WO2020087376A1 - 光探测方法、光探测装置和移动平台 - Google Patents

光探测方法、光探测装置和移动平台 Download PDF

Info

Publication number
WO2020087376A1
WO2020087376A1 PCT/CN2018/113131 CN2018113131W WO2020087376A1 WO 2020087376 A1 WO2020087376 A1 WO 2020087376A1 CN 2018113131 W CN2018113131 W CN 2018113131W WO 2020087376 A1 WO2020087376 A1 WO 2020087376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light detection
pulse sequence
parameters
electrical signal
weather
Prior art date
Application number
PCT/CN2018/113131
Other languages
English (en)
French (fr)
Inventor
李涛
洪小平
陈涵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880016692.5A priority Critical patent/CN111448475B/zh
Priority to PCT/CN2018/113131 priority patent/WO2020087376A1/zh
Publication of WO2020087376A1 publication Critical patent/WO2020087376A1/zh
Priority to US17/246,346 priority patent/US20210255289A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application relates to the field of detection, and more specifically, to a light detection method, a light detection device, and a mobile platform.
  • a light detection device for example, a laser detector
  • can transmit a pulse sequence and can receive a pulse sequence reflected by a reflector, and after receiving the reflected pulse sequence, can convert the pulse sequence into an electrical signal, based on the electrical signal Obtain information such as the distance between the reflector and the light detection device.
  • the reflected pulse sequence may not be a reflection through a normal object (object to be detected), but a reflection caused by an object (such as a granular object) brought by the abnormal environment, which will affect the light The accuracy of detection.
  • Embodiments of the present application provide a light detection method, a light detection device, and a mobile platform, which can improve the accuracy of light detection.
  • a light detection method including: acquiring environmental parameters during light detection; determining working parameters for performing light detection based on the acquired environmental parameters; and performing based on the determined working parameters Light detection, wherein the light detection is used to calculate the distance between the light detection device and the reflective object based on the emitted pulse sequence and the pulse sequence reflected by the reflective object.
  • a light detection method which includes: acquiring environmental parameters during light detection; determining a working mode for light detection based on the acquired environmental parameters, wherein different working modes correspond to different Operating parameters; based on the determined operating mode, light detection is performed, wherein the light detection is used to calculate the distance between the light detection device and the reflector based on the transmitted pulse sequence and the pulse sequence reflected by the reflector.
  • a light detection method including: emitting a pulse sequence of light; performing photoelectric conversion on the pulse sequence to obtain an electrical signal; sampling the electrical signal to obtain a sampling waveform; and converting the sampling waveform Input to a filtering model to obtain an output result indicating whether the sampled waveform is filtered or a probability value that needs to be filtered; based on the output result, the waveform is processed.
  • a light detection device including: an acquisition module for acquiring environmental parameters when performing light detection; and a determination module for determining according to the environmental parameters acquired by the acquisition module Working parameters for detection; a light detection module for performing light detection based on the working parameters determined by the determination module, wherein the light detection is used for calculating light based on the emitted pulse sequence and the pulse sequence reflected by the reflector The distance between the detection device and the reflector.
  • a light detection device including: an acquisition module for acquiring environmental parameters during light detection; and a determination module for determining the light parameters according to the environmental parameters acquired by the acquisition module Working mode of detection, wherein different working modes correspond to different working parameters; a light detection module is used to perform light detection based on the working mode determined by the determination module, wherein the light detection is used for emission-based
  • the pulse sequence and the pulse sequence reflected by the reflector calculate the distance between the light detection device and the reflector.
  • a light detection device including: a transmitting module for transmitting a light pulse sequence; a photoelectric conversion module for photoelectrically converting the pulse sequence to obtain an electrical signal; and a sampling module for The electrical signal is sampled to obtain a sampled waveform; a filter module is used to input the sampled waveform to a filter model to obtain an output result, and the output result indicates whether the sampled waveform is filtered or needs to be filtered Probability value; a processing module for processing the waveform based on the output result.
  • a mobile platform including the light detection device according to the first aspect, the second aspect, or the third aspect.
  • embodiments of the present application may obtain environmental parameters during light detection, and based on the environmental parameters, determine working parameters or working modes for light detection to be used for Light detection, therefore, the embodiment of the present application takes into account the impact of the environment when performing light detection, which can avoid the problem of low measurement accuracy caused by the environment for light detection, and is particularly suitable for light detection in abnormal environments.
  • FIG. 1 is a schematic diagram of a light detection device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another light detection device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a light detection method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another light detection method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another light detection method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another light detection method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another light detection device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another light detection device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a mobile platform according to an embodiment of the present application.
  • the light detection device may be an electronic device such as a laser radar or a laser ranging device.
  • the light detection device is used to sense external environment information, such as distance information, azimuth information, reflection intensity information, speed information, reflection angle information, etc. of the environmental target.
  • the light detection device can detect the distance between the detection object and the light detection device by measuring the time of light propagation between the light detection device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the light detection device may also detect the distance between the detected object and the light detection device through other techniques, such as a distance measurement method based on phase shift measurement or a distance measurement method based on frequency shift measurement. There are no restrictions.
  • the light detection device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the light detection device 100 and the object to be detected based on the sampling result of the sampling circuit 130.
  • the light detection device 100 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and / or set parameters for each circuit, for example, The acquisition of environmental parameters, the determination of working parameters or working modes, the training of filter models, etc. in the light detection method of the embodiments of the present application may be implemented.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and / or set parameters for each circuit, for example, The acquisition of environmental parameters, the determination of working parameters or working modes, the training of filter models, etc. in the light detection method of the embodiments of the present application may be implemented.
  • the light detection device shown in FIG. 1 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a light beam for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light source emitters in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitter, and the die in the laser emitters in the at least two emitting circuits are packaged together and housed in the same package housing.
  • the light detection device 100 may further include a scanning module 160 for changing the propagation direction of the laser pulse sequence emitted by the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be called optical
  • the light detection module 150 may be independent of other modules, for example, the scanning module 160.
  • the optical detection device may use a coaxial optical path, that is, the light beam emitted by the optical detection device and the reflected light beam share at least part of the optical path in the optical detection device.
  • the light detection device may also adopt an off-axis optical path, that is, the light beam emitted by the light detection device and the reflected light beam are respectively transmitted along different light paths in the light detection device.
  • FIG. 2 shows a schematic diagram of an embodiment of the optical detection device of the present application using a coaxial optical path.
  • the light detection device 200 includes an optical transceiver device, which includes a light source 203 (including the above-mentioned transmitting circuit), a collimating element 204, a detector 205 (may include the above-mentioned receiving circuit, sampling circuit and arithmetic circuit) and an optical path changing element 206 .
  • the optical transceiver device is used to emit a light beam and receive the returned light, and convert the returned light into an electrical signal.
  • the light source 203 is used to emit a light beam.
  • the light source 203 may emit a laser beam.
  • the laser beam emitted by the light source 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the exit light path of the light source, and is used to collimate the light beam emitted from the light source 203 and collimate the light beam emitted from the light source 203 into parallel light.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 204 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 206 is used to combine the transmitting optical path and the receiving optical path in the light detection device before the collimating element 204, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the light source 203 and the detector 205 may also use respective collimating elements, and the optical path changing element 206 may be disposed after the collimating element.
  • the light path changing element can use a small-area reflector
  • the transmitting optical path and the receiving optical path are combined.
  • the optical path changing element may also use a reflective mirror with a through hole, where the through hole is used to transmit the outgoing light of the light source 203, and the reflective mirror is used to reflect the return light to the detector 205. This can reduce the situation where the support of the small mirror will block the return light in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 204. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the light detection device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit optical path of the optical transceiver device.
  • the scanning module 202 is used to change the transmission direction of the collimated light beam 219 emitted through the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204.
  • the returned light is converged on the detector 205 via the collimating element 204.
  • the scanning module 202 may include one or more optical elements, such as lenses, mirrors, prisms, gratings, optical phased arrays (Optical Phased Array), or any combination of the above optical elements.
  • multiple optical elements of the scanning module 202 can rotate about a common axis 209, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 202 can rotate at different rotation speeds.
  • the multiple optical elements of the scanning module 202 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module 202 may also rotate around different axes. In some embodiments, the multiple optical elements of the scanning module 202 may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate about a rotation axis 209 to change the first optical element 214 The direction of the collimated light beam 219.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated light beam 219 after the first optical element changes and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the first optical element 214 includes a wedge-angle prism, aligning the straight beam 219 for refraction. In one embodiment, the first optical element 214 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 203, which can increase the intensity of the transmitted light beam.
  • the scanning module 202 further includes a second optical element 215 that rotates about a rotation axis 209.
  • the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by different drivers, so that the rotation speeds of the first optical element 214 and the second optical element 215 are different, so that the collimated light beam 219 is projected into different directions in the external space and can be scanned Larger spatial range.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • the drives 216 and 217 may include motors or other driving devices.
  • the second optical element 215 includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the second optical element 215 includes a prism whose thickness varies along at least one radial direction.
  • the second optical element 215 includes a wedge angle prism.
  • the second optical element 215 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 202 can project light into different directions, such as directions 212 and 213, so as to scan the space around the distance measuring device 200.
  • directions 212 and 213 When the light 212 projected by the scanning module 202 hits the detection object 202, a part of the light is reflected by the detection object 202 to the distance measuring device 200 in a direction opposite to the projected light 212.
  • the scanning module 202 receives the return light 212 reflected by the detection object 202 and projects the return light 212 to the collimating element 204.
  • the collimating element 204 converges at least a part of the return light 212 reflected by the probe 202.
  • the collimating element 204 is coated with an AR coating, which can increase the intensity of the transmitted beam.
  • the detector 205 and the light source 203 are placed on the same side of the collimating element 204.
  • the detector 205 is used to convert at least part of the returned light passing through the collimating element 204 into an electrical signal.
  • the light source 203 may include a laser diode through which laser light in the nanosecond level is emitted.
  • the laser pulse emitted by the light source 203 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and / or the falling edge time of the electrical signal pulse. In this way, the light detection device 200 can calculate the TOF using the pulse reception time information and the pulse emission time information, thereby determining the distance between the detection object 202 and the light detection device 200.
  • the distance and orientation detected by the light detection device 200 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the light detection device of the embodiment of the present application can be applied to a mobile platform, and the light detection device can be installed on the platform body of the mobile platform.
  • a mobile platform with a light detection device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the light detection device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the light detection device is applied to a camera, the platform body is the camera itself.
  • the pulse sequence emitted by the light detection device is reflected by the object, and then received by the light detection device.
  • the light detection device can photoelectrically convert the received pulse sequence to obtain an electrical signal, and thus obtain such Information such as the distance between the object and the light detection device.
  • the object reflecting the pulse sequence may be the object desired to be detected (this application may be called a normal object).
  • the object reflecting the pulse sequence has The object may not be expected to be detected. For example, on a rainy day, the object reflecting the pulse sequence may be a raindrop. In this case, the obtained distance and other information will be inaccurate, thereby causing the problem of low accuracy of light detection.
  • the embodiments of the present application provide the following solutions, which can improve the accuracy of light detection.
  • the light detection device used in the following light detection method may be, but not limited to, the above-mentioned light detection device.
  • FIG. 3 is a schematic flowchart of a light detection method 300 according to an embodiment of the present application.
  • the method 300 includes at least part of the following content.
  • the light detection device acquires environmental parameters when performing light detection.
  • the light detection device determines working parameters for light detection.
  • the light detection device performs light detection, wherein the light detection is used to calculate the difference between the light detection device and the reflective object based on the transmitted pulse sequence and the pulse sequence reflected by the reflective object The distance between.
  • the embodiments of the present application may obtain environmental parameters during light detection, and based on the environmental parameters, determine working parameters used for light detection to perform Light detection, therefore, the embodiment of the present application takes into account the impact of the environment when performing light detection, which can avoid the problem of low measurement accuracy caused by the environment to light detection, and is particularly suitable for light detection in abnormal environments.
  • FIG. 4 is a schematic flowchart of a light detection method 400 according to an embodiment of the present application.
  • the method 400 includes at least part of the following content.
  • the light detection device acquires environmental parameters when performing light detection.
  • the light detection device determines a working mode for light detection according to the acquired environmental parameters, where different working modes correspond to different working parameters.
  • the light detection device performs light detection based on the determined operation mode, wherein the light detection is used to calculate the difference between the light detection device and the reflector based on the transmitted pulse sequence and the pulse sequence reflected by the reflector distance.
  • embodiments of the present application may obtain environmental parameters during light detection, and based on the environmental parameters, determine a working mode for light detection to be used for Light detection, therefore, the embodiment of the present application takes into account the impact of the environment when performing light detection, which can avoid the problem of low measurement accuracy caused by the environment to light detection, and is particularly suitable for light detection in abnormal environments.
  • the working mode of the light detection device for light detection can be multiple working modes, and the user can select one working mode from the multiple working modes (for example, the user can select the working mode according to environmental parameters) for the current light detection .
  • the user mentioned here may be a person, or may refer to a device other than the light detection device, for example, it may be a control system on the vehicle.
  • the light detection device determines the working mode for light detection according to the user's selection.
  • the environmental parameters mentioned in the embodiments of the present application may include any environmental parameters that have an effect on light detection.
  • the environment parameter may include an environment type and / or a degree characterization quantity under a specific environment type.
  • the environmental parameters in the embodiments of the present application may include a parameter that can characterize the presence or presence of a reflector that is not normally expected to be measured The degree or amount, etc.
  • the environmental parameter in the embodiment of the present application may include a weather parameter
  • the weather parameter may include a weather type and / or a degree characterization quantity under a specific weather type.
  • the weather type may be sunny, rain, snow, fog, haze, hail, or sandstorm.
  • various weather types can be distinguished according to various degrees, for example, rain can be divided into heavy rain, moderate rain or light rain, each degree of weather type can correspond to a range of values, for example, for rainy days, it can be divided into Rainfall in multiple numerical ranges.
  • the working mode or working parameter for light detection corresponding to the same value range may be the same.
  • different degrees in the same type of weather may correspond to the same light detection working mode or working parameter.
  • different degrees in the same type of weather may correspond to different light detection working modes or working parameters.
  • the weather type can be divided into two types: normal weather type and special weather type (also called abnormal weather type), where the normal weather type in the embodiments of the present application can be understood as not bringing abnormally expected reflection
  • the weather type of the object, or the abnormally expected reflection object has negligible or small influence on the light detection
  • the special weather type can be understood as the abnormally expected reflection object or the abnormally expected Reflected objects have a greater influence on the accuracy of light detection.
  • the environment can bring abnormal reflectors.
  • the environmental parameters can include light parameters.
  • the light parameters can represent the day or night when the light is detected, or include the intensity value of the light, such as the ambient light. Intensity value.
  • the environmental parameter may also be characterized by the density and / or size of the granularity. Different working modes and / or working parameters may correspond to different granularity density intervals and / or size intervals.
  • different environment types and / or different degrees of characterization quantity intervals correspond to different working modes. Or, it can be understood that different environmental types and / or different degrees characterize different working parameters corresponding to the quantity intervals.
  • the working mode corresponding to the partial environment type and / or partial degree characterization quantity interval is the same.
  • the environmental type of the part and / or the degree of the part characterize the same working parameter corresponding to the quantity interval.
  • weather types can be divided into sunny days, rain, snow, fog, haze, hail, or sandstorms, and the working modes or working parameters corresponding to several environmental types are the same.
  • the operating modes or operating parameters corresponding to the two environmental types of rain and snow are the same.
  • the environment parameter when the light detection device obtains light detection may be the current environment parameter, and the current environment parameter is used as the environment parameter for light detection. At this time, the environment is obtained
  • the interval between the time of the parameter and the light detection may be less than a certain length of time, that is, the interval between the time of acquiring the environmental parameter and the time of the light detection is short, and the change of the environmental parameter can be ignored.
  • the light detection device may acquire the current environmental parameters and estimate the environmental parameters used for light detection based on the current environmental parameters.
  • the environmental parameters used for light detection may be estimated based on the change trend of the environment.
  • the light detection device itself may have the ability to calculate environmental parameters.
  • the light detection device can obtain information such as the frequency of the wiper, and determine weather parameters (eg, rainfall) based on the frequency, so that light detection can be performed based on the weather parameters.
  • information such as the frequency of the wiper, and determine weather parameters (eg, rainfall) based on the frequency, so that light detection can be performed based on the weather parameters.
  • the light detection device may also directly use the frequency of the wiper as an environmental parameter characterizing the environment, and may perform light detection directly based on the frequency of the wiper.
  • the frequency of the wiper may be transmitted by the wiper or the control device controlling the wiper to the light detection device through the communication link.
  • the light detection device can determine the environmental parameter from its own signal.
  • the light detection apparatus may also use a communication link to obtain environmental parameters from an external device, where the environmental parameters provided by the external device may be current environmental parameters or may be estimated light. Environmental parameters at the time of detection.
  • the light detection device can obtain weather forecast information transmitted by an external server through a network, or the light detection device can obtain weather forecast information through a smart device that can read weather information.
  • the light detection device can perform light detection based on the weather forecast information .
  • the light detection device can be based on the rainfall obtained by the on-board rain gauge, so that it can be directly judged based on the rainfall whether it is heavy rain, medium rain, or light rain, and light detection based on this, or, Light detection can be carried out directly based on rainfall without judging whether it is heavy rain, moderate rain or light rain.
  • the light detection device may have multiple working modes, and the current working mode for light detection may be determined from the multiple working modes based on environmental parameters.
  • the working parameters corresponding to different working modes may be different.
  • the environmental parameter may include the current ambient light intensity
  • the light detection device decides to enter different working modes according to different ambient light intensity.
  • the light detection device includes at least one of the following three modes: strong light mode, normal light mode, and dark light mode.
  • strong light mode the noise caused by the ambient light is large.
  • the minimum sampling threshold of at least one sampling threshold can be set to Higher than the minimum sampling threshold in other modes.
  • dark light mode the noise caused by ambient light is small.
  • the minimum sampling threshold of at least one sampling threshold can be set to Lower than the minimum sampling threshold in other modes.
  • the light detection device selects to enter the dark light mode.
  • the light detection device determines to enter the dim mode. For example, if it is determined that the current local time is after seven o'clock in the evening, choose to enter the dim mode.
  • the time threshold for judging to enter the dark light mode may be automatically adjusted according to the city and season where the current light detection device is located.
  • the light detection device when it is detected that the current ambient light intensity is greater than the second preset value, the light detection device selects to enter the strong light mode. In one example, when it is detected that the duration of the current ambient light intensity continues to be greater than the second preset value to reach the second duration, the light detection device selects to enter the strong light mode.
  • working parameters corresponding to different working modes mentioned here may refer to different values of working parameters of the same type, or may refer to different types of included working parameters.
  • different working modes may all have the filtering strategy, but the parameters in the filtering strategy are different, or some working modes may have the working strategy, and Some work modes do not have this work strategy.
  • the transmission power of the pulse sequence is higher than that in the working mode corresponding to normal weather, but there is no filtering strategy; while in the working mode corresponding to the rain type, the pulse The transmission power of the sequence is the same as the transmission power of the working mode corresponding to normal weather, but compared with the working mode of normal weather, there may be a filtering strategy.
  • the light detection device may not have various working mode settings.
  • the light detection device may adjust the working parameters used in the light detection process according to the acquired environmental parameters At least one operating parameter.
  • the type of working parameters adjusted each time may be different. For example, when the environmental parameter indicates that the light rain has changed from light rain, the transmission power may be adjusted, and when the environmental parameter indicates that the light rain has changed into heavy rain, the emission may be adjusted. At the same time as the power, increase the filtering strategy.
  • the working parameters determined by the environmental parameters may include at least one of the following:
  • Parameters when the pulse sequence is transmitted parameters when the electrical signal converted from the reflected pulse sequence is sampled, parameters for processing the results obtained by sampling the electrical signal, and images obtained by arranging point cloud information based on position Processing parameters.
  • At least one of the above working parameters may be associated with the environmental parameters, and may change as the environmental parameters change.
  • the light detection device is provided with multiple working modes, at least one of the above working parameters among the parameters corresponding to each working mode may be different.
  • the parameters during the transmission pulse sequence obtained from the environmental parameters include at least one of the following parameters:
  • the power of the transmitted pulse sequence the frequency of the transmitted pulse sequence, the speed at which the exit path of the pulse sequence changes, the scan range or scan pattern of the exited pulse sequence.
  • At least one of the above parameters may be different in different working modes.
  • the number of abnormal particulate objects present in the air may be different, and the degree of impact on the attenuation of the pulse sequence is different.
  • the power and / or frequency of the transmitted pulse sequence may be determined based on environmental parameters. If the attenuation caused by the environment is greater, a higher transmission power and / or frequency may be used to transmit the pulse sequence. For example, in the case of a sunny day, the attenuation of the pulse sequence is small, the power and / or frequency of the transmitted pulse sequence is small, and in the case of a rainy day, the attenuation of the pulse sequence is large, the power and / or of the transmitted pulse sequence The greater the frequency and the greater the rainfall, the greater the power and / or frequency of the transmitted pulse sequence. For another example, in the absence of haze, the power of the transmitted pulse sequence is small, and in the presence of haze, the power of the transmitted pulse sequence is large, and the more severe the haze, the greater the power of the transmitted pulse sequence.
  • the number of abnormal particulate objects present in the air may be different, which will affect the attenuation of the pulse sequence differently. If the attenuation is large, the measurement information cannot be obtained normally, and due to the abnormal particulate objects The increase in the number leads to a reduction in the proportion of the pulse sequence reflected by the normal object under the same pulse number. In this way, the more important area to be measured can be selected and the more important area can be concentratedly measured. At this time, A certain area can be detected collectively by changing the scanning range or scanning pattern of the outgoing pulse sequence.
  • the scanning range or scanning pattern can be changed by changing the speed at which the exit path of the pulse sequence changes.
  • the speed at which the exit path of the pulse sequence changes can be adjusted by changing the rotation speeds of the first optical element 214 and the second optical element 215 in the light detection device shown in FIG. 2.
  • the first optical element 214 and the second optical element 215 can be rotated more slowly, so that more pulse sequences can be emitted for the area, and the For a less important area, when the pulse sequence is transmitted to this area, the first optical element 214 and the second optical element 215 can be rotated faster, so that more pulse sequences can be emitted for this area.
  • the scanning range or scanning pattern can also be changed by controlling the rotation angle of the first optical element 214 and the second optical element 215. If certain areas do not need to be detected, the first optical element 214 and the second optical element can be adjusted The rotation angle of the element 215 makes it unnecessary for the pulse sequence to be emitted to this area.
  • the parameters obtained by sampling environmental signals converted from the reflected pulse sequence obtained from environmental parameters include:
  • a sampling frequency for sampling the electrical signal and / or a minimum sampling threshold for sampling the electrical signal converted from the reflected pulse sequence.
  • the sampling frequency for sampling the electrical signal is different.
  • the number of abnormal particulate objects present in the air may be different, and the degree of impact on the attenuation of the pulse sequence is different.
  • the parameter obtained by sampling environmental signals obtained from environmental parameters for processing includes at least one of the following:
  • At least one of the above parameters is different in different working modes.
  • the magnification of the electrical signal obtained by the acquisition can be increased with the environment. Change. Among them, the greater the attenuation caused to the pulse sequence, the larger the magnification can be, and the smaller the attenuation caused to the pulse sequence, the smaller the magnification can be. For example, in the case of sunny days, the attenuation of the pulse sequence is small, the magnification is small. In the case of rainy days, the attenuation of the pulse sequence is large, the magnification is large, and the greater the rainfall The greater the magnification.
  • the above mentioned strategy for filtering the results obtained by sampling may include a bottom layer filtering strategy (hereinafter referred to as a first filtering strategy) and an application layer filtering strategy (hereinafter referred to as a second filtering strategy).
  • the first filtering strategy and the second filtering strategy mentioned below can be used to filter the electrical signal obtained after sampling the electrical signal obtained by photoelectric conversion.
  • the first filtering strategy may be: when the distance between the reflector corresponding to the electrical signal obtained by the photoelectric conversion and the detection device is within a first distance threshold, and the peak value of the electrical signal is less than the first peak threshold To determine that the electrical signal needs to be filtered.
  • the first distance threshold may include two thresholds of a maximum value and a minimum value, that is, whether the distance between the reflective object and the detection device needs to be determined within a distance range. Since the transmission speed of light is constant, the transmission time of the light pulse sequence between the reflective object and the detection device can reflect the distance between the reflective object and the detection device, and the transmission time between the two can be obtained by the pulse sequence Characterize the distance between the reflector and the detection device.
  • the first peak threshold may be a voltage threshold, and it may be determined whether the waveform of the electrical signal triggers the voltage threshold.
  • the target waveform corresponding to the electrical signal does not trigger the first peak threshold, it is determined to filter the target waveform, wherein the return time and / or return distance of the target waveform is within the return time range and / Or return to the distance.
  • the specific judgment criterion may be whether the waveform triggers the first peak threshold value. If the trigger is triggered, there is no need for filtering, and if there is no trigger, filtering is required.
  • the first peak threshold here may be one or more of the voltage thresholds during sampling, for example, it may be the maximum value or the next largest value among the voltage thresholds during sampling.
  • the voltage thresholds during sampling are 1v, 2v, and 3v, and one of the thresholds is triggered by the electrical signal, it can be used as a sampling point. After all the electrical signals are sampled, it can be judged that the sampled data is triggered by 3v (also That is, the first peak threshold), if triggered, there is no need to filter, if not triggered, it can be filtered.
  • the waveform may not be filtered.
  • the first peak threshold mentioned above may be different for different working modes.
  • the above first distance threshold may be different, that is, the corresponding return time range and / or return distance range are different.
  • the return time may be the return time between the reflective object and the light detection device, or may be the time from the transmission pulse sequence to the reception pulse sequence.
  • the return distance may be the distance between the reflecting object and the light detecting device, or the sum of the distances from the light detecting device to the reflecting object, and then from the reflecting object to the light detecting device.
  • the more and more particulate objects exist in the environment the smaller the return time range and / or return distance range interval.
  • the return distance range may be 0-30 meters
  • the return distance range may be 2-25 meters
  • the return distance range may be 10-20 meters.
  • the first filtering strategy in some working modes, may exist, and in some working modes, the first filtering strategy may not exist.
  • the first filtering strategy may exist, and for a normal weather working mode, the first filtering strategy may not exist. At this time, when it is determined to perform the special weather working mode according to the environmental parameters, the first filtering strategy may be used for filtering.
  • the special weather working mode includes at least two special weather working modes, and the at least two special weather working modes include special weather working modes corresponding to different types of weather, or include different degrees of special weather corresponding to the same type of weather Weather working mode; wherein, in different special weather working modes, the first distance threshold and / or the first peak threshold are different.
  • the second filtering strategy may be: filtering using a filtering model.
  • the results of sampling (which can be the waveforms obtained by sampling) can be input into the model, and the output result of the model can be whether the waveform is filtered or the output filters the The probability of the waveform. If the probability exceeds a certain value, it can be judged whether to filter by other judgment means, if the probability is less than a certain value, it can be not filtered. Or, if the probability exceeds a certain value, it can be filtered directly, if the probability is less than a certain value, other judgment means can be used to judge whether to filter.
  • the filtering model may be different under different working modes. After the working mode is obtained based on the environmental parameters, the corresponding filtering model may be selected based on the working mode.
  • the filtering model can be used to determine whether the reflected objects of the pulse sequence are normal objects or granular objects in special weather.
  • the reflection object when the reflection object is determined to be a particulate object in special weather according to the filtering strategy, the corresponding electrical signal may be directly filtered out; or, the reflection object is determined to be special weather according to the filtering strategy
  • a machine learning method may be used to perform cluster analysis on electrical signals corresponding to normal objects and electrical signals corresponding to particulate objects in special weather, and train the filter model online.
  • the filtering model can optionally be adapted to the special weather working mode.
  • the filtering model can also be optimized in real time, for example, the user can judge whether the judgment result of the filtering model is accurate, and input the judgment of the user into the model to realize the optimization of the model.
  • the second filtering strategy may exist in some working modes (for example, special weather working mode), and in some working modes (for example, normal weather working mode), There is no such second filtering strategy.
  • the first filtering strategy and the second filtering strategy are mentioned above, and other filtering strategies may also exist in the embodiments of the present application.
  • it may be a strategy of filtering out points in an image obtained based on point cloud information within a certain period of time, hereinafter referred to as a third filtering strategy.
  • Each point of contains the distance information between the detection device and a reflector; it maps the point cloud within a certain length of time into a frame of image.
  • mapping the point cloud information within a certain period of time into an image the image information may be mapped according to the positional relationship between the points. At this time, each point can be understood as a point with three-dimensional coordinates. Further, each point may also include reflectivity information.
  • the points corresponding to abnormal particulate objects in special weather can be understood as white noise points
  • the positional relationship between adjacent points is randomly distributed, and there is a regular distribution of coordinate information between adjacent points on normal objects, based on this .
  • the third filtering strategy mentioned above may indicate that the distance indicated by the distance information contained in the point to be filtered is within the second distance threshold, and the distance indicated by the distance information contained in the point to be filtered and the adjacent point The difference between the distances indicated by the contained distance information is less than or equal to the third distance threshold
  • the reflectance may also be used as a reference to determine whether to filter a certain point.
  • the third filtering strategy may indicate that the point to be filtered includes The distance indicated by the distance information is within the first reflectance threshold, and the difference between the distance indicated by the distance information contained in the point to be filtered and the distance indicated by the distance information contained in the adjacent point is less than or equal to the second reflectance Threshold.
  • the reflectivity and distance can be considered comprehensively.
  • the third filtering strategy can be used to determine whether the reflection object is a normal object or an abnormal particle object under special weather.
  • the second distance threshold and / or the third distance threshold are different.
  • the first reflectance threshold and / or the second reflectance threshold may be different.
  • the special weather working mode includes at least two special weather working modes, and the at least two special weather working modes include special weather working modes corresponding to different types of weather, or include different degrees of special weather corresponding to the same type of weather Weather working mode; wherein, under different special weather working modes, the second distance threshold and / or the third distance threshold are different, or the first reflectance threshold and / or the second reflectance threshold It can be different.
  • the third filtering strategy in some working modes, exists, and in some working modes, the third filtering strategy does not exist.
  • the third filtering strategy may exist, and for a normal weather working mode, the third filtering strategy may not exist. At this time, when performing the special weather working mode according to the environmental parameters, the third filtering strategy may be used for filtering.
  • filtering strategies are mentioned above.
  • the above-mentioned different filtering strategies can be used.
  • the first filtering strategy and the second filtering strategy can be used.
  • the second filtering strategy can be used.
  • the filtering strategy, for the working mode 3 the third filtering strategy is adopted.
  • the types of filtering strategies adopted in different working modes are the same, but the parameters in the filtering strategies may be different.
  • the light detection device may first determine whether the reflective object is a normal object or a granular object in special weather according to the above strategy, and then perform filtering processing when it is determined to be a granular object in special weather.
  • the electrical signal is directly filtered out; or, if the reflective object is determined to be a particulate object in special weather according to the filtering strategy, it may also be Use other means to judge whether the reflective object is a granular object, and then determine whether to filter it out by combining the judgment results of other means
  • the light detection device does not need to know whether the reflective object is a normal object or a particulate object in special weather, but only needs to judge whether the result of an electrical signal satisfies a certain condition, and if it is satisfied, filter out, not Satisfaction is not filtered out.
  • the filtering strategy is combined with weather parameters, which can avoid sampling the same filtering method under different weather conditions, so that Avoiding the misoperation of the normal waveform and the loss of effective information can make the light detection device suitable for different environmental conditions.
  • the light detection device may periodically acquire the environmental parameters, so that the working parameters during light detection can be adjusted based on the environment parameters in time, thereby further improving the accuracy of light detection.
  • weather parameters are entered in the radar.
  • the radar can determine the weather type and determine whether the weather type changes. If it changes, in 540, the radar switches to a matching working mode. If there is no change, in 550, maintain the status quo.
  • the working parameters or working modes during light detection are determined, so that when light detection is performed, the influence of the environment is considered, and the environment can be avoided.
  • the problem of low measurement accuracy is especially suitable for light detection in abnormal environments.
  • FIG. 6 is a schematic flowchart of a light detection method 600 according to an embodiment of the present application.
  • the method 600 includes at least part of the following content.
  • the light detection device emits a sequence of light pulses.
  • the light detection device photoelectrically converts the pulse sequence to obtain an electrical signal.
  • the light detection device samples the electrical signal to obtain a sampling waveform.
  • the light detection device inputs the sampled waveform to the filter model to obtain an output result, and the output result indicates whether the sampled waveform is filtered or a probability value that needs to be filtered;
  • the light detection device processes the waveform based on the output result.
  • a machine learning algorithm may be used to train the filtering model.
  • the results of sampling (which can be the waveforms obtained by sampling) can be input into the model, and the output result of the model can be whether the waveform is filtered or the output filters the The probability of the waveform. If the probability exceeds a certain value, it can be judged whether to filter by other judgment means, if the probability is less than a certain value, it can be not filtered. Or, if the probability exceeds a certain value, it can be filtered directly, if the probability is less than a certain value, other judgment means can be used to judge whether to filter.
  • the filtering model can be optimized in real time, for example, the user can judge whether the judgment result of the filtering model is accurate, and input the judgment of the user into the model to realize the model Optimization.
  • the electrical signal obtained by photoelectrically converting the reflected pulse sequence is sampled, and the sampled waveform is input to a filter model to obtain an output result, and the output result indicates whether the sampled waveform is Perform filtering, or the probability value that needs to be filtered, and process the waveform based on the output result, which can filter the influence of the waveform caused by the abnormal reflection on the light detection accuracy, and the sampling filtering model is judged Whether to filter out the sampled waveforms is relatively simple to implement and can improve the processing efficiency during light detection.
  • the light detection device 700 may include an acquisition module 710, a determination module 720, and a light detection module 730.
  • the obtaining module 710 is used to obtain environmental parameters during light detection; the determining module 720 is used to determine working parameters used to perform light detection based on the environmental parameters obtained by the obtaining module; the light detecting module 730, For performing light detection based on the operating parameters determined by the determination module, wherein the light detection is used to calculate between the light detection device and the reflector based on the emitted pulse sequence and the pulse sequence reflected by the reflector distance.
  • the working parameter includes at least one of the following:
  • Parameters when the pulse sequence is transmitted parameters when the electrical signal converted from the reflected pulse sequence is sampled, parameters for processing the results obtained by sampling the electrical signal, and images obtained by arranging point cloud information based on position Processing parameters.
  • the parameter when transmitting the pulse sequence includes at least one of the following:
  • the power of the transmitted pulse sequence the frequency of the transmitted pulse sequence, the speed at which the exit path of the pulse sequence changes, the scan range or scan pattern of the exited pulse sequence.
  • the parameters when sampling the electrical signal converted from the reflected pulse sequence include:
  • the sampling frequency at which the electrical signal is sampled is sampled.
  • the parameter for processing the result obtained by sampling the electrical signal includes at least one of the following:
  • Parameters for filtering the results obtained by sampling and parameters for amplifying the electrical signals obtained by sampling.
  • the parameters for filtering the result obtained by sampling include:
  • the target waveform when the target waveform does not trigger the first peak threshold, it is determined to filter the target waveform, wherein the return time and / or return of the target waveform The distance is within the return time range and / or return distance range.
  • the parameters for filtering the result obtained by sampling include:
  • the light detection module 730 is further used to:
  • the parameter for amplifying the electrical signal obtained by sampling includes:
  • the parameters for processing the image obtained by arranging the point cloud information based on the location include:
  • the target point When filtering and judging the target point, when the distance difference and / or the reflectance difference between the target point and the adjacent point is greater than or equal to the distance threshold and / or the reflectance threshold, it is determined The target point needs to be filtered out.
  • the obtaining module 710 is further used to:
  • the environment parameter includes an environment type; and / or, a degree characterization quantity under a specific environment type.
  • the values of the working parameters corresponding to different environmental types and / or different degrees of characterization quantity intervals are different.
  • the environmental parameters include weather parameters and / or light parameters.
  • the weather parameter includes a weather type
  • the weather type is: rain, snow, fog, haze, or sandstorm.
  • the weather type is rain
  • the obtaining module 710 is further used to:
  • the specific implementation manner of the light detection device 700 may be the light detection device described in FIGS. 1 and 2.
  • the acquisition module 710 and the determination module 720 may be implemented by the control circuit 150 shown in FIG. 1.
  • the light detection module 730 may be implemented by the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140 as shown in FIG.
  • the light detection module includes a detector; the light detection device further includes:
  • Light source used to emit light pulse sequence
  • the scanning module includes at least one optical element that moves relative to the light source and is used to sequentially change the light pulse sequence from the light source to different propagation directions; the light pulse sequence reflected by the reflective object is incident after passing through the scanning module To the detector;
  • the detector is used to calculate the distance between the light detection device and the reflector based on the emitted pulse sequence and the pulse sequence reflected by the reflector.
  • the scanning module includes at least two rotating prisms, the at least two rotating prisms are sequentially located on the propagation optical path of the optical pulse sequence, and used to sequentially change the optical pulse sequence to different The direction of propagation.
  • the light detection device 700 may be used to implement the above method 300 and the method in the optional implementation manner thereof, and for the sake of brevity, details are not described herein again.
  • FIG. 8 is a schematic block diagram of a light detection device 800 according to an embodiment of the present application.
  • the light detection device 800 may include an acquisition module 810, a determination module 820, and a light detection module 830.
  • the obtaining module 810 is used to obtain environmental parameters when performing light detection; the determining module 820 is used to determine a working mode for performing light detection based on the environmental parameters obtained by the obtaining module, wherein different tasks The modes correspond to different working parameters; the light detection module 830 is used for light detection based on the work mode determined by the determination module, wherein the light detection is used for pulses based on the transmitted pulse sequence and reflected by the reflector The sequence calculates the distance between the light detection device and the reflector.
  • At least one of the following working parameters corresponding to different working modes is different:
  • a filtering strategy wherein the filtering strategy is used to filter processing results corresponding to the reflected pulse sequence.
  • the determination module 820 is further used to:
  • the acquisition module determines that the mode for light detection is a special weather working mode
  • the light detection includes:
  • a filtering strategy determine whether to filter out the electrical signal, and filter out the electrical signal that needs to be filtered out;
  • the reflector corresponding to the electrical signal that needs to be filtered is a granular object in special weather, and the reflector corresponding to the electrical signal that does not need to be filtered is a normal object.
  • the filtering strategy includes a first filtering strategy, and the first filtering strategy indicates that when the distance between the reflector corresponding to the electrical signal and the light detection device is at the first distance Within the threshold, and when the peak value of the electrical signal is less than the first peak threshold value, it is determined that the electrical signal needs to be filtered out.
  • the special weather working mode includes at least two special weather working modes, and the at least two special weather working modes include special weather working modes corresponding to different weather types, or include the same weather Different types of special weather working modes;
  • the first distance threshold and / or the first peak threshold are different.
  • the filtering strategy includes a second filtering strategy, and the second filtering strategy indicates:
  • a filtering model is used to determine whether the electrical signal is filtered or the probability of filtering, wherein the filtering model includes parameter characteristics of the electrical signal when the reflective object is a normal object and / or when the reflective object is a particulate object in a special weather Parameter characteristics of the electrical signal.
  • the working mode includes at least one of the following working modes: strong light mode, normal light mode, and dark light mode.
  • the determining the working mode for light detection according to the acquired environmental parameters includes:
  • the bright light mode is selected.
  • the device 800 further includes a training module 840, which is used to:
  • each point further includes the reflectance of the one reflector.
  • the determination module 820 is further used to:
  • the light detection includes:
  • the points of the particulate objects in the special weather in the image are filtered.
  • the special weather working mode includes at least two special weather working modes, and the at least two special weather working modes include special weather working modes corresponding to different weather types, or include the same weather Different types of special weather working modes;
  • the second distance threshold and / or the third distance threshold are different.
  • the obtaining module 810 is further used to:
  • the environment parameter includes an environment type; and / or, a degree characterization quantity under a specific environment type.
  • different environment types and / or different degree characterization quantity intervals correspond to different working modes.
  • the environmental parameters include weather parameters and / or light parameters.
  • the weather parameter includes a weather type
  • the weather type is: rain, snow, fog, haze, or sandstorm.
  • the weather type is rain
  • the obtaining module 810 is further used to:
  • a specific implementation manner of the light detection device may be as described in FIG. 1 and FIG. 2.
  • the light detection module includes a detector; the light detection device further includes:
  • Light source used to emit light pulse sequence
  • the scanning module includes at least one optical element that moves relative to the light source and is used to sequentially change the light pulse sequence from the light source to different propagation directions; the light pulse sequence reflected by the reflective object is incident after passing through the scanning module To the detector;
  • the detector is used to calculate the distance between the light detection device and the reflector based on the emitted pulse sequence and the pulse sequence reflected by the reflector.
  • the scanning module includes at least two rotating prisms, the at least two rotating prisms are successively located on the propagation optical path of the optical pulse sequence, and used to sequentially change the optical pulse sequence to different propagations direction.
  • the light detection device 800 may be used to implement the above method 400 and the method in the optional implementation manner thereof, and for the sake of brevity, details are not described herein again.
  • the transmitting module 910 is used to transmit an optical pulse sequence; the photoelectric conversion module 920 is used to photoelectrically convert the pulse sequence to obtain an electrical signal; and the sampling module 930 is used to sample the electrical signal to obtain a sample Waveform; filter module 940, used to input the sampled waveform to the filter model to obtain an output result, the output result indicates whether to filter the sampled waveform, or the probability value that needs to be filtered; processing module 950, It is used to process the waveform based on the output result.
  • the light detection device 900 further includes a training module 960, which is used to:
  • the filtering model is trained online.
  • processing module 950 is further used to:
  • the waveform is processed.
  • processing module 950 is further used to:
  • the waveform is not filtered.
  • the specific circuit implementation of the light detection device may be as the light detection device described in FIGS. 1 and 2.
  • the transmitting module 910 may be implemented by the transmitting circuit 110 shown in FIG. 1
  • the photoelectric conversion module 920 may be implemented by the receiving circuit 120 shown in FIG. 1
  • the sampling module 930 may be sampled as shown in FIG.
  • the circuit 130 is implemented.
  • the filtering module 940, the processing module 950, and the training module 960 may be implemented by the control circuit 150.
  • the light detection device further includes:
  • the scanning module includes at least one optical element that moves relative to the light source, and is used to sequentially change the light pulse sequence from the light source to different propagation directions; the light pulse sequence reflected by the reflective object is incident after passing through the scanning module To the photoelectric conversion module;
  • the processing module is used to calculate the distance between the light detection device and the reflective object based on the transmitted pulse sequence and the pulse sequence reflected by the reflective object.
  • the scanning module includes at least two rotating prisms, the at least two rotating prisms are sequentially located on the propagation optical path of the optical pulse sequence, and are used to sequentially change the optical pulse sequence to different propagation directions.
  • the light detection device 900 may be used to implement the above method 600 and the method in the optional implementation manner thereof, and for the sake of brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a mobile platform 1000 according to an embodiment of the present application.
  • the mobile platform 1000 may include a light detection device 1010, and optionally may include a power device 1020 and the like.
  • the power device 1020 can provide power for the mobile platform, and the light detection device 910 can be used to implement the method 300, 400 or 600, the specific structure can be shown in Figure 1, Figure 2, Figure 7, Figure 8 and Figure 9 For the sake of brevity, the photodetection device shown is not repeated here.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed in hardware or software depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a division of logical functions.
  • there may be other divisions for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical, or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种光探测方法(300,400,600)、光探测装置(100,200,700,800,900)和移动平台(1000),可以提高光探测的精度。光探测方法包括:获取进行光探测时的环境参数(310);根据获取的环境参数,确定用于进行光探测的工作参数(320);基于确定的工作参数,进行光探测,其中,光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与反射物之间的距离(330)。

Description

光探测方法、光探测装置和移动平台
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及探测领域,并且更具体地,涉及一种光探测方法、光探测装置和移动平台。
背景技术
光探测装置(例如,激光探测仪)可以发射脉冲序列,以及可以接收经过反射物反射的脉冲序列,并在接收到反射的脉冲序列之后,可以将该脉冲序列转换为电信号,基于电信号可以得到反射物与光探测装置之间的距离等信息。
在异常环境下,反射的脉冲序列可能不是经过正常物体(期望探测的物体)的反射,而是由异常环境所带来的物体(例如,颗粒物体)所引起的反射,由此将会影响光探测的精度。
因此,如何在异常环境下,提高光探测的精度是一项亟待解决的问题。
发明内容
本申请实施例提供一种光探测方法、光探测装置和移动平台,可以提高光探测的精度。
第一方面,提供了一种光探测方法,包括:获取进行光探测时的环境参数;根据获取的所述环境参数,确定用于进行光探测的工作参数;基于确定的所述工作参数,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
第二方面,提供了一种光探测方法,包括:获取进行光探测时的环境参数;根据获取的所述环境参数,确定用于进行光探测的工作模式,其中,不 同的工作模式对应不同的工作参数;基于确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
第三方面,提供了一种光探测方法,包括:发射光脉冲序列;对所述脉冲序列进行光电转换,得到电信号;对所述电信号进行采样,以获取采样波形;将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;基于所述输出结果,对所述波形进行处理。
第四方面,提供了一种光探测装置,包括:获取模块,用于获取进行光探测时的环境参数;确定模块,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作参数;光探测模块,用于基于所述确定模块确定的所述工作参数,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
第五方面,提供了一种光探测装置,包括:获取模块,用于获取进行光探测时的环境参数;确定模块,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作模式,其中,不同的工作模式对应不同的工作参数;光探测模块,用于基于所述确定模块确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
第六方面,提供了一种光探测装置,包括:发射模块,用于发射光脉冲序列;光电转换模块,用于对所述脉冲序列进行光电转换,得到电信号;采样模块,用于对所述电信号进行采样,以获取采样波形;滤波模块,用于将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;处理模块,用于基于所述输出结果,对所述波形进行处理。
第七方面,提供了一种移动平台,包括第一方面、第二方面或第三方面所述的光探测装置。
由于环境可能会对光探测的精度带来影响,本申请实施例可以获取进行光探测时的环境参数,基于该环境参数,确定用于进行光探测时的工作参数或工作模式,以用于进行光探测,因此,本申请实施例在进行光探测时,考虑了环境带来的影响,可以避免环境对光探测带来的测量精度不高的问题, 尤其适用于异常环境下进行的光探测。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的一种光探测装置的示意性图。
图2是根据本申请实施例的另一种光探测装置的示意性图。
图3是根据本申请实施例的一种光探测方法的示意性图。
图4是根据本申请实施例的另一种光探测方法的示意性图。
图5是根据本申请实施例的另一种光探测方法的示意性图。
图6是根据本申请实施例的另一种光探测方法的示意性图。
图7是根据本申请实施例的另一种光探测装置的示意性图。
图8是根据本申请实施例的另一种光探测装置的示意性图。
图9是根据本申请实施例的另一种光探测装置的示意性图。
图10是根据本申请实施例的一种移动平台的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。
本申请各个实施例提供的方案可以应用于光探测装置,该光探测装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,光探测装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息、反射角度信息等。一种实现方式中,光探测装置可以通过 测量光探测装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到光探测装置的距离。或者,光探测装置也可以通过其他技术来探测探测物到光探测装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图1所示的光探测仪100对光探测的工作流程进行举例描述。
如图1所示,光探测装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定光探测装置100与被探测物之间的距离。
可选地,该光探测装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等,例如,可以实现本申请实施例的光探测方法中的环境参数的获取、工作参数或工作模式的确定或滤波模型的训练等。
应理解,虽然图1示出的光探测装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中光源发射器封装在同一个模块中。例如,每个发射电路包括一个激光发射器,该至少两个发射电路中的激光发射器中的die封装到一起,容置在同一个封装壳体内。
一些实现方式中,除了图1所示的电路,光探测装置100还可以包括扫描模块160,用于将发射电路出射的激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、 运算电路140和控制电路150的模块称为光探测模块,该光探测模块150可以独立于其他模块,例如,扫描模块160。
为了更加清楚本申请的光探测装置的工作原理,以下将结合图2对本申请实施例的光探测装置进行描述。
光探测装置中可以采用同轴光路,也即光探测装置出射的光束和经反射回来的光束在光探测装置内共用至少部分光路。或者,光探测装置也可以采用异轴光路,也即光探测装置出射的光束和经反射回来的光束在光探测装置内分别沿不同的光路传输。图2示出了本申请的光探测装置采用同轴光路的一种实施例的示意图。
光探测装置200包括光收发装置,光收发装置包括光源203(包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。光收发装置用于发射光束,且接收回光,将回光转换为电信号。光源203用于发射光束。在一个实施例中,光源203可发射激光束。可选的,光源203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于光源的出射光路上,用于准直从光源203发出的光束,将光源203发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图2所示实施例中,通过光路改变元件206来将光探测装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以光源203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后。
在图2所示实施例中,由于光源203出射的光束的光束发散角较小,探测器所接收到的回光的光束发散角较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射光源203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡的情况。
在图2所示实施例中,光路改变元件偏离了准直元件204的光轴。在其 他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
光探测装置200还包括扫描模块202。扫描模块202放置于光收发装置的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块202的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块202的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块202的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。在一个实施例中,第一光学元件214上镀有增透膜,增透膜的厚度与光源203发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件215与另一驱动器217连接,驱动 器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。在一个实施例中,第二光学元件215上镀有增透膜,能够增加透射光束的强度。
扫描模块202旋转可以将光投射至不同的方向,例如方向212和213,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光212打到探测物202时,一部分光被探测物202沿与投射的光212相反的方向反射至测距装置200。扫描模块202接收探测物202反射的回光212,将回光212投射至准直元件204。
准直元件204会聚探测物202反射的回光212的至少一部分。在一个实施例中,准直元件204上镀有增透膜,能够增加透射光束的强度。探测器205与光源203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
在一些实施例中,光源203可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源203发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,光探测装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物202到光探测装置200的距离。
光探测装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一种实施方式中,本申请实施方式的光探测装置可应用于移动平台,光探测装置可安装在移动平台的平台本体。具有光探测装置的移动平台可对 外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当光探测装置应用于无人飞行器时,平台本体为无人飞行器的机身。当光探测装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当光探测装置应用于遥控车时,平台本体为遥控车的车身。当光探测装置应用于机器人时,平台本体为机器人。当光探测装置应用于相机时,平台本体为相机本身。
按照上文的阐述,光探测装置发射的脉冲序列由物体反射,然后被光探测装置接收,光探测装置可以将接收到的脉冲序列进行光电转换,得到电信号,并从而基于该电信号得到诸如物体与光探测装置之间的距离等信息,反射脉冲序列的物体可以是期望被探测的物体(本申请可以称为正常物体),然而,在一些特殊的环境情况下,反射脉冲序列的物体有可能不是被期望探测的物体,例如,在下雨天,反射脉冲序列的物体有可能是雨滴,此时,则会造成得到的距等信息不准确,从而带来光探测的精度不高的问题。
为此本申请实施例提供了以下的方案,可以提高光探测的精度。
应理解,以下的光探测方法所用的光探测装置可以是但不限于上述提到的光探测装置。
图3是根据本申请实施例的光探测方法300的示意性流程图。该方法300包括以下内容中的至少部分内容。
在310中,光探测装置获取进行光探测时的环境参数。
在320中,根据获取的所述环境参数,光探测装置确定用于进行光探测的工作参数。
在330中,基于确定的所述工作参数,光探测装置进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
具体地,由于环境可能会对光探测的精度带来影响,本申请实施例可以获取进行光探测时的环境参数,基于该环境参数,确定用于进行光探测时的工作参数,以用于进行光探测,因此,本申请实施例在进行光探测时,考虑了环境带来的影响,可以避免环境对光探测带来的测量精度不高的问题,尤其适用于异常环境下进行的光探测。
图4是根据本申请实施例的光探测方法400的示意性流程图。该方法400包括以下内容中的至少部分内容。
在410中,光探测装置获取进行光探测时的环境参数。
在420中,光探测装置根据获取的所述环境参数,确定用于进行光探测的工作模式,其中,不同的工作模式对应不同的工作参数。
在430中,光探测装置基于确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与反射物之间的距离。
具体地,由于环境可能会对光探测的精度带来影响,本申请实施例可以获取进行光探测时的环境参数,基于该环境参数,确定用于进行光探测时的工作模式,以用于进行光探测,因此,本申请实施例在进行光探测时,考虑了环境带来的影响,可以避免环境对光探测带来的测量精度不高的问题,尤其适用于异常环境下进行的光探测。
应理解,图4所示的方法可以是本申请实施例中的一种具体实现方式,本申请实施例还可以具有其他的实现方式。例如,光探测装置进行光探测的工作模式可以为多种工作模式,用户可以从该多种工作模式中选择一种工作模式(例如,用户可以根据环境参数选择工作模式)用于当前的光探测。其中,此处提到的用户可以为人,也可以是指光探测装置以外的其他装置,例如,可以是车上的控制系统等。光探测装置根据用户的选择确定用于进行光探测的工作模式。
为了充分理解本申请,以下将会本申请的具体实现进行详细阐述,应理解,以下的描述可以应用于方法300,也可以应用于方法400中。
本申请实施例提到的环境参数可以包括任何对光探测有影响的环境参数。其中,环境参数可以包括环境类型和/或特定环境类型下的程度表征量。
例如,由于光探测是通过发射的脉冲序列与接收到的反射的脉冲序列来确定光探测装置与反射物之间的距离,而一些环境会带来非正常期望探测的物体(例如,空气中的颗粒物体),而该物体会作为反射物进行脉冲序列的反射,因此,本申请实施例中的环境参数可以包括这样的一种参数:该参数可以表征非正常期望测量的反射物是否存在或者存在的程度或量等。
基于此,本申请实施例中的环境参数可以包括天气参数,该天气参数可以包括天气类型和/或特定天气类型下的程度表征量。
例如,该天气类型可以为晴天、雨、雪、雾、霾、冰雹或沙尘暴等。
其中,各种天气类型可以按照多种程度进行区分,例如,雨可以分为大雨、中雨或小雨,天气类型的每种程度可以对应于一个数值范围,例如,对于雨天而言,可以分为多个数值区间的降雨量。其中,同一数值范围对应的用于光探测的工作模式或工作参数可以是相同的。一个示例中,相同类型的天气中的不同程度可以对应相同的光探测的工作模式或工作参数。一个示例中,相同类型的天气中的不同程度可以对应不同的光探测的工作模式或工作参数。
应理解,以上天气类型的划分仅仅是本申请实施例的一种具体实现方式,不应对本申请实施例造成特别的限定。
例如,可以将天气类型分为正常天气类型和特殊天气类型(也可以称为异常天气类型)两种,其中,本申请实施例中的正常天气类型可以理解为不会带来非正常期望的反射物的天气类型,或者带来的非正常期望的反射物对光探测的影响可以忽略不计或较小,特殊天气类型可以理解为带来非正常期望的反射物,或者带来的非正常期望的反射物对光探测的精度影响较大。
当然,特殊天气类型也可以进一步细分为多种类型,例如,正向上文所述的雨、雪、雾、霾、冰雹或沙尘暴等。
以上提到了环境可以带来非正常的反射物,在一些情况下,环境参数可以包括光线参数,例如,光线参数可以表征光探测时是白天或夜晚,或者包括光线的强度值,例如环境光的强度值。
可选地,在本申请实施例中,环境参数也可以是由颗粒度的密度和/或大小来表征的。不同的工作模式和/或工作参数可以对应于不同的颗粒度的密度区间和/或大小区间。
可选地,在本申请实施例中,不同的环境类型和/或不同的程度表征量区间对应的工作模式不同。或者,可以理解为不同的环境类型和/或不同的程度表征量区间对应的工作参数的不同。
例如,天气类型可以分为晴天、雨、雪、雾、霾、冰雹或沙尘暴,则这几种环境类型对应的工作模式或工作参数不同。例如,对于天气类型为雨而言,可以按照降雨量,分为三个数值区间,即对应于大雨、中雨和小雨,这三个数值区间对应的工作模式或工作参数不同。
可选地,在本申请实施例中,部分环境类型和/或部分的程度表征量区间 对应的工作模式相同。或者,可以理解为部分的环境类型和/或部分的程度表征量区间对应的工作参数的相同。
例如,天气类型可以分为晴天、雨、雪、雾、霾、冰雹或沙尘暴,其中的几种环境类型对应的工作模式或工作参数相同。例如,对于天气类型为雨和雪这两种环境类型对应的工作模式或工作参数相同。
可选地,在本申请实施例中,光探测装置获取进行光探测时的环境参数可以是获取当前的环境参数,将当前的环境参数作为用于光探测时的环境参数,此时,获取环境参数的时间与光探测之间间隔的时间可以小于一定时长,也就是获取环境参数的时间与光探测的时间之间间隔的时长较短,可以忽略环境参数的改变。
或者,光探测装置可以获取当前的环境参数,基于当前的环境参数,估计用于光探测时的环境参数,例如,可以基于环境的变化趋势,估计用于光探测时的环境参数。
可选地,在本申请实施例中,光探测装置自身可以具有计算得到环境参数的能力。
例如,光探测装置假设安装在汽车上,则可以获取雨刮器的频率等信息,基于该频率判断天气参数(例如,降雨量),从而可以基于该天气参数进行光探测。
应理解,光探测装置也可以直接将雨刮器的频率作为表征环境的环境参数,可以直接基于该雨刮器的频率进行光探测。其中,刮雨器的频率可以是刮雨器或控制刮雨器的控制设备通过通信链路传输给光探测装置的。
又例如,光探测装置可以由自身信号判断环境参数。
可选地,在本申请实施例中,光探测装置也可以通信链路,从外部器件获取环境参数,其中,外部器件提供的环境参数可以是当前的环境参数,也可以是预估的进行光探测时的环境参数。
例如,光探测装置可以获取外部服务器通过网络传输的天气预报信息,或者光探测装置可以通过与可以读取天气信息的智能设备处获取天气预报信息,光探测装置可以基于天气预报信息,进行光探测。
又例如,光探测装置假设安装在汽车上,则可以基于车载雨量计得到的降雨量,从而可以直接基于该降雨量判断是大雨、中雨或是小雨,并基于此进行光探测,或者,也可以直接基于降雨量进行光探测,而无需判断是大雨、 中雨或小雨。
可选地,在本申请实施例中,光探测装置可以具有多种工作模式,可以基于环境参数,从该多种工作模式中,确定当前进行光探测的工作模式。
其中,不同的工作模式对应的工作参数可以不同。
在本申请实施例中,可以将特殊天气类型对应的工作模式称为特殊天气工作模式。特殊天气工作模式可以包括至少两种工作模式,可选地用于对应至少两种天气类型或者同一天气类型的至少两个区间的程度表征量。
一些实现方式中,环境参数可以包括当前的环境光强度,光探测装置根据不同的环境光强度决定进入不同的工作模式。举例来说,光探测装置包括以下三种模式中的至少一种:强光模式、正常光模式、暗光模式。在强光模式中,环境光带来的噪音较大,在光探测模块中的探测器对接收的光信号转成的电信号进行采样时,可以将至少一个采样阈值中的最小采样阈值设置得比其他模式中的最小采样阈值高。在暗光模式中,环境光带来的噪音较小,在光探测模块中的探测器对接收的光信号转成的电信号进行采样时,可以将至少一个采样阈值中的最小采样阈值设置得比其他模式中的最小采样阈值低。
选择进入不同模式的触发条件可以有多种实现方式。一个示例中,当检测到当前的环境光强度小于第一预设数值时,光探测装置选择进入暗光模式。一个示例中,当检测到当前的环境光强度持续小于第一预设数值的时长达到第一时长时,光探测装置选择进入暗光模式。一个示例中,根据当前的当地时间,光探测装置确定进入暗光模式。例如,确定当前的当地时间是在晚上七点之后,选择进入暗光模式。可选地,用于判断进入暗光模式的时间阈值可以根据当前光探测装置所处城市和季节自动调整。
一个示例中,当检测到当前的环境光强度大于第二预设数值时,光探测装置选择进入强光模式。一个示例中,当检测到当前的环境光强度持续大于第二预设数值的时长达到第二时长时,光探测装置选择进入强光模式。
应理解,此处提到的不同的工作模式对应的工作参数不同可以是指同一类型的工作参数的取值不同,也可以是指包含的工作参数的类型不同。
例如,以以下将要介绍的滤波策略中的一种策略为例,不同的工作模式可以均具有该种滤除策略,但是滤波策略中的参数不同,或者,有些工作模式可以具有该工作策略,而有些工作模式不具有该工作策略。
例如,在天气类型为霾对应的工作模式下,脉冲序列的发射功率相比正常天气对应的工作模式的发射功率大,但不存在滤波策略;而在天气类型为雨对应的工作模式下,脉冲序列的发射功率与正常天气对应的工作模式的发射功率一样,但相比正常天气工作模式,可以存在滤波策略。
应理解,在本申请实施例中,光探测装置也可以不具有各种工作模式的设置,此时,光探测装置可以根据获取的环境参数,调整其在光探测过程中所用的工作参数中的至少一种工作参数。
其中,每次调整的工作参数的种类可以是不同的,例如,在环境参数指示从小雨变换了中雨,则可以调整发射功率,而环境参数指示从小雨变成了大雨,则可以在调整发射功率的同时,增加滤波策略。
以光探测的工作阶段为例,由环境参数确定的工作参数可以包括以下中的至少一种:
发射脉冲序列时的参数、对反射的脉冲序列转换成的电信号进行采样时的参数、对电信号进行采样得到的结果进行处理的参数、对基于位置对点云信息进行排布得到的图像进行处理的参数。
也就是说,以上的至少一种工作参数可以是与环境参数关联的,可以是随着环境参数的改变而改变的。
如果光探测装置设置了多种工作模式,则各个工作模式对应的参数中以上的至少一种工作参数可以是不同的。
可选地,在本申请实施例中,由环境参数得到的所述发射脉冲序列时的参数包括以下参数中的至少一种:
发射脉冲序列的功率、发射脉冲序列的频率、脉冲序列的出射路径改变的速度、出射的脉冲序列的扫描范围或扫描图案。
其中,在不同的工作模式下,以上参数中的至少一种可以不同。
具体地,在不同的环境下,空气中存在的非正常颗粒物体的数量可能不同,对脉冲序列的衰减的影响程度是不同的,则可以基于环境参数确定发射脉冲序列的功率和/或频率。如果环境造成的衰减越大,则可以利用较高的发射功率和/或频率进行脉冲序列的发射。例如,在晴天的情况下,脉冲序列的衰减较小,则发射脉冲序列的功率和/或频率较小,在雨天的情况,脉冲序列的衰减较大,则发射的脉冲序列的功率和/或频率较大,且降雨量越大,发射脉冲序列的功率和/或频率越大。又例如,在没有霾的情况下,发射脉冲序列 的功率较小,在存在霾的情况下,发射脉冲序列的功率较大,且霾越严重,则发射脉冲序列的功率越大。
以及,由于在不同的环境下,空气中存在的非正常颗粒物体的数量可能不同,会对脉冲序列的衰减的影响不同,如果衰减较大,则不能正常获取测量信息,并且由于非正常颗粒物体的增多,导致在同样的脉冲数量的情况下,由正常物体反射的脉冲序列所占据的比例减少,这样可以选择需要测量的较为重要的区域,对该较为重要的区域进行集中测量,此时,可以通过改变出射的脉冲序列的扫描范围或扫描图案来使得集中探测某一区域。
具体地,可以通过改变脉冲序列的出射路径改变的速度来改变该扫描范围或扫描图案。具体地,可以通过改变图2所示的光探测装置中的第一光学元件214和第二光学元件215的转动速度来调整脉冲序列的出射路径改变的速度。
例如,针对需要探测的区域,在脉冲序列发射到该区域时,可以使得第一光学元件214和第二光学元件215转动的慢些,这样针对该区域可以发射有较多的脉冲序列,而对于不太重要的区域,在脉冲序列发射到该区域时,可以使得第一光学元件214和第二光学元件215转动的快些,这样针对该区域可以发射有较多的脉冲序列。
或者,也可以通过控制第一光学元件214和第二光学元件215转动的角度来来改变该扫描范围或扫描图案,如果某些区域不需要探测,则可以调整第一光学元件214和第二光学元件215的转动角度,使得脉冲序列不需要发射到该区域。
可选地,在本申请实施例中,由环境参数得到的所述对反射的脉冲序列转换成的电信号进行采样时的参数包括:
对所述电信号进行采样的采样频率;和/或,对反射的脉冲序列转换成的电信号进行采样的最小采样阈值。
其中,不同的工作模式下,对所述电信号进行采样的采样频率不同。
具体地,在不同的环境下,空气中存在的非正常颗粒物体的数量可能不同,对脉冲序列的衰减的影响程度是不同的,则可以通过改变电信号的采样的采样频率来适应衰减的影响程度。如果环境造成的衰减越大,则可以利用较高的采样频率对电信号进行采样。例如,在晴天的情况下,脉冲序列的衰减较小,则对电信号进行采样的采样频率可以较小,在雨天的情况,脉冲序 列的衰减较大,则对电信号进行采样的采样频率可以较大,且降雨量越大,对电信号进行采样的采样频率越大。
可选地,在本申请实施例中,由环境参数得到的所述对电信号进行采样得到的结果进行处理的参数,包括以下中的至少一种:
对由采样得到的电信号进行放大的参数、对由采样得到的结果进行滤波的参数。
其中,在不同的工作模式下,以上参数中的至少一个不相同。
具体地,不同的环境下,空气中存在的非正常颗粒物体的数量可能不同,对脉冲序列的衰减的影响程度是不同的,因此可以通过对采集得到的电信号进行放大的倍率可以随着环境的改变而改变。其中,对脉冲序列造成的衰减越大,则该放大的倍率可以越大,而对脉冲序列造成的衰减越小,则该放大的倍率可以越小。例如,在晴天的情况下,脉冲序列的衰减较小,则该放大的倍率较小,在雨天的情况,脉冲序列的衰减较大,则该放大的倍率较大,且降雨量越大,该放大的倍率越大。
上述提到的对采样得到的结果进行滤除的策略方式可以包括底层的滤波策略(以下称为第一滤波策略)和应用层的滤波策略(以下称为第二滤波策略)。以下提到的第一滤波策略和第二滤波策略可以用于对由光电转换得到的电信号进行采样之后得到电信号进行滤除。
可选地,第一滤波策略可以是:当由光电转换得到的电信号对应的反射物与探测装置之间的距离在第一距离阈值内,且所述电信号的峰值小于第一峰值阈值时,确定所述电信号需要滤除。其中,第一距离阈值可以包括最大值和最小值两个阈值,也即需要判断反射物与探测装置之间的距离是否位于一个距离范围内。由于光的传输速度是一定的,则光脉冲序列在反射物与探测装置之间的传输时间可以反映反射物与探测装置之间的距离,则可以通过脉冲序列在两者之间的传输时间来表征反射物与探测装置之间的距离。
以及,第一峰值阈值可以是电压阈值,可以判断电信号的波形是否触发了该电压阈值。
具体地,在所述电信号对应的目标波形未触发第一峰值阈值时,确定对目标波形进行滤除,其中,所述目标波形的返回时间和/或返回距离位于所述返回时间范围和/或返回距离范围内。
也就是说,可以设置返回时间范围和/或范围距离范围,如果波形的返回 时间和/或返回距离位于返回时间范围和/或范围距离范围内,则可以进行是否对电信号进行滤除的判断,具体的判断标准可以是判断该波形是否触发了第一峰值阈值,如果触发了,则不需要进行滤除,如果没有触发,则需要进行滤除。其中,此处的第一峰值阈值可以是采样时的电压阈值中的其中一个或多个,例如,可以是采样时的电压阈值中的最大值或次大值等。
例如,假设采样时的电压阈值是1v、2v和3v,电信号触发了其中的一个阈值,则可以作为一个采样点,在对电信号全部进行采样之后,可以判断采样数据是触发了3v(也即第一峰值阈值),如果触发了,则不需要滤除,如果未触发,则可以滤除。
其中,如果波形的返回时间和/或返回距离不位于返回时间范围和/或范围距离范围内,则可以不对该波形进行滤除。
可选地,针对不同的工作模式,上述提到的第一峰值阈值可以是不同的。环境中存在的颗粒物体越多越大,则该第一峰值阈值可以是越大的,例如,对于大雨而言,需要判断是否触发了3v这个阈值,而对于中雨而言,需要判断是否触发了2v这个阈值,而对于小雨而言,可以判断是否触发了1v这个阈值。
或者,针对不同的工作模式,上述第一距离阈值可以是不同的,也即,对应的返回时间范围和/或返回距离范围是不同的。其中,该返回时间可以是反射物与光探测装置之间的返回时间,也可以是从发射脉冲序列到接收脉冲序列的时间。返回距离可以是反射物与光探测装置之间的距离,也可以是从光探测装置到反射物,再从反射物到光探测装置之间的距离之和。
其中,环境中存在的颗粒物体越多越大,则该返回时间范围和/或返回距离范围区间越小。例如,对于小雨而言,返回距离范围可以是0-30米,对于中雨而语,返回距离范围可以是2-25米,而对于大雨而言,返回距离范围可以是10-20米。
在本申请实施例中,有些工作模式下,可以存在该第一滤波策略,而有些工作模式下,可以不存在该第一滤波策略。
例如,对于特殊天气工作模式而言,可以存在该第一滤波策略,而对于正常天气工作模式而言,可以不存在该第一滤波策略。此时,在根据环境参数确定进行特殊天气工作模式时,可以采用第一滤波策略进行滤波。
对于特殊天气工作模式而言,当所述电信号对应的反射物与探测装置之 间的距离在第一距离阈值内,且所述电信号的峰值小于第一峰值阈值时,则所述电信号对应的反射物为特殊天气中的颗粒物体,由此需要滤除该电信号。
可选地,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同类型天气对应的特殊天气工作模式,或者包括同一类型天气对应的不同程度的特殊天气工作模式;其中,不同的特殊天气工作模式下,所述第一距离阈值和/或所述第一峰值阈值不同。
可选地,对于第二滤波策略可以是:利用滤波模型进行滤波。其中,在利用滤波模型进行滤波时,可以将采样得到的结果(可以是采样得到的波形)输入到该模型中,该模型输出的结果可以是是否对该波形进行滤除,或者输出滤除该波形的概率。如果概率超过一定值,则可以通过其他判断手段判断是否进行滤除,如果概率小于一定值,则可以不滤除。或者,如果概率超过一定值,则可以直接滤除,如果概率小于一定值,则可以其他判断手段判断是否进行滤除。
其中,不同的工作模式下,该滤波模型可以是不同的,在基于环境参数得到工作模式之后,可以基于该工作模式选择相应的滤波模型。
例如,可以存在正常天气工作模式和特殊天气工作模式。
对于特殊天气工作模式而言,可以通过该滤波模型判断脉冲序列的反射物是正常物体还是特殊天气中的颗粒物体。
可选地,在本申请实施例中,当根据滤波策略确定所述反射物为特殊天气中的颗粒物体时,可以直接将对应的电信号滤除;或者,根据滤波策略确定反射物为特殊天气中的颗粒物体时,还可以借助其他手段判断反射物是否为颗粒物体,综合其他手段的判断结果再确定是否滤除。
可选地,在本申请实施例中,可以利用机器学习的方法对正常物体对应的电信号和特殊天气中的颗粒物体对应的电信号进行聚类分析,在线训练所述滤波模型。此时,该滤波模型可选地可以适用于特殊天气工作模式。
其中,也可以实时的对该滤除模型进行优化,例如,用户可以判断滤波模型的判断结果是否准确,并将用户的判断输入到该模型中,以实现对该模型的优化。
类似于第一滤波策略,在本申请实施例中,有些工作模式(例如,特殊天气工作模式)下,可以存在该第二滤波策略,而有些工作模式(例如,正 常天气工作模式)下,可以不存在该第二滤波策略。
以上提到了第一滤波策略和第二滤波策略,本申请实施例还可以存在其他的滤波策略。例如,可以为在基于一定时间内的点云信息得到的图像中的点进行滤除的策略,以下称为第三滤波策略。
首先介绍下图像是如何生成的。对反射的脉冲序列转换成的电信号进行采样,获得采样结果;根据所述采样结果计算所述反射的脉冲序列的反射物与探测装置之间的距离,获得点云,其中所述点云中的每个点包含探测装置与一个反射物之间的距离信息;将一定时长内的点云映射成一帧图像。在将一定时长内的点云信息映射成图像时,可以是按照各个点之间的位置关系来进行图像信息的映射。此时,每个点可以理解为一个具有三维坐标的点。进一步地,每个点还可以包括反射率信息。
由于特殊天气中的非正常颗粒物体所对应的点可以理解为白噪点,相邻点之间的位置关系是随机分布的,而正常物体上相邻点之间的坐标信息分布存在规律,基于此,可以通过分析图像上特定距离范围内相邻点之间的位置关系对非正常颗粒物对应的点进行滤除。
基于此,上述提到的第三滤波策略可以指示:需要滤除的点包含的距离信息指示的距离在第二距离阈值内,需要滤除的点包含的距离信息指示的距离与相邻的点包含的距离信息指示的距离之间的差值小于或等于第三距离阈值
上述以距离为参考确定是否滤除某个点,在本申请实施例中,也可以以反射率为参考确定是否滤除某个点,例如,第三滤波策略可以指示:需要滤除的点包含的距离信息指示的距离在第一反射率阈值内,需要滤除的点包含的距离信息指示的距离与相邻的点包含的距离信息指示的距离之间的差值小于或等于第二反射率阈值。当然,可以综合考虑反射率和距离。
针对第三滤波策略而言,可以通过第三滤波策略判断反射物是正常物体还是特殊天气下的非正常颗粒物体。
其中,不同的工作模式下,所述第二距离阈值和/或所述第三距离阈值不同。或者,在不同的工作模式下,所述第一反射率阈值和/或所述第二反射率阈值可以是不同的。
可选地,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同类型天气对应的特殊天气工作模式,或 者包括同一类型天气对应的不同程度的特殊天气工作模式;其中,不同的特殊天气工作模式下,所述第二距离阈值和/或所述第三距离阈值不同,或者,所述第一反射率阈值和/或所述第二反射率阈值可以是不同的。
可选地,在本申请实施例中,有些工作模式下,存在该第三滤波策略,而有些工作模式下,不存在该第三滤波策略。
例如,对于特殊天气工作模式而言,可以存在该第三滤波策略,而对于正常天气工作模式而言,可以不存在该第三滤波策略。此时,在根据环境参数进行特殊天气工作模式时,可以采用第三滤波策略进行滤波。
其中,对于第三滤波策略可以采用经典的八叉树法、空间网格法、k-d树、直通滤波、统计滤波、半径滤波、双边率波、体素格滤波,三角网格重建方式进行滤波。
以上提到了多种滤波策略,对于不同的工作模式,可以采用上述不同的滤波策略,例如,针对工作模式1,可以采用第一滤波策略和第二滤波策略,针对工作模式2,可以采用第二滤波策略,针对工作模式3,采用第三滤波策略。
或者,不同的工作模式采用的滤波策略的类型是相同的,但是滤波策略中的参数可以是不相同的。
可选地,在本申请实施例中,光探测装置可以先根据上述策略确定反射物是正常物体还是特殊天气中的颗粒物体,在确定是特殊天气中的颗粒物体时,再进行滤波处理。
其中,当根据滤波策略确定所述反射物为特殊天气中的颗粒物体时,直接将所述电信号滤除;或者,根据滤波策略确定所述反射物为特殊天气中的颗粒物体时,可能还借助其他手段判断反射物是否为颗粒物体,综合其他手段的判断结果再确定是否滤除
或者,在本申请实施例中,光探测装置不需获知反射物是正常物体还是特殊天气中的颗粒物体,只需判断某个电信号的结果是否满足一定条件,如果满足,则滤除,不满足则不滤除。
在本申请实施例中,由于在不同的环境下,回波的特征不尽相同,滤波策略的使用是结合天气参数的,可以避免采用在不同的天气状况下,采样相同的滤波方式,从而可以避免对正常波形的误操作,避免有效信息的丢失,可以使得光探测装置适用不同的环境状况。
由于环境参数有可能实时的改变,则光探测装置可以周期性地获取环境参数,从而可以及时基于环境参数调整进行光探测时的工作参数,从而可以进一步地提高光探测的精度。
以下结合图5以雷达为例介绍本申请实施例的工作流程。图5所示的工作流程可以周期性地实现。
在510中,在雷达中输入天气参数。在520中,雷达可以判断天气类型,并判断该天气类型是否变化,如果变化,则在540中,雷达切换到相匹配的工作模式,如果没有变换,则在550中,维持现状。
因此,在本申请实施例中,基于环境参数,确定进行光探测时的工作参数或工作模式,实现了在进行光探测时,考虑了环境带来的影响,可以避免环境对光探测带来的测量精度不高的问题,尤其适用于异常环境下进行的光探测。
图6是根据本申请实施例的光探测方法600的示意性流程图。该方法600包括以下内容中的至少部分内容。
在610中,光探测装置发射光脉冲序列。
在620中,光探测装置对所述脉冲序列进行光电转换,得到电信号。
在630中,光探测装置对所述电信号进行采样,以获取采样波形。
在640中,光探测装置将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;
在650中,光探测装置基于所述输出结果,对所述波形进行处理。
可选地,在本申请实施例中,可以利用机器学习算法,训练所述滤波模型。
其中,在利用滤波模型进行滤波时,可以将采样得到的结果(可以是采样得到的波形)输入到该模型中,该模型输出的结果可以是是否对该波形进行滤除,或者输出滤除该波形的概率。如果概率超过一定值,则可以通过其他判断手段判断是否进行滤除,如果概率小于一定值,则可以不滤除。或者,如果概率超过一定值,则可以直接滤除,如果概率小于一定值,则可以其他判断手段判断是否进行滤除。
可选地,在本申请实施例中,可以实时的对该滤波模型进行优化,例如,用户可以判断滤波模型的判断结果是否准确,并将用户的判断输入到该模型 中,以实现对该模型的优化。
因此,在本申请实施例中,对反射的脉冲序列进行光电转换得到的电信号进行采样,将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值,并基于所述输出结果,对所述波形进行处理,可以滤除异常反射物带来的波形对光探测精度带来的影响,并且采样滤波模型判断是否滤除采样波形,实现较为简单,可以提高光探测时的处理效率。
图7是根据本申请实施例的光探测装置700的示意性框图。该光探测装置700可以包括获取模块710、确定模块720以及光探测模块730。
其中,获取模块710,用于获取进行光探测时的环境参数;确定模块720,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作参数;光探测模块730,用于基于所述确定模块确定的所述工作参数,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
可选地,在本申请实施例中,所述工作参数包括以下中的至少一种:
发射脉冲序列时的参数、对反射的脉冲序列转换成的电信号进行采样时的参数、对电信号进行采样得到的结果进行处理的参数、对基于位置对点云信息进行排布得到的图像进行处理的参数。
可选地,在本申请实施例中,所述发射脉冲序列时的参数包括以下中的至少一种:
发射脉冲序列的功率、发射脉冲序列的频率、脉冲序列的出射路径改变的速度、出射的脉冲序列的扫描范围或扫描图案。
可选地,在本申请实施例中,所述对反射的脉冲序列转换成的电信号进行采样时的参数包括:
对所述电信号进行采样的采样频率。
可选地,在本申请实施例中,所述对电信号进行采样得到的结果进行处理的参数,包括以下中的至少一种:
对由采样得到的结果进行滤波的参数、对由采样得到的电信号进行放大的参数。
可选地,在本申请实施例中,所述对由采样得到的结果进行滤波的参数,包括:
需要进行滤除判断的波形对应的返回时间范围和/或返回距离范围,以及设定的第一峰值阈值;
其中,在进行目标波形的滤除判断时,在所述目标波形未触发所述第一峰值阈值时,确定对所述目标波形进行滤除,其中,所述目标波形的返回时间和/或返回距离位于所述返回时间范围和/或返回距离范围内。
可选地,在本申请实施例中,所述对由采样得到的结果进行滤波的参数,包括:
对结果进行滤除所采用的模型。
可选地,在本申请实施例中,所述光探测模块730进一步用于:
将采样得到的结果输入到所述模型,以用于得到输出结果,所述输出结果指示是否对所述采样得到的结果进行滤除,或者需要滤除的概率值;
基于所述输出结果,对所述采样得到的结果进行处理。
可选地,在本申请实施例中,所述对由采样得到的电信号进行放大的参数,包括:
对由采样得到的电信号进行放大的倍率。
可选地,在本申请实施例中,所述对基于位置对点云信息进行排布得到的图像进行处理的参数,包括:
所述图像上需要进行滤除判断的点对应的返回距离范围、需要滤除的点与相邻的点之间的距离差阈值和/或反射率差阈值;
其中,在进行目标点的滤除判断时,在所述目标点与相邻点之间的距离差和/或反射率差大于或等于所述距离阈值和/或所述反射率阈值时,确定需要滤除所述目标点。
可选地,在本申请实施例中,所述获取模块710进一步用于:
通过通信链路,从外部器件获取所述环境参数。
可选地,在本申请实施例中,所述环境参数包括环境类型;和/或,特定环境类型下的程度表征量。
可选地,在本申请实施例中,不同的环境类型和/或不同的程度表征量区间对应的所述工作参数的取值不同。
可选地,在本申请实施例中,所述环境参数包括天气参数和/或光线参数。
可选地,在本申请实施例中,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
可选地,在本申请实施例中,所述天气类型为雨,所述获取模块710进一步用于:
通过车载设备的雨刮器或者车载雨量计获取降雨量。
可选地,在本申请实施例中,该光探测装置700的具体实现方式可以如图1和图2中所述的光探测装置。
例如,该获取模块710和确定模块720可以由如图1所示的控制电路150实现。该光探测模块730可以由如图1所示的发射电路110、接收电路120、采样电路130和运算电路140实现。
例如,可选地,所述光探测模块包括探测器;所述光探测装置还包括:
光源,用于出射光脉冲序列;
扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉冲序列经过所述扫描模块后入射至所述探测器;
所述探测器用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
例如,可选地,所述扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
应理解,该光探测装置700可以用于实现上述方法300以及其可选实现方式中的方法,为了简洁,在此不再赘述。
图8是根据本申请实施例的光探测装置800的示意性框图。该光探测装置800可以包括获取模块810、确定模块820和光探测模块830。
其中,获取模块810,用于获取进行光探测时的环境参数;确定模块820,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作模式,其中,不同的工作模式对应不同的工作参数;光探测模块830,用于基于所述确定模块确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
可选地,在本申请实施例中,不同的工作模式对应的以下工作参数中的至少一种不同:
发射脉冲序列的功率;
发射脉冲序列的频率;
出射的脉冲序列的扫描范围或扫描图案;
对反射的脉冲序列转换成的电信号的放大倍率;
对反射的脉冲序列转换成的电信号进行采样的采样频率;
滤除策略,其中,所述滤除策略用于滤除反射的脉冲序列对应的处理结果。
可选地,在本申请实施例中,所述确定模块820进一步用于:
根据所述获取模块获取的所述环境参数,确定用于进行光探测的模式为特殊天气工作模式;
其中,在所述特殊天气工作模式中,所述光探测包括:
将反射的脉冲序列转换成电信号;
根据滤波策略,确定是否滤除所述电信号,以及滤除需要滤除的所述电信号;
其中,需要滤除的电信号对应的反射物为特殊天气中的颗粒物体,不需要滤除的电信号对应的反射物为正常物体。
可选地,在本申请实施例中,所述滤波策略包括第一滤波策略,所述第一滤波策略指示:当所述电信号对应的反射物与光探测装置之间的距离在第一距离阈值内,且所述电信号的峰值小于第一峰值阈值时,确定需要滤除所述电信号。
可选地,在本申请实施例中,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
其中,不同的特殊天气工作模式下,所述第一距离阈值和/或所述第一峰值阈值不同。
可选地,在本申请实施例中,所述滤除策略包括第二滤波策略,所述第二滤波策略指示:
利用滤波模型确定所述电信号是否滤除或者滤除的概率,其中,所述滤波模型包括反射物为正常物体时所述电信号的参数特征和/或反射物为特殊天气中的颗粒物体时所述电信号的参数特征。
可选地,在本申请实施例中,工作模式包括以下至少一种工作模式:强光模式、正常光模式、暗光模式。
可选地,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
当检测到当前的环境光强度小于第一预设数值时,或者,当检测到当前的环境光强度持续小于第一预设数值的时长达到第一时长时,或者,根据当前的当地时间,选择进入暗光模式。
可选地,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
当检测到当前的环境光强度大于第二预设数值时,或者,当检测到当前的环境光强度持续大于第二预设数值的时长达到第二时长时,选择进入强光模式。
可选地,在本申请实施例中,如图8所示,该装置800还包括训练模块840,用于:
利用机器学习的装置对正常物体对应的电信号和特殊天气中的颗粒物体对应的电信号进行聚类分析,在线训练所述滤波模型。
可选地,在本申请实施例中,所述光探测包括:
对反射的脉冲序列转换成的电信号进行采样,获得采样结果;
根据所述采样结果计算所述脉冲序列对应的反射物与光探测装置之间的距离,以获得点云,其中所述点云中的每个点包含光探测装置与一个反射物之间的距离信息;
将一定时长内的点云映射成一帧图像;
根据所述滤波策略对所述图像进行噪声滤除。
可选地,在本申请实施例中,所述每个点还包含所述一个反射物的反射率。
可选地,在本申请实施例中,所述确定模块820进一步用于:
根据所述获取模块获取的所述环境参数,确定用于进行光探测的模式为特殊天气工作模式;
其中,在所述特殊天气工作模式中,所述光探测包括:
根据所述滤波策略对所述图像中属于特殊天气中的颗粒物体的点进行滤除。
可选地,在本申请实施例中,所述滤除策略包括第三滤波策略,所述第三滤波策略指示:需要滤除的点包含的距离信息指示的距离在第二距离阈值 内,需要滤除的点包含的距离信息指示的距离与相邻的点包含的距离信息指示的距离之间的差值小于或等于第三距离阈值。
可选地,在本申请实施例中,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
其中,不同的特殊天气工作模式下,所述第二距离阈值和/或所述第三距离阈值不同。
可选地,在本申请实施例中,所述获取模块810进一步用于:
通过通信链路,从外部器件获取所述环境参数。
可选地,在本申请实施例中,所述环境参数包括环境类型;和/或,特定环境型下的程度表征量。
可选地,在本申请实施例中,不同的环境类型和/或不同的程度表征量区间对应不同的工作模式。
可选地,在本申请实施例中,所述环境参数包括天气参数和/或光线参数。
可选地,在本申请实施例中,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
可选地,在本申请实施例中,所述天气类型为雨,所述获取模块810进一步用于:
通过车载设备的雨刮器或者车载雨量计获取降雨量。
可选地,在本申请实施例中,该光探测装置的具体实现方式可以如图1和图2中所述的光探测装置。
例如,该获取模块810、确定模块820和训练模块840可以由如图1所示的控制电路150实现。该光探测模块830可以由如图1所示的发射电路110、接收电路120、采样电路130和运算电路140实现。
例如,可选地,所述光探测模块包括探测器;所述光探测装置还包括:
光源,用于出射光脉冲序列;
扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉冲序列经过所述扫描模块后入射至所述探测器;
所述探测器用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
可选地,所述扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
应理解,该光探测装置800可以用于实现上述方法400以及其可选实现方式中的方法,为了简洁,在此不再赘述。
图9是根据本申请实施例的光探测装置900的示意性框图。如图9所示,该光探测装置900包括发射模块910、光电转换模块920、采样模块930、滤波模块940和处理模块950。
其中,发射模块910,用于发射光脉冲序列;光电转换模块920,用于对所述脉冲序列进行光电转换,得到电信号;采样模块930,用于对所述电信号进行采样,以获取采样波形;滤波模块940,用于将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;处理模块950,用于基于所述输出结果,对所述波形进行处理。
可选地,如图9所示,该光探测装置900还包括训练模块960,用于:
利用机器学习算法,在线训练所述滤波模型。
可选地,在本申请实施例中,所述处理模块950进一步用于:
在输出结果指示需要滤除的概率大于预设值时,继续进行滤除判断;
基于滤除判断结果,对所述波形进行处理。
可选地,在本申请实施例中,所述处理模块950进一步用于:
在输出结果指示需要滤除的概率小于预设值时,不对所述波形进行滤除。
可选地,在本申请实施例中,该光探测装置的具体电路实现方式可以如图1和图2中所述的光探测装置。
例如,该发射模块910可以由如图1所示的发射电路110实现,该光电转换模块920可以由如图1所示的接收电路120实现,该采样模块930可以由如图1所示的采样电路130实现,该滤波模块940、处理模块950和训练模块960可以由控制电路150实现。
例如,可选地,所述光探测装置还包括:
扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉 冲序列经过所述扫描模块后入射至所述光电转换模块;
所述处理模块用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
可选地,扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
应理解,该光探测装置900可以用于实现上述方法600以及其可选实现方式中的方法,为了简洁,在此不再赘述。
图10是根据本申请实施例的移动平台1000的示意性框图。该移动平台1000可以包括光探测装置1010,以及可选地可以包括动力装置1020等。
其中,该动力装置1020可以为移动平台提供动力,以及该光探测装置910可以用于实现方法300、400或600,其具体结构可以如图1、图2、图7、图8和图9所示的光探测装置,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或 者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (89)

  1. 一种光探测方法,其特征在于,包括:
    获取进行光探测时的环境参数;
    根据获取的所述环境参数,确定用于进行光探测的工作参数;
    基于确定的所述工作参数,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述工作参数包括以下中的至少一种:
    发射脉冲序列时的参数、对反射的脉冲序列转换成的电信号进行采样时的参数、对电信号进行采样得到的结果进行处理的参数、对基于位置对点云信息进行排布得到的图像进行处理的参数。
  3. 根据权利要求2所述的方法,其特征在于,所述发射脉冲序列时的参数包括以下中的至少一种:
    发射脉冲序列的功率、发射脉冲序列的频率、脉冲序列的出射路径改变的速度、出射的脉冲序列的扫描范围或扫描图案。
  4. 根据权利要求2或3所述的方法,其特征在于,所述对反射的脉冲序列转换成的电信号进行采样时的参数包括:
    对所述电信号进行采样的采样频率;和/或,对反射的脉冲序列转换成的电信号进行采样的最小采样阈值。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述对电信号进行采样得到的结果进行处理的参数,包括以下中的至少一种:
    对由采样得到的结果进行滤波的参数、对由采样得到的电信号进行放大的参数。
  6. 根据权利要求5所述的方法,其特征在于,所述对由采样得到的结果进行滤波的参数,包括:
    需要进行滤除判断的波形对应的返回时间范围和/或返回距离范围,以及设定的第一峰值阈值;
    其中,在进行目标波形的滤除判断时,在所述目标波形未触发所述第一峰值阈值时,确定对所述目标波形进行滤除,其中,所述目标波形的返回时间和/或返回距离位于所述返回时间范围和/或返回距离范围内。
  7. 根据权利要求5所述的方法,其特征在于,所述对由采样得到的结果进行滤波的参数,包括:
    对结果进行滤除所采用的模型。
  8. 根据权利要求7所述的方法,其特征在于,所述基于确定的所述工作参数,进行光探测,包括:
    将采样得到的结果输入到所述模型,以用于得到输出结果,所述输出结果指示是否对所述采样得到的结果进行滤除,或者需要滤除的概率值;
    基于所述输出结果,对所述采样得到的结果进行处理。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述对由采样得到的电信号进行放大的参数,包括:
    对由采样得到的电信号进行放大的倍率。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述对基于位置对点云信息进行排布得到的图像进行处理的参数,包括:
    所述图像上需要进行滤除判断的点对应的返回距离范围、需要滤除的点与相邻的点之间的距离差阈值和/或反射率差阈值;
    其中,在进行目标点的滤除判断时,在所述目标点与相邻点之间的距离差和/或反射率差大于或等于所述距离阈值和/或所述反射率阈值时,确定需要滤除所述目标点。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述获取进行光探测时的环境参数,包括:
    通过通信链路,从外部器件获取所述环境参数。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述环境参数包括环境类型;和/或,特定环境类型下的程度表征量。
  13. 根据权利要求12所述的方法,其特征在于,不同的环境类型和/或不同的程度表征量区间对应的所述工作参数的取值不同。
  14. 根据权利要求13所述的方法,其特征在于,所述环境参数包括天气参数和/或光线参数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
  16. 根据权利要求15所述的方法,其特征在于,所述天气类型为雨,所述获取进行光探测时的环境参数,包括:
    通过车载设备的雨刮器或者车载雨量计获取降雨量。
  17. 一种光探测方法,其特征在于,包括:
    获取进行光探测时的环境参数;
    根据获取的所述环境参数,确定用于进行光探测的工作模式,其中,不同的工作模式对应不同的工作参数;
    基于确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  18. 根据权利要求17所述的方法,其特征在于,不同的工作模式对应的以下工作参数中的至少一种不同:
    发射脉冲序列的功率;
    发射脉冲序列的频率;
    出射的脉冲序列的扫描范围或扫描图案;
    对反射的脉冲序列转换成的电信号的放大倍率;
    对反射的脉冲序列转换成的电信号进行采样的采样频率;
    对反射的脉冲序列转换成的电信号进行采样的最小采样阈值;
    滤除策略,其中,所述滤除策略用于滤除反射的脉冲序列对应的处理结果。
  19. 根据权利要求17或18所述的方法,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    根据获取的所述环境参数,确定用于进行光探测的模式为特殊天气工作模式;
    其中,在所述特殊天气工作模式中,所述光探测包括:
    将反射的脉冲序列转换成电信号;
    根据滤波策略,确定是否滤除所述电信号,以及滤除需要滤除的所述电信号;
    其中,需要滤除的电信号对应的反射物为特殊天气中的颗粒物体,不需要滤除的电信号对应的反射物为正常物体。
  20. 根据权利要求19所述的方法,其特征在于,所述滤波策略包括第一滤波策略,所述第一滤波策略指示:当所述电信号对应的反射物与光探测装置之间的距离在第一距离阈值内,且所述电信号的峰值小于第一峰值阈值 时,确定需要滤除所述电信号。
  21. 根据权利要求20所述的方法,其特征在于,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
    其中,不同的特殊天气工作模式下,所述第一距离阈值和/或所述第一峰值阈值不同。
  22. 根据权利要求19所述的方法,其特征在于,所述滤除策略包括第二滤波策略,所述第二滤波策略指示:
    利用滤波模型确定所述电信号是否滤除或者滤除的概率,其中,所述滤波模型包括反射物为正常物体时所述电信号的参数特征和/或反射物为特殊天气中的颗粒物体时所述电信号的参数特征。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    利用机器学习的方法对正常物体对应的电信号和特殊天气中的颗粒物体对应的电信号进行聚类分析,在线训练所述滤波模型。
  24. 根据权利要求17或18所述的方法,其特征在于,所述光探测包括:
    对反射的脉冲序列转换成的电信号进行采样,获得采样结果;
    根据所述采样结果计算所述脉冲序列对应的反射物与光探测装置之间的距离,以获得点云,其中所述点云中的每个点包含光探测装置与一个反射物之间的距离信息;
    将一定时长内的点云映射成一帧图像;
    根据所述滤波策略对所述图像进行噪声滤除。
  25. 根据权利要求24所述的方法,其特征在于,所述每个点还包含所述一个反射物的反射率。
  26. 根据权利要求24或25所述的方法,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    根据获取的所述环境参数,确定用于进行光探测的模式为特殊天气工作模式;
    其中,在所述特殊天气工作模式中,所述光探测包括:
    根据所述滤波策略对所述图像中属于特殊天气中的颗粒物体的点进行滤除。
  27. 根据权利要求26所述的方法,其特征在于,所述滤除策略包括第三滤波策略,所述第三滤波策略指示:需要滤除的点包含的距离信息指示的距离在第二距离阈值内,需要滤除的点包含的距离信息指示的距离与相邻的点包含的距离信息指示的距离之间的差值小于或等于第三距离阈值。
  28. 根据权利要求27所述的方法,其特征在于,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
    其中,不同的特殊天气工作模式下,所述第二距离阈值和/或所述第三距离阈值不同。
  29. 根据权利要求17至28中任一项所述的方法,其特征在于,所述获取进行光探测时的环境参数,包括:
    通过通信链路,从外部器件获取所述环境参数。
  30. 根据权利要求17至29中任一项所述的方法,其特征在于,所述环境参数包括环境类型;和/或,特定环境型下的程度表征量。
  31. 根据权利要求30所述的方法,其特征在于,不同的环境类型和/或不同的程度表征量区间对应不同的工作模式。
  32. 根据权利要求31所述的方法,其特征在于,所述环境参数包括天气参数和/或光线参数。
  33. 根据权利要求31或32所述的方法,其特征在于,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
  34. 根据权利要求33所述的方法,其特征在于,所述天气类型为雨,所述获取进行光探测时的环境参数,包括:
    通过车载设备的雨刮器或者车载雨量计获取降雨量。
  35. 根据权利要求17所述的方法,其特征在于,所述工作模式包括以下至少一种工作模式:强光模式、正常光模式、暗光模式。
  36. 根据权利要求35所述的方法,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    当检测到当前的环境光强度小于第一预设数值时,或者,当检测到当前的环境光强度持续小于第一预设数值的时长达到第一时长时,或者,根据当前的当地时间,选择进入暗光模式。
  37. 根据权利要求35所述的方法,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    当检测到当前的环境光强度大于第二预设数值时,或者,当检测到当前的环境光强度持续大于第二预设数值的时长达到第二时长时,选择进入强光模式。
  38. 一种光探测方法,其特征在于,包括:
    发射光脉冲序列;
    对所述脉冲序列进行光电转换,得到电信号;
    对所述电信号进行采样,以获取采样波形;
    将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;
    基于所述输出结果,对所述波形进行处理。
  39. 根据权利要求38所述的方法,其特征在于,所述方法还包括:
    利用机器学习算法,在线训练所述滤波模型。
  40. 根据权利要求38或39所述的方法,其特征在于,所述基于所述输出结果,对所述波形进行处理,包括:
    在输出结果指示需要滤除的概率大于预设值时,继续进行滤除判断;
    基于滤除判断结果,对所述波形进行处理。
  41. 根据权利要求38或39所述的方法,其特征在于,所述基于所述输出结果,对所述波形进行处理,包括:
    在输出结果指示需要滤除的概率小于预设值时,不对所述波形进行滤除。
  42. 一种光探测装置,其特征在于,包括:
    获取模块,用于获取进行光探测时的环境参数;
    确定模块,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作参数;
    光探测模块,用于基于所述确定模块确定的所述工作参数,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  43. 根据权利要求42所述的装置,其特征在于,所述工作参数包括以下中的至少一种:
    发射脉冲序列时的参数、对反射的脉冲序列转换成的电信号进行采样时的参数、对电信号进行采样得到的结果进行处理的参数、对基于位置对点云信息进行排布得到的图像进行处理的参数。
  44. 根据权利要求43所述的装置,其特征在于,所述发射脉冲序列时的参数包括以下中的至少一种:
    发射脉冲序列的功率、发射脉冲序列的频率、脉冲序列的出射路径改变的速度、出射的脉冲序列的扫描范围或扫描图案。
  45. 根据权利要求43或44所述的装置,其特征在于,所述对反射的脉冲序列转换成的电信号进行采样时的参数包括:
    对所述电信号进行采样的采样频率;和/或,对反射的脉冲序列转换成的电信号进行采样的最小采样阈值。
  46. 根据权利要求43至45中任一项所述的装置,其特征在于,所述对电信号进行采样得到的结果进行处理的参数,包括以下中的至少一种:
    对由采样得到的结果进行滤波的参数、对由采样得到的电信号进行放大的参数。
  47. 根据权利要求45所述的装置,其特征在于,所述对由采样得到的结果进行滤波的参数,包括:
    需要进行滤除判断的波形对应的返回时间范围和/或返回距离范围,以及设定的第一峰值阈值;
    其中,在进行目标波形的滤除判断时,在所述目标波形未触发所述第一峰值阈值时,确定对所述目标波形进行滤除,其中,所述目标波形的返回时间和/或返回距离位于所述返回时间范围和/或返回距离范围内。
  48. 根据权利要求45所述的装置,其特征在于,所述对由采样得到的结果进行滤波的参数,包括:
    对结果进行滤除所采用的模型。
  49. 根据权利要求48所述的装置,其特征在于,所述光探测模块进一步用于:
    将采样得到的结果输入到所述模型,以用于得到输出结果,所述输出结果指示是否对所述采样得到的结果进行滤除,或者需要滤除的概率值;
    基于所述输出结果,对所述采样得到的结果进行处理。
  50. 根据权利要求46至49中任一项所述的装置,其特征在于,所述对 由采样得到的电信号进行放大的参数,包括:
    对由采样得到的电信号进行放大的倍率。
  51. 根据权利要求43至50中任一项所述的装置,其特征在于,所述对基于位置对点云信息进行排布得到的图像进行处理的参数,包括:
    所述图像上需要进行滤除判断的点对应的返回距离范围、需要滤除的点与相邻的点之间的距离差阈值和/或反射率差阈值;
    其中,在进行目标点的滤除判断时,在所述目标点与相邻点之间的距离差和/或反射率差大于或等于所述距离阈值和/或所述反射率阈值时,确定需要滤除所述目标点。
  52. 根据权利要求42至51中任一项所述的装置,其特征在于,所述获取模块进一步用于:
    通过通信链路,从外部器件获取所述环境参数。
  53. 根据权利要求42至52中任一项所述的装置,其特征在于,所述环境参数包括环境类型;和/或,特定环境类型下的程度表征量。
  54. 根据权利要求53所述的装置,其特征在于,不同的环境类型和/或不同的程度表征量区间对应的所述工作参数的取值不同。
  55. 根据权利要求54所述的装置,其特征在于,所述环境参数包括天气参数和/或光线参数。
  56. 根据权利要求54或55所述的装置,其特征在于,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
  57. 根据权利要求56所述的装置,其特征在于,所述天气类型为雨,所述获取模块进一步用于:
    通过车载设备的雨刮器或者车载雨量计获取降雨量。
  58. 根据权利要求42至57任一项所述的装置,其特征在于,所述光探测模块包括探测器;
    所述光探测装置还包括:
    光源,用于出射光脉冲序列;
    扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉冲序列经过所述扫描模块后入射至所述探测器;
    所述探测器用于基于发射的脉冲序列以及经反射物反射的脉冲序列计 算光探测装置与所述反射物之间的距离。
  59. 根据权利要求58所述的装置,其特征在于,所述扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
  60. 一种光探测装置,其特征在于,包括:
    获取模块,用于获取进行光探测时的环境参数;
    确定模块,用于根据所述获取模块获取的所述环境参数,确定用于进行光探测的工作模式,其中,不同的工作模式对应不同的工作参数;
    光探测模块,用于基于所述确定模块确定的所述工作模式,进行光探测,其中,所述光探测用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  61. 根据权利要求60所述的装置,其特征在于,不同的工作模式对应的以下工作参数中的至少一种不同:
    发射脉冲序列的功率;
    发射脉冲序列的频率;
    出射的脉冲序列的扫描范围或扫描图案;
    对反射的脉冲序列转换成的电信号的放大倍率;
    对反射的脉冲序列转换成的电信号进行采样的采样频率;
    对反射的脉冲序列转换成的电信号进行采样的最小采样阈值;
    滤除策略,其中,所述滤除策略用于滤除反射的脉冲序列对应的处理结果。
  62. 根据权利要求60或61所述的装置,其特征在于,所述确定模块进一步用于:
    根据所述获取模块获取的所述环境参数,确定用于进行光探测的模式为特殊天气工作模式;
    其中,在所述特殊天气工作模式中,所述光探测包括:
    将反射的脉冲序列转换成电信号;
    根据滤波策略,确定是否滤除所述电信号,以及滤除需要滤除的所述电信号;
    其中,需要滤除的电信号对应的反射物为特殊天气中的颗粒物体,不需要滤除的电信号对应的反射物为正常物体。
  63. 根据权利要求62所述的装置,其特征在于,所述滤波策略包括第一滤波策略,所述第一滤波策略指示:当所述电信号对应的反射物与光探测装置之间的距离在第一距离阈值内,且所述电信号的峰值小于第一峰值阈值时,确定需要滤除所述电信号。
  64. 根据权利要求63所述的装置,其特征在于,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
    其中,不同的特殊天气工作模式下,所述第一距离阈值和/或所述第一峰值阈值不同。
  65. 根据权利要求62所述的装置,其特征在于,所述滤除策略包括第二滤波策略,所述第二滤波策略指示:
    利用滤波模型确定所述电信号是否滤除或者滤除的概率,其中,所述滤波模型包括反射物为正常物体时所述电信号的参数特征和/或反射物为特殊天气中的颗粒物体时所述电信号的参数特征。
  66. 根据权利要求65所述的装置,其特征在于,还包括训练模块,用于:
    利用机器学习的装置对正常物体对应的电信号和特殊天气中的颗粒物体对应的电信号进行聚类分析,在线训练所述滤波模型。
  67. 根据权利要求60或61所述的装置,其特征在于,所述光探测包括:
    对反射的脉冲序列转换成的电信号进行采样,获得采样结果;
    根据所述采样结果计算所述脉冲序列对应的反射物与光探测装置之间的距离,以获得点云,其中所述点云中的每个点包含光探测装置与一个反射物之间的距离信息;
    将一定时长内的点云映射成一帧图像;
    根据所述滤波策略对所述图像进行噪声滤除。
  68. 根据权利要求67所述的装置,其特征在于,所述每个点还包含所述一个反射物的反射率。
  69. 根据权利要求67或68所述的装置,其特征在于,所述确定模块进一步用于:
    根据所述获取模块获取的所述环境参数,确定用于进行光探测的模式为 特殊天气工作模式;
    其中,在所述特殊天气工作模式中,所述光探测包括:
    根据所述滤波策略对所述图像中属于特殊天气中的颗粒物体的点进行滤除。
  70. 根据权利要求69所述的装置,其特征在于,所述滤除策略包括第三滤波策略,所述第三滤波策略指示:需要滤除的点包含的距离信息指示的距离在第二距离阈值内,需要滤除的点包含的距离信息指示的距离与相邻的点包含的距离信息指示的距离之间的差值小于或等于第三距离阈值。
  71. 根据权利要求70所述的装置,其特征在于,所述特殊天气工作模式包括至少两种特殊天气工作模式,所述至少两种特殊天气工作模式包括不同天气类型对应的特殊天气工作模式,或者包括同一天气类型的不同程度的特殊天气工作模式;
    其中,不同的特殊天气工作模式下,所述第二距离阈值和/或所述第三距离阈值不同。
  72. 根据权利要求60至71中任一项所述的装置,其特征在于,所述获取模块进一步用于:
    通过通信链路,从外部器件获取所述环境参数。
  73. 根据权利要求60至72中任一项所述的装置,其特征在于,所述环境参数包括环境类型;和/或,特定环境型下的程度表征量。
  74. 根据权利要求73所述的装置,其特征在于,不同的环境类型和/或不同的程度表征量区间对应不同的工作模式。
  75. 根据权利要求74所述的装置,其特征在于,所述环境参数包括天气参数和/或光线参数。
  76. 根据权利要求74或75所述的装置,其特征在于,所述天气参数包括天气类型,所述天气类型为:雨、雪、雾、霾或沙尘暴。
  77. 根据权利要求76所述的装置,其特征在于,所述天气类型为雨,所述获取模块进一步用于:
    通过车载设备的雨刮器或者车载雨量计获取降雨量。
  78. 根据权利要求60至77任一项所述的装置,其特征在于,所述光探测模块包括探测器;
    所述光探测装置还包括:
    光源,用于出射光脉冲序列;
    扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉冲序列经过所述扫描模块后入射至所述探测器;
    所述探测器用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  79. 根据权利要求78所述的装置,其特征在于,所述扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
  80. 根据权利要求60至79任一项所述的装置,,其特征在于,所述工作模式包括以下至少一种工作模式:强光模式、正常光模式、暗光模式。
  81. 根据权利要求80所述的装置,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    当检测到当前的环境光强度小于第一预设数值时,或者,当检测到当前的环境光强度持续小于第一预设数值的时长达到第一时长时,或者,根据当前的当地时间,选择进入暗光模式。
  82. 根据权利要求80所述的装置,其特征在于,所述根据获取的所述环境参数,确定用于进行光探测的工作模式,包括:
    当检测到当前的环境光强度大于第二预设数值时,或者,当检测到当前的环境光强度持续大于第二预设数值的时长达到第二时长时,选择进入强光模式。
  83. 一种光探测装置,其特征在于,包括:
    发射模块,用于发射光脉冲序列;
    光电转换模块,用于对所述脉冲序列进行光电转换,得到电信号;
    采样模块,用于对所述电信号进行采样,以获取采样波形;
    滤波模块,用于将所述采样波形输入到滤波模型,以获取输出结果,所述输出结果指示是否对所述采样波形进行滤除,或者需要滤除的概率值;
    处理模块,用于基于所述输出结果,对所述波形进行处理。
  84. 根据权利要求83所述的装置,其特征在于,还包括训练模块,用于:
    利用机器学习算法,在线训练所述滤波模型。
  85. 根据权利要求83或84所述的装置,其特征在于,所述处理模块进一步用于:
    在输出结果指示需要滤除的概率大于预设值时,继续进行滤除判断;
    基于滤除判断结果,对所述波形进行处理。
  86. 根据权利要求83或84所述的装置,其特征在于,所述处理模块进一步用于:
    在输出结果指示需要滤除的概率小于预设值时,不对所述波形进行滤除。
  87. 根据权利要求83至86任一项所述的装置,其特征在于,所述光探测装置还包括:
    扫描模块,包括至少一个相对所述光源运动的光学元件,用于将来自所述光源的光脉冲序列依次改变至不同的传播方向出射;经反射物反射的光脉冲序列经过所述扫描模块后入射至所述光电转换模块;
    所述处理模块用于基于发射的脉冲序列以及经反射物反射的脉冲序列计算光探测装置与所述反射物之间的距离。
  88. 根据权利要求87所述的装置,其特征在于,所述扫描模块包括至少两个旋转的棱镜,所述至少两个旋转的棱镜依次位于所述光脉冲序列的传播光路上,用于依次将所述光脉冲序列改变至不同的传播方向。
  89. 一种移动平台,其特征在于,所述移动平台包括根据权利要求42至88中任一项所述的光探测装置。
PCT/CN2018/113131 2018-10-31 2018-10-31 光探测方法、光探测装置和移动平台 WO2020087376A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880016692.5A CN111448475B (zh) 2018-10-31 2018-10-31 光探测方法、光探测装置和移动平台
PCT/CN2018/113131 WO2020087376A1 (zh) 2018-10-31 2018-10-31 光探测方法、光探测装置和移动平台
US17/246,346 US20210255289A1 (en) 2018-10-31 2021-04-30 Light detection method, light detection device, and mobile platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113131 WO2020087376A1 (zh) 2018-10-31 2018-10-31 光探测方法、光探测装置和移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/246,346 Continuation US20210255289A1 (en) 2018-10-31 2021-04-30 Light detection method, light detection device, and mobile platform

Publications (1)

Publication Number Publication Date
WO2020087376A1 true WO2020087376A1 (zh) 2020-05-07

Family

ID=70463543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113131 WO2020087376A1 (zh) 2018-10-31 2018-10-31 光探测方法、光探测装置和移动平台

Country Status (3)

Country Link
US (1) US20210255289A1 (zh)
CN (1) CN111448475B (zh)
WO (1) WO2020087376A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935742B (zh) * 2022-04-18 2023-08-22 深圳阜时科技有限公司 发射模组、光电检测装置及电子设备
CN114637016B (zh) * 2022-05-11 2022-08-09 西安晟昕科技发展有限公司 一种激光雷达信号发射及信号处理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735858A (ja) * 1993-07-16 1995-02-07 Omron Corp 距離計測装置
CN102692622A (zh) * 2012-05-28 2012-09-26 清华大学 基于密集脉冲的激光探测方法
CN104483675A (zh) * 2014-12-18 2015-04-01 扬州天目光电科技有限公司 自适应激光测距装置及其测距方法
CN105807928A (zh) * 2016-03-10 2016-07-27 苏州易乐展示系统工程有限公司 一种任意墙面互动系统及其扫描误差处理方法
CN106093958A (zh) * 2016-08-24 2016-11-09 武汉万集信息技术有限公司 基于双apd的激光测距方法及装置
CN106443688A (zh) * 2016-08-30 2017-02-22 上海未来伙伴机器人有限公司 一种抗干扰的红外测障方法
CN106597461A (zh) * 2016-12-16 2017-04-26 西安五湖智联半导体有限公司 一种二维扫描测距装置
CN107748359A (zh) * 2017-12-06 2018-03-02 北醒(北京)光子科技有限公司 一种环境光噪声抑制电路及激光雷达
CN207134606U (zh) * 2016-10-12 2018-03-23 意法半导体(R&D)有限公司 用于控制照明源的驱动电流的装置
CN108008399A (zh) * 2016-10-28 2018-05-08 江苏徕兹测控科技有限公司 一种手持激光测距装置及其方法
CN108307180A (zh) * 2016-08-26 2018-07-20 三星电子株式会社 图像传感器中的像素、成像单元、用于测距的系统及方法
CN108445500A (zh) * 2018-02-07 2018-08-24 余晓智 一种tof传感器的距离计算方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332798A (en) * 1997-12-19 1999-06-30 Univ Carnegie Mellon Radar range sensor
JP3911575B2 (ja) * 2001-12-18 2007-05-09 株式会社トプコン パルス方式の光波距離計
DE102010062378B4 (de) * 2010-12-03 2024-06-06 Robert Bosch Gmbh Verfahren und Einrichtung für die Umfelderfassung mit einer Lidarsensorik
AT510296B1 (de) * 2010-12-21 2012-03-15 Riegl Laser Measurement Sys Verfahren zur entfernungsmessung mittels laserimpulsen
JP2012154719A (ja) * 2011-01-25 2012-08-16 Omron Corp 物体検出ユニット
US10627490B2 (en) * 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
US10739456B2 (en) * 2016-06-17 2020-08-11 Kabushiki Kaisha Toshiba Distance measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735858A (ja) * 1993-07-16 1995-02-07 Omron Corp 距離計測装置
CN102692622A (zh) * 2012-05-28 2012-09-26 清华大学 基于密集脉冲的激光探测方法
CN104483675A (zh) * 2014-12-18 2015-04-01 扬州天目光电科技有限公司 自适应激光测距装置及其测距方法
CN105807928A (zh) * 2016-03-10 2016-07-27 苏州易乐展示系统工程有限公司 一种任意墙面互动系统及其扫描误差处理方法
CN106093958A (zh) * 2016-08-24 2016-11-09 武汉万集信息技术有限公司 基于双apd的激光测距方法及装置
CN108307180A (zh) * 2016-08-26 2018-07-20 三星电子株式会社 图像传感器中的像素、成像单元、用于测距的系统及方法
CN106443688A (zh) * 2016-08-30 2017-02-22 上海未来伙伴机器人有限公司 一种抗干扰的红外测障方法
CN207134606U (zh) * 2016-10-12 2018-03-23 意法半导体(R&D)有限公司 用于控制照明源的驱动电流的装置
CN108008399A (zh) * 2016-10-28 2018-05-08 江苏徕兹测控科技有限公司 一种手持激光测距装置及其方法
CN106597461A (zh) * 2016-12-16 2017-04-26 西安五湖智联半导体有限公司 一种二维扫描测距装置
CN107748359A (zh) * 2017-12-06 2018-03-02 北醒(北京)光子科技有限公司 一种环境光噪声抑制电路及激光雷达
CN108445500A (zh) * 2018-02-07 2018-08-24 余晓智 一种tof传感器的距离计算方法及系统

Also Published As

Publication number Publication date
CN111448475B (zh) 2024-04-12
US20210255289A1 (en) 2021-08-19
CN111448475A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2022126427A1 (zh) 点云处理方法、点云处理装置、可移动平台和计算机存储介质
JP2023516654A (ja) 固体LiDARのためのノイズフィルタリングシステムおよび方法
WO2021051281A1 (zh) 点云滤噪的方法、测距装置、系统、存储介质和移动平台
CN111712828A (zh) 物体检测方法、电子设备和可移动平台
WO2020191727A1 (zh) 一种雷达功率控制方法及装置
US20210255289A1 (en) Light detection method, light detection device, and mobile platform
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
JP2020153706A (ja) 電子装置および方法
WO2020142939A1 (zh) 回波信号处理方法、设备及存储介质
WO2020215252A1 (zh) 测距装置点云滤噪的方法、测距装置和移动平台
CN114402225A (zh) 测距方法、测距装置和可移动平台
CN114026410A (zh) 点云着色方法、点云着色系统和计算机存储介质
WO2021232227A1 (zh) 构建点云帧的方法、目标检测方法、测距装置、可移动平台和存储介质
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
WO2020113360A1 (zh) 一种采样电路、采用方法及测距装置、移动平台
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质
CN111902732A (zh) 一种探测装置初始状态标定方法及装置
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质
CN114080545A (zh) 数据处理方法、装置、激光雷达和存储介质
WO2020220275A1 (zh) 一种探测电路、探测方法及测距装置、移动平台
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台
WO2022198638A1 (zh) 激光测距方法、激光测距装置和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938426

Country of ref document: EP

Effective date: 20210531

122 Ep: pct application non-entry in european phase

Ref document number: 18938426

Country of ref document: EP

Kind code of ref document: A1