WO2020140955A1 - 含芳香聚酰胺的三元合金及其制备方法 - Google Patents

含芳香聚酰胺的三元合金及其制备方法 Download PDF

Info

Publication number
WO2020140955A1
WO2020140955A1 PCT/CN2020/070160 CN2020070160W WO2020140955A1 WO 2020140955 A1 WO2020140955 A1 WO 2020140955A1 CN 2020070160 W CN2020070160 W CN 2020070160W WO 2020140955 A1 WO2020140955 A1 WO 2020140955A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyamide
ternary alloy
polyetherimide
preparation
present
Prior art date
Application number
PCT/CN2020/070160
Other languages
English (en)
French (fr)
Inventor
张海博
高雁伟
刘新
徐达
魏嘉欣
周晨义
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2020140955A1 publication Critical patent/WO2020140955A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a ternary alloy containing aromatic polyamide and a preparation method thereof.
  • Polyetheretherketone is a special engineering plastic with excellent comprehensive performance. As a semi-crystalline thermoplastic polymer material, it has excellent flame retardancy, radiation resistance, high temperature resistance and mechanical properties. At the same time, in terms of friction and wear performance, polyetheretherketone is another good anti-friction and wear-resistant material after polytetrafluoroethylene (PTFE). Therefore, it is widely used in aerospace, instrumentation and automotive industries.
  • PTFE polytetrafluoroethylene
  • Aromatic polyamide was first developed by DuPont in 1967. It has good high temperature resistance, chemical resistance and fatigue resistance, and its friction resistance is very excellent. At present, it has been widely used in aircraft tires and fuselage materials. Some structural parts of rockets and artificial satellites are also made of composite materials reinforced with polyparaphenylene terephthalamide (PPTA) fiber, which greatly reduces The quality of flight-related instruments saves economic costs.
  • PPTA polyparaphenylene terephthalamide
  • Blending is an important method for developing new materials, which can obtain excellent comprehensive performance. Compared with the introduction of new groups and copolymerization in the main chain structure, it has the advantage of low cost. If the aromatic polyamide can be introduced into the polyetheretherketone system, it can not only realize the processing of the aromatic polyamide, but also improve the friction and mechanical properties of the polyetheretherketone.
  • the technical problem to be solved/achieved by the present invention includes at least: providing a ternary alloy containing aromatic polyamide, the alloy has higher mechanical and friction properties; providing a ternary alloy containing aromatic polyamide Preparation.
  • the present invention provides a ternary alloy containing aromatic polyamide and a preparation method thereof, in which polyetherimide (PEI) can uniformly disperse PK in the matrix of PEEK and improve the mechanical and frictional properties of the ternary alloy .
  • PEI polyetherimide
  • the invention provides a ternary alloy containing aromatic polyamide, prepared from raw materials including the following parts by weight:
  • the aromatic polyamide is an aromatic polyamide containing an ether ketone structure or an aromatic polyamide containing naphthalene.
  • the reduced viscosity of the polyetheretherketone is 0.8-1.0 dL/g, and the glass transition temperature is 142-144°C.
  • the reduced viscosity of the polyetherimide is 0.4-0.6 dL/g, and the glass transition temperature is 215-217°C.
  • the reduced viscosity of the aromatic polyamide is 0.4 to 1.0 dL/g;
  • the glass transition temperature of the aromatic polyamide containing an ether ketone structure is 325-328°C;
  • the glass transition temperature of the naphthalene-containing aromatic polyamide is 285 to 288°C.
  • the invention also provides a method for preparing the aromatic polyamide-containing ternary alloy according to the above technical solution, which includes the following steps:
  • aromatic polyamide/polyetherimide binary blend and polyetheretherketone are mixed, followed by extrusion, granulation, injection molding, and annealing to obtain a ternary alloy containing aromatic polyamide.
  • the co-solvent is one or more of calcium chloride, lithium chloride, magnesium chloride and methyltri-n-butylammonium chloride;
  • the organic solvent is one or more of N,N-dimethylacetamide, N-methylpyrrolidone, N,N-dimethylformamide and hexamethylphosphoramide.
  • the extrusion is performed in a twin-screw extruder, the temperature of the extrusion is 360-390° C., and the rotation speed of the twin-screw extruder is 20-60 r/min.
  • the injection molding temperature is 380-400°C, and the injection molding pressure is 700-900 bar.
  • the annealing temperature is 200-210°C, and the annealing time is 3-5 hours.
  • the invention provides a ternary alloy containing aromatic polyamide, which is prepared from raw materials including the following parts by weight: polyetheretherketone 70-94 parts, polyetherimide 3-20 parts, aromatic polyamide 3- 10 parts; the aromatic polyamide is an aromatic polyamide containing ether ketone structure or an aromatic polyamide containing naphthalene; PEI and PEEK have good thermodynamic compatibility, and can be a binary blend of aromatic polyamide and polyetherimide It is added to polyetheretherketone, and the intermediate action of PEI is used to uniformly disperse the aromatic polyamide in the PEEK matrix, thereby achieving the processing of aromatic polyamide. Compared with PEEK pure phase, the mechanical and friction properties of the ternary alloy Both have been improved.
  • the friction coefficient of the ternary alloy according to the present invention has decreased by ⁇ 4.7% compared with that of pure phase PEEK, the wear rate has dropped by ⁇ 35.3%, and the mechanical properties of pure phase PEEK have been greatly improved .
  • the present invention provides a ternary alloy containing aromatic polyamide, prepared from raw materials including the following parts by weight:
  • the aromatic polyamide is an aromatic polyamide containing an ether ketone structure or an aromatic polyamide containing naphthalene.
  • the raw material components are all commercially available products well known to those skilled in the art.
  • the raw material for preparing the aromatic polyamide-containing ternary alloy provided by the present invention includes 70 to 94 parts of polyetheretherketone, preferably 75 to 90 parts, and more preferably 85 to 90 parts.
  • the reduced viscosity of the polyether ether ketone is preferably 0.8 to 1.0 dL/g, more preferably 0.85 to 0.95 dL/g; the glass transition temperature of the polyether ether ketone is preferably 142 to 144 °C.
  • the raw material for preparing the aromatic polyamide-containing ternary alloy provided by the present invention includes 3 to 20 parts of polyetherimide, preferably 5 to 15 parts, and more preferably 8 to 10 parts.
  • the reduced viscosity of the polyetherimide is preferably 0.4 to 0.6 dL/g, more preferably 0.45 to 0.55 dL/g; the glass transition temperature of the polyetherimide is preferably 215 ⁇ 217°C.
  • the raw material for preparing the aromatic polyamide-containing ternary alloy provided by the present invention includes 3 to 10 parts of aromatic polyamide, preferably 4 to 9 parts, and more preferably 5 to 8 parts.
  • the reduced viscosity of the aromatic polyamide is preferably 0.4 to 1.0 dL/g, more preferably 0.5 to 0.8 dL/g, and most preferably 0.5 to 0.6 dL/g;
  • the glass transition temperature of the aromatic polyamide containing an ether ketone structure is preferably 325 to 328°C;
  • the glass transition temperature of the naphthalene-containing aromatic polyamide is preferably 285 to 288°C.
  • the aromatic polyamide is an aromatic polyamide containing an ether ketone structure (PK-1) or an aromatic polyamide containing a naphthalene (PK-2); in the present invention, the aromatic polyether containing an ether ketone structure
  • the kind and preparation method of the amide are preferably the kind and preparation method of the aromatic polyamide containing ether ketone structure disclosed in the application number CN103524730A.
  • the aromatic polyamide is a naphthalene-containing aromatic polyamide preparation method, preferably including the following steps: 1,5-naphthalene diamine and 4,4'-diphenyl ether diacid chloride in a molar ratio of 1: Mixed in a ratio of 1, using NMP as a solvent and LiCl as a catalyst to undergo polymerization reaction at room temperature; the present invention does not have any special restrictions on the amount of NMP and LiCl, and the amount well-known to those skilled in the art may be used.
  • the structural formula of the naphthalene-containing aromatic polyamide is preferably:
  • n in the structural formula is not particularly limited, and the reduced viscosity of the naphthalene-containing aromatic polyamide can be in the range of 0.4 to 1.0 dL/g, and the glass transition temperature can be in the range of 285 to 288°C. can.
  • the invention also provides a method for preparing the aromatic polyamide-containing ternary alloy according to the above technical solution, which includes the following steps:
  • aromatic polyamide/polyetherimide binary blend and polyetheretherketone are mixed, followed by extrusion, granulation, injection molding, and annealing to obtain a ternary alloy containing aromatic polyamide.
  • aromatic polyamide, polyetherimide, co-solvent and organic solvent are mixed and then discharged in deionized water to obtain a binary blend of aromatic polyamide/polyetherimide.
  • the co-solvent is preferably one or more of calcium chloride, lithium chloride, magnesium chloride and methyl tri-n-butyl ammonium chloride; when the co-solvent is two of the above-mentioned specific choices In the case of more than one species, the present invention does not have any special limitation on the mixing ratio of the specific substance, and it may be mixed in any mixing ratio.
  • the organic solvent is preferably N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF) and hexamethylphosphorus
  • DMAc N,N-dimethylacetamide
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • the present invention does not have any special limitation on the mixing ratio of the specific substances, and can be mixed according to any mixing ratio.
  • the mass ratio of the PK to the co-solvent is preferably 1: (0.1 to 2), more preferably 1: (0.5 to 1.5), and most preferably 1: (0.8 to 1.2); in the present invention
  • the ratio of the total mass of the PK and PEI to the mass of the organic solvent is preferably 1: (5-10), and more preferably 1: (6-8).
  • the mixing is preferably performed under stirring conditions; the present invention does not have any special limitation on the stirring, and a stirring process well known to those skilled in the art may be used.
  • the amount of the deionized water there is no particular limitation on the amount of the deionized water.
  • the amount well-known to those skilled in the art is used to achieve the precipitation of the crude product of the aromatic polyamide/polyetherimide binary blend from the organic solvent. Purpose only.
  • the present invention preferably crushes the crude product obtained by the discharge after washing with boiling deionized water and absolute ethanol, and repeats it 2 to 5 times, drying to obtain aromatic polyamide/polyetheracyl Binary blend of imine; the present invention does not have any special limitation on the pulverization process, and it is sufficient to use a pulverization process well known to those skilled in the art; the invention does not have any special limitation on the drying, and uses the art The drying process known to the skilled person is sufficient.
  • the PEI has good solubility in the organic solvent, and the above mixing can make the molecular chain of PEI and the molecular chain of PK intertwine, and achieve the purpose of mixing PK and PEI evenly.
  • PEI and PEEK have good thermodynamic compatibility, which can ensure that the subsequent aromatic polyamide can be better dispersed in the PEEK matrix.
  • the present invention mixes the binary blend of aromatic polyamide/polyetherimide and polyetheretherketone and sequentially produces them by extrusion Pellets, injection molding and annealing to obtain a ternary alloy containing aromatic polyamide.
  • the mixing is preferably carried out under stirring conditions.
  • the present invention does not have any particular limitation on the stirring, and it may be carried out by using a stirring process well known to those skilled in the art.
  • the present invention preferably dry the obtained mixture.
  • the drying is preferably vacuum drying; the temperature of the vacuum drying is preferably 80 to 120°C, more preferably 90 to 110°C; the time of the vacuum drying is preferably 5 to 12 hours, more preferably 8 to 10 hours.
  • the extrusion is preferably performed in a twin-screw extruder, and the temperature of the extrusion is preferably 360 to 390°C, more preferably 365 to 385°C, and most preferably 370 to 380°C;
  • the rotation speed of the twin-screw extruder is preferably 20 to 60 r/min, and more preferably 30 to 50 r/min.
  • the granulation is preferably carried out in a granulator; the present invention does not have any special limitation on the condition parameters of the granulation, and can be carried out by using condition parameters well known to those skilled in the art.
  • the invention preferably performs drying on the extruded and granulated product before injection molding.
  • the drying is preferably vacuum drying; the temperature of the vacuum drying is preferably 80 to 120°C, more preferably 90 to 110°C, and most preferably 95 to 105°C; and the time of the vacuum drying is preferably 5 to 12 hours, more preferably 8 to 10 hours.
  • the injection molding temperature is preferably 380 to 400°C, more preferably 385 to 395°C, and most preferably 388 to 392°C;
  • the injection molding pressure is preferably 700 to 900 bar, more preferably 750 ⁇ 850bar.
  • the annealing temperature is preferably 200 to 210°C, more preferably 202 to 208°C, and most preferably 204 to 206°C; the annealing time is preferably 3 to 5 hours, more preferably 3.5 to 4.5 hours.
  • the annealing can promote complete crystallization of the ternary alloy.
  • PEEK/PEI/PK-1 ternary alloy After injection molding PEEK/PEI/PK-1 ternary alloy pellets under the conditions of 380°C and 750 bar, and annealing at 210°C for 4 hours, PEEK/PEI/PK-1 ternary alloy is obtained.
  • PEEK/PEI/PK-2 ternary alloy pellets were injection molded at 400°C and 880 bar, they were annealed at 205°C for 4.5 hours to obtain PEEK/PEI/PK-1 ternary alloy.
  • PEEK/PEI binary alloy pellets were injection molded at 390°C and 800 bar, they were annealed at 205°C for 4 hours to obtain a PEEK/PEI binary alloy.
  • Table 2 Mechanical properties of the ternary alloy materials described in Examples 1 to 4, the binary alloy materials described in Comparative Example 1, and pure PEEK resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

含芳香聚酰胺的三元合金及其制备方法,含芳香聚酰胺的三元合金由包括如下重量份数的原料制备得到:聚醚醚酮70~94份,聚醚酰亚胺3~20份,芳香聚酰胺3~10份;所述芳香聚酰胺为含醚酮结构的芳香聚酰胺或含萘芳香聚酰胺;根据实施例的记载,所述的三元合金的摩擦系数较纯相PEEK的摩擦系数下降了≥4.7%,磨损率下降了≥35.3%,较纯相PEEK的力学性能得到较大的提高。

Description

[根据细则37.2由ISA制定的发明名称] 含芳香聚酰胺的三元合金及其制备方法
本申请要求于2019年01月03日提交中国专利局、申请号为CN201910003386.4、发明名称为“一种含芳香聚酰胺的三元合金及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高分子材料技术领域,尤其涉及一种含芳香聚酰胺的三元合金及其制备方法。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
聚醚醚酮(PEEK)是一种综合性能优异的特种工程塑料。作为一种半结晶性热塑性高分子材料,它具有优异的阻燃性、耐辐射性、耐高温性和机械性能。同时,在摩擦磨损性能方面,聚醚醚酮是继聚四氟乙烯(PTFE)后,又一良好的减摩耐磨材料。故其广泛应用于航空航天、仪器仪表和汽车工业等领域。
芳香聚酰胺(PK)最早由美国杜邦公司在1967年开发出来,其具有良好的耐高温性、耐化学性和耐疲劳性,且其耐摩擦性能十分优异。目前已经广泛应用于飞机的轮胎及机身材料上,火箭及人造卫星的一些结构件也采用经聚对苯二甲酰对苯二胺(PPTA)纤维增强的复合材料制作,极大的降低了飞行相关仪器的质量,节约了经济成本。
共混是开发新材料的一种重要方法,可以获得优异的综合性能,相对于在主链结构上引入新基团和共聚来说,具有成本低廉的优势。如果能将芳香聚酰胺引入到聚醚醚酮体系中,则既可实现芳香聚酰胺的加工,也可提升聚醚醚酮的摩擦与力学性能。
但由于芳香聚酰胺的链与链之间存在很强的氢键相互作用,其熔融温度已经超过了分解温度,后期加工过程具有很大难度。且较高的结晶度也使这种材料的溶解能力很弱,一般只能溶到浓硫酸之中。这些缺点均极大的地限制了芳香聚酰胺在共混材料中的应用范围。
发明内容
本发明要解决的技术问题/达到的目的至少包括:提供一种含芳香聚酰胺的三元合金,所述合金具有较高的机械和摩擦性能;提供一种含芳香聚酰胺的三元合金的制备方法。
为此,本发明提供一种含芳香聚酰胺的三元合金及其制备方法,其中聚醚酰亚胺(PEI)可以使PK均匀分散在PEEK的基体中,提高三元合金的机械及摩擦性能。
为实现上述目的,本发明公开了下述技术方案:
本发明提供一种含芳香聚酰胺的三元合金,由包括如下重量份数的原料制备得到:
聚醚醚酮     70~94份
聚醚酰亚胺   3~20份
芳香聚酰胺   3~10份;
所述芳香聚酰胺为含醚酮结构的芳香聚酰胺或含萘芳香聚酰胺。
优选的,所述聚醚醚酮的比浓粘度为0.8~1.0dL/g,玻璃化转变温度为142~144℃。
优选的,所述聚醚酰亚胺的比浓粘度为0.4~0.6dL/g,玻璃化转变温度为215~217℃。
优选的,所述芳香聚酰胺比浓粘度为0.4~1.0dL/g;
所述芳香聚酰胺为含醚酮结构的芳香聚酰胺时,含醚酮结构的芳香聚酰胺的玻璃化转变温度为325~328℃;
所述芳香聚酰胺为含萘芳香聚酰胺时,含萘芳香聚酰胺的玻璃化转变温度为285~288℃。
本发明还提供了上述技术方案所述的含芳香聚酰胺的三元合金的制备方法,包括以下步骤:
将芳香聚酰胺、聚醚酰亚胺、助溶剂和有机溶剂混合后,在去离子水中出料,得到芳香聚酰胺/聚醚酰亚胺的二元共混物;
将所述芳香聚酰胺/聚醚酰亚胺的二元共混物和聚醚醚酮混合,依次进行挤出、造粒、注塑成型和退火,得到含芳香聚酰胺的三元合金。
优选的,所述助溶剂为氯化钙、氯化锂、氯化镁和甲基三正丁基氯化铵中的一种或几种;
所述有机溶剂为N,N-二甲基乙酰胺、N-甲基吡咯烷酮、N,N-二甲基甲酰胺和六甲基磷酰胺中的一种或几种。
优选的,所述挤出在双螺杆挤出机中进行,所述挤出的温度为360~390℃,所述双螺杆挤出机的转速为20~60r/min。
优选的,所述注塑成型的温度为380~400℃,所述注塑成型的压力为700~900bar。
优选的,所述退火的温度为200~210℃,所述退火的时间为3~5小时。
本发明提供了一种含芳香聚酰胺的三元合金,由包括如下重量份数的原料制备得到:聚醚醚酮70~94份,聚醚酰亚胺3~20份,芳香聚酰胺3~10份;所述芳香聚酰胺为含醚酮结构的芳香聚酰胺或含萘芳香聚酰胺;PEI与PEEK具有良好的热力学相容性,可将芳香聚酰胺与聚醚亚酰胺的二元共混物添加到聚醚醚酮中,利用PEI的媒介作用,使芳香聚酰胺均匀分散在PEEK基体中,由此实现芳香聚酰胺的加工,较PEEK纯相,所述三元合金的机械及摩擦性能均得到了较高的提升。根据实施例的记载,本发明所述的三元合金的摩擦系数较纯相PEEK的摩擦系数下降了≥4.7%,磨损率下降了≥35.3%,较纯相PEEK的力学性能得到较大的提高。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如,在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明提供了一种含芳香聚酰胺的三元合金,由包括如下重量份数的原料制备得到:
聚醚醚酮     70~94份
聚醚酰亚胺   3~20份
芳香聚酰胺   3~10份;
所述芳香聚酰胺为含醚酮结构的芳香聚酰胺或含萘芳香聚酰胺。
在本发明中,若无特殊说明,所述原料组分均为本领域技术人员熟知的市售产品。
按重量份数计,本发明提供的含芳香聚酰胺的三元合金的制备原料包括70~94份的聚醚醚酮,优选为75~90份,更优选为85~90份。在本发明中,所述聚醚醚酮的比浓粘度优选为0.8~1.0dL/g,更优选为0.85~0.95dL/g;所述聚醚醚酮的玻璃化转变温度优选为142~144℃。
按重量份数计,本发明提供的含芳香聚酰胺的三元合金的制备原料包括3~20份的聚醚酰亚胺,优选为5~15份,更优选为8~10份。在本发明中,所述聚醚酰亚胺的比浓粘度优选为0.4~0.6dL/g,更优选为0.45~0.55dL/g;所述聚醚酰亚胺的玻璃化转变温度优选为215~217℃。
按重量份数计,本发明提供的含芳香聚酰胺的三元合金的制备原料包括3~10份的芳香聚酰胺,优选为4~9份,更优选为5~8份。在本发明中,所述芳香聚酰胺比浓粘度优选为0.4~1.0dL/g,更优选为0.5~0.8dL/g,最优选为0.5~0.6dL/g;
所述芳香聚酰胺为含醚酮结构的芳香聚酰胺时,含醚酮结构的芳香聚酰胺的玻璃化转变温度优选为325~328℃;
所述芳香聚酰胺为含萘芳香聚酰胺时,含萘芳香聚酰胺的玻璃化转变温度优选为285~288℃。
在本发明中,所述芳香聚酰胺为含醚酮结构的芳香聚酰胺(PK-1)或含萘芳香聚酰胺(PK-2);在本发明中,所述含醚酮结构的芳香聚酰胺的种类和制备方法优选为申请号为CN103524730A公开的含醚酮结构的芳香聚酰胺的种类和制备方法。
在本发明中,所述芳香聚酰胺为含萘芳香聚酰胺的制备方法,优选包括以下步骤:将1,5-萘二胺和4,4'-二苯醚二酰氯以摩尔比为1:1的比例混合,以NMP为溶剂,LiCl为催化剂在室温条件下发生聚合反应;本发明对所述NMP和LiCl的用量没有任何特殊的限定,采用本领域技术人员熟知的用量即可。在本发明中,所述含萘芳香聚酰胺的结构式优选为:
Figure PCTCN2020070160-appb-000001
本发明对所述结构式中的n没有任何特殊的限定,能够使所述含萘芳香聚酰胺的比浓粘度在0.4~1.0dL/g范围内,玻璃化转变温度在285~288℃范围内即可。
本发明还提供了上述技术方案所述的含芳香聚酰胺的三元合金的制备方法,包括以下步骤:
将芳香聚酰胺、聚醚酰亚胺、助溶剂和有机溶剂混合后,在去离子水中出料,得到芳香聚酰胺/聚醚酰亚胺的二元共混物;
将所述芳香聚酰胺/聚醚酰亚胺的二元共混物和聚醚醚酮混合,依次进行挤出、造粒、注塑成型和退火,得到含芳香聚酰胺的三元合金。
本发明将芳香聚酰胺、聚醚酰亚胺、助溶剂和有机溶剂混合后,在去离子水中出料,得到芳香聚酰胺/聚醚酰亚胺的二元共混物。在本发明中,所述助溶剂优选为氯化钙、氯化锂、氯化镁和甲基三正丁基氯化铵中的一种或几种;当所述助溶剂为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定,按任意配比进行混合即可。
在本发明中,所述有机溶剂优选为N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP),N,N-二甲基甲酰胺(DMF)和六甲基磷酰胺中的一种或几种;当所述有机溶剂为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定,按任意配比进行混合即可。
在本发明中,所述PK与助溶剂的质量比优选为1:(0.1~2),更优选为1:(0.5~1.5),最优选为1:(0.8~1.2);在本发明中,所述PK和PEI的总质量与有机溶剂的质量比优选为1:(5~10),更优选为1:(6~8)。
在本发明中,所述混合优选在搅拌的条件下进行;本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的搅拌过程即可。
本发明对所述去离子水的用量没有任何特殊的限定,采用本领域技术 人员熟知的用量达到使芳香聚酰胺/聚醚酰亚胺的二元共混物的粗产物从有机溶剂中析出的目的即可。
所述出料完成后,本发明优选将出料得到的粗产物粉碎后依次用煮沸的去离子水和无水乙醇洗涤,并重复2~5次,烘干,得到芳香聚酰胺/聚醚酰亚胺的二元共混物;本发明对所述粉碎过程没有任何特殊的限定,采用本领域技术人员熟知的粉碎过程即可;本发明对所述烘干没有任何特殊的限定,采用本领域技术人员熟知的烘干过程即可。
在本发明中,所述PEI在所述有机溶剂中具有良好的溶解性,上述混合可使PEI的分子链与PK的分子链相互缠绕,达到PK与PEI混合均匀的目的。同时PEI与PEEK具有良好的热力学相容性,可以保证后续将聚芳酰胺能够更好的分散在PEEK基体中。
得到芳香聚酰胺/聚醚酰亚胺的二元共混物后,本发明将所述芳香聚酰胺/聚醚酰亚胺的二元共混物和聚醚醚酮混合,依次进行挤出造粒、注塑成型和退火,得到含芳香聚酰胺的三元合金。在本发明中,所述混合优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的搅拌过程进行即可。
搅拌完成后,本发明优选对得到的混合物进行干燥。在本发明中,所述干燥优选为真空干燥;所述真空干燥的温度优选为80~120℃,更优选为90~110℃;所述真空干燥的时间优选为5~12小时,更优选为8~10小时。
在本发明中,所述挤出优选在双螺杆挤出机中进行,所述挤出的温度优选为360~390℃,更优选为365~385℃,最优选为370~380℃;所述双螺杆挤出机的转速优选为20~60r/min,更优选为30~50r/min。在本发明中,所述造粒优选在造粒机中进行;本发明对所述造粒的条件参数没有任何特殊的限定,采用本领域技术人员熟知的条件参数进行即可。
挤出、造粒完成后,本发明优选对挤出、造粒的产物进行干燥后再进行注塑成型。在本发明中,所述干燥优选为真空干燥;所述真空干燥的温度优选为80~120℃,更优选为90~110℃,最优选为95~105℃;所述真空干燥的时间优选为5~12小时,更优选为8~10小时。
在本发明中,所述注塑成型的温度优选为380~400℃,更优选为 385~395℃,最优选为388~392℃;所述注塑成型的压力优选为700~900bar,更优选为750~850bar。
在本发明中,所述退火的温度优选为200~210℃,更优选为202~208℃,最优选为204~206℃;所述退火的时间优选为3~5小时,更优选为3.5~4.5小时。
在本发明中,所述退火可以促使所述三元合金结晶完全。
现结合具体实施方式对本发明进一步进行说明。
实施例1
将6g PK-1粉末、6g PEI粉末、1g LiCl和60mL NMP混合,在搅拌条件下溶解后出料于去离子水中,将粗产物粉碎后分别用煮沸的去离子水和无水乙醇洗涤3次,烘干得到粉末状PK-1/PEI二元共混物;
将94g PEEK粉末和6g PK-1/PEI二元共混物粉末混合后,加入到高速搅拌机中,高速搅拌10min混合均匀后,放入真空烘箱中100℃干燥8小时,将干燥好的混合物加入到双螺杆挤出机中,在温度为370℃、螺杆转速为40r/min条件下挤出后,造粒,在120℃真空干燥12小时,即得到PEEK/PEI/PK-1三元合金粒料;
将PEEK/PEI/PK-1三元合金粒料在380℃、750bar的条件下注塑成型后,在210℃下退火4小时,得到PEEK/PEI/PK-1三元合金。
实施例2
将15g PK-1粉末、15g PEI粉末、5g LiCl和300mLNMP混合,在搅拌条件下溶解后出料于去离子水中,将粗产物粉碎后分别用煮沸的去离子水和无水乙醇洗涤3次,烘干得到粉末状PK-1/PEI二元共混物;
将84g PEEK粉末和16g PK-1/PEI二元共混物粉末混合后,加入到高速搅拌机中,高速搅拌10min混合均匀后,放入真空烘箱中100℃干燥8小时,将干燥好的混合物加入到双螺杆挤出机中,在温度为385℃、螺杆转速为40r/min条件下挤出后,造粒,在120℃真空干燥12小时,即得到PEEK/PEI/PK-1三元合金粒料;
将PEEK/PEI/PK-1三元合金粒料在390℃、800bar的条件下注塑成型后,在205℃下退火4小时,得到PEEK/PEI/PK-1三元合金。
实施例3
将15g PK-1粉末、15g PEI粉末、5g LiCl和300mLNMP混合,在搅拌条件下溶解后出料于去离子水中,将粗产物粉碎后分别用煮沸的去离子水和无水乙醇洗涤3次,烘干得到粉末状PK-1/PEI二元共混物;
将84g PEEK粉末和16g PK-1/PEI二元共混物粉末混合后,加入到高速搅拌机中,高速搅拌10min混合均匀后,放入真空烘箱中100℃干燥8小时,将干燥好的混合物加入到双螺杆挤出机中,在温度为385℃、螺杆转速为40r/min条件下挤出后,造粒,在120℃真空干燥12小时,即得到PEEK/PEI/PK-1三元合金粒料;
将PEEK/PEI/PK-1三元合金粒料在390℃、800bar的条件下注塑成型后,在205℃下退火4小时,得到PEEK/PEI/PK-1三元合金。
实施例4
将10g PK-2粉末、10g PEI粉末、2g LiCl和150mL NMP混合,在搅拌条件下溶解后出料于去离子水中,将粗产物粉碎后分别用煮沸的去离子水和无水乙醇洗涤3次,烘干,得到粉末状PK-2/PEI二元共混物;
将90g PEEK粉末和10g PK-2/PEI二元共混物粉末混合后,加入到高速搅拌机中,高速搅拌10min混合均匀后,放入真空烘箱中100℃干燥8小时,将干燥好的混合物加入到双螺杆挤出机中,在温度为380℃、螺杆转速为40r/min条件下挤出后,造粒,在120℃真空干燥12小时,即得到PEEK/PEI/PK-2三元合金粒料;
将PEEK/PEI/PK-2三元合金粒料在400℃、880bar注塑成型后,在205℃下退火4.5小时,得到PEEK/PEI/PK-1三元合金。
对比例1
将95g PEEK粉末和5g PEI粉末混合后,加入到高速搅拌机中,高速搅拌10min混合均匀后,放入真空烘箱中100℃干燥8小时,将干燥好的混合物加入到双螺杆挤出机中,在温度为380℃、螺杆转速为40r/min条件下挤出造粒后,在120℃真空干燥12小时,即得到PEEK/PEI二元合金粒料;
将PEEK/PEI二元合金粒料在390℃、800bar的条件下注塑成型后,在205℃下退火4小时,得到PEEK/PEI二元合金。
测试例
采用JIANDA-70型注塑机(深圳坚达机械有限公司)将实施例1~4得到的三元合金、对比例1得到的PEEEK/PEI二元合金和纯PEEK分别制成哑铃型的拉伸样条(长75mm/宽5mm/厚2mm)、弯曲样条(长80mm/宽10mm/厚4mm)和摩擦样条。按照GB-T3960-1983的标准,采用UMT-2型多功能摩擦试验机(Bruker,德国)进行摩擦系数和磨损率的测试,测试结果如表1所示:
表1:实施例1~4所述的三元合金材料、对比例1所述的二元合金材料及纯PEEK树脂的摩擦系数和磨损率
Figure PCTCN2020070160-appb-000002
由表1可知,对比例1中PEEK/PEI二元合金的摩擦系数和磨损率较PEEK纯组分摩擦系数变大,磨损率稍有下降,说明PEI的加入并没有改善PEEK的摩擦性能,而实施例1~4所述的三元合金材料的摩擦系数和磨损率均低于PEEK纯树脂,说明芳香聚酰胺的引入确实可以改善PEEK的摩擦性能,实施例1~4所述三元合金材料较纯PEEK树脂,摩擦系数分别下降了4.7%,11.6%,16.3%和9.3%;磨损率分别下降了35.3%,59.5%,68.9%和48.5%。
按照GB/T1040-2006、GB/T9341-2008的标准,采用ShimadzuAG-1型电子万能试验机测试实施例1~4得到的三元合金、对比例1得到的PEEK/PEI二元合金、纯PEEK拉伸弯曲样条的各项力学性能,测试结果如表2所示:
表2:实施例1~4所述的三元合金材料、对比例1所述的二元合金材料及纯PEEK树脂的力学性能
Figure PCTCN2020070160-appb-000003
Figure PCTCN2020070160-appb-000004
由表2可知,对比例1中PEEK/PEI二元合金的各项力学性能较PEEK纯树脂稍有下降,说明PEI的加入对PEEK的力学性能不利,而实施例1~4所述的三元合金材料的总体力学性能与PEEK纯树脂相似,甚至在拉伸强度,弯曲强度和弯曲模量上强于PEEK纯树脂,说明芳香聚酰胺的加入提升了PEEK的力学性能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种含芳香聚酰胺的三元合金,由包括如下重量份数的原料制备得到:
    聚醚醚酮    70~94份
    聚醚酰亚胺  3~20份
    芳香聚酰胺  3~10份;
    所述芳香聚酰胺为含醚酮结构的芳香聚酰胺或含萘芳香聚酰胺。
  2. 如权利要求1所述的含芳香聚酰胺的三元合金,其特征在于,所述聚醚醚酮的比浓粘度为0.8~1.0dL/g,玻璃化转变温度为142~144℃。
  3. 如权利要求1所述的含芳香聚酰胺的三元合金,其特征在于,所述聚醚酰亚胺的比浓粘度为0.4~0.6dL/g,玻璃化转变温度为215~217℃。
  4. 如权利要求1所述的含芳香聚酰胺的三元合金,其特征在于,所述芳香聚酰胺比浓粘度为0.4~1.0dL/g。
  5. 如权利要求1所述的含芳香聚酰胺的三元合金,其特征在于,所述芳香聚酰胺为含醚酮结构的芳香聚酰胺时,含醚酮结构的芳香聚酰胺的玻璃化转变温度为325~328℃。
  6. 如权利要求1所述的含芳香聚酰胺的三元合金,其特征在于,所述芳香聚酰胺为含萘芳香聚酰胺时,含萘芳香聚酰胺的玻璃化转变温度为285~288℃。
  7. 权利要求1~6任一项所述的含芳香聚酰胺的三元合金的制备方法,包括以下步骤:
    将芳香聚酰胺、聚醚酰亚胺、助溶剂和有机溶剂混合后,在去离子水中出料,得到芳香聚酰胺/聚醚酰亚胺的二元共混物;
    将所述芳香聚酰胺/聚醚酰亚胺的二元共混物和聚醚醚酮混合,依次进行挤出、造粒、注塑成型和退火,得到含芳香聚酰胺的三元合金。
  8. 如权利要求7所述的制备方法,其特征在于,所述助溶剂为氯化钙、氯化锂、氯化镁和甲基三正丁基氯化铵中的一种或几种。
  9. 如权利要求7所述的制备方法,其特征在于,所述有机溶剂为N,N-二甲基乙酰胺、N-甲基吡咯烷酮、N,N-二甲基甲酰胺和六甲基磷酰胺中 的一种或几种。
  10. 如权利要求7所述的制备方法,其特征在于,所述挤出在双螺杆挤出机中进行,所述挤出的温度为360~390℃,所述双螺杆挤出机的转速为20~60r/min。
  11. 如权利要求7所述的制备方法,其特征在于,所述注塑成型的温度为380~400℃,所述注塑成型的压力为700~900bar。
  12. 如权利要求7所述的制备方法,其特征在于,所述退火的温度为200~210℃,所述退火的时间为3~5小时。
PCT/CN2020/070160 2019-01-03 2020-01-03 含芳香聚酰胺的三元合金及其制备方法 WO2020140955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910003386.4A CN109627684B (zh) 2019-01-03 2019-01-03 一种含芳香聚酰胺的三元合金及其制备方法
CN201910003386.4 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140955A1 true WO2020140955A1 (zh) 2020-07-09

Family

ID=66056599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070160 WO2020140955A1 (zh) 2019-01-03 2020-01-03 含芳香聚酰胺的三元合金及其制备方法

Country Status (2)

Country Link
CN (1) CN109627684B (zh)
WO (1) WO2020140955A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627684B (zh) * 2019-01-03 2019-12-06 吉林大学 一种含芳香聚酰胺的三元合金及其制备方法
CN110467725B (zh) * 2019-08-27 2020-07-03 吉林大学 一种聚萘醚酮芳香酰胺及其制备方法和应用
CN111004388B (zh) * 2019-12-25 2022-02-15 吉林大学 一种聚芴萘芳香酰胺及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178565A1 (en) * 2011-10-11 2013-07-11 Basf Se Thermoplastic molding composition and moldings produced therefrom with improved wear resistance
CN103524730A (zh) * 2013-10-30 2014-01-22 吉林大学 含醚酮结构的芳香聚酰胺及其制备方法
CN105524409A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 钛酸钾晶须增强peek复合材料及其制备方法
CN105968806A (zh) * 2016-05-16 2016-09-28 池州学院 一种改善pei耐磨损性的合金化改性方法
CN109627684A (zh) * 2019-01-03 2019-04-16 吉林大学 一种含芳香聚酰胺的三元合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20122220A1 (it) * 2012-12-21 2014-06-22 Next Technology Tecnotessile Societ A Naz D Composizione polimerica comprendente peek funzionalizzato

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178565A1 (en) * 2011-10-11 2013-07-11 Basf Se Thermoplastic molding composition and moldings produced therefrom with improved wear resistance
CN103524730A (zh) * 2013-10-30 2014-01-22 吉林大学 含醚酮结构的芳香聚酰胺及其制备方法
CN105524409A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 钛酸钾晶须增强peek复合材料及其制备方法
CN105968806A (zh) * 2016-05-16 2016-09-28 池州学院 一种改善pei耐磨损性的合金化改性方法
CN109627684A (zh) * 2019-01-03 2019-04-16 吉林大学 一种含芳香聚酰胺的三元合金及其制备方法

Also Published As

Publication number Publication date
CN109627684A (zh) 2019-04-16
CN109627684B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2020140955A1 (zh) 含芳香聚酰胺的三元合金及其制备方法
CN101578321B (zh) 具有极好发光度的聚亚芳基硫醚树脂及其制备方法
CN103242641B (zh) 一种聚芳醚酮基耐磨复合材料及其制备方法
CN109777105B (zh) 一种高流动聚砜复合材料及其制备方法
CN107459816B (zh) 一种耐高温增强型热塑性复合材料及其制备方法
CN105504803B (zh) 一种高流动性纤维增强尼龙复合材料及其制备方法
CN102757635A (zh) 一种聚醚醚酮复合材料及其制备方法
CN102206339B (zh) 一种连续制备聚对苯二甲酰对苯二胺聚合体的装置和它的制备方法
CN117700922B (zh) 高强高韧改性peek复合材料及其制备方法
CN102993555A (zh) 一种高抗冲无卤阻燃pp/ppo合金材料及其制备方法和应用
CN101555348B (zh) 聚芳醚腈玻纤复合材料及其制备方法
CN111073278A (zh) 聚酰胺复合材料及其制备方法
CN108285629B (zh) 一种pc/abs/pa6组合物及其制备方法
CN114410091A (zh) 一种耐高温抗冲击高强度的改性聚乳酸材料及其制备方法
CN114605633B (zh) 一种本体阻燃尼龙及其制备方法和应用
CN111320751B (zh) 一种含侧腈基聚醚酰亚胺树脂及其制备方法和用途
CN115850928A (zh) 一种抗菌导热pbt复合材料及其制备方法
CN116790116B (zh) 半芳香族聚酰胺组合物及其制备方法与应用
CN111763422A (zh) 一种超高流动性增韧尼龙66组合物及其制备方法
CN101469128A (zh) 一种聚芳醚砜醚酮酮类和尼龙6复合的方法
CN104910612A (zh) 一种改性尼龙6材料的制备方法
CN105061990A (zh) 一种磺化超支化聚芳醚酮改性碳酸钙晶须/聚醚醚酮复合材料及其制备方法
Lixin et al. Polycarbonate/polypropylene/fibrillar silicate ternary nanocomposites via two-step blending process: Degradation and morphology
EP3737717A1 (en) Polymeric blend composite and a process for preparing the same
CN110591332A (zh) 聚苯醚/聚酰胺66组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20735879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20735879

Country of ref document: EP

Kind code of ref document: A1