装置
CN108983196A (zh) * 2018-07-12 2018-12-11 深圳市乐业科技有限公司 一种具有防护作用的激光测距仪
WO2020062110A1 (zh) * 2018-09-28 2020-04-02 深圳市大疆创新科技有限公司 扫描模组、测距装置、测距组件、距离探测设备及移动平台
CN209485276U (zh) * 2019-01-09 2019-10-11 深圳市大疆创新科技有限公司 测距装置及移动平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651932A (zh) * 2004-02-04 2005-08-10 日本电产株式会社 扫描测距仪
EP2533068B1 (en) * 2011-06-10 2018-08-08 Airbus Defence and Space GmbH Near field navigation system
CN202255357U (zh) * 2011-10-24 2012-05-30 陆建生 激光测距仪
CN104132639A (zh) * 2014-08-15 2014-11-05 上海思岚科技有限公司 一种微型光学扫描测距装置及方法
CN105954738A (zh) * 2016-06-28 2016-09-21 北醒(北京)光子科技有限公司 一种直驱小型旋转扫描测距装置
CN108496298A (zh) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 驱动装置、激光测量装置及移动平台
CN207191469U (zh) * 2017-09-21 2018-04-06 黄仁杰 一种用于航拍测距的无人机系统

Also Published As

Publication number Publication date
CN111670337A (zh) 2020-09-15
CN111670337B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
WO2020142965A1 (zh) 扫描模组、测距装置及移动平台
WO2020062110A1 (zh) 扫描模组、测距装置、测距组件、距离探测设备及移动平台
CN209878990U (zh) 扫描模组、测距装置及移动平台
CN209485276U (zh) 测距装置及移动平台
WO2020142966A1 (zh) 扫描模组、测距装置及移动平台
WO2020142967A1 (zh) 扫描模组、测距装置及移动平台
WO2020142968A1 (zh) 测距装置及移动平台
CN209728159U (zh) 扫描模组、测距装置及移动平台
CN115922754A (zh) 一种全景固态激光雷达和移动机器人导航系统
US20210356736A1 (en) Scanning assembly and ranging device
CN211206787U (zh) 测距组件及移动平台
WO2019146598A1 (ja) ライダー装置
WO2020062113A1 (zh) 扫描模组、测距组件及移动平台
CN211627823U (zh) 测距装置、距离探测设备及移动平台
WO2022141347A1 (zh) 激光测量装置及可移动平台
WO2020062111A1 (zh) 距离探测设备及移动平台
WO2021138752A1 (zh) 扫描模组、测距装置及移动平台
CN211236241U (zh) 距离探测设备及移动平台
WO2022193113A1 (zh) 扫描模组、测距装置及可移动平台
US20230204731A1 (en) Lidar device
WO2023065117A1 (zh) 扫描模组及测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908807

Country of ref document: EP

Kind code of ref document: A1