WO2020140821A1 - 分离装置和分离方法 - Google Patents

分离装置和分离方法 Download PDF

Info

Publication number
WO2020140821A1
WO2020140821A1 PCT/CN2019/128641 CN2019128641W WO2020140821A1 WO 2020140821 A1 WO2020140821 A1 WO 2020140821A1 CN 2019128641 W CN2019128641 W CN 2019128641W WO 2020140821 A1 WO2020140821 A1 WO 2020140821A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
modules
module
membrane separation
Prior art date
Application number
PCT/CN2019/128641
Other languages
English (en)
French (fr)
Inventor
张胜中
张英
乔凯
范得权
张延鹏
高明
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP19907724.9A priority Critical patent/EP3900808B1/en
Priority to SG11202107218TA priority patent/SG11202107218TA/en
Priority to CN201980087152.0A priority patent/CN113301982B/zh
Priority to EA202191748A priority patent/EA202191748A1/ru
Priority to KR1020217024086A priority patent/KR102558705B1/ko
Priority to CA3125373A priority patent/CA3125373C/en
Priority to JP2021538308A priority patent/JP7244651B2/ja
Priority to US17/419,705 priority patent/US11958011B2/en
Priority to DK19907724.9T priority patent/DK3900808T3/da
Publication of WO2020140821A1 publication Critical patent/WO2020140821A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/222Devices with plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/04Elements in parallel

Definitions

  • the invention relates to a separation device and a separation method.
  • the raw material gas when the concentration content of the target gas component in the raw material gas is low, the raw material gas will first be selected for crude purification through the membrane separation device, and the crudely purified gas will then enter the adsorption separation device to produce high-purity gas.
  • the purpose of the present invention is to overcome the problems existing in the prior art and provide a separation device and a separation method.
  • a first aspect of the present invention provides a separation device, the separation device including: a membrane separation module, the membrane separation module includes a first housing and a membrane assembly that can be disposed in the first housing, The first housing has a first air inlet, a first air outlet and a residual gas outlet, the membrane module has a permeate gas outlet, the permeate gas outlet communicates with the first air outlet; the adsorption module, The adsorption module includes a second housing and an adsorbent layer that can be disposed in the second housing, the second housing is disposed on the first housing, and the second housing has a second inlet An air inlet, a second air outlet, and a desorption air outlet, the second air inlet is in communication with the first air outlet; and an air inlet module, the air inlet module has a third air outlet, the third air outlet Communicate with the first air inlet.
  • the separation device according to the embodiment of the present invention has the advantages of small footprint, light weight, and low manufacturing cost.
  • the second housing is directly provided on the first housing.
  • each of the first air inlets communicates with the third air outlet.
  • there are multiple membrane modules and the first outlet There are a plurality of air ports, and there are a plurality of second air intake ports, wherein the permeate gas outlets of the plurality of membrane modules communicate with the plurality of first air outlet ports in one-to-one correspondence, and the plurality of first air inlets The air outlets communicate with the plurality of second air inlets in one-to-one correspondence.
  • the air intake module includes: an air intake pipe having a fourth air outlet; and a gas distribution plate having a buffer cavity and a plurality of third air outlets, each The third air outlet communicates with the buffer cavity, the fourth air outlet communicates with the buffer cavity, wherein there are a plurality of first air inlets, and a plurality of the third air outlets correspond to each other in one-to-one correspondence A plurality of the first air inlets are in communication.
  • each membrane separation module communicates with the third air outlet
  • the plurality of The two casings are provided on the plurality of first casings in one-to-one correspondence, and the first air outlets of the plurality of membrane separation modules correspond to the second inlets of the plurality of adsorption modules in one-to-one correspondence
  • the air port is connected.
  • the third air outlets of the plurality of air intake modules communicate with the first air inlets of the plurality of membrane separation modules in a one-to-one correspondence.
  • the air intake module includes: an air intake manifold; a control valve, the control valve having a third air inlet and a plurality of the third air outlets, the third air inlet is switchable and multiple Any one of the third air outlets is connected, wherein the intake manifold is connected to the third air inlet; and a plurality of intake branch pipes, the first ends of the plurality of intake branch pipes are in one-to-one correspondence Is connected to the plurality of third air outlets, and the second ends of the plurality of air intake branch pipes are connected to the first air inlets of the plurality of membrane separation modules in a one-to-one correspondence.
  • the air intake module includes: an air intake pipe having a fourth air outlet; and a gas distribution disk having a plurality of buffer chambers, a plurality of third air inlets and a plurality of For the third air outlet, the plurality of third air inlets communicate with the plurality of buffer chambers in one-to-one correspondence, and the plurality of third air outlets communicate with the plurality of buffer chambers in one-to-one correspondence,
  • the fourth air outlet is switchably connected to any one of the plurality of third air inlets, and the plurality of third air outlets correspond to the first of the plurality of membrane separation modules in a one-to-one correspondence
  • the air inlets are in communication, and optionally, the gas distribution disk is ring-shaped, and a plurality of the third air inlets are provided on the inner circumferential surface of the gas distribution disk, wherein the gas distribution disk can be sleeved on On the portion of the air inlet pipe provided with the fourth air outlet, the air inlet pipe can be rotatably disposed relative to the gas
  • the gas distribution disk includes: a ring-shaped first disk body, the first disk body having a first end surface, the first end surface is provided with a plurality of the buffer cavity, the buffer cavity inside Open the end to form the third air inlet or the third air inlet is provided on the inner side wall surface of the buffer cavity, wherein the first disc body can be sleeved on the air inlet pipe provided with the On the part of the fourth air outlet, the air inlet pipe can be rotatably provided relative to the first disk body; and a second disk body, the second disk body is provided on the first end surface, the second The disk body covers a plurality of the buffer chambers, the third air outlet is provided on the second disk body, and the third air outlet penetrates the second disk body along the thickness direction of the second disk body.
  • the gas distribution disk includes: a ring-shaped first disk body having a first end surface and a second end surface opposite in the thickness direction thereof, the first disk body is provided with a plurality of Each of the buffer cavities, each of the buffer cavities penetrating the first disc body in the thickness direction of the first disc body, and an inner end of the buffer cavity is opened to form the third air inlet or the A third air inlet is provided on the inner wall surface of the buffer cavity; and a second disk body and an annular third disk body, the second disk body is provided on the first end surface, and the third disk body Provided on the second end surface, the second disc body and the third disc body cover a plurality of the buffer chambers, wherein the first disc body can be sleeved on the intake pipe provided with the On the part of the fourth air outlet, the air inlet pipe can be rotatably provided relative to the first disk body, the third air outlet is provided on the second disk body, and the third air outlet is along the The thickness direction of the second disc body penetrates the second disc
  • a plurality of the membrane separation modules are arranged along a first circumferential direction
  • the first housing includes: a first end plate and a second end plate; and a first side plate, a second side plate, and a first inner side Board and a first outer board, the first side board, the first inner board, the second side board and the first outer board are connected in order to form a first enclosure board, the first of the first enclosure board The end is connected to the first end plate, and the second end of the first enclosure is connected to the second end plate, wherein the first air inlet is provided on the first end plate, so The first air outlet is provided on the second end plate, and the residual gas outlet is provided on at least one of the first enclosure plate and the first end plate.
  • first end plates of the membrane separation module are integrally formed, and the second end plates of the plurality of membrane separation modules are integrally formed, optionally, two adjacent first ends in the first circumferential direction
  • the first side plate of one of the housings is integrally formed with the second side plate of the other, optionally, the first inner side plates of the plurality of membrane separation modules are integrally formed, a plurality of The first outer side plate of the membrane separation module is integrally formed.
  • each membrane module is connected to the corresponding first end plate, and the second end of each membrane module The ends are open to form the permeate gas outlet, and the second end of each membrane module is connected to the corresponding first air outlet on the second end plate, optionally, a plurality of the membranes
  • the first inner plate of the separation module is located on the first right cylindrical surface or the first right prism surface, and the first outer plates of the plurality of membrane separation modules are located on the second right cylindrical surface or the second right prism surface.
  • a plurality of the adsorption modules are arranged along the first circumferential direction
  • the second housing includes: a third end plate and a fourth end plate; and a third side plate, a fourth side plate, and a second inner side plate And a second outer panel, the third side panel, the second inner panel, the fourth side panel, and the second outer panel are sequentially connected to form a second enclosure panel, the first end of the second enclosure panel Is connected to the third end plate, and the second end of the second enclosure plate is connected to the fourth end plate, wherein the second air inlet is provided on the third end plate, the The second gas outlet is provided on the fourth end plate, and the desorption gas outlet is provided on at least one of the second enclosure plate and the third end plate.
  • a plurality of the adsorption The third end plates of the module are integrally formed, and the fourth end plates of the plurality of adsorption modules are integrally formed, optionally, in two second housings adjacent in the first circumferential direction
  • the third side plate of one of them is integrally formed with the fourth side plate of the other
  • the second inner plates of a plurality of the adsorption modules are integrally formed, and a plurality of the adsorption modules
  • the second outer plate is integrally formed.
  • the second inner plates of the plurality of adsorption modules are located on a third regular cylindrical surface or a third regular prism surface.
  • the second outer plate is located on the fourth right cylindrical surface or the fourth right prism surface.
  • first right cylindrical surface and the third right cylindrical surface are the same right cylindrical surface
  • second right cylindrical surface The surface and the fourth regular cylindrical surface are the same regular cylindrical surface
  • first regular prism surface and the third regular prism surface are the same regular prism surface
  • second regular prism surface and the fourth regular prism surface The faces are the same regular prism face.
  • the separation device further includes a central axis, a plurality of the membrane separation modules can be arranged along the circumferential direction of the central axis, and a plurality of the adsorption modules can be arranged along the circumferential direction of the central axis, wherein The first inner plate of the membrane separation module is adjacent to the central axis or the first inner plate of the membrane separation module is in contact with the central axis, and the second inner plate of each adsorption module is adjacent The central axis or the second inner side plate of each adsorption module is in contact with the central axis.
  • a second aspect of the present invention provides a separation method implemented using the separation device according to the first aspect of the present invention, the separation method comprising the steps of: supplying raw material gas to a membrane separation module using an air intake module; using the membrane separation module pair The raw material gas is separated to obtain a crude purified gas; and an impurity or target gas in the crude purified gas is adsorbed by an adsorption module to obtain a high-purity gas.
  • the fourth air outlet of the air inlet pipe is communicated with the third air inlet of a group of buffer chambers of the gas distribution disk, so as to provide the raw material gas to a group of the membrane separation modules, and a group of the buffer chambers It includes at least one of the buffer chambers, and a group of the membrane separation modules includes at least one of the membrane separation modules; a group of the membrane separation modules is used to separate the raw material gas to obtain a crude purified gas; a group of the membrane separation modules is used The adsorption module adsorbs impurities or target gas in the crude purified gas to obtain high-purity gas.
  • a group of the adsorption modules includes at least one adsorption module; a group of the adsorption modules runs after a preset time or a group of the After the adsorption module processes the preset amount of the crude purified gas, the fourth gas outlet of the gas inlet pipe is communicated with the third gas inlet of another group of the buffer chambers of the gas distribution disk,
  • another group of the buffer chamber includes at least one of the buffer chambers, and another group of the membrane separation module includes at least one of the membrane separation modules;
  • One group of the membrane separation module separates the raw material gas to obtain the crude purified gas; another group of the adsorption module is used to adsorb impurities or target gas in the crude purified gas to obtain a high purity gas, another The group of adsorption modules includes at least one of the adsorption modules; and regeneration of the adsorbent in the group of adsorption modules.
  • FIG. 1 is a partial structural schematic diagram of a separation device according to an embodiment of the present invention.
  • FIG. 2a is a schematic structural diagram of an air intake module of a separation device according to an embodiment of the present invention
  • FIG. 2b is a partial structural schematic diagram of an air intake module of a separation device according to an embodiment of the present invention.
  • 2c is a schematic structural diagram of a gas distribution disk of a separation device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an intake pipe of a separation device according to an embodiment of the present invention.
  • FIG. 4a is a partial structural schematic diagram of a membrane separation module of a separation device according to an embodiment of the present invention.
  • FIG. 4b is a partial structural schematic diagram of a membrane separation module of a separation device according to an embodiment of the present invention.
  • 5a is a partial structural schematic diagram of an adsorption module of a separation device according to an embodiment of the present invention.
  • 5b is a partial structural schematic diagram of an adsorption module of a separation device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fourth end plate of an adsorption module according to an embodiment of the present invention.
  • Membrane separation module 10 first housing 110, first end plate 111, second end plate 112, first side plate 113, second side plate 114, first inner plate 115, first outer plate 116, first enclosure Plate 117, first receiving cavity 118,
  • the adsorption module 20 the second housing 210, the third end plate 211, the fourth end plate 212, the through hole 2121, the third side plate 213, the fourth side plate 214, the second inner plate 215, the second outer plate 216, The second enclosure 217, the second accommodating cavity 218,
  • Air intake module 30 air intake pipe 310, fourth air outlet 311,
  • Gas distribution disk 320 third air outlet 321, sub-air outlet 3211, buffer chamber 322, third air inlet 323, first disk body 324, first end face 3241, second disk body 325,
  • the separation device 1 according to an embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 to 6, the separation device 1 according to an embodiment of the present invention includes a membrane separation module 10, an adsorption module 20 and an air intake module 30.
  • the membrane separation module 10 includes a first housing 110 and a membrane assembly 130 that can be disposed in the first housing 110.
  • the first housing 110 has a first air inlet 121, a first air outlet 122, and a residual gas outlet 123.
  • the membrane module 130 has a permeate gas outlet which communicates with the first air outlet 122.
  • the adsorption module 20 includes a second housing 210 and an adsorbent layer 230 that can be disposed in the second housing 210.
  • the second housing 210 is disposed on the first housing 110, that is, the first housing 110 is disposed on the second housing ⁇ 210 ⁇ Body 210.
  • the second housing 210 has a second air inlet 221, a second air outlet 222, and a desorption air outlet 223, and the second air inlet 221 communicates with the first air outlet 122.
  • the air intake module 30 has a third air outlet 321 that communicates with the first air inlet 121.
  • the membrane module 130 can be disposed in the first casing 110 means that when the separation device 1 is used to produce high-purity gas, the membrane module 130 is disposed in the first casing 110; the adsorbent layer 230 can be disposed in the second casing Inside 210 means that when high-purity gas is produced by the separation device 1, the adsorbent layer 230 is provided in the second housing 210.
  • the membrane module 130 may or may not be provided in the first housing 110, and the adsorbent layer 230 may be provided in the second housing 210 It may not be provided in the second housing 210.
  • the raw material gas (gas mixture containing the target gas) enters the membrane separation through the third gas outlet 321 of the gas inlet module 30 and the first gas inlet 121 of the membrane separation module 10 in this order
  • the raw material gas is separated (crudely purified) by the membrane separation module 10 to obtain a crudely purified gas.
  • the gas passing through the membrane module 130 is the crude purified gas, and the gas not passing through the membrane module 130 is the retentate gas.
  • the retentate gas can be discharged from the membrane separation module 10 through the retentate gas outlet 123.
  • the crude purified gas enters the adsorption module 20 through the first gas outlet 122 of the membrane separation module 10 and the second gas inlet 221 of the adsorption module 20 in sequence, and the adsorption module 20 is used to adsorb impurities in the crude purified gas to obtain high purity gas.
  • the existing device for preparing high-purity gas simply combines the existing membrane separation device and the adsorption device according to the nature of the material, and does not change the structure of the membrane separation device and the adsorption device itself.
  • the first housing 110 of the membrane separation module 10 and the second housing 210 of the adsorption module 20 are provided together, so that the integration of the membrane separation module 10 and the adsorption module 20 can be achieved.
  • the footprint and weight of the separation device 1 can be greatly reduced. Since the separation device 1 according to the embodiment of the present invention has a very small footprint, it is particularly suitable for use in a gas loading station (such as a hydrogenation station).
  • the separation device 1 according to the embodiment of the present invention has an existing separation device The advantage of smaller footprint.
  • the separation device 1 according to the embodiment of the present invention has the advantages of small footprint, light weight, and low manufacturing cost.
  • the separation device 1 includes a membrane separation module 10, an adsorption module 20 and an air intake module 30.
  • the separation device 1 can be widely used for producing high-purity gas.
  • the separation device 1 can be used for producing high-purity argon, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, and the like.
  • the membrane separation module 10 includes a first housing 110 and a membrane assembly 130 that can be disposed in the first housing 110.
  • the first housing 110 has a first air inlet 121, a first air outlet 122, and a residual gas outlet 123.
  • the adsorption module 20 includes a second housing 210 and an adsorbent layer 230 that can be provided in the second housing 210.
  • the second housing 210 has a second air inlet 221, a second air outlet 222, and a desorption air outlet 223.
  • the membrane module 130 may be an inorganic membrane module or an organic membrane module.
  • the inorganic membrane module is suitable for the case where the raw material gas contains liquid, contains acid gas or the temperature and pressure change may produce condensate.
  • the inorganic membrane of the inorganic membrane module may be a hollow molecular sieve membrane, such as carbon molecular sieve, LTA molecular sieve, DDR molecular sieve membrane, etc.
  • the organic membrane module is suitable for the case where there is no liquid in the raw material gas, and the temperature and pressure changes will not cause condensate in the raw material or product gas.
  • the organic membrane of the organic membrane module may be a hollow fiber membrane.
  • the adsorbent layer 230 may include an adsorbent capable of adsorbing various impurities according to the composition of impurities in the crude purified gas.
  • the adsorbent layer 230 may include at least one of activated alumina, silica gel, zeolite molecular sieve, and activated carbon.
  • the first housing 110 may have a plurality of first air inlets 121, and each first air inlet 121 communicates with a third air outlet 321 so that each first inlet
  • the gas port 121 has raw material gas passing through (entering).
  • the first housing 110 may have multiple first air outlets 122, and the permeate gas outlets of the multiple membrane modules 130 may correspond one-to-one with The plurality of first air outlets 122 are in communication. That is to say, the number of the permeate gas outlets (membrane module 130) may be equal to the number of the first air outlets 122, each of the permeate gas outlets communicates with a first air outlet 122, and each first air outlet 122 is connected to a The permeate outlet is connected. As a result, the gas processing amount per unit time of the membrane separation module 10 can be further increased.
  • the second housing 210 has a plurality of second air inlets 221, and the plurality of first air outlets 122 communicate with the plurality of second air inlets 221 in a one-to-one correspondence. That is to say, the number of second air inlets 221 may be equal to the number of first air outlets 122, each second air inlet 221 communicates with one first air outlet 122, and each first air outlet 122 communicates with one second The air inlet 221 is in communication. As a result, the gas processing amount per unit time of the adsorption module 20 can be further increased.
  • the second housing 210 is directly disposed above the first housing 110. That is to say, no components (such as connecting discs, brackets, etc.) are provided between the first housing 110 and the second housing 210, and the first housing 110 and the second housing 210 are in direct contact.
  • the structure of the separation device 1 can be further simplified, and the degree of integration of the membrane separation module 10 and the adsorption module 20 can be further improved, so that the footprint of the separation device 1 can be further reduced, and the weight and manufacturing cost of the separation device 1 can be further reduced.
  • the first housing 110 may also be disposed above the second housing 210.
  • the air intake module 30 has a third air outlet 321 that communicates with the first air inlet 121.
  • the air intake module 30 includes an air intake pipe 310 and a gas distribution plate 320, and the air intake pipe 310 has a fourth air outlet 311.
  • the gas distribution disk 320 has a buffer cavity 322 and a plurality of third air outlets 321, each third air outlet 321 communicates with the buffer cavity 322, and the fourth air outlet 311 communicates with the buffer cavity 322.
  • the upper end of the intake pipe 310 is closed.
  • the membrane separation module 10 has a plurality of first air inlets 121, and the plurality of third air outlets 321 communicate with the plurality of first air inlets 121 in a one-to-one correspondence.
  • the number of third air outlets 321 may be equal to the number of first air inlets 121, each third air outlet 321 communicates with one first air inlet 121, and each first air inlet 121 communicates with one third air outlet The air port 321 communicates.
  • the raw material gas enters the buffer chamber 322 through the fourth gas outlet 311 of the gas inlet pipe 310, and the raw material gas in the buffer chamber 322 enters the first housing through the plurality of third gas outlets 321 and the plurality of first gas inlets 121 in sequence.
  • the buffer chamber 322 By providing a buffer chamber 322 communicating with the fourth gas outlet 311 and a plurality of third gas outlets 321 communicating with the buffer chamber 322 on the gas distribution disk 320, not only can the buffer chamber 322 be used to slow down the flow rate of the raw material gas, but also The raw material gas enters the first housing 110 more uniformly, and the gas processing amount per unit time of the membrane separation module 10 can be increased.
  • the separation device 1 may include multiple membrane separation modules 10 and multiple adsorption modules 20.
  • the first air inlet 121 of each membrane separation module 10 communicates with the third air outlet 321 so that the raw material gas can enter the first housing 110 of each membrane separation module 10.
  • the plurality of second housings 210 are provided on the plurality of first housings 110 in a one-to-one correspondence, that is, the number of membrane separation modules 10 (first housing 110) may be equal to the number of adsorption modules 20 (second housing 210) Each second housing 210 is provided on a first housing 110.
  • the multiple second housings 210 are directly provided on the multiple first housings 110 in one-to-one correspondence.
  • the first air outlets 122 of the plurality of membrane separation modules 10 communicate with the second air inlets 221 of the plurality of adsorption modules 20 in a one-to-one correspondence. That is, the first air outlet 122 of each membrane separation module 10 communicates with the second air inlet 221 of one adsorption module 20, and the second air inlet 221 of each adsorption module 20 communicates with the first An air outlet 122 communicates.
  • the interrelated membrane separation module 10 and the adsorption module 20 can constitute a separation module capable of producing high-purity gas
  • the separation device 1 can include a plurality of the separation modules, which can greatly increase the unit time of the separation device 1 Gas handling capacity.
  • the multiple membrane separation modules 10 may be arranged along the first circumferential direction, that is, the multiple membrane separation modules 10 may be arranged along the first circumferential direction.
  • Each first housing 110 may include a first end plate 111, a second end plate 112, a first side plate 113, a second side plate 114, a first inner side plate 115, and a first outer side plate 116.
  • inward refers to the middle of the first circumferential direction
  • outward refers to away from (away from) the middle of the first circumferential direction.
  • the first side plate 113, the first inner side plate 115, the second side plate 114, and the first outer side plate 116 are sequentially connected to form a first enclosure plate 117, and the first end of the first enclosure plate 117 is connected to the first end plate 111 , The second end of the first enclosure 117 is connected to the second end plate 112.
  • first end plate 111 and the second end plate 112 are spaced apart in the vertical direction, the lower end of the first enclosure plate 117 is connected to the first end plate 111, and the upper end of the first enclosure plate 117 is connected to the second end
  • the plate 112 is connected, that is, the lower end of each of the first side plate 113, the first inner side plate 115, the second side plate 114, and the first outer side plate 116 is connected to the first end plate 111, the first side plate 113,
  • the upper end portion of each of the first inner side plate 115, the second side plate 114, and the first outer side plate 116 is connected to the second end plate 112.
  • the up and down direction is shown by arrow A in FIG.
  • the first end plate 111, the second end plate 112, the first side plate 113, the second side plate 114, the first inner side plate 115, and the first outer side plate 116 may define a first receiving cavity 118, that is, the first housing 110 There may be a first receiving cavity 118.
  • the membrane module 130 is provided in the first accommodating chamber 118, and each of the first air inlet 121, the first air outlet 122, and the residual gas outlet 123 may communicate with the first accommodating chamber 118.
  • the first air inlet 121 may be provided on the first end plate 111, the first air outlet 122 may be provided on the second end plate 112, and the residual gas outlet 123 is provided on the first enclosure plate 117 and the first end plate On at least one of 111.
  • the residual gas outlet 123 may be provided on the lower portion of the first enclosure 117.
  • the residual gas outlet 123 may be provided on the lower portion of the first outer plate 116.
  • the first end plates 111 of the multiple membrane separation modules 10 may be integrally formed, and the second end plates 112 of the multiple membrane separation modules 10 may be integrally formed.
  • the degree of integration and structural strength of the separation device 1 can be further improved, but also the difficulty of assembling the separation device 1 can be further reduced.
  • the first side plate 113 of one of the two first housings 110 adjacent to the first circumferential direction is integrally formed with the second side plate 114 of the other.
  • the first side plate 113 of one first housing 110 and the second side plate 114 of the other first housing 110 are integrally formed That is, two first housings 110 adjacent in the first circumferential direction may share one side plate.
  • each membrane module 130 The first end (for example, the lower end) of each membrane module 130 is connected to the corresponding first end plate 111.
  • the second end (for example, the upper end) of each membrane module 130 is open to form the permeate gas outlet, and the second end of each membrane module 130 is connected to the first air outlet 122 on the corresponding second end plate 112.
  • the corresponding first end plate 111 and the corresponding second end plate 112 refer to the first end plate 111 and the second end plate 112 that belong to the same membrane separation module 10 as the membrane module 130.
  • the first inner plates 115 of the plurality of membrane separation modules 10 are located on the first right cylindrical surface or the first right prism surface, that is, the first inner plates 115 of the plurality of membrane separation modules 10 are located on the same right cylindrical surface or the same right prism surface .
  • the first outer plates 116 of the multiple membrane separation modules 10 are located on the second right cylindrical surface or the second right prism surface, that is, the first outer plates 116 of the multiple membrane separation modules 10 are located on the same right cylindrical surface or the same right prism surface .
  • the right cylindrical surface refers to the side surface of the right cylindrical surface
  • the right prism surface refers to the side surface of the right prism.
  • first inner plates 115 of the multiple membrane separation modules 10 may be integrally formed, and the first outer plates 116 of the multiple membrane separation modules 10 may be integrally formed.
  • a plurality of adsorption modules 20 may be arranged along the first circumferential direction, that is, a plurality of adsorption modules 20 may be arranged along the first circumferential direction.
  • Each second housing 210 includes a third end plate 211, a fourth end plate 212, a third side plate 213, a fourth side plate 214, a second inner side plate 215, and a second outer side plate 216.
  • the third side panel 213, the second inner panel 215, the fourth side panel 214, and the second outer panel 216 are connected in sequence to form a second enclosure panel 217, and the first end of the second enclosure panel 217 is connected to the third end panel 211 , The second end of the second enclosure 217 is connected to the fourth end plate 212.
  • the third end plate 211 and the fourth end plate 212 are spaced apart in the vertical direction, the lower end of the second enclosure plate 217 is connected to the third end plate 211, and the upper end of the second enclosure plate 217 is connected to the fourth end
  • the plate 212 is connected, that is, the lower end of each of the third side plate 213, the second inner side plate 215, the fourth side plate 214, and the second outer side plate 216 is connected to the third end plate 211, and the third side plate 213,
  • the upper end portion of each of the second inner side plate 215, the fourth side plate 214, and the second outer side plate 216 is connected to the fourth end plate 212.
  • the third end plate 211, the fourth end plate 212, the third side plate 213, the fourth side plate 214, the second inner side plate 215, and the second outer side plate 216 may define a second receiving cavity 218, that is, the second housing 210 There may be a second receiving cavity 218.
  • the adsorbent layer 230 is provided in the second accommodating chamber 218, and each of the second air inlet 221, the second air outlet 222, and the desorption gas outlet 223 may communicate with the second accommodating chamber 218.
  • the second air inlet 221 may be provided on the third end plate 211
  • the second air outlet 222 may be provided on the fourth end plate 212
  • the desorption air outlet 223 may be provided on the second enclosure plate 217 and the third end On at least one of the boards 211.
  • the desorption gas outlet 223 may be provided on the lower portion of the second enclosure 217.
  • the desorption gas outlet 223 may be provided on the lower portion of the second outer plate 216.
  • the third end plates 211 of the plurality of adsorption modules 20 are integrally formed, and the fourth end plates 212 of the plurality of adsorption modules 20 are integrally formed.
  • the third side plate 213 of one of the two second housings 210 adjacent to the first circumferential direction is integrally formed with the fourth side plate 214 of the other.
  • the third side plate 213 of one second casing 210 and the fourth side plate 214 of the other second casing 210 are integrally formed That is, the two second housings 210 adjacent in the first circumferential direction may share one side plate.
  • the second inner plates 215 of the plurality of suction modules 20 are located on the third right cylindrical surface or the third right prism surface, that is, the second inner plates 215 of the plurality of suction modules 20 are located on the same right cylindrical surface or the same right prism surface.
  • the second outer plates 216 of the plurality of adsorption modules 20 are located on the fourth right cylindrical surface or the fourth right prism surface, that is, the second outer plates 216 of the plurality of adsorption modules 20 are located on the same right cylindrical surface or the same right prism surface.
  • first right cylindrical surface and the third right cylindrical surface may be the same right cylindrical surface
  • the second right cylindrical surface and the fourth right cylindrical surface may be the same right cylindrical surface
  • the surface and the third positive prism surface may be the same positive prism surface
  • the second positive prism surface and the fourth positive prism surface may be the same positive prism surface.
  • the second inner plates 215 of the plurality of adsorption modules 20 may be integrally formed, and the second outer plates 216 of the plurality of adsorption modules 20 may be integrally formed.
  • the third air outlets 321 of the plurality of air intake modules 30 communicate with the first air inlets 121 of the plurality of membrane separation modules 10 in a one-to-one correspondence . That is to say, the number of air intake modules 30 may be equal to the number of membrane separation modules 10, the third air outlet 321 of each air intake module 30 communicates with the first air inlet 121 of one membrane separation module 10, each membrane is separated The first air inlet 121 of the module 10 communicates with the third air outlet 321 of one air intake module 30.
  • the intake module 30 includes an intake manifold, a control valve, and a plurality of intake branch pipes.
  • the control valve has a third air inlet 323 and a plurality of third air outlets 321, and the air intake manifold is connected to the third air inlet 323.
  • the third air inlet 323 can switchably communicate with any one of the plurality of third air outlets 321, that is, the third air inlet 323 can communicate with each third air outlet 321, and the third air inlet 323 at the same time Only a part of the plurality of third air outlets 321 communicates, and the third air inlet 323 cannot communicate with all the third air outlets 321 at the same time.
  • the third air outlet 321 may be five, and the third air inlet 323 may be switched from a state in communication with the first third air outlet 321 to the third third air outlet 321 and the fourth third A state where at least one of the air outlets 321 communicates.
  • the first ends of the plurality of intake branch pipes are connected to the plurality of third air outlets 321 in a one-to-one correspondence, and the second ends of the plurality of intake branch pipes are in one-to-one correspondence with the first ends of the plurality of membrane separation modules 10
  • the air inlet 121 is connected.
  • the raw material gas can enter the first housing 110 of the corresponding membrane separation module 10 through the intake manifold, the control valve, and the corresponding intake branch pipe in sequence.
  • the air intake module 30 includes an air intake pipe 310 and a gas distribution disk 320, the air intake pipe 310 has a fourth air outlet 311, and the circumferential direction of the gas distribution disk 320 It can be consistent with this first circumferential direction.
  • the gas distribution disk 320 has a plurality of buffer chambers 322, a plurality of third air inlets 323, and a plurality of third air outlets 321.
  • the plurality of third air inlets 323 communicate with the plurality of buffer chambers 322 in one-to-one correspondence.
  • the third air outlets 321 communicate with the multiple buffer chambers 322 in a one-to-one correspondence.
  • the upper end of the intake pipe 310 is closed.
  • the plurality of third air outlets 321 communicate with the first air inlets 121 of the plurality of membrane separation modules 10 in a one-to-one correspondence.
  • the fourth air outlet 311 can switchably communicate with any one of the plurality of third air inlets 323, that is, the fourth air outlet 311 can communicate with each third air inlet 323, and the fourth air outlet 311 only Communicating with a part of the plurality of third air inlets 323, the fourth air outlet 311 cannot communicate with all the third air inlets 323 at the same time.
  • the third air inlet 323 may be five, and the fourth air outlet 311 may be switched from the state in communication with the first third air inlet 323 to the third third air inlet 323 and the fourth The state where at least one of the third air inlets 323 is in communication.
  • the fourth gas outlet 311 of the gas inlet pipe 310 is communicated with the third gas inlet 323 of a group of buffer chambers 322 of the gas distribution disk 320 to separate the group of membranes 10 Provide raw material gas.
  • the set of buffer chambers 322 includes at least one buffer chamber 322, and the set of membrane separation modules 10 includes at least one membrane separation module 10.
  • the raw material gas is separated by the group of membrane separation modules 10 to obtain crude purified gas.
  • one membrane separation module 10 may be used to separate the raw material gas, or a plurality of membrane separation modules 10 may be used to separate the raw material gas simultaneously.
  • a group of adsorption modules 20 is used to adsorb impurities in the crude purified gas to obtain high-purity gas.
  • the group of adsorption modules 20 includes at least one adsorption module 20. Wherein, at least one adsorption module 20 of the group of adsorption modules 20 is in gas communication with at least one membrane separation module 10 of the group of membrane separation modules 10 in one-to-one correspondence.
  • the third air inlet 323 of the other set of buffer chambers 322 in 320 communicates to provide the raw material gas to the other set of membrane separation modules 10.
  • the other group of buffer chambers 322 includes at least one buffer chamber 322, and the other group of membrane separation modules 10 includes at least one membrane separation module 10.
  • the raw material gas is separated by the other group of membrane separation modules 10 to obtain the crude purified gas. That is, the raw material gas may be separated by one membrane separation module 10, or the raw material gas may be separated by multiple membrane separation modules 10 at the same time. Then, another group of adsorption modules 20 is used to adsorb the impurities in the crude purified gas to obtain high purity gas.
  • the other group of adsorption modules 20 includes at least one adsorption module 20.
  • the at least one adsorption module 20 of the other group of adsorption modules 20 is in gas communication with the at least one membrane separation module 10 of the other group of membrane separation modules 10 in a one-to-one correspondence.
  • the adsorbent in the group of adsorption modules 20 is regenerated so that the group of adsorption modules 20 can be used again to adsorb impurities in the crude purified gas.
  • the adsorbent in the group of adsorption modules 20 can be regenerated; the crude purified gas can also be adsorbed by other adsorption modules 20
  • the adsorbent in the group of adsorption modules 20 is regenerated.
  • the adsorption module 20 can be regenerated in a known manner.
  • a plurality of adsorption modules 20 of the separation device 1 can alternately perform adsorption (operation) and regeneration and a plurality of membrane separation modules 10 can alternately operate, that is, the adsorption module 20 can be periodically operated and regenerated and the membrane
  • the separation module 10 performs periodic work, so that the separation device 1 can continuously produce high-purity gas, so as to extend the working time of the separation device 1 and increase the gas processing amount of the separation device 1 per unit time.
  • the gas distribution disk 320 is ring-shaped, that is, the gas distribution disk 320 has an inner circumferential surface, an outer circumferential surface, and a center hole, and a plurality of third air inlets 323 are provided on the inner circumference of the gas distribution disk 320 Face.
  • the gas distribution plate 320 can be sleeved on the portion of the intake pipe 310 provided with the fourth air outlet 311, that is, the portion of the intake pipe 310 provided with the fourth air outlet 311 can be located in the central hole of the gas distribution plate 320.
  • the fourth gas outlet 311 can be located in the central hole of the gas distribution disk 320, that is, the fourth gas outlet 311 can be located inside the inner peripheral surface of the gas distribution disk 320, so that the fourth gas outlet 311 can be switchably connected with Any one of the plurality of third air inlets 323 communicates.
  • the air intake pipe 310 can be rotatably disposed relative to the gas distribution disk 320, and the fourth air outlet 311 can be switched by rotating the air inlet pipe 310 so that the fourth air outlet 311 can communicate with a different third air inlet 323.
  • a driving device may be used to drive the intake pipe 310 to rotate, and a driving device that drives the intake pipe 310 to rotate may be a motor, a belt, or the like.
  • the fact that the gas distribution plate 320 can be sleeved on the portion of the intake pipe 310 where the fourth gas outlet 311 is provided means that when the separation device 1 is used to produce high-purity gas, the gas distribution plate 320 is sleeved on the inlet pipe 310 The part of the fourth air outlet 311.
  • the fact that the intake pipe 310 can be rotatably arranged relative to the gas distribution disk 320 means that when the high-purity gas is produced by the separation device 1, the intake pipe 310 is rotatably arranged relative to the gas distribution disk 320.
  • the gas distribution disk 320 may be sleeved on the portion of the intake pipe 310 where the fourth gas outlet 311 is provided, or may not be sleeved on the portion of the inlet pipe 310 where the fourth On the part of the air outlet 311.
  • each third air outlet 321 includes a plurality of sub-air outlets 3211, and the plurality of sub-air outlets 3211 constitute a plurality of sub-air outlet groups, and the plurality of sub-air outlet groups can be along the circumference of the gas distribution plate 320. Set at intervals.
  • Each of the sub-air outlet groups includes a plurality of sub-air outlets 3211, and the plurality of sub-air outlets 3211 of each sub-air outlet group are arranged at intervals in the radial direction of the gas distribution disk 320.
  • Each membrane separation module 10 has a plurality of first air inlets 121, and the plurality of first air inlets 121 of each membrane separation module 10 communicates with the plurality of sub-air outlets 3211 of the corresponding third air outlet 321 in a one-to-one correspondence .
  • the plurality of first air inlets 121 of each membrane separation module 10 may constitute a plurality of air inlet groups, and the plurality of air inlet groups may be arranged at intervals along the circumferential direction of the gas distribution disk 320.
  • Each of the air inlet groups includes a plurality of first air inlets 121, and the plurality of first air inlets 121 of each air inlet group are arranged at intervals in the radial direction of the gas distribution disk 320.
  • the plurality of first air inlets 121 of each membrane separation module 10 and the plurality of sub-air outlets 3211 of the corresponding third air outlet 321 are one by one in the axial direction (eg, up and down direction) of the gas distribution disk 320 Relatively, in order to achieve better connectivity.
  • the gas distribution disk 320 includes a first disk body 324 and a second disk body 325.
  • the first disk body 324 is ring-shaped, that is, the first disk body 324 has an inner peripheral surface, an outer peripheral surface and a central hole .
  • the first disc body 324 has a first end surface 3241 (for example, an upper end surface), and a plurality of buffer cavities 322 are provided on the first end surface 3241.
  • the inner end of the buffer cavity 322 is opened to form a third air inlet 323 or the third air inlet 323 is provided on the inner side wall surface of the buffer cavity 322.
  • the inner end of the buffer cavity 322 refers to the adjacent (toward) first of the buffer cavity 322
  • the inner side wall surface of the buffer cavity 322 refers to the side wall surface of the buffer cavity 322 adjacent (toward) the middle portion (center hole) of the first disc body 324.
  • each buffer chamber 322 may be opened to form a plurality of third air inlets 323, or the third air inlet 323 may be provided on the inner wall surface of each buffer chamber 322, or multiple The inner ends of a part of the buffer chambers 322 are opened so as to form a third air inlet 323, and the third air inlet 323 is provided on the inner side wall surface of the remaining portions of the plurality of buffer chambers 322.
  • the first disc body 324 can be sleeved on the portion of the intake pipe 310 provided with the fourth air outlet 311, that is, the portion of the intake pipe 310 provided with the fourth air outlet 311 can be located at the center of the first disc body 324 Inside the hole.
  • the fourth air outlet 311 can be located in the central hole of the first disk 324, that is, the fourth air outlet 311 can be located inside the inner peripheral surface of the first disk 324, so that the fourth air outlet 311 can be switched Ground communicates with any one of the plurality of third air inlets 323.
  • the air intake pipe 310 can be rotatably disposed relative to the first disc body 324. By rotating the air intake pipe 310, the fourth air outlet 311 can be switched so that the fourth air outlet 311 can communicate with a different third air inlet 323.
  • the first disk 324 can be sleeved on the portion of the intake pipe 310 where the fourth gas outlet 311 is provided means that when the high-purity gas is produced by the separation device 1, the first disk 324 is sleeved on the inlet pipe 310 The portion where the fourth air outlet 311 is provided.
  • the first tray 324 may be sleeved on the portion of the intake pipe 310 provided with the fourth gas outlet 311, or may not be sleeved on the portion provided with the intake pipe 310 On the part of the four air outlets 311.
  • the second disc body 325 is disposed on the first end surface 3241, and the second disc body 325 covers a plurality of buffer chambers 322.
  • the third air outlet 321 is provided on the second disk body 325, and the third air outlet 321 penetrates the second disk body 325 in the thickness direction (axial direction) of the second disk body 325.
  • the third air outlet 321 penetrates the second tray 325 in the up-down direction.
  • the second disc body 325 and the first end plates 111 of the plurality of first housings 110 may be integrally formed.
  • the degree of integration and structural strength of the separation device 1 can be further improved, but also the difficulty of assembling the separation device 1 can be further reduced.
  • the second end plates 112 of the plurality of first shells 110 and the third end plates 211 of the plurality of second shells 210 may be integrally formed.
  • the degree of integration and structural strength of the separation device 1 can be further improved, but also the difficulty of assembling the separation device 1 can be further reduced.
  • the gas distribution disk 320 may further include a disk body, a second disk body, and a third disk body, and both the first disk body and the third disk body may be ring-shaped.
  • the first disk body has a first end surface (for example, an upper end surface) and a second end surface (for example, a lower end surface) opposite in its thickness direction.
  • the first disk body is provided with a plurality of buffer cavities 322, each buffer cavity 322 The first disk body penetrates along the thickness direction (for example, the up-down direction) of the first disk body.
  • the inner end of the buffer chamber 322 is opened so as to form a third air inlet 323 or the third air inlet 323 is provided on the inner wall surface of the buffer chamber 322.
  • the second disk body is disposed on the first end surface, and the third disk body is disposed on the second end surface.
  • the second disk body and the third disk body cover a plurality of the buffer chambers 322.
  • the third air outlet 321 is provided on the second disk, and the third air outlet 321 penetrates the second disk in the thickness direction (axial direction) of the second disk. For example, the third air outlet 321 penetrates the second tray in the up-down direction.
  • the processing difficulty of the buffer chamber 322, the third air inlet 323, and the third air outlet 321 can be reduced, so that the processing difficulty and processing cost of the separation device 1 can be reduced.
  • the first disc body can be sleeved on the portion of the intake pipe 310 where the fourth air outlet 311 is provided, and the intake pipe 310 can be rotatably provided with respect to the first disc body.
  • the fourth air outlet 311 can be switched by rotating the air intake pipe 310 so that the fourth air outlet 311 can communicate with a different third air inlet 323.
  • the third disc body can be sleeved on the portion of the intake pipe 310 where the fourth air outlet 311 is provided, and the intake pipe 310 can be rotatably disposed relative to the third disc body. Therefore, the structure of the air intake module 30 can be more reasonable.
  • the separation device 1 further includes a central axis 40, a plurality of membrane separation modules 10 can be arranged along the circumferential direction of the central axis 40, and a plurality of adsorption modules 20 can be arranged along the central axis 40 Circumferential arrangement.
  • a plurality of membrane separation modules 10 can be arranged around the central axis 40, and a plurality of adsorption modules 20 can be arranged around the central axis 40.
  • the circumferential direction of the central axis 40 may coincide with the first circumferential direction.
  • the circumferential direction of the central shaft 40, the first circumferential direction, and the circumferential direction of the gas distribution disk 320 (first disk body 324) may coincide with each other.
  • the first inner plate 115 of the membrane separation module 10 is adjacent to the central axis 40 or the first inner plate 115 of the membrane separation module 10 is in contact with the central axis 40. That is, the first inner plate 115 of each membrane separation module 10 may be adjacent to the central axis 40, or the first inner plate 115 of each membrane separation module 10 may be in contact with the central axis 40, or a plurality of membranes may be separated A part of the first inner side plate 115 of the module 10 is adjacent to the central axis 40, and the remaining part of the first inner side plates 115 of the plurality of membrane separation modules 10 is in contact with the central axis 40.
  • the second inner side plate 215 of each adsorption module 20 is adjacent to the central axis 40 or the second inner side plate 215 of each adsorption module 20 is in contact with the central axis 40.
  • the second inner plate 215 of each adsorption module 20 may be adjacent to the central axis 40, or the second inner plate 215 of each adsorption module 20 may be in contact with the central axis 40, or a plurality of adsorption modules 20 A part of the second inner side plate 215 is adjacent to the central axis 40, and the remaining part of the second inner side plate 215 of the plurality of suction modules 20 is in contact with the central axis 40.
  • the multiple membrane separation modules 10 and the multiple adsorption modules 20 can be disposed around the central axis 40 to realize rapid installation and maintenance of the multiple membrane separation modules 10 and the multiple adsorption modules 20.
  • the arrangement of the plurality of membrane separation modules 10 along the circumferential direction of the central axis 40 means that the plurality of membrane separation modules 10 are arranged along the circumferential direction of the central axis 40 immediately after the installation of the plurality of membrane separation modules 10.
  • the multiple membrane separation modules 10 may be arranged along the circumferential direction of the central axis 40.
  • the central shaft 40 may be removed so that the central shaft 40 is separated from the multiple membrane separation modules 10.
  • the arrangement of the plurality of adsorption modules 20 along the circumferential direction of the central axis 40 means that when the plurality of adsorption modules 20 are just installed, the plurality of adsorption modules 20 are arranged along the circumferential direction of the central axis 40.
  • the multiple adsorption modules 20 can be arranged along the circumferential direction of the central axis 40, or the center The shaft 40 is removed so that the central shaft 40 is separated from the plurality of adsorption modules 20.
  • the first end plates 111 of the multiple membrane separation modules 10 are integrally formed to form a bottom plate, and the bottom plate is provided with mounting holes, and the end (for example, the lower end) of the central shaft 40 can be fitted in Inside the mounting hole.
  • the end portion of the central shaft 40 can be fitted in the mounting hole means: when installing a plurality of membrane separation modules 10 and/or a plurality of adsorption modules 20 and when a plurality of membrane separation modules 10 and/or a plurality of adsorption modules 20 are just When the installation is completed, the end of the central shaft 40 is fitted in the installation hole.
  • the center Before installing multiple membrane separation modules 10 and/or multiple adsorption modules 20, after installing multiple membrane separation modules 10 and/or multiple adsorption modules 20, and using the separation device 1 to produce high-purity gases, the center The end of the shaft 40 can be fitted in the mounting hole, and the end of the central shaft 40 can also be detached from the mounting hole.
  • the fourth end plate 212 is provided with a through hole 2121, and the central shaft 40 can pass through the through hole 2121.
  • the central axes of the multiple membrane separation modules 10 and the multiple adsorption modules 20 may coincide, that is, the multiple membrane separation modules 10 and the multiple adsorption modules 20 may be coaxially arranged.
  • the invention discloses a high-purity gas production device (separation device 1).
  • the overall shape structure of the device is in the shape of a cylinder or a regular polygon; along the direction of gas flow, the device includes a raw gas control distributor, a membrane separation module, an adsorption separation module and a product gas controller in sequence.
  • the invention integrates the membrane separation and adsorption separation technology equipment by modularly designing the raw material gas control distributor, the membrane separation module and the adsorption separation module; through the layered design of the raw gas control distributor and the rotation program control of the intake pipe , To achieve the control of the raw material gas through the membrane separation and adsorption separation module in sequence.
  • the device of the invention ensures the periodic operation and regeneration of the membrane separation module and the adsorption separation module, so that the respective characteristics and purification functions of the membrane and the adsorbent bed layer are fully exerted.
  • a high-purity gas preparation device the overall shape structure of which is cylindrical or regular polygonal; along the direction of gas flow, the device includes a raw gas control distributor, a membrane separation module, an adsorption separation module and a product gas controller in sequence.
  • the raw material gas control distributor includes a raw gas inlet pipe, a raw gas buffer disk and a raw gas distribution disk; the inlet side end surface of the raw gas buffer disk is a closed structure, and the outlet side includes 2n buffers, n is an integer
  • the buffer zone is in the shape of a groove on the buffer tray, and each buffer zone is arranged around the center of the cylinder or regular polygon, and is open toward the center for receiving the raw material gas from the raw gas inlet pipe; the raw material gas
  • the intake pipe is provided through the raw material gas buffer tray; the raw material gas inlet pipe is provided with an opening on the wall of the raw material gas buffer disk (part) corresponding to the opening of the raw material buffer; the raw material gas distribution disk covers the raw material gas
  • the output side of the buffer disk is fixedly connected, so that the raw gas buffer area becomes 2n isolated areas. The raw material gas can only enter the corresponding membrane block unit through the through hole on the distribution disk.
  • the membrane separation module includes a membrane separation shell, membrane tube support plates at both ends, a plurality of membrane tube assemblies fixed between the membrane tube support plates, and a membrane partition partition plate.
  • the membrane partition partition plate separates the membrane tube assembly Divided into 2n membrane block units, 2n membrane block units correspond to the up and down positions of 2n raw material gas buffers.
  • the adsorption separation module includes an adsorption separation module housing, an adsorbent module distribution tray, an adsorbent bed and an adsorption partition separator.
  • the adsorption partition separator divides the adsorbent bed into 2n adsorption units, and the 2n adsorption units and 2n membrane block units correspond up and down; the other end of the adsorbent bed is fixedly connected to the product gas controller.
  • the product gas controller has a plate-like structure, and 2n product gas outlets are distributed on the 2n product gas outlets, and the 2n product gas outlets respectively correspond to the catalyst bed of the adsorption unit and maintain communication.
  • the membrane tube supporting plate on the inlet side of the membrane separation module and the raw material gas distribution plate adopt the same component or structure.
  • the raw material gas inlet pipe and the raw material gas buffer tray are movably connected, and the raw material gas inlet pipe can rotate.
  • the width of the opening on the raw gas inlet pipe is not greater than the width of the corresponding buffer zone opening at the center of the circle.
  • the device further includes a driving device for driving the feed gas inlet pipe to rotate according to a program.
  • the membrane separation module and the adsorption separation module are arranged coaxially.
  • the membrane separation casing is respectively provided with a residual gas discharge outlet at a position corresponding to 2n membrane block units.
  • a plurality of through holes are distributed on the raw material gas distribution plate, and the plurality of through holes are divided into 2n zones, which respectively correspond to 2n membrane separation modules.
  • the template support plate on the intake side of the membrane separation module is distributed with a number of holes, and the holes are divided into 2n zones, which correspond to 2n adsorption separation units, respectively, and communicate with each other.
  • the adsorption separation module housing is provided with a desorption gas discharge port at a position corresponding to 2n adsorption units.
  • the device further includes a central axis, and the membrane separation module, the adsorption separation module and the product gas controller are all set on the central axis.
  • the membrane separation module casing and the adsorption separation module casing have a cylindrical structure.
  • the end of the raw gas inlet pipe is closed.
  • the 2n openings of the buffer zone toward the center are isolated from each other and do not communicate with each other.
  • the membrane tube support plate at the outlet end of the membrane separation module and the adsorbent module distribution plate adopt the same component.
  • the invention provides a high-purity gas production device integrating membrane separation and adsorption separation technologies, and at the same time, innovative design is made for the structure and process of the two technologies.
  • a high-purity gas production device the overall shape of the structure is in the shape of a cylinder or a regular polygon; along the direction of raw material gas to product gas, the device includes a raw gas control distributor, a membrane separation module, an adsorption separation module and product gas Controller
  • the raw material gas control distributor includes a raw gas inlet pipe, a raw gas buffer disk and a raw gas distribution disk; the inlet side end surface of the raw gas buffer disk is a closed structure, and the outlet side includes 2n buffers, n is an integer
  • the buffer zone is in the shape of a groove on the buffer tray, and each buffer zone is arranged around the center of the cylinder or regular polygon, and is open toward the center (2n openings are isolated from each other and are not connected) for receiving raw material gas
  • the raw material gas distribution plate covers the outlet side end surface of the raw gas buffer plate, and the two are fixedly connected, so that the raw gas buffer area becomes 2n isolated areas, and the raw material gas can only enter the corresponding membrane through the through hole on the distribution plate Block unit
  • the membrane separation module includes a membrane separation housing, membrane tube support plates at both ends, a plurality of membrane tube assemblies fixed between the membrane tube support plates, and membrane tube assembly partition partitions.
  • the membrane tube assembly partition partitions separate the membrane
  • the tube assembly is divided into 2n membrane block units, and the 2n membrane block units correspond to the upper and lower positions of the 2n raw material gas buffers;
  • the adsorption separation module includes an adsorption separation module housing, a supporting plate, an adsorbent bed and an adsorption partition separator.
  • the adsorption partition separator divides the adsorbent bed into 2n adsorption units, 2n adsorption units and 2n membranes The block units correspond up and down; the other end of the adsorbent bed is fixedly connected to the product gas controller;
  • the product gas controller has a plate-like structure, and 2n product gas outlets are distributed on the 2n product gas outlets respectively corresponding to the adsorbent bed of the adsorption unit, and maintained in communication.
  • the device of the present invention may further include a driving device, which is fixedly connected to the raw gas inlet pipe for driving the raw gas inlet pipe to rotate or stop according to a set procedure.
  • the area of the opening on the raw material gas inlet pipe is not larger than the area of the corresponding buffer zone on the buffer disk for receiving the raw material gas opening.
  • the end of the raw material gas inlet pipe is a closed structure, and its end is flush with the end face of the gas outlet end of the raw gas buffer disk.
  • a plurality of through holes are distributed on the raw material gas distribution plate, and the plurality of through holes are divided into 2n partitions, which respectively correspond to 2n membrane separation modules.
  • the through holes on the raw material gas distribution plate are generally distributed in a fan shape, and are used to evenly distribute the raw material gas passing through the buffer zone to the membrane separation module.
  • the template support plate on the inlet side of the membrane separation module is distributed with a number of holes, and the holes are divided into 2n zones, which correspond to the 2n raw gas distribution buffer zones, respectively, and communicate with each other.
  • the membrane tube support plate on the intake side of the membrane separation module and the raw material gas distribution plate adopt the same component or structure.
  • the membrane separation module housing is respectively provided with a residual gas discharge outlet at a position corresponding to 2n membrane block units.
  • Both the membrane separation module housing and the adsorption separation module housing adopt a cylindrical or regular polygonal structure.
  • the membrane separation module and the adsorption separation module are arranged coaxially.
  • the membrane separation module is used for crude purification of raw material gas.
  • the membrane module provided by the membrane separation module may be an inorganic membrane or an organic membrane.
  • Inorganic membranes are suitable for use in liquids in the raw gas, containing acid gases, or when condensate may be generated when temperature and pressure change.
  • the inorganic membrane can be a hollow molecular sieve membrane, such as carbon molecular sieve, LTA molecular sieve, DDR molecular sieve membrane, etc.
  • the organic film is suitable for the case where there is no liquid in the raw material gas, and the temperature and pressure changes will not cause the raw material or product gas to produce condensate.
  • the organic membrane is generally a hollow fiber membrane.
  • the hollow molecular sieve membrane tube is encapsulated in a cylindrical shell.
  • the lower end of the cylindrical shell encapsulating the molecular sieve membrane tube is connected to the gas control distributor entering the membrane separation module.
  • the molecular sieve membrane tube is divided into 2n blocks. Each block contains an equal amount of hollow molecular sieve membrane tube.
  • the adsorption separation module housing is provided with desorption gas discharge ports at positions corresponding to 2n adsorption units, respectively, for discharging desorption gas in the desorption process.
  • the adsorbent is encapsulated in a cylindrical casing.
  • the lower end of the cylindrical housing is connected to the upper end of the membrane separation module, and a gas distribution disk with a structure similar to the raw material gas distribution disk is provided at the connection, and the upper end of the cylindrical housing is connected to the product gas controller.
  • the adsorbent is usually divided into 2n blocks, each block can handle the same amount of gas.
  • the number of equally divided molecular sieve membrane tube blocks in the membrane separation module is equal to the number of equally divided adsorbent blocks in the adsorption separation module.
  • the above-mentioned adsorption separation module is used to further purify the crude purification gas obtained by membrane separation to obtain high purity gas.
  • the adsorption separation module can be layered and packed with adsorbents that adsorb various impurities, generally including activated alumina, silica gel, zeolite molecular sieve, activated carbon, etc.
  • the product gas controller has a plate-like structure, and 2n product gas outlets are distributed on the 2n product gas outlets, and the 2n product gas outlets respectively correspond to the adsorbent bed of the adsorption unit and maintain communication.
  • the product gas discharge port is used to control the discharge of product gas and the pressure inside the adsorption bed.
  • the device of the present invention may further include a central axis, and the membrane separation module, the adsorption separation module and the product gas controller are all sleeved on the central axis through the central axis installation hole.
  • the setting of the central axis is used to realize the rapid installation and maintenance of the preparation device.
  • the high-purity gas preparation device of the present invention can be widely used in the field of high-purity gas preparation.
  • it can be used to produce high-purity argon, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, etc.
  • the high-purity gas production device of the present invention has the following advantages:
  • the present invention provides a high-purity gas production device, which includes an intake pipe 310 and a gas distribution plate 320, a membrane separation module 10, an adsorption module 20, a product gas controller, and a central shaft 40.
  • the gas distribution disk 320 includes a first disk body 324 and a second disk body 325.
  • the first disc body 324 is provided with a groove-shaped buffer cavity 322, and at the same time, the groove is provided with a third air inlet 323 (third air inlet 323) for receiving the raw material gas from the air inlet pipe 310 toward the central axis And the number of buffer chambers 322 are equal to each other, and are isolated from each other), the second disc body 325 is provided with a through third air outlet 321.
  • the second disc body 325 covers the first disc body 324, so that the raw material gas can only enter the buffer cavity 322 through the third air inlet 323, and then pass through the third air outlet 321 on the second disc body 325 from the buffer cavity 322 Enter the membrane separation module 10 evenly.
  • the third air outlets 321 are generally arranged in a fan-shaped arrangement, so that the raw material gas can be evenly distributed to the outside of the membrane tube of the membrane separation module 10.
  • the air intake pipe 310 is at the central axis position, and a fourth air outlet 311 is provided on the air inlet pipe 310 for distributing the raw material gas to the buffer chamber 322 through the third air inlet 323, only the fourth air outlet 311 and one
  • the gas inlet 323 corresponds, the raw material gas enters the corresponding buffer chamber 322, and then sequentially enters the corresponding membrane separation module 10 and the adsorption module 20, and no raw material gas enters the buffer chamber 322 that does not correspond to the fourth gas outlet 311.
  • the membrane separation module 10 includes a membrane module 130, a membrane module partition baffle 113, 114, a membrane module mounting case 115, 116, an inlet-side membrane tube support plate 111, an outlet-side membrane tube support plate 112, and ) Permeate gas outlet 123 at the bottom (the number of permeate gas outlets 123 and the number of membrane separation modules 10 may be equal).
  • the inlet tube support plate 111 can have the same structure as the second disk 325, and the through holes provided in the second disk 325 also correspond to the through holes (the third air outlet 321) of the second disk 325.
  • the intake-end membrane tube support plate 111 and the second disc body 325 use the same member.
  • the gas outlet membrane tube support plate 112 is sealingly connected to the edges of the membrane assembly mounting shells 115 and 116, and is provided with a number of through holes, which correspond to the air outlets of the membrane module 130 in one-to-one correspondence.
  • the adsorption module 20 includes an adsorbent bed 230, an adsorbent bed partition partition 213, 214, an adsorbent bed shell 215, 216, an adsorbent module distribution plate 211, a housing 215 located in the adsorbent bed, Desorption gas outlet 223 at the bottom of 216 (upper) (the number of desorption gas outlets 223 is equal to the number of adsorption modules 20).
  • the sorbent module distribution plate 211 can adopt the same structure as the outlet-end membrane tube support plate 112, and the through-holes provided thereon also correspond to the through-holes on the outlet-end membrane tube support plate 112 one by one. Alternatively, the adsorbent module distribution tray 211 and the outlet-end membrane tube support plate 112 use the same member.
  • the product gas controller includes the product gas outlet and the installation hole of the central axis of the device.
  • the high-purity gas production device of the present invention is from the bottom to the top of the intake pipe 310, gas distribution disk 320, membrane separation module 10, adsorption module 20, and product gas controller 5.
  • the above components or modules are all cylindrical or positive
  • the polygons are all mounted on the central axis 40.
  • the central shaft 40 can realize quick installation and maintenance of the device.
  • the membrane separation module 10 and the adsorption module 20 are separated into equal number of blocks 2n (n is an integer), and the minimum number of blocks is 2.
  • the product gas controller is located at the top of the device.
  • the number of product gas outlets of the product gas controller is equal to the number of the adsorption modules 20, and is used to control the discharge of the product gas and the pressure inside the adsorbent layer 230 of the adsorption module 20.
  • the high-purity gas production device includes the following steps:
  • the raw material gas enters the buffer chamber 322 through the connected fourth air outlet 311 and the third air inlet 323 through the air inlet pipe 310, and finally enters the membrane separation through the third air outlet 321 on the second disk body 325 Module 10.
  • the lower end of the membrane separation module 10 is sealed, and the raw material gas enters the shell side of the membrane separation module 10, and enters the inside of the membrane tube through the membrane assembly 130.
  • the gas that passes through the membrane tube is the crude purified gas, and the unpermeated gas is the retentate gas.
  • the crude purified gas enters the adsorbent layer 230 of the adsorption module 20 after passing through a gas distributor similar to the second tray 325, and the working adsorption module 20 corresponds to the working membrane separation module 10 at this time.
  • the high-purity gas obtained by the adsorption module 20 leaves the device through the product gas outlet.
  • Steps 1 and 2 can obtain continuous high-purity gas.
  • each adsorption module 20 completes adsorption, when the crude purified gas obtained by another membrane separation module 10 begins to enter another adsorption module 20, the adsorption module 20 that has completed adsorption begins to depressurize and exit the bed through the product gas outlet The high-purity product gas adsorbed in the layer is used to purge and regenerate the adsorbent layer 230 after desorption.
  • the product gas discharge port is closed, the desorption gas outlet 223 is opened, and the desorbed adsorbent layer 230 is connected to another adsorbent layer 230 that has completed adsorption
  • the mid-adsorbed high-purity product gas is purged and regenerated, and further boosted by the product gas to prepare for the next adsorption process.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may include at least one of the features explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection, electrical connection or communication with each other; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components, Unless otherwise clearly defined.
  • installation can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection, electrical connection or communication with each other; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components, Unless otherwise clearly defined.
  • the first feature is "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly through an intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Abstract

分离装置(1)和分离方法,分离装置(1)包括:膜分离模块(10)、吸附模块(20)和进气模块(30),膜分离模块(10)包括第一壳体(110)以及能够设在第一壳体(110)内的膜组件(130),第一壳体(110)具有第一进气口(121)、第一出气口(122)和渗余气出口(123),膜组件(130)具有渗透气出口,渗透气出口与第一出气口(122)连通;吸附模块(20)包括第二壳体(210)以及能够设在第二壳体(210)内的吸附剂层(230),第二壳体(210)设在第一壳体(110)上,其中第二壳体(210)具有第二进气口(221)、第二出气口(222)和解吸气出口(223),第二进气口(221)与第一出气口(122)连通;进气模块(30)具有第三出气口(321),第三出气口(321)与第一进气口(121)连通。该分离装置(1)具有占地面积小、重量轻、制造成本低等优点。

Description

分离装置和分离方法 技术领域
本发明涉及分离装置和分离方法。
背景技术
可采用塔器分离、膜分离、吸附分离等技术制取高纯度气体(摩尔纯度大于99.9%的气体)。通过膜分离制取高纯度气体,一般需要两级提纯、甚至更多级数的提纯才能实现,从而导致高纯度气体的制取成本高。尤其当原料气体中的目标气体组分的浓度较低时,高纯度气体的制取成本更高,从而限制了膜分离的使用范围。
目前,当原料气体中的目标气体组分的浓度含量较低时,会选择将原料气体先通过膜分离装置进行粗提纯,粗提纯后的气体再进入吸附分离装置以便制取高纯度气体。
发明内容
本发明的目的是为了克服现有技术存在的问题,提供分离装置和分离方法。
为了实现上述目的,本发明第一方面提供一种分离装置,所述分离装置包括:膜分离模块,所述膜分离模块包括第一壳体以及能够设在所述第一壳体内的膜组件,所述第一壳体具有第一进气口、第一出气口和渗余气出口,所述膜组件具有渗透气出口,所述渗透气出口与所述第一出气口连通;吸附模块,所述吸附模块包括第二壳体以及能够设在所述第二壳体内的吸附剂层,所述第二壳体设在所述第一壳体上,其中所述第二壳体具有第二进气口、第二出气口和解吸气出口,所述第二进气口与所述第一出气口连通;和进气模块,所述进气模块具有第三出气口,所述第三出气口与所述第一进气口连通。
根据本发明实施例的分离装置具有占地面积小、重量轻、制造成本低的优点。
可选地,所述第二壳体直接设在所述第一壳体上。
可选地,所述第一进气口为多个,每个所述第一进气口与所述第三出气口连通,可选地,所述膜组件为多个,所述第一出气口为多个,所述第二进气口为多个,其中多个所述膜组件的所述渗透气出口一一对应地与多个所述第一出气口连通,多个所述第一出气口一一对应地与多个所述第二进气口连通。
可选地,所述进气模块包括:进气管,所述进气管具有第四出气口;和气体分配盘,所述气体分配盘具有缓冲腔和多个所述第三出气口,每个所述第三出气口与所述缓冲腔连通,所述第四出气口与所述缓冲腔连通,其中所述第一进气口为多个,多个所述第三出气口一一对应地与多个所述第一进气口连通。
可选地,所述膜分离模块为多个,所述吸附模块为多个,每个所述膜分离模块的所述第一进气口与所述第三出气口连通,多个所述第二壳体一一对应地设在多个所述第一壳体上,多个所述膜分离模块的所述第一出气口一一对应地与多个所述吸附模块的所述第二进气口连通。
可选地,所述进气模块为多个,多个所述进气模块的所述第三出气口一一对应地与多个所述膜分离模块的所述第一进气口连通。
可选地,所述进气模块包括:进气总管;控制阀,所述控制阀具有第三进气口和多个所述第三出气口,所述第三进气口可切换地与多个所述第三出气口中的任意一个连通,其中所述进气总管与所述第三进气口相连;和多个进气支管,多个所述进气支管的第一端部一一对应地与多个所述第三出气口相连,多个所述进气支管的第二端部一一对应地与多个所述膜分离模块的所述第一进气口相连。
可选地,所述进气模块包括:进气管,所述进气管具有第四出气口;和气体分配盘,所述气体分配盘具有多个缓冲腔、多个第三进气口和多个所述第三出气口,多个所述第三进气口一一对应地与多个所述缓冲腔连通,多个所述第三出气口一一对应地与多个所述缓冲腔连通,其中所述第四出气口可切换地与多个所述第三进气口中的任意一个连通,多个所述第三出气口一一对应地与多个所述膜分离模块的所述第一进气口连通,可选地,所述气体分配盘为环形,多个所述第三进气口设在所述气体分配盘的内周面上,其中所述气体分配盘能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述气体分配盘可旋转地设置,可选地,每个所述第三出气口包括多个子出气口,多个所述子出气口构成沿所述气体分配盘的周向间隔开设置的多个子出气口组,每个所述子出气口组包括沿所述气体分配盘的径向间隔开设置的多个所述子出气口,每个所述膜分离模块具有多个所述第一进气口,每个所述膜分离模块的多个所述第一进气口一一对应地与相应的所述第三出气口的所述多个子出气口连通。
可选地,所述气体分配盘包括:环形的第一盘体,所述第一盘体具有第一端面,所述第一端面上设有多个所述缓冲腔,所述缓冲腔的内端敞开以便形成所述第三进气口或者所述第三进气口设在所述缓冲腔的内侧壁面上,其中所述第一盘体能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述第一盘体可旋转地设置;和第二盘体,所述第二盘体设在所述第一端面上,所述第二盘体覆盖多个所述缓冲腔,所述第三出气口设在所述第二盘体上,所述第三出气口沿所述第二盘体的厚度方向贯通所述第二盘体。
可选地,所述气体分配盘包括:环形的第一盘体,所述第一盘体具有在其厚度方向上相对的第一端面和第二端面,所述第一盘体上设有多个所述缓冲腔,每个所述缓冲腔沿所述第一盘体的厚度方向贯通所述第一盘体,所述缓冲腔的内端敞开以便形成所述第三进气口或者所述第三进气口设在所述缓冲腔的内侧壁面上;以及第二盘体和环形的第三盘体,所述第二盘体设在所述第一端面上,所述第三盘体设在所述第二端面上,所述第二盘体和所述第三盘体覆盖多个所述缓冲腔,其中所述第一盘体能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述第一盘体可旋转地设置,所述第三出气口设在所述第二盘体上,所述第三出气口沿所述第二盘体的厚度方向贯通所述第二盘体。
可选地,多个所述膜分离模块沿第一周向布置,所述第一壳体包括:第一端板和第二端板;以及第一侧板、第二侧板、第一内侧板和第一外侧板,所述第一侧板、所述第一内侧板、所述第二侧板和第一外侧板依次相连以便形成第一围板,所述第一围板的第一端部与所述第一端板相连,所述第一围板的第二端部与所述第二端板相连,其中所述第一进气口设在所述第一端板上,所述第一出气口设在所述第二端板上,所述渗余气出口设在所述第一围板和所述第一端板中的至少一个上,可选地,多个所述膜分离模块的所述第一端板一体成型,多个所述膜分离模块的所述第二端板一体成型,可选地,在所述第一周向上相邻的两个所述第一壳体中的一者的所述第一侧板与另一者的所述第二侧板一体成型,可选地,多个所述膜分离模块的所述第一内侧板一体成型,多个所述膜分离模块的所述第一外侧板一体成型,可选地,每个所述膜组件的第一端部与相应的所述第一端板相连,每个所述膜组件的第二端部敞开以便形成所述渗透气出口,每个所述膜组件的第二端部与相应的所述第二端板上的所述第一出气口相连,可选地,多个所述膜分离模块的第一内侧板位于第一正圆柱面或第一正棱柱面上,多个所述膜分离模块的第一外侧板位于第二正圆柱面或第二正棱柱面上。
可选地,多个所述吸附模块沿第一周向布置,所述第二壳体包括:第三端板和第四 端板;以及第三侧板、第四侧板、第二内侧板和第二外侧板,所述第三侧板、所述第二内侧板、所述第四侧板和第二外侧板依次相连以便形成第二围板,所述第二围板的第一端部与所述第三端板相连,所述第二围板的第二端部与所述第四端板相连,其中所述第二进气口设在所述第三端板上,所述第二出气口设在所述第四端板上,所述解吸气出口设在所述第二围板和所述第三端板中的至少一个上,可选地,多个所述吸附模块的所述第三端板一体成型,多个所述吸附模块的所述第四端板一体成型,可选地,在所述第一周向上相邻的两个所述第二壳体中的一者的所述第三侧板与另一者的所述第四侧板一体成型,可选地,多个所述吸附模块的所述第二内侧板一体成型,多个所述吸附模块的所述第二外侧板一体成型,可选地,多个所述吸附模块的所述第二内侧板位于第三正圆柱面或第三正棱柱面上,多个所述吸附模块的所述第二外侧板位于第四正圆柱面或第四正棱柱面上,更加可选地,所述第一正圆柱面和所述第三正圆柱面为同一正圆柱面,所述第二正圆柱面和所述第四正圆柱面为同一正圆柱面,所述第一正棱柱面和所述第三正棱柱面为同一正棱柱面,所述第二正棱柱面和所述第四正棱柱面为同一正棱柱面。
可选地,所述分离装置进一步包括中心轴,多个所述膜分离模块能够沿所述中心轴的周向布置,多个所述吸附模块能够沿所述中心轴的周向布置,其中所述膜分离模块的所述第一内侧板邻近所述中心轴或者所述膜分离模块的所述第一内侧板与所述中心轴接触,每个所述吸附模块的所述第二内侧板邻近所述中心轴或者每个所述吸附模块的所述第二内侧板与所述中心轴接触。
本发明第二方面提供利用根据本发明第一方面所述的分离装置实施的分离方法,所述分离方法包括以下步骤:利用进气模块向膜分离模块提供原料气体;利用所述膜分离模块对所述原料气体进行分离以便得到粗提纯气体;和利用吸附模块吸附所述粗提纯气体中的杂质或目标气体以便得到高纯度气体。
可选地,使进气管的第四出气口与气体分配盘的一组缓冲腔的第三进气口连通,以便向一组所述膜分离模块提供所述原料气体,一组所述缓冲腔包括至少一个所述缓冲腔,一组所述膜分离模块包括至少一个所述膜分离模块;利用一组所述膜分离模块对所述原料气体进行分离以便得到粗提纯气体;利用一组所述吸附模块吸附所述粗提纯气体中的杂质或目标气体以便得到高纯度气体,一组所述吸附模块包括至少一个所述吸附模块;一组所述吸附模块运行预设时间后或者一组所述吸附模块处理预设量的所述粗提纯气体后,使所述进气管的所述第四出气口与所述气体分配盘的另一组所述缓冲腔的所述第三进气口连通,以便向另一组所述膜分离模块提供所述原料气体,另一组所述缓冲腔包括至少一个所述缓冲腔,另一组所述膜分离模块包括至少一个所述膜分离模块;利用另一组所述膜分离模块对所述原料气体进行分离以便得到所述粗提纯气体;利用另一组所述吸附模块吸附所述粗提纯气体中的杂质或目标气体以便得到高纯度气体,另一组所述吸附模块包括至少一个所述吸附模块;和对一组所述吸附模块中的吸附剂进行再生。
附图说明
图1是根据本发明实施例的分离装置的局部结构示意图;
图2a是根据本发明实施例的分离装置的进气模块的结构示意图;
图2b是根据本发明实施例的分离装置的进气模块的局部结构示意图;
图2c是根据本发明实施例的分离装置的气体分配盘的结构示意图;
图3是根据本发明实施例的分离装置的进气管的结构示意图;
图4a是根据本发明实施例的分离装置的膜分离模块的局部结构示意图;
图4b是根据本发明实施例的分离装置的膜分离模块的局部结构示意图;
图5a是根据本发明实施例的分离装置的吸附模块的局部结构示意图;
图5b是根据本发明实施例的分离装置的吸附模块的局部结构示意图;
图6是根据本发明实施例的吸附模块的第四端板的结构示意图。
分离装置1、
膜分离模块10、第一壳体110、第一端板111、第二端板112、第一侧板113、第二侧板114、第一内侧板115、第一外侧板116、第一围板117、第一容纳腔118、
第一进气口121、第一出气口122、渗余气出口123、膜组件130、
吸附模块20、第二壳体210、第三端板211、第四端板212、通孔2121、第三侧板213、第四侧板214、第二内侧板215、第二外侧板216、第二围板217、第二容纳腔218、
第二进气口221、第二出气口222、解吸气出口223、吸附剂层230、
进气模块30、进气管310、第四出气口311、
气体分配盘320、第三出气口321、子出气口3211、缓冲腔322、第三进气口323、第一盘体324、第一端面3241、第二盘体325、
中心轴40
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的分离装置1。如图1-图6所示,根据本发明实施例的分离装置1包括膜分离模块10、吸附模块20和进气模块30。
膜分离模块10包括第一壳体110以及能够设在第一壳体110内的膜组件130,第一壳体110具有第一进气口121、第一出气口122和渗余气出口123。膜组件130具有渗透气出口,该渗透气出口与第一出气口122连通。吸附模块20包括第二壳体210以及能够设在第二壳体210内的吸附剂层230,第二壳体210设在第一壳体110上,即第一壳体110设在第二壳体210上。第二壳体210具有第二进气口221、第二出气口222和解吸气出口223,第二进气口221与第一出气口122连通。进气模块30具有第三出气口321,第三出气口321与第一进气口121连通。
膜组件130能够设在第一壳体110内是指:在利用分离装置1制取高纯度气体时,膜组件130设在第一壳体110内;吸附剂层230能够设在第二壳体210内是指:在利用分离装置1制取高纯度气体时,吸附剂层230设在第二壳体210内。在未利用分离装置1制取高纯度气体时,膜组件130可以设在第一壳体110内,也可以不设在第一壳体110内,吸附剂层230可以设在第二壳体210内,也可以不设在第二壳体210内。
在利用分离装置1制取高纯度气体时,原料气体(包含目标气体的气体混合物)依次通过进气模块30的第三出气口321和膜分离模块10的第一进气口121进入到膜分离模块10内,利用膜分离模块10对该原料气体进行分离(粗提纯)以便得到粗提纯气体。其中,透过膜组件130的气体为该粗提纯气体,未透过膜组件130的气体为渗余气体,该渗余气体可以通过渗余气出口123排出膜分离模块10。该粗提纯气体依次通过膜分离模块10的第一出气口122和吸附模块20的第二进气口221进入到吸附模块20内,利用吸附模块20吸附该粗提纯气体中的杂质以便得到高纯度气体。
现有的用于制取高纯度气体的装置简单地将现有的膜分离装置和吸附装置根据物料性质进行前后连接组合,并没有改变膜分离装置和吸附装置本身的结构。
根据本发明实施例的分离装置1通过将膜分离模块10的第一壳体110和吸附模块20的第二壳体210设置在一起,从而可以实现膜分离模块10和吸附模块20的一体化。 由此可以极大地减少分离装置1的占地面积和重量。由于根据本发明实施例的分离装置1具有非常小的占地面积,因此特别适合在气体加载站(例如加氢站)内使用,根据本发明实施例的分离装置1具有现有的分离装置无法比拟的占地小的优势。
因此,根据本发明实施例的分离装置1具有占地面积小、重量轻、制造成本低等优点。
如图1-图6所示,在本发明的一些实施例中,分离装置1包括膜分离模块10、吸附模块20和进气模块30。分离装置1可以广泛用于高纯度气体的制取,例如分离装置1可以用于制取高纯度的氩气、氢气、氧气、氮气、一氧化碳、二氧化碳、甲烷等。
膜分离模块10包括第一壳体110以及能够设在第一壳体110内的膜组件130,第一壳体110具有第一进气口121、第一出气口122和渗余气出口123。吸附模块20包括第二壳体210以及能够设在第二壳体210内的吸附剂层230,第二壳体210具有第二进气口221、第二出气口222和解吸气出口223。
膜组件130可以是无机膜组件,也可以是有机膜组件。无机膜组件适用于原料气体中带液、含有酸性气体或温度压力变化时可能产生凝液的情况。无机膜组件的无机膜可以是中空分子筛膜,例如碳分子筛、LTA分子筛、DDR分子筛膜等。有机膜组件适用于原料气体中不带液、温度压力变化不会使原料或产品气产生凝液的情况,有机膜组件的有机膜可以是中空纤维膜。
根据粗提纯气体中的杂质组成,吸附剂层230可以包括能够吸附各种杂质的吸附剂。例如,吸附剂层230可以包括活性氧化铝、硅胶、沸石分子筛和活性炭中的至少一种。
可选地,如图1和图4b所示,第一壳体110可以具有多个第一进气口121,每个第一进气口121与第三出气口321连通以便每个第一进气口121都有原料气体通过(进入)。由此不仅可以使原料气体更加均匀地进入到第一壳体110内,而且可以提高膜分离模块10的单位时间内的气体处理量。
如图1、图4a和图4b所示,膜组件130可以是多个,第一壳体110可以具有多个第一出气口122,多个膜组件130的渗透气出口可以一一对应地与多个第一出气口122连通。也就是说,该渗透气出口(膜组件130)的数量可以等于第一出气口122的数量,每个该渗透气出口与一个第一出气口122连通,每个第一出气口122与一个该渗透气出口连通。由此可以进一步提高膜分离模块10的单位时间内的气体处理量。
相应地,如图1和图5b所示,第二壳体210具有多个第二进气口221,多个第一出气口122一一对应地与多个第二进气口221连通。也就是说,第二进气口221的数量可以等于第一出气口122的数量,每个第二进气口221与一个第一出气口122连通,每个第一出气口122与一个第二进气口221连通。由此可以进一步提高吸附模块20的单位时间内的气体处理量。
如图1所示,在本发明的一个实施例中,第二壳体210直接设在第一壳体110的上方。也就是说,第一壳体110与第二壳体210之间不设置任何部件(例如连接盘、支架等),第一壳体110和第二壳体210直接接触。由此可以进一步简化分离装置1的结构,进一步提高膜分离模块10和吸附模块20的一体化程度,从而可以进一步减小分离装置1的占地面积、降低分离装置1的重量和制造成本。当然,在其他实施例中,也可以将第一壳体110设置在第二壳体210的上方。
进气模块30具有第三出气口321,第三出气口321与第一进气口121连通。如图2a-图2c所示,进气模块30包括进气管310和气体分配盘320,进气管310具有第四出气口311。气体分配盘320具有缓冲腔322和多个第三出气口321,每个第三出气口321与缓冲腔322连通,第四出气口311与缓冲腔322连通。可选地,进气管310的上端部 是封闭的。
膜分离模块10具有多个第一进气口121,多个第三出气口321一一对应地与多个第一进气口121连通。换言之,第三出气口321的数量可以等于第一进气口121的数量,每个第三出气口321与一个第一进气口121连通,每个第一进气口121与一个第三出气口321连通。
原料气体通过进气管310的第四出气口311进入到缓冲腔322内,缓冲腔322内的原料气体依次通过多个第三出气口321和多个第一进气口121进入到第一壳体110内。通过在气体分配盘320上设置与第四出气口311连通的缓冲腔322以及与缓冲腔322连通的多个第三出气口321,从而不仅可以利用缓冲腔322减缓原料气体的流速,而且可以使原料气体更加均匀地进入到第一壳体110内,并可以提高膜分离模块10的单位时间内的气体处理量。
如图1-图6所示,在本发明的一些示例中,分离装置1可以包括多个膜分离模块10和多个吸附模块20。每个膜分离模块10的第一进气口121与第三出气口321连通,以便原料气体能够进入到每个膜分离模块10的第一壳体110内。
多个第二壳体210一一对应地设在多个第一壳体110上,即膜分离模块10(第一壳体110)的数量可以等于吸附模块20(第二壳体210)的数量,每个第二壳体210设在一个第一壳体110上。可选地,多个第二壳体210一一对应地直接设在多个第一壳体110上。
多个膜分离模块10的第一出气口122一一对应地与多个吸附模块20的第二进气口221连通。也就是说,每个膜分离模块10的第一出气口122与一个吸附模块20的第二进气口221连通,每个吸附模块20的第二进气口221与一个膜分离模块10的第一出气口122连通。由此相互关联的膜分离模块10和吸附模块20可以构成一个能够制取高纯度气体的分离组件,分离装置1可以包括多个该分离组件,从而可以极大地提高分离装置1的单位时间内的气体处理量。
如图4a和图4b所示,多个膜分离模块10可以沿第一周向布置,即多个膜分离模块10可以沿该第一周向排列。每个第一壳体110可以包括第一端板111、第二端板112、第一侧板113、第二侧板114、第一内侧板115和第一外侧板116。其中,向内是指朝向该第一周向的中部,向外是指远离(背离)该第一周向的中部。
第一侧板113、第一内侧板115、第二侧板114和第一外侧板116依次相连以便形成第一围板117,第一围板117的第一端部与第一端板111相连,第一围板117的第二端部与第二端板112相连。
具体地,第一端板111和第二端板112沿上下方向间隔开地设置,第一围板117的下端部与第一端板111相连,第一围板117的上端部与第二端板112相连,即第一侧板113、第一内侧板115、第二侧板114和第一外侧板116中的每一者的下端部与第一端板111相连,第一侧板113、第一内侧板115、第二侧板114和第一外侧板116中的每一者的上端部与第二端板112相连。上下方向如图1中的箭头A所示。
第一端板111、第二端板112、第一侧板113、第二侧板114、第一内侧板115和第一外侧板116可以限定出第一容纳腔118,即第一壳体110可以具有第一容纳腔118。膜组件130设在第一容纳腔118内,第一进气口121、第一出气口122和渗余气出口123中的每一者都可以与第一容纳腔118连通。
其中,第一进气口121可以设在第一端板111上,第一出气口122可以设在第二端板112上,渗余气出口123设在第一围板117和第一端板111中的至少一个上。可选地,渗余气出口123可以设在第一围板117的下部上。例如,渗余气出口123可以设在第一 外侧板116的下部上。
多个膜分离模块10的第一端板111可以一体成型,多个膜分离模块10的第二端板112可以一体成型。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度和结构强度,而且可以进一步降低分离装置1的组装难度。
可选地,在该第一周向上相邻的两个第一壳体110中的一者的第一侧板113与另一者的第二侧板114一体成型。换言之,对于在该第一周向上相邻的两个第一壳体110来说,一个第一壳体110的第一侧板113与另一个第一壳体110的第二侧板114一体成型,即在该第一周向上相邻的两个第一壳体110可以共用一个侧板。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度,而且可以进一步提高分离装置1的结构强度。
每个膜组件130的第一端部(例如下端部)与相应的第一端板111相连。每个膜组件130的第二端部(例如上端部)敞开以便形成该渗透气出口,每个膜组件130的第二端部与相应的第二端板112上的第一出气口122相连。其中,相应的第一端板111和相应的第二端板112是指与膜组件130属于同一个膜分离模块10的第一端板111和第二端板112。
多个膜分离模块10的第一内侧板115位于第一正圆柱面或第一正棱柱面上,即多个膜分离模块10的第一内侧板115位于同一正圆柱面或同一正棱柱面上。多个膜分离模块10的第一外侧板116位于第二正圆柱面或第二正棱柱面上,即多个膜分离模块10的第一外侧板116位于同一正圆柱面或同一正棱柱面上。由此可以使分离装置1的结构更加合理。其中,正圆柱面是指正圆柱的侧面,正棱柱面是指正棱柱的侧面。
可选地,多个膜分离模块10的第一内侧板115可以一体成型,多个膜分离模块10的第一外侧板116可以一体成型。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度,而且可以进一步提高分离装置1的结构强度。
如图5a和图5b所示,多个吸附模块20可以沿该第一周向布置,即多个吸附模块20可以沿该第一周向排列。每个第二壳体210包括第三端板211、第四端板212、第三侧板213、第四侧板214、第二内侧板215和第二外侧板216。第三侧板213、第二内侧板215、第四侧板214和第二外侧板216依次相连以便形成第二围板217,第二围板217的第一端部与第三端板211相连,第二围板217的第二端部与第四端板212相连。
具体地,第三端板211和第四端板212沿上下方向间隔开地设置,第二围板217的下端部与第三端板211相连,第二围板217的上端部与第四端板212相连,即第三侧板213、第二内侧板215、第四侧板214和第二外侧板216中的每一者的下端部与第三端板211相连,第三侧板213、第二内侧板215、第四侧板214和第二外侧板216中的每一者的上端部与第四端板212相连。
第三端板211、第四端板212、第三侧板213、第四侧板214、第二内侧板215和第二外侧板216可以限定出第二容纳腔218,即第二壳体210可以具有第二容纳腔218。吸附剂层230设在第二容纳腔218内,第二进气口221、第二出气口222和解吸气出口223中的每一者都可以与第二容纳腔218连通。
其中,第二进气口221可以设在第三端板211上,第二出气口222可以设在第四端板212上,解吸气出口223可以设在第二围板217和第三端板211中的至少一个上。可选地,解吸气出口223可以设在第二围板217的下部上。例如,解吸气出口223可以设在第二外侧板216的下部上。
多个吸附模块20的第三端板211一体成型,多个吸附模块20的第四端板212一体成型。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程 度和结构强度,而且可以进一步降低分离装置1的组装难度。
可选地,在该第一周向上相邻的两个第二壳体210中的一者的第三侧板213与另一者的第四侧板214一体成型。换言之,对于在该第一周向上相邻的两个第二壳体210来说,一个第二壳体210的第三侧板213与另一个第二壳体210的第四侧板214一体成型,即在该第一周向上相邻的两个第二壳体210可以共用一个侧板。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度,而且可以进一步提高分离装置1的结构强度。
多个吸附模块20的第二内侧板215位于第三正圆柱面或第三正棱柱面上,即多个吸附模块20的第二内侧板215位于同一正圆柱面或同一正棱柱面上。多个吸附模块20的第二外侧板216位于第四正圆柱面或第四正棱柱面上,即多个吸附模块20的第二外侧板216位于同一正圆柱面或同一正棱柱面上。由此可以使分离装置1的结构更加合理。更加可选地,该第一正圆柱面和该第三正圆柱面可以是同一正圆柱面,该第二正圆柱面和该第四正圆柱面可以是同一正圆柱面,该第一正棱柱面和该第三正棱柱面可以是同一正棱柱面,该第二正棱柱面和该第四正棱柱面可以是同一正棱柱面。
可选地,多个吸附模块20的第二内侧板215可以一体成型,多个吸附模块20的第二外侧板216可以一体成型。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度,而且可以进一步提高分离装置1的结构强度。
在本发明的第一个示例中,进气模块30可以是多个,多个进气模块30的第三出气口321一一对应地与多个膜分离模块10的第一进气口121连通。也就是说,进气模块30的数量可以等于膜分离模块10的数量,每个进气模块30的第三出气口321与一个膜分离模块10的第一进气口121连通,每个膜分离模块10的第一进气口121与一个进气模块30的第三出气口321连通。
在发明的第二个示例中,进气模块30包括进气总管、控制阀和多个进气支管。该控制阀具有第三进气口323和多个第三出气口321,该进气总管与第三进气口323相连。第三进气口323可切换地与多个第三出气口321中的任意一个连通,即第三进气口323能够与每个第三出气口321连通,同一时间内第三进气口323只与多个第三出气口321的一部分连通,第三进气口323无法同时与所有第三出气口321都连通。例如,第三出气口321可以是五个,可以将第三进气口323从与第一个第三出气口321连通的状态切换至与第三个第三出气口321和第四个第三出气口321中的至少一者连通的状态。
多个该进气支管的第一端部一一对应地与多个第三出气口321相连,多个进气支管的该第二端部一一对应地与多个膜分离模块10的第一进气口121相连。由此原料气体可以依次通过该进气总管、该控制阀和相应的该进气支管进入到相应的膜分离模块10的第一壳体110内。
如图2a-图2c所示,在本发明的第三个示例中,进气模块30包括进气管310和气体分配盘320,进气管310具有第四出气口311,气体分配盘320的周向可以与该第一周向一致。气体分配盘320具有多个缓冲腔322、多个第三进气口323和多个第三出气口321,多个第三进气口323一一对应地与多个缓冲腔322连通,多个第三出气口321一一对应地与多个缓冲腔322连通。可选地,进气管310的上端部是封闭的。
多个第三出气口321一一对应地与多个膜分离模块10的第一进气口121连通。第四出气口311可切换地与多个第三进气口323中的任意一个连通,即第四出气口311能够与每个第三进气口323连通,同一时间内第四出气口311只与多个第三进气口323的一部分连通,第四出气口311无法同时与所有第三进气口323都连通。例如,第三进气口323可以是五个,可以将第四出气口311从与第一个第三进气口323连通的状态切换 至与第三个第三进气口323和第四个第三进气口323中的至少一者连通的状态。
在利用分离装置1制取高纯度气体时,使进气管310的第四出气口311与气体分配盘320的一组缓冲腔322的第三进气口323连通,以便向该一组膜分离模块10提供原料气体。其中,该一组缓冲腔322包括至少一个缓冲腔322,该一组膜分离模块10包括至少一个膜分离模块10。
利用该一组膜分离模块10对该原料气体进行分离以便得到粗提纯气体。换言之,可以利用一个膜分离模块10对该原料气体进行分离,也可以利用多个膜分离模块10同时对该原料气体进行分离。然后,利用一组吸附模块20吸附该粗提纯气体中的杂质以便得到高纯度气体,该一组吸附模块20包括至少一个吸附模块20。其中,该一组吸附模块20的至少一个吸附模块20与该一组膜分离模块10的至少一个膜分离模块10一一对应地气体连通。
该一组吸附模块20运行预设时间后或者该一组吸附模块20处理预设量的该粗提纯气体后,例如通过旋转进气管310,使进气管310的第四出气口311与气体分配盘320的另一组缓冲腔322的第三进气口323连通,以便向该另一组膜分离模块10提供该原料气体。该另一组缓冲腔322包括至少一个缓冲腔322,该另一组膜分离模块10包括至少一个膜分离模块10。
利用该另一组膜分离模块10对该原料气体进行分离以便得到该粗提纯气体。也就是说,可以利用一个膜分离模块10对该原料气体进行分离,也可以利用多个膜分离模块10同时对该原料气体进行分离。然后,利用另一组吸附模块20吸附该粗提纯气体中的杂质以便得到高纯度气体,该另一组吸附模块20包括至少一个吸附模块20。其中,该另一组吸附模块20的至少一个吸附模块20与该另一组膜分离模块10的至少一个膜分离模块10一一对应地气体连通。
对该一组吸附模块20中的吸附剂进行再生,以便该一组吸附模块20能够再次用于吸附该粗提纯气体中的杂质。其中,可以在利用该另一组吸附模块20吸附该粗提纯气体中的杂质时,对该一组吸附模块20中的吸附剂进行再生;也可以在利用其他的吸附模块20吸附该粗提纯气体中的杂质时或者其他时间,对该一组吸附模块20中的吸附剂进行再生。其中,可以利用已知的方式对吸附模块20进行再生。
由此可以使分离装置1的多个吸附模块20轮流地进行吸附(工作)和再生以及使多个膜分离模块10轮流地进行工作,即可以使吸附模块20进行周期性工作和再生以及使膜分离模块10进行周期性工作,从而可以使分离装置1能够连续地制取高纯度气体,以便延长分离装置1的工作时间、提高分离装置1的单位时间内的气体处理量。
如图2a和图2b所示,气体分配盘320为环形,即气体分配盘320具有内周面、外周面和中心孔,多个第三进气口323设在气体分配盘320的该内周面上。气体分配盘320能够套设在进气管310的设有第四出气口311的部分上,即进气管310的设有第四出气口311的部分能够位于气体分配盘320的该中心孔内。由此第四出气口311能够位于气体分配盘320的该中心孔内,即第四出气口311能够位于气体分配盘320的该内周面的内侧,以便第四出气口311能够可切换地与多个第三进气口323中的任意一个连通。
进气管310能够相对气体分配盘320可旋转地设置,通过旋转进气管310可以对第四出气口311进行切换,以便使第四出气口311能够与不同的第三进气口323连通。具体地,可以利用驱动装置驱动进气管310旋转,驱动进气管310旋转的驱动装置可以是电机、皮带等。
气体分配盘320能够套设在进气管310的设有第四出气口311的部分上是指:在利用分离装置1制取高纯度气体时,气体分配盘320套设在进气管310的设有第四出气口 311的部分上。进气管310能够相对气体分配盘320可旋转地设置是指:在利用分离装置1制取高纯度气体时,进气管310相对气体分配盘320可旋转地设置。在未利用分离装置1制取高纯度气体时,气体分配盘320可以套设在进气管310的设有第四出气口311的部分上,也可以不套设在进气管310的设有第四出气口311的部分上。
如图2a和图2c所示,每个第三出气口321包括多个子出气口3211,多个子出气口3211构成多个子出气口组,多个该子出气口组可以沿气体分配盘320的周向间隔开地设置。每个该子出气口组包括多个子出气口3211,每个该子出气口组的多个子出气口3211沿气体分配盘320的径向间隔开地设置。
每个膜分离模块10具有多个第一进气口121,每个膜分离模块10的多个第一进气口121一一对应地与相应的第三出气口321的多个子出气口3211连通。可选地,每个膜分离模块10的多个第一进气口121可以构成多个进气口组,多个该进气口组可以沿气体分配盘320的周向间隔开地设置。每个该进气口组包括多个第一进气口121,每个该进气口组的多个第一进气口121沿气体分配盘320的径向间隔开地设置。更加可选地,每个膜分离模块10的多个第一进气口121与相应的第三出气口321的多个子出气口3211在气体分配盘320的轴向(例如上下方向)上一一相对,以便更好地实现连通。
如图2a-图2c所示,气体分配盘320包括第一盘体324和第二盘体325,第一盘体324为环形,即第一盘体324具有内周面、外周面和中心孔。第一盘体324具有第一端面3241(例如上端面),第一端面3241上设有多个缓冲腔322。
缓冲腔322的内端敞开以便形成第三进气口323或者第三进气口323设在缓冲腔322的内侧壁面上,缓冲腔322的内端是指缓冲腔322的邻近(朝向)第一盘体324的中部(中心孔)的端部,缓冲腔322的内侧壁面是指缓冲腔322的邻近(朝向)第一盘体324的中部(中心孔)的侧壁面。也就是说,可以每个缓冲腔322的内端都敞开以便形成多个第三进气口323,还可以每个缓冲腔322的内侧壁面上都设置第三进气口323,也可以多个缓冲腔322中的一部分的内端敞开以便形成第三进气口323、多个缓冲腔322中的其余部分的内侧壁面上设置第三进气口323。
其中,第一盘体324能够套设在进气管310的设有第四出气口311的部分上,即进气管310的设有第四出气口311的部分能够位于第一盘体324的该中心孔内。由此第四出气口311能够位于第一盘体324的该中心孔内,即第四出气口311能够位于第一盘体324的该内周面的内侧,以便第四出气口311能够可切换地与多个第三进气口323中的任意一个连通。
进气管310能够相对第一盘体324可旋转地设置,通过旋转进气管310可以对第四出气口311进行切换,以便使第四出气口311能够与不同的第三进气口323连通。
第一盘体324能够套设在进气管310的设有第四出气口311的部分上是指:在利用分离装置1制取高纯度气体时,第一盘体324套设在进气管310的设有第四出气口311的部分上。在未利用分离装置1制取高纯度气体时,第一盘体324可以套设在进气管310的设有第四出气口311的部分上,也可以不套设在进气管310的设有第四出气口311的部分上。
第二盘体325设在第一端面3241上,第二盘体325覆盖多个缓冲腔322。第三出气口321设在第二盘体325上,第三出气口321沿第二盘体325的厚度方向(轴向)贯通第二盘体325。例如,第三出气口321沿上下方向贯通第二盘体325。由此可以降低缓冲腔322、第三进气口323和第三出气口321的加工难度,从而可以降低分离装置1的加工难度和加工成本。
可选地,第二盘体325和多个第一壳体110的第一端板111可以一体成型。由此不 仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度和结构强度,而且可以进一步降低分离装置1的组装难度。
可选地,多个第一壳体110的第二端板112以及多个第二壳体210的第三端板211可以一体成型。由此不仅可以进一步简化分离装置1的结构、进一步提高分离装置1的一体化程度和结构强度,而且可以进一步降低分离装置1的组装难度。
气体分配盘320还可以包括一盘体、第二盘体和第三盘体,该第一盘体和该第三盘体都可以是环形。该第一盘体具有在其厚度方向上相对的第一端面(例如上端面)和第二端面(例如下端面),该第一盘体上设有多个缓冲腔322,每个缓冲腔322沿该第一盘体的厚度方向(例如上下方向)贯通该第一盘体。缓冲腔322的内端敞开以便形成第三进气口323或者第三进气口323设在缓冲腔322的内侧壁面上。
该第二盘体设在该第一端面上,该第三盘体设在该第二端面上,该第二盘体和该第三盘体覆盖多个该缓冲腔322。第三出气口321设在该第二盘体上,第三出气口321沿该第二盘体的厚度方向(轴向)贯通该第二盘体。例如,第三出气口321沿上下方向贯通该第二盘体。由此可以降低缓冲腔322、第三进气口323和第三出气口321的加工难度,从而可以降低分离装置1的加工难度和加工成本。
该第一盘体能够套设在进气管310的设有第四出气口311的部分上,进气管310能够相对该第一盘体可旋转地设置。通过旋转进气管310可以对第四出气口311进行切换,以便使第四出气口311能够与不同的第三进气口323连通。可选地,该第三盘体能够套设在进气管310的设有第四出气口311的部分上,进气管310能够相对该第三盘体可旋转地设置。由此可以使进气模块30的结构更加合理。
如图1所示,在本发明的一个具体示例中,分离装置1进一步包括中心轴40,多个膜分离模块10能够沿中心轴40的周向布置,多个吸附模块20能够沿中心轴40的周向布置。换言之,多个膜分离模块10能够环绕中心轴40设置,多个吸附模块20能够环绕中心轴40的设置。其中,中心轴40的周向可以与该第一周向一致。例如,中心轴40的周向、该第一周向和气体分配盘320(第一盘体324)的周向可以彼此一致。
膜分离模块10的第一内侧板115邻近中心轴40或者膜分离模块10的第一内侧板115与中心轴40接触。也就是说,可以每个膜分离模块10的第一内侧板115都邻近中心轴40,还可以每个膜分离模块10的第一内侧板115都与中心轴40接触,也可以多个膜分离模块10的第一内侧板115中的一部分邻近中心轴40、多个膜分离模块10的第一内侧板115中的其余部分与中心轴40接触。
每个吸附模块20的第二内侧板215邻近中心轴40或者每个吸附模块20的第二内侧板215与中心轴40接触。也就是说,可以每个吸附模块20的第二内侧板215都邻近中心轴40,还可以每个吸附模块20的第二内侧板215都与中心轴40接触,也可以多个吸附模块20的第二内侧板215中的一部分邻近中心轴40、多个吸附模块20的第二内侧板215中的其余部分与中心轴40接触。
通过设置中心轴40,从而可以通过将多个膜分离模块10和多个吸附模块20环绕中心轴40设置,来实现多个膜分离模块10和多个吸附模块20的快速安装与检修。
多个膜分离模块10能够沿中心轴40的周向布置是指:在刚安装完多个膜分离模块10时,多个膜分离模块10沿中心轴40的周向布置。在安装多个膜分离模块10之前、多个膜分离模块10安装完毕之后、利用分离装置1制取高纯度气体等阶段时,多个膜分离模块10可以沿中心轴40的周向布置,还可以将中心轴40取走以便中心轴40脱离多个膜分离模块10。
多个吸附模块20能够沿中心轴40的周向布置是指:在刚安装完多个吸附模块20 时,多个吸附模块20沿中心轴40的周向布置。在安装多个吸附模块20之前、多个吸附模块20安装完毕之后、利用分离装置1制取高纯度气体等阶段时,多个吸附模块20可以沿中心轴40的周向布置,还可以将中心轴40取走以便中心轴40脱离多个吸附模块20。
可选地,如图1所示,多个膜分离模块10的第一端板111一体成型以便形成底板,该底板上设有安装孔,中心轴40的端部(例如下端部)能够配合在该安装孔内。
中心轴40的端部能够配合在该安装孔内是指:在安装多个膜分离模块10和/或多个吸附模块20时以及在多个膜分离模块10和/或多个吸附模块20刚安装完毕时,中心轴40的端部配合在该安装孔内。在安装多个膜分离模块10和/或多个吸附模块20之前、多个膜分离模块10和/或多个吸附模块20安装完毕之后、利用分离装置1制取高纯度气体等阶段时,中心轴40的端部可以配合在该安装孔内,中心轴40的端部也可以脱离该安装孔。如图6所示,第四端板212上设有通孔2121,中心轴40能够穿过通孔2121。
可选地,多个膜分离模块10的中心轴线与多个吸附模块20的中心轴线可以重合,即多个膜分离模块10和多个吸附模块20可以同轴设置。
本发明公开了一种高纯度气体制取装置(分离装置1)。该装置整体外形结构呈圆柱状或正多边形体状;沿气体流动方向,所述装置依次包括原料气控制分配器、膜分离模块、吸附分离模块和产品气控制器。本发明通过模块化地设计原料气控制分配器、膜分离模块与吸附分离模块,将膜分离与吸附分离技术设备实现了一体化;通过原料气控制分配器分层设计与进气管的转动程序控制,实现了对原料气依次通过膜分离与吸附分离模块的控制。本发明装置保证了膜分离模块与吸附分离模块的周期性工作与再生,使膜与吸附剂床层各自的特点与净化功能得到了充分发挥。
一种高纯度气体制取装置,整体外形结构呈圆柱状或正多边形体状;沿气体流动方向,所述装置依次包括原料气控制分配器、膜分离模块、吸附分离模块和产品气控制器。
所述的原料气控制分配器包括原料气进气管、原料气缓冲盘和原料气分配盘;所述原料气缓冲盘的进气侧端面为封闭结构,出气侧包括2n个缓冲区,n为整数;所述缓冲区在缓冲盘上呈凹槽状,各缓冲区围绕圆柱或正多边形体的中心设置,且在朝向中心处开口,用于接收来自原料气进气管的原料气;所述原料气进气管贯穿原料气缓冲盘设置;原料气进气管在贯穿原料气缓冲盘(部分)的管壁上设置开口,该开口与原料缓冲区的开口相对应;所述原料气分配盘覆盖于原料气缓冲盘的出气侧端面,二者固定连接,使原料气缓冲区成为2n个彼此隔离的区域,原料气只能通过分配盘上的贯通孔进入对应的膜块单元。
所述的膜分离模块包括膜分离壳体、两端的膜管支撑板、固定于膜管支撑板之间的若干膜管组件、膜组件分区隔板,所述膜组件分区隔板将膜管组件分为2n个膜块单元,2n个膜块单元与2n个原料气缓冲区上下位置相对应。
所述的吸附分离模块包括吸附分离模块壳体、吸附剂模块分配盘、吸附剂床层和吸附分区隔板,吸附分区隔板将吸附剂床层分隔为2n个吸附单元,2n个吸附单元与2n个膜块单元上下对应;吸附剂床层的另一端与产品气控制器固定连接。
所述产品气控制器为板状结构,其上分布有2n个产品气出口,2n个产品气出口分别与吸附单元的催化剂床层相对应,并保持相通。
膜分离模块进气侧的膜管支撑板与所述原料气分配盘采用同一构件或结构。
所述的原料气进气管与原料气缓冲盘之间为活动连接,原料气进气管可以转动。
所述原料气进气管上开口的宽度不大于相对应的缓冲区在圆心处开口的宽度。
所述装置还包括驱动装置,所述驱动装置用于驱动原料气进气管按照程序转动。
所述的膜分离模块与吸附分离模块同轴设置。
所述膜分离壳体在对应2n个膜块单元的位置分别设置有渗余气排出口。
所述的原料气分配盘上分布有若干贯通孔,所述的若干贯通孔分为2n个区,分别与2n个膜分离模块相对应。
所述膜分离模块进气侧的模板支撑板上分布有若干孔,所述的若干孔分为2n个区,分别与2n个吸附分离单元相对应,并互通。
所述的吸附分离模块壳体在对应2n个吸附单元的位置分别设置解析气排出口。
所述的装置还包括中心轴,所述的膜分离模块、所述吸附分离模块和产品气控制器均套装于所述中心轴上。
所述膜分离模块壳体、吸附分离模块壳体为圆筒状结构。
所述原料气进气管的末端封闭。
所述缓冲区在朝向中心处的2n个开口彼此隔离且不相通。
膜分离模块的出气端膜管支撑板与吸附剂模块分配盘采用同一组件。
本发明提供了一种将膜分离与吸附分离技术集合到一体的高纯度气体制取装置,同时对两种技术的装置结构与工艺过程进行了创新设计。
本发明的技术方案如下:
一种高纯度气体制取装置,整体外形结构呈圆柱状或正多边形体状;沿原料气到产品气方向,所述装置依次包括原料气控制分配器、膜分离模块、吸附分离模块和产品气控制器;
所述的原料气控制分配器包括原料气进气管、原料气缓冲盘和原料气分配盘;所述原料气缓冲盘的进气侧端面为封闭结构,出气侧包括2n个缓冲区,n为整数;所述缓冲区在缓冲盘上呈凹槽状,各缓冲区围绕圆柱或正多边形体的中心设置,且在朝向中心处开口(2n个开口彼此隔离且不相通),用于接收来自原料气进气管的原料气;所述原料气进气管贯穿原料气缓冲盘设置;原料气进气管在贯穿原料气缓冲盘(部分)的管壁上设置开口,该开口与原料缓冲区的开口相对应;所述原料气分配盘覆盖于原料气缓冲盘的出气侧端面,二者固定连接,使原料气缓冲区成为2n个彼此隔离的区域,原料气只能通过分配盘上的贯通孔进入对应的膜块单元;
所述的膜分离模块包括膜分离壳体、两端的膜管支撑板、固定于膜管支撑板之间的若干膜管组件、膜管组件分区隔板,所述膜管组件分区隔板将膜管组件分为2n个膜块单元,2n个膜块单元与2n个原料气缓冲区上下位置相对应;
所述的吸附分离模块包括吸附分离模块壳体、支撑板、吸附剂床层和吸附分区隔板,吸附分区隔板将吸附剂床层分隔为2n个吸附单元,2n个吸附单元与2n个膜块单元上下对应;吸附剂床层的另一端与产品气控制器固定连接;
所述产品气控制器为板状结构,其上分布有2n个产品气出口,2n个产品气出口分别与吸附单元的吸附剂床层相对应,并保持相通。
进一步的,所述的原料气进气管与原料气缓冲盘之间为活动连接,原料气进气管可以转动。因此,本发明的装置还可以包括驱动装置,所述驱动装置与原料气进气管之间固定连接,以用于驱动原料气进气管按照设定的程序转动或停止。
所述原料气进气管上开口的面积大小不大于相对应的缓冲盘上缓冲区用于接收原料气开口的面积。所述原料气进气管的末端为封闭结构,且其末端与原料气缓冲盘的出气端端面平齐。
所述的原料气分配盘上分布有若干贯通孔,所述的若干通孔分为2n个分区,分别与2n个膜分离模块相对应。所述原料气分配盘上的贯通孔,一般呈扇形分布,用于将 经过缓冲区的原料气均匀分配到膜分离模块中。
所述膜分离模块进气侧的模板支撑板上分布有若干孔,所述的若干孔分为2n个区,分别与2n个原料气分配缓冲区相对应,并互通。
所述的膜分离模块中,膜分离模块进气侧的膜管支撑板与所述原料气分配盘采用同一构件或结构。
所述的膜分离模块壳体在对应2n个膜块单元的位置分别设置有渗余气排出口。
所述的膜分离模块壳体与所述的吸附分离模块壳体均采用圆筒或正多边形体结构。所述的膜分离模块与吸附分离模块同轴设置。
所述的膜分离模块,用于原料气体的粗提纯。所述膜分离模块设置的膜组件可以是无机膜或者是有机膜。无机膜适用于原料气中带液、含有酸性气体或温度压力变化时可能产生凝液的情况。无机膜可以采用中空分子筛膜,如碳分子筛、LTA分子筛、DDR分子筛膜等。有机膜适用于原料气中不带液、温度压力变化不会使原料或产品气产生凝液的情况。有机膜一般为中空纤维膜。
所述的膜分离模块,中空分子筛膜管封装在圆柱状壳体内,封装分子筛膜管的圆柱壳体下端与进入膜分离模块气体控制分配器连接,分子筛膜管被均分为2n个区块,每个区块包含有等量中空分子筛膜管。
所述的吸附分离模块壳体在对应2n个吸附单元的位置分别设置解吸气排出口,用于解吸程序中排出解吸气。
所述的吸附分离模块中,吸附剂被封装在圆柱状壳体内。圆柱壳体下端与膜分离模块的上端相连接,连接处设有与原料气分配盘类似结构的气体分配盘,圆柱壳体上端与产品气控制器连接。吸附剂通常被均分为2n个区块,每个区块能处理的气体量相同。
上述膜分离模块中均分的分子筛膜管区块数与吸附分离模块中均分的吸附剂区块数目相等。
上述吸附分离模块,用于将膜分离制得的粗提纯气体进一步提纯获得高纯度的气体。根据粗提纯气体中杂质组成,吸附分离模块中可分层堆填吸附各种杂质的吸附剂,一般包括活性氧化铝、硅胶、沸石分子筛、活性炭等。
进一步的,所述产品气控制器为板状结构,其上分布有2n个产品气出口,2n个产品气出口分别与吸附单元的吸附剂床层相对应,并保持相通。所述的产品气排放口,用于控制产品气的排出与吸附床层内部的压力。
本发明的装置还可以包括中心轴,所述的膜分离模块、吸附分离模块和产品气控制器均通过中心轴安装孔套装于所述中心轴上。中心轴的设置,用于实现制取装置的快速安装与检修。
本发明的高纯度气体制取装置,可以广泛用于高纯度气体的制取领域。如可以用于制取高纯度的氩气、氢气、氧气、氮气、一氧化碳、二氧化碳、甲烷等。
与现有技术相比,本发明的高纯度气体制取装置具有如下优点:
1、通过模块化的设计原料气控制分配器、膜分离模块与吸附分离模块,将膜分离与吸附分离技术设备实现了一体化。
2、通过原料气控制分配器分层设计与进气管的转动程序控制,实现了对原料气依次通过膜分离与吸附分离模块的控制。同时,保证了膜分离模块与吸附分离模块的周期性工作与再生,使膜与吸附剂床层各自的特点与净化功能充分发挥。
3、对膜分离与吸附分离的一体化创新设计,有效减少设备占地面积与重量,为高纯度气体的制取提供了一种经济高效的设备与技术。
下面结合附图对本发明所述高纯度气体制取装置做进一步说明,如图1至图6所示, 本发明提供一种高纯度气体制取装置,所述装置包括进气管310、气体分配盘320、膜分离模块10、吸附模块20、产品气控制器和中心轴40。
所述的气体分配盘320包括第一盘体324和第二盘体325。所述第一盘体324上设有凹槽型缓冲腔322,同时凹槽设有朝向中轴、用于接收来自进气管310的原料气的第三进气口323(第三进气口323的数量与缓冲腔322的数量相等,且相互隔离),第二盘体325上设有贯通的第三出气口321。
第二盘体325覆盖于第一盘体324之上,使得原料气只能通过第三进气口323进入缓冲腔322,再由缓冲腔322经过第二盘体325上的第三出气口321均匀分配进入膜分离模块10。
第三出气口321一般设置为扇形排布,可以使原料气均匀地分配到膜分离模块10的膜管外侧。
进气管310处于中轴位置,在进气管310上设有第四出气口311,用于将原料气通过第三进气口323分配至缓冲腔322,仅有第四出气口311与一个第三进气口323对应时,原料气进入相应的缓冲腔322,再依次进入对应的膜分离模块10和吸附模块20,在第四出气口311所不对应的缓冲腔322中没有原料气进入。
膜分离模块10包括膜组件130、膜组件分区隔板113、114、膜组件安装壳体115、116、进气端膜管支撑板111、出气端膜管支撑板112和位于安装壳体(上)底部的渗余气出口123(渗余气出口123的数目与膜分离模块10的数量可以相等)。进气端膜管支撑板111可以采用与第二盘体325完全相同的结构,且其设置的贯通孔亦与第二盘体325的贯通孔(第三出气口321)一一对应。或者,进气端膜管支撑板111与第二盘体325采用同一构件。出气端膜管支撑板112与膜组件安装壳体115、116边缘密封连接,其上设置若干贯通孔,若干贯通孔与膜组件130的出气口一一对应。
所述的吸附模块20包括吸附剂床层230、吸附剂床层分区隔板213、214、吸附剂床层壳体215、216、吸附剂模块分配盘211、位于吸附剂床层壳体215、216(上)底部的解吸气出口223(解吸气出口223的数目与吸附模块20的数目相等)。吸附剂模块分配盘211可以采用与出气端膜管支撑板112完全相同的结构,且其设置的贯通孔亦与出气端膜管支撑板112上的贯通孔一一对应。或者,吸附剂模块分配盘211与出气端膜管支撑板112采用同一构件。
产品气控制器包括产品气出口和装置中心轴安装孔。
本发明所述高纯度气体制取装置从下而上顺序为进气管310、气体分配盘320、膜分离模块10、吸附模块20和产品气控制器5,上述部件或模块都为圆柱状或正多边形体,且均安装在中心轴40上。中心轴40可以实现装置的快速安装与检修。
膜分离模块10与吸附模块20分隔为相等的区块数2n(n为整数),区块数最少为2。
该产品气控制器位于装置最顶部,该产品气控制器的产品气出口数目与吸附模块20的数目相等,用于控制产品气的排出与吸附模块20的吸附剂层230内部的压力。
下面简单描述高纯度气体制取装置的工作过程,以膜分离模块10和吸附模块20均为4个为例进行说明,高纯度气体制取装置工作时包括如下步骤:
(1)启动装置,原料气体经进气管310,由联通的第四出气口311与第三进气口323进入缓冲腔322,最后经过第二盘体325上的第三出气口321进入膜分离模块10。膜分离模块10下端密封,原料气进入膜分离模块10的壳程,透过膜组件130进入膜管内部,透过膜管的气体为粗提纯气体,未透过的为渗余气体。
(2)粗提纯气体经由与第二盘体325类似的气体分配器后,进入吸附模块20的吸附剂层230,此时工作的吸附模块20与工作的膜分离模块10相对应。经吸附模块20 得到的高纯度气体通过产品气出口离开装置。
(3)当一吸附模块20的吸附剂层230达到吸附峰值后,通过转动进气管310,使其上的第四出气口311与下一个缓冲腔322的第三进气口323连通,重复进行1、2步骤可得到连续高纯度气体。
(4)在每一个膜分离模块10有原料气体通过的同时,其渗余气都通过渗余气出口123排出装置。
(5)在每一个吸附模块20完成吸附后,经过另一膜分离模块10得到的粗提纯气体开始进入另一个吸附模块20时,完成吸附的吸附模块20开始降压并通过产品气出口排出床层中吸附的高纯度产品气体,用于给解吸后的吸附剂层230吹扫再生。
(6)当吸附剂层230释放出所吸附的高纯度产品气体后,关闭产品气排出口,打开解吸气出口223,完成解吸后的吸附剂层230接通另一吸附完成的吸附剂层230中吸附的高纯产品气体进行吹扫再生,进一步利用产品气升压,准备好下次吸附流程。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种分离装置,其特征在于,包括:
    膜分离模块,所述膜分离模块包括第一壳体以及能够设在所述第一壳体内的膜组件,所述第一壳体具有第一进气口、第一出气口和渗余气出口,所述膜组件具有渗透气出口,所述渗透气出口与所述第一出气口连通;
    吸附模块,所述吸附模块包括第二壳体以及能够设在所述第二壳体内的吸附剂层,所述第二壳体设在所述第一壳体上,其中所述第二壳体具有第二进气口、第二出气口和解吸气出口,所述第二进气口与所述第一出气口连通;和
    进气模块,所述进气模块具有第三出气口,所述第三出气口与所述第一进气口连通。
  2. 根据权利要求1所述的分离装置,其特征在于,所述第二壳体直接设在所述第一壳体上。
  3. 根据权利要求1或2所述的分离装置,其特征在于,所述第一进气口为多个,每个所述第一进气口与所述第三出气口连通,可选地,所述膜组件为多个,所述第一出气口为多个,所述第二进气口为多个,其中多个所述膜组件的所述渗透气出口一一对应地与多个所述第一出气口连通,多个所述第一出气口一一对应地与多个所述第二进气口连通。
  4. 根据权利要求1或2所述的分离装置,其特征在于,所述进气模块包括:
    进气管,所述进气管具有第四出气口;和
    气体分配盘,所述气体分配盘具有缓冲腔和多个所述第三出气口,每个所述第三出气口与所述缓冲腔连通,所述第四出气口与所述缓冲腔连通,其中所述第一进气口为多个,多个所述第三出气口一一对应地与多个所述第一进气口连通。
  5. 根据权利要求1或2所述的分离装置,其特征在于,所述膜分离模块为多个,所述吸附模块为多个,每个所述膜分离模块的所述第一进气口与所述第三出气口连通,多个所述第二壳体一一对应地设在多个所述第一壳体上,多个所述膜分离模块的所述第一出气口一一对应地与多个所述吸附模块的所述第二进气口连通。
  6. 根据权利要求5所述的分离装置,其特征在于,所述进气模块为多个,多个所述进气模块的所述第三出气口一一对应地与多个所述膜分离模块的所述第一进气口连通。
  7. 根据权利要求5所述的分离装置,其特征在于,所述进气模块包括:
    进气总管;
    控制阀,所述控制阀具有第三进气口和多个所述第三出气口,所述第三进气口可切换地与多个所述第三出气口中的任意一个连通,其中所述进气总管与所述第三进气口相连;和
    多个进气支管,多个所述进气支管的第一端部一一对应地与多个所述第三出气口相连,多个所述进气支管的第二端部一一对应地与多个所述膜分离模块的所述第一进气口相连。
  8. 根据权利要求5所述的分离装置,其特征在于,所述进气模块包括:
    进气管,所述进气管具有第四出气口;和
    气体分配盘,所述气体分配盘具有多个缓冲腔、多个第三进气口和多个所述第三出气口,多个所述第三进气口一一对应地与多个所述缓冲腔连通,多个所述第三出气口一一对应地与多个所述缓冲腔连通,其中所述第四出气口可切换地与多个所述第三进气口中的任意一个连通,多个所述第三出气口一一对应地与多个所述膜分离模块的所述第一进气口连通,
    可选地,所述气体分配盘为环形,多个所述第三进气口设在所述气体分配盘的内周面上,其中所述气体分配盘能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述气体分配盘可旋转地设置,
    可选地,每个所述第三出气口包括多个子出气口,多个所述子出气口构成沿所述气体分配盘的周向间隔开设置的多个子出气口组,每个所述子出气口组包括沿所述气体分配盘的径向间隔开设置的多个所述子出气口,每个所述膜分离模块具有多个所述第一进气口,每个所述膜分离模块的多个所述第一进气口一一对应地与相应的所述第三出气口的所述多个子出气口连通。
  9. 根据权利要求8所述的分离装置,其特征在于,所述气体分配盘包括:
    环形的第一盘体,所述第一盘体具有第一端面,所述第一端面上设有多个所述缓冲腔,所述缓冲腔的内端敞开以便形成所述第三进气口或者所述第三进气口设在所述缓冲腔的内侧壁面上,其中所述第一盘体能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述第一盘体可旋转地设置;和
    第二盘体,所述第二盘体设在所述第一端面上,所述第二盘体覆盖多个所述缓冲腔,所述第三出气口设在所述第二盘体上,所述第三出气口沿所述第二盘体的厚度方向贯通所述第二盘体。
  10. 根据权利要求8所述的分离装置,其特征在于,所述气体分配盘包括:
    环形的第一盘体,所述第一盘体具有在其厚度方向上相对的第一端面和第二端面,所述第一盘体上设有多个所述缓冲腔,每个所述缓冲腔沿所述第一盘体的厚度方向贯通所述第一盘体,所述缓冲腔的内端敞开以便形成所述第三进气口或者所述第三进气口设在所述缓冲腔的内侧壁面上;以及
    第二盘体和环形的第三盘体,所述第二盘体设在所述第一端面上,所述第三盘体设在所述第二端面上,所述第二盘体和所述第三盘体覆盖多个所述缓冲腔,其中所述第一盘体能够套设在所述进气管的设有所述第四出气口的部分上,所述进气管能够相对所述第一盘体可旋转地设置,所述第三出气口设在所述第二盘体上,所述第三出气口沿所述第二盘体的厚度方向贯通所述第二盘体。
  11. 根据权利要求5所述的分离装置,其特征在于,多个所述膜分离模块沿第一周向布置,所述第一壳体包括:
    第一端板和第二端板;以及
    第一侧板、第二侧板、第一内侧板和第一外侧板,所述第一侧板、所述第一内侧板、所述第二侧板和第一外侧板依次相连以便形成第一围板,所述第一围板的第一端部与所述第一端板相连,所述第一围板的第二端部与所述第二端板相连,其中所述第一进气口 设在所述第一端板上,所述第一出气口设在所述第二端板上,所述渗余气出口设在所述第一围板和所述第一端板中的至少一个上,
    可选地,多个所述膜分离模块的所述第一端板一体成型,多个所述膜分离模块的所述第二端板一体成型,可选地,在所述第一周向上相邻的两个所述第一壳体中的一者的所述第一侧板与另一者的所述第二侧板一体成型,可选地,多个所述膜分离模块的所述第一内侧板一体成型,多个所述膜分离模块的所述第一外侧板一体成型,
    可选地,每个所述膜组件的第一端部与相应的所述第一端板相连,每个所述膜组件的第二端部敞开以便形成所述渗透气出口,每个所述膜组件的第二端部与相应的所述第二端板上的所述第一出气口相连,
    可选地,多个所述膜分离模块的第一内侧板位于第一正圆柱面或第一正棱柱面上,多个所述膜分离模块的第一外侧板位于第二正圆柱面或第二正棱柱面上。
  12. 根据权利要求5或11所述的分离装置,其特征在于,多个所述吸附模块沿第一周向布置,所述第二壳体包括:
    第三端板和第四端板;以及
    第三侧板、第四侧板、第二内侧板和第二外侧板,所述第三侧板、所述第二内侧板、所述第四侧板和第二外侧板依次相连以便形成第二围板,所述第二围板的第一端部与所述第三端板相连,所述第二围板的第二端部与所述第四端板相连,其中所述第二进气口设在所述第三端板上,所述第二出气口设在所述第四端板上,所述解吸气出口设在所述第二围板和所述第三端板中的至少一个上,
    可选地,多个所述吸附模块的所述第三端板一体成型,多个所述吸附模块的所述第四端板一体成型,可选地,在所述第一周向上相邻的两个所述第二壳体中的一者的所述第三侧板与另一者的所述第四侧板一体成型,可选地,多个所述吸附模块的所述第二内侧板一体成型,多个所述吸附模块的所述第二外侧板一体成型,
    可选地,多个所述吸附模块的所述第二内侧板位于第三正圆柱面或第三正棱柱面上,多个所述吸附模块的所述第二外侧板位于第四正圆柱面或第四正棱柱面上,更加可选地,所述第一正圆柱面和所述第三正圆柱面为同一正圆柱面,所述第二正圆柱面和所述第四正圆柱面为同一正圆柱面,所述第一正棱柱面和所述第三正棱柱面为同一正棱柱面,所述第二正棱柱面和所述第四正棱柱面为同一正棱柱面。
  13. 根据权利要求12所述的分离装置,其特征在于,进一步包括中心轴,多个所述膜分离模块能够沿所述中心轴的周向布置,多个所述吸附模块能够沿所述中心轴的周向布置,其中所述膜分离模块的所述第一内侧板邻近所述中心轴或者所述膜分离模块的所述第一内侧板与所述中心轴接触,每个所述吸附模块的所述第二内侧板邻近所述中心轴或者每个所述吸附模块的所述第二内侧板与所述中心轴接触。
  14. 一种利用根据权利要求1-13中任一项所述的分离装置实施的分离方法,包括以下步骤:
    利用进气模块向膜分离模块提供原料气体;
    利用所述膜分离模块对所述原料气体进行分离以便得到粗提纯气体;和
    利用吸附模块吸附所述粗提纯气体中的杂质以便得到高纯度气体。
  15. 根据权利要求14所述的分离方法,其特征在于,
    使进气管的第四出气口与气体分配盘的一组缓冲腔的第三进气口连通,以便向一组所述膜分离模块提供所述原料气体,一组所述缓冲腔包括至少一个所述缓冲腔,一组所述膜分离模块包括至少一个所述膜分离模块;
    利用一组所述膜分离模块对所述原料气体进行分离以便得到粗提纯气体;
    利用一组所述吸附模块吸附所述粗提纯气体中的杂质以便得到高纯度气体,一组所述吸附模块包括至少一个所述吸附模块;
    一组所述吸附模块运行预设时间后或者一组所述吸附模块处理预设量的所述粗提纯气体后,使所述进气管的所述第四出气口与所述气体分配盘的另一组所述缓冲腔的所述第三进气口连通,以便向另一组所述膜分离模块提供所述原料气体,另一组所述缓冲腔包括至少一个所述缓冲腔,另一组所述膜分离模块包括至少一个所述膜分离模块;
    利用另一组所述膜分离模块对所述原料气体进行分离以便得到所述粗提纯气体;
    利用另一组所述吸附模块吸附所述粗提纯气体中的杂质以便得到高纯度气体,另一组所述吸附模块包括至少一个所述吸附模块;和
    对一组所述吸附模块中的吸附剂进行再生。
PCT/CN2019/128641 2018-12-31 2019-12-26 分离装置和分离方法 WO2020140821A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19907724.9A EP3900808B1 (en) 2018-12-31 2019-12-26 Separation device and separation method
SG11202107218TA SG11202107218TA (en) 2018-12-31 2019-12-26 Separation device and separation method
CN201980087152.0A CN113301982B (zh) 2018-12-31 2019-12-26 分离装置和分离方法
EA202191748A EA202191748A1 (ru) 2018-12-31 2019-12-26 Разделительное устройство и способ разделения
KR1020217024086A KR102558705B1 (ko) 2018-12-31 2019-12-26 분리 장치 및 분리 방법
CA3125373A CA3125373C (en) 2018-12-31 2019-12-26 Separation device and separation method
JP2021538308A JP7244651B2 (ja) 2018-12-31 2019-12-26 分離装置及び分離方法
US17/419,705 US11958011B2 (en) 2018-12-31 2019-12-26 Separation device and separation method
DK19907724.9T DK3900808T3 (da) 2018-12-31 2019-12-26 Adskillelsesindretning og adskillelsesfremgangsmåde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811652280.9 2018-12-31
CN201811652280.9A CN111375292B (zh) 2018-12-31 2018-12-31 一种高纯度气体制取装置

Publications (1)

Publication Number Publication Date
WO2020140821A1 true WO2020140821A1 (zh) 2020-07-09

Family

ID=71215053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128641 WO2020140821A1 (zh) 2018-12-31 2019-12-26 分离装置和分离方法

Country Status (10)

Country Link
US (1) US11958011B2 (zh)
EP (1) EP3900808B1 (zh)
JP (1) JP7244651B2 (zh)
KR (1) KR102558705B1 (zh)
CN (2) CN111375292B (zh)
CA (1) CA3125373C (zh)
DK (1) DK3900808T3 (zh)
EA (1) EA202191748A1 (zh)
SG (1) SG11202107218TA (zh)
WO (1) WO2020140821A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112093303A (zh) * 2020-08-19 2020-12-18 永安智慧科技(杭州)有限公司 膜式水封器及使用该水封器的储罐废气收集系统、方法
CN113640347A (zh) * 2021-10-18 2021-11-12 胜利油田华海石化有限责任公司 一种在线监测天然气露点装置
CN114917721A (zh) * 2022-06-28 2022-08-19 河北金利康科技集团有限公司 一种医用制氧装置吸附塔

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708487B (zh) * 2020-12-16 2022-02-15 山东师范大学 一种旋转膜分离装置及转化沼气制合成气系统和方法
CN113880051B (zh) * 2021-10-20 2023-02-10 杭州博大净化设备有限公司 一种船用制氧机
CN114748972B (zh) * 2022-03-16 2023-07-25 四川天采科技有限责任公司 一种旋转分配器用于从空气中提纯n2的方法
CN116534802B (zh) * 2023-05-08 2024-01-16 海安建荣制氧有限公司 一种切入式氧气提纯装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472480A (en) * 1993-07-22 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying nitrogen by means of semi-permeable membranes or of separators of gases by adsorption
CN102824822A (zh) * 2012-09-12 2012-12-19 南京工业大学 一种膜分离空气净化装置
CN203507773U (zh) * 2013-10-22 2014-04-02 解放军第210医院 一种实验室特定气体暴露用多级吸附处理装置
CN204469531U (zh) * 2014-11-11 2015-07-15 南京中电环保科技有限公司 膜分离循环流化床脱硫除尘装置
CN206215000U (zh) * 2016-11-29 2017-06-06 扬州大学 油气处理装置
CN108096990A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种吸附分离装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822365B2 (ja) * 1989-12-14 1996-03-06 シーケーディ株式会社 除湿装置
JP3186315B2 (ja) 1993-02-27 2001-07-11 ソニー株式会社 信号圧縮装置、信号伸張装置、信号送信装置、信号受信装置及び信号送受信装置
FR2724849A1 (fr) * 1994-09-27 1996-03-29 Cloirec Pierre Le Procede et dispositif d'elimination de composes par filtration sur membrane et charbon actif
DE19617775A1 (de) * 1996-05-03 1997-11-06 Sartorius Gmbh Filtrationseinheit zur Abtrennung von Stoffen aus einer flüssigen Phase an Membranadsorbern
AR010696A1 (es) 1996-12-12 2000-06-28 Sasol Tech Pty Ltd Un metodo para la eliminacion del dioxido de carbono de un gas de proceso
EP0860194A1 (en) * 1997-02-21 1998-08-26 Aquilo Gas Separation B.V. A process for drying compressed air
US6692545B2 (en) 2001-02-09 2004-02-17 General Motors Corporation Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
US6964692B2 (en) 2001-02-09 2005-11-15 General Motors Corporation Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
US6746513B2 (en) * 2002-02-19 2004-06-08 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitations Des Procedes Georges Claude Integrated membrane filter
US20060090649A1 (en) * 2004-10-29 2006-05-04 Wei Liu High separation area membrane module
JP5202836B2 (ja) 2006-12-01 2013-06-05 日本エア・リキード株式会社 キセノンの回収システムおよび回収装置
KR100983812B1 (ko) 2008-08-12 2010-09-27 (주)하이텍이엔지 유해가스 연소설비
CN101492209A (zh) * 2009-02-10 2009-07-29 山东大学 吸附-沉淀-膜组件分离一体式反应器
WO2011094296A1 (en) * 2010-01-26 2011-08-04 Micropore, Inc. Adsorbent system for removal of gaseous contaminants
EP2542330A4 (en) 2010-03-04 2014-12-24 Shell Oil Co METHOD FOR SEPARATING GASEOUS MIXTURES
CN106544062A (zh) * 2015-09-18 2017-03-29 中国石油化工股份有限公司 合成气集成净化方法
CN206121466U (zh) * 2016-05-17 2017-04-26 广西恒一生物能源科技有限公司 多级膜分离沼气净化装置
CN206276249U (zh) * 2016-12-14 2017-06-27 南京九思高科技有限公司 一种平板膜渗透性能测试组件
CN108355462A (zh) * 2018-01-25 2018-08-03 神华集团有限责任公司 Co2吸附系统和co2连续吸附的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472480A (en) * 1993-07-22 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying nitrogen by means of semi-permeable membranes or of separators of gases by adsorption
CN102824822A (zh) * 2012-09-12 2012-12-19 南京工业大学 一种膜分离空气净化装置
CN203507773U (zh) * 2013-10-22 2014-04-02 解放军第210医院 一种实验室特定气体暴露用多级吸附处理装置
CN204469531U (zh) * 2014-11-11 2015-07-15 南京中电环保科技有限公司 膜分离循环流化床脱硫除尘装置
CN108096990A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种吸附分离装置
CN206215000U (zh) * 2016-11-29 2017-06-06 扬州大学 油气处理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112093303A (zh) * 2020-08-19 2020-12-18 永安智慧科技(杭州)有限公司 膜式水封器及使用该水封器的储罐废气收集系统、方法
CN113640347A (zh) * 2021-10-18 2021-11-12 胜利油田华海石化有限责任公司 一种在线监测天然气露点装置
CN114917721A (zh) * 2022-06-28 2022-08-19 河北金利康科技集团有限公司 一种医用制氧装置吸附塔
CN114917721B (zh) * 2022-06-28 2023-09-22 河北金利康科技集团有限公司 一种医用制氧装置吸附塔

Also Published As

Publication number Publication date
JP7244651B2 (ja) 2023-03-22
KR102558705B1 (ko) 2023-07-21
CA3125373C (en) 2023-04-18
SG11202107218TA (en) 2021-08-30
US20220080349A1 (en) 2022-03-17
EP3900808A1 (en) 2021-10-27
JP2022515554A (ja) 2022-02-18
EP3900808B1 (en) 2023-07-12
CN113301982A (zh) 2021-08-24
CA3125373A1 (en) 2020-07-09
CN111375292A (zh) 2020-07-07
KR20210105425A (ko) 2021-08-26
US11958011B2 (en) 2024-04-16
EA202191748A1 (ru) 2021-11-02
DK3900808T3 (da) 2023-09-25
EP3900808A4 (en) 2022-04-06
CN113301982B (zh) 2023-11-14
CN111375292B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2020140821A1 (zh) 分离装置和分离方法
KR100582913B1 (ko) 고유 확산율이 높은 흡착제 및 낮은 압력비를 이용하는 압력 스윙 흡착 기체 분리 방법
US5268021A (en) Fluid fractionator
US6514318B2 (en) Multistage system for separating gas by adsorption
CN1036244C (zh) 富集空气中氧的装置
EP1070531B1 (en) Air separation using monolith adsorbent bed
US5112367A (en) Fluid fractionator
US6488747B1 (en) Pressure swing adsorption with axial or centrifugal compression machinery
JPH05137938A (ja) ガス状混合物の少くとも一つの構成成分を吸着によつて分離する方法、装置及びその利用
US9358496B2 (en) Adsorption bed structure and process
EP2861324A2 (en) System and method for concentrating gas
CN216259688U (zh) 一种大宗气体供应的氧气纯化装置
EP0627953B1 (en) fluid fractionator
CN207913461U (zh) 制氧机分子筛结构
TWI826680B (zh) 吸附處理裝置
JPH01159019A (ja) 吸着器
EA041991B1 (ru) Разделительное устройство и способ разделения
JP3643075B2 (ja) 改良された流体分別装置
CN111375293B (zh) 一种炼厂气综合回收系统
JP2011194399A (ja) 圧力スイング吸着法によるガス分離装置
CN117138525A (zh) 一种变压吸附制氧用吸附塔及变压吸附制氧系统
WO1993016786A1 (en) Improved fluid fractionator
CA2130824C (en) Fluid fractionator
KR20190096714A (ko) 휘발성 유기화합물 혼합가스 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538308

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3125373

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024086

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019907724

Country of ref document: EP

Effective date: 20210720