WO2020140427A1 - 一种船用止裂钢e47及其大线能量焊接方法 - Google Patents

一种船用止裂钢e47及其大线能量焊接方法 Download PDF

Info

Publication number
WO2020140427A1
WO2020140427A1 PCT/CN2019/097828 CN2019097828W WO2020140427A1 WO 2020140427 A1 WO2020140427 A1 WO 2020140427A1 CN 2019097828 W CN2019097828 W CN 2019097828W WO 2020140427 A1 WO2020140427 A1 WO 2020140427A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
steel
wire
marine
groove
Prior art date
Application number
PCT/CN2019/097828
Other languages
English (en)
French (fr)
Inventor
李松
王红鸿
汪晶洁
彭思远
吴君明
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020217022874A priority Critical patent/KR20210107754A/ko
Publication of WO2020140427A1 publication Critical patent/WO2020140427A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the invention relates to the technical field of metallurgy, in particular to a marine crack arrest steel E47 and its large line energy welding method.
  • the base steel plate has sufficient crack arrest performance to provide technical support for the design and construction of very large container ships.
  • the alloy composition of the steel plate needs to be adjusted and optimized to obtain a reasonable structure and proportion. This requires the full use of Nb's grain refinement and its influence on thermophysical properties, and the use of suitable controlled rolling and cooling processes. But at the same time, due to the requirements of the cracking resistance of the base material, the impact toughness of the steel plate joint is greatly reduced after welding with large line energy, which affects the use safety. . At present, there is no proper technical means to meet the requirements of high-efficiency welding and the strength and toughness of welded joints.
  • the present invention provides a marine anti-cracking steel E47, characterized in that its chemical composition and mass percentage are as follows: C ⁇ 0.12%, Mn ⁇ 2.0%, Si ⁇ 0.60%, S ⁇ 0.008%, P ⁇ 0.020%, Cr ⁇ 0.25%, Mo ⁇ 0.25%, Ni ⁇ 1.0%, Nb: 0.02% ⁇ 0.05%, V: 0.05% ⁇ 0.08%, the balance is Fe and impurities.
  • the welded joint of the invention can obtain good mechanical properties and crack arrest performance, can be matched with the performance of crack arrest steel, and has the advantage of effectively improving the welding efficiency of marine crack arrest steel.
  • Another object of the present invention is to provide a large line energy welding method for marine crack arrest steel E47, which is applicable to the base material of marine crack arrest steel E47, preheating temperature before welding is 120°C, interpass temperature is 100 ⁇ 200°C, reverse side Root cleaning treatment before welding; using double-wire submerged arc welding, the front wire energy is 23-25kJ/cm, the back wire energy is 25-28kJ/cm, and the double wire welding energy is 48-53kJ/cm.
  • a large line energy welding method for E47 marine crack arrester steel has a thickness of 80-90 mm.
  • the form of the groove is a single-sided asymmetric K-shaped groove, the angle of the upper groove is 40 to 45°, and the angle of the lower groove is 45 to 50°.
  • the size of the blunt edge is 5 ⁇ 6mm.
  • a large line energy welding method for marine crack arrest steel E47 has a welding wire diameter of 4 mm.
  • the thickness of the welded base material is 80mm, the supply state is TMCP, -10°C, CTOD>0.45mm; double wire submerged arc welding, groove form Adopt K-shaped groove, the angle of the upper groove is 40°, the angle of the lower groove is 50°, the blunt edge is 5mm; the welding material is Olympus OE-SD3 1Ni1/4Mo submerged arc welding wire + OP 121 TT/W flux combination
  • the diameter of the submerged arc welding wire is 4mm; the preheating temperature before welding is 120°C, and the temperature between channels is 100 ⁇ 150°C.
  • a large line energy welding method for marine crack arrest steel E47 the thickness of the welded base material is 90mm, the supply status is TMCP, -10°C, CTOD>0.45mm; double wire submerged arc welding, groove form K-shaped groove is used, the angle of the upper groove is 45°, the angle of the lower groove is 55°, the blunt edge is 6mm; the welding material is Olympus OE-SD3 1Ni1/4Mo submerged arc welding wire +OP 121 TT/W flux combination
  • the diameter of the submerged arc welding wire is 4mm; the preheating temperature before welding is 120°C, and the temperature between channels is 150 ⁇ 200°C.
  • the present invention welds 80-90mm thick marine crack arrester steel E47, the welding line energy reaches 53kJ, the welding efficiency is significantly improved, the strength of the welded joint reaches 595-623MPa, the impact value at -40°C reaches 107-332J, and the CTOD at -10°C ⁇ 0.25mm;
  • the marine crack arrest steel E47 of the present invention has mechanical properties of: yield strength ⁇ 460MPa, tensile strength of 570-720MPa, average value of impact at -40°C is ⁇ 64J (transverse), and CTOD value is -10°C : 0.25mm;
  • the tensile strength of the deposited metal of the present invention is 630MPa, the yield strength is 520MPa, and the impact at -40°C is 150J;
  • the welded joint obtained by the welding process of the present invention can reach the use performance matched with the base material, and has the advantages of effectively improving the welding efficiency of marine crack arrest steel, and obtaining good weld joint mechanical properties and crack arrest performance.
  • Figure 1 is a schematic diagram of welding groove.
  • the base metal welded in this implementation is E47BCA offshore crack arrester, with a thickness of 80mm, and the supply status is TMCP.
  • the chemical composition and mechanical properties are shown in Table 1-1 and Table 1-2, respectively, and -10°CCTOD>0.45mm.
  • the double-wire submerged arc welding method is adopted, the groove form adopts a K-shaped groove, the angle of the upper groove is 40°, the angle of the lower groove is 50°, and the blunt edge is 5 mm.
  • the welding material is: Olympus OE-SD3 1Ni1/4Mo submerged arc welding wire + OP 121 TT/W flux combination, the diameter of the submerged arc welding wire is ⁇ 4mm, the front wire and the rear wire are the results of the addition of the eutectic pool line energy, specific The welding process is shown in Table 1-3.
  • the base metal welded in this example is E47BCA offshore crack arrester, the thickness is 90mm, the supply state is TMCP, the chemical composition and mechanical properties are shown in Table 2-1 and Table 2-2 respectively, -10°CCTOD>0.45mm .
  • the double-wire submerged arc welding method is adopted, the groove form adopts a K-shaped groove, the angle of the upper groove is 45°, the angle of the lower groove is 55°, and the blunt edge is 6 mm.
  • the welding material is: Olympus OE-SD3 1Ni1/4Mo submerged arc welding wire + OP 121 TT/W flux combination, the diameter of the submerged arc welding wire is ⁇ 4mm, the front wire and the rear wire are the results of the addition of the eutectic pool line energy, specific The welding process is shown in Table 2-3.
  • the present invention may have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

一种船用止裂钢E47,涉及冶金技术领域,其化学成分及质量百分比如下:C≤0.12%,Mn≤2.0%,Si≤0.60%,S≤0.008%,P≤0.020%,Cr≤0.25%,Mo≤0.25%,Ni≤1.0%,Nb:0.02%~0.05%,V:0.05%~0.08%,余量为Fe和杂质。焊接接头能够获得良好的力学性能和止裂性能,可与止裂钢的性能匹配,且具有有效提高船用止裂钢的焊接效率的优点。

Description

一种船用止裂钢E47及其大线能量焊接方法 技术领域
本发明涉及冶金技术领域,特别是涉及一种船用止裂钢E47及其大线能量焊接方法。
背景技术
随着海上物资运输量的不断增加,为追求更高的船舶运输效率,集装箱船向大型化和超大型化发展。超大型集装箱船的建造及运行带来的一个重要的挑战就是超大型集装箱船建造用材料的选择。集装箱船的大型化恶化了船体结构的受力状态,使具有大开口特性的集装箱船不仅存在纵向弯曲,还存在较大的扭转变形,使得其结构处于复杂的受力状态,增加了结构安全的风险。因此,要求船体结构必须具有较高的强度和刚度。
保证船体结构的安全可靠,防止脆性断裂破坏的发生,在船体结构设计中一般采用两种设计方法:防开裂设计方法和止裂设计方法。基体钢板具有足够的止裂性能,为超大型集装箱船的设计和建造提供技术支撑。
为满足EH40、EH47止裂厚板钢高强度、良好的低温韧性和优良的焊接性能,特别是低温止裂性能,需要调整优化钢板的合金成分,以获得合理的组织形态和比例。这就需要充分利用Nb的细化晶粒及对热物理特性的影响规律,采用适合的控轧控冷工艺。但同时由于母材止裂性能的要求,采用大线能量焊接后钢板接头的冲击韧性大幅度下降,影响使用安全,目前国内外止裂钢的焊接均采取线能量输入20-25kJ/cm进行控制。目前还未有适当的技术手段,既满足高效率焊接,同时满足焊接接头强韧性要求。
发明内容
为了解决以上技术问题,本发明提供一种船用止裂钢E47,其特征在于,其化学成分及质量百分比如下:C≤0.12%,Mn≤2.0%,Si≤0.60%,S≤0.008%,P≤0.020%,Cr≤0.25%,Mo≤0.25%,Ni≤1.0%,Nb:0.02%~0.05%,V:0.05%~ 0.08%,余量为Fe和杂质。
技术效果:本发明的焊接接头能够获得良好的力学性能和止裂性能,可与止裂钢的性能匹配,且具有有效提高船用止裂钢的焊接效率的优点。
本发明进一步限定的技术方案是:
进一步的,其化学成分及质量百分比如下:C:0.06%,Mn:1.6%,Si:0.16%,S:0.001%,P:0.005%,Cr:0.19%,Mo:0.03%,Ni:0.93%,Nb:0.04%,V:0.05%~0.08%,Cu:0.28%,余量为Fe和杂质。
本发明的另一目的在于提供一种船用止裂钢E47大线能量焊接方法,适用母材为船用止裂钢E47,焊前预热温度为120℃,道间温度为100~200℃,反面焊接前进行清根处理;采用双丝埋弧焊,前丝线能量为23~25kJ/cm,后丝线能量为25~28kJ/cm,双丝焊接线能量为48~53kJ/cm。
前所述的一种船用止裂钢E47大线能量焊接方法,适用母材的厚度为80~90mm。
前所述的一种船用止裂钢E47大线能量焊接方法,坡口形式为单面不对称K型坡口,上坡口角度为40~45°,下坡口角度为45~50°,钝边尺寸为5~6mm。
前所述的一种船用止裂钢E47大线能量焊接方法,所用焊丝直径为4mm。
前所述的一种船用止裂钢E47大线能量焊接方法,所焊母材厚度为80mm,供货状态为TMCP,-10℃,CTOD>0.45mm;采用双丝埋弧焊,坡口形式采用K型坡口,上坡口角度为40°,下坡口角度为50°,钝边为5mm;焊接材料为奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121 TT/W焊剂组合,埋弧焊丝的直径为4mm;焊前预热温度为120℃,道间温度为100~150℃。
前所述的一种船用止裂钢E47大线能量焊接方法,所焊母材厚度为90mm,供货状态为TMCP,-10℃,CTOD>0.45mm;采用双丝埋弧焊,坡口形式采用K型 坡口,上坡口角度为45°,下坡口角度为55°,钝边为6mm;焊接材料为奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121 TT/W焊剂组合,埋弧焊丝的直径为4mm;焊前预热温度为120℃,道间温度为150~200℃。
本发明的有益效果是:
(1)本发明焊接80~90mm厚的船用止裂钢E47,焊接线能量达到53kJ,焊接效率明显提高,焊接接头强度达到595~623MPa,-40℃冲击值达到107~332J,-10℃CTOD≥0.25mm;
(2)本发明的船用止裂钢E47,力学性能为:屈服强度≥460MPa,抗拉强度为为570~720MPa,-40℃冲击的平均值为≥64J(横向),CTOD值为-10℃:0.25mm;
(3)本发明熔敷金属的抗拉强度为630MPa,屈服强度为520MPa,-40℃冲击为150J;
(4)本发明焊接工艺获得的焊接接头可达到与母材相匹配的使用性能,具有有效提高船用止裂钢的焊接效率,获得良好的焊接接头力学性能和止裂性能的优点。
附图说明
图1为焊接坡口示意图。
具体实施方式
实施例1
本实施所焊母材为E47BCA海工止裂板,厚度为80mm,供货状态为TMCP,其化学成分及力学性能分别见表1-1和表1-2,-10℃CTOD>0.45mm。
表1-1钢板的化学成分(Wt%)
Figure PCTCN2019097828-appb-000001
表1-2钢板的力学性能
Figure PCTCN2019097828-appb-000002
采用双丝埋弧焊方法,坡口形式采用K型坡口,上坡口角度为40°,下坡口角度为50°,钝边为5mm。焊接材料为:奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121 TT/W焊剂组合,埋弧焊丝的直径为Φ4mm,前丝和后丝为共熔池线能量相加的结果,具体焊接工艺见表1-3。
表1-3双丝埋弧焊焊接工艺参数
Figure PCTCN2019097828-appb-000003
焊接完成后,焊接接头力学性能见表1-4和1-5,-10℃CTOD>0.30mm。
表1-4焊接接头拉伸试验结果
Figure PCTCN2019097828-appb-000004
表1-5焊接接头冲击试验结果
Figure PCTCN2019097828-appb-000005
Figure PCTCN2019097828-appb-000006
实施例2
本实施例所焊母材为E47BCA海工止裂板,厚度为90mm,供货状态为TMCP,其化学成分及力学性能分别见表2-1和表2-2,-10℃CTOD>0.45mm。
表2-1钢板的化学成分(Wt%)
Figure PCTCN2019097828-appb-000007
表2-2钢板的力学性能
Figure PCTCN2019097828-appb-000008
采用双丝埋弧焊方法,坡口形式采用K型坡口,上坡口角度为45°,下坡口角度为55°,钝边为6mm。焊接材料为:奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121 TT/W焊剂组合,埋弧焊丝的直径为Φ4mm,前丝和后丝为共熔池线能量相加的结果,具体焊接工艺见表2-3。
表2-3双丝埋弧焊焊接工艺参数
Figure PCTCN2019097828-appb-000009
焊接完成后,焊接接头力学性能见表2-4和2-5,-10℃CTOD>0.32mm。
表2-4焊接接头拉伸试验结果
Figure PCTCN2019097828-appb-000010
Figure PCTCN2019097828-appb-000011
表2-5焊接接头冲击试验结果
Figure PCTCN2019097828-appb-000012
采用本发明的双丝埋弧焊技术,焊接80~90mm厚的船用止裂钢E47,焊接线能量达到53kJ/cm,焊接效率明显提高,焊接接头的强度达到595~623MPa,-40℃冲击值达到107~332J,-10℃CTOD>0.30mm,可达到与母材E47相匹配的使用性能,具有有效提高船用止裂钢E47的焊接效率、良好的焊接接头力学性能和止裂性能的优点。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

  1. 一种船用止裂钢E47,其特征在于,其化学成分及质量百分比如下:C≤0.12%,Mn≤2.0%,Si≤0.60%,S≤0.008%,P≤0.020%,Cr≤0.25%,Mo≤0.25%,Ni≤1.0%,Nb:0.02%~0.05%,V:0.05%~0.08%,余量为Fe和杂质。
  2. 根据权利要求1所述的一种船用止裂钢E47,其特征在于,其化学成分及质量百分比如下:C:0.06%,Mn:1.6%,Si:0.16%,S:0.001%,P:0.005%,Cr:0.19%,Mo:0.03%,Ni:0.93%,Nb:0.04%,V:0.05%~0.08%,Cu:0.28%,余量为Fe和杂质。
  3. 一种船用止裂钢E47大线能量焊接方法,其特征在于:
    适用母材为船用止裂钢E47,焊前预热温度为120℃,道间温度为100~200℃,反面焊接前进行清根处理;采用双丝埋弧焊,前丝线能量为23~25kJ/cm,后丝线能量为25~28kJ/cm,双丝焊接线能量为48~53kJ/cm。
  4. 根据权利要求3所述的一种船用止裂钢E47大线能量焊接方法,其特征在于:适用母材的厚度为80~90mm。
  5. 根据权利要求3所述的一种船用止裂钢E47大线能量焊接方法,其特征在于:坡口形式为单面不对称K型坡口,上坡口角度为40~45°,下坡口角度为45~50°,钝边尺寸为5~6mm。
  6. 根据权利要求3所述的一种船用止裂钢E47大线能量焊接方法,其特征在于:所用焊丝直径为4mm。
  7. 根据权利要求3所述的一种船用止裂钢E47大线能量焊接方法,其特征在于:所焊母材厚度为80mm,供货状态为TMCP,-10℃,CTOD>0.45mm;采用双丝埋弧焊,坡口形式采用K型坡口,上坡口角度为40°,下坡口角度为50°,钝边为5mm;焊接材料为奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121TT/W焊剂组合,埋弧焊丝的直径为4mm;焊前预热温度为120℃,道间温度为100~150℃。
  8. 根据权利要求3所述的一种船用止裂钢E47大线能量焊接方法,其特征在于:所焊母材厚度为90mm,供货状态为TMCP,-10℃,CTOD>0.45mm;采用双丝埋弧焊,坡口形式采用K型坡口,上坡口角度为45°,下坡口角度为55°,钝边为6mm;焊接材料为奥林康OE-SD3 1Ni1/4Mo埋弧焊丝+OP 121TT/W焊剂组合,埋弧焊丝的直径为4mm;焊前预热温度为120℃,道间温度为150~200℃。
PCT/CN2019/097828 2019-01-03 2019-07-26 一种船用止裂钢e47及其大线能量焊接方法 WO2020140427A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217022874A KR20210107754A (ko) 2019-01-03 2019-07-26 선박용 균열제지 스틸 e47 및 그 고열입력 용접방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910004261.3A CN109652744A (zh) 2019-01-03 2019-01-03 一种船用止裂钢e47及其大线能量焊接方法
CN201910004261.3 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140427A1 true WO2020140427A1 (zh) 2020-07-09

Family

ID=66118729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097828 WO2020140427A1 (zh) 2019-01-03 2019-07-26 一种船用止裂钢e47及其大线能量焊接方法

Country Status (3)

Country Link
KR (1) KR20210107754A (zh)
CN (1) CN109652744A (zh)
WO (1) WO2020140427A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814536A (zh) * 2021-09-22 2021-12-21 包头钢铁(集团)有限责任公司 一种新型桥梁用Q345qENH高性能耐候钢埋弧焊接方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652744A (zh) * 2019-01-03 2019-04-19 南京钢铁股份有限公司 一种船用止裂钢e47及其大线能量焊接方法
CN113814531B (zh) * 2021-10-27 2023-04-25 张家港荣盛特钢有限公司 一种船用止裂钢的焊接接头及焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291511A (ja) * 2006-03-29 2007-11-08 Jfe Steel Kk 靭性に優れた高張力厚鋼板およびその製造方法
JP2012082525A (ja) * 2011-12-01 2012-04-26 Jfe Steel Corp 脆性亀裂伝播停止特性に優れた厚鋼板
CN102744498A (zh) * 2012-07-05 2012-10-24 首钢总公司 一种特厚高强桥梁钢板焊接方法
CN104785908A (zh) * 2015-04-10 2015-07-22 上海中远川崎重工钢结构有限公司 一种耐候钢q355nhd的焊接方法
CN108246825A (zh) * 2017-12-25 2018-07-06 南京钢铁股份有限公司 一种tmcp型船用双相不锈钢复合板的制备方法
CN108465917A (zh) * 2018-03-02 2018-08-31 武汉钢铁有限公司 一种适用于多级别钢的双丝双道埋弧焊接方法
CN108856992A (zh) * 2018-08-15 2018-11-23 招商局重工(江苏)有限公司 一种大热输入双丝埋弧焊高效焊接方法
CN109652744A (zh) * 2019-01-03 2019-04-19 南京钢铁股份有限公司 一种船用止裂钢e47及其大线能量焊接方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084717B (zh) * 2012-07-09 2014-10-08 上海月月潮钢管制造有限公司 12Ni14钢的埋弧焊焊接方法
CN104475941A (zh) * 2014-12-03 2015-04-01 宝鸡石油钢管有限责任公司 一种适用于x70厚壁直缝钢管焊接的多丝埋弧焊接工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291511A (ja) * 2006-03-29 2007-11-08 Jfe Steel Kk 靭性に優れた高張力厚鋼板およびその製造方法
JP2012082525A (ja) * 2011-12-01 2012-04-26 Jfe Steel Corp 脆性亀裂伝播停止特性に優れた厚鋼板
CN102744498A (zh) * 2012-07-05 2012-10-24 首钢总公司 一种特厚高强桥梁钢板焊接方法
CN104785908A (zh) * 2015-04-10 2015-07-22 上海中远川崎重工钢结构有限公司 一种耐候钢q355nhd的焊接方法
CN108246825A (zh) * 2017-12-25 2018-07-06 南京钢铁股份有限公司 一种tmcp型船用双相不锈钢复合板的制备方法
CN108465917A (zh) * 2018-03-02 2018-08-31 武汉钢铁有限公司 一种适用于多级别钢的双丝双道埋弧焊接方法
CN108856992A (zh) * 2018-08-15 2018-11-23 招商局重工(江苏)有限公司 一种大热输入双丝埋弧焊高效焊接方法
CN109652744A (zh) * 2019-01-03 2019-04-19 南京钢铁股份有限公司 一种船用止裂钢e47及其大线能量焊接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814536A (zh) * 2021-09-22 2021-12-21 包头钢铁(集团)有限责任公司 一种新型桥梁用Q345qENH高性能耐候钢埋弧焊接方法

Also Published As

Publication number Publication date
CN109652744A (zh) 2019-04-19
KR20210107754A (ko) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020140427A1 (zh) 一种船用止裂钢e47及其大线能量焊接方法
CN111230264B (zh) 304l奥氏体不锈钢mig焊的焊接方法
EP2067566A1 (en) Flux-cored wire for submerged arc welding of low-temperature steel and a method for welding using the same
CN110560961A (zh) 一种核电设备用Ta&Nb复合型镍基焊丝及焊接方法
JPWO2020203335A1 (ja) 極低温用高強度溶接継手の製造方法
CN103464930B (zh) 一种9Ni低温钢埋弧焊接用焊丝和焊剂及其应用
CN111659980A (zh) 一种镍基高耐蚀复合钢管焊接方法
CN110576273A (zh) 用于lng超低温不锈钢焊接的金属材料、工艺及制品
CN114289929A (zh) 用于高锰奥氏体低温钢的mig焊实芯焊丝及其焊接工艺
CN108247234B (zh) 一种高强度钢用埋弧焊丝及其制备方法
JP2001276977A (ja) オーステナイト系ステンレス鋼のサブマージアーク溶接施工方法及び溶接材料
CN104511700A (zh) 一种镍基合金焊丝及其制备方法
CN102528241B (zh) 一种高强度钢液压支架构件的焊接方法
KR20180123592A (ko) 강도, 인성 및 내sr균열성이 우수한 용접 금속
KR20150105925A (ko) 가스 메탈 아크 용접용 솔리드 와이어
JP2016093823A (ja) 溶接用ソリッドワイヤおよび溶接方法、並びに溶接金属
CN110293287A (zh) 一种超高强度沉淀硬化不锈钢的焊接工艺
CN109108435A (zh) 一种不锈钢薄管冷金属过渡焊接工艺
JP5987821B2 (ja) フェライト系ステンレス鋼
JP2002263883A (ja) 低合金耐熱鋼用被覆アーク溶接棒
CN104722953A (zh) 一种不锈钢焊芯
CN111266713B (zh) 一种超低温304l奥氏体不锈钢焊接用的熔敷金属材料及制备方法
WO2021237843A1 (zh) 一种深冷环境用节Ni低温钢埋弧焊焊丝及焊接工艺
CN113843485A (zh) 一种用于耐原油腐蚀高强钢中厚板的双丝埋弧焊接方法
CN109175610B (zh) 一种船用薄板气体保护焊焊接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217022874

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19906776

Country of ref document: EP

Kind code of ref document: A1