WO2020142950A1 - 测距装置的异常记录方法、测距装置及可移动平台 - Google Patents

测距装置的异常记录方法、测距装置及可移动平台 Download PDF

Info

Publication number
WO2020142950A1
WO2020142950A1 PCT/CN2019/071036 CN2019071036W WO2020142950A1 WO 2020142950 A1 WO2020142950 A1 WO 2020142950A1 CN 2019071036 W CN2019071036 W CN 2019071036W WO 2020142950 A1 WO2020142950 A1 WO 2020142950A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance measuring
measuring device
abnormality
abnormal
recording method
Prior art date
Application number
PCT/CN2019/071036
Other languages
English (en)
French (fr)
Inventor
龙承辉
罗一俊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005402.1A priority Critical patent/CN111670380A/zh
Priority to PCT/CN2019/071036 priority patent/WO2020142950A1/zh
Publication of WO2020142950A1 publication Critical patent/WO2020142950A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention generally relates to the technical field of radar, and more particularly relates to an abnormal recording method of a distance measuring device, a distance measuring device, and a movable platform.
  • radar is often used to detect target scenes.
  • lidar the principle is to actively emit laser pulse signals to the outside, detect the reflected echo signal, and judge the distance of the measured object according to the time difference between transmission and reception; combined with the information of the direction of the optical pulse emission, you can Get the 3D depth information of the target scene.
  • the currently adopted method is to feed back the radar operation information and error information in the form of transmission data when the radar is working normally, and save these data in real time locally on the equipment installed by the radar (such as a car or a drone), thinking that Follow-up analysis and maintenance provide data support.
  • the present invention has been proposed to solve at least one of the above problems.
  • the present invention provides an abnormality recording method for a distance measuring device, which can monitor the working condition of the distance measuring device itself in real time.
  • the abnormal data is recorded in the permanent memory of the distance measuring device itself, so as follows-up analysis and maintenance provide data support.
  • an embodiment of the present invention provides an abnormality recording method for a distance measuring device.
  • the distance measuring device includes a plurality of functional modules and a permanent memory.
  • the abnormality recording method includes:
  • abnormal data is obtained and stored in the permanent memory.
  • An embodiment of the present invention also provides a distance measuring device.
  • the distance measuring device includes:
  • Permanent memory for storing the operating data of the distance measuring device
  • One or more processors which are individually or collectively configured to:
  • abnormal data is obtained and stored in the permanent memory.
  • An embodiment of the present invention also provides a movable platform, which includes:
  • One or more distance measuring devices are One or more distance measuring devices.
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the abnormality recording method as described above.
  • An embodiment of the present invention also provides a movable platform, which includes:
  • a power system installed on the fuselage, is used to provide power to the movable platform
  • the embodiments of the present invention provide an abnormality recording method for a distance measuring device, a distance measuring device, and a movable platform, which can perform real-time monitoring on the working condition of the distance measuring device itself, and record abnormal data when a module is abnormal. It is stored in the permanent memory of the device itself to provide data support for subsequent analysis and maintenance. Further, since the abnormal data is recorded in the permanent memory of the ranging device itself, because there is no need for data transmission through the transmission link, the efficiency and stability are high, and the abnormal data can still be recorded when the ranging device is abnormal.
  • FIG. 1 shows a schematic flowchart of an abnormality recording method of a distance measuring device according to an embodiment of the present invention
  • FIG. 2 shows a schematic block diagram of a distance measuring device according to an embodiment of the present invention
  • FIG. 3 shows another schematic block diagram of a distance measuring device according to an embodiment of the present invention
  • FIG. 4 shows a schematic structural diagram of a distance measuring device according to an embodiment of the present invention
  • FIG. 5 shows a schematic block diagram of a movable platform according to an embodiment of the present invention
  • FIG. 6 shows a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • An embodiment of the present invention provides an abnormality recording method for a distance measuring device.
  • the distance measuring device includes a plurality of functional modules and a permanent memory.
  • FIG. 1 shows a schematic flowchart of an abnormality recording method of a distance measuring device according to an embodiment of the present invention.
  • the abnormality recording method of the distance measuring device provided in this embodiment includes:
  • Step S100 start. That is, the distance measuring device, such as radar, starts working after power-on.
  • Step S101 Monitor the status of each module of the distance measuring device.
  • the operating status of each module of the distance measuring device is acquired through various sensors.
  • sensors Such as motor speed, current, temperature, voltage and other data of each module.
  • the sensors include but are not limited to speed sensors, current/voltage sensors, temperature sensors, and the like.
  • step S102 it is determined whether each module is abnormal according to the status of each module.
  • the status data of each module is acquired in real time, the status data is judged and recorded to determine whether the data collected by each sensor is within a normal range, so as to determine whether any module has an abnormality.
  • the state data records and classification examples of each module of the distance measuring device are shown in the table.
  • error code is shown as warn or error in Table 1. It should be understood that the above error codes are only exemplary, and the error codes in this embodiment may also include other types or more types.
  • step S102 when it is determined in step S102 that there is an abnormality in the module, step S103 is entered, otherwise, steps S101 to S102 are continued.
  • Step S103 Obtain abnormal data and store the abnormal data in the permanent memory.
  • the abnormal data includes at least one of runtime information, user information, and abnormal information.
  • the operation time information includes the total operation time and current time of each state of the distance measuring device.
  • the total running time of each state includes the total running time accumulated in each state since the distance measuring device is first powered on and the total running time of each state after the distance measuring device is currently powered on.
  • the total operating time of each state after the distance measuring device is currently powered on is recalculated after the distance measuring device is powered on each time.
  • the current time in each state is the time from when the distance measuring device is currently powered on to when an abnormality occurs.
  • the various states refer to various working states of the ranging device.
  • the ranging device includes a normal working state, a low power consumption state, and a standby state.
  • the normal working state includes a normal mode, a high-speed mode, Rain and fog mode, dark night mode.
  • the running time information is not only stored in the permanent memory as abnormal data when an abnormality occurs, but also stored during the normal operation of the distance measuring device, so that when an abnormality occurs, then You can directly obtain the running time information.
  • the runtime information is stored in a global state information storage area in the permanent memory of the distance measuring device.
  • the storage example of the global state information of the distance measuring device is shown in Table 2.
  • the user information includes a number of operation instructions set by the user recently before the abnormality occurs. For example, after an abnormality of its own module, the user's last 10 operation instructions.
  • the operation instructions are operation instructions generated by control operations of various users of the distance measuring device and used for controlling operations of each module of the distance measuring device. Examples of user operation instructions are shown in Tables 3 to 5 below. It should be understood that these operation instructions are merely exemplary.
  • Table 3 is an example of the control instructions of the distance measuring device
  • Table 4 is an example of the configuration command of the distance measuring device mode
  • Table 5 is an example of the port configuration command of the ranging device
  • the abnormality recording method further includes: a random access memory of the ranging device that stores the user's operation instructions in real time while the ranging device is in operation (RAM), that is, in memory.
  • RAM random access memory
  • the storage of user operation instructions in the RAM is performed using a circular queue method.
  • the queue includes 10 user operation instructions, and each time a user operation instruction is stored in RAM, and when the stored user operation instruction reaches 10 times, the newly stored user operation instruction will Replace the first stored user operation instruction so that when an exception occurs, the current latest 10 user operation instructions are directly obtained from the RAM as abnormal data.
  • the abnormality information includes an error code corresponding to the module where the abnormality occurs. Examples of the error codes are shown in Table 1.
  • the abnormal data is stored in the permanent memory according to a set data format.
  • the permanent memory includes flash memory, SD card or TF card.
  • the permanent memory is provided with a fixed-length area for storing the abnormal data.
  • a queue circular storage method is used to store the abnormal data in the area.
  • 50 abnormal data can be stored in the area, and when the 51st abnormal data is to be stored, the first abnormal data is replaced.
  • the first abnormal data is replaced.
  • the fourth abnormal data is the latest abnormal data.
  • the fifth abnormal data becomes the oldest abnormal data.
  • the length of the area for storing abnormal data in the permanent memory can be configured according to need.
  • Step S104 judging the abnormal level according to the abnormal data.
  • the abnormal levels include normal, warning, and severe.
  • the abnormal level is reflected in the system state shown in Table 1.
  • Step S105 Determine whether to continue operation according to the abnormal level. If the operation continues, steps S101 to S105 are continued. If the operation is not continued, step S106 is advanced.
  • the ranging device when the abnormal level is normal or warning, the ranging device is controlled to continue to operate; when the abnormal level is serious, the ranging device is controlled to stop operating.
  • the abnormality recording method in this implementation further includes: notifying the user of the abnormality.
  • the abnormality recording method of the distance measuring device can monitor the working condition of the distance measuring device itself in real time.
  • the abnormal data is recorded in the permanent memory of the distance measuring device itself, thereby Provide data support for subsequent analysis and maintenance. Further, since the abnormal data is recorded in the permanent memory of the ranging device itself, because there is no need for data transmission through the transmission link, the efficiency and stability are high, and the abnormal data can still be recorded when the ranging device is abnormal.
  • FIG. 2 shows a schematic block diagram of a distance measuring device according to an embodiment of the present invention.
  • the distance measuring device 200 includes one or more processors 102, one or more storage devices 104, and a communication interface 106. These components are connected via a bus system 108 and/or other forms of connection mechanisms (not shown) interconnection. It should be noted that the components and structures of the distance measuring device 200 shown in FIG. 2 are only exemplary, not limiting, and the distance measuring device 200 may have other components and structures as needed.
  • the processor 102 may be a central processing unit (CPU) or other forms of processing units with data processing capabilities and/or instruction execution capabilities, such as a microcontroller (MCU), and may control the distance measuring device 200 Other components to perform the desired function.
  • CPU central processing unit
  • MCU microcontroller
  • the storage device 104 may include one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, random access memory (RAM) and/or cache memory.
  • the non-volatile memory may include permanent memory such as read only memory (ROM), hard disk, flash memory, and the like.
  • One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 102 may execute the program instructions to implement the abnormality recording (implemented by the processor) in the embodiment of the present invention described above. Methods and/or other desired functions.
  • Various application programs and various data may also be stored in the computer-readable storage medium, such as various data used and/or generated by the application programs.
  • the random access memory is configured to store user operation instructions.
  • the non-volatile memory for example, flash
  • the user operation instructions and the storage of global status information and abnormal data are used to store global status information and abnormal data.
  • the communication interface 106 realizes communication with external devices, for example, between the distance measuring device 200 and the control system.
  • the communication interface 106 may receive an operation instruction and send measurement data to an external device or control system, for example, point cloud data obtained by the distance measuring device 200 or operation data of the distance measuring device.
  • the point cloud data is generated by the distance measuring device detecting the target scene.
  • Each point in the point cloud data includes the coordinates of the three-dimensional point and characteristic information of the corresponding three-dimensional point, for example, depth information, angle information, reflectance information, and the like.
  • the storage device 104 stores one or more programs, and when the one or more programs are executed by the one or more processors 102, the one or more processors 102 Implement the exception recording method as described above.
  • the one or more processors 102 are individually or collectively configured to:
  • abnormal data is obtained and stored in the permanent memory.
  • the abnormal data includes: running time information, user information, or abnormal information.
  • the operation time information includes the total operation time and current time of each state of the distance measuring device.
  • the distance measuring device includes a normal working state, a low power consumption state, and a standby state.
  • the normal working state includes a normal mode, a high-speed mode, a rain fog mode, and a dark night mode.
  • the user information includes a number of operation instructions set by the user recently before the abnormality occurs.
  • the abnormality information includes an error code corresponding to the module where the abnormality occurs.
  • the one or more processors 102 are individually or collectively configured to:
  • the operation of the distance measuring device is controlled according to the abnormal level.
  • the abnormal levels include normal, warning, and severe.
  • the ranging device when the abnormal level is normal or warning, the ranging device is controlled to continue to operate; when the abnormal level is serious, the ranging device is controlled to stop operating.
  • the one or more processors 102 are also individually or collectively configured to notify the user that there is an abnormality.
  • the distance measuring device may be a laser radar, or other radar or distance measuring devices.
  • the distance measuring device may be an electronic device such as a laser radar or a laser distance measuring device.
  • the distance measuring device is used to sense external environment information, such as distance information, azimuth information, and reflection intensity information of the environmental target.
  • the distance measuring device can detect the distance between the detecting object and the distance measuring device by measuring the time of light propagation between the distance measuring device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device may also detect the distance between the detected object and the distance measuring device through other techniques, such as a distance measuring method based on phase shift measurement, or a distance measuring method based on frequency shift measurement. There are no restrictions.
  • the distance measuring device 300 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 300 and the object to be detected based on the sampling result of the sampling circuit 130.
  • the distance measuring device 300 may further include a control circuit 150 that can control other circuits. For example, it can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 3 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam of light for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light-emitting chips in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the die in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 300 may further include a scanning module 160 for emitting at least one laser pulse sequence emitted from the transmitting circuit by changing the propagation direction.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a measurement Distance module, the distance measuring module may be independent of other modules, for example, a scanning module.
  • a coaxial optical path may be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted from the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • FIG. 4 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the distance measuring device 400 includes a distance measuring module 201.
  • the distance measuring module 201 includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, and a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and Optical path changing element 206.
  • the distance measuring module 201 is used to emit a light beam and receive back light, and convert the back light into an electrical signal.
  • the transmitter 203 may be used to transmit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the exit optical path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light to the scanning module.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 204 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 206 is used to combine the transmitting optical path and the receiving optical path in the distance measuring device before the collimating element 204, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the transmitter 203 and the detector 205 may respectively use respective collimating elements, and the optical path changing element 206 is disposed on the optical path behind the collimating element.
  • the light path changing element can use a small area mirror to The transmitting optical path and the receiving optical path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the outgoing light of the emitter 203, and the reflector is used to reflect the return light to the detector 205. In this way, it is possible to reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 204. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 400 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit optical path of the distance measuring module 201.
  • the scanning module 202 is used to change the transmission direction of the collimated light beam 219 emitted through the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is converged on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, diffracting, etc. the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical element is moving, for example, the at least part of the optical element is driven to move by a driving module, and the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • multiple optical elements of the scanning module 202 may rotate or vibrate about a common axis 209, and each rotating or vibrating optical element is used to continuously change the direction of propagation of the incident light beam.
  • multiple optical elements of the scanning module 202 may rotate at different rotation speeds, or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate about a rotation axis 209 to change the first optical element 214 The direction of the collimated light beam 219.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated light beam 219 after the first optical element changes and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 114 includes a wedge-angle prism that aligns the straight beam 219 for refraction.
  • the scanning module 202 further includes a second optical element 215 that rotates about a rotation axis 209.
  • the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 may be driven by the same or different drivers, so that the first optical element 214 and the second optical element 215 have different rotation speeds and/or rotations, thereby projecting the collimated light beam 219 to the outside space Different directions can scan a larger spatial range.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drives 216 and 217 may include motors or other drives.
  • the second optical element 215 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 215 includes a wedge angle prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element.
  • the third optical element includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the third optical element includes a prism whose thickness varies along at least one radial direction.
  • the third optical element includes a wedge angle prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or turns.
  • each optical element in the scanning module 202 can project light into different directions, for example, the directions of the light 211 and 213, thus scanning the space around the distance measuring device 400.
  • the light 211 projected by the scanning module 202 hits the detection object 210, a part of the light is reflected by the detection object 210 to the distance measuring device 400 in a direction opposite to the projected light 211.
  • the returned light 212 reflected by the detection object 210 passes through the scanning module 202 and enters the collimating element 204.
  • the detector 205 is placed on the same side of the collimating element 204 as the emitter 203.
  • the detector 205 is used to convert at least part of the returned light passing through the collimating element 204 into an electrical signal.
  • each optical element is coated with an antireflection coating.
  • the thickness of the antireflection film is equal to or close to the wavelength of the light beam emitted by the emitter 203, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path to transmit at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which laser pulses in the order of nanoseconds are emitted.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 400 can calculate the TOF using the pulse reception time information and the pulse emission time information, thereby determining the distance between the detection object 210 and the distance measuring device 400.
  • the distance and orientation detected by the distance measuring device 400 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention can be applied to a movable platform, and the distance measuring device can be installed on the platform body of the movable platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the movable platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body When the distance measuring device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the platform body When the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the distance measuring device of the embodiment of the present invention may be applied to a movable platform, so as to detect the external environment of the movable platform in multiple orientations.
  • the movable platform includes a fuselage, A power system, installed on the fuselage, is used to provide power to the movable platform; and a distributed radar system according to this embodiment.
  • the movable platform includes at least one of an unmanned aerial vehicle, a car, or a robot.
  • FIG. 5 shows a schematic block diagram of a movable platform according to an embodiment of the present invention.
  • the movable platform 500 includes one or more distance measuring devices 501, one or more memories 502, and one or more processors 503.
  • the ranging device 501 may be various radars, such as lidar, millimeter wave radar, ultrasonic radar, or other ranging devices.
  • the number of distance measuring devices 501 may be one or more.
  • the memory 502 may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, random access memory (RAM) and/or cache memory.
  • the non-volatile memory may include permanent memory such as read only memory (ROM), hard disk, flash memory, and the like.
  • One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 503 may execute the program instructions to implement the abnormality recording (implemented by the processor) in the embodiment of the present invention described above Methods and/or other desired functions.
  • the processor 503 may be a central processing unit (CPU) or other forms of processing units with data processing capabilities and/or instruction execution capabilities, such as a microcontroller (MCU), and may control other components in the mobile platform 500 To perform the desired function.
  • CPU central processing unit
  • MCU microcontroller
  • FIG. 6 shows a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • the movable platform 600 is depicted as an unmanned aerial vehicle, this depiction is not intended to be limiting, it may use any suitable type of movable object, for example, the movable platform 600 may be a drone, car or ground Remote control robot.
  • the movable platform 600 includes a fuselage 301 and a ranging device 200.
  • the ranging device 200 (for example, a microwave rotating radar) is mounted on the fuselage 301.
  • the body 301 includes a frame 302 and a tripod 303 mounted on the frame 302.
  • the rack 302 can serve as a mounting carrier for the flight control system, processor, camera, camera, etc. of the movable platform 600.
  • the stand 303 is installed below the stand 302, and the microwave rotating radar 200 is installed on the stand 303.
  • the tripod 303 can be used to provide support for the movable platform 600 when it descends.
  • the tripod 303 can also carry a water tank and be used to spray pesticides and fertilizers on plants through the spray head.
  • the structure of the microwave rotating radar 200 is as described above and will not be repeated here.
  • the movable platform 600 further includes an arm 304 extending from the fuselage 301.
  • the arm 304 can be used to carry a power device 305 to provide power for the movable platform 600 to fly.
  • the powered device 305 may include one or more of a rotor, propeller, blade, engine, motor, wheel, axle, magnet, or nozzle.
  • the movable platform 600 may have one or more, two or more, three or more, or four or more powered devices 305.
  • the power devices 305 may all be of the same type. Alternatively, one or more power devices 305 may be different types of power devices 305.
  • the power unit 305 may be installed on the movable platform 600 using any suitable device.
  • the embodiments of the present invention provide an abnormality recording method for a distance measuring device, a distance measuring device, and a movable platform, which can perform real-time monitoring on the working condition of the distance measuring device itself, and record abnormal data when a module is abnormal. It is stored in the permanent memory of the device itself to provide data support for subsequent analysis and maintenance. Further, since the abnormal data is recorded in the permanent memory of the ranging device itself, because there is no need for data transmission through the transmission link, the efficiency and stability are high, and the abnormal data can still be recorded when the ranging device is abnormal.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored, or not implemented.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for performing a part or all of the method described herein.
  • a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Abstract

本发明实施例提供了一种测距装置的异常记录方法、测距装置及可移动平台。所述测距装置包括多个功能模块和永久性存储器,该异常记录方法包括:监测所述测距装置各模块的状态,并判断每个模块是否存在异常;当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。本发明实施例可以对测距装置自身工作状况进行实时监测,当有模块出现异常时,将异常数据记录在测距装置自身的永久性存储器中,从而为后续的分析和维修提供数据支持。

Description

测距装置的异常记录方法、测距装置及可移动平台
说明书
技术领域
本发明总地涉及雷达技术领域,更具体地涉及一种测距装置的异常记录方法、测距装置及可移动平台。
背景技术
实际应用中常常使用雷达对目标场景进行探测。以激光雷达为例,其原理为主动对外发射激光脉冲信号,探测到反射的回波信号,根据发射—接收之间的时间差,判断被测物体的距离;结合光脉冲的发射方向信息,便可获知目标场景的三维深度信息。
雷达在实际使用中,会由于用户操作不当、使用寿命极限、恶劣环境影响等原因,造成雷达本身的损坏或者异常,这就需要一种稳定可靠的方法,在雷达发生异常时及时准确的记录相关的数据,以便后续的分析和维修。目前采用的方法是在雷达正常工作时,通过传输数据的形式将雷达的运行信息,错误信息反馈回来,并在雷达所安装的设备本地(例如汽车或无人机)实时的保存这些数据,以为后续的分析和维修提供数据支持。
然而,采用这种方法。每个设备都需要配置这样的分析和保存数据的客户端,效率较低,数据的可靠性也受到传输链路的影响,在雷达发生故障时,特别是通信出现问题时,所有数据就无法传输出来,这导致用户分析异常数据,原始厂家维修都会出现问题。
发明内容
为了解决上述问题中的至少一个而提出了本发明。本发明提供一种测距装置的异常记录方法,其可以对测距装置自身工作状况进行实时监测,当有模块出现异常时,将异常数据记录在测距装置自身的永久性存储器中,从而为后续的分析和维修提供数据支持。
具体地,本发明实施例提供一种测距装置的异常记录方法,所述测距装置包括多个功能模块和永久性存储器,该异常记录方法包括:
监测所述测距装置各模块的状态,并判断每个模块是否存在异常;
当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。
本发明实施例还提供一种测距装置,所述测距装置包括:
多个功能模块,
永久性存储器,用于存储所述测距装置的运行数据;
一个或多个处理器,所述一个或多个处理器单独地或共同地被配置为用于:
监测所述测距装置各模块的状态,并判断每个模块是否存在异常;
当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。
本发明实施例还提供一种可移动平台,其包括:
一个或多个测距装置;
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上所述的异常记录方法。
本发明实施例还提供一种可移动平台,其包括:
机身;
动力系统,安装在所述机身,用于为所述可移动平台提供动力;
以及如上所述的测距装置。
本发明实施例提供了一种测距装置的异常记录方法、测距装置及可移动平台,可以对测距装置自身工作状况进行实时监测,当有模块出现异常时,则将异常数据记录在测距装置自身的永久性存储器中,从而为后续的分析和维修提供数据支持。进一步地,由于异常数据记录在测距装置自身的永久性存储器中,因为无需通过传输链路进行数据传输,效率和稳定性都高,且在测距装置异常时仍然能记录异常数据。
附图说明
图1示出根据本发明一实施例的测距装置的异常记录方法的示意性流程图;
图2示出根据本发明一实施例的测距装置的示意性框图;
图3示出根据本发明一实施例的测距装置的另一示意性框图;
图4示出根据本发明一实施例的测距装置的示意性结构图;
图5示出根据本发明一实施例的可移动平台的示意性框图;
图6示出根据本发明一实施例的可移动平台的示意性结构图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案,然而除了这些详细描述外,本发明还可以具有其他实施方式。
本发明实施例提供一种测距装置的异常记录方法,所述测距装置包括多个功能模块和永久性存储器。
图1示出根据本发明一实施例的测距装置的异常记录方法的示意性流程图。如图1所示,本实施例提供的测距装置的异常记录方法包括:
步骤S100,开始。即测距装置,例如雷达,上电开始工作。
步骤S101,监测所述测距装置各模块的状态。
示例性地,通过各种传感器获取所述测距装置各模块的运行状态。例如电机的转速、电流、各模块的温度、电压等数据。所述传感器包括但不限于转速传感器、电流/电压传感器、温度传感器等。
步骤S102,根据各模块的状态判断每个模块是否存在异常。
示例性地,在实时获取各模块的状态数据后,会对状态数据进行判断和记录,以确定各传感器采集的数据是否处于正常范围内,从而确定是否有模块存在异常。测距装置各模块的状态数据的记录以及分级示例如表所示。
表1
Figure PCTCN2019071036-appb-000001
Figure PCTCN2019071036-appb-000002
进一步,当根据各模块的状态确定有模块存在异常时,则获取相应的错误码。所述错误码如表1中的warn或error。应当理解,上述错误码仅是示例性的,本实施例的错误码还可以包括其它类型或更多类型。
进一步地,当在步骤S102中判定有模块存在异常时则进入步骤S103,反之则继续执行步骤S101至S102。
步骤S103,获取异常数据,并将所述异常数据存储在所述永久性存储器中。
示例性地,所述异常数据包括:运行时间信息、用户信息和异常信息中的至少一种。
所述运行时间信息包括所述测距装置的各状态的运行总时长和当前时间。各状态的运行总时长包括各状态自测距装置首次上电开始后累计的运行总时长和各状态在测距装置当前上电后的运行总时长。所述各状态在测距装置当前上电后的运行总时长在测距装置每次上电工作后重新计算。各状态的当前时间为自测距装置当前上电工作后到出现异常时的时间。所述各状态指的是测距装置的各种工作状态,示例性地,所述测距装置包括正 常工作状态、低功耗状态、待机状态,所述正常工作状态包括正常模式、高速模式、雨雾模式、暗夜模式。
进一步,在本实施例中,运行时间信息不仅在出现异常时将其作为异常数据存入永久性存储器中,在测距装置正常工作时也会运行时间信息进行存储,这样当出现异常时,则便可直接获取运行时间信息。示例性地,运行时间信息存储在测距装置永久性存储器中的全局状态信息存储区域。
测距装置全局状态信息的存储示例如表2所示。
表2
全局状态信息
开机次数
各个工作状态运行总时间
异常温度总时间
异常电压总时间
所述用户信息包括出现异常之前用户最近设定数量的操作指令。例如自有模块出现异常后,用户最近的10次操作指令。所述操作指令为测距装置各种用户的控制操作生成的用于对测距装置的各模块进行控制操作的操作指令。用户操作指令的示例如下表3至表5所示,应当理解,这些操作指令仅仅是示例性的。
表3为测距装置控制指令的示例
Figure PCTCN2019071036-appb-000003
表4为测距装置模式配置指令的示例
Figure PCTCN2019071036-appb-000004
Figure PCTCN2019071036-appb-000005
表5为测距装置端口配置指令的示例
Figure PCTCN2019071036-appb-000006
在本实施例中,为了在出现异常时可以记录当前设定次数用户操作指令,该异常记录方法还包括:在测距装置工作时实时将用户的操作指令存储的测距装置的随机存取存储器(RAM)中,也即内存中。并且用户操作指令的在RAM的中的存储使用循环队列方式进行。示例性地,所述队列包括10个用户操作指令,每当有用户操作指令时则将其存入RAM中,当存入的用户操作指令达到10次时,则新存入的用户操作指令会替换最先存入的用户操作指令,这样当出现异常时,则直接从RAM中获取当前的最新的10次用户操作指令作为异常数据。
所述异常信息包括与出现异常的模块对应的错误码。所述错误码的示例如表1所示。
进一步地,在本实施例中,所述异常数据按照设定的数据格式存储在所述永久性存储器中。所述永久性存储器包括flash存储器、SD卡或TF卡。所述永久性存储器中设置有固定长度的用于存储所述异常数据的区域。
所述异常数据按照的存储格式如表6所示。
表6异常数据存储的数据格式示例
读索引
第1次
1运行时间
2命令队列(即用户操作指令队列)
1错误码
…….
第n次
n运行时间
n命令队列(即用户操作指令队列)
n错误码
由于所述永久性存储器用于存储所述异常数据的区域为固定长度,因此在本实施例中,使用队列循环存储方式在所述区域中存储所述异常数据。作为一个示例,例如所述区域可以存储50个异常数据,则当要存入第51个异常数据时则将其替换掉第一异常数据。在进行异常数据存储时,通过读索引便可知道当前所存储的异常数据哪个为最新的异常数据以及哪一个为最早的异常数据。例如通过读索引知道第4个异常数据是最新的异常数据,则在异常数据存储区域存满的情形中,第5个异常数据变为最早的异常数据,当要存入新的异常数据时,则将其替换掉第5个异常数据。
应当理解,永久性存储器中用于存储异常数据的区域的长度可以根据需要进行配置。
步骤S104,根据异常数据判断异常级别。
即根据当前异常数据进行综合判断以确定异常级别。示例性地,所述异常级别包括正常、警告、严重。
所述异常级别反应在表1所示的系统状态中。
步骤S105,根据异常级别确定是否继续运行。如果继续运行,则继续 执行步骤S101至S105。如果不继续运行,则进步步骤S106。
示例性地,在本实施例中,当所述异常级别为正常或警告时,则控制所述测距装置继续运行;当所述异常级别为严重时,则控制所述测距装置停止运行。
所述异常级别与运行的关系图表7所述。
表7异常级别分类示例
异常级别 告知用户 继续运行
正常
警告
严重
进一步地,如上表所示,当异常级别为警告或严重时,本实施来的异常记录方法还包括:通知用户存在异常。
根据本发明的实施例提测距装置的异常记录方法可以对测距装置自身工作状况进行实时监测,当有模块出现异常时,则将异常数据记录在测距装置自身的永久性存储器中,从而为后续的分析和维修提供数据支持。进一步地,由于异常数据记录在测距装置自身的永久性存储器中,因为无需通过传输链路进行数据传输,效率和稳定性都高,且在测距装置异常时仍然能记录异常数据。
图2示出根据本发明一实施例的测距装置的示意性框图。
如图2所示,测距装置200包括一个或多个处理器102、一个或多个存储装置104以及通信接口106,这些组件通过总线系统108和/或其它形式的连接机构(未示出)互连。应当注意,图2所示的测距装置200的组件和结构只是示例性的,而非限制性的,根据需要,所述测距装置200也可以具有其他组件和结构。
所述处理器102可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,例如微控制器(MCU),并且可以控制所述测距装置200中的其它组件以执行期望的功能。
所述存储装置104可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非 易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等永久性存储器。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器102可以运行所述程序指令,以实现上文所述的本发明实施例中(由处理器实现)的异常记录方法以及/或者其它期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。示例性地,如上所述,所述随机存取存储器(RAM)配置为存储用户操作指令。所述非易失性存储器(例如闪存(flash))用于存储全局状态信息和异常数据。至于用户操作指令以及全局状态信息和异常数据的存储在如前所述在此不再赘述。
通信接口106于实现与外部设备之间的通信,例如实现测距装置200与控制系统之间的通信。通过通信接口106可以是接收操作指令,以及向外部设备或控制系统发送测量数据,例如测距装置200获得的点云数据或测距装置的运行数据。所述点云数据由测距装置探测目标场景生成。所述点云数据中的每个点包含有三维点的坐标以及相应三维点的特性信息,例如,深度信息、角度信息、反射率信息等。
在本实施例中,所述存储装置104存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器102执行时,使得所述一个或多个处理器102实现如上所述的异常记录方法。
具体地,所述一个或多个处理器102单独地或共同地被配置为用于:
监测所述测距装置各模块的状态,并判断每个模块是否存在异常;
当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。
所述异常数据包括:运行时间信息、用户信息或异常信息。所述运行时间信息包括所述测距装置的各状态的运行总时长和当前时间。所述测距装置包括正常工作状态、低功耗状态、待机状态,所述正常工作状态包括正常模式、高速模式、雨雾模式、暗夜模式。
所述用户信息包括出现异常之前用户最近设定数量的操作指令。
所述异常信息包括与出现异常的模块对应的错误码。
所述异常数据的示例以及存储格式和存储方法如前所述在此不再赘 述。
进一步地,所述一个或多个处理器102还单独地或共同地被配置为用于:
根据所述异常数据判断异常级别;
根据所述异常级别控制所述测距装置的运行。
示例性地,所述异常级别包括正常、警告、严重。
示例性地,当所述异常级别为正常或警告时,则控制所述测距装置继续运行;当所述异常级别为严重时,则控制所述测距装置停止运行。
当异常级别为警告或严重时,所述一个或多个处理器102还单独地或共同地被配置为通知用户存在异常。
本发明涉及的测距装置可以为激光雷达,也可以为其它雷达或者测距装置。为了更好地理解本发明,下面对测距装置的原理和结构进行示例性描述。该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图3所示的测距装置300对测距的工作流程进行举例描述。
如图3示,测距装置300可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置300与被探测物之间的距离。
可选地,该测距装置300还可以包括控制电路150,该控制电路150可 以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图3示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图3所示的电路,测距装置300还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图4示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置400包括测距模块201,测距模块201包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块201用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器 203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图4所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图6所示实施例中,由于发射器203出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图4所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置400还包括扫描模块202。扫描模块202放置于测距模块201的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光 学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件215与另一驱动器217连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱 动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如光211和213的方向,如此对测距装置400周围的空间进行扫描。当扫描模块202投射出的光211打到探测物210时,一部分光被探测物210沿与投射的光211相反的方向反射至测距装置400。探测物210反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器203发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置400可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物210到测距装置400的距离。
测距装置400探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施方式中,本发明实施方式的测距装置可应用于可移动平台,测距装置可安装在可移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时, 平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
在一种实施方式中,本发明实施方式的测距装置可以应用于可移动平台,从而对可移动平台多个方位的外部环境进行探测,在某些实施方式中,可移动平台包括机身,动力系统,安装在所述机身,用于为所述可移动平台提供动力;以及如根据本实施例的分布式雷达系统。可选的,可移动平台包括无人飞行器、汽车、或机器人中的至少一种。
图5示出根据本发明一实施例的可移动平台的示意性框图。如图5所示,可移动平台500包括一个或多个测距装置501、一个或多个存储器502以及一个或多个处理器503。
测距装置501可以各种雷达,例如激光雷达、毫米波雷达、超声波雷达或其它测距装置。测距装置501的数量可以为一个或多个。
存储器502可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等永久性存储器。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器503可以运行所述程序指令,以实现上文所述的本发明实施例中(由处理器实现)的异常记录方法以及/或者其它期望的功能。
处理器503可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,例如微控制器(MCU),并且可以控制所述可移动平台500中的其它组件以执行期望的功能。
图6示出根据本发明一实施例的可移动平台的示意性结构图。虽然可移动平台600被描绘为无人飞行器,但这种描绘并不旨在是限制性的,其可以使用任何合适类型的可移动物体,例如可移动平台600可以为无人机、汽车或地面遥控机器人。
如图6所示,可移动平台600包括机身301和测距装置200,测距装置200(例如为微波旋转雷达)安装在机身301上。具体地,机身301包括 机架302和安装在机架302上的脚架303。机架302可作为可移动平台600的飞行控制系统、处理器、摄像机、照相机等的安装载体。脚架303安装在机架302的下方,微波旋转雷达200安装在脚架303上。脚架303可用于为可移动平台600降落时提供支撑,在一个实施例中,脚架303还可以搭载水箱,并用于通过喷头对植物喷洒农药和肥料等。微波旋转雷达200的结构如前所述,在此不再赘述。
进一步地,可移动平台600还包括自机身301延伸的机臂304,机臂304可用于搭载动力装置305以为可移动平台600提供飞行的动力。搭载动力装置305可以包括旋翼、螺旋桨、桨叶、引擎、电机、轮子、轮轴、磁体或喷嘴中的一种或多种。可移动平台600可以具有一个或多个、两个或更多个、三个或更多个或者四个或更多个搭载动力装置305。动力装置305可以全都是同一类型。备选地,一个或多个动力装置305可以是不同类型的动力装置305。动力装置305可以使用任何合适的装置来安装在可移动平台600上。
本发明实施例提供了一种测距装置的异常记录方法、测距装置及可移动平台,可以对测距装置自身工作状况进行实时监测,当有模块出现异常时,则将异常数据记录在测距装置自身的永久性存储器中,从而为后续的分析和维修提供数据支持。进一步地,由于异常数据记录在测距装置自身的永久性存储器中,因为无需通过传输链路进行数据传输,效率和稳定性都高,且在测距装置异常时仍然能记录异常数据。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(Digital Signal  Processor,DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种测距装置的异常记录方法,所述测距装置包括多个功能模块和永久性存储器,其特征在于,该异常记录方法包括:
    监测所述测距装置各模块的状态,并判断每个模块是否存在异常;
    当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。
  2. 根据权利要求1所述的异常记录方法,其特征在于,所述异常数据包括:运行时间信息、用户信息或异常信息。
  3. 根据权利要求2所述的异常记录方法,其特征在于,所述运行时间信息包括所述测距装置的各状态的运行总时长和当前时间。
  4. 根据权利要求3所述的异常记录方法,其特征在于,所述测距装置包括正常工作状态、低功耗状态、待机状态,所述正常工作状态包括正常模式、高速模式、雨雾模式、暗夜模式。
  5. 根据权利要求2所述的异常记录方法,其特征在于,所述用户信息包括出现异常之前用户最近设定数量的操作指令。
  6. 根据权利要求2所述的异常记录方法,其特征在于,所述异常信息包括与出现异常的模块对应的错误码。
  7. 根据权利要求1所述的异常记录方法,其特征在于,所述异常数据按照设定的数据格式存储在所述永久性存储器中。
  8. 根据权利要求1所述的异常记录方法,其特征在于,所述永久性存储器包括flash存储器、SD卡或TF卡。
  9. 根据权利要求8所述的异常记录方法,其特征在于,所述永久性存储器中设置有固定长度的用于存储所述异常数据的区域。
  10. 根据权利要求9所述的异常记录方法,其特征在于,使用队列循环存储方式在所述区域中存储所述异常数据。
  11. 根据权利要求1所述的异常记录方法,其特征在于,还包括:
    根据所述异常数据判断异常级别;
    根据所述异常级别控制所述测距装置的运行。
  12. 根据权利要求11所述的异常记录方法,其特征在于,所述异常级 别包括正常、警告、严重。
  13. 根据权利要求12所述的异常记录方法,其特征在于,
    当所述异常级别为正常或警告时,则控制所述测距装置继续运行;
    当所述异常级别为严重时,则控制所述测距装置停止运行。
  14. 一种测距装置,所述测距装置包括多个功能模块,其特征在于,包括:
    永久性存储器,用于存储所述测距装置的运行数据;
    一个或多个处理器,所述一个或多个处理器单独地或共同地被配置为用于:
    监测所述测距装置各模块的状态,并判断每个模块是否存在异常;
    当有模块存在异常时,则获取异常数据,并将所述异常数据存储在所述永久性存储器中。
  15. 根据权利要求14所述的测距装置,其特征在于,所述异常数据包括:运行时间信息、用户信息或异常信息。
  16. 根据权利要求15所述的测距装置,其特征在于,所述运行时间信息包括所述测距装置的各状态的运行总时长和当前时间。
  17. 根据权利要求16所述的测距装置,其特征在于,所述测距装置包括正常工作状态、低功耗状态、待机状态,所述正常工作状态包括正常模式、高速模式、雨雾模式、暗夜模式。
  18. 根据权利要求15所述的测距装置,其特征在于,所述用户信息包括出现异常之前用户最近设定数量的操作指令。
  19. 根据权利要求15所述的测距装置,其特征在于,所述异常信息包括与出现异常的模块对应的错误码。
  20. 根据权利要求14所述的测距装置,其特征在于,所述异常数据按照设定的数据格式存储在所述永久性存储器中。
  21. 根据权利要求14所述的测距装置,其特征在于,所述永久性存储器包括flash存储器、SD卡或TF卡。
  22. 根据权利要求21所述的测距装置,其特征在于,所述永久性存储器中设置有固定长度的用于存储所述异常数据的区域。
  23. 根据权利要求22所述的测距装置,其特征在于,所述一个或多个 处理器单独地或共同地被配置为用于使用队列循环存储方式在所述区域中存储所述异常数据。
  24. 根据权利要求14所述的测距装置,其特征在于,所述一个或多个处理器单独地或共同地被配置为用于:
    根据所述异常数据判断异常级别;
    根据所述异常级别控制所述测距装置的运行。
  25. 根据权利要求24所述的测距装置,其特征在于,所述异常级别包括正常、警告、严重。
  26. 根据权利要求25所述的测距装置,其特征在于,
    当所述异常级别为正常或警告时,则控制所述测距装置继续运行;
    当所述异常级别为严重时,则控制所述测距装置停止运行。
  27. 一种可移动平台,其特征在于,包括:
    一个或多个测距装置;
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-13中任一所述的异常记录方法。
  28. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于为所述可移动平台提供动力;
    以及权利要求14-26中任一项所述的测距装置。
  29. 根据权利要求27或28所述的可移动平台,其特征在于,所述可移动平台包括无人机、汽车或机器人。
PCT/CN2019/071036 2019-01-09 2019-01-09 测距装置的异常记录方法、测距装置及可移动平台 WO2020142950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005402.1A CN111670380A (zh) 2019-01-09 2019-01-09 测距装置的异常记录方法、测距装置及可移动平台
PCT/CN2019/071036 WO2020142950A1 (zh) 2019-01-09 2019-01-09 测距装置的异常记录方法、测距装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071036 WO2020142950A1 (zh) 2019-01-09 2019-01-09 测距装置的异常记录方法、测距装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2020142950A1 true WO2020142950A1 (zh) 2020-07-16

Family

ID=71521959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071036 WO2020142950A1 (zh) 2019-01-09 2019-01-09 测距装置的异常记录方法、测距装置及可移动平台

Country Status (2)

Country Link
CN (1) CN111670380A (zh)
WO (1) WO2020142950A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082253A1 (zh) * 2021-11-15 2023-05-19 深圳市大疆创新科技有限公司 无人飞行器的控制方法、无人飞行器及存储介质
CN114660547B (zh) * 2022-05-24 2022-09-06 成都市克莱微波科技有限公司 雷达干扰检测装置、系统、方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070005A (zh) * 2015-07-15 2015-11-18 合肥佳讯科技有限公司 一种多旋翼无人飞行器及遥测遥控方法
CN107966692A (zh) * 2017-11-23 2018-04-27 武汉万集信息技术有限公司 一种具有自检功能的激光雷达
EP3336635A1 (en) * 2016-12-16 2018-06-20 Palantir Technologies Inc. Processing sensor logs
CN108919213A (zh) * 2018-08-06 2018-11-30 中国航空工业集团公司雷华电子技术研究所 一种机载雷达同步在线分析系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240453A (ja) * 2005-03-02 2006-09-14 Daihatsu Motor Co Ltd センサ異常検出装置及びセンサ異常検出方法
JP5648425B2 (ja) * 2010-11-01 2015-01-07 株式会社デンソー 異常検出装置、および異常検出プログラム
US8917321B1 (en) * 2012-07-10 2014-12-23 Honda Motor Co., Ltd. Failure-determination apparatus
CN106412243B (zh) * 2016-09-05 2019-08-30 努比亚技术有限公司 一种监测距离感应器异常的方法及终端
JP6859073B2 (ja) * 2016-11-01 2021-04-14 株式会社デンソー 異常検出装置
CN107517127A (zh) * 2017-08-18 2017-12-26 深圳创维汽车智能有限公司 通信异常的处理方法、车载设备及存储介质
CN107908495B (zh) * 2017-11-15 2021-12-10 南京南瑞继保电气有限公司 一种嵌入式系统异常记录展示方法
CN108733032B (zh) * 2018-06-05 2021-02-05 北京智行者科技有限公司 车辆的自检方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070005A (zh) * 2015-07-15 2015-11-18 合肥佳讯科技有限公司 一种多旋翼无人飞行器及遥测遥控方法
EP3336635A1 (en) * 2016-12-16 2018-06-20 Palantir Technologies Inc. Processing sensor logs
CN107966692A (zh) * 2017-11-23 2018-04-27 武汉万集信息技术有限公司 一种具有自检功能的激光雷达
CN108919213A (zh) * 2018-08-06 2018-11-30 中国航空工业集团公司雷华电子技术研究所 一种机载雷达同步在线分析系统

Also Published As

Publication number Publication date
CN111670380A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2020147116A1 (zh) 异常检测方法、报警方法、测距装置及可移动平台
CN210038146U (zh) 测距模组、测距装置及可移动平台
US20210293928A1 (en) Ranging apparatus, balance method of scan field thereof, and mobile platform
WO2020142950A1 (zh) 测距装置的异常记录方法、测距装置及可移动平台
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
CN209979845U (zh) 一种测距装置及移动平台
WO2020142945A1 (zh) 电机失效检测方法、设备及存储介质
WO2020142928A1 (zh) 测距装置及点云数据的应用方法、感知系统、移动平台
WO2020087376A1 (zh) 光探测方法、光探测装置和移动平台
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
US20210341580A1 (en) Ranging device and mobile platform
US20210341588A1 (en) Ranging device and mobile platform
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
US20210333374A1 (en) Ranging apparatus and mobile platform
CN111670561A (zh) 信息交互方法、系统和计算机可读介质
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
CN114556134A (zh) 激光雷达的电加热红外窗口、激光雷达和可移动平台
WO2021026766A1 (zh) 扫描模块的电机转速控制方法、装置和测距装置
US20210333369A1 (en) Ranging system and mobile platform
CN111727383A (zh) 雨量测量方法、探测装置、可读存储介质
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908987

Country of ref document: EP

Kind code of ref document: A1