WO2020140569A1 - 压电式麦克风 - Google Patents
压电式麦克风 Download PDFInfo
- Publication number
- WO2020140569A1 WO2020140569A1 PCT/CN2019/113283 CN2019113283W WO2020140569A1 WO 2020140569 A1 WO2020140569 A1 WO 2020140569A1 CN 2019113283 W CN2019113283 W CN 2019113283W WO 2020140569 A1 WO2020140569 A1 WO 2020140569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diaphragm
- piezoelectric
- flaps
- piezoelectric microphone
- microphone according
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 13
- 230000008602 contraction Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
- H04R17/02—Microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/003—Mems transducers or their use
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2231/00—Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
- H04R2231/003—Manufacturing aspects of the outer suspension of loudspeaker or microphone diaphragms or of their connecting aspects to said diaphragms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
- H04R31/003—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
Definitions
- the invention relates to the field of acoustoelectric conversion, in particular to a piezoelectric microphone.
- the traditional MEMS microphone is mainly a condenser microphone, which includes a substrate, a back plate and a diaphragm formed on the substrate.
- the diaphragm and the back plate constitute a capacitor system.
- the vibration of the sound wave will drive the diaphragm of the microphone to reciprocate, thereby changing the distance between the diaphragm and the back plate and the capacitance value of the panel.
- By detecting changes in capacitance you can convert sound signals into electrical signals.
- the manufacturing process of the piezoelectric microphone is simple. Because the design structure of the single-layer membrane is not restricted by the air damping, the SNR is naturally improved. In addition, the piezoelectric microphone only contains the diaphragm and does not contain the back plate, which fundamentally eliminates the harm caused by the particulate matter and water vapor in the air to the microphone, and greatly improves the reliability of the microphone.
- the diaphragms of the diaphragms of piezoelectric microphones in the related art are mostly cantilever beam structures with one end fixed and one end free.
- the cantilever beam structure is adopted to avoid the influence of residual stress in the process on the acoustic performance.
- the sound pressure causes the cantilever beam to deform, producing a voltage change, thereby perceiving the acoustic signal.
- the present invention provides a pressure sensor with better performance Electric microphone.
- a piezoelectric microphone includes a base with a back cavity and a piezoelectric cantilever beam diaphragm fixed on the substrate, the piezoelectric cantilever beam diaphragm includes a centrally located and suspended above the back cavity A first diaphragm and a second diaphragm fixed on the substrate and surrounding the first diaphragm, the second diaphragm includes a fixed end fixed on one side of the substrate and close to the first diaphragm The movable end of the membrane is suspended on one side of the back cavity, and the piezoelectric microphone further includes an elastic telescopic member connecting the first vibrating membrane and the movable end.
- the second diaphragm is composed of a plurality of flaps, the number of the elastic expansion and contraction is the same as the number of the flaps, and each flap is connected to the first One diaphragm is connected.
- the plurality of elastically-extensible members are distributed in an annular array with respect to the center point of the first diaphragm.
- a plurality of the elastic expansion members have the same structure.
- the elastic expansion member is rectangular or sector-shaped.
- the elastic expansion member is formed by one or more springs.
- the elastic expansion member is formed by one or more torsion springs.
- all four flaps have a trapezoidal structure, and the four flaps are arranged symmetrically spaced two by two to form a rectangular space, and the first diaphragm is rectangular and Correspondingly located in the rectangular space, the second diaphragm and the first diaphragm form a rectangular structure of the piezoelectric cantilever beam diaphragm.
- the flaps there are four said flaps, and all four flaps have a fan-shaped structure, and the four flaps are arranged symmetrically spaced two by two to form a circular space, and the first diaphragm is
- the piezoelectric diaphragms are circular and correspondingly located in the circular space, and the second diaphragm and the first diaphragm together form a circular structure of the piezoelectric cantilever beam diaphragm.
- the piezoelectric microphone of the present invention connects the movable end of the second diaphragm and the first diaphragm through the elastic expansion member,
- the movable end gives a certain constraint, so that the movable end of the second diaphragm is located on the same plane as much as possible, reducing the performance difference caused by the deformation of the second diaphragm itself, thereby improving the structure
- the uniformity of the product further improves the consistency of product performance, so that the piezoelectric microphone has better performance.
- FIG. 1 is a schematic cross-sectional structure diagram of a piezoelectric microphone in the related art
- Embodiment 1 of a piezoelectric microphone provided by the present invention
- FIG. 3 is a schematic structural diagram of the elastic expansion member shown in FIG. 2;
- Embodiment 4 is a schematic structural diagram of Embodiment 2 of a piezoelectric microphone provided by the present invention.
- FIG. 5 is a schematic diagram of the structure of the elastic expansion member shown in FIG. 4.
- This embodiment provides a piezoelectric microphone 100 including a substrate 10 having a back cavity, a piezoelectric cantilever diaphragm 20 fixed on the substrate 10, and a piezoelectric cantilever diaphragm 20 fixed on the substrate 10 ⁇ Elastic stretchable pieces 30.
- the piezoelectric cantilever beam diaphragm 20 includes a first diaphragm 21 located at the center and suspended above the back cavity and a second diaphragm fixed on the substrate 10 and disposed around the first diaphragm 21 ⁇ 22 ⁇ The membrane 22.
- the first diaphragm 21 and the second diaphragm 22 are deformed by the external sound pressure, and the sound pressure signal is sensed.
- the second diaphragm 22 is composed of a plurality of flaps 221, and the flap 221 includes a fixed end 2211 fixed on the side of the base 10 and a side near the first diaphragm 21 and suspended on the side The movable end 2212 above the back cavity.
- the elastic expansion member 30 is connected to the first diaphragm 21 and the movable end 2212.
- the elastic expansion member 30 is used to give the movable end 2212 a certain constraint so that the second diaphragm 22
- Each of the movable ends 2212 is located on the same plane as much as possible to reduce the performance difference due to the deformation of the second diaphragm 22 itself.
- four flaps 221 are provided, and all four flaps 221 have a trapezoidal structure, and the four flaps 221 are arranged symmetrically at intervals to enclose a rectangular space, and the first diaphragm 21 is rectangular and correspondingly located in the rectangular space and spaced apart from the four flaps 221.
- the second diaphragm 22 and the first diaphragm 21 together form the piezoelectric cantilever diaphragm 20 of a rectangular structure.
- the first diaphragm 21 has a rectangular structure.
- the first diaphragm 21 has a rectangular structure.
- the number of flaps 221 can be set to any desired number, and at the same time, the flaps 221 can also be of any shape, and the first diaphragm 21 can also be of any structure, corresponding to The shape of the space surrounded by the plurality of diaphragms 221 near the side of the first diaphragm 21 can also correspond to any shape, and can be selected according to actual needs.
- both the first diaphragm 21 and the second diaphragm 22 may be of any structure, as long as the movable end 2212 of the second diaphragm 22 can be adjusted by the elastic expansion member 30 Certain constraints are sufficient.
- four piezoelectric flaps 221 and a rectangular first diaphragm 21 together form a rectangular structure of the piezoelectric cantilever diaphragm 20 as an example for description.
- the number of the elastic expansion members 30 is the same as the number of the flaps 221, and each flap 221 is connected to the first diaphragm 21 through one elastic expansion member 30.
- the four elastically-extensible members 30 have the same structure, and the four elastically-extensible members 30 all have a rectangular or sector shape. In this embodiment, the four elastically-extensible members 30 all have a rectangular structure.
- the elastically-extensible member 30 is formed by one or more springs.
- the elastically-extensible member 30 is formed by one or more torsion springs, so that torque and spring force can be controlled.
- the elastic expansion member 30 is formed by one or more torsion springs.
- the number of the elastically-extensible members 30 can be set to any number and in any structure. For example, if the number of the elastically-extensible members 30 is eight, and the number of the elastically-extensible members 30 is circular Structure, and two elastically-extensible members 30 are provided between each diaphragm 221 and the first diaphragm 21.
- the elastically-extensible members 30 may be randomly distributed.
- one elastically-extensible member 30 is provided between one of the flaps 221 and the first diaphragm 21, and the other of the flaps 221 and the first Two elastic expansion members 30 are arranged between a diaphragm 21, and each elastic expansion member 30 can also be arranged in a different size structure, so as to better match the diaphragm 221 and the first A diaphragm 21 is adjusted.
- the elastically-extensible member 30 may be made of any material that has the function of adjusting the first diaphragm 21 and the second diaphragm 22.
- the present invention does not set any limitation on the installation number, distribution position, installation manner, structure shape and material composition of the elastic stretchable member 30. It is only required that the elastic telescopic member 30 can restrain the movable end 2212 of the second diaphragm 22 and make the gap between the first diaphragm 21 and the second diaphragm 22 relatively uniform.
- the number, distribution position, setting method, structural shape and material composition of the elastic expansion member 30 can be selected according to actual needs.
- This embodiment provides a piezoelectric microphone 200.
- the structure of the piezoelectric microphone 200 is basically the same as the structure of the piezoelectric microphone 100 in Embodiment 1, except for:
- the second diaphragm 122 of the piezoelectric cantilever diaphragm 120 of the piezoelectric microphone 200 is composed of four fan-shaped diaphragms 1221, and the first diaphragm 121 of the piezoelectric cantilever diaphragm 120 is circular .
- the four flaps 1221 are arranged symmetrically at intervals to form a circular space, and the first diaphragm 121 is correspondingly located in the circular space and spaced apart from the flap 1221.
- the second diaphragm 122 and the first diaphragm 121 together form a circular structure of the piezoelectric cantilever diaphragm 120.
- the four elastically-extensible members 130 all have a fan-shaped structure of the same size. Petal 1221.
- the piezoelectric microphone of the present invention connects the movable end of the second diaphragm and the first diaphragm through the elastic expansion member,
- the movable end gives a certain constraint, so that the movable end of the second diaphragm is located on the same plane as much as possible, reducing the performance difference due to the deformation of the second diaphragm itself, thereby improving the structure
- the uniformity of the product further improves the consistency of product performance, so that the piezoelectric microphone has better performance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
本发明提供了一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,所述压电悬臂梁振膜包括位于中心处并悬置于所述背腔上方的第一振膜及固定于所述基底上并围绕所述第一振膜设置的第二振膜,所述第二振膜包括固定于所述基底一侧的固定端及靠近所述第一振膜一侧并悬置于所述背腔上方的活动端,所述压电式麦克风还包括连接所述第一振膜与所述活动端的弹性伸缩件。与相关技术相比,本发明提供的压电式麦克风的性能更佳。
Description
本发明涉及声电转换领域,尤其涉及一种压电式麦克风。
MEMS麦克风现已应用普及在消费性电子产品中。传统的MEMS麦克风主要为电容式麦克风,其包括基底以及形成在基底上的背板、振膜。所述振膜与背板构成了电容系统。声波的振动会带动麦克风的振膜做往复振动,进而改变振膜和背板之间的距离以及平板电容值。通过检测电容的变化,就可以把声音信号转换为电信号。当移动设备处于多尘环境中,空气中的颗粒物容易进入并卡在麦克风的振膜和背板之间,导致振膜无法移动;当移动设备处于潮湿环境中,麦克风的振膜和背板之间容易凝结水珠,从而使得振膜和背板被水珠粘连。以上两种情况均会导致麦克风失效。为了避免此类问题,压电式MEMS麦克风应运而生。
压电式麦克风的制作工艺简单,因采用单层膜的设计架构使其不受空气阻尼的限制,SNR自然提升。此外压电式麦克风只包含振膜,不包含背板,从根本上杜绝了空气中的颗粒物和水汽对麦克风带来的危害,极大地提高了麦克风的可靠性。
相关技术中的压电式麦克风的振膜的膜瓣很多都是一端固定一端自由的悬臂梁结构,采用了悬臂梁结构来避免工艺中的残余应力对声学性能的影响,当外部的声音信号从声孔中传入,声压引起悬臂梁形变,产生电压变化,从而感知声学信号。
然而,如图1(a)和图1(b)所示,相关技术中的压电式麦克风在残余应力的作用下,振膜1的膜瓣自由端会发生形变,而且由于整个基底2在加工工艺过程中的应力分布不均,造成不同的膜瓣自由端形变各有不一。这一振膜1膜瓣结构上的差异进一步影响了麦克风的性能表现,导致麦克风的使用性能不佳。
因此,有必要提供一种改进的压电式麦克风来解决上述问题。
针对相关技术中的压电式麦克风在加工过程中由于应力影响导致振膜的膜瓣形变各有不一,从而影响麦克风的使用性能的技术问题,本发明提供了一种使用性能更佳的压电式麦克风。
一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,所述压电悬臂梁振膜包括位于中心处并悬置于所述背腔上方的第一振膜及固定于所述基底上并围绕所述第一振膜设置的第二振膜,所述第二振膜包括固定于所述基底一侧的固定端及靠近所述第一振膜一侧并悬置于所述背腔上方的活动端,所述压电式麦克风还包括连接所述第一振膜与所述活动端的弹性伸缩件。
优选的,所述第二振膜由多个膜瓣组成,所述弹性伸缩的数量与所述膜瓣的数量相同,且每一个所述膜瓣均通过一个所述弹性伸缩件与所述第一振膜连接。
优选的,所述弹性伸缩件设有多个,多个所述弹性伸缩件关于所述第一振膜的中心点呈环形阵列分布。
优选的,多个所述弹性伸缩件结构相同。
优选的,所述弹性伸缩件呈矩形或扇形。
优选的,所述弹性伸缩件由一个或多个弹簧形成。
优选的,所述弹性伸缩件由一个或多个扭矩弹簧形成。
优选的,所述膜瓣设有四个,四个所述膜瓣均呈梯形结构,且四个所述膜瓣两两对称间隔设置围成一矩形空间,所述第一振膜呈矩形并对应位于所述矩形空间内,所述第二振膜与所述第一振膜共同围成矩形结构的所述压电悬臂梁振膜。
优选的,所述膜瓣设有四个,四个所述膜瓣均呈扇环形结构,且四个所述膜瓣两两对称间隔设置围成一圆形空间,所述第一振膜呈圆形并对应位于所述圆形空间内,所述第二振膜与所述第一振膜共同围成圆形结构的所述压电悬臂梁振膜。
与相关技术相比,本发明的压电式麦克风通过所述弹性伸缩件将所述第二振膜的所述活动端与所述第一振膜连接在一起,对所述第二振膜的所述活动端给与了一定的约束,使得所述第二振膜的活动端尽可能位于同一平面上,减小了由于所述第二振膜本身的形变造成的性能差异,从而提高了结构的均匀性,进而提升了产品性能的一致性,使得所述压电式麦克风具备更佳的使用性能。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为相关技术中的压电式麦克风的剖面结构示意图;
图2为本发明提供的压电式麦克风实施例一的结构示意图;
图3为图2所示弹性伸缩件的结构示意图;
图4为本发明提供的压电式麦克风实施例二的结构示意图;
图5为图4所示弹性伸缩件的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
请结合参阅图2和图3。本实施例提供了一种压电式麦克风100,其包括具有背腔的基底10、固定于所述基底10上的压电悬臂梁振膜20及固定于所述压电悬臂梁振膜20上的弹性伸缩件30。
所述压电悬臂梁振膜20包括位于中心处并悬置于所述背腔上方的第一振膜21及固定于所述基底10上并围绕所述第一振膜21设置的第二振膜22。所述第一振膜21与所述第二振膜22在外界声压的作用下会发生形变,感知声压信号。所述第二振膜22由多个膜瓣221组成,所述膜瓣221包括固定于所述基底10一侧的固定端2211及靠近所述第一振膜21一侧并悬置于所述背腔上方的活动端2212。所述弹性伸缩件30连接与所述第一振膜21与所述活动端2212,所述弹性伸缩件30用以给与所述活动端2212一定的约束,使得让所述第二振膜22的各所述活动端2212尽可能位于同一平面上,减小由于所述第二振膜22本身的形变造成的性能差异。
具体的,所述膜瓣221设有四个,四个所述膜瓣221均呈梯形结构,且四个所述膜瓣221两两对称间隔设置围成一矩形空间,所述第一振膜21呈矩形且对应位于所述矩形空间内并与四个所述膜瓣221间隔设置。所述第二振膜22与所述第一振膜21共同围成矩形结构的所述压电悬臂梁振膜20。
需要说明的是,在本实施例中,所述膜瓣221设有四个,四个所述膜瓣221均呈梯形结构,并且所述第一振膜21呈矩形结构,相对应的,四个所述膜瓣221共同围成矩形空间容纳所述第一振膜21。当然,在其他实施例中,所述膜瓣221可设为任意所需数量,同时所述膜瓣221也可为任意形状,并且所述第一振膜21也可为任意结构,相对应的,多个所述膜瓣221靠近所述第一振膜21一侧所围成的空间形状也可对应为任意形状,根据实际所需进行选择即可。即在本发明中所述第一振膜21与所述第二振膜22均可为任意结构,只需能通过所述弹性伸缩件30对所述第二振膜22的所述活动端2212进行一定的约束即可。本实施例中,仅以四片三角形的所述膜瓣221与一片矩形的第一振膜21共同围成矩形结构的所述压电悬臂梁振膜20为例进行说明。
所述弹性伸缩件30设有多个,多个所述弹性伸缩件30关于所述第一振膜21的中心点呈环形阵列分布。
优选的,所述弹性伸缩件30的数量与所述膜瓣221的数量相同,且每一个所述膜瓣221均通过一个所述弹性伸缩件30与所述第一振膜21连接。
在本实施例中,所述弹性伸缩件30设有四个并分别对应连接四个所述膜瓣221与所述第一振膜21。
具体的,四个所述弹性伸缩件30结构相同,四个所述弹性伸缩件30均呈矩形或扇形,在本实施例中,四个所述弹性伸缩件30均呈矩形结构。
所述弹性伸缩件30由一个或多个弹簧形成,优选的,所述弹性伸缩件30由一个或多个扭矩弹簧形成,从而可以控制扭矩和弹力。
需要说明的是,在本实施例中,所述弹性伸缩件30设有四个,四个所述弹性伸缩件30均呈大小相同的矩形结构,并分别对应分布于每个所述膜瓣221与所述第一振膜21之间,同时 所述弹性伸缩件30由一个或多个扭矩弹簧形成。当然,在其他实施例中,所述弹性伸缩件30可设为任意数量,且呈任意结构,如将所述弹性伸缩件30设为八个,且将所述弹性伸缩件30设为圆形结构,并在每个所述膜瓣221与所述第一振膜21之间均设置两个所述弹性伸缩件30。甚至所述弹性伸缩件30可随机分布,如在一个所述膜瓣221与所述第一振膜21之间设置一个所述弹性伸缩件30,在另一个所述膜瓣221与所述第一振膜21之间设置两个所述弹性伸缩件30,并且还可将每个所述弹性伸缩件30设置为不同大小结构,以此来更好的对所述膜瓣221与所述第一振膜21之间进行调节。同时,所述弹性伸缩件30可为任意具有调节所述第一振膜21与所述第二振膜22功能的材料组成。
也就是说,本发明对所述弹性伸缩件30的设置数量、分布位置、设置方式、结构形状及材料组成均不作任何限定。只需所述弹性伸缩件30可实现将所述第二振膜22的所述活动端2212约束,并让第一振膜21与所述第二振膜22的间隙相对均匀即可。所述弹性伸缩件30的设置数量、分布位置、设置方式、结构形状及材料组成可根据实际需求进行选择。
实施例二
请结合参阅图4和图5。本实施例提供了一种压电式麦克风200,所述压电式麦克风200的结构与实施例一中的所述压电式麦克风100的结构基本相同,不同点在于:
所述压电式麦克风200的压电悬臂梁振膜120的第二振膜122由四个扇环形的膜瓣1221组成,所述压电悬臂梁振膜120的第一振膜121呈圆形。四个所述膜瓣1221两两对称间隔设置围成一圆形空间,所述第一振膜121对应位于所述圆形空间内且与所述膜瓣1221间隔设置。所述第二振膜122与所述第一振膜121共同围成圆形结构的所述压电悬臂梁振膜120。
同时,弹性伸缩件130设有四个,四个所述弹性伸缩件130均呈大小相同的扇环形结构,每个所述弹性伸缩件130对应连接所述第一振膜121与一个所述膜瓣1221。
与相关技术相比,本发明的压电式麦克风通过所述弹性伸缩件将所述第二振膜的所述活动端与所述第一振膜连接在一起,对所述第二振膜的所述活动端给与了一定的约束,使得所述第二振膜的活动端尽可能位于同一平面上,减小了由于所述第二振膜本身的形变造成的性能差异,从而提高了结构的均匀性,进而提升了产品性能的一致性,使得所述压电式麦克风具备更佳的使用性能。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。
Claims (9)
- 一种压电式麦克风,包括具有背腔的基底及固定于所述基底上的压电悬臂梁振膜,其特征在于,所述压电悬臂梁振膜包括位于中心处并悬置于所述背腔上方的第一振膜及固定于所述基底上并围绕所述第一振膜设置的第二振膜,所述第二振膜包括固定于所述基底一侧的固定端及靠近所述第一振膜一侧并悬置于所述背腔上方的活动端,所述压电式麦克风还包括连接所述第一振膜与所述活动端的弹性伸缩件。
- 根据权利要求1所述的压电式麦克风,其特征在于,所述第二振膜由多个膜瓣组成,所述弹性伸缩的数量与所述膜瓣的数量相同,且每一个所述膜瓣均通过一个所述弹性伸缩件与所述第一振膜连接。
- 根据权利要求2所述的压电式麦克风,其特征在于,所述弹性伸缩件设有多个,多个所述弹性伸缩件关于所述第一振膜的中心点呈环形阵列分布。
- 根据权利要求3所述的压电式麦克风,其特征在于,多个所述弹性伸缩件结构相同。
- 根据权利要求1所述的压电式麦克风,其特征在于,所述弹性伸缩件呈矩形或扇形。
- 根据权利要求1所述的压电式麦克风,其特征在于,所述弹性伸缩件由一个或多个弹簧形成。
- 根据权利要求6所述的压电式麦克风,其特征在于,所述弹性伸缩件由一个或多个扭矩弹簧形成。
- 根据权利要求2所述的压电式麦克风,其特征在于,所述膜瓣设有四个,四个所述膜瓣均呈梯形结构,且四个所述膜瓣两两对称间隔设置围成一矩形空间,所述第一振膜呈矩形并对应位于所述矩形空间内,所述第二振膜与所述第一振膜共同围成矩形结构的所述压电悬臂梁振膜。
- 根据权利要求2所述的压电式麦克风,其特征在于,所述膜瓣设有四个,四个所述膜瓣均呈扇环形结构,且四个所述膜瓣两两对称间隔设置围成一圆形空间,所述第一振膜呈圆形并对应位于所述圆形空间内,所述第二振膜与所述第一振膜共同围成圆形结构的所述压电悬臂梁振膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811650239.8A CN109587613B (zh) | 2018-12-31 | 2018-12-31 | 压电式麦克风 |
CN201811650239.8 | 2018-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140569A1 true WO2020140569A1 (zh) | 2020-07-09 |
Family
ID=65915590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/113283 WO2020140569A1 (zh) | 2018-12-31 | 2019-10-25 | 压电式麦克风 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11032651B2 (zh) |
CN (1) | CN109587613B (zh) |
WO (1) | WO2020140569A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109587613B (zh) * | 2018-12-31 | 2020-11-10 | 瑞声声学科技(深圳)有限公司 | 压电式麦克风 |
CN110650420B (zh) * | 2019-08-16 | 2021-01-08 | 瑞声声学科技(深圳)有限公司 | 压电式mems麦克风 |
CN111148000B (zh) * | 2019-12-31 | 2021-10-22 | 瑞声科技(南京)有限公司 | 一种mems麦克风及阵列结构 |
CN111294715B (zh) * | 2020-03-02 | 2021-05-04 | 瑞声声学科技(深圳)有限公司 | 压电mems麦克风 |
CN111405441B (zh) * | 2020-04-16 | 2021-06-15 | 瑞声声学科技(深圳)有限公司 | 一种压电式mems麦克风 |
CN112261560B (zh) * | 2020-09-28 | 2022-03-25 | 瑞声科技(南京)有限公司 | 发声装置及电子设备 |
CN112261561B (zh) * | 2020-09-29 | 2021-10-19 | 瑞声科技(南京)有限公司 | 一种mems发声装置 |
CN112584289B (zh) * | 2020-11-30 | 2022-03-08 | 瑞声新能源发展(常州)有限公司科教城分公司 | 一种压电式麦克风及其制作方法 |
CN113115188B (zh) * | 2021-03-29 | 2023-07-04 | 瑞声声学科技(深圳)有限公司 | Mems压电麦克风 |
US11540058B1 (en) * | 2021-06-03 | 2022-12-27 | Aac Acoustic Technologies (Shenzhen) Co., Ltd. | Microphone with additional piezoelectric component for energy harvesting |
CN113596690B (zh) * | 2021-08-13 | 2023-03-14 | 中北大学 | 新型压电式mems麦克风的结构及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010057167A (ja) * | 2008-07-28 | 2010-03-11 | Aoi Electronics Co Ltd | 指向性マイクロフォン |
CN104219598A (zh) * | 2013-05-31 | 2014-12-17 | 美律电子(深圳)有限公司 | 双振膜声波传感器 |
CN206302568U (zh) * | 2016-11-11 | 2017-07-04 | 歌尔科技有限公司 | 一种压电式发声装置 |
CN109587613A (zh) * | 2018-12-31 | 2019-04-05 | 瑞声声学科技(深圳)有限公司 | 压电式麦克风 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5707323B2 (ja) * | 2008-06-30 | 2015-04-30 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan | 圧電型memsマイクロフォン |
US10170685B2 (en) * | 2008-06-30 | 2019-01-01 | The Regents Of The University Of Michigan | Piezoelectric MEMS microphone |
IT1395550B1 (it) * | 2008-12-23 | 2012-09-28 | St Microelectronics Rousset | Trasduttore acustico integrato in tecnologia mems e relativo processo di fabbricazione |
TW201125372A (en) * | 2010-01-15 | 2011-07-16 | Univ Nat Chiao Tung | Piezoelectric panel speaker and optimal design method of the same |
CN103460721B (zh) * | 2011-03-31 | 2017-05-24 | 韦斯伯技术公司 | 具有间隙控制几何形状的声换能器以及声换能器制造方法 |
US20140247954A1 (en) * | 2013-03-01 | 2014-09-04 | Silicon Audio, Inc. | Entrained Microphones |
US9036838B2 (en) * | 2013-07-11 | 2015-05-19 | Merry Electronics (Shenzhen) Co., Ltd. | Dual-diaphragm acoustic transducer |
WO2016054447A1 (en) * | 2014-10-02 | 2016-04-07 | Chirp Microsystems | Micromachined ultrasonic transducers with a slotted membrane structure |
CN118354258A (zh) * | 2015-09-14 | 2024-07-16 | 翼声有限公司 | 音频转换器中或与其相关的改进 |
DE102017200111B3 (de) * | 2017-01-05 | 2018-03-15 | Robert Bosch Gmbh | Mikromechanische Schallwandleranordnung und entsprechendes Herstellungsverfahren |
JP6894719B2 (ja) * | 2017-02-21 | 2021-06-30 | 新日本無線株式会社 | 圧電素子 |
CN207652692U (zh) * | 2017-11-28 | 2018-07-24 | 歌尔科技有限公司 | 一种压电发声装置 |
-
2018
- 2018-12-31 CN CN201811650239.8A patent/CN109587613B/zh active Active
-
2019
- 2019-10-25 WO PCT/CN2019/113283 patent/WO2020140569A1/zh active Application Filing
- 2019-12-04 US US16/702,598 patent/US11032651B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010057167A (ja) * | 2008-07-28 | 2010-03-11 | Aoi Electronics Co Ltd | 指向性マイクロフォン |
CN104219598A (zh) * | 2013-05-31 | 2014-12-17 | 美律电子(深圳)有限公司 | 双振膜声波传感器 |
CN206302568U (zh) * | 2016-11-11 | 2017-07-04 | 歌尔科技有限公司 | 一种压电式发声装置 |
CN109587613A (zh) * | 2018-12-31 | 2019-04-05 | 瑞声声学科技(深圳)有限公司 | 压电式麦克风 |
Also Published As
Publication number | Publication date |
---|---|
US11032651B2 (en) | 2021-06-08 |
US20200213771A1 (en) | 2020-07-02 |
CN109587613B (zh) | 2020-11-10 |
CN109587613A (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140569A1 (zh) | 压电式麦克风 | |
WO2020140568A1 (zh) | 压电式麦克风 | |
US11212623B2 (en) | Piezoelectric MEMS microphone | |
CN109495829B (zh) | 压电式mems麦克风 | |
CN109803217B (zh) | 压电式麦克风 | |
US11265657B2 (en) | Piezoelectric MEMS microphone | |
WO2019033854A1 (zh) | 具有双振膜的差分电容式麦克风 | |
US11212617B2 (en) | Piezoelectric MEMS microphone | |
WO2021179345A1 (zh) | 压电式mems麦克风 | |
JP2019114958A (ja) | 電気音響変換器 | |
WO2023245789A1 (zh) | 一种mems压电扬声器 | |
CN110944274B (zh) | 一种基于Piston-mode的带质量负载可调谐MEMS压电声换能器 | |
CN209659620U (zh) | 压电式mems麦克风 | |
US20200322731A1 (en) | Acoustic transducer | |
US2242755A (en) | Acoustic device | |
WO2022007000A1 (zh) | 一种 mems 麦克风 | |
US2911484A (en) | Electro-acoustic transducer | |
CN211744726U (zh) | 一种mems扬声器 | |
WO2022110349A1 (zh) | 一种压电式麦克风及其制作方法 | |
WO2024140310A1 (zh) | 压电振膜、压电换能器及制备方法、发声装置和电子设备 | |
WO2021134672A1 (zh) | 压电mems麦克风 | |
US20230312335A1 (en) | Mems transducer | |
WO2022000636A1 (zh) | 压电超声换能器 | |
CN115442725A (zh) | 一种压电式mems麦克风结构及电子设备 | |
WO2021134669A1 (zh) | 压电mems麦克风 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19906670 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19906670 Country of ref document: EP Kind code of ref document: A1 |