WO2020140993A1 - 可行走式安全检查设备及控制方法 - Google Patents

可行走式安全检查设备及控制方法 Download PDF

Info

Publication number
WO2020140993A1
WO2020140993A1 PCT/CN2020/070412 CN2020070412W WO2020140993A1 WO 2020140993 A1 WO2020140993 A1 WO 2020140993A1 CN 2020070412 W CN2020070412 W CN 2020070412W WO 2020140993 A1 WO2020140993 A1 WO 2020140993A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
walkable
inspection device
safety inspection
arm
Prior art date
Application number
PCT/CN2020/070412
Other languages
English (en)
French (fr)
Inventor
傅冰
喻卫丰
冉占森
姜瑞新
郭超
许艳伟
周合军
胡煜
宗春光
孙尚民
Original Assignee
同方威视技术股份有限公司
同方威视科技(北京)有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 同方威视科技(北京)有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to GB2109930.4A priority Critical patent/GB2610370B/en
Priority to PL438333A priority patent/PL244461B1/pl
Publication of WO2020140993A1 publication Critical patent/WO2020140993A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material

Definitions

  • the present disclosure relates to the technical field of detection, and in particular to a walkable safety inspection device and control method.
  • active container/vehicle inspection equipment includes steel wheels, such as combined inspection equipment, and rubber wheels, such as on-board inspection equipment. These inspection devices use reciprocating scanning to image the container/vehicle.
  • a walkable safety inspection device including:
  • An arm frame and a plurality of detectors provided on the arm frame, the arm frame is rotatably connected to the first vehicle body and the second vehicle body respectively;
  • At least two independently driven and independently steered first driving wheels disposed on the first body, configured to implement walking and steering of the first body;
  • At least two independently driven and independently steered second drive wheels are provided on the second vehicle body, and are configured to achieve walking and steering of the second vehicle body.
  • the walkable safety inspection device further includes:
  • the controller is configured to control the rotation speed and steering angle of the first driving wheel and the second driving wheel.
  • the controller is configured to receive the state parameters of the first vehicle body and the second vehicle body provided by the detection mechanism, so as to control the first drive wheel and the vehicle according to the state parameters The rotation speed and steering angle of the second driving wheel are controlled; the detection mechanism is provided in the walkable safety inspection device or independently provided outside the walkable safety inspection device.
  • the controller is configured to control the radial planes of the first drive wheel and the second drive wheel to be parallel to the scanning channel of the walkable safety inspection device.
  • the controller is configured to control the radial planes of the first drive wheel and the second drive wheel to be tangent to the same circle, and the center of the circle is located on each The first driving wheel and each of the second driving wheels are connected to each other within an overall area formed to realize the rotation movement of the walkable safety inspection device.
  • the controller is configured to control the radial planes of the first drive wheel and the second drive wheel to be parallel to each other and move in the same direction, and cause the first drive wheel and the second drive wheel to move in the same direction.
  • the radial plane of the second driving wheel is at a preset angle with the scanning channel of the walkable safety inspection device, so as to realize the translational movement of the walkable safety inspection device.
  • the controller is further configured to control the rotation of the boom relative to the first vehicle body or the second vehicle body.
  • the controller is configured to control the boom to rotate relative to the second vehicle body, drive the first vehicle body relative to the second vehicle body to adjust the first vehicle Relative positions of the body and the second vehicle body in a first direction and a second direction perpendicular to the first direction, the first direction being parallel to the scanning channel of the walkable safety inspection device.
  • the controller is configured to control the second drive wheel to remain parallel to the scanning channel when controlling the boom to rotate relative to the second vehicle body, and to control the The radial plane is always tangent to the circular rotation trajectory of the first driving wheel.
  • the controller is configured to keep the first vehicle body and the second vehicle body parallel when switching from inspection conditions to transition conditions, and the first vehicle body and The distance in the second direction of the second vehicle body under the transitional working condition is smaller than the distance in the second direction under the inspection working condition.
  • the controller is configured to keep the first vehicle body and the second vehicle body parallel when switching from the inspection condition or the transfer condition to the transportation condition, and the first The distance between a vehicle body and the second vehicle body in the second direction under the transportation condition is smaller than the distance in the second direction under the transition condition or under the inspection condition.
  • the boom includes:
  • the first vertical arm is connected to the first vehicle body, and is rotatable around an axis in the vertical direction;
  • a second vertical arm connected to the second vehicle body and rotatable around an axis in the vertical direction;
  • a connecting arm two ends are respectively connected with the first vertical arm and the second vertical arm, and the connection at least one end is a rotatable connection;
  • a first detection arm fixedly connected to the connecting arm
  • a second detection arm rotatably connected to the connection arm or the first detection arm
  • the plurality of detectors are respectively installed on the first detection arm and the second detection arm;
  • the controller is further configured to control the second detection arm to collapse toward the connection arm or the second detection arm before driving the arm frame to rotate relative to the first vehicle body.
  • the connecting arm is L-shaped.
  • it further includes: a protective wall provided on at least one of the first vehicle body and the second vehicle body.
  • a control method based on the aforementioned walkable safety inspection device including:
  • the rotation speed and the steering angle of the first drive wheel and the second drive wheel are controlled to achieve at least one of the linear walking, rotation and translation movements of the walkable safety inspection device Species.
  • control method further includes:
  • the arm frame When switching from the inspection mode to the transfer mode or the transport mode, the arm frame is controlled to rotate relative to the second vehicle body to drive the first vehicle body to move relative to the second vehicle body to adjust the Relative positions of the first vehicle body and the second vehicle body in a first direction and a second direction perpendicular to the first direction, the first direction and the scanning channel of the walkable safety inspection device parallel.
  • FIG. 1 is a schematic structural view of some embodiments of a walking safety inspection device according to the present disclosure
  • FIG. 2 is a schematic structural view of the embodiment of FIG. 1 at a top view
  • 3(a)-3(d) are schematic diagrams of the state of the drive wheels of some embodiments of the walkable safety inspection device of the present disclosure during straight and steering movements;
  • FIG. 4 is a schematic diagram of angle calculation of some embodiments of the walking safety inspection device of the present disclosure when the front wheels turn and the rear wheels go straight;
  • FIG. 5 is a schematic diagram of angle calculation when some embodiments of the walking safety inspection device of the present disclosure are turned when both front and rear wheels are turned;
  • 6(a)-6(b) are schematic diagrams of the state of the driving wheels when the self-propelled safety inspection device of the present disclosure rotates in different rotation directions in some embodiments;
  • FIGS. 7(a)-6(b) are schematic diagrams of the state of the driving wheels of some embodiments of the walkable safety inspection device of the present disclosure during lateral or oblique translation movement;
  • FIGS 8(a)-8(b) are schematic diagrams of the state of the driving wheels of the straight-through and steering movements of some embodiments of the walkable safety inspection device of the present disclosure
  • FIG. 9 is a schematic diagram of the angle calculation of each driving wheel when switching from the inspection mode to the transition mode under some embodiments of the walking safety inspection device of the present disclosure
  • FIG. 10 is a schematic diagram of angle calculation when some embodiments of the walking safety inspection device of the present disclosure are turned under the turning conditions;
  • FIG. 11 is a schematic diagram of the state of the driving wheels of some embodiments of the walking safety inspection device of the present disclosure under transportation conditions;
  • FIG. 12 is a schematic diagram of the connection between the detection unit and the controller in some embodiments of the walkable safety inspection device of the present disclosure.
  • first”, “second” and similar words used in this disclosure do not indicate any order, quantity or importance, but are only used to distinguish different parts. Similar words such as “include” or “include” mean that the elements before the word cover the elements listed after the word, and do not exclude the possibility of covering other elements. “Up”, “down”, “left”, “right”, etc. are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intervening device, or may be directly connected to the other device without an intervening device.
  • the embodiments of the present disclosure provide a walkable safety inspection device and a control method, which can meet more flexible work requirements.
  • the walking safety inspection device includes: a first vehicle body 10, a second vehicle body 20, a ray source 40, a protective wall, an arm frame 30 and a plurality of detectors 50.
  • the ray source 40 is provided in the first vehicle body 10 and is used to emit a high-energy ray beam, such as X-rays or ⁇ -rays.
  • the protective wall is provided on the second vehicle body 20, and may also be provided on the first vehicle body 10.
  • the arm frame 30 can be rotatably connected to the first body 10 and the second body 20 respectively.
  • the inspection working condition refers to the working process of the inspection of the goods or vehicles to be inspected by the walking safety inspection equipment
  • the transition working condition refers to the walking of the walking safety inspection equipment itself in a small range to achieve, for example, the replacement of the work site
  • the transportation working condition refers to the non-working process in which the walkable safety inspection equipment is transported by other transportation equipment (such as transportation vehicles) in a short distance or a long distance.
  • a plurality of detectors 50 may be provided on the arm frame 30 for receiving the beam emitted from the radiation source 40, which includes the beam directly hitting the detector, and also includes the beam after transmitting the object to be inspected.
  • the walkable safety inspection apparatus may further include: at least two independently driven and independently steered first drive wheels 60 and at least two independently driven and independently steered second drive wheels 70.
  • the first driving wheel 60 is disposed on the first vehicle body 10, and is used to realize walking and steering of the first vehicle body 10.
  • the second driving wheel 70 is disposed on the second vehicle body 20, and is used to realize walking and steering of the second vehicle body 20.
  • At least two independently driven and independently steered driving wheels are respectively provided in the first body and the second body.
  • independent driving and independent steering of the driving wheels a variety of walking functions can be realized, such as straight travel, side shift, Rotation, folding transition, etc., to meet more flexible work requirements, applicable to a wider range of applications.
  • the number of the first driving wheel 60 and the second driving wheel 70 can be selected according to needs, for example, an appropriate number of driving wheels can be set according to the support stability.
  • two first drive wheels 60 are provided on the first vehicle body 10 and two second drive wheels 70 are provided on the second vehicle body.
  • the plane formed by the steering shaft of the first driving wheel 60 and the steering shaft of the second driving wheel 70 and the steering of the first driving wheel 60 at the rear are based on the straight direction of the walking safety inspection device
  • the plane formed by the shaft and the steering shaft of the second driving wheel 70 is parallel.
  • the first driving wheel 60 and the second driving wheel 70 can realize the walking function by driving the driving motor, and the steering function by driving the rotating motor.
  • Servo motors can be used for driving motor and rotating motor.
  • the first driving wheel 60 and the second driving wheel 70 can also adopt other driving structures, for example, a pneumatic or hydraulic motor is used to implement a walking function, and an electric push rod or a cylinder is used to implement a steering function.
  • the walking safety inspection device may further include a controller 90 for driving the first drive wheel 60 and the second drive The rotation speed and steering angle of the wheel 70 are controlled.
  • the controller 90 may receive the state parameters of the first vehicle body 10 and the second vehicle body 20 provided by the detection mechanism 80, so as to control the first driving wheel 60 and the second driving wheel according to the state parameters 70 speed and steering angle are controlled.
  • the controller 90 may also receive control commands from a remote control platform (such as an industrial computer, etc.) or a remote controller to control the rotation speed and steering angle of the first drive wheel 60 and the second drive wheel 70 .
  • the detection mechanism 80 may include an angle encoder, an accelerometer, a gyroscope, etc. to detect the movement speed, acceleration, rotation angle, rotation angular velocity, angular acceleration, etc. of the driving wheel or the walkable safety inspection device, and may also include infrared, laser, etc. , Ultrasonic, visual, buried magnetic stripe or GPS positioning elements, etc., in order to obtain the position, posture, etc. of the driving wheels or walkable safety inspection equipment. These detection mechanisms 80 may be provided in a walkable safety inspection device.
  • the detection mechanism 80 may further include a detection element provided outside the walkable security inspection device, for example, an imaging element provided in the venue.
  • the detection mechanism 80 can collect the current movement position, movement speed/acceleration, movement posture and other state parameters of the walkable safety inspection equipment for the remote control platform or the controller 90 in the walkable safety inspection equipment to control.
  • the controller 90 may control the first driving wheel 60 and the second driving wheel
  • the radial planes of 70 are parallel to the scanning channel of the walkable safety inspection device. In this way, the walkable safety inspection device can walk in a straight line with respect to the item to be inspected, so as to realize scanning of various cross sections of the item to be inspected.
  • the controller 90 or remote control platform can obtain the posture data of the walkable safety inspection device itself or the driving wheel from the detection mechanism 80 in real time, and according to Attitude data adjusts the speed and steering angle of the drive wheels.
  • the controller 90 can realize the automatic straightening of the walkable safety inspection device through continuous correction operation.
  • the adjustment of the steering angle of the drive wheels involved in the correction operation may include the straight-wheel rearward and front-wheel adjustment methods of FIG. 3(b) or the straight-wheel front and rear-wheel adjustment methods of FIG. 3(c), and may also include FIG. 3 (d) The method of adjusting both front and rear wheels.
  • the controller 90 also controls the rotation of the drive wheels at the same time, so as to adjust the posture during traveling, and realize automatic straightening.
  • the calculation of the steering angle can be realized by the following motion simplified model example.
  • x is the distance between the common rotation center O of the front wheels and the center line of the two front and rear second drive wheels
  • l is the center line of the front and rear two second drive wheels and the two first drive wheels
  • the distance between the center lines of m, m is the distance between the center line of the front drive wheel and the center line of the rear drive wheel.
  • both the front and rear wheels participate in steering operations.
  • the rotation angle ⁇ l of the second drive wheel in the front left position and the rotation angle ⁇ r of the first drive wheel in the front right position satisfy the following relationship:
  • x is the distance between the common rotation center O of the front wheels and the center line of the two front and rear second drive wheels
  • l is the center line of the two front and rear second drive wheels and the two first drive wheels
  • the distance between the center line of ,m is the distance between the center line of the front drive wheel and the center line of the rear drive wheel.
  • the controller 90 can control the radial planes of the first drive wheel 60 and the second drive wheel 70 to be tangent to the same circle, and the center of the circle is located on each of the first drives
  • the wheel 60 and each of the second driving wheels 70 are connected to each other within the overall area formed.
  • the rotation center axis is a vertical line passing through the center of a circle tangent to each drive wheel.
  • the walkable safety inspection equipment can also achieve relatively flexible translational motion.
  • the controller 90 can control the radial planes of the first drive wheel 60 and the second drive wheel 70 to be parallel to and move in the same direction, and make the first The radial planes of a driving wheel 60 and the second driving wheel 70 form a preset angle with the scanning channel of the walkable safety inspection device, so as to realize the translational movement of the walkable safety inspection device.
  • the radial planes of the first driving wheel 60 and the second driving wheel 70 are perpendicular to the scanning channel, so that the lateral movement of the walkable safety inspection device can be realized, so that the straight line can be scanned in the forward direction After a row of items to be inspected, it traverses to the front of another adjacent row of objects to be inspected, and then scans the row of objects to be inspected in the reverse direction.
  • the steering state of the obliquely translated drive wheels is also shown in FIG. 7(b).
  • the controller 90 can also control the boom 30 relative to the first body 10 or the second body 20 rotation control.
  • the controller 90 can drive the first vehicle body 10 to move relative to the second vehicle body 20 by controlling the rotation of the boom 30 relative to the second vehicle body 20. In this way, the relative positions of the first vehicle body 10 and the second vehicle body 20 in the first direction and the second direction perpendicular to the first direction can be adjusted.
  • the first direction here is parallel to the scanning channel of the walkable safety inspection device.
  • the arm frame 30 may include: a first vertical arm 31, a second vertical arm 32, a connecting arm 33, a first detection arm 34 and a second detection arm 35.
  • the first vertical arm 31 is connected to the first vehicle body 10 and is rotatable about an axis in the vertical direction.
  • the second vertical arm 32 is connected to the second vehicle body 20 and is rotatable about an axis in the vertical direction.
  • Two ends of the connecting arm 33 are respectively connected to the first vertical arm 31 and the second vertical arm 32, and the connection at least one end is a rotatable connection.
  • a rotation mechanism such as an electric motor, a pneumatic or hydraulic motor, etc., may be provided between the first body 10 or the second body 20 and the boom 30.
  • the first detection arm 34 is fixedly connected to the connecting arm 33.
  • the second detection arm 35 is rotatably connected to the connection arm 33 or the first detection arm 34.
  • a plurality of detectors 50 are respectively mounted on the first detection arm 34 and the second detection arm 35.
  • the controller 90 Before the controller 90 drives the arm frame 30 to rotate relative to the second vehicle body 20, the controller 90 can control the second detection arm 35 to approach the connecting arm 33 or the second detection arm 35.
  • the side is folded to prevent the arm 30 from interfering with other devices when the arm 30 rotates relative to the first body 10 or the second body 20.
  • the boom 30 can also be raised and lowered relative to the first body 10 and the second body 20, so as to reduce the overall size of the walkable inspection equipment during the transition or transportation.
  • a lifting mechanism such as a cylinder, a hydraulic cylinder, a hoist, etc., may be provided between the first body 10 or the second body 20 and the boom 30.
  • the walkable safety inspection device may be switched from the inspection condition to the folded condition under the transition condition. Under the transition conditions, a small range of transition walking can be achieved.
  • the controller 90 can control the second driving wheel 70 to keep parallel to the scanning channel when controlling the rotation of the boom 30 relative to the second vehicle body 20, and control the first driving wheel 60.
  • the radial plane is always tangent to the circular rotation trajectory of the first driving wheel 60.
  • the controller 90 can keep the first vehicle body 10 and the second vehicle body 20 parallel.
  • the distance between the first vehicle body 10 and the second vehicle body 20 in the second direction under the transition conditions is smaller than the distance in the second direction under the inspection conditions, thereby reducing the width dimension of the walkable safety inspection equipment, Improve the ability to pass.
  • the second driving wheel remains parallel to the scanning channel, and the two first driving wheels in front and rear rotate around a common rotation center O.
  • the rotation center O is the vertical axis of the upper boom of the second vehicle body.
  • the rotation angles ⁇ r and ⁇ l of the first drive wheel at the right rear position satisfy the following relationship:
  • the rotation angles ⁇ t and ⁇ l of the first drive wheel in the front right position satisfy the following relationship: y and x are the distances between the rotation center O and the radial planes of the two front and rear first drive wheels, l is the distance from the vertical axis of the upper boom of the first body to the rotation center O, and m and n are the first car respectively
  • the distance between the vertical axis of the on-body boom and the steering axes of the two first drive wheels at the front and rear, ⁇ l is the plane formed by the rotation axes of the boom on the second body and the first body, respectively, and the first body
  • the walkable safety inspection device can realize the straight traveling of FIG. 8(a) and the turning of FIG. 8(b).
  • the steering angle can be calculated by the following motion simplified model. Referring to FIG. 10, all drive wheels rotate around a common rotation center O.
  • the second driving wheel at the left rear position is kept parallel to the scanning channel
  • the steering angle ⁇ t of the second driving wheel at the front left position and the steering angle ⁇ l of the first driving wheel at the front right position satisfy the following relationship:
  • the steering angle ⁇ r of the first drive wheel in the rear right position and the steering angle ⁇ l of the first drive wheel in the front right position satisfy the following relationship:
  • x is the distance between the rotation center O and the radial plane of the second driving wheel at the left rear position
  • l is the distance between the center connecting line of the two front and rear second driving wheels and the center connecting line of the two front and rear driving wheels
  • m , N and h are the virtual links between the steering axis of the second drive wheel at the left rear position and the second drive wheel at the left front position, the first drive wheel at the right rear position and the second drive wheel at the right front position during scanning
  • ⁇ l
  • the walkable safety inspection device can be further folded into a smaller size for transportation over a long distance through the vehicle.
  • the controller 90 can keep the first vehicle body 10 and the second vehicle body 20 parallel when switching from the inspection condition or the transfer condition to the transportation condition, and the first vehicle body 10 and the second vehicle body 20 in the second direction spacing under the transportation condition is smaller than the second direction spacing under the transition condition or the second direction spacing under the inspection condition.
  • the second direction here is a direction perpendicular to the direction of the scan channel.
  • the connecting arm 33 of the arm frame 3 can be designed to be L-shaped so as to be folded into a smaller size, and the folded arm frame can be parallel to the first body and the second body.
  • the connecting arm of this form also connects the ray source 40 to the first vertical arm 31 so that when the first vertical arm 31 rotates with the connecting arm 33 relative to the first vehicle body 10, the ray source 40 also rotates accordingly
  • the scanning surface between the radiation source 40 and the detector 50 is maintained to save the correction operation of the radiation source 40, the first detection arm 34, the second detection arm 35, and the like.
  • the present disclosure also provides a corresponding control method.
  • the control method includes: controlling the rotation speeds and steering angles of the first driving wheel 60 and the second driving wheel 70 under inspection conditions to implement the walkable safety inspection device At least one of linear walking, rotation and translation movement.
  • control method may further include: controlling the arm frame 30 to rotate relative to the second vehicle body 20 to drive the first
  • the car body 10 moves relative to the second car body 20 to adjust the relative of the first car body 10 and the second car body 20 in a first direction and a second direction perpendicular to the first direction Position, the first direction is parallel to the scanning channel of the walkable security inspection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Manipulator (AREA)
  • Vehicle Body Suspensions (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种可行走式安全检查设备及控制方法。可行走式安全检查设备包括:第一车体(10)和设置在第一车体(10)中的射线源(40);第二车体(20);臂架(30)和设置在所述臂架(30)上的多个探测器(50),所述臂架(30)分别与所述第一车体(10)和所述第二车体(20)可转动地连接;至少两个独立驱动和独立转向的第一驱动轮(60),设置在所述第一车体(10)上,被配置为实现所述第一车体(10)的行走和转向;和至少两个独立驱动和独立转向的第二驱动轮(70),设置在所述第二车体(20)上,被配置为实现所述第二车体(20)的行走和转向。

Description

可行走式安全检查设备及控制方法
相关申请的交叉引用
本公开是以CN申请号为201910009504.2,申请日为2019年1月4日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及检测技术领域,尤其涉及一种可行走式安全检查设备及控制方法。
背景技术
在一些相关技术中,主动式集装箱/车辆检查设备有装备钢轮的,例如组合式检查设备等,也有装备橡胶轮的,例如车载式检查设备等。这些检查设备均采用往复扫描的方式对集装箱/车辆进行成像检查。
发明内容
在本公开的一个方面,提供一种可行走式安全检查设备,包括:
第一车体和设置在第一车体中的射线源;
第二车体;
臂架和设置在所述臂架上的多个探测器,所述臂架分别与所述第一车体和所述第二车体可转动地连接;
至少两个独立驱动和独立转向的第一驱动轮,设置在所述第一车体上,被配置为实现所述第一车体的行走和转向;和
至少两个独立驱动和独立转向的第二驱动轮,设置在所述第二车体上,被配置为实现所述第二车体的行走和转向。
在一些实施例中,所述可行走式安全检查设备还包括:
控制器,被配置为对所述第一驱动轮和所述第二驱动轮的转速和转向角进行控制。
在一些实施例中,所述控制器被配置为接收检测机构提供的所述第一车体和所述第二车体的状态参数,以便根据所述状态参数对所述第一驱动轮和所述第二驱动轮的转速和转向角进行控制;所述检测机构设置在所述可行走式安全检查设备内,或者独立地设置在所述可行走式安全检查设备的外部。
在一些实施例中,所述控制器被配置为控制所述第一驱动轮和所述第二驱动轮的径向平面均与所述可行走式安全检查设备的扫描通道平行。
在一些实施例中,所述控制器被配置为控制所述第一驱动轮和所述第二驱动轮的径向平面均与同一个圆形相切,且所述圆形的圆心位于各个所述第一驱动轮和各个所述第二驱动轮相互连线所形成的总体区域之内,以实现所述可行走式安全检查设备的自转运动。
在一些实施例中,所述控制器被配置为控制所述第一驱动轮和所述第二驱动轮的径向平面均相互平行且同向运动,并使所述第一驱动轮和所述第二驱动轮的径向平面与所述可行走式安全检查设备的扫描通道呈预设夹角,以实现所述可行走式安全检查设备的平移运动。
在一些实施例中,所述控制器还被配置为对所述臂架相对于所述第一车体或所述第二车体的转动进行控制。
在一些实施例中,所述控制器被配置为控制所述臂架相对于第二车体转动,带动所述第一车体相对于所述第二车体运动,以调整所述第一车体和所述第二车体在第一方向和与所述第一方向垂直的第二方向上的相对位置,所述第一方向与所述可行走式安全检查设备的扫描通道平行。
在一些实施例中,所述控制器被配置为在控制所述臂架相对于第二车体转动时,控制所述第二驱动轮保持与扫描通道平行,并控制所述第一驱动轮的径向平面与所述第一驱动轮的圆形转动轨迹始终相切。
在一些实施例中,所述控制器被配置为从检查工况切换成转场工况时,使所述第一车体与所述第二车体保持平行,且所述第一车体和所述第二车体在转场工况下的第二方向间距小于检查工况下的第二方向间距。
在一些实施例中,所述控制器被配置为从检查工况或转场工况切换为运输工况时,使所述第一车体与所述第二车体保持平行,且所述第一车体和所述第二车体在运输工况下的第二方向间距小于转场工况下的第二方向间距或检查工况下的第二方向间距。
在一些实施例中,所述臂架包括:
第一竖臂,与所述第一车体连接,且绕竖直方向的轴线可转动;
第二竖臂,与所述第二车体连接,且绕竖直方向的轴线可转动;
连接臂,两端分别与所述第一竖臂和所述第二竖臂连接,并至少一端的连接为可转动的连接;
第一探测臂,与所述连接臂固定连接;和
第二探测臂,与所述连接臂或所述第一探测臂可转动地连接;
其中,所述多个探测器分别安装在所述第一探测臂和所述第二探测臂上;
所述控制器还被配置为在驱动所述臂架相对于所述第一车体转动之前,控制所述第二探测臂向靠近所述连接臂或者所述第二探测臂一侧收合。
在一些实施例中,所述连接臂呈L型。
在一些实施例中,还包括:防护墙,设置在所述第一车体和所述第二车体中的至少一个上。
在本公开的一个方面,提供一种基于前述的可行走式安全检查设备的控制方法,包括:
在检查工况下,对所述第一驱动轮和所述第二驱动轮的转速和转向角进行控制,以实现所述可行走式安全检查设备的直线行走、自转和平移运动中的至少一种。
在一些实施例中,所述控制方法还包括:
在从检查工况切换到转场工况或者运输工况时,控制所述臂架相对于第二车体转动,带动所述第一车体相对于所述第二车体运动,以调整所述第一车体和所述第二车体在第一方向和与所述第一方向垂直的第二方向上的相对位置,所述第一方向与所述可行走式安全检查设备的扫描通道平行。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开可行走式安全检查设备的一些实施例的结构示意图;
图2是图1实施例在俯视角度的结构示意图;
图3(a)-3(d)分别为本公开可行走式安全检查设备的一些实施例在直行和转向运动时的驱动轮状态的示意图;
图4为本公开可行走式安全检查设备的一些实施例在前轮转向、后轮直行时的角度计算示意图;
图5为本公开可行走式安全检查设备的一些实施例在前后轮均转向时的角度计算示意图;
图6(a)-6(b)分别为本公开可行走式安全检查设备的一些实施例在不同自转方向下自转运动时的驱动轮状态的示意图;
图7(a)-6(b)分别为本公开可行走式安全检查设备的一些实施例在横向或斜向平移运动时的驱动轮状态的示意图;
图8(a)-8(b)分别为本公开可行走式安全检查设备的一些实施例在转场时直行和转向运动时的驱动轮状态的示意图;
图9为本公开可行走式安全检查设备的一些实施例在从检查工况切换到转场工况时各驱动轮的角度计算示意图;
图10为本公开可行走式安全检查设备的一些实施例在转场工况下转向时的角度计算示意图;
图11为本公开可行走式安全检查设备的一些实施例在运输工况下的驱动轮状态的示意图;
图12为本公开可行走式安全检查设备的一些实施例中检测单元与控制器的连接示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件 与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
经研究发现,由于相关技术中的组合式检查设备的钢轮由电机驱动,并在轨道上运行,不具备转向功能,因此这种方式在扫描形式上比较固定,且需要比较多的土建工作,增加生产成本和周期。而对于相关技术中的车载式检查设备,其可通过底盘车移动的方式扫描集装箱/车辆,其前轮转向功能一般只能用于扫描过程中的小范围纠偏。
有鉴于此,本公开实施例提供一种可行走式安全检查设备及控制方法,能够满足更加灵活的工作需求。
如图1所示,是根据本公开可行走式安全检查设备的一些实施例的结构示意图。参考图1及图2,在一些实施例中,可行走式安全检查设备包括:第一车体10、第二车体20、射线源40、防护墙、臂架30和多个探测器50。射线源40设置在第一车体10中,用于发射高能量的射线束,例如X射线或γ射线等。防护墙设置在第二车体20上,也可设置在第一车体10上。臂架30可分别与所述第一车体10和所述第二车体20可转动地连接,通过调整臂架30相对第一车体10和第二车体20的摆动角度,可满足不同工况下的需要,例如检查工况、转场工况或者运输工况等。其中,检查工况是指可行走式安全检查设备对待检的货物或车辆进行检查的工作过程,转场工况是指可行走式安全检查设备自身在小范围的行走来实现例如更换工作场地的非工作过程,运输工况是指可行走式安全检查设备通过其他运输设备(例如运输车辆)进行近距离或远距离运输的非工作过程。多个探测器50可设置在臂架30上,用于接收来自射线源40发出的射线束,这包括直接射到探测器的射线束,也包括透射被检物体后的射线束。
参考图1,可行走式安全检查设备还可以包括:至少两个独立驱动和独立转向的第一驱动轮60和至少两个独立驱动和独立转向的第二驱动轮70。第一驱动轮60设置 在所述第一车体10上,用于实现所述第一车体10的行走和转向。第二驱动轮70设置在所述第二车体20上,用于实现所述第二车体20的行走和转向。
本实施例在第一车体和第二车体分别设置至少两个独立驱动和独立转向的驱动轮,通过驱动轮的独立驱动和独立转向,可实现多种行走功能,例如直行、侧移、自转、折叠转场等,从而满足更加灵活的工作需求,适用更广的应用范围。
第一驱动轮60和第二驱动轮70的数量可根据需要进行选择,例如根据支撑稳定性来设定合适数量的驱动轮。参考图2-图11,在一些实施例中,第一车体10上设有两个第一驱动轮60,第二车体上设有两个第二驱动轮70。为了便于计算,根据可行走式安全检查设备的直行方向,在前的第一驱动轮60的转向轴和第二驱动轮70的转向轴所形成的平面与在后的第一驱动轮60的转向轴和第二驱动轮70的转向轴所形成的平面平行。
在一些实施例中,第一驱动轮60和第二驱动轮70可通过驱动电机的驱动来实现行走功能,而通过转动电机的驱动来实现转向功能。驱动电机和转动电机可采用伺服电机。第一驱动轮60和第二驱动轮70还可以采用其它的驱动结构,例如通过气动或液压马达实现行走功能,通过电动推杆或气缸实现转向功能。
为了实现可行走式安全检查设备的控制,参考图12,在一些实施例中,可行走式安全检查设备还可以包括控制器90,用于对所述第一驱动轮60和所述第二驱动轮70的转速和转向角进行控制。控制器90可接收检测机构80提供的所述第一车体10和所述第二车体20的状态参数,以便根据所述状态参数对所述第一驱动轮60和所述第二驱动轮70的转速和转向角进行控制。在另一些实施例中,控制器90也可接收来自远程控制平台(例如工控机等)或者遥控器的控制指令,来对第一驱动轮60和第二驱动轮70的转速和转向角进行控制。
检测机构80可以包括角度编码器、加速度仪、陀螺仪等,以检测驱动轮或可行走式安全检查设备的运动速度、加速度、转动角度、转动角速度、角加速度等,也可以包括基于红外、激光、超声、视觉、地埋磁条或GPS等的定位元件等,以便获取驱动轮或可行走式安全检查设备的位置、姿态等。这些检测机构80可设置在可行走式安全检查设备内。检测机构80还可以包括设置在所述可行走式安全检查设备的外部的检测元件,例如设置在场地内的摄像元件等。通过检测机构80可采集可行走式安全检查设备的当前运动位置、运动速度/加速度、运动姿态等状态参数,以供远程控制平台或可行走式安全检查设备内的控制器90进行控制。
参考图3(a)-图3(d),当需要沿可行走式安全检查设备的扫描通道平行的方向直行时,控制器90可控制所述第一驱动轮60和所述第二驱动轮70的径向平面均与所述可行走式安全检查设备的扫描通道平行。这样可行走式安全检查设备可相对于待检查物品直线行走,来实现待检查物品的各个截面的扫描。
在直线行走的过程中,当遇到地面不平或受到干扰的外力时,控制器90或者远程控制平台能够从检测机构80实时地获得可行走式安全检查设备自身或者驱动轮的姿态数据,并根据姿态数据对驱动轮的速度以及转向角进行调整。控制器90可通过持续的纠偏操作来实现可行走式安全检查设备的自动走直。
纠偏操作所涉及的驱动轮转向角的调整可以包括图3(b)的后轮直行、前轮调整的方式或者图3(c)的前轮直行、后轮调整的方式,也可以包括图3(d)前后轮均调整的方式。除了驱动轮的转向角控制之外,控制器90还同时控制驱动轮的转动,以便在行进过程中调整姿态,实现自动走直。
为了实现驱动轮转向角的控制,可通过以下的运动简化模型实例来实现转向角的计算。参考图4,当前轮向左转向、后轮直行时,左前位置的第二驱动轮的转角θ l与右前位置的第一驱动轮的转角θ r满足以下关系式:
Figure PCTCN2020070412-appb-000001
在图4中,x为前轮共同的转动中心O与前后两个第二驱动轮的中心连线的间距,l为前后两个第二驱动轮的中心连线与前后两个第一驱动轮的中心连线的间距,m为在前的驱动轮的中心连线与在后的驱动轮的中心连线的间距。α=θ l=90°-δ l,β=θ r=90°-δ r
这样,通过上述计算,在对前轮转向角进行控制时,只需控制右前位置的第一驱动轮的转向角,而左前位置的第二驱动轮的转向角则可根据上述关系式随动即可。
在另一个运动简化模型实例中,参考图5,前轮和后轮均参与转向操作。左前位置的第二驱动轮的转角θ l与右前位置的第一驱动轮的转角θ r满足以下关系式:
Figure PCTCN2020070412-appb-000002
在图5中,x为前轮共同的转动中心O与前后两个第二驱动轮的中心连线的间距,l为前后两个第二驱动轮的中心连线与前后两个第一驱动轮的中心连线的间距,m为在前的驱动轮的中心连线与在后的驱动轮的中心连线的间距。α=θ l=90°-δ l,β=θ r=90°-δ r
从图5中可以看出,前后两个第二驱动轮的转向角相反,前后两个第一驱动轮的转向角也相反。这样通过上述计算,在对前轮和后轮的转向角进行控制时,只需控制右前位置的第一驱动轮的转向角,而前后两个第二驱动轮及右后位置的第一驱动轮的 转向角则可根据上述关系式及转向角的相反关系随动即可。
在可行走式安全检查设备进行检查过程中,当沿一排待检测物品直行一个行程后,还可以继续另一排待检测物体的检查行程。为了使可行走式安全检查设备更方便地从前一个检查行程调整到新的检查行程,可通过可行走式安全检查设备的自转来实现较大幅度的转向,例如90°或180°的转向。此时,控制器90可控制所述第一驱动轮60和所述第二驱动轮70的径向平面均与同一个圆形相切,且所述圆形的圆心位于各个所述第一驱动轮60和各个所述第二驱动轮70相互连线所形成的总体区域之内。根据第一驱动轮60和第二驱动轮70的同向转动,可实现图6(a)的逆时针自转或者图6(b)的顺时针自转。自转中心轴线为通过与各个驱动轮均相切的圆形的中心的竖直线。
除了直行和自转,可行走式安全检查设备还可实现比较灵活的平移运动。参考图7(a)和图7(b),控制器90可控制所述第一驱动轮60和所述第二驱动轮70的径向平面均相互平行且同向运动,并使所述第一驱动轮60和所述第二驱动轮70的径向平面与所述可行走式安全检查设备的扫描通道呈预设夹角,以实现所述可行走式安全检查设备的平移运动。
在图7(a)中,第一驱动轮60和所述第二驱动轮70的径向平面与扫描通道垂直,这样可实现可行走式安全检查设备的横向移动,这样可在正向直行扫描一排待检测物品之后,横移到相邻的另一排待检测物体的前方,再反向直行扫描该排待检测物体。除了横向移动,在图7(b)中还示出了斜向平移的驱动轮转向状态,在可行走式安全检查设备平移时,其射线源与探测器的相对位置无需改变,因此可以省去射线源与探测器的校准过程,从而极大程度的提高检查效率。
参考图1,控制器90除了能够对第一驱动轮60和第二驱动轮70进行控制之外,还可以对所述臂架30相对于所述第一车体10或所述第二车体20的转动进行控制。控制器90可通过控制所述臂架30相对于第二车体20的转动,来带动所述第一车体10相对于所述第二车体20运动。这样,可实现所述第一车体10和所述第二车体20在第一方向和与所述第一方向垂直的第二方向上的相对位置的调整。这里第一方向与所述可行走式安全检查设备的扫描通道平行。
在图1中,臂架30可以包括:第一竖臂31、第二竖臂32、连接臂33、第一探测臂34和第二探测臂35。第一竖臂31与所述第一车体10连接,且绕竖直方向的轴线可转动。第二竖臂32与所述第二车体20连接,且绕竖直方向的轴线可转动。连接臂33的两端分别与所述第一竖臂31和所述第二竖臂32连接,并至少一端的连接为可转 动的连接。相应地,可在第一车体10或者第二车体20与臂架30之间设置转动机构,例如电机、气动或液压马达等。第一探测臂34与所述连接臂33固定连接。第二探测臂35与所述连接臂33或所述第一探测臂34可转动地连接。多个探测器50分别安装在所述第一探测臂34和所述第二探测臂35上。
当控制器90驱动所述臂架30相对于所述第二车体20转动之前,控制器90可控制所述第二探测臂35向靠近所述连接臂33或者所述第二探测臂35一侧收合,以免在臂架30相对于第一车体10或第二车体20转动时发生臂架30与其它器件的干涉。另外,臂架30还可以相对于第一车体10和第二车体20升降,以减小转场或运输时可行走检查设备的整体尺寸。相应的,可在第一车体10或者第二车体20与臂架30之间设置升降机构,例如气缸、液压缸、卷扬等。
参考图8(a),在一些实施例中,可行走式安全检查设备可从检查工况切换成转场工况下的折叠状态。在转场工况下,可实现小范围的转场行走。而参考图9,控制器90可以在控制所述臂架30相对于第二车体20转动时,控制所述第二驱动轮70保持与扫描通道平行,并控制所述第一驱动轮60的径向平面与所述第一驱动轮60的圆形转动轨迹始终相切。而在这个过程中,所述控制器90可使所述第一车体10与所述第二车体20保持平行。所述第一车体10和所述第二车体20在转场工况下的第二方向间距小于检查工况下的第二方向间距,从而减小了可行走式安全检查设备宽度尺寸,提高了通过能力。
为了实现切换状态时的驱动轮转向角的控制,可通过以下的运动简化模型实例来实现转向角的计算。参考图9,第二驱动轮保持与扫描通道平行,前后两个第一驱动轮绕共同的转动中心O转动。该转动中心O即为第二车体上臂架的竖直轴线。右后位置的第一驱动轮的转角θ r与θ l满足以下关系式:
Figure PCTCN2020070412-appb-000003
右前位置的第一驱动轮的转角θ t与θ l满足以下关系式:
Figure PCTCN2020070412-appb-000004
y和x分别为转动中心O与前后两个第一驱动轮的径向平面的间距,l为第一车体上臂架的竖直轴线到转动中心O的距离,m和n分别为第一车体上臂架的竖直轴线与前后两个第一驱动轮的转向轴线的间距,θ l为臂架分别在第二车体和第一车体上的转动轴线所形成的平面与第一车体上前后两个第一驱动轮的中心连线的夹角。α=90°-θ t,β=90°-θ r
这样,通过上述计算,在对第一驱动轮的转向角进行控制时,只需实时地测量θ l的数值,并根据上述关系式随动地调整前后两个第一驱动轮的转向角即可。
在转场状态下,可行走式安全检查设备可实现图8(a)的直行和图8(b)的转向。对于图8(b)的转向,可通过以下的运动简化模型来实现转向角的计算。参考图10,所有驱动轮均绕共同的转动中心O转动。其中,使左后位置的第二驱动轮与扫描通道保持平行,且左前位置的第二驱动轮的转向角θ t与右前位置的第一驱动轮的转向角θ l满足以下关系式:
Figure PCTCN2020070412-appb-000005
而右后位置的第一驱动轮的转向角θ r与右前位置的第一驱动轮的转向角θ l满足以下关系式:
Figure PCTCN2020070412-appb-000006
x为转动中心O与左后位置的第二驱动轮的径向平面的间距,l为前后两个第二驱动轮的中心连线与前后两个第一驱动轮的中心连线的间距,m、n和h分别为左后位置的第二驱动轮的转向轴线与左前位置的第二驱动轮、右后位置的第一驱动轮和右前位置的第二驱动轮之间的虚拟连线在扫描通道的投影长度。α=θ l,β=θ r,δ=θ t
这样,通过上述计算,在对转场工况下的各驱动轮的转向角进行控制时,只需控制右前位置的第一驱动轮的转向角,而左前位置的第二驱动轮和右后位置的第一驱动轮的转向角则可根据上述关系式随动即可。
参考图11,可行走式安全检查设备还可以被进一步折叠成更小的尺寸,以便通过载具进行较远距离的运输。相应的,控制器90可在从检查工况或转场工况切换为运输工况时,使所述第一车体10与所述第二车体20保持平行,且所述第一车体10和所述第二车体20在运输工况下的第二方向间距小于转场工况下的第二方向间距或检查工况下的第二方向间距。这里的第二方向为与扫描通道的方向垂直的方向。在图11中,可将臂架3的连接臂33设计成L型,以便折叠成更小的尺寸,还能使折叠后的臂架与第一车体和第二车体平行。另外,该形态的连接臂还使射线源40与第一竖臂31连接,以便在第一竖臂31随着连接臂33一起相对于第一车体10转动时,射线源40也随之转动,从而维持射线源40与探测器50之间的扫描面,以节省射线源40、第一探测臂34和第二探测臂35等的校正操作。
通过上述可行走式安全检查设备的多个实施例的说明,可实现多种扫描形态,适用更大的应用范围,使用上也非常灵活。另一方面,通过转场和运输,可减少现场的土建要求和组装、恢复及调试等工作量,从而节约时间和成本。
在上述可行走式安全检查设备的各个实施例的基础上,本公开还提供了对应的控制方法。在一些实施例中,控制方法包括:在检查工况下,对所述第一驱动轮60和所述第二驱动轮70的转速和转向角进行控制,以实现所述可行走式安全检查设备的直线行走、自转和平移运动中的至少一种。
在另一些实施例中,控制方法还可以包括:在从检查工况切换到转场工况或者运输工况时,控制所述臂架30相对于第二车体20转动,带动所述第一车体10相对于所述第二车体20运动,以调整所述第一车体10和所述第二车体20在第一方向和与所述第一方向垂直的第二方向上的相对位置,所述第一方向与所述可行走式安全检查设备的扫描通道平行。
本说明书中多个实施例采用递进的方式描述,各实施例的重点有所不同,而各个实施例之间相同或相似的部分相互参见即可。对于方法实施例而言,由于其整体以及涉及的步骤与设备实施例中的内容存在对应关系,因此描述的比较简单,相关之处参见设备实施例的部分说明即可。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (16)

  1. 一种可行走式安全检查设备,包括:
    第一车体(10)和设置在第一车体(10)中的射线源(40);
    第二车体(20);
    臂架(30)和设置在所述臂架(30)上的多个探测器(50),所述臂架(30)分别与所述第一车体(10)和所述第二车体(20)可转动地连接;
    至少两个独立驱动和独立转向的第一驱动轮(60),设置在所述第一车体(10)上,被配置为实现所述第一车体(10)的行走和转向;和
    至少两个独立驱动和独立转向的第二驱动轮(70),设置在所述第二车体(20)上,被配置为实现所述第二车体(20)的行走和转向。
  2. 根据权利要求1所述的可行走式安全检查设备,还包括:
    控制器(90),被配置为被配置为对所述第一驱动轮(60)和所述第二驱动轮(70)的转速和转向角进行控制。
  3. 根据权利要求2所述的可行走式安全检查设备,其中,所述控制器(90)被配置为接收检测机构(80)提供的所述第一车体(10)和所述第二车体(20)的状态参数,以便根据所述状态参数对所述第一驱动轮(60)和所述第二驱动轮(70)的转速和转向角进行控制;所述检测机构(80)设置在所述可行走式安全检查设备内,或者独立地设置在所述可行走式安全检查设备的外部。
  4. 根据权利要求2所述的可行走式安全检查设备,其中,所述控制器(90)被配置为控制所述第一驱动轮(60)和所述第二驱动轮(70)的径向平面均与所述可行走式安全检查设备的扫描通道平行。
  5. 根据权利要求2所述的可行走式安全检查设备,其中,所述控制器(90)被配置为控制所述第一驱动轮(60)和所述第二驱动轮(70)的径向平面均与同一个圆形相切,且所述圆形的圆心位于各个所述第一驱动轮(60)和各个所述第二驱动轮(70)相互连线所形成的总体区域之内,以实现所述可行走式安全检查设备的自转运动。
  6. 根据权利要求2所述的可行走式安全检查设备,其中,所述控制器(90)被配置为控制所述第一驱动轮(60)和所述第二驱动轮(70)的径向平面均相互平行且同向运动,并使所述第一驱动轮(60)和所述第二驱动轮(70)的径向平面与所述可行走式安全检查设备的扫描通道呈预设夹角,以实现所述可行走式安全检查设备的平 移运动。
  7. 根据权利要求2所述的可行走式安全检查设备,其中,所述控制器(90)还被配置为对所述臂架(30)相对于所述第一车体(10)或所述第二车体(20)的转动进行控制。
  8. 根据权利要求7所述的可行走式安全检查设备,其中,所述控制器(90)被配置为控制所述臂架(30)相对于第二车体(20)转动,带动所述第一车体(10)相对于所述第二车体(20)运动,以调整所述第一车体(10)和所述第二车体(20)在第一方向和与所述第一方向垂直的第二方向上的相对位置,所述第一方向与所述可行走式安全检查设备的扫描通道平行。
  9. 根据权利要求8所述的可行走式安全检查设备,其中,所述控制器(90)被配置为在控制所述臂架(30)相对于第二车体(20)转动时,控制所述第二驱动轮(70)保持与扫描通道平行,并控制所述第一驱动轮(60)的径向平面与所述第一驱动轮(60)的圆形转动轨迹始终相切。
  10. 根据权利要求8所述的可行走式安全检查设备,其中,所述控制器(90)被配置为从检查工况切换成转场工况时,使所述第一车体(10)与所述第二车体(20)保持平行,且所述第一车体(10)和所述第二车体(20)在转场工况下的第二方向间距小于检查工况下的第二方向间距。
  11. 根据权利要求8所述的可行走式安全检查设备,其中,所述控制器(90)被配置为从检查工况或转场工况切换为运输工况时,使所述第一车体(10)与所述第二车体(20)保持平行,且所述第一车体(10)和所述第二车体(20)在运输工况下的第二方向间距小于转场工况下的第二方向间距或检查工况下的第二方向间距。
  12. 根据权利要求7所述的可行走式安全检查设备,其中,所述臂架(30)包括:
    第一竖臂(31),与所述第一车体(10)连接,且绕竖直方向的轴线可转动;
    第二竖臂(32),与所述第二车体(20)连接,且绕竖直方向的轴线可转动;
    连接臂(33),两端分别与所述第一竖臂(31)和所述第二竖臂(32)连接,并至少一端的连接为可转动的连接;
    第一探测臂(34),与所述连接臂(33)固定连接;和
    第二探测臂(35),与所述连接臂(33)或所述第一探测臂(34)可转动地连接;
    其中,所述多个探测器(50)分别安装在所述第一探测臂(34)和所述第二探测臂(35)上;
    所述控制器(90)还被配置为在驱动所述臂架(30)相对于所述第一车体(10)转动之前,控制所述第二探测臂(35)向靠近所述连接臂(33)或者所述第二探测臂(35)一侧收合。
  13. 根据权利要求12所述的可行走式安全检查设备,其中,所述连接臂(33)呈L型。
  14. 根据权利要求1所述的可行走式安全检查设备,还包括:
    防护墙,设置在所述第一车体(10)和所述第二车体(20)中的至少一个上。
  15. 一种基于权利要求1~14任一所述的可行走式安全检查设备的控制方法,包括:
    在检查工况下,对所述第一驱动轮(60)和所述第二驱动轮(70)的转速和转向角进行控制,以实现所述可行走式安全检查设备的直线行走、自转和平移运动中的至少一种。
  16. 根据权利要求15所述的控制方法,还包括:
    在从检查工况切换到转场工况或者运输工况时,控制所述臂架(30)相对于第二车体(20)转动,带动所述第一车体(10)相对于所述第二车体(20)运动,以调整所述第一车体(10)和所述第二车体(20)在第一方向和与所述第一方向垂直的第二方向上的相对位置,所述第一方向与所述可行走式安全检查设备的扫描通道平行。
PCT/CN2020/070412 2019-01-04 2020-01-06 可行走式安全检查设备及控制方法 WO2020140993A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2109930.4A GB2610370B (en) 2019-01-04 2020-01-06 Walkable safety check device and control method
PL438333A PL244461B1 (pl) 2019-01-04 2020-01-06 Ruchome urządzenie do kontroli bezpieczeństwa oraz sposób sterowania oparty na ruchomym urządzeniu do kontroli bezpieczeństwa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910009504.2 2019-01-04
CN201910009504 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140993A1 true WO2020140993A1 (zh) 2020-07-09

Family

ID=71407005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070412 WO2020140993A1 (zh) 2019-01-04 2020-01-06 可行走式安全检查设备及控制方法

Country Status (3)

Country Link
GB (1) GB2610370B (zh)
PL (1) PL244461B1 (zh)
WO (1) WO2020140993A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269007A1 (en) * 2006-05-05 2007-11-22 Alan Akery Multiple pass cargo inspection system
CN102147485A (zh) * 2006-10-13 2011-08-10 同方威视技术股份有限公司 移动式车辆检查系统
CN106324693A (zh) * 2016-08-30 2017-01-11 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN106353830A (zh) * 2016-08-30 2017-01-25 北京华力兴科技发展有限责任公司 用于自行走载车的驱动系统及集装箱/车辆检查设备
CN106645225A (zh) * 2016-12-29 2017-05-10 同方威视技术股份有限公司 可移动物品检查系统
CN107765320A (zh) * 2017-11-24 2018-03-06 同方威视技术股份有限公司 检查系统
CN107860782A (zh) * 2017-09-22 2018-03-30 北京华力兴科技发展有限责任公司 移动式物品检查系统
CN109521481A (zh) * 2019-01-04 2019-03-26 同方威视技术股份有限公司 检查装置
CN109932755A (zh) * 2019-01-04 2019-06-25 同方威视技术股份有限公司 可行走式检查设备及控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269007A1 (en) * 2006-05-05 2007-11-22 Alan Akery Multiple pass cargo inspection system
CN102147485A (zh) * 2006-10-13 2011-08-10 同方威视技术股份有限公司 移动式车辆检查系统
CN106324693A (zh) * 2016-08-30 2017-01-11 北京华力兴科技发展有限责任公司 自行走式集装箱/车辆检查设备
CN106353830A (zh) * 2016-08-30 2017-01-25 北京华力兴科技发展有限责任公司 用于自行走载车的驱动系统及集装箱/车辆检查设备
CN106645225A (zh) * 2016-12-29 2017-05-10 同方威视技术股份有限公司 可移动物品检查系统
CN107860782A (zh) * 2017-09-22 2018-03-30 北京华力兴科技发展有限责任公司 移动式物品检查系统
CN107765320A (zh) * 2017-11-24 2018-03-06 同方威视技术股份有限公司 检查系统
CN109521481A (zh) * 2019-01-04 2019-03-26 同方威视技术股份有限公司 检查装置
CN109932755A (zh) * 2019-01-04 2019-06-25 同方威视技术股份有限公司 可行走式检查设备及控制方法

Also Published As

Publication number Publication date
GB2610370B (en) 2023-11-15
GB202109930D0 (en) 2021-08-25
GB2610370A (en) 2023-03-08
PL244461B1 (pl) 2024-01-29
PL438333A1 (pl) 2022-08-22

Similar Documents

Publication Publication Date Title
CN109932755B (zh) 可行走式检查设备及控制方法
KR101909766B1 (ko) 비-평탄 표면을 운행하기 위한 홀로노믹 움직임 운송수단
WO2020140972A1 (zh) 辐射检查设备和辐射检查方法
US4977971A (en) Hybrid robotic vehicle
JP2014161991A (ja) ロボットの移動機構及びそれを備えるロボット
AU2012290702A1 (en) Holonomic motion vehicle for travel on non-level surfaces
JP2008143449A (ja) 構造物への作業機吊下げ用支持台車装置およびその運転方法
CN110244718B (zh) 一种可自动避障的巡视智能小车
IT201800002718A1 (it) Veicolo semovente per la movimentazione di cavalletti porta-lastre
KR20140111162A (ko) 험지 주행 가능한 다관절 로봇
US10838419B2 (en) Method and apparatus for controlled omnidirectional movement of payloads
CN1412018A (zh) 车轮
WO2020140993A1 (zh) 可行走式安全检查设备及控制方法
JP2018039310A (ja) 旅客搭乗橋
CN209765071U (zh) 辐射检查设备
CN113400280A (zh) 一种基于麦克纳姆轮的机器人
TWM550454U (zh) Agv避撞感測裝置
CN107444902A (zh) 一种具有自动抓取功能的无人搬运车
CN206985135U (zh) 一种具有自动抓取功能的无人搬运车
CN205706348U (zh) 一种用于影院的多向观影车
JP2021519243A (ja) 運搬車両
CN112158273B (zh) 一种台阶自适应行走方法及装置
CN108382458A (zh) 移动机构及移动控制方法
JP3952002B2 (ja) 段差走行機構
US20230047500A1 (en) Inclination control system for tracked vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20736067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202109930

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200106

122 Ep: pct application non-entry in european phase

Ref document number: 20736067

Country of ref document: EP

Kind code of ref document: A1