WO2020140568A1 - 压电式麦克风 - Google Patents

压电式麦克风 Download PDF

Info

Publication number
WO2020140568A1
WO2020140568A1 PCT/CN2019/113281 CN2019113281W WO2020140568A1 WO 2020140568 A1 WO2020140568 A1 WO 2020140568A1 CN 2019113281 W CN2019113281 W CN 2019113281W WO 2020140568 A1 WO2020140568 A1 WO 2020140568A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaps
piezoelectric
adjacent
piezoelectric microphone
diaphragm
Prior art date
Application number
PCT/CN2019/113281
Other languages
English (en)
French (fr)
Inventor
段炼
张睿
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020140568A1 publication Critical patent/WO2020140568A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/003Manufacturing aspects of the outer suspension of loudspeaker or microphone diaphragms or of their connecting aspects to said diaphragms

Definitions

  • the invention relates to the field of acoustoelectric conversion, in particular to a piezoelectric microphone.
  • the traditional MEMS microphone is mainly a condenser microphone, which includes a substrate, a back plate and a diaphragm formed on the substrate.
  • the diaphragm and the back plate constitute a capacitor system.
  • the vibration of the sound wave will drive the diaphragm of the microphone to reciprocate, thereby changing the distance between the diaphragm and the back plate and the capacitance value of the panel.
  • By detecting changes in capacitance you can convert sound signals into electrical signals.
  • the manufacturing process of the piezoelectric microphone is simple. Because the design structure of the single-layer membrane is not restricted by the air damping, the SNR is naturally improved. In addition, the piezoelectric microphone only contains the diaphragm and does not contain the back plate, which fundamentally eliminates the harm caused by the particulate matter and water vapor in the air to the microphone, and greatly improves the reliability of the microphone.
  • the diaphragms of the diaphragms of piezoelectric microphones in the related art are mostly cantilever beam structures with one end fixed and one end free.
  • the cantilever beam structure is adopted to avoid the influence of residual stress in the process on the acoustic performance.
  • the sound pressure causes the cantilever beam to deform, producing a voltage change, thereby perceiving the acoustic signal.
  • the present invention provides a pressure sensor with better performance Electric microphone.
  • a piezoelectric microphone includes a substrate with a back cavity and a piezoelectric cantilever beam diaphragm fixed on the substrate, the piezoelectric cantilever beam diaphragm is composed of multiple diaphragms, one end of each diaphragm It is fixed to the base, and the other end is suspended above the back cavity. A gap is formed between each two adjacent flaps.
  • the piezoelectric microphone further includes an elasticity connecting the two adjacent flaps.
  • the stretchable member is provided with the elastic stretchable member at least between a group of two adjacent flaps.
  • a plurality of elastically-extensible members there are a plurality of elastically-extensible members, a plurality of the elastically-extensible members are located between two adjacent flaps in the same group, and a plurality of the elastically-extensible members are along two adjacent flaps
  • the forming directions of the formed gaps are arranged at intervals.
  • the spacing distance between each two adjacent elastic stretchable members is the same.
  • a plurality of the elastic expansion pieces have the same structure size.
  • the elastic expansion member is rectangular or sector-shaped.
  • the elastic expansion member is formed by one or more springs.
  • the elastic expansion member is formed by one or more torsion springs.
  • each flap there are four said flaps, all of which have a triangular structure, and four of said flaps form a rectangular structure of said piezoelectric cantilever beam diaphragm.
  • the piezoelectric cantilever diaphragm of a circular structure there are four said diaphragms, all of which have a fan-shaped structure, and four of said diaphragms surround the piezoelectric cantilever diaphragm of a circular structure.
  • At least one elastically-extensible member is provided between each adjacent flap, and the number of the elastically-extensible members provided between each adjacent flap is equal.
  • the piezoelectric microphone of the present invention connects the two adjacent flaps by providing the elastic expansion member between at least one set of two adjacent flaps. Adjacent flaps are confined in the same plane, and the elastic expansion member can control elasticity and torque very well, thereby reducing the gap between flaps, and achieving the purpose of controlling the spacing between adjacent flaps. The uniformity of the product is improved, thereby improving the consistency of the product, so that the piezoelectric microphone has better performance.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a piezoelectric microphone in the related art
  • Embodiment 1 of a piezoelectric microphone provided by the present invention
  • FIG. 3 is a schematic structural diagram of the elastic expansion member shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a second embodiment of a piezoelectric microphone provided by the present invention.
  • This embodiment provides a piezoelectric microphone 100 including a substrate 10 having a back cavity, a piezoelectric cantilever diaphragm 20 fixed on the substrate 10, and a piezoelectric cantilever diaphragm 20 fixed on the substrate 10 ⁇ Elastic stretchable pieces 30.
  • the piezoelectric cantilever beam diaphragm 20 is composed of a plurality of diaphragms 21, one end of each diaphragm 21 is fixed to the base 10, and the other end is suspended above the dorsal cavity, and every two adjacent The flaps 21 are spaced apart to form a gap 22.
  • the piezoelectric cantilever diaphragm 20 having a rectangular structure surrounded by four triangular flaps 21 is taken as an example for description.
  • the elastic expansion member 30 is used to connect the two adjacent flaps 21, so as to control the gap 22 between the adjacent flaps 21, and can limit the adjacent flaps 21 in the same plane .
  • the plurality of elastically-extensible members 30 are sequentially arranged at intervals in the installation direction of the gap 22 formed by two adjacent flaps 21. That is to say, the distance between each two adjacent elastic stretchable members 30 is the same.
  • the plurality of elastically-extensible members 30 have the same structure size, and the plurality of elastically-extensible members 30 each have a rectangular or sector shape. In this embodiment, the plurality of elastically-extensible members 30 all have a rectangular structure.
  • the elastic expansion member 30 is formed by one or more springs.
  • the elastic telescopic member 30 is formed by one or more torsion springs. Therefore, the torque and the elastic force can be controlled to reduce the gap 22 formed between the two adjacent flaps 21.
  • the elastically-extensible member 30 may be set to be distributed between two adjacent flaps 21, and even the elastically-extensible member 30 may be set to be distributed in different adjacent Between the flaps 21.
  • at least one elastically-extensible member 30 is provided between each adjacent flap 21, and the number of the elastically-extensible members 30 disposed between the adjacent flaps 21 is equal.
  • the plurality of elastically-extensible members 30 are sequentially spaced apart, and the spacing distance between two adjacent elastically-extensible members 30 is the same.
  • the distance between the plurality of elastically-extensible members 30 may increase or decrease sequentially, or even the separation distance between the plurality of elastically-extensible members 30 may be randomly distributed.
  • the plurality of elastically-extensible members 30 are all rectangular structures with the same size.
  • the plurality of elastically-extensible members 30 may be of any shape with different sizes.
  • the elastic telescopic member 30 is formed by a combination of one or more elastic springs or torque springs.
  • the elastic expansion member 30 may be composed of any other structure that has the function of adjusting the gap 22 between two adjacent flaps 21.
  • the present invention does not set any limitation on the installation number, distribution position, installation manner, structure shape and material composition of the elastic stretchable member 30. It is only required that the elastic telescopic member 30 can realize the adjustment function of the gap 22 between the two adjacent flaps 21, and can limit the plane where the two adjacent flaps 21 are located.
  • the installation number, distribution position, installation mode, structural shape and material composition of the telescopic member 30 can be selected according to actual needs.
  • This embodiment provides a piezoelectric microphone 200.
  • the structure of the piezoelectric microphone 200 is basically the same as the structure of the piezoelectric microphone 100 in Embodiment 1, except for:
  • the piezoelectric cantilever diaphragm 120 of the piezoelectric microphone 200 is composed of four fan-shaped diaphragms 121, and the four diaphragms 121 surround the piezoelectric cantilever diaphragm 120 into a circular structure.
  • the piezoelectric microphone of the present invention connects the two adjacent flaps by providing the elastic expansion member between at least one set of two adjacent flaps. Adjacent flaps are confined in the same plane, and the elastic expansion member can control elasticity and torque very well, thereby reducing the gap between flaps, and achieving the purpose of controlling the spacing between adjacent flaps. The uniformity of the product is improved, thereby improving the consistency of the product, so that the piezoelectric microphone has better performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

本发明提供了一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,所述压电悬臂梁振膜由多个膜瓣组成,每一所述膜瓣一端与所述基底固定,另一端悬置于所述背腔上方,每相邻两所述膜瓣之间间隔设置形成间隙,所述压电式麦克风还包括连接两相邻所述膜瓣的弹性伸缩件,至少在一组两相邻所述膜瓣之间设置有所述弹性伸缩件。与相关技术相比,本发明提供的压电式麦克风的性能更佳。

Description

压电式麦克风 技术领域
本发明涉及声电转换领域,尤其涉及一种压电式麦克风。
背景技术
MEMS麦克风现已应用普及在消费性电子产品中。传统的MEMS麦克风主要为电容式麦克风,其包括基底以及形成在基底上的背板、振膜。所述振膜与背板构成了电容系统。声波的振动会带动麦克风的振膜做往复振动,进而改变振膜和背板之间的距离以及平板电容值。通过检测电容的变化,就可以把声音信号转换为电信号。当移动设备处于多尘环境中,空气中的颗粒物容易进入并卡在麦克风的振膜和背板之间,导致振膜无法移动;当移动设备处于潮湿环境中,麦克风的振膜和背板之间容易凝结水珠,从而使得振膜和背板被水珠粘连。以上两种情况均会导致麦克风失效。为了避免此类问题,压电式MEMS麦克风应运而生。
压电式麦克风的制作工艺简单,因采用单层膜的设计架构使其不受空气阻尼的限制,SNR自然提升。此外压电式麦克风只包含振膜,不包含背板,从根本上杜绝了空气中的颗粒物和水汽对麦克风带来的危害,极大地提高了麦克风的可靠性。
相关技术中的压电式麦克风的振膜的膜瓣很多都是一端固定一端自由的悬臂梁结构,采用了悬臂梁结构来避免工艺中的残余应力对声学性能的影响,当外部的声音信号从声孔中传入,声压引起悬臂梁形变,产生电压变化,从而感知声学信号。
然而,如图1(a)和图1(b)所示,相关技术中的压电式麦克风在残余应力的作用下,振膜1的膜瓣自由端会发生形变,而且由于整个基底2在加工工艺过程中的应力分布不均,造成不同的振膜1的膜瓣自由端形变各有不一。这一振膜1膜瓣结构上的差异进一步影响了麦克风的性能表现,导致麦克风的使用性能不佳。
技术问题
因此,有必要提供一种改进的压电式麦克风来解决上述问题。
技术解决方案
针对相关技术中的压电式麦克风在加工过程中由于应力影响导致振膜的膜瓣形变各有不一,从而影响麦克风的使用性能的技术问题,本发明提供了一种使用性能更佳的压电式麦克风。
一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,所述压电悬臂梁振膜由多个膜瓣组成,每一所述膜瓣一端与所述基底固定,另一端悬置于所述背腔上方,每相邻两所述膜瓣之间间隔设置形成间隙,所述压电式麦克风还包括连接两相邻所述膜瓣的弹性伸缩件,至少在一组两相邻所述膜瓣之间设置有所述弹性伸缩件。
优选的,所述弹性伸缩件设有多个,多个所述弹性伸缩件位于同一组两相邻所述膜瓣之间,并且多个所述弹性伸缩件沿两相邻的所述膜瓣形成的所述间隙的设置方向间隔设置。
优选的,每两相邻所述弹性伸缩件之间的间隔距离相同。
优选的,多个所述弹性伸缩件结构大小相同。
优选的,所述弹性伸缩件呈矩形或扇形。
优选的,所述弹性伸缩件由一个或多个弹簧形成。
优选的,所述弹性伸缩件由一个或多个扭矩弹簧形成。
优选的,所述膜瓣设有四个,四个所述膜瓣均呈三角形结构,且四个所述膜瓣围成矩形结构的所述压电悬臂梁振膜。
优选的,所述膜瓣设有四个,四个所述膜瓣均呈扇形结构,且四个所述膜瓣围成圆形结构的所述压电悬臂梁振膜。
优选的,各相邻所述膜瓣之间均设有至少一个所述弹性伸缩件,且所述各相邻所述膜瓣之间设置的所述弹性伸缩件数量相等。
有益效果
与相关技术相比,本发明的压电式麦克风通过在至少一组两相邻所述膜瓣之间设置所述弹性伸缩件连接两相邻的所述膜瓣,所述弹性伸缩件可以将相邻所述膜瓣限制在同一平面内,并且所述弹性伸缩件能够很好的控制弹力和扭矩,从而缩小膜瓣之间的间隙,达到控制相邻所述膜瓣之间间距的目的,提高产品的均匀性,从而提升了产品的一致性,让所述压电式麦克风具有更佳的使用性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为相关技术中压电式麦克风的剖面结构示意图;
图2为本发明提供的压电式麦克风实施例一的结构示意图;
图3为图2所示弹性伸缩件的结构示意图;
图4为本发明提供的压电式麦克风实施例二的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
请结合参阅图2和图3。本实施例提供了一种压电式麦克风100,其包括具有背腔的基底10、固定于所述基底10上的压电悬臂梁振膜20及固定于所述压电悬臂梁振膜20上的弹性伸缩件30。
所述压电悬臂梁振膜20由多个膜瓣21组成,每一所述膜瓣21一端与所述基底10固定,另一端悬置于所述背腔上方,且每相邻两所述膜瓣21之间间隔设置形成间隙22。
需要说明的是,在本实施例中,所述膜瓣21设有四个,四个所述膜瓣21均呈三角形结构,且四个所述膜瓣21将所述压电悬臂梁振膜20围成矩形结构。相对应的,所述间隙22对应设置有四个。当然,在其他实施例中,所述膜瓣21可设为任意所需数量,同时所述膜瓣21可为任意形状,并且所述膜瓣21可将所述压电悬臂梁振膜20围成任意形状,根据实际所需进行选择即可。本实施例中,仅以四片三角形的所述膜瓣21围成矩形结构的所述压电悬臂梁振膜20为例进行说明。
所述弹性伸缩件30用以连接两相邻的所述膜瓣21,从而控制量相邻所述膜瓣21之间的间隙22,并且能将相邻所述膜瓣21限制于同一平面内。
所述弹性伸缩件30设有多个,多个所述弹性伸缩件30位于同一组两相邻所述膜瓣21之间。
多个所述弹性伸缩件30沿两相邻的所述膜瓣21形成的所述间隙22的设置方向依次间隔设置。即每两相邻的所述弹性伸缩件30之间的间隔距离相同。
具体的,多个所述弹性伸缩件30结构大小相同,多个所述弹性伸缩件30均呈矩形或扇形,在本实施例中,多个所述弹性伸缩件30均呈矩形结构。
所述弹性伸缩件30由一个或多个弹簧形成。优选的,所述弹性伸缩件30由一个或多个扭矩弹簧形成。从而可以控制扭矩和弹力,来减小相邻两所述膜瓣21之间形成的所述间隙22。
需要说明的是,在本实施例中,所述弹性伸缩件30设有多个且多个所述弹性伸缩件30位于同一组两相邻所述膜瓣21之间。当然,在其他实施例中,所述弹性伸缩件30可设为一个分布于两相邻所述膜瓣21之间,甚至所述弹性伸缩件30可设为多个分别分布于不同的相邻所述膜瓣21之间。如在各相邻所述膜瓣21之间均设有至少一个所述弹性伸缩件30,且所述各相邻所述膜瓣21之间设置的所述弹性伸缩件30数量相等。
在本实施例中,多个所述弹性伸缩件30依次间隔设置,且相邻两所述弹性伸缩件30之间的间隔距离相同。当然,在其他实施例中,多个所述弹性伸缩件30之间的距离可以依次递增或依次递减,甚至多个所述弹性伸缩件30之间的间隔距离可以随机分布。
在本实施例中,多个所述弹性伸缩件30均为大小相同的矩形结构。当然,在其他实施例中,多个所述弹性伸缩件30可为不同大小的任意形状结构。
在本实施例中,所述弹性伸缩件30由一个或多个弹性弹簧或扭矩弹簧组合形成。当然,在其他实施例中,所述弹性伸缩件30可由任意具备调节两相邻所述膜瓣21之间的所述间隙22功能的其他结构组成。
也就是说,本发明对所述弹性伸缩件30的设置数量、分布位置、设置方式、结构形状及材料组成均不作任何限定。只需所述弹性伸缩件30可实现对两相邻所述膜瓣21之间的所述间隙22具备调节功能,并且能限制两相邻所述膜瓣21所处平面即可,所述弹性伸缩件30的设置数量、分布位置、设置方式、结构形状及材料组成可根据实际需求进行选择。
实施例二
请结合参阅图4。本实施例提供了一种压电式麦克风200,所述压电式麦克风200的结构与实施例一中的所述压电式麦克风100的结构基本相同,不同点在于:
所述压电式麦克风200的压电悬臂梁振膜120由四个扇形膜瓣121组成,四个所述膜瓣121将所述压电悬臂梁振膜120围成圆形结构。弹性伸缩件130设有多个并依次间隔分布于同一组相邻两所述膜瓣121之间。
与相关技术相比,本发明的压电式麦克风通过在至少一组两相邻所述膜瓣之间设置所述弹性伸缩件连接两相邻的所述膜瓣,所述弹性伸缩件可以将相邻所述膜瓣限制在同一平面内,并且所述弹性伸缩件能够很好的控制弹力和扭矩,从而缩小膜瓣之间的间隙,达到控制相邻所述膜瓣之间间距的目的,提高产品的均匀性,从而提升了产品的一致性,让所述压电式麦克风具有更佳的使用性能。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,所述压电悬臂梁振膜由多个膜瓣组成,每一所述膜瓣一端与所述基底固定,另一端悬置于所述背腔上方,每相邻两所述膜瓣之间间隔设置形成间隙,其特征在于,所述压电式麦克风还包括连接两相邻所述膜瓣的弹性伸缩件,至少在一组两相邻所述膜瓣之间设置有所述弹性伸缩件。
  2. 根据权利要求1所述的压电式麦克风,其特征在于,所述弹性伸缩件设有多个,多个所述弹性伸缩件位于同一组两相邻所述膜瓣之间,并且多个所述弹性伸缩件沿两相邻的所述膜瓣形成的所述间隙的设置方向间隔设置。
  3. 根据权利要求2所述的压电式麦克风,其特征在于,每两相邻所述弹性伸缩件之间的间隔距离相同。
  4. 根据权利要求2所述的压电式麦克风,其特征在于,多个所述弹性伸缩件结构大小相同。
  5. 根据权利要求1所述的压电式麦克风,其特征在于,所述弹性伸缩件呈矩形或扇形。
  6. 根据权利要求1所述的压电式麦克风,其特征在于,所述弹性伸缩件由一个或多个弹簧形成。
  7. 根据权利要求6所述的压电式麦克风,其特征在于,所述弹性伸缩件由一个或多个扭矩弹簧形成。
  8. 根据权利要求1所述的压电式麦克风,其特征在于,所述膜瓣设有四个,四个所述膜瓣均呈三角形结构,且四个所述膜瓣围成矩形结构的所述压电悬臂梁振膜。
  9. 根据权利要求1所述的压电式麦克风,其特征在于,所述膜瓣设有四个,四个所述膜瓣均呈扇形结构,且四个所述膜瓣围成圆形结构的所述压电悬臂梁振膜。
  10. 根据权利要求1所述的压电式麦克风,其特征在于,各相邻所述膜瓣之间均设有至少一个所述弹性伸缩件,且所述各相邻所述膜瓣之间设置的所述弹性伸缩件数量相等。
PCT/CN2019/113281 2018-12-31 2019-10-25 压电式麦克风 WO2020140568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650209.7 2018-12-31
CN201811650209.7A CN109587612A (zh) 2018-12-31 2018-12-31 压电式麦克风

Publications (1)

Publication Number Publication Date
WO2020140568A1 true WO2020140568A1 (zh) 2020-07-09

Family

ID=65915549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113281 WO2020140568A1 (zh) 2018-12-31 2019-10-25 压电式麦克风

Country Status (3)

Country Link
US (1) US10993040B2 (zh)
CN (1) CN109587612A (zh)
WO (1) WO2020140568A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587612A (zh) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 压电式麦克风
WO2021036653A1 (zh) 2019-08-28 2021-03-04 武汉大学 一种高灵敏度压电式麦克风
CN110602616B (zh) * 2019-08-28 2021-02-19 武汉敏声新技术有限公司 一种高灵敏度mems压电式麦克风
CN112752209B (zh) * 2019-10-31 2022-03-25 华为技术有限公司 一种压电式mems传感器以及相关设备
CN111328005B (zh) * 2020-03-10 2021-09-10 瑞声声学科技(深圳)有限公司 压电式mems麦克风
CN111405441B (zh) * 2020-04-16 2021-06-15 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风
CN111918179B (zh) * 2020-07-10 2021-07-09 瑞声科技(南京)有限公司 发声装置及具有其的电子设备
US11884535B2 (en) * 2020-07-11 2024-01-30 xMEMS Labs, Inc. Device, package structure and manufacturing method of device
US11399228B2 (en) 2020-07-11 2022-07-26 xMEMS Labs, Inc. Acoustic transducer, wearable sound device and manufacturing method of acoustic transducer
US11323797B2 (en) * 2020-07-11 2022-05-03 xMEMS Labs, Inc. Acoustic transducer, wearable sound device and manufacturing method of acoustic transducer
US11972749B2 (en) * 2020-07-11 2024-04-30 xMEMS Labs, Inc. Wearable sound device
CN112584289B (zh) * 2020-11-30 2022-03-08 瑞声新能源发展(常州)有限公司科教城分公司 一种压电式麦克风及其制作方法
US11943585B2 (en) * 2021-01-14 2024-03-26 xMEMS Labs, Inc. Air-pulse generating device with common mode and differential mode movement
CN114847619B (zh) * 2022-04-29 2023-06-16 北京航空航天大学 基于小型低频发信天线的矿用体征检测应急穿透发信背包

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857501B1 (en) * 1999-09-21 2005-02-22 The United States Of America As Represented By The Secretary Of The Navy Method of forming parylene-diaphragm piezoelectric acoustic transducers
CN101427591A (zh) * 2006-02-24 2009-05-06 雅马哈株式会社 电容式传声器
CN102138338A (zh) * 2008-06-30 2011-07-27 密执安大学评议会 压电mems麦克风
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
CN109587612A (zh) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 压电式麦克风

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761192B2 (ja) * 2010-07-23 2015-08-12 日本電気株式会社 発振装置および電子機器
US9029963B2 (en) * 2012-09-25 2015-05-12 Sand 9, Inc. MEMS microphone
EP2971761A4 (en) * 2013-03-13 2016-08-31 Microgen Systems Inc PIEZOELECTRIC ENERGY COLLECTION DEVICE HAVING A STOP STRUCTURE
EP3350114A4 (en) * 2015-09-18 2018-08-01 Vesper Technologies Inc. Plate spring
DE102017200111B3 (de) * 2017-01-05 2018-03-15 Robert Bosch Gmbh Mikromechanische Schallwandleranordnung und entsprechendes Herstellungsverfahren
TWI667925B (zh) * 2018-01-15 2019-08-01 美律實業股份有限公司 壓電傳感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857501B1 (en) * 1999-09-21 2005-02-22 The United States Of America As Represented By The Secretary Of The Navy Method of forming parylene-diaphragm piezoelectric acoustic transducers
CN101427591A (zh) * 2006-02-24 2009-05-06 雅马哈株式会社 电容式传声器
CN102138338A (zh) * 2008-06-30 2011-07-27 密执安大学评议会 压电mems麦克风
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
CN109587612A (zh) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 压电式麦克风

Also Published As

Publication number Publication date
CN109587612A (zh) 2019-04-05
US10993040B2 (en) 2021-04-27
US20200213770A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020140568A1 (zh) 压电式麦克风
WO2020140569A1 (zh) 压电式麦克风
CN109495829B (zh) 压电式mems麦克风
US20210051415A1 (en) Piezoelectric MEMS microphone
WO2020140570A1 (zh) 压电式麦克风
JP6894719B2 (ja) 圧電素子
US20200100033A1 (en) Micromechanical sound transducer
TWI530158B (zh) 具有微機械麥克風構造的構件
CN111328005B (zh) 压电式mems麦克风
WO2021031104A1 (zh) 压电式 mems 麦克风
JP6801928B2 (ja) 圧電素子
JP6292313B2 (ja) 非円形メンブレン型コンデンサマイク
CN106911990A (zh) Mems声换能器及其制造方法
WO2022007050A1 (zh) 发声装置及具有其的电子设备
JP2019114958A (ja) 電気音響変換器
CN110944274B (zh) 一种基于Piston-mode的带质量负载可调谐MEMS压电声换能器
CN209659620U (zh) 压电式mems麦克风
KR20160108518A (ko) 다중 진동막 스피커
US20200322731A1 (en) Acoustic transducer
WO2023245789A1 (zh) 一种mems压电扬声器
WO2022110349A1 (zh) 一种压电式麦克风及其制作方法
CN211744726U (zh) 一种mems扬声器
WO2021134672A1 (zh) 压电mems麦克风
WO2023162019A1 (ja) Mems素子
US20230412988A1 (en) MEMS Speaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907672

Country of ref document: EP

Kind code of ref document: A1