WO2020138797A1 - 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템 - Google Patents

뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템 Download PDF

Info

Publication number
WO2020138797A1
WO2020138797A1 PCT/KR2019/017764 KR2019017764W WO2020138797A1 WO 2020138797 A1 WO2020138797 A1 WO 2020138797A1 KR 2019017764 W KR2019017764 W KR 2019017764W WO 2020138797 A1 WO2020138797 A1 WO 2020138797A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
charging
voltage
unit
blasting
Prior art date
Application number
PCT/KR2019/017764
Other languages
English (en)
French (fr)
Inventor
김세호
최정호
Original Assignee
주식회사 한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화 filed Critical 주식회사 한화
Priority to US16/627,431 priority Critical patent/US11359900B2/en
Priority to AU2019284135A priority patent/AU2019284135B2/en
Publication of WO2020138797A1 publication Critical patent/WO2020138797A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/06Relative timing of multiple charges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture

Definitions

  • An embodiment of the present invention can suppress the charging current and improve the signal-to-noise ratio by stopping the charging of the primer device, the method of operation of the primer device, and the communication system, especially when the primer device transmits a signal to the blasting device. It relates to a primer device, a method of operation of the primer device and a communication system.
  • explosives are used for construction such as blasting of rocks for tunnel construction and blasting of abandoned buildings. That is, the blasting object is divided into sections, and a plurality of holes into which explosives are inserted is drilled. Explosives are inserted into each of the perforated holes and then connected to the blasting system. Explosives are blasted through the operation of the blasting system, thereby blasting the blast target.
  • the blasting system is composed of a detonator that detonates explosives, and a blasting device that transmits power and commands necessary for the operation of the detonator to the detonator.
  • the electron detonator is mainly used as the detonator of the blasting system.
  • the electron beam primer is installed on the explosive side, and a plurality of electron beam primers are connected to one blasting device.
  • the electronic primer is structured to simultaneously detonate explosives by simultaneously operating multiple electron primers connected to the blasting device when a command is transmitted from the blasting device.
  • an electron detonator that simultaneously detonates a plurality of explosives is mainly used, but recently, an electron detonator that sequentially detonates a plurality of explosives is mainly used.
  • many documents such as Korean Registered Patent No. 10-1016538, Korean Registered Patent No. 10-0665878, Korean Registered Patent No. 10-0665880, Korean Registered Patent No. 10-0733346, and Japanese Patent Publication No. 2005-520115 Disclosed is a blasting system using an electronic detonator.
  • the problem to be solved by the present invention is to stop the charging of the voltage of the primer device when the primer device transmits a signal to the blasting device, thereby suppressing the charging current and improving the signal-to-noise ratio. It is to provide a system.
  • Another problem to be solved of the present invention is to reduce the width of the change in the reference current according to the change in the quantity of the primer device, the primer device capable of increasing the maximum number of communicative primer devices, the operation method of the primer device and a communication system Is to provide.
  • the primer device receives the first signal transmitted using the voltage applied to the busbar unit by the blasting device, and uses the current flowing through the busbar unit to the second A control circuit for transmitting a signal to the blasting device; And a charging circuit for receiving and charging the voltage through the bus bar, and the charging circuit stops charging while the control circuit transmits the second signal to the blasting device.
  • the charging circuit includes a charging unit for receiving and charging the voltage; And a charging switch unit disposed between the charging unit and the busbar unit and controlling supply of the voltage to the charging unit according to a charging signal, wherein the control circuit comprises: the control circuit transmitting the second signal to the blasting device; During the transmission, the charging signal is transmitted to the charging switch unit.
  • the charging switch unit includes a switch that is turned off while the charging signal is supplied.
  • control circuit includes: a voltage measuring unit that measures the voltage and extracts the first signal; A control unit for receiving the first signal and generating a toggle signal; And a control switch unit disposed on the busbar unit and controlling the flow of the current according to the toggle signal.
  • control switch unit includes a switch that is turned off while the toggle signal is supplied.
  • control circuit counts the delay time included in the first signal, and generates a blasting signal and a blasting voltage.
  • a detonation circuit for supplying the blasting voltage to the ignition jade.
  • a method of operating a primer device includes a control circuit for counting a delay time included in the first signal and generating a blasting signal and a blasting voltage, and a charging circuit providing a driving voltage to the control circuit
  • a primer device comprising: during the first period, the charging circuit is supplied with a voltage from the blasting device through a busbar to charge; During a second period, the control circuit receiving a first signal transmitted by using the voltage applied to the busbar by the blasting apparatus; And during the third period, the control circuit transmits a second signal to the blasting device using the current flowing to the busbar, and the charging circuit stops charging.
  • At least a portion of the first period overlaps with the second period.
  • the second period and the third period are continuous.
  • a communication system includes a transmitting end and a receiving end connected by a wire through a mother bus unit, and the transmitting terminal transmits a first signal to the receiving terminal using a voltage applied to the mother bus unit, and the receiving end , A control circuit for receiving the first signal, and transmitting a second signal to the transmitting terminal using the current flowing to the bus bar unit; And a charging circuit that receives and charges the voltage through the bus bar, and the charging circuit stops charging while the control circuit transmits the second signal to the transmitter.
  • the charging circuit includes a charging unit for receiving and charging the voltage; And a charging switch unit disposed between the charging unit and the busbar unit and controlling supply of the voltage to the charging unit according to a charging signal, wherein the control circuit includes the control circuit transmitting the second signal to the transmitting terminal. During transmission, the charging signal is transmitted to the charging switch unit.
  • the charging switch unit includes a switch that is turned off while the charging signal is supplied.
  • control circuit includes: a voltage measuring unit that measures the voltage and extracts the first signal; A control unit for receiving the first signal and generating a toggle signal; And a control switch unit disposed on the busbar unit and controlling the flow of the current according to the toggle signal.
  • control switch unit includes a switch that is turned off while the toggle signal is supplied.
  • the primer device, the method of operation of the primer device, and the communication system according to an embodiment of the present invention can suppress the charging current and improve the signal-to-noise ratio by stopping voltage charging of the primer device when the primer device transmits a signal to the blasting device. have.
  • the primer device, the method of operation of the primer device, and the communication system according to an embodiment of the present invention may increase the maximum number of primer devices capable of communication by reducing the change width of the current according to the quantity change of the primer device.
  • FIG. 1A is a view showing a blasting system according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing a communication system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a blasting apparatus according to an embodiment of the present invention.
  • FIG 3 is a view showing a primer device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a charging circuit according to an embodiment of the present invention.
  • FIG. 5 is a view showing a control circuit according to an embodiment of the present invention.
  • FIG. 6 is a view showing a detonation circuit according to an embodiment of the present invention.
  • FIG. 7 is a waveform diagram illustrating a method of operating a primer device according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of operating a primer device according to an embodiment of the present invention.
  • blasting system 20 blasting object
  • blasting device 110 blasting control unit
  • control circuit 230 detonation circuit
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • Singular expressions may include plural expressions, unless the context clearly indicates otherwise.
  • the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms.
  • a part when a part is connected to another part, it is directly connected.
  • it may also include a case in which other elements are electrically connected in between.
  • the same components in the drawings are denoted by the same reference numbers and symbols as possible, even if they are displayed on different drawings.
  • FIG. 1A is a view showing a blasting system 10 according to an embodiment of the present invention.
  • the blasting system 10 may include a blasting device 100, a primer device 200 and a busbar unit 300 and 400.
  • the blasting worker may punch the blasting object 20 and form blasting holes 30.
  • the blasting worker may insert explosives 40 to which the primer device 200 is attached, respectively, into the plurality of blasting holes 30.
  • the blasting device 100 and the primer device 200 may be connected by wire through the busbars 300 and 400.
  • the busbars 300 and 400 may include a main busbar 300 and a sub-busbar 400. That is, the main busbar unit 300 may be a wiring that is directly connected to the blasting device 100, and the sub-busbar unit 400 may be a wiring that is directly connected to the primer device 200.
  • the main-busbar part 300 and the sub-busbar part 400 are connected to each other, so that the blasting device 100 and the primer device 200 are electrically connected to each other to perform communication.
  • the busbars 300 and 400 may be implemented as a two-wire wired communication system.
  • the blasting worker may scan the primer device 200 using a worker terminal device (eg, a smart phone and/or a scanner). For example, the blasting worker may scan the primer device 200 by photographing or directly logging an image code (QR code, barcode, etc.) attached to the primer device 200.
  • the worker terminal device may transmit primer information and initial information for each of the scanned primer devices 200 to the blasting device 100.
  • the blasting device 100 may store primer information and initial information for each primer device 200 received from the worker terminal device. When the scan for the primer device 200 is completed, the blasting device 100 may be connected to the primer device 200 and the busbars 300 and 400.
  • the operator may generate a first signal (eg, a general signal, a blasting command, etc.) by operating the blasting apparatus 100 in order to start blasting. Then, the blasting apparatus 100 may transmit the first signal to the primer apparatus 200.
  • the primer device 200 may receive the first signal through the bus units 300 and 400 based on the connection relationship described above. Details related to this are described in FIG. 7.
  • the first signal may be a blasting command including delay times corresponding to each primer device 200.
  • the primer device 200 may start counting the detonation start included in the first signal.
  • the primer device 200 may detonate the connected explosive 40 when the count of the predetermined delay time is completed. Accordingly, the blasting apparatus 100 may detonate the blast target 20 by detonating the plurality of explosives 40.
  • FIG. 1B is a diagram illustrating a communication system (CST) according to an embodiment of the present invention.
  • the communication system (CST) may be composed of a transmitting end 100 and a receiving end (200).
  • the communication system (CST) may be used in a blasting system, a topic alert system, or the like.
  • a communication system (CST) used in a blasting system is typically described.
  • the present invention is not limited to this, and the communication system (CST) applied to the blasting system may be applied to other embodiments (for example, a topic alert system) in a range easily changeable by a person skilled in the art.
  • the communication system CST may refer to a communication system between the blasting apparatus 100 and the primer apparatus 200 in the blasting system 10 illustrated in FIG. 1A.
  • the transmitting end 100 is a configuration corresponding to the blasting apparatus 100 illustrated in FIG. 1A, and in this specification, the transmitting end 100 may mean the blasting apparatus 100.
  • the receiving end 200 is a configuration corresponding to the primer device 200 shown in FIG. 1A, and the receiving end 200 may mean the primer device 200 in this specification.
  • the transmitting terminal 100 may transmit a signal to the receiving terminal 200 using a voltage, and the receiving terminal 200 may transmit a signal to the transmitting terminal 100 using a current.
  • the transmitting end 100 and the receiving end 200 may be connected to each other by wires through the bus units 300 and 400 (see FIG. 1A ).
  • the transmitting terminal 100 may transmit a signal to the receiving terminal 200 using the voltages (ie, the reference voltage) of the busbars 300 and 400.
  • the receiving terminal 200 may receive a signal from the transmitting terminal 100 by measuring the voltages of the busbars 300 and 400.
  • the receiving terminal 200 may transmit a signal to the transmitting terminal 100 in response to a signal received from the transmitting terminal 100. At this time, the receiving terminal 200 may transmit a signal using current (that is, a reference current) flowing to the bus units 300 and 400. The transmitting terminal 100 may receive a signal from the receiving terminal 200 by measuring the current flowing through the busbars 300 and 400.
  • a reference current that is, a reference current
  • the communication system can perform wired communication.
  • FIG. 2 is a view showing a blasting apparatus 100 according to an embodiment of the present invention.
  • the blasting apparatus 100 may include a blasting control unit 110, a voltage supply unit 120, and a current measurement unit 130.
  • the main-busbar part 300 connected to the blasting apparatus 100 may include a first main-busbar 310 and a second main-busbar 320.
  • the blasting control unit 110 may control the overall operation of the blasting apparatus 100.
  • the blasting control unit 110 may be implemented as a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), or a micro controller unit (MCU).
  • CPU central processing unit
  • MPU micro processing unit
  • GPU graphics processing unit
  • MCU micro controller unit
  • the voltage supply unit 120 may operate under the control of the blasting control unit 110.
  • the voltage supply unit 120 may supply voltages to the main bus bar 300.
  • the voltage supply unit 120 may supply the reference voltage PV to the first main- busbar 310 and the ground voltage GND to the second main-busbar 320.
  • the reference voltage PV may have a range of 0V or more and 100V or less, and the ground voltage GND may be 0V.
  • the present invention is not limited thereto, and within a range capable of achieving the object of the present invention, the reference voltage PV and the ground voltage GND may have various values.
  • the voltage supply unit 120 not only supplies power to the primer device 200 (refer to FIG. 1A) using the reference voltage (PV) and the ground voltage (GND) to the main bus bar 300, but also can transmit signals and data, etc. have.
  • the voltage supply unit 120 supplies a pulse signal to the main busbar unit 300 using the reference voltage PV
  • the primer device 200 is a sub-busbar unit connected to the main busbar unit 300 ( 400, see FIG. 1A )).
  • the voltage supply unit 120 may transmit signals and data to the primer device 200. Details in this regard are shown in FIG. 7.
  • the current measuring unit 130 may operate under the control of the blasting control unit 110. Specifically, the current measuring unit 130 may measure the current flowing through the first main bus bar 310 and the second main bus bar 320 included in the main bus bar 300. The current measurement unit 130 may receive signals and data from the primer device 200 by measuring the current flowing through the main bus bar 300. For example, the primer device 200 may control the flow of the reference current supplied to the busbars 300 and 400, and the current measurement unit 130 may measure the reference current flowing to the busbars 300 and 400.
  • the blasting control unit 110 the voltage supply unit 120, and the current measurement unit 130 are illustrated in FIG. 2, the present invention is not limited thereto. According to an embodiment, at least some of the blasting control unit 110, the voltage supply unit 120, and the current measurement unit 130 may be integrated and implemented.
  • FIG 3 is a view showing a primer device 200 according to an embodiment of the present invention.
  • the primer device 200 may include a charging circuit 210, a control circuit 220, a detonation circuit 230, and an ignition jade 240.
  • the sub-mother bus unit 400 connected to the primer device 200 may include a first sub-bus carrier 410 and a second sub-bus carrier 420.
  • the charging circuit 210 is a reference voltage from the blasting device 100 (see FIG. 1) through the first sub-bus 410 included in the sub-bus 400 of the busbars 300 and 400 (see FIG. 1). (PV) can be supplied.
  • the charging circuit 210 may receive the charging signal CS from the control circuit 220.
  • the charging circuit 210 may charge the reference voltage PV while the charging signal CS is not supplied.
  • the charging circuit 210 may not charge the reference voltage PV while the charging signal CS is supplied.
  • the charging circuit 210 may supply a driving voltage DV to the control circuit 220 based on the charged voltage. At this time, the control circuit 220 may be driven based on the driving voltage DV.
  • the control circuit 220 may receive the reference voltage PV through the first sub-mother bus 410 from the blasting apparatus 100 and the ground voltage GND through the second sub-bus 420. have.
  • the control circuit 220 may receive the first signal from the blasting device 100 through the bus units 300 and 400.
  • the first signal may be a pulse signal using a reference voltage (PV) applied to the busbars 300 and 400 by the blasting apparatus 100.
  • PV reference voltage
  • the control circuit 220 may transmit the second signal through the bus units 300 and 400 to the blasting apparatus 100 in response to the first signal.
  • the second signal may be a pulse signal using a reference current.
  • control circuit 220 may supply the charging signal CS to the charging circuit 210 while transmitting the second signal to the blasting apparatus 100.
  • the charging circuit 210 may stop charging the reference voltage PV while the charging signal CS is supplied.
  • the first signal may be a blasting command including a delay time.
  • the control circuit 220 may count the delay time included in the first signal.
  • the control circuit 220 may generate a blasting signal BS and transmit the blasting signal BS to the detonation circuit 230.
  • the control circuit 220 may generate a blasting voltage BV based on at least one of the driving voltage DV and the reference voltage PV.
  • the control circuit 220 may supply the blasting voltage BV to the detonation circuit 230.
  • the detonation circuit 230 may supply the blasting voltage BV to the ignition jade 240 based on the blasting signal BS.
  • the ignition jade 240 may detonate when a blasting voltage BV is supplied.
  • the primer device 200 may further include a protection circuit for protecting the internal circuit configuration from voltages supplied through the busbars 300 and 400.
  • FIG 4 is a view showing a charging circuit 210 according to an embodiment of the present invention.
  • the charging circuit 210 may include a charging unit 211 and a charging switch unit 212.
  • the charging unit 211 may charge the reference voltage PV supplied through the bus unit (ie, the first sub-bus 410).
  • the charging unit 211 may supply the driving voltage DV to the control circuit 220 (refer to FIG. 2) based on the charged reference voltage PV.
  • the charging unit 211 may include a capacitor for charging the reference voltage PV.
  • the charging switch unit 212 may be disposed between the busbar unit (ie, the first sub-busbar 410) and the charging unit 211.
  • the charging switch unit 212 may control the supply of the reference voltage PV to the charging unit 211 according to the charging signal CS.
  • the charging switch unit 212 may include a switch that is turned off while the charging signal CS is supplied.
  • the charging switch unit 212 may be implemented as a P-channel field effect transistor (FET).
  • FIG. 5 is a view showing a control circuit 220 according to an embodiment of the present invention.
  • control circuit 220 may include a voltage measurement unit 221, a control unit 222, and a control switch unit 223.
  • the control circuit 220 is connected to the sub-mother bus unit 400, and the sub-bus unit 400 may include a first sub-bus 410 and a second sub-bus 420.
  • the voltage measuring unit 221 may measure voltages of the first sub-mother bus 410 and the second sub-bus bar 420. That is, the voltage measuring unit 221 may measure the reference voltage PV supplied to the first sub-mother bus 410 and measure the ground voltage GND supplied to the second sub-mother bus 420. . The voltage measurement unit 221 may extract the first signal SG1 based on the voltage measurement result. The voltage measurement unit 221 may transmit the first signal SG1 to the control unit 222.
  • the control unit 222 may receive the first signal SG1.
  • the controller 222 may generate a toggle signal TS in response to the first signal SG1 to generate a second signal.
  • the control unit 222 may transmit a toggle signal TS to the control switch unit 223 to control the operation of the control switch unit 223.
  • the flow of the reference current DI may be adjusted according to the operation of the control switch unit 223.
  • the second signal may mean a pulse signal using the reference current DI, and the controller 222 may generate a second signal using the toggle signal TS.
  • the reference current DI may mean a current flowing through the busbars 300 and 400 from the primer device 200 to the blasting device 100.
  • the control switch unit 223 may be disposed on the busbar units 300 and 400.
  • the control switch unit 223 may be located between the sub-mother bus unit 400 and the control unit 222.
  • the control switch unit 223 may adjust the flow of the reference current DI according to the toggle signal TS.
  • the control switch unit 223 may include a switch that is turned off while the toggle signal TS is supplied.
  • the control switch unit 223 may be implemented as a P-channel field effect transistor (FET).
  • the controller 222 may transmit the charging signal CS to the charging circuit 210 (see FIG. 3) while transmitting the second signal.
  • the control unit 222 may receive a driving voltage DV from the charging circuit 210.
  • the first signal may be a blasting command including a delay time.
  • the control unit 222 may count the delay time included in the first signal.
  • the controller 222 may generate a blasting signal BS and transmit the blasting signal BS to the detonation circuit 230.
  • the controller 222 may generate a blasting voltage BV based on at least one of the driving voltage DV and the reference voltage PV. Also, the control unit 222 may supply the blasting voltage BV to the detonation circuit 230 (see FIG. 3 ).
  • FIG. 6 is a view showing a detonation circuit 230 according to an embodiment of the present invention.
  • FIG. 6 shows an ignition jade 240 together with the detonation circuit 230.
  • the detonation circuit 230 may include an detonation diode 231, an detonation capacitor 232, and an detonation switch 233.
  • the blasting voltage BV may be supplied to the detonation capacitor 232 through the detonation diode 231.
  • the detonation capacitor 232 may store the blasting voltage BV.
  • the detonation switch 233 may receive the blasting signal BS.
  • the detonation switch 233 may be turned on while the blasting signal BS is supplied.
  • the blasting voltage BV stored in the detonation capacitor 232 may be supplied to the ignition jade 240. Since the blasting signal BS is supplied to the detonation switch 233 after the delay time is counted, the ignition jade 240 may be supplied with the blasting voltage BV after the delay time has elapsed.
  • the ignition jade 240 may have an inherent resistance value. Therefore, according to the voltage distribution law, the ignition jade 240 may be applied with a voltage proportional to the inherent resistance value. The ignition jade 240 may detonate when a voltage is applied.
  • FIG. 7 is a waveform diagram illustrating a method of operating a primer device according to an embodiment of the present invention.
  • waveforms of the reference voltage PV, the toggle signal TS, the reference current DI, and the charging signal CS are generated in the first period P1, the second period P2, and the third period P3. It is shown along.
  • the blasting apparatus 100 may supply the reference voltage PV to the charging circuit 210 through the bus units 300 and 400.
  • the charging circuit 210 of the primer device 200 may be charged by receiving a reference voltage PV.
  • the reference voltage PV may have a first voltage value V1.
  • the toggle signal TS and the charging signal CS may not be supplied.
  • FIG. 7 it is shown that the toggle signal TS and the charging signal CS are supplied, and the toggle signal TS and the charging signal CS have a high level voltage.
  • the toggle signal TS and the charging signal CS may have various values of voltage.
  • the control circuit 220 of the primer device 200 may receive the first signal SG1 from the blasting device 100.
  • the first signal SG1 may be a pulse signal using a reference voltage PV. That is, the reference voltage PV has a first voltage value V1 or a second voltage value V2 during the second period P2, and the control circuit 220 measures a change in the reference voltage PV, The first signal SG1 may be extracted. Meanwhile, during the second period P2, the toggle signal TS and the charging signal CS may not be supplied.
  • the control circuit 220 of the primer device 200 may transmit the second signal SG2 to the blasting device 100 in response to the first signal SG1.
  • the second signal SG2 may be a pulse signal using the reference current DI. That is, the reference current DI has a first current value I1 or a second current value I2 during the third period P3, and the blasting apparatus 100 measures changes in the reference current DI,
  • the second signal SG2 may be extracted.
  • the control unit 222 of the control circuit 220 may control the flow of the reference current DI by controlling the operation of the control switch unit 223.
  • the first current value I1 may represent a value exceeding 0A
  • the second current value I2 may represent 0A.
  • the control switch unit 223 of the control circuit 220 may be turned off. Accordingly, as shown in FIG. 7, the reference current DI may have a second current value I2 when the toggle signal TS is at a high level.
  • the control unit 222 included in the control circuit 220 of the primer device 200 transmits the second signal SG2 and transmits the charging signal CS to the charging circuit 210. Can transmit.
  • the charging signal CS may have a high level voltage value.
  • the charging switch unit 212 of the charging circuit 210 may be turned off. Therefore, the charging circuit 210 may stop charging.
  • the blasting apparatus 100 sets the reference voltage PV value in the first period P1 and the second period P2. It is possible to maintain the value, the first voltage value V1.
  • the second signal SG2 which is the current signal, is supplied, the movement of charge occurs, so that the value of the reference voltage PV can be changed to the third voltage value V3 while the reference current DI is supplied.
  • the third voltage value V3 may be smaller than the first voltage value V1 and larger than the second voltage value V2.
  • the second voltage value V2 may represent 0 V according to an embodiment, but the present invention is not limited thereto, and the second voltage value V2 may be variously set in a range that achieves the object of the present invention. have.
  • first period P1 and the second period P2 may overlap.
  • the present invention is not limited thereto, and according to an embodiment, as illustrated in FIG. 7, the first period P1 and the second period P2 may be different from each other.
  • the second period P2 and the third period P3 may be continuous with each other.
  • FIG. 8 is a flowchart illustrating a method of operating a primer device according to an embodiment of the present invention.
  • the charging circuit 210 included in the primer device 200 may perform charging of the reference voltage PV during the first period P1 (S10 ). That is, the charging circuit 210 may be charged by receiving the reference voltage PV supplied through the busbars 300 and 400 from the blasting apparatus 100.
  • the charging circuit 210 may supply a driving voltage DV to the control circuit 220 included in the primer device 200.
  • the driving voltage DV may be a voltage corresponding to the charged reference voltage PV.
  • the control circuit 220 may receive the first signal SG1 during the second period P2 (S20 ). That is, the control circuit 220 may receive the first signal SG1 including the delay time from the blasting apparatus 100 through the bus units 300 and 400.
  • the delay time may refer to the primer start time set for each primer device, and the first signal SG1 may be a pulse signal using a reference voltage PV.
  • the control circuit 220 transmits the second signal SG2 to the blasting apparatus 100 in response to the first signal SG1, and the charging circuit 210 stops charging It can be done (S30). That is, the control circuit 220 may transmit the second signal SG2 through the bus units 300 and 400 to the blasting device 100 during the third period P3. In addition, the control circuit 220 may transmit the charging signal CS to the charging circuit 210 to stop charging the charging circuit 210. Accordingly, the charging circuit 210 may stop charging according to the charging signal CS.
  • the primer device the method of operating the primer device, and the communication system according to an embodiment of the present invention can suppress the charging current and improve the signal-to-noise ratio
  • the primer device, the method of operating the primer device, and the communication system according to an embodiment of the present invention may increase the maximum number of primer devices capable of communication by reducing the change in the reference current according to the change in the quantity of the primer device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 실시예에 따른 뇌관 장치는, 발파 장치에 의해 모선부로 인가되는 전압을 이용하여 전송된 제1 신호를 수신하고, 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 발파 장치로 전송하는 제어 회로; 및 상기 모선부를 통해 상기 전압을 공급받아 충전하는 충전 회로를 포함하고, 상기 충전 회로는, 상기 제어 회로가 상기 제2 신호를 상기 발파 장치로 전송하는 동안, 충전을 중지한다.

Description

뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템
본 발명의 실시예는 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템, 특히 뇌관 장치가 발파 장치로 신호를 전송할 때 뇌관 장치의 전압 충전을 중지함으로써, 충전 전류를 억제하고 신호 대 잡음비를 향상시킬 수 있는 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템에 관한 것이다.
일반적으로, 터널공사를 위한 암반의 폭파, 폐건물 폭파 등의 공사에는 폭발물이 이용된다. 즉, 발파 대상물을 구간별로 구분하여 폭발물이 삽입되는 복수의 구멍들을 천공한다. 천공된 구멍들 각각에 폭발물을 삽입한 후 발파 시스템과 연결한다. 발파 시스템의 조작을 통해 폭발물을 폭파하여 발파 대상물을 폭파한다.
발파 시스템은 폭발물을 기폭시키는 기폭제인 뇌관과, 뇌관의 작동에 필요한 전원 및 지령을 뇌관으로 전송하는 발파 장치를 포함하여 구성된다. 이때, 발파 시스템의 뇌관으로는 주로 전자 뇌관이 사용된다. 전자 뇌관은 폭발물 측에 설치되며, 하나의 발파 장치에 복수의 전자 뇌관이 연결된다.
전자 뇌관은 발파 장치에서 지령이 전달되면 해당 발파 장치에 연결된 복수의 전자 뇌관이 동시에 작동하여 폭발물을 동시에 기폭시키는 구조와, 복수의 전자 뇌관이 서로 다른 지연시간으로 설정되어 복수의 전자 뇌관이 순차적으로 작동하여 폭발물들은 순차적으로 기폭시키는 구조가 있다.
종래에는 복수의 폭발물을 동시에 기폭시키는 전자 뇌관이 주로 사용되었으나, 최근에는 복수의 폭발물을 순차적으로 기폭시키는 전자 뇌관이 주로 사용되고 있다. 일례로, 한국등록특허 제10-1016538호, 한국등록특허 제10-0665878호, 한국등록특허 제10-0665880호, 한국등록특허 제10-0733346호 및 일본공개특허 제2005-520115 등의 많은 문헌에서 전자 뇌관을 이용한 발파 시스템을 개시하고 있다.
본 발명의 해결하고자 하는 과제는 뇌관 장치가 발파 장치로 신호를 전송할 때 뇌관 장치의 전압 충전을 중지함으로써, 충전 전류를 억제하고 신호 대 잡음비를 향상시킬 수 있는 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템을 제공하는 것이다.
또한, 본 발명의 해결하고자 하는 다른 과제는 뇌관 장치의 수량 변화에 따른 기준 전류의 변화폭이 작아짐으로써, 통신 가능한 뇌관 장치의 최대 수량을 증가시킬 수 있는 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템을 제공하는 것이다.
상술한 목적을 달성하기 위해, 본 발명의 실시예에 따른 뇌관 장치는, 발파 장치에 의해 모선부로 인가되는 전압을 이용하여 전송된 제1 신호를 수신하고, 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 발파 장치로 전송하는 제어 회로; 및 상기 모선부를 통해 상기 전압을 공급받아 충전하는 충전 회로를 포함하고, 상기 충전 회로는, 상기 제어 회로가 상기 제2 신호를 상기 발파 장치로 전송하는 동안, 충전을 중지한다.
본 발명에서, 상기 충전 회로는, 상기 전압을 공급받아 충전하기 위한 충전부; 및 상기 충전부 및 상기 모선부 사이에 배치되며, 충전 신호에 따라 상기 전압의 상기 충전부로의 공급을 제어하는 충전 스위치부를 포함하고, 상기 제어 회로는, 상기 제어 회로가 상기 제2 신호를 상기 발파 장치로 전송하는 동안, 상기 충전 스위치부로 상기 충전 신호를 전송한다.
본 발명에서, 상기 충전 스위치부는, 상기 충전 신호가 공급되는 동안, 턴-오프되는 스위치를 포함한다.
본 발명에서, 상기 제어 회로는, 상기 전압을 측정하여, 상기 제1 신호를 추출하는 전압 측정부; 상기 제1 신호를 수신하고, 토글 신호를 생성하기 위한 제어부; 및 상기 모선부 상에 배치되며, 상기 토글 신호에 따라 상기 전류의 흐름을 제어하기 위한 제어 스위치부를 포함한다.
본 발명에서, 상기 제어 스위치부는, 상기 토글 신호가 공급되는 동안, 턴-오프되는 스위치를 포함한다.
본 발명에서, 상기 제어 회로는, 상기 제1 신호에 포함된 지연 시간을 카운트하고, 발파 신호 및 발파 전압을 생성한다.
본 발명에서, 상기 발파 신호에 기초하여, 점화옥으로 상기 발파 전압을 공급하는 기폭 회로를 더 포함한다.
본 발명의 실시예에 따른 뇌관 장치의 동작 방법은, 제1 신호에 포함된 지연 시간을 카운트하고, 발파 신호 및 발파 전압을 생성하는 제어 회로 및 상기 제어 회로로 구동 전압을 제공하는 충전 회로를 포함하는 뇌관 장치에 있어서, 제1 기간 동안, 상기 충전 회로가 발파 장치로부터 모선부를 통해 전압을 공급받아 충전하는 단계; 제2 기간 동안, 상기 제어 회로가 상기 발파 장치에 의해 상기 모선부로 인가되는 상기 전압을 이용하여 전송된 제1 신호를 수신하는 단계; 및 제3 기간 동안, 상기 제어 회로가 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 발파 장치로 전송하고, 상기 충전 회로가 충전을 중지하는 단계를 포함한다.
본 발명에서, 상기 제1 기간은, 상기 제2 기간과 적어도 일부가 중첩된다.
본 발명에서, 상기 제2 기간 및 상기 제3 기간은, 연속한다.
본 발명의 실시예에 따른 통신 시스템은, 모선부를 통해 유선으로 연결된 송신단 및 수신단을 포함하고, 상기 송신단은, 상기 모선부로 인가되는 전압을 이용하여 제1 신호를 상기 수신단으로 전송하고, 상기 수신단은, 상기 제1 신호를 수신하고, 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 송신단으로 전송하는 제어 회로; 및 상기 모선부를 통해 상기 전압을 공급받아 충전하는 충전 회로를 포함하고, 상기 충전 회로는, 상기 제어 회로가 상기 제2 신호를 상기 송신단으로 전송하는 동안, 충전을 중지한다.
본 발명에서, 상기 충전 회로는, 상기 전압을 공급받아 충전하기 위한 충전부; 및 상기 충전부 및 상기 모선부 사이에 배치되며, 충전 신호에 따라 상기 전압의 상기 충전부로의 공급을 제어하는 충전 스위치부를 포함하고, 상기 제어 회로는, 상기 제어 회로가 상기 제2 신호를 상기 송신단으로 전송하는 동안, 상기 충전 스위치부로 상기 충전 신호를 전송한다.
본 발명에서, 상기 충전 스위치부는, 상기 충전 신호가 공급되는 동안, 턴-오프되는 스위치를 포함한다.
본 발명에서, 상기 제어 회로는, 상기 전압을 측정하여, 상기 제1 신호를 추출하는 전압 측정부; 상기 제1 신호를 수신하고, 토글 신호를 생성하기 위한 제어부; 및 상기 모선부 상에 배치되며, 상기 토글 신호에 따라 상기 전류의 흐름을 제어하기 위한 제어 스위치부를 포함한다.
본 발명에서, 상기 제어 스위치부는, 상기 토글 신호가 공급되는 동안, 턴-오프되는 스위치를 포함한다.
본 발명의 실시예에 따른 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템은 뇌관 장치가 발파 장치로 신호를 전송할 때 뇌관 장치의 전압 충전을 중지함으로써, 충전 전류를 억제하고 신호 대 잡음비를 향상시킬 수 있다.
또한, 본 발명의 실시예에 따른 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템은 뇌관 장치의 수량 변화에 따른 전류의 변화폭이 작아짐으로써, 통신 가능한 뇌관 장치의 최대 수량을 증가시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 상기 효과들에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1a는 본 발명의 실시예에 따른 발파 시스템을 나타내는 도면이다.
도 1b는 본 발명의 실시예에 따른 통신 시스템을 나타내는 도면이다.
도 2는 본 발명의 실시예에 따른 발파 장치를 나타내는 도면이다.
도 3은 본 발명의 실시예에 따른 뇌관 장치를 나타내는 도면이다.
도 4는 본 발명의 실시예에 따른 충전 회로를 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 제어 회로를 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 기폭 회로를 나타내는 도면이다.
도 7은 본 발명의 실시예에 따른 뇌관 장치의 동작 방법을 나타내는 파형도이다.
도 8은 본 발명의 실시예에 따른 뇌관 장치의 동작 방법을 나타내는 순서도이다.
*도면 중 주요 부호에 대한 설명*
10: 발파 시스템 20: 발파 대상물
30: 발파 구멍 40: 폭발물
100: 발파 장치 110: 발파 제어부
120: 전압 공급부 130: 전류 측정부
200: 뇌관 장치 210: 충전 회로
220: 제어 회로 230: 기폭 회로
240: 점화옥
이하 첨부한 도면을 참고하여 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 기재한다. 다만, 본 발명은 청구범위에 기재된 범위 안에서 여러 가지 상이한 형태로 구현될 수 있으므로 하기에 설명하는 실시예는 표현 여부에 불구하고 예시적인 것에 불과하다.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율, 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. "및/또는"은 연관된 구성들이 정의할 수 있는 하나 이상의 조합을 모두 포함할 수 있다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
또한, "아래에", "하측에", "위에", "상측에" 등의 용어는 도면에 도시된 구성들의 연관관계를 설명하기 위해 사용된다. 상기 용어들은 상대적인 개념으로, 도면에 표시된 방향을 기준으로 설명된다.
"포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
즉, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 이하의 설명에서 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함할 수 있다. 또한, 도면에서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호 및 부호로 나타내고 있음에 유의해야 한다.
도 1a는 본 발명의 실시예에 따른 발파 시스템(10)을 나타내는 도면이다.
도 1a를 참조하면, 발파 시스템(10)은 발파 장치(100), 뇌관 장치(200) 및 모선부(300 및 400)를 포함할 수 있다.
발파 작업자는 발파 대상물(20)을 폭파하기 위하여, 발파 대상물(20)을 천공하고, 발파 구멍(30)들을 형성할 수 있다. 발파 작업자는 뇌관 장치(200)가 각각 부착된 폭발물(40)들을 복수의 발파 구멍(30)들에 삽입할 수 있다.
발파 장치(100) 및 뇌관 장치(200)는 모선부(300 및 400)를 통해 유선으로 연결될 수 있다. 이때, 모선부(300 및 400)는 주-모선부(300) 및 부-모선부(400)를 포함할 수 있다. 즉, 주-모선부(300)는 발파 장치(100)에 직접 연결되는 배선이고, 부-모선부(400)는 뇌관 장치(200)에 직접 연결되는 배선일 수 있다. 결과적으로, 주-모선부(300) 및 부-모선부(400)가 서로 연결됨으로써, 발파 장치(100) 및 뇌관 장치(200)는 서로 전기적으로 연결되어 통신을 수행할 수 있다. 실시예에 따라, 모선부(300 및 400)는 2선 유선 통신 시스템으로 구현될 수 있다.
발파 작업자는 작업자 단말 장치(예컨대, 스마트 폰 및/또는 스캐너 등)를 이용하여, 뇌관 장치(200)를 스캔할 수 있다. 예컨대, 발파 작업자는 뇌관 장치(200)에 부착된 이미지 코드(QR 코드, 바코드 등)를 촬영하거나, 직접 로깅(logging) 함으로써, 뇌관 장치(200)를 스캔할 수 있다. 작업자 단말 장치는 스캔된 뇌관 장치(200) 각각에 대한 뇌관 정보 및 초시 정보를 발파 장치(100)로 전송할 수 있다.
발파 장치(100)는 작업자 단말 장치로부터 수신한 뇌관 장치(200) 각각에 대한 뇌관 정보 및 초시 정보를 저장할 수 있다. 뇌관 장치(200)에 대한 스캔이 완료되면, 발파 장치(100)는 뇌관 장치(200)와 모선부(300 및 400)를 통해 연결될 수 있다.
작업자는 발파를 개시하기 위하여, 발파 장치(100) 조작하여 제1 신호(예컨대, 일반 신호, 발파 명령 등)을 발생시킬 수 있다. 그리고, 발파 장치(100)는 뇌관 장치(200)로 제1 신호를 전송할 수 있다. 뇌관 장치(200)는 상술한 연결 관계에 기초하여, 모선부(300 및 400)를 통해 제1 신호를 수신할 수 있다. 이와 관련된 상세한 내용은 도 7에서 설명된다.
실시예에 따라, 제1 신호는 각각의 뇌관 장치(200)에 대응하는 지연 시간들을 포함하는 발파 명령일 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니다. 뇌관 장치(200)는 제1 신호에 포함된 기폭 초시의 카운트를 개시할 수 있다. 뇌관 장치(200)는 기설정된 지연 시간의 카운트가 완료되면 연결된 폭발물(40)을 기폭시킬 수 있다. 따라서, 발파 장치(100)는 복수의 폭발물(40)을 기폭하여 발파 대상물(20)을 폭파시킬 수 있다.
도 1b는 본 발명의 실시예에 따른 통신 시스템(CST)을 나타내는 도면이다. 도 1b를 참조하면, 통신 시스템(CST)은 송신단(100) 및 수신단(200)으로 구성될 수 있다.
실시예에 따라, 통신 시스템(CST)은 발파 시스템, 화제 경보 시스템 등에서 이용될 수 있다. 대표적으로 본 명세서에서는 발파 시스템에서 이용되는 통신 시스템(CST)을 대표적으로 설명한다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 발파 시스템에 적용된 통신 시스템(CST)은 통상의 기술자가 용이하게 변경이 가능한 범위에서 다른 실시예들(예컨대, 화제 경보 시스템)에 적용될 수 있다.
예컨대, 통신 시스템(CST)은 도 1a에 도시된 발파 시스템(10)에서, 발파 장치(100) 및 뇌관 장치(200) 사이의 통신 시스템을 의미할 수 있다. 이때, 송신단(100)은 도 1a에 도시된 발파 장치(100)에 상응하는 구성으로서, 본 명세서에서 송신단(100)은 발파 장치(100)를 의미할 수 있다. 수신단(200)은 도 1a에 도시된 뇌관 장치(200)에 상응하는 구성으로서, 본 명세서에서 수신단(200)은 뇌관 장치(200)를 의미할 수 있다.
송신단(100)은 전압을 이용하여 신호를 수신단(200)으로 전송할 수 있고, 수신단(200)은 전류를 이용하여 신호를 송신단(100)으로 전송할 수 있다. 예컨대, 송신단(100) 및 수신단(200)은 모선부(300 및 400, 도 1a 참조)를 통해 서로 유선으로 연결될 수 있다. 이때, 송신단(100)은 모선부(300 및 400)의 전압(즉, 기준 전압)을 이용하여 신호를 수신단(200)으로 전송할 수 있다. 수신단(200)은 모선부(300 및 400)의 전압을 측정함으로서, 송신단(100)으로부터의 신호를 수신할 수 있다.
수신단(200)은 송신단(100)으로부터 수신한 신호에 응답하여, 송신단(100)으로 신호를 전송할 수 있다. 이때, 수신단(200)은 모선부(300 및 400)로 흐르는 전류(즉, 기준 전류)를 이용하여 신호를 송신할 수 있다. 송신단(100)은 모선부(300 및 400)로 흐르는 전류를 측정함으로서, 수신단(200)으로부터의 신호를 수신할 수 있다.
상술한 내용에 따라, 통신 시스템(CST)은 유선 통신을 수행할 수 있다.
도 2는 본 발명의 실시예에 따른 발파 장치(100)를 나타내는 도면이다.
도 2를 참조하면, 발파 장치(100)는 발파 제어부(110), 전압 공급부(120) 및 전류 측정부(130)를 포함할 수 있다. 도 2에 도시된 바와 같이, 발파 장치(100)에 연결된 주-모선부(300)는 제1 주-모선(310) 및 제2 주-모선(320)을 포함할 수 있다.
발파 제어부(110)는 발파 장치(100)의 동작을 전반적으로 제어할 수 있다. 실시예에 따라, 발파 제어부(110)는 CPU(Central Processing Unit), MPU(Micro Processing Unit), GPU(Graphic Processing Unit), MCU(Micro Controller Unit) 등으로 구현될 수 있다.
전압 공급부(120)는 발파 제어부(110)의 제어에 따라 동작할 수 있다.
전압 공급부(120)는 주-모선부(300)로 전압들을 공급할 수 있다. 예컨대, 전압 공급부(120)는 제1 주-모선(310)으로 기준 전압(PV)을 공급하고, 제2 주-모선(320)으로 접지 전압(GND)을 공급할 수 있다. 실시예에 따라, 기준 전압(PV)은 0V 이상 100V이하의 범위를 가질 수 있고, 접지 전압(GND)은 0V일 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서, 기준 전압(PV) 및 접지 전압(GND)은 다양한 값을 가질 수 있다.
전압 공급부(120)는 주-모선부(300)로 기준 전압(PV) 및 접지 전압(GND)을 이용해 뇌관 장치(200, 도 1a 참조)로 전원을 공급할 뿐만 아니라, 신호 및 데이터 등을 전송할 수 있다. 예컨대, 전압 공급부(120)는 기준 전압(PV)을 이용하여 펄스 신호를 주-모선부(300)로 공급하고, 뇌관 장치(200)는 주-모선부(300)에 연결된 부-모선부(400, 도 1a 참조))를 통해 공급되는 상기 펄스 신호를 감지할 수 있다. 이를 통해, 전압 공급부(120)는 뇌관 장치(200)로 신호 및 데이터 등을 전송할 수 있다. 이와 관련한 상세한 내용은 도 7에서 도시된다.
전류 측정부(130)는 발파 제어부(110)의 제어에 따라 동작할 수 있다. 구체적으로, 전류 측정부(130)는 주-모선부(300)에 포함된 제1 주-모선(310) 및 제2 주-모선(320)으로 흐르는 전류를 측정할 수 있다. 전류 측정부(130)는 주-모선부(300)로 흐르는 전류를 측정함으로써, 뇌관 장치(200)로부터 신호 및 데이터 등을 수신할 수 있다. 예컨대, 뇌관 장치(200)는 모선부(300 및 400)로 공급되는 기준 전류의 흐름을 제어하고, 전류 측정부(130)는 모선부(300 및 400)로 흐르는 기준 전류를 측정할 수 있다.
도 2에서 발파 제어부(110), 전압 공급부(120) 및 전류 측정부(130)가 별개의 구성으로 도시되었으나, 본 발명이 이에 한정되는 것은 아니다. 실시예에 따라, 발파 제어부(110), 전압 공급부(120) 및 전류 측정부(130) 중 적어도 일부는 통합되어 구현될 수 있다.
도 3은 본 발명의 실시예에 따른 뇌관 장치(200)를 나타내는 도면이다.
도 3을 참조하면, 뇌관 장치(200)는 충전 회로(210), 제어 회로(220), 기폭 회로(230) 및 점화옥(240)을 포함할 수 있다. 도 3에 도시된 바와 같이, 뇌관 장치(200)에 연결된 부-모선부(400)는 제1 부-모선(410) 및 제2 부-모선(420)을 포함할 수 있다.
충전 회로(210)는 발파 장치(100, 도 1 참조)로부터 모선부(300 및 400, 도 1 참조)의 부-모선부(400)에 포함된 제1 부-모선(410)을 통해 기준 전압(PV)을 공급받을 수 있다.
충전 회로(210)는 제어 회로(220)로부터 충전 신호(CS)를 수신할 있다. 충전 회로(210)는 충전 신호(CS)가 공급되지 않는 동안, 기준 전압(PV)을 충전할 수 있다. 충전 회로(210)는 충전 신호(CS)가 공급되는 동안, 기준 전압(PV)을 충전하지 않을 수 있다.
충전 회로(210)는 충전된 전압에 기초하여, 제어 회로(220)로 구동 전압(DV)을 공급할 수 있다. 이때, 제어 회로(220)는 구동 전압(DV)을 기초로 구동될 수 있다.
제어 회로(220)는 발파 장치(100)로부터 제1 부-모선(410)을 통해 기준 전압(PV)을 공급받고, 제2 부-모선(420)을 통해 접지 전압(GND)을 공급받을 수 있다.
제어 회로(220)는 발파 장치(100)로부터 모선부(300 및 400)를 통해 제1 신호를 수신할 수 있다. 제1 신호는 발파 장치(100)에 의해 모선부(300 및 400)로 인가되는 기준 전압(PV)을 이용한 펄스 신호일 수 있다.
제어 회로(220)는 제1 신호에 응답하여, 발파 장치(100)로 모선부(300 및 400)를 통해 제2 신호를 전송할 수 있다. 제2 신호는 기준 전류를 이용한 펄스 신호일 수 있다.
또한, 제어 회로(220)는 제2 신호를 발파 장치(100)로 전송하는 동안, 충전 신호(CS)를 충전 회로(210)로 공급할 수 있다. 충전 회로(210)는 충전 신호(CS)가 공급되는 동안, 기준 전압(PV)의 충전을 중지할 수 있다.
실시예에 따라, 제1 신호는 지연 시간을 포함하는 발파 명령일 수 있다. 이때, 제어 회로(220)는 제1 신호에 포함된 지연 시간을 카운트할 수 있다. 제어 회로(220)는 지연 시간에 대한 카운트가 완료되면 발파 신호(BS)를 생성하고, 발파 신호(BS)를 기폭 회로(230)로 전송할 수 있다. 제어 회로(220)는 구동 전압(DV) 및 기준 전압(PV) 중 적어도 하나를 기초로 발파 전압(BV)을 생성할 수 있다. 제어 회로(220)는 발파 전압(BV)을 기폭 회로(230)로 공급할 수 있다.
기폭 회로(230)는 발파 신호(BS)에 기초하여, 점화옥(240)으로 발파 전압(BV)을 공급할 수 있다. 점화옥(240)은 발파 전압(BV)이 공급되면 기폭할 수 있다.
도 3에서 도시되지 않았지만, 실시예에 따라 뇌관 장치(200)는 모선부(300 및 400)를 통해 공급되는 전압으로부터 내부 회로 구성을 보호하기 위한 보호 회로를 더 포함할 수 있다.
도 4는 본 발명의 실시예에 따른 충전 회로(210)를 나타내는 도면이다.
도 4를 참조하면, 충전 회로(210)는 충전부(211) 및 충전 스위치부(212)를 포함할 수 있다.
충전부(211)는 모선부(즉, 제1 부-모선(410))를 통해 공급되는 기준 전압(PV)을 충전할 수 있다. 충전부(211)는 충전된 기준 전압(PV)에 기초하여, 구동 전압(DV)을 제어 회로(220, 도 2 참조)로 공급할 수 있다. 예컨대, 충전부(211)는 기준 전압(PV)을 충전하기 위한 커패시터(capacitor)를 포함할 수 있다.
충전 스위치부(212)는 모선부(즉, 제1 부-모선(410)) 및 충전부(211) 사이에 배치될 수 있다. 충전 스위치부(212)는 충전 신호(CS)에 따라 기준 전압(PV)의 충전부(211)로의 공급을 제어할 수 있다. 예컨대, 충전 스위치부(212)는 충전 신호(CS)가 공급되는 동안, 턴-오프되는 스위치를 포함할 수 있다. 실시예에 따라, 충전 스위치부(212)는 P 채널 전계 효과 트랜지스터(FET; Field Effect Transistor)로 구현될 수 있다.
도 5는 본 발명의 실시예에 따른 제어 회로(220)를 나타내는 도면이다.
도 5를 참조하면, 제어 회로(220)는 전압 측정부(221), 제어부(222) 및 제어 스위치부(223)를 포함할 수 있다. 제어 회로(220)는 부-모선부(400)에 연결되며, 부-모선부(400)는 제1 부-모선(410) 및 제2 부-모선(420)을 포함할 수 있다.
전압 측정부(221)는 제1 부-모선(410) 및 제2 부-모선(420)의 전압을 측정할 수 있다. 즉, 전압 측정부(221)는 제1 부-모선(410)으로 공급되는 기준 전압(PV)을 측정하고, 제2 부-모선(420)으로 공급되는 접지 전압(GND)을 측정할 수 있다. 전압 측정부(221)는 전압 측정 결과에 기초하여, 제1 신호(SG1)를 추출할 수 있다. 전압 측정부(221)는 제1 신호(SG1)를 제어부(222)로 전송할 수 있다.
제어부(222)는 제1 신호(SG1)를 수신할 수 있다.
제어부(222)는 제1 신호(SG1)에 응답하여, 제2 신호를 생성하기 위하여, 토글 신호(TS)를 생성할 수 있다. 예컨대, 제어부(222)는 토글 신호(TS)를 제어 스위치부(223)로 전송하여 제어 스위치부(223)의 동작을 제어할 수 있다. 기준 전류(DI)의 흐름은 제어 스위치부(223)의 동작에 따라 조절될 수 있다. 제2 신호는 기준 전류(DI)를 이용한 펄스 신호를 의미할 수 있고, 제어부(222)는 토글 신호(TS)를 이용하여 제2 신호를 생성할 수 있다. 여기서, 기준 전류(DI)는 뇌관 장치(200)로부터 발파 장치(100)로 모선부(300 및 400)를 통해 흐르는 전류를 의미할 수 있다.
제어 스위치부(223)는 모선부(300 및 400) 상에 배치될 수 있다. 예컨대, 제어 스위치부(223)는 부-모선부(400) 및 제어부(222) 사이에 위치될 수 있다.
제어 스위치부(223)는 토글 신호(TS)에 따라 기준 전류(DI)의 흐름을 조절할 수 있다. 예컨대, 제어 스위치부(223)는 토글 신호(TS)가 공급되는 동안, 턴-오프되는 스위치를 포함할 수 있다. 실시예에 따라, 제어 스위치부(223)는 P 채널 전계 효과 트랜지스터(FET; Field Effect Transistor)로 구현될 수 있다.
제어부(222)는, 제2 신호를 전송하는 동안, 충전 회로(210, 도 3 참조)로 충전 신호(CS)를 전송할 수 있다. 또한, 제어부(222)는 충전 회로(210)로부터 구동 전압(DV)을 공급받을 수 있다.
실시예에 따라, 제1 신호는 지연 시간을 포함하는 발파 명령일 수 있다. 이때, 제어부(222)는 제1 신호에 포함된 지연 시간을 카운트할 수 있다. 제어부(222)는 지연 시간에 대한 카운트가 완료되면 발파 신호(BS)를 생성하고, 발파 신호(BS)를 기폭 회로(230)로 전송할 수 있다. 제어부(222)는 구동 전압(DV) 및 기준 전압(PV) 중 적어도 하나를 기초로 발파 전압(BV)을 생성할 수 있다. 또한, 제어부(222)는 발파 전압(BV)을 기폭 회로(230, 도 3 참조)로 공급할 수 있다.
도 6은 본 발명의 실시예에 따른 기폭 회로(230)를 나타내는 도면이다. 설명의 편의를 위하여, 도 6에는 기폭 회로(230)와 함께 점화옥(240)이 도시된다.
도 6을 참조하면, 기폭 회로(230)는 기폭 다이오드(231), 기폭 커패시터(232) 및 기폭 스위치(233)를 포함할 수 있다.
발파 전압(BV)은 기폭 다이오드(231)를 거쳐 기폭 커패시터(232)로 공급될 수 있다.
기폭 커패시터(232)는 발파 전압(BV)을 저장할 수 있다.
기폭 스위치(233)는 발파 신호(BS)를 수신할 수 있다. 기폭 스위치(233)는 발파 신호(BS)가 공급되는 동안 턴-온될 수 있다. 기폭 스위치(233)가 턴-온되면, 기폭 커패시터(232)에 저장된 발파 전압(BV)은 점화옥(240)으로 공급될 수 있다. 발파 신호(BS)는 지연 시간이 카운트 된 후에 기폭 스위치(233)로 공급되기 때문에, 점화옥(240)은 지연 시간이 경과한 후에 발파 전압(BV)을 공급받을 수 있다.
도 6에 도시된 바와 같이, 점화옥(240)은 고유의 저항 값을 가질 수 있다. 따라서, 전압 분배 법칙에 따라, 점화옥(240)은 고유의 저항 값에 비례한 전압을 인가받을 수 있다. 점화옥(240)은 전압이 인가될 때, 기폭할 수 있다.
도 7은 본 발명의 실시예에 따른 뇌관 장치의 동작 방법을 나타내는 파형도이다. 도 7에서는 기준 전압(PV), 토글 신호(TS), 기준 전류(DI) 및 충전 신호(CS)의 파형이 제1 기간(P1), 제2 기간(P2) 및 제3 기간(P3)에 따라 도시된다.
도 1a 내지 도 7을 참조하면, 제1 기간(P1) 동안, 발파 장치(100)는 기준 전압(PV)을 충전 회로(210)으로 모선부(300 및 400)을 통해 공급할 수 있다. 뇌관 장치(200)의 충전 회로(210)는 기준 전압(PV)을 공급받아 충전할 수 있다. 예컨대, 제1 기간(P1) 동안, 기준 전압(PV)은 제1 전압 값(V1)을 가질 수 있다. 한편, 제1 기간(P1) 동안, 토글 신호(TS) 및 충전 신호(CS)는 공급되지 않을 수 있다. 도 7에서, 토글 신호(TS) 및 충전 신호(CS)가 공급되는 것이 토글 신호(TS) 및 충전 신호(CS)가 하이 레벨의 전압을 갖는 것으로 도시된다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 실시예에 따라, 토글 신호(TS) 및 충전 신호(CS)는 다양한 값의 전압을 가질 수 있다.
제2 기간(P2) 동안, 뇌관 장치(200)의 제어 회로(220)는 발파 장치(100)로부터 제1 신호(SG1)를 수신할 수 있다. 이때, 제1 신호(SG1)는 기준 전압(PV)을 이용한 펄스 신호일 수 있다. 즉, 기준 전압(PV)은 제2 기간(P2) 동안 제1 전압 값(V1) 또는 제2 전압 값(V2)을 가지며, 제어 회로(220)는 기준 전압(PV)의 변화를 측정함으로써, 제1 신호(SG1)를 추출할 수 있다. 한편, 제2 기간(P2) 동안, 토글 신호(TS) 및 충전 신호(CS)는 공급되지 않을 수 있다.
제3 기간(P3) 동안, 뇌관 장치(200)의 제어 회로(220)는 제1 신호(SG1)에 응답하여, 발파 장치(100)로 제2 신호(SG2)를 전송할 수 있다. 이때, 제2 신호(SG2)는 기준 전류(DI)를 이용한 펄스 신호일 수 있다. 즉, 기준 전류(DI)는 제3 기간(P3) 동안 제1 전류 값(I1) 또는 제2 전류 값(I2)을 가지며, 발파 장치(100)는 기준 전류(DI)의 변화를 측정함으로써, 제2 신호(SG2)를 추출할 수 있다. 구체적으로, 상술한 바와같이, 제어 회로(220)의 제어부(222)는 제어 스위치부(223)의 동작을 제어함으로써, 기준 전류(DI)의 흐름을 조절할 수 있다. 예컨대, 제1 전류 값(I1)은 0A를 초과하는 값을 나타낼 수 있고, 제2 전류 값(I2)은 0A를 나타낼 수 있다.
실시예에따라, 토글 신호(TS)가 하이 레벨의 전압을 가질 때, 제어 회로(220)의 제어 스위치부(223)가 턴-오프 될 수 있다. 따라서, 도 7에 도시된 바와 같이, 기준 전류(DI)는 토글 신호(TS)가 하이 레벨일 때, 제2 전류 값(I2)을 가질 수 있다.
제3 기간(P3) 동안, 뇌관 장치(200)의 제어 회로(220)에 포함된 제어부(222)는, 제2 신호(SG2)를 전송하고, 충전 회로(210)로 충전 신호(CS)를 전송할 수 있다. 이때, 충전 신호(CS)는 하이 레벨의 전압 값을 가질 수 있다. 실시예에 따라, 충전 신호(CS)가 하이 레벨의 전압을 가질 때, 충전 회로(210)의 충전 스위치부(212)가 턴-오프 될 수 있다. 따라서, 충전 회로(210)는 충전을 중지할 수 있다.
제3 기간(P3) 동안, 충전 회로(210)의 충전이 중지됨에 따라, 발파 장치(100)는 기준 전압(PV) 값을, 제1 기간(P1) 및 제2 기간(P2)에서 공급되었던 값인, 제1 전압 값(V1)으로 유지할 수 있다. 전류 신호인 제2 신호(SG2)가 공급됨에 따라, 전하의 이동이 발생하므로, 기준 전류(DI)가 공급되는 동안 기준 전압(PV)의 값이 제3 전압 값(V3)으로 변경될 수 있다. 이때, 제3 전압 값(V3)은 제1 전압 값(V1) 보다 작고, 제2 전압 값(V2) 보다 큰 값일 수 있다. 제2 전압 값(V2)은 실시예에 따라, 0V를 나타낼 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 제2 전압 값(V2)은 본 발명의 목적을 달성하는 범위에서 다양하게 설정될 수 있다.
도 7에 도시된 바와 달리, 제1 기간(P1) 및 제2 기간(P2)은 적어도 일부가 중첩될 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 실시예에 따라, 도 7에 도시된 바와 같이, 제1 기간(P1) 및 제2 기간(P2)은 서로 상이할 수 있다. 또한, 도 7에 도시된 바와 같이, 제2 기간(P2) 및 제3 기간(P3)은 서로 연속할 수 있다.
도 8은 본 발명의 실시예에 따른 뇌관 장치의 동작 방법을 나타내는 순서도이다.
도 1 내지 도 8을 참조하면, 뇌관 장치(200)에 포함된 충전 회로(210)는, 제1 기간(P1) 동안, 기준 전압(PV)의 충전을 수행할 수 있다(S10). 즉, 충전 회로(210)는 발파 장치(100)로부터 모선부(300 및 400)를 통해 공급되는 기준 전압(PV)을 공급받아 충전할 수 있다. 또한, 충전 회로(210)는 뇌관 장치(200)에 포함된 제어 회로(220)로 구동 전압(DV)을 공급할 수 있다. 이때, 구동 전압(DV)은 충전된 기준 전압(PV)에 대응하는 전압일 수 있다.
제어 회로(220)는, 제2 기간(P2) 동안, 제1 신호(SG1)를 수신할 수 있다(S20). 즉, 제어 회로(220)는 발파 장치(100)로부터 모선부(300 및 400)를 통해 지연 시간을 포함하는 제1 신호(SG1)를 수신할 수 있다. 이때, 지연 시간은 뇌관 장치 별로 설정된 뇌관 초시를 의미할 수 있고, 제1 신호(SG1)는 기준 전압(PV)을 이용한 펄스 신호일 수 있다.
제어 회로(220)는, 제3 기간(P3) 동안, 제1 신호(SG1)에 응답하여, 발파 장치(100)로 제2 신호(SG2)를 전송하고, 충전 회로(210)는 충전을 중지할 수 있다(S30). 즉, 제어 회로(220)는 제3 기간(P3) 동안, 발파 장치(100)로 모선부(300 및 400)를 통해 제2 신호(SG2)를 전송할 수 있다. 또한, 제어 회로(220)는 충전 회로(210)의 충전을 중지하기 위해, 충전 신호(CS)를 충전 회로(210)로 전송할 수 있다. 이에 따라, 충전 회로(210)는 충전 신호(CS)에 따라 충전을 중지할 수 있다.
상술한 내용에 따라, 본 발명의 실시예에 따른 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템은 충전 전류를 억제하고 신호 대 잡음비를 향상시킬 수 있다
또한, 본 발명의 실시예에 따른 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템은 뇌관 장치의 수량 변화에 따른 기준 전류의 변화폭이 작아짐으로써, 통신 가능한 뇌관 장치의 최대 수량을 증가시킬 수 있다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (15)

  1. 발파 장치에 의해 모선부로 인가되는 전압을 이용하여 전송된 제1 신호를 수신하고, 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 발파 장치로 전송하는 제어 회로; 및
    상기 모선부를 통해 상기 전압을 공급받아 충전하는 충전 회로를 포함하고,
    상기 충전 회로는, 상기 제어 회로가 상기 제2 신호를 상기 발파 장치로 전송하는 동안, 충전을 중지하는 것을 특징으로 하는 뇌관 장치.
  2. 제1항에 있어서,
    상기 충전 회로는,
    상기 전압을 공급받아 충전하기 위한 충전부; 및
    상기 충전부 및 상기 모선부 사이에 배치되며, 충전 신호에 따라 상기 전압의 상기 충전부로의 공급을 제어하는 충전 스위치부를 포함하고,
    상기 제어 회로는, 상기 제어 회로가 상기 제2 신호를 상기 발파 장치로 전송하는 동안, 상기 충전 스위치부로 상기 충전 신호를 전송하는 것을 특징으로 하는 뇌관 장치.
  3. 제2항에 있어서,
    상기 충전 스위치부는, 상기 충전 신호가 공급되는 동안, 턴-오프되는 스위치를 포함하는 것을 특징으로 하는 뇌관 장치.
  4. 제1항에 있어서,
    상기 제어 회로는,
    상기 전압을 측정하여, 상기 제1 신호를 추출하는 전압 측정부;
    상기 제1 신호를 수신하고, 토글 신호를 생성하기 위한 제어부; 및
    상기 모선부 상에 배치되며, 상기 토글 신호에 따라 상기 전류의 흐름을 제어하기 위한 제어 스위치부를 포함하는 것을 특징으로 하는 뇌관 장치.
  5. 제4항에 있어서,
    상기 제어 스위치부는, 상기 토글 신호가 공급되는 동안, 턴-오프되는 스위치를 포함하는 것을 특징으로 하는 뇌관 장치.
  6. 제1항에 있어서,
    상기 제어 회로는, 상기 제1 신호에 포함된 지연 시간을 카운트하고, 발파 신호 및 발파 전압을 생성하는 것을 특징으로 하는 뇌관 장치.
  7. 제6항에 있어서,
    상기 발파 신호에 기초하여, 점화옥으로 상기 발파 전압을 공급하는 기폭 회로를 더 포함하는 것을 특징으로 하는 뇌관 장치.
  8. 제1 신호에 포함된 지연 시간을 카운트하고, 발파 신호 및 발파 전압을 생성하는 제어 회로 및 상기 제어 회로로 구동 전압을 제공하는 충전 회로를 포함하는 뇌관 장치에 있어서,
    제1 기간 동안, 상기 충전 회로가 발파 장치로부터 모선부를 통해 전압을 공급받아 충전하는 단계;
    제2 기간 동안, 상기 제어 회로가 상기 발파 장치에 의해 상기 모선부로 인가되는 상기 전압을 이용하여 전송된 제1 신호를 수신하는 단계; 및
    제3 기간 동안, 상기 제어 회로가 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 발파 장치로 전송하고, 상기 충전 회로가 충전을 중지하는 단계를 포함하는 것을 특징으로 하는 뇌관 장치의 동작 방법.
  9. 제8항에 있어서,
    상기 제1 기간은, 상기 제2 기간과 적어도 일부가 중첩되는 것을 특징으로 하는 뇌관 장치의 동작 방법.
  10. 제8항에 있어서,
    상기 제2 기간 및 상기 제3 기간은, 연속하는 것을 특징으로 하는 뇌관 장치의 동작 방법.
  11. 모선부를 통해 유선으로 연결된 송신단 및 수신단을 포함하고,
    상기 송신단은, 상기 모선부로 인가되는 전압을 이용하여 제1 신호를 상기 수신단으로 전송하고,
    상기 수신단은,
    상기 제1 신호를 수신하고, 상기 모선부로 흐르는 전류를 이용하여 제2 신호를 상기 송신단으로 전송하는 제어 회로; 및
    상기 모선부를 통해 상기 전압을 공급받아 충전하는 충전 회로를 포함하고,
    상기 충전 회로는, 상기 제어 회로가 상기 제2 신호를 상기 송신단으로 전송하는 동안, 충전을 중지하는 것을 특징으로 하는 통신 시스템.
  12. 제11항에 있어서,
    상기 충전 회로는,
    상기 전압을 공급받아 충전하기 위한 충전부; 및
    상기 충전부 및 상기 모선부 사이에 배치되며, 충전 신호에 따라 상기 전압의 상기 충전부로의 공급을 제어하는 충전 스위치부를 포함하고,
    상기 제어 회로는, 상기 제어 회로가 상기 제2 신호를 상기 송신단으로 전송하는 동안, 상기 충전 스위치부로 상기 충전 신호를 전송하는 것을 특징으로 하는 통신 시스템.
  13. 제12항에 있어서,
    상기 충전 스위치부는, 상기 충전 신호가 공급되는 동안, 턴-오프되는 스위치를 포함하는 것을 특징으로 하는 통신 시스템.
  14. 제11항에 있어서,
    상기 제어 회로는,
    상기 전압을 측정하여, 상기 제1 신호를 추출하는 전압 측정부;
    상기 제1 신호를 수신하고, 토글 신호를 생성하기 위한 제어부; 및
    상기 모선부 상에 배치되며, 상기 토글 신호에 따라 상기 전류의 흐름을 제어하기 위한 제어 스위치부를 포함하는 것을 특징으로 하는 통신 시스템.
  15. 제14항에 있어서,
    상기 제어 스위치부는, 상기 토글 신호가 공급되는 동안, 턴-오프되는 스위치를 포함하는 것을 특징으로 하는 통신 시스템.
PCT/KR2019/017764 2018-12-28 2019-12-16 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템 WO2020138797A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/627,431 US11359900B2 (en) 2018-12-28 2019-12-16 Detonator, method of operating same, and communication system for same
AU2019284135A AU2019284135B2 (en) 2018-12-28 2019-12-16 Detonator, method of operating same, and communication system for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180172461A KR102168254B1 (ko) 2018-12-28 2018-12-28 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템
KR10-2018-0172461 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138797A1 true WO2020138797A1 (ko) 2020-07-02

Family

ID=71126345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017764 WO2020138797A1 (ko) 2018-12-28 2019-12-16 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템

Country Status (4)

Country Link
US (1) US11359900B2 (ko)
KR (1) KR102168254B1 (ko)
AU (1) AU2019284135B2 (ko)
WO (1) WO2020138797A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102674961B1 (ko) * 2021-12-29 2024-06-12 주식회사 한화 응답 릴레이 기능을 갖는 전자 뇌관을 운용하는 장치 및 그 방법
WO2024123258A1 (en) * 2022-12-05 2024-06-13 Amity Ham Petrol Ve Dogal Gaz Arama Ve Uretim Anonim Sirketi Energy supply system for chemical rock breaking system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013242A (ko) * 2002-08-05 2004-02-14 류정하 전기 발파기의 전자 지연 방법 및 장치
KR20110092796A (ko) * 2010-02-10 2011-08-18 원화코퍼레이션 주식회사 전자식 지연 뇌관 장치 및 전자식 뇌관 발파 시스템
KR101293801B1 (ko) * 2013-01-30 2013-08-06 주식회사 한화 전자 뇌관의 지연시간 제어 방법
KR20130129724A (ko) * 2012-05-21 2013-11-29 원화코퍼레이션 주식회사 전자식 뇌관 장치 및 전자식 뇌관 발파 시스템
KR20180125533A (ko) * 2016-04-20 2018-11-23 니치유 가부시키가이샤 무선 기폭 뇌관, 무선 기폭 시스템, 및 무선 기폭 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE416349B (sv) * 1976-05-18 1980-12-15 Nitro Nobel Ab Metod och anordning for initiering av elektriska sprengkapslar
US4674047A (en) * 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US4825765A (en) * 1986-09-25 1989-05-02 Nippon Oil And Fats Co., Ltd. Delay circuit for electric blasting, detonating primer having delay circuit and system for electrically blasting detonating primers
US6789483B1 (en) * 2003-07-15 2004-09-14 Special Devices, Inc. Detonator utilizing selection of logger mode or blaster mode based on sensed voltages
US6966262B2 (en) * 2003-07-15 2005-11-22 Special Devices, Inc. Current modulation-based communication from slave device
KR20130010655A (ko) * 2011-07-19 2013-01-29 메탈젠텍 주식회사 스터링 엔진의 실린더장치
KR102129300B1 (ko) * 2018-12-28 2020-07-02 주식회사 한화 통신 시스템 및 뇌관 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013242A (ko) * 2002-08-05 2004-02-14 류정하 전기 발파기의 전자 지연 방법 및 장치
KR20110092796A (ko) * 2010-02-10 2011-08-18 원화코퍼레이션 주식회사 전자식 지연 뇌관 장치 및 전자식 뇌관 발파 시스템
KR20130129724A (ko) * 2012-05-21 2013-11-29 원화코퍼레이션 주식회사 전자식 뇌관 장치 및 전자식 뇌관 발파 시스템
KR101293801B1 (ko) * 2013-01-30 2013-08-06 주식회사 한화 전자 뇌관의 지연시간 제어 방법
KR20180125533A (ko) * 2016-04-20 2018-11-23 니치유 가부시키가이샤 무선 기폭 뇌관, 무선 기폭 시스템, 및 무선 기폭 방법

Also Published As

Publication number Publication date
KR20200082156A (ko) 2020-07-08
AU2019284135A1 (en) 2020-07-16
AU2019284135B2 (en) 2021-07-08
KR102168254B1 (ko) 2020-10-21
US20220034640A1 (en) 2022-02-03
US11359900B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2020138798A1 (ko) 통신 시스템 및 뇌관 장치
WO2020138797A1 (ko) 뇌관 장치, 뇌관 장치의 동작 방법 및 통신 시스템
WO2020138796A1 (ko) 발파 시스템 및 이의 동작 방법
WO2020130495A1 (ko) 전자식 뇌관 장치를 포함하는 발파 시스템
US4535401A (en) Apparatus and method for providing power from master controller to subcontrollers and data communication therebetween
WO2014007578A1 (ko) 클럭 복원 회로, 데이터 수신 장치, 그리고, 데이터 송수신 시스템
WO2011027991A2 (ko) 마이크로컨트롤러에서 기준시간 설정방법 및 그 방법을 이용한 전자식 뇌관
WO2012081938A2 (ko) 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템 및 이를 이용한 발파 시공 방법
WO2013105712A2 (ko) 다기능 전원 공급장치
WO2021080221A1 (en) Arrangement and process for monitoring an electrical safety interlock
WO2015115713A1 (en) Light-emitting element array module and method of controlling light-emitting element array chips
WO2020048009A1 (zh) 过流保护驱动电路及显示装置
WO2016137248A2 (ko) 이차 전지 관리 장치의 기능 검증 시스템
WO2009126006A2 (ko) 표시장치 및 입력장치
WO2020138795A1 (ko) 발파 시스템의 작업자 단말기
WO2020138794A1 (ko) 발파 시스템 및 이의 동작 방법
WO2021066444A1 (ko) 화소센싱회로 및 디스플레이구동집적회로
WO2018221874A1 (ko) 카메라 모듈에서의 데이터 전송방법
WO2020171417A1 (ko) Ess의 안정화 시스템 및 그 방법
WO2014063625A1 (zh) 用于井巷掘进的雷管起爆控制方法和装置及起爆器
WO2017023081A1 (ko) Gps를 이용한 점멸 등화장치 및 그 시간동기 방법
KR101336424B1 (ko) 전자 뇌관의 기폭 회로
WO2014021542A1 (en) Central server and charge control system for electric moving body according to user rate system using the same
WO2018097474A1 (ko) 무선 전력 수신 기능 및 무선 신호 송신 기능을 포함하는 전자장치
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019284135

Country of ref document: AU

Date of ref document: 20191216

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903151

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903151

Country of ref document: EP

Kind code of ref document: A1