WO2020138494A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2020138494A1
WO2020138494A1 PCT/JP2019/051610 JP2019051610W WO2020138494A1 WO 2020138494 A1 WO2020138494 A1 WO 2020138494A1 JP 2019051610 W JP2019051610 W JP 2019051610W WO 2020138494 A1 WO2020138494 A1 WO 2020138494A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
torque
angle
drive
Prior art date
Application number
PCT/JP2019/051610
Other languages
French (fr)
Japanese (ja)
Inventor
敬造 荒木
昇太 久保
圭佑 寺田
俊文 内山
Original Assignee
株式会社エクォス・リサーチ
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ, ヤマハ発動機株式会社 filed Critical 株式会社エクォス・リサーチ
Publication of WO2020138494A1 publication Critical patent/WO2020138494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/02Steering deflectable wheels not otherwise provided for combined with means for inwardly inclining vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Definitions

  • the present description relates to a vehicle that turns while tilting the vehicle body.
  • Vehicles that tilt the vehicle body when turning are proposed.
  • a vehicle has been proposed in which the front wheels are naturally steered in the direction in which the vehicle body tilts.
  • the change in the steering angle (and by extension the direction of the wheels) may be delayed with respect to the change in the body inclination.
  • a driving device for steering such as a motor steers the wheels, delay in the change in the direction of the wheels is suppressed.
  • a failure occurs in the steering drive device it is difficult to suppress the delay in the change in the direction of the wheels.
  • the present specification discloses a technique capable of suppressing the delay in the change in the direction of the wheels with respect to the change in the inclination of the vehicle body.
  • a vehicle The car body, N (N is an integer of 3 or more) wheels including one or more rotating wheels supported by the vehicle body, the left drive wheel and the right drive wheel being spaced apart from each other in the width direction of the vehicle body.
  • the N wheels wherein the traveling direction of the one or more rotating wheels is rotatable in the width direction of the vehicle body,
  • a drive system configured to apply torque to the left drive wheel and the right drive wheel;
  • a steering drive device configured to generate a torque for rotating the one or more rotating wheels in the width direction;
  • a tilting device configured to tilt the vehicle body in the width direction, A tilting drive configured to drive the tilting device,
  • a vehicle speed sensor configured to measure the vehicle speed of the vehicle,
  • a wheel angle sensor configured to measure a wheel angle indicating the traveling direction of the one or more rotating wheels with respect to the vehicle body;
  • An operation input unit configured to be operated to input an operation amount indicating a turning direction and a degree of turning,
  • a control device configured to control the drive system, the steering drive device, and
  • the wheel angle approaches the target wheel angle.
  • the drive system applies the wheel angle so as to approach the target wheel angle.
  • the difference between the left torque of the left drive wheel and the right torque of the right drive wheel is controlled, so that even if the steering drive device is in a defective state, there is a delay in the change of the wheel angle with respect to the change of the vehicle body inclination. Is suppressed.
  • FIG. 3 is a right side view of vehicle 10. 2 is a top view of the vehicle 10.
  • FIG. 3 is a bottom view of vehicle 10.
  • FIG. 3 is a rear view of vehicle 10.
  • (A), (B) is a schematic diagram showing a state of the vehicle 10.
  • (A), (B) is a schematic diagram showing a state of the vehicle 10. It is explanatory drawing of the balance of the force at the time of turning. It is explanatory drawing which shows the simplified relationship between the wheel angle AF and the turning radius R.
  • (A), (B) is explanatory drawing of the torque tqa which acts on the front wheel 12F. It is explanatory drawing of the force which acts on the front wheel 12F which rotates.
  • FIG. 3 is a block diagram showing a configuration related to control of vehicle 10.
  • FIGS. 1 to 4 are explanatory views showing a vehicle 10 as one embodiment. 1 shows a right side view of the vehicle 10, FIG. 2 shows a top view of the vehicle 10, FIG. 3 shows a bottom view of the vehicle 10, and FIG. 4 shows a rear view of the vehicle 10. .. 1 to 4 show a vehicle 10 that is placed on a horizontal ground GL (FIG. 1) and is not tilted. 2 to 4, a part of the configuration of the vehicle 10 shown in FIG. 1 is shown, and the other parts are omitted. Six directions DF, DB, DU, DD, DR and DL are shown in FIGS. 1 to 4.
  • the front direction DF is the front direction (that is, the forward direction) of the vehicle body 90 of the vehicle 10, and the rear direction DB is the direction opposite to the front direction DF.
  • the upward direction DU is a vertically upward direction
  • the downward direction DD is a direction opposite to the upward direction DU.
  • the right direction DR is the right direction viewed from the vehicle 10 traveling in the front direction DF
  • the left direction DL is the direction opposite to the right direction DR.
  • the directions DF, DB, DR, DL are all horizontal directions.
  • the right and left directions DR and DL are perpendicular to the front direction DF.
  • the vehicle 10 is a small vehicle for one passenger.
  • the vehicle 10 (FIGS. 1 and 2) is a tricycle having a vehicle body 90, a front wheel 12F, a left rear wheel 12L, and a right rear wheel 12R.
  • the front wheel 12F is an example of a rotating wheel, and is arranged at the center of the vehicle body 90 in the width direction.
  • the turning wheel is a wheel supported by the vehicle body 90 so that the traveling direction of the wheel can be turned in the width direction of the vehicle body 90 (that is, the direction parallel to the right direction DR).
  • the rear wheels 12L and 12R are drive wheels, and are symmetrically arranged apart from each other with respect to the center of the vehicle body 90 in the width direction.
  • the vehicle body 90 (FIG. 1) has a main body portion 20.
  • the main body 20 includes a bottom 20b, a front wall 20a connected to the front DF side of the bottom 20b, a rear wall 20c connected to the rear DB side of the bottom 20b, and an upper end of the rear wall 20c. And a support portion 20d extending toward the rear direction DB.
  • the main body 20 has, for example, a metal frame and a panel fixed to the frame.
  • the vehicle body 90 further includes a seat 11 fixed on the bottom portion 20b, an accelerator pedal 45 and a brake pedal 46 arranged on the front direction DF side of the seat 11, a control device 100 fixed on the bottom portion 20b, and a battery 120.
  • the front wheel support device 41 includes a front wheel support device 41 fixed to an end of the front wall part 20a on the upward DU side, a shift switch 47 attached to the front wheel support device 41, and a handle 41a.
  • other members for example, a roof, a headlight, etc.
  • the vehicle body 90 includes a member fixed to the main body section 20.
  • the shift switch 47 is a switch for selecting the driving mode of the vehicle 10. In the present embodiment, it is possible to select one from four driving modes of "drive”, “neutral”, “reverse” and “parking".
  • Drive is a mode in which the drive wheels 12L, 12R are driven forward
  • Negtral is a mode in which the drive wheels 12L, 12R are rotatable
  • Reverse is a drive mode for the drive wheels 12L, 12R.
  • Parking is a mode in which at least one wheel (for example, the rear wheels 12L, 12R) cannot rotate.
  • “Drive” and “neutral” are normally used when the vehicle 10 moves forward.
  • the front wheel support device 41 (FIG. 1) is a device that supports the front wheel 12F so as to be rotatable about the rotation axis Ax1.
  • the front wheel support device 41 includes the front fork 17, a bearing 68, and a steering motor 65.
  • the front fork 17 rotatably supports the front wheel 12F, and is, for example, a telescopic type fork having a suspension (a coil spring and a shock absorber) built therein.
  • the bearing 68 connects the main body portion 20 (here, the front wall portion 20a) and the front fork 17.
  • the bearing 68 supports the front fork 17 (and by extension, the front wheel 12F) so as to be rotatable left and right with respect to the vehicle body 90 about the rotation axis Ax1.
  • the front fork 17 may be rotatable about the rotation axis Ax1 with respect to the vehicle body 90 within a predetermined angular range (for example, a range of less than 180 degrees). For example, the front fork 17 may contact another member provided on the vehicle body 90 to limit the angular range.
  • the steering motor 65 is an electric motor, and is an example of a steering drive device configured to generate a torque that rotates the front fork 17 (and thus the front wheel 12F) in the width direction.
  • the steering motor 65 includes a rotor and a stator (not shown). One of the rotor and the stator is fixed to the front fork 17, and the other is fixed to the main body 20 (here, the front wall 20a).
  • the handle 41a is a member rotatable left and right.
  • the rotation direction (right or left) of the handle 41a with respect to the predetermined straight traveling direction indicates the turning direction desired by the user.
  • the size of the rotation angle of the handle 41a with respect to a predetermined straight traveling direction (hereinafter, also referred to as "handle angle") indicates the degree of turning desired by the user.
  • “steering wheel angle>zero” indicates right turn
  • “steering wheel angle ⁇ zero” indicates left turn.
  • the absolute value of the steering wheel angle indicates the degree of turning.
  • Such a steering wheel angle is an example of an operation amount indicating a turning direction and a turning degree.
  • the handle 41a is an example of an operation input unit configured to be operated to input an operation amount.
  • a support rod 41ax extending along the rotation axis of the handle 41a is fixed to the handle 41a.
  • the support rod 41ax is rotatably connected to the front wheel support device 41 about a rotation axis.
  • the wheel angle AF (FIG. 2) is an angle indicating the direction of the front wheels 12F with respect to the vehicle body 90.
  • the wheel angle AF is an angle in the traveling direction D12 of the front wheels 12F with reference to the front direction DF of the vehicle body 90 when the vehicle 10 is viewed in the downward direction DD.
  • the traveling direction D12 is a direction perpendicular to the rotation axis Ax2 of the front wheel 12F.
  • the wheel angle AF corresponds to a so-called steering angle.
  • the steering motor 65 is controlled by the control device 100 (FIG. 1).
  • the torque generated by the steering motor 65 is also referred to as turning torque.
  • the direction D12 of the front wheel 12F is allowed to turn left and right independently of the steering wheel angle. Details of the control of the steering motor 65 will be described later.
  • the angle CA in FIG. 1 indicates the angle formed by the vertically upward direction DU and the direction toward the vertically upward direction DU side along the rotation axis Ax1 (also called a caster angle).
  • the caster angle CA is larger than zero.
  • the direction toward the vertically upward direction DU side along the rotation axis Ax1 is inclined rearward.
  • an intersection P2 between the rotation axis Ax1 of the front wheel support device 41 and the ground GL is located closer to the front side DF than the contact center P1 of the front wheel 12F with the ground GL. positioned.
  • the distance Lt in the backward direction DB between these points P1 and P2 is called a trail.
  • the positive trail Lt indicates that the contact center P1 is located on the backward DB side with respect to the intersection P2.
  • the contact center P1 is the center of gravity of the contact region Ca1 between the front wheel 12F and the ground GL.
  • the center of gravity of the contact area is the position of the center of gravity assuming that the mass is evenly distributed in the contact area.
  • the contact center PbR of the contact region CaR between the right rear wheel 12R and the ground GL and the contact center PbL of the contact region CaL between the left rear wheel 12L and the ground GL are similarly specified.
  • the two rear wheels 12L and 12R are rotatably supported by the rear wheel support portion 80.
  • the rear wheel support portion 80 is fixed to the link mechanism 30, the lean motor 25 fixed to the upper portion of the link mechanism 30, the first support portion 82 fixed to the upper portion of the link mechanism 30, and the front portion of the link mechanism 30.
  • the second supporting portion 83 (FIG. 1) is formed.
  • a part of the link mechanism 30, the first support portion 82, and the second support portion 83 hidden by the right rear wheel 12R is also shown by a solid line.
  • the rear wheel support portion 80, the rear wheels 12L and 12R, and the connecting rod 75, which will be described later, hidden in the main body portion 20 are shown by solid lines for the sake of explanation. 1 to 3, the link mechanism 30 is shown in a simplified manner.
  • the first support portion 82 (FIG. 4) includes a plate-shaped portion extending parallel to the right direction DR on the upward DU side of the rear wheels 12L and 12R.
  • the second support portion 83 (FIGS. 1 and 2) is arranged on the front direction DF side of the link mechanism 30 between the left rear wheel 12L and the right rear wheel 12R.
  • the right rear wheel 12R (FIG. 1) has a wheel 12Ra and a tire 12Rb mounted on the wheel 12Ra.
  • the wheel 12Ra (FIG. 4) is connected to the right drive motor 51R.
  • the right drive motor 51R is an electric motor having a stator and a rotor (not shown). One of the rotor and the stator is fixed to the wheel 12Ra, and the other is fixed to the rear wheel support portion 80.
  • the rotation axis of the right drive motor 51R is the same as the rotation axis of the wheel 12Ra, and is parallel to the right direction DR.
  • the configuration of the wheel 12La of the left rear wheel 12L, the tire 12Lb, and the left drive motor 51L is the same as the configuration of the wheel 12Ra, the tire 12Rb, and the right drive motor 51R of the right rear wheel 12R, respectively.
  • These drive motors 51L and 51R are in-wheel motors that directly drive the rear wheels 12L and 12R.
  • the left drive motor 51L and the right drive motor 51R are collectively referred to as a drive system 51S. 1 and 4 show a state in which the vehicle body 90 stands upright on the horizontal ground GL without tilting (a state in which a tilt angle T described later is zero). In this state, the rotation axis ArL of the left rear wheel 12L (FIG.
  • the position in the front direction DF is approximately the same between the contact center PbR of the right rear wheel 12R and the contact center PbL of the left rear wheel 12L.
  • the link mechanism 30 (FIG. 4) is a so-called parallel link.
  • the link mechanism 30 includes three vertical link members 33L, 21, 33R arranged in order in the right direction DR, and two horizontal link members 31U, 31D arranged in order in the downward direction DD. ..
  • the vertical link members 33L, 21, 33R are parallel to the vertical direction
  • the horizontal link members 31U, 31D are parallel to the horizontal direction. ..
  • the two vertical link members 33L and 33R and the two horizontal link members 31U and 31D form a parallelogram link mechanism.
  • the upper horizontal link member 31U connects the upper ends of the vertical link members 33L and 33R.
  • the lower horizontal link member 31D connects the lower ends of the vertical link members 33L and 33R.
  • the middle vertical link member 21 connects the central portions of the horizontal link members 31U and 31D.
  • the link members 33L, 33R, 31U, 31D, 21 are rotatably connected to each other, and the rotation axis extends in the front-rear direction of the vehicle body 90 (in the present embodiment, the rotation axis is the forward direction DF). Parallel to).
  • the link members connected to each other may be relatively rotatable about the rotation axis within a predetermined angular range (for example, a range less than 180 degrees). For example, a certain portion of one link member may contact a certain portion of the other link member to limit the angular range.
  • the left drive motor 51L is fixed to the left vertical link member 33L.
  • the right drive motor 51R is fixed to the right vertical link member 33R.
  • a first support portion 82 and a second support portion 83 (FIG. 1) are fixed to the upper portion of the middle vertical link member 21.
  • the link members 33L, 21, 33R, 31U, 31D and the supporting portions 82, 83 are made of metal, for example.
  • the link mechanism 30 has a bearing for rotatably connecting a plurality of link members.
  • the bearing 38 rotatably connects the lower horizontal link member 31D and the middle vertical link member 21, and the bearing 39 rotatably connects the upper horizontal link member 31U and the middle vertical link member 21.
  • bearings are also provided in other portions that rotatably connect the plurality of link members.
  • the lean motor 25 is an example of a tilt drive device configured to drive the link mechanism 30, and is an electric motor having a stator and a rotor in this embodiment.
  • One of the stator and the rotor of the lean motor 25 is fixed to the middle vertical link member 21 and the other is fixed to the upper horizontal link member 31U.
  • the rotation shaft of the lean motor 25 is the same as the rotation shaft of the bearing 39, and is located at the center of the vehicle 10 in the width direction.
  • the torque generated by the lean motor 25 is also referred to as tilt torque.
  • the tilt torque is a torque for controlling the tilt angle of the vehicle body 90.
  • FIG. 5A and 5B are schematic diagrams showing the state of the vehicle 10 on the horizontal ground GL.
  • FIG. 5(A) shows a state in which the vehicle 10 is upright
  • FIG. 5(B) shows a state in which the vehicle 10 is inclined.
  • FIG. 5(A) when the upper horizontal link member 31U is orthogonal to the middle vertical link member 21, all the wheels 12F, 12L, 12R stand upright on the horizontal ground GL.
  • the entire vehicle 10 including the vehicle body 90 stands upright with respect to the ground GL.
  • the vehicle body upward direction DVU in the drawing is the upward direction of the vehicle body 90.
  • the vehicle body upward direction DVU is the same as the upward direction DU.
  • a predetermined upward direction with respect to the vehicle body 90 is used as the vehicle body upward direction DVU.
  • the lateral link members 31U and 31D are members rotatably supported by the vehicle body 90 (specifically, the lateral link members 31U and 31D are the vehicle body via a suspension system 70 and a first support portion 82, which will be described later. 90 is rotatably supported by the intermediate vertical link member 21 connected to 90).
  • the link mechanism 30 including the lateral link members 31U and 31D can change the relative position of the left rear wheel 12L and the right rear wheel 12R in the vehicle body upward direction DVU. As shown in FIG. 5B, in the rear view, when the middle vertical link member 21 is rotating clockwise with respect to the upper horizontal link member 31U, the right rear wheel 12R is on the vehicle body upward direction DVU side. The left rear wheel 12L moves to the opposite side.
  • the vehicle body upward direction DVU is inclined to the right side DR side with respect to the upward direction DU.
  • the angle between the upward direction DU and the vehicle body upward direction DVU when the vehicle 10 is viewed in the front direction DF is referred to as a tilt angle T.
  • T>zero indicates an inclination toward the right side DR side
  • T ⁇ zero indicates an inclination toward the left side DL side.
  • FIG. 5(B) shows the control angle Tc of the link mechanism 30.
  • the control angle Tc indicates the angle of the orientation of the middle vertical link member 21 with respect to the orientation of the upper horizontal link member 31U.
  • “Tc>zero” indicates that, in the rear view of FIG. 5B, the middle vertical link member 21 rotates clockwise with respect to the upper horizontal link member 31U.
  • “Tc ⁇ zero” indicates that the middle vertical link member 21 has rotated counterclockwise with respect to the upper horizontal link member 31U.
  • the control angle Tc is approximately the same as the tilt angle T.
  • the axis AxL on the ground GL in FIGS. 5A and 5B is the tilt axis AxL.
  • the link mechanism 30 and the lean motor 25 can tilt the vehicle 10 to the right and left around the tilt axis AxL.
  • the tilt axis AxL is a straight line that passes through the contact center P1 between the front wheel 12F and the ground GL and is parallel to the front direction DF.
  • the link mechanism 30 that rotatably supports the rear wheels 12L and 12R is an example of a tilting device configured to tilt the vehicle body 90 in the width direction of the vehicle body 90 (also referred to as a tilting device 30).
  • FIGS. 5(A) and 5(B) show a simplified rear view of the vehicle 10, similar to FIGS. 5(A) and 5(B).
  • the ground GLx is inclined with respect to the vertically upward direction DU (the right side is high and the left side is low).
  • FIG. 6A shows a state in which the control angle Tc is zero. In this state, all the wheels 12F, 12L, 12R stand upright with respect to the ground GLx.
  • the vehicle body upward direction DVU is perpendicular to the ground surface GLx, and is inclined to the left direction DL side with respect to the vertically upward direction DU.
  • FIG. 6B shows a state where the tilt angle T is zero.
  • the upper horizontal link member 31U is substantially parallel to the ground GLx, and is inclined in the counterclockwise direction with respect to the middle vertical link member 21.
  • the wheels 12F, 12L, 12R are inclined with respect to the ground GL.
  • the size of the inclination angle T of the vehicle body 90 may be different from the size of the control angle Tc of the link mechanism 30.
  • the lean motor 25 has a lock mechanism (not shown) that fixes the lean motor 25 so that it cannot rotate.
  • the lock mechanism By operating the lock mechanism, the upper horizontal link member 31U is non-rotatably fixed to the middle vertical link member 21.
  • the control angle Tc is fixed.
  • the control angle Tc is fixed to zero when the vehicle 10 is parked.
  • the lock mechanism is preferably a mechanical mechanism that does not consume power while fixing the lean motor 25 (and thus the link mechanism 30).
  • the main body 20 is connected to the rear wheel support 80 by the suspension system 70 and the connecting rod 75.
  • the suspension system 70 (FIG. 4) includes an extendable left suspension 70L and an extendable right suspension 70R.
  • each of the suspensions 70L and 70R is a telescopic type suspension that incorporates coil springs 71L and 71R and shock absorbers 72L and 72R.
  • the upper DU side ends of the suspensions 70L and 70R are rotatably connected to the support portion 20d of the main body 20 (for example, a ball joint, a hinge, etc.).
  • the ends of the suspensions 70L and 70R on the downward DD side are rotatably connected to the first support portion 82 of the rear wheel support portion 80 (for example, a ball joint, a hinge, etc.).
  • the connecting rod 75 is a rod extending in the forward direction DF, as shown in FIGS. 1 and 2.
  • the connecting rod 75 is arranged at the center of the vehicle 10 in the width direction.
  • An end portion of the connecting rod 75 on the front DF side is rotatably connected to the rear wall portion 20c of the main body portion 20 (for example, a ball joint).
  • the rear DB side end of the connecting rod 75 is rotatably connected to the second support portion 83 of the rear wheel support portion 80 (for example, a ball joint).
  • the vehicle body 90 can be rotated in the width direction by expanding and contracting the suspensions 70L and 70R.
  • a rotation axis AxR in FIG. 1 indicates a central axis when the vehicle body 90 rotates in the right direction DR and the left direction DL with respect to the rear wheel support portion 80.
  • the rotation axis AxR is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and the vicinity of the connecting rod 75.
  • the vehicle body 90 is rotatable about a rotation axis AxR within a predetermined angle range (for example, a range of less than 90 degrees).
  • the angular range is limited by the possible range of length of the suspensions 70L, 70R.
  • the tilt axis AxL of the tilt by the tilt device 30 is different from the rotation axis AxR.
  • the rotation axis AxR and the center of gravity 90c are shown in FIG. 1, FIG. 5(A), and FIG. 5(B).
  • the rotation axis AxR in FIGS. 5A and 5B indicates the position of the rotation axis AxR on a plane including the suspensions 70L and 70R and perpendicular to the front direction DF.
  • the center of gravity 90c is the center of gravity of the vehicle body 90.
  • the center of gravity 90c of the vehicle body 90 is the center of gravity of the vehicle body 90 when the vehicle body 90 is loaded with passengers (and, if possible, luggage).
  • the vehicle 10 is configured such that the center of gravity 90c is arranged on the lower side DD side of the rotation axis AxR.
  • the battery 120 which is a relatively heavy element among the elements of the vehicle body 90 (FIG. 1), is arranged at a low position in order to arrange the center of gravity 90c on the lower side DD side of the rotation axis AxR.
  • the battery 120 is fixed to the bottom portion 20b which is the lowest portion of the body portion 20 of the vehicle body 90. Therefore, the center of gravity 90c can be easily made lower than the rotation axis AxR.
  • FIG. 7 is an explanatory diagram of the force balance during turning.
  • a rear view of the rear wheels 12L and 12R when the turning direction is the right direction is shown.
  • the control device 100 (FIG. 1) leans the rear wheels 12L and 12R (and thus the vehicle 10) in the right direction DR with respect to the ground GL.
  • the motor 25 may be controlled.
  • the first force F1 in the figure is a centrifugal force that acts on the vehicle body 90.
  • the second force F2 is gravity acting on the vehicle body 90.
  • the mass of the vehicle body 90 is m (kg)
  • the gravitational acceleration is g (approximately 9.8 m/s 2 )
  • the inclination angle of the vehicle 10 with respect to the vertical direction is T (degrees).
  • the turning radius is R (m).
  • the first force F1 and the second force F2 are represented by the following equations 1 and 2.
  • F1 (m * V 2) / R ( Equation 1)
  • F2 m*g (Formula 2)
  • * is a multiplication symbol (hereinafter the same).
  • the force F1b in the figure is a component of the first force F1 in a direction perpendicular to the vehicle body upward direction DVU.
  • the force F2b is a component of the second force F2 in a direction perpendicular to the vehicle body upward direction DVU.
  • the force F1b and the force F2b are expressed by the following equations 3 and 4.
  • F1b F1*cos(T) (Formula 3)
  • F2b F2*sin(T) (Equation 4)
  • cos( ) is a cosine function
  • sin( ) is a sine function (hereinafter the same).
  • the force F1b is a component that rotates the vehicle body upward direction DVU to the left direction DL side
  • the force F2b is a component that rotates the vehicle body upward direction DVU to the right direction DR side.
  • Formula 6 is established without depending on the mass m of the vehicle body 90.
  • T the absolute value of the tilt angle T
  • T the magnitude of the tilt angle without distinguishing between the left direction and the right direction.
  • the expression 6a is established regardless of the inclination direction of the vehicle body 90.
  • FIG. 8 is an explanatory diagram showing a simplified relationship between the wheel angle AF and the turning radius R.
  • the wheels 12F, 12L, 12R as viewed in the downward direction DD are shown.
  • the traveling direction D12 of the front wheels 12F is rotating in the right direction DR, and the vehicle 10 turns in the right direction DR.
  • the front center Cf in the figure is the center of the front wheel 12F.
  • the front center Cf is located on the rotation axis Ax2 of the front wheel 12F.
  • the front center Cf is located at substantially the same position as the contact center P1 (FIG. 1).
  • the rear center Cb is the center between the two rear wheels 12L and 12R.
  • the rear center Cb is located at the center between the rear wheels 12L and 12R on the rotation axes ArL and ArR of the rear wheels 12L and 12R.
  • the center Cr is the center of turning (referred to as the turning center Cr).
  • the wheel base Lh is a distance in the front direction DF between the front center Cf and the rear center Cb. As shown in FIG. 1, the wheel base Lh is the distance in the front direction DF between the rotation axis Ax2 of the front wheel 12F and the rotation axes ArL and ArR of the rear wheels 12L and 12R.
  • the front center Cf, the rear center Cb, and the turning center Cr form a right triangle.
  • the interior angle of the point Cb is 90 degrees.
  • the interior angle of the point Cr is the same as the wheel angle AF. Therefore, the relationship between the wheel angle AF and the turning radius R is expressed by the following Expression 7.
  • AF arctan(Lh/R) (Equation 7)
  • arctan( ) is the inverse function of the tangent function (hereinafter the same).
  • Equation 6 is relational expressions that are established when the vehicle 10 is turning in a state where the speed V and the turning radius R do not change.
  • the real wheels 12F, 12L, 12R may slide against the ground.
  • the actual wheels 12F, 12L, 12R may be inclined with respect to the ground. Therefore, the actual turning radius may be different from the turning radius R in Equation 7.
  • Expression 7 can be used as a good approximate expression showing the relationship between the wheel angle AF and the turning radius R.
  • the torque of the steering motor 65 may be controlled to a small value.
  • the direction of the front wheels 12F that is, the traveling direction D12 (FIG. 2)
  • the traveling direction D12 (FIG. 2)
  • FIG. 9(A) and 9(B) are explanatory diagrams of the torque tqa acting on the front wheel 12F.
  • FIG. 9(A) shows an outline of the vehicle 10 as viewed in the downward direction DD
  • FIG. 9(B) shows an outline of the front wheels 12F as viewed in the front direction DF.
  • These figures show a state in which the vehicle body 90 of the vehicle 10 moving forward is inclined to the right DR side.
  • the front wheel support device 41 is fixed to the vehicle body 90 as described with reference to FIG.
  • the front wheel support device 41 (and by extension, the rotation axis Ax1 of the front wheel 12F) leans together with the vehicle body 90.
  • FIG. 9(A) shows an outline of the vehicle 10 as viewed in the downward direction DD
  • FIG. 9(B) shows an outline of the front wheels 12F as viewed in the front direction DF.
  • the front wheel 12F inclines to the right DR side.
  • the front wheels 12F come into contact with the ground GL to support a part of the weight of the vehicle 10. Therefore, the front wheel 12F receives the force Fa in the upward direction DU from the ground GL.
  • the force Fa acts on the contact center P1 of the front wheel 12F.
  • This force Fa includes a component Fa1 parallel to the rotation axis Ax1 of the front wheel 12F and a component Fa2 perpendicular to the rotation axis Ax1.
  • the vertical component Fa2 faces the left direction DL side.
  • the contact center P1 of the front wheel 12F is closer to the rear DB than the intersection P2 between the rotation axis Ax1 of the front wheel 12F and the ground GL.
  • a force Fa2 directed to the left DL side acts on the contact center P1 of the front wheel 12F.
  • a torque tqa for rotating the direction D12 of the front wheel 12F to the right DR direction acts on the front wheel 12F.
  • the traveling direction D12 of the front wheel 12F can be naturally rotated in the inclination direction of the vehicle body 90.
  • FIG. 10 is an explanatory diagram of a force acting on the rotating front wheel 12F.
  • a perspective view of the front wheel 12F is shown in the figure.
  • the direction D12 of the front wheel 12F is the same as the front direction DF.
  • the rotation axis Ax2 is a rotation axis of the front wheel 12F.
  • the front wheels 12F rotate around this rotation axis Ax2.
  • a rotation axis Ax1 of the front wheel support device 41 FIG.
  • the rotation axis Ax1 extends from the upper direction DU side toward the lower direction DD side.
  • the front axis Ax3 is an axis that passes through the center of gravity 12Fc of the front wheel 12F and is parallel to the direction D12 of the front wheel 12F.
  • the rotation axis Ax2 of the front wheel 12F also passes through the center of gravity 12Fc of the front wheel 12F.
  • the rotation axis Ax1 of the front wheel support device 41 also leans together with the vehicle body 90. Therefore, the rotation axis Ax2 of the front wheel 12F also tries to tilt in the same direction.
  • the torque Tqx to lean to the right DR side acts on the front wheels 12F that rotate around the rotation axis Ax2.
  • the torque Tqx includes a component of force that tends to incline the front wheel 12F to the right DR side around the front shaft Ax3.
  • precession the movement of an object when an external torque is applied to a rotating object is known as precession.
  • a rotating object rotates about an axis that is perpendicular to the axis of rotation and the axis of external torque.
  • the rotating front wheel 12F rotates to the right DR side around the rotation axis Ax1 of the front wheel support device 41.
  • the direction D12 of the front wheel 12F rotates in the tilt direction of the vehicle body 90.
  • the traveling direction D12 of the front wheels 12F follows the lean of the vehicle body 90 and turns to the right DR side.
  • the direction D12 of the front wheel 12F turns to the left DL side following the tilt of the vehicle body 90.
  • the vehicle 10 travels in a state where the traveling direction D12 of the front wheels 12F is oriented in a direction suitable for the inclination angle T (FIGS. 7 and 8).
  • the wheel angle AF changes following the change in the tilt angle T of the vehicle body 90.
  • the front wheel 12F has a positive trail Lt. Therefore, when the vehicle speed is high, the traveling direction D12 of the front wheels 12F can be more easily oriented in the traveling direction of the vehicle 10 than when the vehicle speed is low.
  • the front wheel support device 41 supports the front wheel 12F as follows. That is, the traveling direction D12 of the front wheel 12F can be rotated in the width direction with respect to the vehicle body 90 in accordance with the change in the inclination of the vehicle body 90 regardless of the information input to the handlebar 41a. For example, even when the steering wheel 41a is maintained in the state of going straight, if the inclination angle T of the vehicle body 90 changes to the right, the traveling direction D12 of the front wheels 12F follows the change of the inclination angle T. Then, it can rotate to the right. As described above, even when the operation amount input to the steering wheel 41a is fixed to one value, the wheel angle AF of the front wheels 12F can be changed to various values in accordance with the change in the inclination of the vehicle body 90. Is.
  • FIG. 11 is a block diagram showing a configuration relating to control of the vehicle 10.
  • the vehicle 10 has a configuration relating to control such as a vehicle speed sensor 122, a steering wheel angle sensor 123, a wheel angle sensor 124, a vertical direction sensor 126, an accelerator pedal sensor 145, a brake pedal sensor 146, a shift switch 47, and a control.
  • the apparatus 100, the right drive motor 51R, the left drive motor 51L, the lean motor 25, and the steering motor 65 are included.
  • the vehicle speed sensor 122 is a sensor that detects the vehicle speed of the vehicle 10.
  • the vehicle speed sensor 122 is attached to the lower end of the front fork 17 (FIG. 1) and detects the rotation speed of the front wheels 12F, that is, the vehicle speed.
  • the steering wheel angle sensor 123 is a sensor that detects the direction of the steering wheel 41a (that is, the steering wheel angle).
  • the handle angle sensor 123 is attached to the support rod 41ax fixed to the handle 41a (FIG. 1).
  • the wheel angle sensor 124 is a sensor that detects the wheel angle AF of the front wheels 12F.
  • the wheel angle sensor 124 is attached to the steering motor 65 (FIG. 1).
  • the vertical direction sensor 126 is a sensor that specifies the vertical downward direction DD.
  • the vertical direction sensor 126 is fixed to the vehicle body 90 (FIG. 1) (specifically, the rear wall portion 20c).
  • the vertical sensor 126 includes an acceleration sensor 126a, a gyro sensor 126g, and a control unit 126c.
  • the acceleration sensor is a sensor that detects acceleration in an arbitrary direction, and is, for example, a triaxial acceleration sensor.
  • the direction of acceleration detected by the acceleration sensor 126a is referred to as a detection direction.
  • the detection direction is the same as the vertically downward direction DD.
  • the gyro sensor 126g is a sensor that detects angular acceleration about a rotation axis in an arbitrary direction, and is, for example, a triaxial angular acceleration sensor.
  • the control unit 126c is a device that specifies the vertically downward direction DD using the signal from the acceleration sensor 126a, the signal from the gyro sensor 126g, and the signal from the vehicle speed sensor 122.
  • the control unit 126c is, for example, a data processing device including a computer.
  • the control unit 126c calculates the acceleration of the vehicle 10 by using the vehicle speed V specified by the vehicle speed sensor 122. Then, the control unit 126c identifies the deviation in the detection direction with respect to the vertically downward direction DD caused by the acceleration of the vehicle 10 by using the acceleration (for example, the deviation in the front direction DF or the rear direction DB in the detection direction is identified. ). Further, the control unit 126c uses the angular acceleration specified by the gyro sensor 126g to specify the deviation of the detection direction from the vertically downward direction DD caused by the angular acceleration of the vehicle 10 (for example, the right direction DR of the detection direction). Alternatively, the shift in the left direction DL is specified). The control unit 126c identifies the vertically downward direction DD by correcting the detection direction using the identified deviation. In this way, the vertical direction sensor 126 can specify the appropriate vertical downward direction DD in various traveling states of the vehicle 10.
  • the accelerator pedal sensor 145 is attached to the accelerator pedal 45 (FIG. 1) and detects the accelerator operation amount.
  • the brake pedal sensor 146 is attached to the brake pedal 46 (FIG. 1) and detects the brake operation amount.
  • Each of the sensors 122, 123, 124, 145, 146 is composed of, for example, a resolver or an encoder.
  • the control device 100 has a main control unit 110, a drive device control unit 300, a lean motor control unit 400, and a steering motor control unit 500.
  • the control device 100 operates using electric power from the battery 120 (FIG. 1).
  • each of the control units 110, 300, 400 and 500 has a computer.
  • the control units 110, 300, 400, 500 include processors 110p, 300p, 400p, 500p (for example, CPU), volatile storage devices 110v, 300v, 400v, 500v (for example, DRAM), and nonvolatile memory.
  • the storage devices 110n, 300n, 400n, and 500n for example, flash memory).
  • Programs 110g, 300g, 400g, 500g for operating the corresponding control units 110, 300, 400, 500 are stored in advance in the nonvolatile storage devices 110n, 300n, 400n, 500n.
  • map data MT, MAF, MTQ, and MKb are stored in advance in the nonvolatile storage device 110n of the main control unit 110.
  • the map data Mp2 is stored in advance in the nonvolatile memory device 300n of the drive device controller 300.
  • the map data Mp1 and MKpa are stored in advance in the nonvolatile storage device 500n of the steering motor control unit 500.
  • the processors 110p, 300p, 400p, 500p execute various processes by executing the corresponding programs 110g, 300g, 400g, 500g, respectively.
  • the processor 110p of the main control unit 110 receives signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47. Then, the processor 110p outputs an instruction to the drive device controller 300, the lean motor controller 400, and the steering motor controller 500 using the received signal.
  • the processor 300p of the drive device controller 300 controls the drive motors 51L and 51R according to an instruction from the main controller 110.
  • the processor 400p of the lean motor control unit 400 controls the lean motor 25 according to an instruction from the main control unit 110.
  • the processor 500p of the steering motor control unit 500 controls the steering motor 65 according to an instruction from the main control unit 110.
  • These control units 300, 400, 500 have power control units 300c, 400c, 500c for supplying electric power from the battery 120 to the control target motors 51L, 51R, 25, 65, respectively.
  • the power control units 300c, 400c, 500c are configured by using an electric circuit (for example, an inverter circuit).
  • control units 110, 300, 400, 500p of the control units 110, 300, 400, 500 execute processing is also expressed simply as the control units 110, 300, 400, 500 executing processing.
  • FIG. 12 is a flowchart showing an example of control processing executed by the control device 100 (FIG. 11).
  • the flowchart of FIG. 12 shows the control procedure of the rear wheel support portion 80, the front wheel support device 41, and the drive system 51S.
  • each step is provided with a code that is a combination of the letter “S” and the number following the letter “S”.
  • the main control unit 110 acquires signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47. Then, the main control unit 110 specifies the speed V, the steering wheel angle Ai, the wheel angle AF, the vertically downward direction DD, the accelerator operation amount, the brake operation amount, and the traveling mode.
  • the main control unit 110 determines whether or not the condition "the driving mode is either "drive” or "neutral”" is satisfied.
  • the condition of S120 indicates that the vehicle 10 is moving forward.
  • S130 is a first tilt control process for controlling the lean motor 25.
  • S140 is a second steering drive control process for controlling the steering motor 65 and the drive motors 51L and 51R. After S130 and S140, the control device 100 ends the process of FIG.
  • FIG. 13 is a flowchart showing an example of the first tilt control process (S130: FIG. 12).
  • the main control unit 110 acquires information indicating the vehicle speed V, the steering wheel angle Ai, and the vertically downward direction DD from the sensors 122, 123, and 126, respectively.
  • the main control unit 110 calculates the tilt angle T using the vertically downward direction DD.
  • the direction of the vertical direction sensor 126 with respect to the vehicle body 90 (and thus the vehicle body upward direction DVU) is predetermined.
  • the main controller 110 uses the orientation of the vertical direction sensor 126 with respect to the vehicle body upward direction DVU to determine the inclination angle T between the upward direction DU, which is the direction opposite to the vertically downward direction DD, and the vehicle body upward direction DVU. Calculate (FIG. 5(B)).
  • the vertical sensor 126 (FIG. 11) and the main controller 110 as a whole are examples of the tilt angle sensor configured to measure the tilt angle T.
  • the vertical direction sensor 126 and the main control unit 110 as a whole are also referred to as a tilt angle sensor 127.
  • the main control unit 110 determines the first target tilt angle T1.
  • the first target tilt angle T1 is a target value of the tilt angle T.
  • the first target tilt angle T1 is specified using the steering wheel angle Ai and the vehicle speed V.
  • the correspondence relationship between the steering wheel angle Ai, the vehicle speed V, and the first target tilt angle T1 is predetermined by the tilt angle map data MT (FIG. 11).
  • the main control unit 110 identifies the first target tilt angle T1 corresponding to the combination of the steering wheel angle Ai and the vehicle speed V by referring to the tilt angle map data MT. In this embodiment, when the vehicle speed V is constant, the larger the absolute value of the steering wheel angle Ai, the larger the absolute value of the first target tilt angle T1.
  • the turning radius R decreases as the absolute value of the steering wheel angle Ai increases, so that the vehicle 10 can turn with the turning radius R suitable for the steering wheel angle Ai.
  • the correspondence relationship between the vehicle speed V and the first target tilt angle T1 when the steering wheel angle Ai is constant may be various correspondence relationships.
  • the slower the vehicle speed V the larger the absolute value of the first target tilt angle T1 may be.
  • the vehicle 10 can easily turn with a small turning radius R at low speed.
  • the absolute value of the first target tilt angle T1 may be smaller as the vehicle speed V is slower. In this case, it is possible to suppress an excessive change in the tilt angle T at low speed.
  • the information used for specifying the first target tilt angle T1 may be one or more arbitrary information including the steering wheel angle Ai instead of the combination of the steering wheel angle Ai and the vehicle speed V.
  • the first target tilt angle T1 may be specified without using the vehicle speed V.
  • main controller 110 calculates difference dT by subtracting tilt angle T from first target tilt angle T1 (also referred to as tilt angle difference dT).
  • step S250 the main control unit 110 supplies the lean motor control unit 400 with an instruction to control the lean motor 25 so that the tilt angle difference dT becomes zero.
  • the main control unit 110 supplies information indicating the tilt angle difference dT to the lean motor control unit 400.
  • the lean motor control unit 400 drives the lean motor 25 so that the tilt angle difference dT becomes zero.
  • the lean motor control unit 400 performs feedback control of the torque of the lean motor 25 (for example, the power supplied to the lean motor 25) using the tilt angle difference dT.
  • the tilt angle T approaches the first target tilt angle T1.
  • the process of FIG. 13, that is, S130 of FIG. 12 ends.
  • PID Proportional Integral Derivative
  • FIG. 14 is a flowchart showing an example of the first steering control process (S140: FIG. 12).
  • the main control unit 110 provides the information indicating the vehicle speed V, the steering wheel angle Ai, the wheel angle AF, the accelerator operation amount from the sensors 122, 123, 124, 145 and the information indicating the first target inclination angle T1. Get each.
  • the first target tilt angle T1 the first target tilt angle T1 determined in S230 of FIG. 13 is acquired.
  • the main control unit 110 determines a target wheel angle AFt which is a target value of the wheel angle AF.
  • the target wheel angle AFt is specified using the vehicle speed V and the first target tilt angle T1.
  • the target wheel angle AFt corresponding to the combination of the vehicle speed V and the first target tilt angle T1 is a wheel specified by using the combination of the vehicle speed V and the first target tilt angle T1 and the above-described equations 6 and 7. Same as corner AF.
  • the correspondence relationship between the vehicle speed V, the first target tilt angle T1 and the target wheel angle AFt is predetermined by the wheel angle map data MAF (FIG. 11).
  • the main control unit 110 identifies the target wheel angle AFt by referring to this wheel angle map data MAF.
  • the same target wheel angle AFt can be specified using the steering wheel angle Ai and the vehicle speed V.
  • the wheel angle map data MAF may indicate the correspondence between the combination of the steering wheel angle Ai and the vehicle speed V and the target wheel angle AFt.
  • the main control unit 110 may specify the target wheel angle AFt using the steering wheel angle Ai and the vehicle speed V.
  • the main control unit 110 calculates the difference dAF by subtracting the wheel angle AF from the target wheel angle AFt (also referred to as wheel angle difference dAF).
  • main controller 110 determines whether or not the state of steering motor 65 is a predetermined malfunction state.
  • the defective state may be various states in which the steering motor 65 may have a defective state.
  • the defective state is a state in which the magnitude of the current flowing through the steering motor 65 is outside the appropriate range that is associated in advance with the voltage applied to the steering motor 65.
  • the electric wire for example, coil wire
  • the magnitude of the current flowing through the steering motor 65 may be zero regardless of the voltage.
  • an unintended short circuit is formed in the electric circuit of the steering motor 65, the magnitude of the current flowing through the steering motor 65 may be excessive.
  • the electric power control unit 500c of the steering motor control unit 500 (FIG. 11) is configured to measure a voltage applied to the steering motor 65 and a voltmeter configured to measure a current flowing through the steering motor 65. And an ammeter which is operated (not shown). The correspondence between the voltage and the proper range is predetermined by the map data Mp1.
  • the steering motor control unit 500 specifies the appropriate range corresponding to the voltage measured by the voltmeter by referring to the map data Mp1. Then, the steering motor control unit 500 specifies whether or not the current measured by the ammeter is within the proper range, and notifies the main control unit 110 of the specified result.
  • the main control unit 110 uses information from the steering motor control unit 500 to determine whether the state of the steering motor 65 is normal.
  • the main control unit 110 may store defect information (for example, flag data) indicating whether or not the state of the steering motor 65 is in a defective state in the nonvolatile storage device 110n.
  • the failure information is set to either a normal value indicating that the status is not a failure status or an abnormal value indicating that the status is a failure status.
  • the defect information is initialized to a normal value.
  • the steering motor control unit 500 notifies the main control unit 110 that the current is out of the proper range, the main control unit 110 sets the defect information to an abnormal value. After that, when the steering motor 65 is repaired, the main control unit 110 sets the defect information to the normal value according to the user's instruction.
  • the main control unit 110 sets the fault information to a normal value even if the steering motor control unit 500 notifies that the current is within the proper range. Do not set to. Then, the main control unit 110 continues to determine that the state of the steering motor 65 is in the defective state until the defective information is set to the normal value in accordance with the user's instruction.
  • S350 is a process of controlling the drive motors 51L and 51R.
  • S360 is a process for controlling the steering motor 65. After S350 and S360, the main control unit 110 ends the processing of FIG.
  • the main control unit 110 uses the accelerator operation amount to specify the target torque of the drive motors 51L and 51R.
  • the correspondence relationship between the accelerator operation amount and the target torque is predetermined by the torque map data MTQ.
  • the main control unit 110 identifies the target torque corresponding to the accelerator operation amount by referring to the torque map data MTQ.
  • the larger the accelerator operation amount the larger the target torque.
  • the target torque may be specified by using the changing speed of the accelerator operation amount in addition to the accelerator operation amount. For example, when the accelerator operation amount is the same, the target torque may be set to a larger value as the increasing speed of the accelerator operation amount is larger.
  • the main controller 110 supplies the drive device controller 300 with an instruction for controlling the drive motors 51L and 51R so that the torque of the drive motors 51L and 51R becomes the target torque.
  • the main control unit 110 supplies information indicating the target torque to the drive device control unit 300.
  • the drive device controller 300 supplies electric power corresponding to the target torque to the drive motors 51L and 51R according to the instruction. With the above, S350 ends.
  • the correspondence between the target torque and the electric power is predetermined by the map data Mp2 (FIG. 11).
  • the drive device controller 300 specifies the electric power corresponding to the target torque by referring to the map data Mp2, and supplies the specified electric power to the drive motors 51L and 51R.
  • the drive device controller 300 may specify the electric power using one or more parameters including the target torque (for example, the target torque, the vehicle speed V, etc.). For example, when the target torque is the same, the electric power may be larger as the vehicle speed V is higher.
  • the main control unit 110 (FIG. 11) supplies the steering motor control unit 500 with an instruction to control the steering motor 65 so that the wheel angle AF becomes the target wheel angle AFt.
  • the main control unit 110 supplies the steering motor control unit 500 with information indicating the wheel angle difference dAF.
  • the steering motor control unit 500 drives the steering motor 65 so that the wheel angle difference dAF becomes zero.
  • the steering motor control unit 500 performs feedback control of the torque of the steering motor 65 using the wheel angle difference dAF (for example, so-called PID (Proportional Integral Derivative) control). As a result, the wheel angle AF approaches the target wheel angle AFt. Then, the process of S360 ends.
  • PID Proportional Integral Derivative
  • P control of the torque (more specifically, electric power) of the steering motor 65 is performed (D control and I control are omitted).
  • the steering motor control unit 500 calculates the control value by multiplying the wheel angle difference dAF by the P gain. Then, the steering motor control unit 500 adjusts the electric power supplied to the steering motor 65 so that the torque of the steering motor 65 is proportional to the control value.
  • the P gain indicates the ratio of the magnitude of the torque of the steering motor 65 to the magnitude of the wheel angle difference dAF.
  • FIG. 15 is a graph showing an example of the P gain Kpa used for P control.
  • the horizontal axis represents the vehicle speed V
  • the vertical axis represents the P gain Kpa.
  • the P gain Kpa is set to zero (zero ⁇ V1).
  • the P gain Kpa is greater than zero.
  • the P gain Kpa is set to a value Kpa1 larger than zero (zero ⁇ V2 ⁇ V1).
  • the P gain Kpa gradually decreases from the value Kpa1 to zero as the vehicle speed V increases.
  • the traveling direction D12 of the front wheels 12F can naturally rotate in the inclination direction of the vehicle body 90.
  • the front wheel 12F (FIG. 1) has the positive trail Lt
  • the direction D12 of the front wheel 12F (that is, the wheel angle AF) follows the change of the inclination angle T. Change easily.
  • the first threshold value V1 can be easily changed in the direction D12 of the front wheels 12F by following the change of the inclination angle T without using the force of the steering motor 65.
  • the steering motor control unit 500 allows the direction D12 of the front wheels 12F to rotate left and right independently of the steering wheel angle.
  • the traveling direction D12 of the front wheel 12F can be changed following the change in the inclination angle T.
  • the P gain Kpa is larger than zero, so the torque of the steering motor 65 can be large.
  • the large torque of the steering motor 65 brings the direction D12 of the front wheels 12F (that is, the wheel angle AF) closer to the target wheel angle AFt.
  • the P gain Kpa changes smoothly according to the change in the vehicle speed V.
  • the correspondence between the vehicle speed V and the P gain Kpa is predetermined by the map data MKpa (FIG. 11).
  • the steering motor control unit 500 specifies the P gain Kpa by referring to the map data MKpa, and uses the P gain Kpa to determine the power to be supplied to the steering motor 65. Note that in S360 (FIG. 14), at least one of D control and I control may be performed in addition to P control.
  • the main control unit 110 executes S370 and S380-S390 in parallel.
  • S370 the main control unit 110 supplies the steering motor control unit 500 with an instruction to stop the power supply to the steering motor 65.
  • the steering motor control unit 500 sets the electric power supplied to the steering motor 65 to zero in response to the instruction.
  • S380-S390 are processes for controlling the drive motors 51L and 51R. After S370 and S380-S390, the main control unit 110 ends the processing of FIG.
  • the main control unit 110 identifies the reference torque TQs of the drive motors 51L and 51R using the accelerator operation amount.
  • the reference torque TQs is the same as the target torque specified in S350.
  • the main controller 110 supplies the drive device controller 300 with an instruction to control the drive motors 51L and 51R so that the torques of the drive motors 51L and 51R become the target torques TQL and TQR.
  • the main control unit 110 supplies information indicating the target torques TQL and TQR to the drive device control unit 300.
  • the drive device control unit 300 supplies electric power corresponding to the target torques TQL and TQR to the drive motors 51L and 51R according to the instruction.
  • the electric power of the left drive motor 51L and the electric power of the right drive motor 51R are specified using the target torques TQL and TQR, similarly to the electric power specified in S350. With the above, S390 ends.
  • FIG. 16A shows the case where the adjustment value dTQ is a positive value.
  • the target direction D12t in the figure is the target direction of the front wheel 12F indicated by the target wheel angle AFt.
  • the wheel angle difference dAF is a positive value
  • the target direction D12t faces the right side DR side of the traveling direction D12 of the front wheels 12F.
  • TQL>TQR Since the torque of the left rear wheel 12L is larger than the torque of the right rear wheel 12R, the traveling direction of the vehicle 10 changes to the right direction DR side. As a result, the wheel angle AF approaches the target wheel angle AFt.
  • FIG. 16B shows a case where the adjustment value dTQ is a negative value.
  • the wheel angle difference dAF is a negative value
  • the target direction D12t faces the left direction DL side with respect to the traveling direction D12.
  • TQR >TQL. Since the torque of the right rear wheel 12R is larger than the torque of the left rear wheel 12L, the traveling direction of the vehicle 10 changes to the left direction DL side. As a result, the wheel angle AF approaches the target wheel angle AFt.
  • the traveling direction of the vehicle 10 can be controlled by utilizing the torque difference between the left rear wheel 12L and the right rear wheel 12R.
  • FIG. 16C is a graph showing an example of the coefficient Kpb used to calculate the adjustment value dTQ (FIG. 14: S385).
  • the horizontal axis represents the vehicle speed V
  • the vertical axis represents the coefficient Kpb.
  • the shape of the graph of the correspondence relationship between the vehicle speed V and the coefficient Kpb is the same as the shape of the graph of the correspondence relationship between the vehicle speed V and the P gain Kpa shown in FIG. 15.
  • the coefficient Kpb is set to zero.
  • the coefficient Kpb is greater than zero.
  • the coefficient Kpb When the vehicle speed V is equal to or lower than the second threshold value V2, the coefficient Kpb is set to a value Kpb1 larger than zero. Between the first threshold value V1 and the second threshold value V2, the coefficient Kpb gradually decreases from the value Kpb1 to zero as the vehicle speed V increases.
  • the correspondence between the vehicle speed V and the coefficient Kpb is determined in advance by the coefficient map data MKb (FIG. 11).
  • the main control unit 110 identifies the coefficient Kpb corresponding to the vehicle speed V by referring to this coefficient map data MKb.
  • the thresholds V1 and V2 are the same as the thresholds V1 and V2 described in the graph of FIG. 15, respectively.
  • FIG. 16D is a graph showing an example of the relationship between the adjustment value dTQ and the vehicle speed V.
  • the horizontal axis represents the vehicle speed V
  • the vertical axis represents the absolute value of the adjustment value dTQ.
  • This graph is a graph when the absolute value of the wheel angle difference dAF is larger than zero.
  • the absolute value of the adjustment value dTQ is set to zero.
  • the absolute value of the adjustment value dTQ is greater than zero.
  • the absolute value of the adjustment value dTQ is set to a value dTQ1 larger than zero. Between the first threshold value V1 and the second threshold value V2, the absolute value of the adjustment value dTQ gradually decreases from the value dTQ1 to zero as the vehicle speed V increases.
  • the adjustment value dTQ is zero, so the difference between the left target torque TQL and the right target torque TQR is zero regardless of the wheel angle difference dAF. Further, since the electric power of the steering motor 65 is zero (S370), the traveling direction D12 of the front wheels 12F can be changed following the change of the inclination angle T.
  • the state of the vehicle 10 is the same as the state of the vehicle 10 when the steering motor 65 is not in the defective state (FIG. 14: S340: No) and the vehicle speed V is equal to or higher than the first threshold value V1.
  • the vehicle 10 can travel in a direction suitable for the first target tilt angle T1.
  • the coefficient Kpb is greater than zero, so the difference in torque between the left rear wheel 12L and the right rear wheel 12R can be large.
  • the large torque difference between the left rear wheel 12L and the right rear wheel 12R brings the traveling direction of the vehicle 10 closer to a direction suitable for the target wheel angle AFt.
  • the direction D12 of the front wheels 12F that is, the wheel angle AF approaches the target wheel angle AFt.
  • the vehicle 10 can travel in a direction suitable for the steering wheel angle Ai.
  • the coefficient Kpb changes smoothly according to the change in the vehicle speed V.
  • the process of S150 is the same as the process of S130.
  • the tilt angle T is controlled to the first target tilt angle T1.
  • the process of S160 is performed similarly to the process when the vehicle speed V is equal to or less than the second threshold value V2 in S140. That is, regardless of the vehicle speed V, the traveling direction of the vehicle 10 is controlled by the steering motor 65 or the torque difference between the rear wheels 12L and 12R.
  • the processing of FIG. 12 ends in response to the processing of S130, S140 or S150, S160 being executed.
  • the control device 100 repeatedly executes the processing of FIG.
  • the control device 100 continuously performs the processes of S130 and S140.
  • the conditions for executing S150 and S160 are satisfied (S110: No)
  • the control device 100 continuously performs the processes of S150 and S160.
  • the vehicle 10 travels in the traveling direction suitable for the steering wheel angle.
  • the main control unit 110 (FIG. 11) and the drive device control unit 300 control the drive motors 51L and 51R according to the brake operation amount.
  • the main control unit 110 supplies the drive device control unit 300 with an instruction to reduce the torque of the drive motors 51L and 51R.
  • the drive device control section 300 controls the drive motors 51L and 51R so that the torque decreases in accordance with the instruction.
  • vehicle 10 has a brake device that reduces the rotational speed of at least one of all wheels 12F, 12L, 12R by friction. Then, when the user depresses the brake pedal 46, the braking device preferably reduces the rotation speed of at least one wheel.
  • the vehicle 10 (FIGS. 1 to 4 and 11) includes the vehicle body 90, the three wheels 12F, 12L, and 12R, the drive system 51S, the steering motor 65, and the inclination motor.
  • the device 30, the lean motor 25, the vehicle speed sensor 122, the wheel angle sensor 124, the steering wheel 41a, and the control device 100 are provided.
  • the front wheel 12F is an example of a rotating wheel supported by the vehicle body 90 (the traveling direction of the rotating wheel is rotatable in the width direction of the vehicle body 90).
  • the drive system 51S is configured to apply torque to the left rear wheel 12L and the right rear wheel 12R.
  • the control device 100 identifies the target wheel angle AFt using the vehicle speed V and the first target inclination angle T1. As described in S230 of FIG. 13, the control device 100 specifies the first target tilt angle T1 using the steering wheel angle Ai and the vehicle speed V. Therefore, the control device 100 specifies the target wheel angle AFt using the steering wheel angle Ai and the vehicle speed V.
  • the control device 100 controls the lean motor 25 so that the tilt angle difference dT becomes zero. As a result, the tilt angle T approaches the first target tilt angle T1.
  • the vehicle body 90 leans inward of the turn.
  • the control device 100 determines that The torque generated by the steering motor 65 is controlled using P control using the P gain Kpa (FIG. 15).
  • the torque generated by the steering motor 65 is controlled so that the wheel angle AF approaches the target wheel angle AFt.
  • the wheel angle AF is the target wheel angle.
  • the first condition which is a condition for performing such control, may be various conditions including that the vehicle speed V is less than the first threshold value V1 and the state of the steering motor 65 is not in a defective state. ..
  • control device 100 drives the left drive in S380-S390. It controls the motor 51L and the right drive motor 51R. In S385, control device 100 determines adjustment value dTQ using wheel angle difference dAF. In S390, control device 100 determines target torques TQL and TQR using adjustment value dTQ, and controls drive motors 51L and 51R according to target torques TQL and TQR. The torque applied to the left rear wheel 12L and the torque applied to the right rear wheel 12R are controlled according to the target torques TQL and TQR. As described with reference to FIGS.
  • the adjustment value dTQ that is, the torque applied to the left rear wheel 12L and the right rear wheel 12R
  • the difference from the applied torque is controlled so that the wheel angle AF approaches the target wheel angle AFt.
  • the wheel angle AF is the target wheel angle.
  • the difference between the torque applied to the left rear wheel 12L and the torque applied to the right rear wheel 12R is controlled so as to approach AFt.
  • the second condition which is a condition for performing such control, may be various conditions including that the vehicle speed V is less than the first threshold value V1 and the state of the steering motor 65 is in a defective state. ..
  • the coefficient Kpb is the ratio of the magnitude of the adjustment value dTQ (that is, the torque difference between the left rear wheel 12L and the right rear wheel 12R) to the magnitude of the wheel angle difference dAF. (Hereinafter also referred to as torque angle ratio Kpb).
  • the control device 100 sets the torque angle ratio Kpb when the vehicle speed V is faster than the second threshold value V2 and the torque angle ratio Kpb when the vehicle speed V is slower than the second threshold value V2. Set a smaller value compared to.
  • the control device 100 controls the torque of the left rear wheel 12L and the torque of the right rear wheel 12R based on the torque angle ratio Kpb.
  • the relationship between the P gain Kpa used to control the steering motor 65 (FIG. 14: S360) and the vehicle speed V may be various other relationships instead of the relationship shown in the graph of FIG.
  • the P gain Kpa when the vehicle speed V is equal to or higher than the first threshold value V1, the P gain Kpa may be larger than zero.
  • the P gain Kpa (and thus the torque of the steering motor 65) is preferably small so that the direction D12 of the front wheels 12F is allowed to rotate in the width direction independently of the steering wheel angle.
  • the P gain Kpa may be reduced according to the increase of the vehicle speed V.
  • the control of the steering motor 65 is not limited to P control, but may be various controls for controlling the torque generated by the steering motor 65 such that the wheel angle AF approaches the target wheel angle AFt (for example, feedback control. ).
  • the control device 100 reduces the torque generated by the steering motor 65 to a small torque (when the speed V is equal to or higher than the first threshold value V1).
  • a control mode that allows the traveling direction of the rotating wheel (for example, the traveling direction D12 of the front wheel 12F) to rotate in the width direction regardless of the steering wheel angle is set. It is preferable to have. As a result, the traveling direction of the rotating wheel can be rotated following the change in the inclination angle T.
  • the relationship between the coefficient Kpb and the vehicle speed V used for the control of the drive system 51S is not limited to the relationship in the graph of FIG. Good.
  • the coefficient Kpb when the vehicle speed V is equal to or higher than the first threshold value V1, the coefficient Kpb may be larger than zero. Also in this case, it is preferable that the coefficient Kpb (and thus the absolute value of the adjustment value dTQ) is small so that the direction D12 of the front wheel 12F is allowed to rotate in the width direction independently of the steering wheel angle. Further, when the vehicle speed V is equal to or lower than the second threshold value V2, the coefficient Kpb may be reduced as the vehicle speed V increases.
  • the control of the drive system 51S is not limited to the control using the coefficient Kpb, but may be various controls for controlling the left and right torque difference so that the wheel angle AF approaches the target wheel angle AFt.
  • the control device 100 reduces the left-right torque difference to a small value (zero or, if the speed V is equal to or higher than the first threshold value V1).
  • a control mode that allows the traveling direction of the rotating wheel (for example, the traveling direction D12 of the front wheel 12F) to rotate in the width direction regardless of the steering wheel angle. ..
  • the traveling direction of the rotating wheel can be rotated following the change in the inclination angle T.
  • the control process of the vehicle 10 may be various other processes instead of the processes of FIGS.
  • the target torques TQL and TQR (FIG. 14: S390) use map data indicating a correspondence relationship among a plurality of parameters including the accelerator operation amount, the difference dAF, the left target torque TQL, and the right target torque TQR, May be specified.
  • the control device 100 sets the torque angle ratio when the vehicle speed V is higher than the second threshold value to be smaller than the torque angle ratio when the vehicle speed V is lower than the second threshold value. It is preferable to control the difference between the torque of the rear wheel 12L and the torque of the right rear wheel 12R.
  • the torque angle ratio is the ratio of the difference between the torque of the left rear wheel 12L and the torque of the right rear wheel 12R with respect to the magnitude of the wheel angle difference dAF.
  • the second threshold is a specific speed that is smaller than the first threshold V1 described above.
  • the second target tilt angle T2 instead of the first target tilt angle T1, the second target tilt angle T2 having an absolute value smaller than the absolute value of the first target tilt angle T1 may be used.
  • the total number of front wheels may be two and the total number of rear wheels may be one.
  • the total number of front wheels may be two and the total number of rear wheels may be two.
  • the left drive wheel and the right drive wheel which are arranged apart from each other in the width direction of the vehicle body, may be front wheels.
  • the total number of rotating wheels supported by the vehicle body may be an arbitrary number of 1 or more.
  • the rotating wheel may be a rear wheel.
  • the left driving wheel and the right driving wheel may be rotating wheels.
  • the plurality of wheels may include one or more front wheels and one or more rear wheels.
  • the drive system that applies torque to the left drive wheel and the right drive wheel may have various configurations.
  • the drive system has a left drive device configured to drive the left drive wheel and a right drive device configured to drive the right drive wheel. And may be provided.
  • the drive system may include one drive device and a drive force distribution device that distributes the drive force of the drive device to the left drive wheel and the right drive wheel. Then, the control device 100 may adjust the distribution ratio of the driving force (that is, the torque of the left driving wheel and the torque of the right driving wheel) by controlling the driving force distribution device.
  • the configuration of the turning wheel support device that supports the turning wheel such that the traveling direction of the turning wheel is turnable in the width direction of the vehicle body instead of the configuration of the front wheel support device 41 described in FIG.
  • the support member that rotatably supports the rotating wheel may be a cantilever member instead of the front fork 17.
  • the rotating device that supports the support member so as to be rotatable in the width direction with respect to the vehicle body may be various other devices instead of the bearing 68.
  • the turning device may be a link mechanism that connects the vehicle body and the support member.
  • the turning wheel support device fixed to the vehicle body supports the turning wheel so that the traveling direction of the turning wheel can be turned in the width direction of the vehicle body.
  • the rotation axis of the rotation wheel (for example, the rotation axis Ax1 (FIG. 1)) is inclined with the vehicle body. Therefore, as described with reference to FIGS. 9A, 9B, 10 and the like, the traveling direction of the rotating wheel (for example, the direction D12 (FIG. 2)) follows the change in the inclination angle T of the vehicle body.
  • the rotating wheel support device may include K (K is an integer of 1 or more) support members. Each support member may rotatably support one or more rotating wheels.
  • the turning wheel support device may include K turning devices fixed to the vehicle body. The K rotating devices may respectively support the K supporting members so as to be rotatable in the width direction.
  • the configuration of the steering drive device that generates the turning torque for turning the traveling direction of the turning wheel in the width direction is not limited to the configuration of the steering motor 65 described in FIG.
  • the steering drive device may include a pump, and the hydraulic pressure (eg, hydraulic pressure) from the pump may be used to generate the turning torque.
  • the steering drive device may be configured to apply a turning torque to each of the K support members.
  • a steering drive may be coupled to each of the K support members.
  • the structure of the tilting device for tilting the vehicle body in the width direction may be various other structures instead of the structure of the link mechanism 30 described with reference to FIG.
  • the link mechanism 30 may be replaced with a base.
  • the drive motors 51L and 51R are fixed to the table.
  • the first support portion 82 is rotatably connected to the base by a bearing.
  • the lean motor 25 rotates the first support portion 82 in the width direction with respect to the base.
  • the vehicle body 90 can be inclined to the right side DR and the left side DL, respectively.
  • the first support portion 82 may be rotatable with respect to the base about a rotation axis of the bearing within a predetermined angular range (for example, a range of less than 180 degrees).
  • the angular range may be limited by contacting a specific portion of the first support portion 82 with a specific portion of the table.
  • the left slide device may connect the left rear wheel 12L and the vehicle body
  • the right slide device may connect the right rear wheel 12R and the vehicle body.
  • Each slide device can change the relative position of the vehicle body upward direction DVU with respect to the vehicle body.
  • the tilting device may include two such sliding devices (eg hydraulic cylinders).
  • the tilting device is referred to as "a first wheel that is directly or indirectly connected to at least one of a pair of wheels (for example, a left drive wheel and a right drive wheel) arranged apart from each other in the width direction of the vehicle body.
  • the “member”, the “second member directly or indirectly connected to the vehicle body”, and the “connecting device for movably connecting the first member to the second member” may be included.
  • the upper horizontal link member 31U is an example of a first member connected to the wheels 12L and 12R via the vertical link members 33L and 33R and the motors 51L and 51R.
  • the middle-longitudinal link member 21 is an example of a second member connected to the vehicle body 90 via the first support portion 82 and the suspension system 70.
  • the bearing 39 is an example of a connecting device that movably connects the first member to the second member.
  • the tilt drive device that drives the tilt device first applies a force that changes the relative positions of the first member and the second member (for example, torque that changes the orientation of the second member with respect to the first member). It may be various devices that apply to the member and the second member.
  • the tilt drive may include an electric motor, such as lean motor 25. Also, if the tilting device includes a hydraulic cylinder, the drive device may include a pump.
  • the operation input unit is operated to input an operation amount indicating the turning direction and the degree of turning, instead of a device that can rotate left and right like the handle 41a (FIG. 1). It may be other various devices configured as described above.
  • the operation input unit may include a lever that can be tilted leftward and rightward from a predetermined reference direction (for example, an upright direction).
  • the configuration of the control device 100 is configured to control the drive system (for example, the drive system 51S), the steering drive device (for example, the steering motor 65), and the tilt drive device (for example, the lean motor 25).
  • the control device 100 may be configured using one computer. At least a part of the control device 100 may be configured by dedicated hardware such as an ASIC (Application Specific Integrated Circuit).
  • the drive device controller 300, the lean motor controller 400, and the steering motor controller 500 of FIG. 11 may be configured by ASIC.
  • the control device 100 may be various electric circuits, for example, an electric circuit including a computer or an electric circuit not including a computer.
  • the input value and the output value associated with the map data (for example, the inclination angle map data MT) may be associated with other elements. For example, an element such as a mathematical function or an analog electric circuit may associate the input value with the output value.
  • the tilt angle used for controlling the tilt drive device or the like instead of the tilt angle T (FIG. 5B) based on the vertically upward direction DU, the degree of tilt of the vehicle body 90 in the width direction is shown.
  • the control angle Tc may be used as the tilt angle.
  • the vehicle 10 is preferably provided with a sensor configured to measure the control angle Tc. This sensor is an example of a tilt angle sensor.
  • the configuration of the vehicle may be various other configurations instead of the configurations of the above-described embodiment and modified examples.
  • the motors 51L and 51R may be connected to the link mechanism 30 via a suspension.
  • the drive device that drives the drive wheels may be any device that generates torque that rotates the wheels instead of the electric motor (for example, an internal combustion engine).
  • the maximum number of passengers for the vehicle may be two or more instead of one.
  • the correspondence relationship (for example, the correspondence relationship indicated by the map data MT, MAF, MTQ, MKpa, MKb, Mp1, Mp2) used for controlling the vehicle may be experimentally determined so that the vehicle can travel appropriately. ..
  • the vehicle control device may dynamically change the correspondence relationship used to control the vehicle in accordance with the state of the vehicle.
  • the vehicle may include a weight sensor that measures the weight of the vehicle body, and the control device may adjust the correspondence according to the weight of the vehicle body.
  • part of the configuration realized by hardware may be replaced with software, and conversely, part or all of the configuration realized by software may be replaced with hardware.
  • the function of the control device 100 of FIG. 11 may be realized by a dedicated hardware circuit.
  • the program is provided in a form stored in a computer-readable recording medium (for example, a non-transitory recording medium). be able to.
  • the program can be used while being stored in the same recording medium (computer-readable recording medium) as that provided or provided.
  • the “computer-readable recording medium” is not limited to a portable recording medium such as a memory card or a CD-ROM, but is connected to an internal storage device in the computer such as various ROMs or a computer such as a hard disk drive. External storage may also be included.
  • the present invention can be suitably used for vehicles.
  • Nonvolatile storage device 110p, 300p, 400p, 500p... Processor, 110v, 300v, 400v, 500v... Volatile storage device, 300c, 400c, 500c... Power control unit, 120... Battery, 122... Vehicle speed sensor, 123... Steering wheel angle sensor, 124... Wheel angle sensor, 126... Vertical direction sensor, 126a... Acceleration sensor, 126c... Control part, 126g... Gyro sensor, 127... Inclination angle sensor, 145... Accelerator pedal sensor, 146... Brake pedal sensor , DF... frontward, DB... rearward, DU... vertical upward, DD... vertical downward, DL... leftward, DR... rightward

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This vehicle comprises a body, N (an integer of three or more) number of vehicle wheels including at least one turning wheel capable of turning in the width direction of the body and including left and right drive wheels, a drive system, a steering drive device, an inclination device, an inclination drive device, a vehicle speed sensor, a vehicle wheel angle sensor, an operation input unit, and a control device. When a condition is met which includes the vehicle speed being less than a first threshold and the state of the steering drive device being a problematic state, the control device controls the difference between a left torque, which is the torque of the left drive wheel applied by the drive system, and a right torque, which is the torque of the right drive wheel, so that the vehicle wheel angle approaches a target vehicle wheel angle.

Description

車両vehicle
 本明細書は、車体を傾斜させて旋回する車両に関する。 The present description relates to a vehicle that turns while tilting the vehicle body.
 旋回時に車体を傾斜させる車両が提案されている。また、車体が傾斜する方向へ自然に前輪を転舵させる車両が提案されている。  Vehicles that tilt the vehicle body when turning are proposed. In addition, a vehicle has been proposed in which the front wheels are naturally steered in the direction in which the vehicle body tilts.
特開2013-233895号公報JP, 2013-233895, A 特開2013-023017号公報JP, 2013-023017, A 国際公開第2017/164342号International Publication No. 2017/164342 国際公開第2017/090666号International Publication No. 2017/090666 特許第5936306号公報Japanese Patent No. 5936306
 車速が遅い場合、車体の傾斜の変化に対して舵角(ひいては、車輪の方向)の変化が遅れる場合があった。モータなどの操舵用の駆動装置が車輪を操舵する場合、車輪の方向の変化の遅れは抑制される。しかし、操舵用の駆動装置に不具合が生じる場合、車輪の方向の変化の遅れを抑制することは困難であった。 When the vehicle speed is slow, the change in the steering angle (and by extension the direction of the wheels) may be delayed with respect to the change in the body inclination. When a driving device for steering such as a motor steers the wheels, delay in the change in the direction of the wheels is suppressed. However, when a failure occurs in the steering drive device, it is difficult to suppress the delay in the change in the direction of the wheels.
 本明細書は、車体の傾斜の変化に対する車輪の方向の変化の遅れを抑制できる技術を開示する。 The present specification discloses a technique capable of suppressing the delay in the change in the direction of the wheels with respect to the change in the inclination of the vehicle body.
 本明細書に開示された技術は、以下の適用例として実現することが可能である。 The technology disclosed in this specification can be implemented as the following application examples.
[適用例1]
 車両であって、
 車体と、
 前記車体に支持されている1以上の回動輪を含むN個(Nは3以上の整数)の車輪であって、前記車体の幅方向に互いに離れて配置された左駆動輪と右駆動輪とを含み、前記1以上の回動輪の進行方向は前記車体の前記幅方向に回動可能である、前記N個の車輪と、
 前記左駆動輪と前記右駆動輪とにトルクを印加するように構成されている駆動システムと、
 前記1以上の回動輪を前記幅方向に回動させるトルクを生成するように構成されている操舵駆動装置と、
 前記車体を前記幅方向に傾斜させるように構成されている傾斜装置と、
 前記傾斜装置を駆動するように構成されている傾斜駆動装置と、
 前記車両の車速を測定するように構成されている車速センサと、
 前記車体に対する前記1以上の回動輪の前記進行方向を示す車輪角を測定するように構成されている車輪角センサと、
 旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成されている操作入力部と、
 前記駆動システムと前記操舵駆動装置と前記傾斜駆動装置とを制御するように構成されている制御装置と、
 を備え、
 前記制御装置は、
  前記操作量と前記車速とを用いて目標車輪角を特定し、
  前記操作量が旋回を示す場合に、前記傾斜駆動装置に、前記車体を前記旋回の内側に傾斜させ、
  前記車速が第1閾値未満であり、かつ、前記操舵駆動装置の状態が予め決められた不具合状態ではないことを含む第1条件が満たされる場合、前記車輪角が前記目標車輪角に近づくように、前記操舵駆動装置によって生成されるトルクを制御し、
  前記車速が前記第1閾値未満であり、かつ、前記操舵駆動装置の状態が前記不具合状態であることを含む第2条件が満たされる場合、前記車輪角が前記目標車輪角に近づくように、前記駆動システムによって印加される前記左駆動輪のトルクである左トルクと前記右駆動輪のトルクである右トルクとの間の差を制御する、
 車両。
[Application example 1]
A vehicle,
The car body,
N (N is an integer of 3 or more) wheels including one or more rotating wheels supported by the vehicle body, the left drive wheel and the right drive wheel being spaced apart from each other in the width direction of the vehicle body. The N wheels, wherein the traveling direction of the one or more rotating wheels is rotatable in the width direction of the vehicle body,
A drive system configured to apply torque to the left drive wheel and the right drive wheel;
A steering drive device configured to generate a torque for rotating the one or more rotating wheels in the width direction;
A tilting device configured to tilt the vehicle body in the width direction,
A tilting drive configured to drive the tilting device,
A vehicle speed sensor configured to measure the vehicle speed of the vehicle,
A wheel angle sensor configured to measure a wheel angle indicating the traveling direction of the one or more rotating wheels with respect to the vehicle body;
An operation input unit configured to be operated to input an operation amount indicating a turning direction and a degree of turning,
A control device configured to control the drive system, the steering drive device, and the tilt drive device;
Equipped with
The control device is
The target wheel angle is specified using the operation amount and the vehicle speed,
When the operation amount indicates a turn, the tilt drive device tilts the vehicle body inward of the turn,
When the vehicle speed is less than a first threshold value and a first condition including that the state of the steering drive device is not a predetermined malfunction state is satisfied, the wheel angle approaches the target wheel angle. Controlling the torque produced by the steering drive,
When the vehicle speed is less than the first threshold and the second condition including the state of the steering drive device is in the defective state is satisfied, the wheel angle approaches the target wheel angle, Controlling the difference between the left torque, which is the torque of the left drive wheel, and the right torque, which is the torque of the right drive wheel, applied by a drive system;
vehicle.
 この構成によれば、車速が第1閾値未満であり、かつ、操舵駆動装置の状態が予め決められた不具合状態ではないことを含む第1条件が満たされる場合、車輪角が目標車輪角に近づくように、操舵駆動装置によって生成されるトルクが制御されるので、車体の傾斜の変化に対する車輪角の変化の遅れが抑制される。また、車速が第1閾値未満であり、かつ、操舵駆動装置の状態が不具合状態であることを含む第2条件が満たされる場合、車輪角が目標車輪角に近づくように、駆動システムによって印加される左駆動輪の左トルクと右駆動輪の右トルクとの間の差が制御されるので、操舵駆動装置の状態が不具合状態であっても、車体の傾斜の変化に対する車輪角の変化の遅れが抑制される。 According to this configuration, when the vehicle speed is less than the first threshold value and the first condition including that the state of the steering drive device is not a predetermined malfunction state is satisfied, the wheel angle approaches the target wheel angle. As described above, since the torque generated by the steering drive device is controlled, the delay of the change in the wheel angle with respect to the change in the inclination of the vehicle body is suppressed. Further, when the vehicle speed is less than the first threshold value and the second condition including the condition of the steering drive device is in a defective state is satisfied, the drive system applies the wheel angle so as to approach the target wheel angle. The difference between the left torque of the left drive wheel and the right torque of the right drive wheel is controlled, so that even if the steering drive device is in a defective state, there is a delay in the change of the wheel angle with respect to the change of the vehicle body inclination. Is suppressed.
[適用例2]
 適用例1に記載の車両であって、
 前記車輪角と前記目標車輪角との間の差の大きさに対する前記左トルクと前記右トルクとの間の差の大きさの割合を、トルク角度割合と呼ぶ場合に、
 前記制御装置は、前記第2条件が満たされる場合、前記車速が第2閾値よりも速い場合の前記トルク角度割合が、前記車速が前記第2閾値よりも遅い場合の前記トルク角度割合と比べて、小さくなるように、前記左トルクと前記右トルクとの間の前記差を制御する、
 車両。
[Application example 2]
The vehicle according to Application Example 1,
When the ratio of the magnitude of the difference between the left torque and the right torque with respect to the magnitude of the difference between the wheel angle and the target wheel angle is called a torque angle proportion,
When the second condition is satisfied, the control device compares the torque angle ratio when the vehicle speed is faster than a second threshold value with the torque angle ratio when the vehicle speed is slower than the second threshold value. Controlling the difference between the left torque and the right torque to be smaller,
vehicle.
 この構成によれば、車速が比較的に遅い場合には、左トルクと右トルクとの間の大きな差によって、車体の傾斜の変化に対する車輪角の変化の遅れが抑制される。車速が比較的に速い場合には、左トルクと右トルクとの間の差が小さくなるので、車輪角の急な変化を抑制できる。 With this configuration, when the vehicle speed is relatively slow, the large difference between the left torque and the right torque suppresses the delay in the change in the wheel angle with respect to the change in the lean of the vehicle body. When the vehicle speed is relatively high, the difference between the left torque and the right torque becomes small, so that a sudden change in the wheel angle can be suppressed.
 なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、車両、車両の制御装置、車両の制御方法、等の態様で実現することができる。 Note that the technology disclosed in this specification can be implemented in various modes, for example, a mode of a vehicle, a vehicle control device, a vehicle control method, and the like.
車両10の右側面図である。FIG. 3 is a right side view of vehicle 10. 車両10の上面図である。2 is a top view of the vehicle 10. FIG. 車両10の下面図である。3 is a bottom view of vehicle 10. FIG. 車両10の背面図である。FIG. 3 is a rear view of vehicle 10. (A)、(B)は、車両10の状態を示す概略図である。(A), (B) is a schematic diagram showing a state of the vehicle 10. (A)、(B)は、車両10の状態を示す概略図である。(A), (B) is a schematic diagram showing a state of the vehicle 10. 旋回時の力のバランスの説明図である。It is explanatory drawing of the balance of the force at the time of turning. 車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。It is explanatory drawing which shows the simplified relationship between the wheel angle AF and the turning radius R. (A)、(B)は、前輪12Fに作用するトルクtqaの説明図である。(A), (B) is explanatory drawing of the torque tqa which acts on the front wheel 12F. 回転する前輪12Fに作用する力の説明図である。It is explanatory drawing of the force which acts on the front wheel 12F which rotates. 車両10の制御に関する構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration related to control of vehicle 10. 制御処理の例を示すフローチャートである。It is a flow chart which shows an example of control processing. 第1傾斜制御処理の例を示すフローチャートである。It is a flow chart which shows an example of the 1st inclination control processing. 第1操舵制御処理の例を示すフローチャートである。It is a flow chart which shows the example of the 1st steering control processing. PゲインKpaの例を示すグラフである。It is a graph which shows the example of P gain Kpa. (A)、(B)は、車両10の動きの説明図である。(C)は、係数Kpbの例を示すグラフである。(D)は、調整値dTQと車速Vとの関係例を示すグラフである。(A), (B) is an explanatory view of movement of vehicle 10. (C) is a graph showing an example of the coefficient Kpb. (D) is a graph showing an example of the relationship between the adjustment value dTQ and the vehicle speed V.
A1.車両10の構成:
 図1~図4は、一実施例としての車両10を示す説明図である。図1は、車両10の右側面図を示し、図2は、車両10の上面図を示し、図3は、車両10の下面図を示し、図4は、車両10の背面図を示している。図1~図4には、水平な地面GL(図1)上に配置され、傾斜していない状態の車両10が、示されている。図2~図4では、図1に示す車両10の構成のうちの一部分が図示され、他の部分の図示が省略されている。図1~図4には、6つの方向DF、DB、DU、DD、DR、DLが示されている。前方向DFは、車両10の車体90の前方向(すなわち、前進方向)であり、後方向DBは、前方向DFの反対方向である。上方向DUは、鉛直上方向であり、下方向DDは、上方向DUの反対方向である。右方向DRは、前方向DFに走行する車両10から見た右方向であり、左方向DLは、右方向DRの反対方向である。方向DF、DB、DR、DLは、いずれも、水平な方向である。右と左の方向DR、DLは、前方向DFに垂直である。
A1. Configuration of vehicle 10:
1 to 4 are explanatory views showing a vehicle 10 as one embodiment. 1 shows a right side view of the vehicle 10, FIG. 2 shows a top view of the vehicle 10, FIG. 3 shows a bottom view of the vehicle 10, and FIG. 4 shows a rear view of the vehicle 10. .. 1 to 4 show a vehicle 10 that is placed on a horizontal ground GL (FIG. 1) and is not tilted. 2 to 4, a part of the configuration of the vehicle 10 shown in FIG. 1 is shown, and the other parts are omitted. Six directions DF, DB, DU, DD, DR and DL are shown in FIGS. 1 to 4. The front direction DF is the front direction (that is, the forward direction) of the vehicle body 90 of the vehicle 10, and the rear direction DB is the direction opposite to the front direction DF. The upward direction DU is a vertically upward direction, and the downward direction DD is a direction opposite to the upward direction DU. The right direction DR is the right direction viewed from the vehicle 10 traveling in the front direction DF, and the left direction DL is the direction opposite to the right direction DR. The directions DF, DB, DR, DL are all horizontal directions. The right and left directions DR and DL are perpendicular to the front direction DF.
 本実施例では、車両10は、一人乗り用の小型車両である。車両10(図1、図2)は、車体90と、前輪12Fと左後輪12Lと右後輪12Rとを有する三輪車である。前輪12Fは、回動輪の例であり、車体90の幅方向の中心に配置されている。回動輪は、車輪の進行方向が車体90の幅方向(すなわち、右方向DRに平行な方向)に回動可能であるように、車体90に支持されている車輪である。後輪12L、12Rは、駆動輪であり、車体90の幅方向の中心に対して対称に、互いに離れて配置されている。 In the present embodiment, the vehicle 10 is a small vehicle for one passenger. The vehicle 10 (FIGS. 1 and 2) is a tricycle having a vehicle body 90, a front wheel 12F, a left rear wheel 12L, and a right rear wheel 12R. The front wheel 12F is an example of a rotating wheel, and is arranged at the center of the vehicle body 90 in the width direction. The turning wheel is a wheel supported by the vehicle body 90 so that the traveling direction of the wheel can be turned in the width direction of the vehicle body 90 (that is, the direction parallel to the right direction DR). The rear wheels 12L and 12R are drive wheels, and are symmetrically arranged apart from each other with respect to the center of the vehicle body 90 in the width direction.
 車体90(図1)は、本体部20を有している。本体部20は、底部20bと、底部20bの前方向DF側に接続された前壁部20aと、底部20bの後方向DB側に接続された後壁部20cと、後壁部20cの上端から後方向DBに向かって延びる支持部20dと、を有している。本体部20は、例えば、金属製のフレームと、フレームに固定されたパネルと、を有している。 The vehicle body 90 (FIG. 1) has a main body portion 20. The main body 20 includes a bottom 20b, a front wall 20a connected to the front DF side of the bottom 20b, a rear wall 20c connected to the rear DB side of the bottom 20b, and an upper end of the rear wall 20c. And a support portion 20d extending toward the rear direction DB. The main body 20 has, for example, a metal frame and a panel fixed to the frame.
 車体90は、さらに、底部20b上に固定された座席11と、座席11の前方向DF側に配置されたアクセルペダル45とブレーキペダル46と、底部20bに固定された制御装置100とバッテリ120と、前壁部20aの上方向DU側の端部に固定された前輪支持装置41と、前輪支持装置41に取り付けられたシフトスイッチ47とハンドル41aと、を有している。図示を省略するが、本体部20には、他の部材(例えば、屋根、前照灯など)が固定され得る。車体90は、本体部20に固定された部材を含んでいる。 The vehicle body 90 further includes a seat 11 fixed on the bottom portion 20b, an accelerator pedal 45 and a brake pedal 46 arranged on the front direction DF side of the seat 11, a control device 100 fixed on the bottom portion 20b, and a battery 120. The front wheel support device 41 includes a front wheel support device 41 fixed to an end of the front wall part 20a on the upward DU side, a shift switch 47 attached to the front wheel support device 41, and a handle 41a. Although not shown, other members (for example, a roof, a headlight, etc.) may be fixed to the main body 20. The vehicle body 90 includes a member fixed to the main body section 20.
 シフトスイッチ47は、車両10の走行モードを選択するためのスイッチである。本実施例では、「ドライブ」と「ニュートラル」と「リバース」と「パーキング」との4つの走行モードから1つを選択可能である。「ドライブ」は、駆動輪12L、12Rの駆動によって前進するモードであり、「ニュートラル」は、駆動輪12L、12Rが回転自在であるモードであり、「リバース」は、駆動輪12L、12Rの駆動によって後退するモードであり、「パーキング」は、少なくとも1つの車輪(例えば、後輪12L、12R)が回転不能であるモードである。「ドライブ」と「ニュートラル」とは、通常は、車両10の前進時に利用される。 The shift switch 47 is a switch for selecting the driving mode of the vehicle 10. In the present embodiment, it is possible to select one from four driving modes of "drive", "neutral", "reverse" and "parking". "Drive" is a mode in which the drive wheels 12L, 12R are driven forward, "Neutral" is a mode in which the drive wheels 12L, 12R are rotatable, and "Reverse" is a drive mode for the drive wheels 12L, 12R. "Parking" is a mode in which at least one wheel (for example, the rear wheels 12L, 12R) cannot rotate. “Drive” and “neutral” are normally used when the vehicle 10 moves forward.
 前輪支持装置41(図1)は、回動軸Ax1を中心に回動可能に前輪12Fを支持する装置である。前輪支持装置41は、前フォーク17と、軸受68と、操舵モータ65と、を有している。前フォーク17は、前輪12Fを回転可能に支持しており、例えば、サスペンション(コイルスプリングとショックアブソーバ)を内蔵したテレスコピックタイプのフォークである。軸受68は、本体部20(ここでは、前壁部20a)と、前フォーク17と、を連結している。軸受68は、回動軸Ax1を中心に、前フォーク17(ひいては、前輪12F)を、車体90に対して左右に回転可能に支持している。前フォーク17は、車体90に対して、回動軸Ax1を中心に、予め決められた角度範囲(例えば、180度未満の範囲)内で、回転可能であってよい。例えば、前フォーク17が、車体90に設けられた他の部材に接触することによって、角度範囲が制限されてよい。操舵モータ65は、電気モータであり、前フォーク17(ひいては、前輪12F)を幅方向に回転させるトルクを生成するように構成されている操舵駆動装置の例である。操舵モータ65は、図示しないロータとステータとを含んでいる。ロータとステータとのうち、一方は、前フォーク17に固定され、他方は、本体部20(ここでは、前壁部20a)に固定されている。 The front wheel support device 41 (FIG. 1) is a device that supports the front wheel 12F so as to be rotatable about the rotation axis Ax1. The front wheel support device 41 includes the front fork 17, a bearing 68, and a steering motor 65. The front fork 17 rotatably supports the front wheel 12F, and is, for example, a telescopic type fork having a suspension (a coil spring and a shock absorber) built therein. The bearing 68 connects the main body portion 20 (here, the front wall portion 20a) and the front fork 17. The bearing 68 supports the front fork 17 (and by extension, the front wheel 12F) so as to be rotatable left and right with respect to the vehicle body 90 about the rotation axis Ax1. The front fork 17 may be rotatable about the rotation axis Ax1 with respect to the vehicle body 90 within a predetermined angular range (for example, a range of less than 180 degrees). For example, the front fork 17 may contact another member provided on the vehicle body 90 to limit the angular range. The steering motor 65 is an electric motor, and is an example of a steering drive device configured to generate a torque that rotates the front fork 17 (and thus the front wheel 12F) in the width direction. The steering motor 65 includes a rotor and a stator (not shown). One of the rotor and the stator is fixed to the front fork 17, and the other is fixed to the main body 20 (here, the front wall 20a).
 ハンドル41aは、左右に回転可能な部材である。所定の直進方向に対するハンドル41aの回転方向(右、または、左)は、ユーザの望む旋回方向を示している。予め決められた直進方向に対するハンドル41aの回転角度(以下、「ハンドル角」とも呼ぶ)の大きさは、ユーザの望む旋回の程度を示している。本実施例では、「ハンドル角=ゼロ」は、直進を示し、「ハンドル角>ゼロ」は、右旋回を示し、「ハンドル角<ゼロ」は、左旋回を示している。このように、ハンドル角の正負の符号は、旋回方向を示している。また、ハンドル角の絶対値は、旋回の程度を示している。このようなハンドル角は、旋回方向と旋回の程度とを表す操作量の例である。ハンドル41aは、操作量を入力するために操作されるように構成された操作入力部の例である。 The handle 41a is a member rotatable left and right. The rotation direction (right or left) of the handle 41a with respect to the predetermined straight traveling direction indicates the turning direction desired by the user. The size of the rotation angle of the handle 41a with respect to a predetermined straight traveling direction (hereinafter, also referred to as "handle angle") indicates the degree of turning desired by the user. In the present embodiment, “steering wheel angle=zero” indicates straight ahead, “steering wheel angle>zero” indicates right turn, and “steering wheel angle<zero” indicates left turn. Thus, the positive and negative signs of the steering wheel angle indicate the turning direction. The absolute value of the steering wheel angle indicates the degree of turning. Such a steering wheel angle is an example of an operation amount indicating a turning direction and a turning degree. The handle 41a is an example of an operation input unit configured to be operated to input an operation amount.
 なお、本実施例では、ハンドル41aには、ハンドル41aの回転軸に沿って延びる支持棒41axが固定されている。支持棒41axは、回転軸を中心に回転可能に前輪支持装置41に接続されている。 In this embodiment, a support rod 41ax extending along the rotation axis of the handle 41a is fixed to the handle 41a. The support rod 41ax is rotatably connected to the front wheel support device 41 about a rotation axis.
 車輪角AF(図2)は、車体90に対する前輪12Fの方向を示す角度である。本実施例では、車輪角AFは、下方向DDを向いて車両10を見る場合に、車体90の前方向DFを基準とする、前輪12Fの進行方向D12の角度である。進行方向D12は、前輪12Fの回転軸Ax2に垂直な方向である。本実施例では、「AF=ゼロ」は、「方向D12=前方向DF」を示している。「AF>ゼロ」は、方向D12が右方向DR側を向いていることを示している(旋回方向=右方向DR)。「AF<ゼロ」は、方向D12が左方向DL側を向いていることを示している(旋回方向=左方向DL)。前輪12Fが操舵される場合、車輪角AFは、いわゆる操舵角に対応する。 The wheel angle AF (FIG. 2) is an angle indicating the direction of the front wheels 12F with respect to the vehicle body 90. In the present embodiment, the wheel angle AF is an angle in the traveling direction D12 of the front wheels 12F with reference to the front direction DF of the vehicle body 90 when the vehicle 10 is viewed in the downward direction DD. The traveling direction D12 is a direction perpendicular to the rotation axis Ax2 of the front wheel 12F. In this embodiment, “AF=0” indicates “direction D12=forward direction DF”. “AF>zero” indicates that the direction D12 faces the right DR side (turning direction=right DR). “AF<zero” indicates that the direction D12 faces the leftward DL side (turning direction=leftward DL). When the front wheels 12F are steered, the wheel angle AF corresponds to a so-called steering angle.
 操舵モータ65は、制御装置100(図1)によって制御される。以下、操舵モータ65によって生成されるトルクを、回動トルクとも呼ぶ。回動トルクが小さい場合、前輪12Fの方向D12がハンドル角とは独立に左右に回動することが許容される。操舵モータ65の制御の詳細については、後述する。 The steering motor 65 is controlled by the control device 100 (FIG. 1). Hereinafter, the torque generated by the steering motor 65 is also referred to as turning torque. When the turning torque is small, the direction D12 of the front wheel 12F is allowed to turn left and right independently of the steering wheel angle. Details of the control of the steering motor 65 will be described later.
 図1中の角度CAは、鉛直上方向DUと、回動軸Ax1に沿って鉛直上方向DU側へ向かう方向と、のなす角度を示している(キャスター角とも呼ばれる)。本実施例では、キャスター角CAがゼロよりも大きい。キャスター角CAがゼロよりも大きい場合、回動軸Ax1に沿って鉛直上方向DU側へ向かう方向は、斜め後ろに傾斜している。 The angle CA in FIG. 1 indicates the angle formed by the vertically upward direction DU and the direction toward the vertically upward direction DU side along the rotation axis Ax1 (also called a caster angle). In this embodiment, the caster angle CA is larger than zero. When the caster angle CA is larger than zero, the direction toward the vertically upward direction DU side along the rotation axis Ax1 is inclined rearward.
 また、図1に示すように、本実施例では、前輪支持装置41の回動軸Ax1と地面GLとの交点P2は、前輪12Fの地面GLとの接触中心P1よりも、前方向DF側に位置している。これらの点P1、P2の間の後方向DBの距離Ltは、トレールと呼ばれる。正のトレールLtは、接触中心P1が交点P2よりも後方向DB側に位置していることを示している。なお、図1、図3に示すように、接触中心P1は、前輪12Fと地面GLとの接触領域Ca1の重心である。接触領域の重心は、接触領域内に質量が均等に分布していると仮定する場合の重心の位置である。右後輪12Rと地面GLとの接触領域CaRの接触中心PbRと、左後輪12Lと地面GLとの接触領域CaLの接触中心PbLとも、同様に特定される。 Further, as shown in FIG. 1, in the present embodiment, an intersection P2 between the rotation axis Ax1 of the front wheel support device 41 and the ground GL is located closer to the front side DF than the contact center P1 of the front wheel 12F with the ground GL. positioned. The distance Lt in the backward direction DB between these points P1 and P2 is called a trail. The positive trail Lt indicates that the contact center P1 is located on the backward DB side with respect to the intersection P2. Note that, as shown in FIGS. 1 and 3, the contact center P1 is the center of gravity of the contact region Ca1 between the front wheel 12F and the ground GL. The center of gravity of the contact area is the position of the center of gravity assuming that the mass is evenly distributed in the contact area. The contact center PbR of the contact region CaR between the right rear wheel 12R and the ground GL and the contact center PbL of the contact region CaL between the left rear wheel 12L and the ground GL are similarly specified.
 2つの後輪12L、12R(図4)は、後輪支持部80に回転可能に支持されている。後輪支持部80は、リンク機構30と、リンク機構30の上部に固定されたリーンモータ25と、リンク機構30の上部に固定された第1支持部82と、リンク機構30の前部に固定された第2支持部83(図1)と、を有している。図1では、説明のために、リンク機構30と第1支持部82と第2支持部83のうちの右後輪12Rに隠れている部分も実線で示されている。図2では、説明のために、本体部20に隠れている後輪支持部80と後輪12L、12Rと後述する連結棒75とが、実線で示されている。図1~図3では、リンク機構30が簡略化して示されている。 The two rear wheels 12L and 12R (FIG. 4) are rotatably supported by the rear wheel support portion 80. The rear wheel support portion 80 is fixed to the link mechanism 30, the lean motor 25 fixed to the upper portion of the link mechanism 30, the first support portion 82 fixed to the upper portion of the link mechanism 30, and the front portion of the link mechanism 30. The second supporting portion 83 (FIG. 1) is formed. In FIG. 1, for explanation, a part of the link mechanism 30, the first support portion 82, and the second support portion 83 hidden by the right rear wheel 12R is also shown by a solid line. In FIG. 2, the rear wheel support portion 80, the rear wheels 12L and 12R, and the connecting rod 75, which will be described later, hidden in the main body portion 20 are shown by solid lines for the sake of explanation. 1 to 3, the link mechanism 30 is shown in a simplified manner.
 第1支持部82(図4)は、後輪12L、12Rの上方向DU側において、右方向DRに平行に延びる板状の部分を含んでいる。第2支持部83(図1、図2)は、リンク機構30の前方向DF側の、左後輪12Lと右後輪12Rとの間に配置されている。 The first support portion 82 (FIG. 4) includes a plate-shaped portion extending parallel to the right direction DR on the upward DU side of the rear wheels 12L and 12R. The second support portion 83 (FIGS. 1 and 2) is arranged on the front direction DF side of the link mechanism 30 between the left rear wheel 12L and the right rear wheel 12R.
 右後輪12R(図1)は、ホイール12Raと、ホイール12Raに装着されたタイヤ12Rbと、を有している。ホイール12Ra(図4)は、右駆動モータ51Rに接続されている。右駆動モータ51Rは、図示しないステータとロータとを有する電気モータである。ロータとステータとのうちの一方は、ホイール12Raに固定され、他方は、後輪支持部80に固定されている。右駆動モータ51Rの回転軸は、ホイール12Raの回転軸と同じであり、右方向DRに平行である。左後輪12Lのホイール12Laとタイヤ12Lbと左駆動モータ51Lとの構成は、右後輪12Rのホイール12Raとタイヤ12Rbと右駆動モータ51Rとの構成と、それぞれ同様である。これらの駆動モータ51L、51Rは、後輪12L、12Rを直接的に駆動するインホイールモータである。以下、左駆動モータ51Lと右駆動モータ51Rとの全体を、駆動システム51Sとも呼ぶ。図1、図4には、車体90が水平な地面GL上で傾斜せずに直立している状態(後述する傾斜角Tがゼロである状態)が、示されている。この状態で、左後輪12Lの回転軸ArL(図4)と右後輪12Rの回転軸ArRとは、同じ直線上に位置している。図1、図3に示すように、右後輪12Rの接触中心PbRと左後輪12Lの接触中心PbLとの間で、前方向DFの位置は、おおよそ同じである。 The right rear wheel 12R (FIG. 1) has a wheel 12Ra and a tire 12Rb mounted on the wheel 12Ra. The wheel 12Ra (FIG. 4) is connected to the right drive motor 51R. The right drive motor 51R is an electric motor having a stator and a rotor (not shown). One of the rotor and the stator is fixed to the wheel 12Ra, and the other is fixed to the rear wheel support portion 80. The rotation axis of the right drive motor 51R is the same as the rotation axis of the wheel 12Ra, and is parallel to the right direction DR. The configuration of the wheel 12La of the left rear wheel 12L, the tire 12Lb, and the left drive motor 51L is the same as the configuration of the wheel 12Ra, the tire 12Rb, and the right drive motor 51R of the right rear wheel 12R, respectively. These drive motors 51L and 51R are in-wheel motors that directly drive the rear wheels 12L and 12R. Hereinafter, the left drive motor 51L and the right drive motor 51R are collectively referred to as a drive system 51S. 1 and 4 show a state in which the vehicle body 90 stands upright on the horizontal ground GL without tilting (a state in which a tilt angle T described later is zero). In this state, the rotation axis ArL of the left rear wheel 12L (FIG. 4) and the rotation axis ArR of the right rear wheel 12R are located on the same straight line. As shown in FIGS. 1 and 3, the position in the front direction DF is approximately the same between the contact center PbR of the right rear wheel 12R and the contact center PbL of the left rear wheel 12L.
 リンク機構30(図4)は、いわゆる、平行リンクである。リンク機構30は、右方向DRに向かって順番に並ぶ3つの縦リンク部材33L、21、33Rと、下方向DDに向かって順番に並ぶ2つの横リンク部材31U、31Dと、を有している。水平な地面GL上で車体90が傾斜せずに直立している場合、縦リンク部材33L、21、33Rは、鉛直方向に平行であり、横リンク部材31U、31Dは、水平方向に平行である。2つの縦リンク部材33L、33Rと、2つの横リンク部材31U、31Dとは、平行四辺形リンク機構を形成している。上横リンク部材31Uは、縦リンク部材33L、33Rの上端を連結している。下横リンク部材31Dは、縦リンク部材33L、33Rの下端を連結している。中縦リンク部材21は、横リンク部材31U、31Dの中央部分を連結している。これらのリンク部材33L、33R、31U、31D、21は、互いに回転可能に連結されており、回転軸は、車体90の前後方向に延びている(本実施例では、回転軸は、前方向DFに平行である)。互いに連結されたリンク部材は、予め決められた角度範囲(例えば、180度未満の範囲)内で、回転軸を中心に相対的に回転可能であってよい。例えば、一方のリンク部材の特定の部分が、他方のリンク部材の特定の部分に接触することによって、角度範囲が制限されてよい。左縦リンク部材33Lには、左駆動モータ51Lが固定されている。右縦リンク部材33Rには、右駆動モータ51Rが固定されている。中縦リンク部材21の上部には、第1支持部82と第2支持部83(図1)とが、固定されている。リンク部材33L、21、33R、31U、31Dと、支持部82、83とは、例えば、金属で形成されている。 The link mechanism 30 (FIG. 4) is a so-called parallel link. The link mechanism 30 includes three vertical link members 33L, 21, 33R arranged in order in the right direction DR, and two horizontal link members 31U, 31D arranged in order in the downward direction DD. .. When the vehicle body 90 stands upright on the horizontal ground GL without tilting, the vertical link members 33L, 21, 33R are parallel to the vertical direction, and the horizontal link members 31U, 31D are parallel to the horizontal direction. .. The two vertical link members 33L and 33R and the two horizontal link members 31U and 31D form a parallelogram link mechanism. The upper horizontal link member 31U connects the upper ends of the vertical link members 33L and 33R. The lower horizontal link member 31D connects the lower ends of the vertical link members 33L and 33R. The middle vertical link member 21 connects the central portions of the horizontal link members 31U and 31D. The link members 33L, 33R, 31U, 31D, 21 are rotatably connected to each other, and the rotation axis extends in the front-rear direction of the vehicle body 90 (in the present embodiment, the rotation axis is the forward direction DF). Parallel to). The link members connected to each other may be relatively rotatable about the rotation axis within a predetermined angular range (for example, a range less than 180 degrees). For example, a certain portion of one link member may contact a certain portion of the other link member to limit the angular range. The left drive motor 51L is fixed to the left vertical link member 33L. The right drive motor 51R is fixed to the right vertical link member 33R. A first support portion 82 and a second support portion 83 (FIG. 1) are fixed to the upper portion of the middle vertical link member 21. The link members 33L, 21, 33R, 31U, 31D and the supporting portions 82, 83 are made of metal, for example.
 本実施例では、リンク機構30は、複数のリンク部材を回転可能に連結するための軸受けを有している。例えば、軸受38は、下横リンク部材31Dと中縦リンク部材21とを回転可能に連結し、軸受39は、上横リンク部材31Uと中縦リンク部材21とを回転可能に連結している。説明を省略するが、複数のリンク部材を回転可能に連結している他の部分にも、軸受が設けられている。 In this embodiment, the link mechanism 30 has a bearing for rotatably connecting a plurality of link members. For example, the bearing 38 rotatably connects the lower horizontal link member 31D and the middle vertical link member 21, and the bearing 39 rotatably connects the upper horizontal link member 31U and the middle vertical link member 21. Although not described, bearings are also provided in other portions that rotatably connect the plurality of link members.
 リーンモータ25は、リンク機構30を駆動するように構成されている傾斜駆動装置の例であり、本実施例では、ステータとロータとを有する電気モータである。リーンモータ25のステータとロータのうちの一方は、中縦リンク部材21に固定され、他方は、上横リンク部材31Uに固定されている。リーンモータ25の回転軸は、軸受39の回転軸と同じであり、車両10の幅方向の中心に位置している。リーンモータ25のロータがステータに対して回転すると、上横リンク部材31Uが、中縦リンク部材21に対して、回転する。これにより、車両10が傾斜する。以下、リーンモータ25によって生成されるトルクを、傾斜トルクとも呼ぶ。傾斜トルクは、車体90の傾斜角を制御するためのトルクである。 The lean motor 25 is an example of a tilt drive device configured to drive the link mechanism 30, and is an electric motor having a stator and a rotor in this embodiment. One of the stator and the rotor of the lean motor 25 is fixed to the middle vertical link member 21 and the other is fixed to the upper horizontal link member 31U. The rotation shaft of the lean motor 25 is the same as the rotation shaft of the bearing 39, and is located at the center of the vehicle 10 in the width direction. When the rotor of the lean motor 25 rotates with respect to the stator, the upper horizontal link member 31U rotates with respect to the middle vertical link member 21. As a result, the vehicle 10 tilts. Hereinafter, the torque generated by the lean motor 25 is also referred to as tilt torque. The tilt torque is a torque for controlling the tilt angle of the vehicle body 90.
 図5(A)、図5(B)は、水平な地面GL上の車両10の状態を示す概略図である。図中には、車両10の簡略化された背面図が示されている。図5(A)は、車両10が直立している状態を示し、図5(B)は、車両10が傾斜している状態を示している。図5(A)に示すように、上横リンク部材31Uが中縦リンク部材21に対して直交する場合、全ての車輪12F、12L、12Rが、水平な地面GLに対して直立する。そして、車体90を含む車両10の全体は、地面GLに対して、直立する。図中の車体上方向DVUは、車体90の上方向である。車両10が傾斜していない状態では、車体上方向DVUは、上方向DUと同じである。本実施例では、車体90に対して予め決められた上方向が、車体上方向DVUとして用いられる。 5A and 5B are schematic diagrams showing the state of the vehicle 10 on the horizontal ground GL. In the figure, a simplified rear view of the vehicle 10 is shown. FIG. 5(A) shows a state in which the vehicle 10 is upright, and FIG. 5(B) shows a state in which the vehicle 10 is inclined. As shown in FIG. 5(A), when the upper horizontal link member 31U is orthogonal to the middle vertical link member 21, all the wheels 12F, 12L, 12R stand upright on the horizontal ground GL. The entire vehicle 10 including the vehicle body 90 stands upright with respect to the ground GL. The vehicle body upward direction DVU in the drawing is the upward direction of the vehicle body 90. When the vehicle 10 is not inclined, the vehicle body upward direction DVU is the same as the upward direction DU. In this embodiment, a predetermined upward direction with respect to the vehicle body 90 is used as the vehicle body upward direction DVU.
 横リンク部材31U、31Dは、車体90に回転可能に支持されている部材である(具体的には、横リンク部材31U、31Dは、後述するサスペンションシステム70、第1支持部82を介して車体90に接続された中縦リンク部材21に回転可能に支持されている)。そして、横リンク部材31U、31Dを含むリンク機構30は、左後輪12Lと右後輪12Rとの車体上方向DVUの相対位置を変化させることが可能である。図5(B)に示すように、背面図上で、中縦リンク部材21が上横リンク部材31Uに対して時計回り方向に回転している場合、右後輪12Rが車体上方向DVU側に移動し、左後輪12Lが反対側に移動する。この結果、全ての車輪12F、12L、12Rが地面GLに接触した状態で、これらの車輪12F、12L、12Rは、地面GLに対して右方向DR側に傾斜する。そして、車体90を含む車両10の全体は、地面GLに対して、右方向DR側に傾斜する。一般的には、上横リンク部材31Uが中縦リンク部材21に対して傾斜する場合、右後輪12Rと左後輪12Lとの一方が、車体上方向DVU側に移動し、他方は、車体上方向DVUとは反対方向側に移動する。この結果、車輪12F、12L、12R、ひいては、車体90を含む車両10の全体は、地面GLに対して傾斜する。後述するように、車両10が右方向DR側に旋回する場合に、車両10は、右方向DR側に傾斜する。車両10が左方向DL側に旋回する場合に、車両10は、左方向DL側に傾斜する。 The lateral link members 31U and 31D are members rotatably supported by the vehicle body 90 (specifically, the lateral link members 31U and 31D are the vehicle body via a suspension system 70 and a first support portion 82, which will be described later. 90 is rotatably supported by the intermediate vertical link member 21 connected to 90). The link mechanism 30 including the lateral link members 31U and 31D can change the relative position of the left rear wheel 12L and the right rear wheel 12R in the vehicle body upward direction DVU. As shown in FIG. 5B, in the rear view, when the middle vertical link member 21 is rotating clockwise with respect to the upper horizontal link member 31U, the right rear wheel 12R is on the vehicle body upward direction DVU side. The left rear wheel 12L moves to the opposite side. As a result, with all the wheels 12F, 12L, 12R in contact with the ground GL, these wheels 12F, 12L, 12R incline to the right DR side with respect to the ground GL. Then, the entire vehicle 10, including the vehicle body 90, inclines to the right DR side with respect to the ground GL. Generally, when the upper horizontal link member 31U inclines with respect to the middle vertical link member 21, one of the right rear wheel 12R and the left rear wheel 12L moves to the vehicle body upward direction DVU side, and the other one It moves to the opposite side of the upward DVU. As a result, the wheels 12F, 12L, 12R, and thus the entire vehicle 10 including the vehicle body 90 are inclined with respect to the ground GL. As described later, when the vehicle 10 turns to the right DR side, the vehicle 10 leans to the right DR side. When the vehicle 10 turns leftward DL, the vehicle 10 leans leftward DL.
 図5(B)では、車体上方向DVUは、上方向DUに対して、右方向DR側に傾斜している。以下、前方向DFを向いて車両10を見る場合の、上方向DUと車体上方向DVUとの間の角度を、傾斜角Tと呼ぶ。ここで、「T>ゼロ」は、右方向DR側への傾斜を示し、「T<ゼロ」は、左方向DL側への傾斜を示している。車両10が傾斜する場合、車体90を含む車両10の全体が、おおよそ、同じ方向に傾斜する。従って、車体90の傾斜角Tは、車両10の傾斜角Tであると言うことができる。 In FIG. 5(B), the vehicle body upward direction DVU is inclined to the right side DR side with respect to the upward direction DU. Hereinafter, the angle between the upward direction DU and the vehicle body upward direction DVU when the vehicle 10 is viewed in the front direction DF is referred to as a tilt angle T. Here, “T>zero” indicates an inclination toward the right side DR side, and “T<zero” indicates an inclination toward the left side DL side. When the vehicle 10 leans, the entire vehicle 10 including the vehicle body 90 leans approximately in the same direction. Therefore, the inclination angle T of the vehicle body 90 can be said to be the inclination angle T of the vehicle 10.
 また、図5(B)には、リンク機構30の制御角Tcが示されている。制御角Tcは、上横リンク部材31Uの向きに対する中縦リンク部材21の向きの角度を示している。「Tc=ゼロ」は、上横リンク部材31Uに対して中縦リンク部材21が垂直であることを、示している。「Tc>ゼロ」は、図5(B)の背面図において、中縦リンク部材21が、上横リンク部材31Uに対して、時計回りに回転したことを示している。図示を省略するが、「Tc<ゼロ」は、中縦リンク部材21が、上横リンク部材31Uに対して、反時計回りに回転したことを示している。図示するように、車両10が、水平な地面GL(すなわち、鉛直上方向DUに垂直な地面GL)上に位置している場合、制御角Tcは、傾斜角Tと、おおよそ同じである。 Further, FIG. 5(B) shows the control angle Tc of the link mechanism 30. The control angle Tc indicates the angle of the orientation of the middle vertical link member 21 with respect to the orientation of the upper horizontal link member 31U. “Tc=zero” indicates that the middle vertical link member 21 is perpendicular to the upper horizontal link member 31U. “Tc>zero” indicates that, in the rear view of FIG. 5B, the middle vertical link member 21 rotates clockwise with respect to the upper horizontal link member 31U. Although not shown, “Tc<zero” indicates that the middle vertical link member 21 has rotated counterclockwise with respect to the upper horizontal link member 31U. As illustrated, when the vehicle 10 is located on the horizontal ground GL (that is, the ground GL perpendicular to the vertically upward direction DU), the control angle Tc is approximately the same as the tilt angle T.
 図5(A)、図5(B)中の地面GL上の軸AxLは、傾斜軸AxLである。リンク機構30とリーンモータ25とは、車両10を、傾斜軸AxLを中心に、右と左とに傾斜させることができる。本実施例では、傾斜軸AxLは、前輪12Fと地面GLとの接触中心P1を通り前方向DFに平行な直線である。後輪12L、12Rを回転可能に支持するリンク機構30は、車体90を車体90の幅方向に傾斜させるように構成されている傾斜装置の例である(傾斜装置30とも呼ぶ)。 The axis AxL on the ground GL in FIGS. 5A and 5B is the tilt axis AxL. The link mechanism 30 and the lean motor 25 can tilt the vehicle 10 to the right and left around the tilt axis AxL. In this embodiment, the tilt axis AxL is a straight line that passes through the contact center P1 between the front wheel 12F and the ground GL and is parallel to the front direction DF. The link mechanism 30 that rotatably supports the rear wheels 12L and 12R is an example of a tilting device configured to tilt the vehicle body 90 in the width direction of the vehicle body 90 (also referred to as a tilting device 30).
 図6(A)、図6(B)は、図5(A)、図5(B)と同様に、車両10の簡略化された背面図を示している。図6(A)、図6(B)では、地面GLxは、鉛直上方向DUに対して斜めに傾斜している(右側が高く、左側が低い)。図6(A)は、制御角Tcがゼロである状態を示している。この状態では、全ての車輪12F、12L、12Rが、地面GLxに対して直立する。そして、車体上方向DVUは、地面GLxに対して垂直であり、また、鉛直上方向DUに対して左方向DL側に傾斜している。 6(A) and 6(B) show a simplified rear view of the vehicle 10, similar to FIGS. 5(A) and 5(B). In FIG. 6A and FIG. 6B, the ground GLx is inclined with respect to the vertically upward direction DU (the right side is high and the left side is low). FIG. 6A shows a state in which the control angle Tc is zero. In this state, all the wheels 12F, 12L, 12R stand upright with respect to the ground GLx. The vehicle body upward direction DVU is perpendicular to the ground surface GLx, and is inclined to the left direction DL side with respect to the vertically upward direction DU.
 図6(B)は、傾斜角Tがゼロである状態を示している。この状態では、上横リンク部材31Uは、地面GLxにおおよそ平行であり、中縦リンク部材21に対して反時計回りの方向に傾斜している。また、車輪12F、12L、12Rは、地面GLに対して傾斜している。 FIG. 6B shows a state where the tilt angle T is zero. In this state, the upper horizontal link member 31U is substantially parallel to the ground GLx, and is inclined in the counterclockwise direction with respect to the middle vertical link member 21. The wheels 12F, 12L, 12R are inclined with respect to the ground GL.
 このように、地面GLxが傾斜している場合、車体90の傾斜角Tの大きさは、リンク機構30の制御角Tcの大きさと、異なり得る。 In this way, when the ground GLx is inclined, the size of the inclination angle T of the vehicle body 90 may be different from the size of the control angle Tc of the link mechanism 30.
 なお、リーンモータ25は、リーンモータ25を回転不能に固定する図示しないロック機構を有している。ロック機構を作動させることによって、上横リンク部材31Uは、中縦リンク部材21に対して回転不能に固定される。この結果、制御角Tcが固定される。例えば、車両10の駐車時に、制御角Tcはゼロに固定される。ロック機構としては、メカニカルな機構であって、リーンモータ25(ひいては、リンク機構30)を固定している最中に電力を消費しない機構が好ましい。 Note that the lean motor 25 has a lock mechanism (not shown) that fixes the lean motor 25 so that it cannot rotate. By operating the lock mechanism, the upper horizontal link member 31U is non-rotatably fixed to the middle vertical link member 21. As a result, the control angle Tc is fixed. For example, the control angle Tc is fixed to zero when the vehicle 10 is parked. The lock mechanism is preferably a mechanical mechanism that does not consume power while fixing the lean motor 25 (and thus the link mechanism 30).
 図2、図4に示すように、本実施例では、本体部20は、サスペンションシステム70と連結棒75とによって、後輪支持部80に連結されている。サスペンションシステム70(図4)は、伸縮可能な左サスペンション70Lと、伸縮可能な右サスペンション70Rと、を有している。本実施例では、各サスペンション70L、70Rは、コイルスプリング71L、71Rとショックアブソーバ72L、72Rとを内蔵するテレスコピックタイプのサスペンションである。サスペンション70L、70Rの上方向DU側の端部は、本体部20の支持部20dに、回転可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。サスペンション70L、70Rの下方向DD側の端部は、後輪支持部80の第1支持部82に、回転可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。 As shown in FIGS. 2 and 4, in the present embodiment, the main body 20 is connected to the rear wheel support 80 by the suspension system 70 and the connecting rod 75. The suspension system 70 (FIG. 4) includes an extendable left suspension 70L and an extendable right suspension 70R. In the present embodiment, each of the suspensions 70L and 70R is a telescopic type suspension that incorporates coil springs 71L and 71R and shock absorbers 72L and 72R. The upper DU side ends of the suspensions 70L and 70R are rotatably connected to the support portion 20d of the main body 20 (for example, a ball joint, a hinge, etc.). The ends of the suspensions 70L and 70R on the downward DD side are rotatably connected to the first support portion 82 of the rear wheel support portion 80 (for example, a ball joint, a hinge, etc.).
 連結棒75は、図1、図2に示すように、前方向DFに延びる棒である。連結棒75は、車両10の幅方向の中心に配置されている。連結棒75の前方向DF側の端部は、本体部20の後壁部20cに、回転可能に連結されている(例えば、玉継ぎ手)。連結棒75の後方向DB側の端部は、後輪支持部80の第2支持部83に、回転可能に連結されている(例えば、玉継ぎ手)。 The connecting rod 75 is a rod extending in the forward direction DF, as shown in FIGS. 1 and 2. The connecting rod 75 is arranged at the center of the vehicle 10 in the width direction. An end portion of the connecting rod 75 on the front DF side is rotatably connected to the rear wall portion 20c of the main body portion 20 (for example, a ball joint). The rear DB side end of the connecting rod 75 is rotatably connected to the second support portion 83 of the rear wheel support portion 80 (for example, a ball joint).
 車体90は、サスペンション70L、70Rの伸縮によって、幅方向に回転可能である。図1の回転軸AxRは、車体90が後輪支持部80に対して右方向DRと左方向DLとに回転する場合の中心軸を示している。本実施例では、回転軸AxRは、前輪12Fと地面GLとの接触中心P1と、連結棒75の近傍と、を通る直線である。車体90は、回転軸AxRを中心に、予め決められた角度範囲(例えば、90度未満の範囲)内で、回転可能である。本実施例では、角度範囲は、サスペンション70L、70Rの長さの可能な範囲によって、制限されている。なお、本実施例では、傾斜装置30による傾斜の傾斜軸AxLは、回転軸AxRと異なっている。 The vehicle body 90 can be rotated in the width direction by expanding and contracting the suspensions 70L and 70R. A rotation axis AxR in FIG. 1 indicates a central axis when the vehicle body 90 rotates in the right direction DR and the left direction DL with respect to the rear wheel support portion 80. In the present embodiment, the rotation axis AxR is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and the vicinity of the connecting rod 75. The vehicle body 90 is rotatable about a rotation axis AxR within a predetermined angle range (for example, a range of less than 90 degrees). In this embodiment, the angular range is limited by the possible range of length of the suspensions 70L, 70R. In this embodiment, the tilt axis AxL of the tilt by the tilt device 30 is different from the rotation axis AxR.
 図1、図5(A)、図5(B)には、回転軸AxRと重心90cとが示されている。図5(A)、図5(B)中の回転軸AxRは、サスペンション70L、70Rを含み前方向DFに垂直な平面上の回転軸AxRの位置を示している。重心90cは、車体90の重心である。車体90の重心90cは、車体90が乗員(可能なら荷物も)を積んだ状態での重心である。図示するように、本実施例では、重心90cが回転軸AxRの下方向DD側に配置されるように、車両10が構成されている。従って、車体90が回転軸AxRを中心に振動する場合に、振動の振幅が過度に大きくなることを抑制できる。なお、本実施例では、重心90cを回転軸AxRの下方向DD側に配置するために、車体90(図1)の要素のうち比較的重い要素であるバッテリ120が、低い位置に配置されている。具体的には、バッテリ120は、車体90の本体部20のうちの最も低い部分である底部20bに固定されている。従って、重心90cを、容易に、回転軸AxRよりも低くできる。 The rotation axis AxR and the center of gravity 90c are shown in FIG. 1, FIG. 5(A), and FIG. 5(B). The rotation axis AxR in FIGS. 5A and 5B indicates the position of the rotation axis AxR on a plane including the suspensions 70L and 70R and perpendicular to the front direction DF. The center of gravity 90c is the center of gravity of the vehicle body 90. The center of gravity 90c of the vehicle body 90 is the center of gravity of the vehicle body 90 when the vehicle body 90 is loaded with passengers (and, if possible, luggage). As illustrated, in the present embodiment, the vehicle 10 is configured such that the center of gravity 90c is arranged on the lower side DD side of the rotation axis AxR. Therefore, when the vehicle body 90 vibrates about the rotation axis AxR, it is possible to suppress the amplitude of vibration from becoming excessively large. In this embodiment, the battery 120, which is a relatively heavy element among the elements of the vehicle body 90 (FIG. 1), is arranged at a low position in order to arrange the center of gravity 90c on the lower side DD side of the rotation axis AxR. There is. Specifically, the battery 120 is fixed to the bottom portion 20b which is the lowest portion of the body portion 20 of the vehicle body 90. Therefore, the center of gravity 90c can be easily made lower than the rotation axis AxR.
 図7は、旋回時の力のバランスの説明図である。図中には、旋回方向が右方向である場合の後輪12L、12Rの背面図が示されている。後述するように、旋回方向が右方向である場合、制御装置100(図1)は、後輪12L、12R(ひいては、車両10)が地面GLに対して右方向DRに傾斜するように、リーンモータ25を制御する場合がある。 FIG. 7 is an explanatory diagram of the force balance during turning. In the drawing, a rear view of the rear wheels 12L and 12R when the turning direction is the right direction is shown. As will be described later, when the turning direction is the right direction, the control device 100 (FIG. 1) leans the rear wheels 12L and 12R (and thus the vehicle 10) in the right direction DR with respect to the ground GL. The motor 25 may be controlled.
 図中の第1力F1は、車体90に作用する遠心力である。第2力F2は、車体90に作用する重力である。ここで、車体90の質量をm(kg)とし、重力加速度をg(おおよそ、9.8m/s)とし、鉛直方向に対する車両10の傾斜角をT(度)とし、旋回時の車両10の速度をV(m/s)とし、旋回半径をR(m)とする。第1力F1と第2力F2とは、以下の式1、式2で表される。
   F1 = (m*V)/R        (式1)
   F2 = m*g             (式2)
 ここで、*は、乗算記号(以下、同じ)。
The first force F1 in the figure is a centrifugal force that acts on the vehicle body 90. The second force F2 is gravity acting on the vehicle body 90. Here, the mass of the vehicle body 90 is m (kg), the gravitational acceleration is g (approximately 9.8 m/s 2 ), and the inclination angle of the vehicle 10 with respect to the vertical direction is T (degrees). Is V (m/s), and the turning radius is R (m). The first force F1 and the second force F2 are represented by the following equations 1 and 2.
F1 = (m * V 2) / R ( Equation 1)
F2 = m*g (Formula 2)
Here, * is a multiplication symbol (hereinafter the same).
 また、図中の力F1bは、第1力F1の、車体上方向DVUに垂直な方向の成分である。力F2bは、第2力F2の、車体上方向DVUに垂直な方向の成分である。力F1bと力F2bとは、以下の式3、式4で表される。
   F1b = F1*cos(T)      (式3)
   F2b = F2*sin(T)      (式4)
 ここで、「cos()」は、余弦関数であり、「sin()」は、正弦関数である(以下、同じ)。
The force F1b in the figure is a component of the first force F1 in a direction perpendicular to the vehicle body upward direction DVU. The force F2b is a component of the second force F2 in a direction perpendicular to the vehicle body upward direction DVU. The force F1b and the force F2b are expressed by the following equations 3 and 4.
F1b=F1*cos(T) (Formula 3)
F2b=F2*sin(T) (Equation 4)
Here, “cos( )” is a cosine function, and “sin( )” is a sine function (hereinafter the same).
 力F1bは、車体上方向DVUを左方向DL側に回転させる成分であり、力F2bは、車体上方向DVUを右方向DR側に回転させる成分である。車両10が傾斜角T(さらには、速度Vと旋回半径R)を保ちつつ旋回を続ける場合には、F1bとF2bとの関係は、以下の式5で表される
   F1b = F2b           (式5)
 式5に上記の式1~式4を代入すると、旋回半径Rは、以下の式6で表される。
   R = V/(g*tan(T))   (式6)
 ここで、「tan()」は、正接関数である(以下、同じ)。
 式6は、車体90の質量mに依存せずに、成立する。ここで、式6の「T」を、左方向と右方向とを区別せずに傾斜角の大きさを表すパラメータTa(ここでは、傾斜角Tの絶対値)に置換することによって得られる以下の式6aは、車体90の傾斜方向に拘わらずに、成立する。
   R = V/(g*tan(Ta))   (式6a)
The force F1b is a component that rotates the vehicle body upward direction DVU to the left direction DL side, and the force F2b is a component that rotates the vehicle body upward direction DVU to the right direction DR side. When the vehicle 10 keeps turning while maintaining the inclination angle T (further, the speed V and the turning radius R), the relationship between F1b and F2b is expressed by the following expression 5: F1b=F2b (expression 5)
By substituting the above equations 1 to 4 into the equation 5, the turning radius R is expressed by the following equation 6.
R = V 2 / (g * tan (T)) ( Equation 6)
Here, “tan( )” is a tangent function (hereinafter the same).
Formula 6 is established without depending on the mass m of the vehicle body 90. Here, the following is obtained by substituting “T” in Expression 6 with a parameter Ta (here, the absolute value of the tilt angle T) representing the magnitude of the tilt angle without distinguishing between the left direction and the right direction. The expression 6a is established regardless of the inclination direction of the vehicle body 90.
R = V 2 / (g * tan (Ta)) ( Equation 6a)
 図8は、車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。図中には、下方向DDを向いて見た車輪12F、12L、12Rが示されている。図中では、前輪12Fの進行方向D12は、右方向DRに回動しており、車両10は、右方向DRに旋回する。図中の前中心Cfは、前輪12Fの中心である。前中心Cfは、前輪12Fの回転軸Ax2上に位置している。下方向DDを向いて車両10を見る場合、前中心Cfは、接触中心P1(図1)とおおよそ同じ位置に位置している。後中心Cbは、2つの後輪12L、12Rの間の中心である。車体90が傾斜していない場合、後中心Cbは、後輪12L、12Rの回転軸ArL、ArR上の、後輪12L、12Rの間の中央に位置している。下方向DDを向いて車両10を見る場合、後中心Cbの位置は、2個の後輪12L、12Rの接触中心PbL、PbRの間の中央の位置と、同じである。中心Crは、旋回の中心である(旋回中心Crと呼ぶ)。ホイールベースLhは、前中心Cfと後中心Cbとの間の前方向DFの距離である。図1に示すように、ホイールベースLhは、前輪12Fの回転軸Ax2と、後輪12L、12Rの回転軸ArL、ArRとの間の前方向DFの距離である。 FIG. 8 is an explanatory diagram showing a simplified relationship between the wheel angle AF and the turning radius R. In the figure, the wheels 12F, 12L, 12R as viewed in the downward direction DD are shown. In the figure, the traveling direction D12 of the front wheels 12F is rotating in the right direction DR, and the vehicle 10 turns in the right direction DR. The front center Cf in the figure is the center of the front wheel 12F. The front center Cf is located on the rotation axis Ax2 of the front wheel 12F. When the vehicle 10 is viewed in the downward direction DD, the front center Cf is located at substantially the same position as the contact center P1 (FIG. 1). The rear center Cb is the center between the two rear wheels 12L and 12R. When the vehicle body 90 is not tilted, the rear center Cb is located at the center between the rear wheels 12L and 12R on the rotation axes ArL and ArR of the rear wheels 12L and 12R. When the vehicle 10 is viewed in the downward direction DD, the position of the rear center Cb is the same as the center position between the contact centers PbL and PbR of the two rear wheels 12L and 12R. The center Cr is the center of turning (referred to as the turning center Cr). The wheel base Lh is a distance in the front direction DF between the front center Cf and the rear center Cb. As shown in FIG. 1, the wheel base Lh is the distance in the front direction DF between the rotation axis Ax2 of the front wheel 12F and the rotation axes ArL and ArR of the rear wheels 12L and 12R.
 図8に示すように、前中心Cfと後中心Cbと旋回中心Crとは、直角三角形を形成する。点Cbの内角は、90度である。点Crの内角は、車輪角AFと同じである。従って、車輪角AFと旋回半径Rとの関係は、以下の式7で表される。
   AF = arctan(Lh/R)   (式7)
  ここで「arctan()」は、正接関数の逆関数である(以下、同じ)。
As shown in FIG. 8, the front center Cf, the rear center Cb, and the turning center Cr form a right triangle. The interior angle of the point Cb is 90 degrees. The interior angle of the point Cr is the same as the wheel angle AF. Therefore, the relationship between the wheel angle AF and the turning radius R is expressed by the following Expression 7.
AF = arctan(Lh/R) (Equation 7)
Here, “arctan( )” is the inverse function of the tangent function (hereinafter the same).
 上記の式6、式6a、式7は、車両10が、速度Vと旋回半径Rとが変化しない状態で、旋回している場合に成立する関係式である。なお、現実の車両10の挙動と、図8の簡略化された挙動と、の間には、種々の差異が存在する。例えば、現実の車輪12F、12L、12Rは、地面に対して滑り得る。また、現実の車輪12F、12L、12Rは、地面に対して傾斜し得る。従って、現実の旋回半径は、式7の旋回半径Rと異なり得る。ただし、式7は、車輪角AFと旋回半径Rとの関係を示す良い近似式として、利用可能である。 The above equations 6, 6a, and 7 are relational expressions that are established when the vehicle 10 is turning in a state where the speed V and the turning radius R do not change. Note that there are various differences between the actual behavior of the vehicle 10 and the simplified behavior of FIG. For example, the real wheels 12F, 12L, 12R may slide against the ground. Further, the actual wheels 12F, 12L, 12R may be inclined with respect to the ground. Therefore, the actual turning radius may be different from the turning radius R in Equation 7. However, Expression 7 can be used as a good approximate expression showing the relationship between the wheel angle AF and the turning radius R.
 後述するように、本実施例では、操舵モータ65(図1)のトルクは、小さい値に制御される場合がある。ここで、車両10が前進中に傾斜した場合、前輪12Fの向き(すなわち、進行方向D12(図2))は、自然に、傾斜方向に、回動可能である。 As will be described later, in this embodiment, the torque of the steering motor 65 (FIG. 1) may be controlled to a small value. Here, when the vehicle 10 leans during forward movement, the direction of the front wheels 12F (that is, the traveling direction D12 (FIG. 2)) is naturally rotatable in the leaning direction.
 図9(A)、図9(B)は、前輪12Fに作用するトルクtqaの説明図である。図9(A)には、下方向DDを向いて見た車両10の概略が示され、図9(B)には、前方向DFを向いてみた前輪12Fの概略が示されている。これらの図は、前進中の車両10の車体90が右方向DR側へ傾斜した状態を、示している。本実施例では、図1で説明したように、前輪支持装置41は、車体90に固定されている。車体90が傾斜する場合には、前輪支持装置41(ひいては、前輪12Fの回動軸Ax1)は、車体90とともに傾斜する。図9(B)に示すように、前輪12Fは、右方向DR側に傾斜する。この状態で、前輪12Fは、地面GLに接触して、車両10の重量の一部を、支える。従って、前輪12Fは、地面GLから、上方向DUの力Faを受ける。力Faは、前輪12Fの接触中心P1に、作用する。この力Faは、前輪12Fの回動軸Ax1に平行な成分Fa1と、回動軸Ax1に垂直な成分Fa2と、を含んでいる。回動軸Ax1が鉛直上方向DUに対して右方向DR側に傾斜している場合、垂直成分Fa2は、左方向DL側を向いている。 9(A) and 9(B) are explanatory diagrams of the torque tqa acting on the front wheel 12F. FIG. 9(A) shows an outline of the vehicle 10 as viewed in the downward direction DD, and FIG. 9(B) shows an outline of the front wheels 12F as viewed in the front direction DF. These figures show a state in which the vehicle body 90 of the vehicle 10 moving forward is inclined to the right DR side. In this embodiment, the front wheel support device 41 is fixed to the vehicle body 90 as described with reference to FIG. When the vehicle body 90 leans, the front wheel support device 41 (and by extension, the rotation axis Ax1 of the front wheel 12F) leans together with the vehicle body 90. As shown in FIG. 9B, the front wheel 12F inclines to the right DR side. In this state, the front wheels 12F come into contact with the ground GL to support a part of the weight of the vehicle 10. Therefore, the front wheel 12F receives the force Fa in the upward direction DU from the ground GL. The force Fa acts on the contact center P1 of the front wheel 12F. This force Fa includes a component Fa1 parallel to the rotation axis Ax1 of the front wheel 12F and a component Fa2 perpendicular to the rotation axis Ax1. When the rotation axis Ax1 is inclined to the right side DR side with respect to the vertically upward direction DU, the vertical component Fa2 faces the left direction DL side.
 図9(A)に示すように、前輪12Fは、正のトレールLtを有するので、前輪12Fの接触中心P1は、前輪12Fの回動軸Ax1と地面GLとの交点P2よりも、後方向DB側に位置している。そして、前輪12Fの接触中心P1には、左方向DL側を向いた力Fa2が、作用する。この力Fa2に起因して、前輪12Fには、前輪12Fの方向D12を右方向DR側に回動させるトルクtqaが、作用する。このようなトルクtqaによって、前輪12Fの進行方向D12は、自然に、車体90の傾斜方向に、回動可能である。 As shown in FIG. 9(A), since the front wheel 12F has a positive trail Lt, the contact center P1 of the front wheel 12F is closer to the rear DB than the intersection P2 between the rotation axis Ax1 of the front wheel 12F and the ground GL. Located on the side. Then, a force Fa2 directed to the left DL side acts on the contact center P1 of the front wheel 12F. Due to this force Fa2, a torque tqa for rotating the direction D12 of the front wheel 12F to the right DR direction acts on the front wheel 12F. With such a torque tqa, the traveling direction D12 of the front wheel 12F can be naturally rotated in the inclination direction of the vehicle body 90.
 また、本実施例では、車体90が傾斜する場合に、前輪12Fには、トレールLtに依存せずに、前輪12Fの方向D12を傾斜方向に回動させる力が作用する。図10は、回転する前輪12Fに作用する力の説明図である。図中には、前輪12Fの斜視図が示されている。図10の例では、前輪12Fの方向D12は、前方向DFと同じである。回転軸Ax2は、前輪12Fの回転軸である。車両10が前進する場合、前輪12Fは、この回転軸Ax2を中心に、回転する。図中には、前輪支持装置41(図1)の回動軸Ax1と、前軸Ax3とが示されている。回動軸Ax1は、上方向DU側から下方向DD側に向かって延びている。前軸Ax3は、前輪12Fの重心12Fcを通り、前輪12Fの方向D12に平行な軸である。なお、前輪12Fの回転軸Ax2も、前輪12Fの重心12Fcを通っている。 Further, in the present embodiment, when the vehicle body 90 leans, a force for turning the direction D12 of the front wheel 12F in the leaning direction acts on the front wheels 12F without depending on the trail Lt. FIG. 10 is an explanatory diagram of a force acting on the rotating front wheel 12F. A perspective view of the front wheel 12F is shown in the figure. In the example of FIG. 10, the direction D12 of the front wheel 12F is the same as the front direction DF. The rotation axis Ax2 is a rotation axis of the front wheel 12F. When the vehicle 10 moves forward, the front wheels 12F rotate around this rotation axis Ax2. In the figure, a rotation axis Ax1 of the front wheel support device 41 (FIG. 1) and a front axis Ax3 are shown. The rotation axis Ax1 extends from the upper direction DU side toward the lower direction DD side. The front axis Ax3 is an axis that passes through the center of gravity 12Fc of the front wheel 12F and is parallel to the direction D12 of the front wheel 12F. The rotation axis Ax2 of the front wheel 12F also passes through the center of gravity 12Fc of the front wheel 12F.
 上述したように、車体90が傾斜する場合には、前輪支持装置41の回動軸Ax1も、車体90とともに傾斜する。従って、前輪12Fの回転軸Ax2も、同じ方向へ傾斜しようとする。走行中の車両10の車体90が右方向DR側に傾斜する場合、回転軸Ax2を中心に回転する前輪12Fに、右方向DR側へ傾斜させるトルクTqxが作用する。このトルクTqxは、前軸Ax3を中心に前輪12Fを右方向DR側へ傾斜させようとする力の成分を含んでいる。このように、回転する物体に外部トルクが印加される場合の物体の運動は、歳差運動として知られている。例えば、回転する物体は、回転軸と外部トルクの軸とに垂直な軸を中心に、回転する。図10の例では、トルクTqxの印加によって、回転する前輪12Fは、前輪支持装置41の回動軸Ax1を中心に右方向DR側へ回転する。このように、回転する前輪12Fの角運動量に起因して、前輪12Fの方向D12は、車体90の傾斜方向に回動する。 As described above, when the vehicle body 90 leans, the rotation axis Ax1 of the front wheel support device 41 also leans together with the vehicle body 90. Therefore, the rotation axis Ax2 of the front wheel 12F also tries to tilt in the same direction. When the vehicle body 90 of the running vehicle 10 leans to the right DR side, the torque Tqx to lean to the right DR side acts on the front wheels 12F that rotate around the rotation axis Ax2. The torque Tqx includes a component of force that tends to incline the front wheel 12F to the right DR side around the front shaft Ax3. Thus, the movement of an object when an external torque is applied to a rotating object is known as precession. For example, a rotating object rotates about an axis that is perpendicular to the axis of rotation and the axis of external torque. In the example of FIG. 10, when the torque Tqx is applied, the rotating front wheel 12F rotates to the right DR side around the rotation axis Ax1 of the front wheel support device 41. Thus, due to the angular momentum of the rotating front wheel 12F, the direction D12 of the front wheel 12F rotates in the tilt direction of the vehicle body 90.
 以上のように、車両10が右方向DR側に傾斜する場合、前輪12Fの進行方向D12は、車体90の傾斜に追随して右方向DR側へ回動する。車両10が左方向DL側に傾斜する場合も、同様に、前輪12Fの方向D12は、車体90の傾斜に追随して左方向DL側へ回動する。そして、車両10は、前輪12Fの進行方向D12が傾斜角Tに適した方向を向いた状態で、走行する(図7、図8)。このように、車輪角AFは、車体90の傾斜角Tの変化に追随して変化する。特に、図10で説明した回転する前輪12Fに作用する力は、前輪12Fの回転速度(すなわち、車速)が速いほど、大きい。従って、車速が速い場合には、車速が遅い場合と比べて、傾斜角Tの変化に対する車輪角AFの変化の遅れは、抑制される。また、本実施例では、前輪12Fが正のトレールLtを有している。従って、車速が速い場合には、車速が遅い場合と比べて、前輪12Fの進行方向D12は、容易に、車両10の進行方向を向くことができる。 As described above, when the vehicle 10 leans to the right DR side, the traveling direction D12 of the front wheels 12F follows the lean of the vehicle body 90 and turns to the right DR side. Similarly, when the vehicle 10 leans to the left DL side, the direction D12 of the front wheel 12F turns to the left DL side following the tilt of the vehicle body 90. Then, the vehicle 10 travels in a state where the traveling direction D12 of the front wheels 12F is oriented in a direction suitable for the inclination angle T (FIGS. 7 and 8). In this way, the wheel angle AF changes following the change in the tilt angle T of the vehicle body 90. In particular, the force acting on the rotating front wheel 12F described in FIG. 10 is greater as the rotational speed of the front wheel 12F (that is, vehicle speed) is higher. Therefore, when the vehicle speed is high, the delay in the change of the wheel angle AF with respect to the change of the inclination angle T is suppressed as compared with the case where the vehicle speed is low. Further, in this embodiment, the front wheel 12F has a positive trail Lt. Therefore, when the vehicle speed is high, the traveling direction D12 of the front wheels 12F can be more easily oriented in the traveling direction of the vehicle 10 than when the vehicle speed is low.
 操舵モータ65のトルクが小さい場合、前輪支持装置41は、以下のように、前輪12Fを支持している。すなわち、前輪12Fの進行方向D12は、ハンドル41aに入力される情報に拘わらず、車体90の傾斜の変化に追随して、車体90に対して幅方向に回動可能である。例えば、ハンドル41aが直進を示す状態に維持される場合であっても、車体90の傾斜角Tが右方向に変化する場合には、前輪12Fの進行方向D12は、傾斜角Tの変化に追随して、右方向に回動し得る。このように、ハンドル41aに入力される操作量が1つの値に固定される場合であっても、前輪12Fの車輪角AFは、車体90の傾斜の変化に追随して種々の値に変化可能である。 When the torque of the steering motor 65 is small, the front wheel support device 41 supports the front wheel 12F as follows. That is, the traveling direction D12 of the front wheel 12F can be rotated in the width direction with respect to the vehicle body 90 in accordance with the change in the inclination of the vehicle body 90 regardless of the information input to the handlebar 41a. For example, even when the steering wheel 41a is maintained in the state of going straight, if the inclination angle T of the vehicle body 90 changes to the right, the traveling direction D12 of the front wheels 12F follows the change of the inclination angle T. Then, it can rotate to the right. As described above, even when the operation amount input to the steering wheel 41a is fixed to one value, the wheel angle AF of the front wheels 12F can be changed to various values in accordance with the change in the inclination of the vehicle body 90. Is.
A2.車両10の制御:
 図11は、車両10の制御に関する構成を示すブロック図である。車両10は、制御に関する構成として、車速センサ122と、ハンドル角センサ123と、車輪角センサ124と、鉛直方向センサ126と、アクセルペダルセンサ145と、ブレーキペダルセンサ146と、シフトスイッチ47と、制御装置100と、右駆動モータ51Rと、左駆動モータ51Lと、リーンモータ25と、操舵モータ65と、を有している。
A2. Control of vehicle 10:
FIG. 11 is a block diagram showing a configuration relating to control of the vehicle 10. The vehicle 10 has a configuration relating to control such as a vehicle speed sensor 122, a steering wheel angle sensor 123, a wheel angle sensor 124, a vertical direction sensor 126, an accelerator pedal sensor 145, a brake pedal sensor 146, a shift switch 47, and a control. The apparatus 100, the right drive motor 51R, the left drive motor 51L, the lean motor 25, and the steering motor 65 are included.
 車速センサ122は、車両10の車速を検出するセンサである。本実施例では、車速センサ122は、前フォーク17(図1)の下端に取り付けられており、前輪12Fの回転速度、すなわち、車速を検出する。 The vehicle speed sensor 122 is a sensor that detects the vehicle speed of the vehicle 10. In this embodiment, the vehicle speed sensor 122 is attached to the lower end of the front fork 17 (FIG. 1) and detects the rotation speed of the front wheels 12F, that is, the vehicle speed.
 ハンドル角センサ123は、ハンドル41aの向き(すなわち、ハンドル角)を検出するセンサである。本実施例では、ハンドル角センサ123は、ハンドル41a(図1)に固定された支持棒41axに取り付けられている。 The steering wheel angle sensor 123 is a sensor that detects the direction of the steering wheel 41a (that is, the steering wheel angle). In this embodiment, the handle angle sensor 123 is attached to the support rod 41ax fixed to the handle 41a (FIG. 1).
 車輪角センサ124は、前輪12Fの車輪角AFを検出するセンサである。本実施例では、車輪角センサ124は、操舵モータ65(図1)に取り付けられている。 The wheel angle sensor 124 is a sensor that detects the wheel angle AF of the front wheels 12F. In this embodiment, the wheel angle sensor 124 is attached to the steering motor 65 (FIG. 1).
 鉛直方向センサ126は、鉛直下方向DDを特定するセンサである。本実施例では、鉛直方向センサ126は、車体90(図1)に固定されている(具体的には、後壁部20c)。また、本実施例では、鉛直方向センサ126は、加速度センサ126aと、ジャイロセンサ126gと、制御部126cと、を含んでいる。加速度センサは、任意の方向の加速度を検出するセンサであり、例えば、3軸の加速度センサである。以下、加速度センサ126aによって検出される加速度の方向を、検出方向と呼ぶ。車両10が停止している状態では、検出方向は、鉛直下方向DDと同じである。ジャイロセンサ126gは、任意の方向の回転軸を中心とする角加速度を検出するセンサであり、例えば、3軸の角加速度センサである。制御部126cは、加速度センサ126aからの信号とジャイロセンサ126gからの信号と車速センサ122からの信号とを用いて鉛直下方向DDを特定する装置である。制御部126cは、例えば、コンピュータを含むデータ処理装置である。 The vertical direction sensor 126 is a sensor that specifies the vertical downward direction DD. In this embodiment, the vertical direction sensor 126 is fixed to the vehicle body 90 (FIG. 1) (specifically, the rear wall portion 20c). Further, in the present embodiment, the vertical sensor 126 includes an acceleration sensor 126a, a gyro sensor 126g, and a control unit 126c. The acceleration sensor is a sensor that detects acceleration in an arbitrary direction, and is, for example, a triaxial acceleration sensor. Hereinafter, the direction of acceleration detected by the acceleration sensor 126a is referred to as a detection direction. When the vehicle 10 is stopped, the detection direction is the same as the vertically downward direction DD. The gyro sensor 126g is a sensor that detects angular acceleration about a rotation axis in an arbitrary direction, and is, for example, a triaxial angular acceleration sensor. The control unit 126c is a device that specifies the vertically downward direction DD using the signal from the acceleration sensor 126a, the signal from the gyro sensor 126g, and the signal from the vehicle speed sensor 122. The control unit 126c is, for example, a data processing device including a computer.
 制御部126cは、車速センサ122によって特定される車速Vを用いることによって、車両10の加速度を算出する。そして、制御部126cは、加速度を用いることによって、車両10の加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の前方向DFまたは後方向DBのずれが特定される)。また、制御部126cは、ジャイロセンサ126gによって特定される角加速度を用いることによって、車両10の角加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の右方向DRまたは左方向DLのずれが、特定される)。制御部126cは、特定されたずれを用いて検出方向を修正することによって、鉛直下方向DDを特定する。このように鉛直方向センサ126は、車両10の種々の走行状態において、適切な鉛直下方向DDを特定できる。 The control unit 126c calculates the acceleration of the vehicle 10 by using the vehicle speed V specified by the vehicle speed sensor 122. Then, the control unit 126c identifies the deviation in the detection direction with respect to the vertically downward direction DD caused by the acceleration of the vehicle 10 by using the acceleration (for example, the deviation in the front direction DF or the rear direction DB in the detection direction is identified. ). Further, the control unit 126c uses the angular acceleration specified by the gyro sensor 126g to specify the deviation of the detection direction from the vertically downward direction DD caused by the angular acceleration of the vehicle 10 (for example, the right direction DR of the detection direction). Alternatively, the shift in the left direction DL is specified). The control unit 126c identifies the vertically downward direction DD by correcting the detection direction using the identified deviation. In this way, the vertical direction sensor 126 can specify the appropriate vertical downward direction DD in various traveling states of the vehicle 10.
 アクセルペダルセンサ145は、アクセルペダル45(図1)に取り付けられており、アクセル操作量を検出する。ブレーキペダルセンサ146は、ブレーキペダル46(図1)に取り付けられており、ブレーキ操作量を検出する。 The accelerator pedal sensor 145 is attached to the accelerator pedal 45 (FIG. 1) and detects the accelerator operation amount. The brake pedal sensor 146 is attached to the brake pedal 46 (FIG. 1) and detects the brake operation amount.
 各センサ122、123、124、145、146は、例えば、レゾルバ、または、エンコーダを用いて構成されている。 Each of the sensors 122, 123, 124, 145, 146 is composed of, for example, a resolver or an encoder.
 制御装置100は、主制御部110と、駆動装置制御部300と、リーンモータ制御部400と、操舵モータ制御部500と、を有している。制御装置100は、バッテリ120(図1)からの電力を用いて動作する。本実施例では、制御部110、300、400、500は、それぞれ、コンピュータを有している。具体的には、制御部110、300、400、500は、プロセッサ110p、300p、400p、500p(例えば、CPU)と、揮発性記憶装置110v、300v、400v、500v(例えば、DRAM)と、不揮発性記憶装置110n、300n、400n、500n(例えば、フラッシュメモリ)と、を有している。不揮発性記憶装置110n、300n、400n、500nには、対応する制御部110、300、400、500の動作のためのプログラム110g、300g、400g、500gが、予め格納されている。また、主制御部110の不揮発性記憶装置110nには、マップデータMT、MAF、MTQ、MKbが、予め格納されている。駆動装置制御部300の不揮発性記憶装置300nには、マップデータMp2が、予め格納されている。操舵モータ制御部500の不揮発性記憶装置500nには、マップデータMp1、MKpaが、予め格納されている。プロセッサ110p、300p、400p、500pは、それぞれ、対応するプログラム110g、300g、400g、500gを実行することによって、種々の処理を実行する。 The control device 100 has a main control unit 110, a drive device control unit 300, a lean motor control unit 400, and a steering motor control unit 500. The control device 100 operates using electric power from the battery 120 (FIG. 1). In this embodiment, each of the control units 110, 300, 400 and 500 has a computer. Specifically, the control units 110, 300, 400, 500 include processors 110p, 300p, 400p, 500p (for example, CPU), volatile storage devices 110v, 300v, 400v, 500v (for example, DRAM), and nonvolatile memory. The storage devices 110n, 300n, 400n, and 500n (for example, flash memory). Programs 110g, 300g, 400g, 500g for operating the corresponding control units 110, 300, 400, 500 are stored in advance in the nonvolatile storage devices 110n, 300n, 400n, 500n. In addition, map data MT, MAF, MTQ, and MKb are stored in advance in the nonvolatile storage device 110n of the main control unit 110. The map data Mp2 is stored in advance in the nonvolatile memory device 300n of the drive device controller 300. The map data Mp1 and MKpa are stored in advance in the nonvolatile storage device 500n of the steering motor control unit 500. The processors 110p, 300p, 400p, 500p execute various processes by executing the corresponding programs 110g, 300g, 400g, 500g, respectively.
 主制御部110のプロセッサ110pは、センサ122、123、124、126、145、146とシフトスイッチ47とからの信号を受信する。そして、プロセッサ110pは、受信した信号を用いて、駆動装置制御部300とリーンモータ制御部400と操舵モータ制御部500とに指示を出力する。 The processor 110p of the main control unit 110 receives signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47. Then, the processor 110p outputs an instruction to the drive device controller 300, the lean motor controller 400, and the steering motor controller 500 using the received signal.
 駆動装置制御部300のプロセッサ300pは、主制御部110からの指示に従って、駆動モータ51L、51Rを制御する。リーンモータ制御部400のプロセッサ400pは、主制御部110からの指示に従って、リーンモータ25を制御する。操舵モータ制御部500のプロセッサ500pは、主制御部110からの指示に従って、操舵モータ65を制御する。これらの制御部300、400、500は、それぞれ、制御対象のモータ51L、51R、25、65にバッテリ120からの電力を供給する電力制御部300c、400c、500cを有している。電力制御部300c、400c、500cは、電気回路(例えば、インバータ回路)を用いて、構成されている。 The processor 300p of the drive device controller 300 controls the drive motors 51L and 51R according to an instruction from the main controller 110. The processor 400p of the lean motor control unit 400 controls the lean motor 25 according to an instruction from the main control unit 110. The processor 500p of the steering motor control unit 500 controls the steering motor 65 according to an instruction from the main control unit 110. These control units 300, 400, 500 have power control units 300c, 400c, 500c for supplying electric power from the battery 120 to the control target motors 51L, 51R, 25, 65, respectively. The power control units 300c, 400c, 500c are configured by using an electric circuit (for example, an inverter circuit).
 以下、制御部110、300、400、500のプロセッサ110p、300p、400p、500pが処理を実行することを、単に、制御部110、300、400、500が処理を実行する、とも表現する。 Hereinafter, the fact that the processors 110p, 300p, 400p, 500p of the control units 110, 300, 400, 500 execute processing is also expressed simply as the control units 110, 300, 400, 500 executing processing.
 図12は、制御装置100(図11)によって実行される制御処理の例を示すフローチャートである。図12のフローチャートは、後輪支持部80と前輪支持装置41と駆動システム51Sの制御の手順を示している。図12では、各ステップに、文字「S」と、文字「S」に続く数字と、を組み合わせた符号が、付されている。 FIG. 12 is a flowchart showing an example of control processing executed by the control device 100 (FIG. 11). The flowchart of FIG. 12 shows the control procedure of the rear wheel support portion 80, the front wheel support device 41, and the drive system 51S. In FIG. 12, each step is provided with a code that is a combination of the letter “S” and the number following the letter “S”.
 S110では、主制御部110は、センサ122、123、124、126、145、146とシフトスイッチ47とからの信号を取得する。そして、主制御部110は、速度Vとハンドル角Aiと車輪角AFと鉛直下方向DDとアクセル操作量とブレーキ操作量と走行モードとを、特定する。 In S110, the main control unit 110 acquires signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47. Then, the main control unit 110 specifies the speed V, the steering wheel angle Ai, the wheel angle AF, the vertically downward direction DD, the accelerator operation amount, the brake operation amount, and the traveling mode.
 S120では、主制御部110は、「走行モードが「ドライブ」と「ニュートラル」とのいずれかである」という条件が満たされるか否かを判断する。S120の条件は、車両10が前進していることを、示している。 In S120, the main control unit 110 determines whether or not the condition "the driving mode is either "drive" or "neutral"" is satisfied. The condition of S120 indicates that the vehicle 10 is moving forward.
 S120の判断結果が、Yesである場合、制御装置100は、S130、S140を並行して実行する。S130は、リーンモータ25を制御する第1傾斜制御処理である。S140は、操舵モータ65と駆動モータ51L、51Rとを制御する第2操舵駆動制御処理である。S130、S140の後、制御装置100は、図12の処理を終了する。 If the determination result of S120 is Yes, the control device 100 executes S130 and S140 in parallel. S130 is a first tilt control process for controlling the lean motor 25. S140 is a second steering drive control process for controlling the steering motor 65 and the drive motors 51L and 51R. After S130 and S140, the control device 100 ends the process of FIG.
 図13は、第1傾斜制御処理(S130:図12)の例を示すフローチャートである。S210では、主制御部110(図11)は、センサ122、123、126からの車速V、ハンドル角Ai、鉛直下方向DDを示す情報を、それぞれ取得する。 FIG. 13 is a flowchart showing an example of the first tilt control process (S130: FIG. 12). In S210, the main control unit 110 (FIG. 11) acquires information indicating the vehicle speed V, the steering wheel angle Ai, and the vertically downward direction DD from the sensors 122, 123, and 126, respectively.
 S220では、主制御部110(図11)は、鉛直下方向DDを用いて、傾斜角Tを算出する。本実施例では、鉛直方向センサ126は車体90に固定されているので、車体90(ひいては、車体上方向DVU)に対する鉛直方向センサ126の向きは、予め決められている。主制御部110は、車体上方向DVUに対する鉛直方向センサ126の向きを用いて、鉛直下方向DDの反対の方向である上方向DUと、車体上方向DVUと、の間の傾斜角Tを、算出する(図5(B))。 In S220, the main control unit 110 (FIG. 11) calculates the tilt angle T using the vertically downward direction DD. In the present embodiment, since the vertical direction sensor 126 is fixed to the vehicle body 90, the direction of the vertical direction sensor 126 with respect to the vehicle body 90 (and thus the vehicle body upward direction DVU) is predetermined. The main controller 110 uses the orientation of the vertical direction sensor 126 with respect to the vehicle body upward direction DVU to determine the inclination angle T between the upward direction DU, which is the direction opposite to the vertically downward direction DD, and the vehicle body upward direction DVU. Calculate (FIG. 5(B)).
 なお、鉛直方向センサ126(図11)と主制御部110との全体は、傾斜角Tを測定するように構成された傾斜角センサの例である。以下、鉛直方向センサ126と主制御部110との全体を、傾斜角センサ127とも呼ぶ。 The vertical sensor 126 (FIG. 11) and the main controller 110 as a whole are examples of the tilt angle sensor configured to measure the tilt angle T. Hereinafter, the vertical direction sensor 126 and the main control unit 110 as a whole are also referred to as a tilt angle sensor 127.
 S230(図13)では、主制御部110は、第1目標傾斜角T1を決定する。第1目標傾斜角T1は、傾斜角Tの目標値である。本実施例では、ハンドル角Aiと車速Vとを用いて、第1目標傾斜角T1が特定される。ハンドル角Aiと車速Vと第1目標傾斜角T1との対応関係は、傾斜角マップデータMT(図11)によって、予め、決められている。主制御部110は、この傾斜角マップデータMTを参照することによって、ハンドル角Aiと車速Vとの組み合わせに対応する第1目標傾斜角T1を特定する。本実施例では、車速Vが一定である場合には、ハンドル角Aiの絶対値が大きいほど、第1目標傾斜角T1の絶対値が大きい。これにより、ハンドル角Aiの絶対値が大きいほど旋回半径Rが小さくなるので、車両10は、ハンドル角Aiに適した旋回半径Rで、旋回できる。ハンドル角Aiが一定である場合の車速Vと第1目標傾斜角T1との対応関係は、種々の対応関係であってよい。例えば、車速Vが遅いほど、第1目標傾斜角T1の絶対値が大きくてよい。この場合、車両10は、低速時には、小さい旋回半径Rで容易に旋回できる。これに代えて、車速Vが遅いほど、第1目標傾斜角T1の絶対値が小さくてよい。この場合、低速時に、傾斜角Tの過度の変化を抑制できる。なお、第1目標傾斜角T1の特定に用いられる情報は、ハンドル角Aiと車速Vとの組み合わせに代えて、ハンドル角Aiを含む1以上の任意の情報であってよい。例えば、車速Vを用いずに、第1目標傾斜角T1が特定されてよい。 In S230 (FIG. 13), the main control unit 110 determines the first target tilt angle T1. The first target tilt angle T1 is a target value of the tilt angle T. In the present embodiment, the first target tilt angle T1 is specified using the steering wheel angle Ai and the vehicle speed V. The correspondence relationship between the steering wheel angle Ai, the vehicle speed V, and the first target tilt angle T1 is predetermined by the tilt angle map data MT (FIG. 11). The main control unit 110 identifies the first target tilt angle T1 corresponding to the combination of the steering wheel angle Ai and the vehicle speed V by referring to the tilt angle map data MT. In this embodiment, when the vehicle speed V is constant, the larger the absolute value of the steering wheel angle Ai, the larger the absolute value of the first target tilt angle T1. As a result, the turning radius R decreases as the absolute value of the steering wheel angle Ai increases, so that the vehicle 10 can turn with the turning radius R suitable for the steering wheel angle Ai. The correspondence relationship between the vehicle speed V and the first target tilt angle T1 when the steering wheel angle Ai is constant may be various correspondence relationships. For example, the slower the vehicle speed V, the larger the absolute value of the first target tilt angle T1 may be. In this case, the vehicle 10 can easily turn with a small turning radius R at low speed. Instead, the absolute value of the first target tilt angle T1 may be smaller as the vehicle speed V is slower. In this case, it is possible to suppress an excessive change in the tilt angle T at low speed. The information used for specifying the first target tilt angle T1 may be one or more arbitrary information including the steering wheel angle Ai instead of the combination of the steering wheel angle Ai and the vehicle speed V. For example, the first target tilt angle T1 may be specified without using the vehicle speed V.
 S240では、主制御部110(図13)は、第1目標傾斜角T1から傾斜角Tを減算することによって差dTを算出する(傾斜角差dTとも呼ぶ)。 In S240, main controller 110 (FIG. 13) calculates difference dT by subtracting tilt angle T from first target tilt angle T1 (also referred to as tilt angle difference dT).
 S250で、主制御部110は、傾斜角差dTがゼロになるようにリーンモータ25を制御するための指示を、リーンモータ制御部400に供給する。例えば、主制御部110は、傾斜角差dTを示す情報をリーンモータ制御部400に供給する。リーンモータ制御部400は、指示に従って、傾斜角差dTがゼロになるように、リーンモータ25を駆動する。リーンモータ制御部400は、傾斜角差dTを用いてリーンモータ25のトルク(例えば、リーンモータ25に供給される電力)のフィードバック制御を行う。これにより、傾斜角Tは第1目標傾斜角T1に近づく。そして、図13の処理、すなわち、図12のS130が終了する。なお、フィードバック制御としては、例えば、いわゆるPID(Proportional Integral Derivative)制御が行われる。 In step S250, the main control unit 110 supplies the lean motor control unit 400 with an instruction to control the lean motor 25 so that the tilt angle difference dT becomes zero. For example, the main control unit 110 supplies information indicating the tilt angle difference dT to the lean motor control unit 400. According to the instruction, the lean motor control unit 400 drives the lean motor 25 so that the tilt angle difference dT becomes zero. The lean motor control unit 400 performs feedback control of the torque of the lean motor 25 (for example, the power supplied to the lean motor 25) using the tilt angle difference dT. As a result, the tilt angle T approaches the first target tilt angle T1. Then, the process of FIG. 13, that is, S130 of FIG. 12 ends. As the feedback control, so-called PID (Proportional Integral Derivative) control is performed, for example.
 図14は、第1操舵制御処理(S140:図12)の例を示すフローチャートである。S310では、主制御部110は、センサ122、123、124、145からの車速V、ハンドル角Ai、車輪角AF、アクセル操作量を示す情報と、第1目標傾斜角T1を示す情報とを、それぞれ取得する。第1目標傾斜角T1としては、図13のS230で決定された第1目標傾斜角T1が、取得される。 FIG. 14 is a flowchart showing an example of the first steering control process (S140: FIG. 12). In S310, the main control unit 110 provides the information indicating the vehicle speed V, the steering wheel angle Ai, the wheel angle AF, the accelerator operation amount from the sensors 122, 123, 124, 145 and the information indicating the first target inclination angle T1. Get each. As the first target tilt angle T1, the first target tilt angle T1 determined in S230 of FIG. 13 is acquired.
 S320では、主制御部110は、車輪角AFの目標値である目標車輪角AFtを決定する。本実施例では、車速Vと第1目標傾斜角T1とを用いて、目標車輪角AFtが特定される。車速Vと第1目標傾斜角T1との組み合わせに対応する目標車輪角AFtは、車速Vと第1目標傾斜角T1との組み合わせと、上記の式6、式7とを用いて特定される車輪角AFと、同じである。車速Vと第1目標傾斜角T1と目標車輪角AFtとの対応関係は、車輪角マップデータMAF(図11)によって、予め、決められている。主制御部110は、この車輪角マップデータMAFを参照することによって、目標車輪角AFtを特定する。 In S320, the main control unit 110 determines a target wheel angle AFt which is a target value of the wheel angle AF. In the present embodiment, the target wheel angle AFt is specified using the vehicle speed V and the first target tilt angle T1. The target wheel angle AFt corresponding to the combination of the vehicle speed V and the first target tilt angle T1 is a wheel specified by using the combination of the vehicle speed V and the first target tilt angle T1 and the above-described equations 6 and 7. Same as corner AF. The correspondence relationship between the vehicle speed V, the first target tilt angle T1 and the target wheel angle AFt is predetermined by the wheel angle map data MAF (FIG. 11). The main control unit 110 identifies the target wheel angle AFt by referring to this wheel angle map data MAF.
 なお、同じ目標車輪角AFtは、ハンドル角Aiと車速Vとを用いて、特定可能である。例えば、車輪角マップデータMAFは、ハンドル角Aiと車速Vとの組み合わせと、目標車輪角AFtと、の対応関係を示してよい。そして、主制御部110は、ハンドル角Aiと車速Vとを用いて、目標車輪角AFtを特定してよい。 The same target wheel angle AFt can be specified using the steering wheel angle Ai and the vehicle speed V. For example, the wheel angle map data MAF may indicate the correspondence between the combination of the steering wheel angle Ai and the vehicle speed V and the target wheel angle AFt. Then, the main control unit 110 may specify the target wheel angle AFt using the steering wheel angle Ai and the vehicle speed V.
 S330(図14)では、主制御部110は、目標車輪角AFtから車輪角AFを減算することによって差dAFを算出する(車輪角差dAFとも呼ぶ)。 In S330 (FIG. 14), the main control unit 110 calculates the difference dAF by subtracting the wheel angle AF from the target wheel angle AFt (also referred to as wheel angle difference dAF).
 S340では、主制御部110は、操舵モータ65の状態が予め決められた不具合状態であるか否かを判断する。不具合状態は、操舵モータ65が不具合を有し得る種々の状態であってよい。本実施例では、不具合状態は、操舵モータ65を流れる電流の大きさが、操舵モータ65に印加されている電圧に予め対応付けられている適正範囲外である状態である。操舵モータ65の電線(例えば、コイル線)が断線している場合、操舵モータ65を流れる電流の大きさは、電圧に拘わらずに、ゼロであり得る。また、操舵モータ65の電気回路に意図しない短絡が形成されている場合、操舵モータ65を流れる電流の大きさは、過大であり得る。 At S340, main controller 110 determines whether or not the state of steering motor 65 is a predetermined malfunction state. The defective state may be various states in which the steering motor 65 may have a defective state. In the present embodiment, the defective state is a state in which the magnitude of the current flowing through the steering motor 65 is outside the appropriate range that is associated in advance with the voltage applied to the steering motor 65. When the electric wire (for example, coil wire) of the steering motor 65 is broken, the magnitude of the current flowing through the steering motor 65 may be zero regardless of the voltage. Further, when an unintended short circuit is formed in the electric circuit of the steering motor 65, the magnitude of the current flowing through the steering motor 65 may be excessive.
 操舵モータ制御部500(図11)の電力制御部500cは、操舵モータ65に印加されている電圧を測定するように構成されている電圧計と、操舵モータ65を流れる電流を測定するように構成されている電流計とを含んでいる(図示省略)。また、電圧と適正範囲との対応関係は、マップデータMp1によって、予め決められている。操舵モータ制御部500は、マップデータMp1を参照することによって、電圧計によって測定された電圧に対応する適正範囲を特定する。そして、操舵モータ制御部500は、電流計によって測定された電流が適正範囲内であるか否かを特定し、特定した結果を主制御部110へ通知する。主制御部110は、操舵モータ制御部500からの情報を用いて、操舵モータ65の状態が正常であるか否かを判断する。 The electric power control unit 500c of the steering motor control unit 500 (FIG. 11) is configured to measure a voltage applied to the steering motor 65 and a voltmeter configured to measure a current flowing through the steering motor 65. And an ammeter which is operated (not shown). The correspondence between the voltage and the proper range is predetermined by the map data Mp1. The steering motor control unit 500 specifies the appropriate range corresponding to the voltage measured by the voltmeter by referring to the map data Mp1. Then, the steering motor control unit 500 specifies whether or not the current measured by the ammeter is within the proper range, and notifies the main control unit 110 of the specified result. The main control unit 110 uses information from the steering motor control unit 500 to determine whether the state of the steering motor 65 is normal.
 なお、主制御部110は、操舵モータ65の状態が不具合状態であるか否かを示す不具合情報(例えば、フラグデータ)を、不揮発性記憶装置110nに格納してよい。不具合情報は、状態が不具合状態ではないことを示す正常値と、状態が不具合状態であることを示す異常値と、のいずれかに設定される。車両10の出荷時、不具合情報は、正常値に初期化される。主制御部110は、操舵モータ制御部500から電流が適正範囲から外れたことが通知された場合に、不具合情報を異常値に設定する。その後、操舵モータ65が修理される場合に、主制御部110は、ユーザの指示に従って、不具合情報を正常値に設定する。主制御部110は、不具合情報が、一旦、異常値に設定された後には、操舵モータ制御部500から電流が適正範囲内であることが通知された場合であっても、不具合情報を正常値に設定しない。そして、主制御部110は、ユーザの指示応じて不具合情報が正常値に設定されるまで、操舵モータ65の状態が不具合状態であると判断し続ける。 Note that the main control unit 110 may store defect information (for example, flag data) indicating whether or not the state of the steering motor 65 is in a defective state in the nonvolatile storage device 110n. The failure information is set to either a normal value indicating that the status is not a failure status or an abnormal value indicating that the status is a failure status. When the vehicle 10 is shipped, the defect information is initialized to a normal value. When the steering motor control unit 500 notifies the main control unit 110 that the current is out of the proper range, the main control unit 110 sets the defect information to an abnormal value. After that, when the steering motor 65 is repaired, the main control unit 110 sets the defect information to the normal value according to the user's instruction. After the fault information is once set to an abnormal value, the main control unit 110 sets the fault information to a normal value even if the steering motor control unit 500 notifies that the current is within the proper range. Do not set to. Then, the main control unit 110 continues to determine that the state of the steering motor 65 is in the defective state until the defective information is set to the normal value in accordance with the user's instruction.
 操舵モータ65の状態が不具合状態ではないと判断される場合(S340:No)、主制御部110は、S350と、S360とを、並行して実行する。S350は、駆動モータ51L、51Rを制御する処理である。S360は、操舵モータ65を制御する処理である。S350、S360の後、主制御部110は、図14の処理を終了する。 When it is determined that the state of the steering motor 65 is not in the defective state (S340: No), the main control unit 110 executes S350 and S360 in parallel. S350 is a process of controlling the drive motors 51L and 51R. S360 is a process for controlling the steering motor 65. After S350 and S360, the main control unit 110 ends the processing of FIG.
 S350では、主制御部110(図11)は、アクセル操作量を用いて、駆動モータ51L、51Rの目標トルクを特定する。本実施例では、アクセル操作量と目標トルクとの対応関係は、トルクマップデータMTQによって、予め、決められている。主制御部110は、このトルクマップデータMTQを参照することによって、アクセル操作量に対応する目標トルクを特定する。アクセル操作量が大きいほど、目標トルクは大きい。なお、目標トルクは、アクセル操作量に加えて、アクセル操作量の変化速度を用いて、特定されてよい。例えば、アクセル操作量が同じ場合に、アクセル操作量の増加速度が大きいほど、目標トルクが大きい値に設定されてよい。 In S350, the main control unit 110 (FIG. 11) uses the accelerator operation amount to specify the target torque of the drive motors 51L and 51R. In the present embodiment, the correspondence relationship between the accelerator operation amount and the target torque is predetermined by the torque map data MTQ. The main control unit 110 identifies the target torque corresponding to the accelerator operation amount by referring to the torque map data MTQ. The larger the accelerator operation amount, the larger the target torque. The target torque may be specified by using the changing speed of the accelerator operation amount in addition to the accelerator operation amount. For example, when the accelerator operation amount is the same, the target torque may be set to a larger value as the increasing speed of the accelerator operation amount is larger.
 主制御部110は、駆動モータ51L、51Rのトルクが目標トルクになるように駆動モータ51L、51Rを制御するための指示を、駆動装置制御部300に供給する。例えば、主制御部110は、目標トルクを示す情報を駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、目標トルクに対応する電力を、駆動モータ51L、51Rに供給する。以上により、S350が終了する。 The main controller 110 supplies the drive device controller 300 with an instruction for controlling the drive motors 51L and 51R so that the torque of the drive motors 51L and 51R becomes the target torque. For example, the main control unit 110 supplies information indicating the target torque to the drive device control unit 300. The drive device controller 300 supplies electric power corresponding to the target torque to the drive motors 51L and 51R according to the instruction. With the above, S350 ends.
 目標トルクと電力との対応関係は、マップデータMp2(図11)によって、予め決められている。駆動装置制御部300は、マップデータMp2を参照することによって目標トルクに対応する電力を特定し、特定した電力を駆動モータ51L、51Rに供給する。なお、駆動装置制御部300は、目標トルクを含む1以上のパラメータ(例えば、目標トルク、車速V、等)を用いて、電力を特定してよい。例えば、目標トルクが同じである場合に、車速Vが大きいほど、電力が大きくてよい。 The correspondence between the target torque and the electric power is predetermined by the map data Mp2 (FIG. 11). The drive device controller 300 specifies the electric power corresponding to the target torque by referring to the map data Mp2, and supplies the specified electric power to the drive motors 51L and 51R. The drive device controller 300 may specify the electric power using one or more parameters including the target torque (for example, the target torque, the vehicle speed V, etc.). For example, when the target torque is the same, the electric power may be larger as the vehicle speed V is higher.
 S360(図14)では、主制御部110(図11)は、車輪角AFが目標車輪角AFtとなるように操舵モータ65を制御するための指示を、操舵モータ制御部500に供給する。例えば、主制御部110は、車輪角差dAFを示す情報を、操舵モータ制御部500に供給する。操舵モータ制御部500は、指示に従って、車輪角差dAFがゼロになるように、操舵モータ65を駆動する。操舵モータ制御部500は、車輪角差dAFを用いて操舵モータ65のトルクのフィードバック制御を行う(例えば、いわゆるPID(Proportional Integral Derivative)制御)。これにより、車輪角AFは、目標車輪角AFtに近づく。そして、S360の処理は、終了する。 In S360 (FIG. 14), the main control unit 110 (FIG. 11) supplies the steering motor control unit 500 with an instruction to control the steering motor 65 so that the wheel angle AF becomes the target wheel angle AFt. For example, the main control unit 110 supplies the steering motor control unit 500 with information indicating the wheel angle difference dAF. According to the instruction, the steering motor control unit 500 drives the steering motor 65 so that the wheel angle difference dAF becomes zero. The steering motor control unit 500 performs feedback control of the torque of the steering motor 65 using the wheel angle difference dAF (for example, so-called PID (Proportional Integral Derivative) control). As a result, the wheel angle AF approaches the target wheel angle AFt. Then, the process of S360 ends.
 本実施例では、S360では、操舵モータ65のトルク(より具体的には電力)のP制御が行われる(D制御とI制御とは省略される)。操舵モータ制御部500は、車輪角差dAFにPゲインを乗じることによって、制御値を算出する。そして、操舵モータ制御部500は、操舵モータ65のトルクが制御値に比例するように、操舵モータ65に供給する電力を調整する。このように、Pゲインは、車輪角差dAFの大きさに対する操舵モータ65のトルクの大きさの割合を示している。 In this embodiment, in S360, P control of the torque (more specifically, electric power) of the steering motor 65 is performed (D control and I control are omitted). The steering motor control unit 500 calculates the control value by multiplying the wheel angle difference dAF by the P gain. Then, the steering motor control unit 500 adjusts the electric power supplied to the steering motor 65 so that the torque of the steering motor 65 is proportional to the control value. Thus, the P gain indicates the ratio of the magnitude of the torque of the steering motor 65 to the magnitude of the wheel angle difference dAF.
 図15は、P制御に利用されるPゲインKpaの例を示すグラフである。横軸は、車速Vを示し、縦軸は、PゲインKpaを示している。図示するように、車速Vが第1閾値V1以上である場合、PゲインKpaは、ゼロに設定される(ゼロ<V1)。車速Vが第1閾値V1未満である場合、PゲインKpaはゼロよりも大きい。車速Vが第2閾値V2以下である場合、PゲインKpaは、ゼロよりも大きな値Kpa1に設定される(ゼロ<V2<V1)。第1閾値V1と第2閾値V2との間では、PゲインKpaは、車速Vの増大に応じて、値Kpa1からゼロまで徐々に小さくなる。 FIG. 15 is a graph showing an example of the P gain Kpa used for P control. The horizontal axis represents the vehicle speed V, and the vertical axis represents the P gain Kpa. As illustrated, when the vehicle speed V is equal to or higher than the first threshold value V1, the P gain Kpa is set to zero (zero<V1). When the vehicle speed V is less than the first threshold value V1, the P gain Kpa is greater than zero. When the vehicle speed V is equal to or lower than the second threshold value V2, the P gain Kpa is set to a value Kpa1 larger than zero (zero<V2<V1). Between the first threshold value V1 and the second threshold value V2, the P gain Kpa gradually decreases from the value Kpa1 to zero as the vehicle speed V increases.
 図9(A)、図9(B)、図10で説明したように、前輪12Fの進行方向D12は、自然に、車体90の傾斜方向に回動し得る。特に、本実施例では、前輪12F(図1)が正のトレールLtを有するので、車速Vが速い場合、前輪12Fの方向D12(すなわち、車輪角AF)は、傾斜角Tの変化に追随して容易に変化できる。第1閾値V1は、車速Vが第1閾値V1以上である場合に、前輪12Fの方向D12が、操舵モータ65の力を用いずに、傾斜角Tの変化に追随して容易に変化できるように、予め実験的に決定されている(例えば、V1=20km/h)。本実施例では、車速Vが第1閾値V1以上である場合、PゲインKpaがゼロであるので、操舵モータ65のトルクは、車輪角差dAFに拘わらず、おおよそゼロである。これにより、操舵モータ制御部500は、前輪12Fの方向D12がハンドル角とは独立に左右に回動することを、許容する。前輪12Fの進行方向D12は、傾斜角Tの変化に追随して変化できる。また、車速Vが第1閾値V1未満である場合、PゲインKpaはゼロよりも大きいので、操舵モータ65のトルクは、大きくなり得る。操舵モータ65の大きいトルクは、前輪12Fの方向D12(すなわち、車輪角AF)を、目標車輪角AFtに、近づける。また、第1閾値V1と第2閾値V2との間では、PゲインKpaは、車速Vの変化に応じて滑らかに変化する。なお、第2閾値V2は、第1閾値V1以下の種々の車速Vにおいて前輪12Fの方向D12が適切に傾斜角Tに適した方向に近づくように、予め実験的に決定されている(例えば、V2=10km/h)。 As described with reference to FIGS. 9A, 9B, and 10, the traveling direction D12 of the front wheels 12F can naturally rotate in the inclination direction of the vehicle body 90. In particular, in this embodiment, since the front wheel 12F (FIG. 1) has the positive trail Lt, when the vehicle speed V is high, the direction D12 of the front wheel 12F (that is, the wheel angle AF) follows the change of the inclination angle T. Change easily. When the vehicle speed V is equal to or higher than the first threshold value V1, the first threshold value V1 can be easily changed in the direction D12 of the front wheels 12F by following the change of the inclination angle T without using the force of the steering motor 65. Has been determined experimentally in advance (for example, V1=20 km/h). In this embodiment, since the P gain Kpa is zero when the vehicle speed V is equal to or higher than the first threshold value V1, the torque of the steering motor 65 is approximately zero regardless of the wheel angle difference dAF. As a result, the steering motor control unit 500 allows the direction D12 of the front wheels 12F to rotate left and right independently of the steering wheel angle. The traveling direction D12 of the front wheel 12F can be changed following the change in the inclination angle T. Further, when the vehicle speed V is less than the first threshold value V1, the P gain Kpa is larger than zero, so the torque of the steering motor 65 can be large. The large torque of the steering motor 65 brings the direction D12 of the front wheels 12F (that is, the wheel angle AF) closer to the target wheel angle AFt. Further, between the first threshold value V1 and the second threshold value V2, the P gain Kpa changes smoothly according to the change in the vehicle speed V. The second threshold V2 is experimentally determined in advance so that the direction D12 of the front wheels 12F appropriately approaches the direction suitable for the inclination angle T at various vehicle speeds V equal to or lower than the first threshold V1 (for example, V2=10 km/h).
 車速VとPゲインKpaとの対応関係は、マップデータMKpa(図11)によって、予め決められている。操舵モータ制御部500は、マップデータMKpaを参照することによってPゲインKpaを特定し、PゲインKpaを用いて操舵モータ65に供給すべき電力を決定する。なお、S360(図14)では、P制御に加えて、D制御とI制御との少なくとも一方が行われてよい。 The correspondence between the vehicle speed V and the P gain Kpa is predetermined by the map data MKpa (FIG. 11). The steering motor control unit 500 specifies the P gain Kpa by referring to the map data MKpa, and uses the P gain Kpa to determine the power to be supplied to the steering motor 65. Note that in S360 (FIG. 14), at least one of D control and I control may be performed in addition to P control.
 操舵モータ65の状態が不具合状態であると判断される場合(図14:S340:Yes)、主制御部110は、S370と、S380-S390とを、並行して実行する。S370では、主制御部110は、操舵モータ制御部500に、操舵モータ65への電力供給を止める指示を供給する。操舵モータ制御部500は、指示に応じて、操舵モータ65に供給される電力を、ゼロに設定する。これにより、操舵モータ制御部500は、前輪12Fの方向D12がハンドル角とは独立に左右に回動することを、許容する。S380-S390は、駆動モータ51L、51Rを制御する処理である。S370、S380-S390の後、主制御部110は、図14の処理を終了する。 When it is determined that the state of the steering motor 65 is in the defective state (FIG. 14: S340: Yes), the main control unit 110 executes S370 and S380-S390 in parallel. In S370, the main control unit 110 supplies the steering motor control unit 500 with an instruction to stop the power supply to the steering motor 65. The steering motor control unit 500 sets the electric power supplied to the steering motor 65 to zero in response to the instruction. As a result, the steering motor control unit 500 allows the direction D12 of the front wheels 12F to rotate left and right independently of the steering wheel angle. S380-S390 are processes for controlling the drive motors 51L and 51R. After S370 and S380-S390, the main control unit 110 ends the processing of FIG.
 S380では、主制御部110は、アクセル操作量を用いて、駆動モータ51L、51Rの基準トルクTQsを特定する。基準トルクTQsは、S350で特定される目標トルクと同じである。 In S380, the main control unit 110 identifies the reference torque TQs of the drive motors 51L and 51R using the accelerator operation amount. The reference torque TQs is the same as the target torque specified in S350.
 S385では、主制御部110は、車速Vを用いて係数Kpbを特定する(詳細は後述)。そして、主制御部110は、車輪角差dAFに係数Kpbを乗じることによって、調整値dTQを算出する(dTQ=Kpb*dAF)。S390では、主制御部110は、左駆動モータ51Lの目標トルクである左目標トルクTQLと、右駆動モータ51Rの目標トルクである右目標トルクTQRとを、算出する。これらの目標トルクTQL、TQRは、基準トルクTQsと調整値dTQを用いて、以下の算出式に従って算出される。
   TQL=TQs+dTQ/2
   TQR=TQs-dTQ/2
 調整値dTQは、左目標トルクTQLと右目標トルクTQRとの間の差(TQL-TQR=dTQ)を示す指標値である。主制御部110は、駆動モータ51L、51Rのトルクが目標トルクTQL、TQRになるように駆動モータ51L、51Rを制御するための指示を、駆動装置制御部300に供給する。例えば、主制御部110は、目標トルクTQL、TQRを示す情報を駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、目標トルクTQL、TQRに対応する電力を、駆動モータ51L、51Rに供給する。左駆動モータ51Lの電力と右駆動モータ51Rの電力とは、S350で特定される電力と同様に、目標トルクTQL、TQRを用いて特定される。以上により、S390が終了する。
In S385, the main control unit 110 identifies the coefficient Kpb using the vehicle speed V (details will be described later). Then, the main control unit 110 calculates the adjustment value dTQ by multiplying the wheel angle difference dAF by the coefficient Kpb (dTQ=Kpb*dAF). In S390, the main control unit 110 calculates a left target torque TQL that is the target torque of the left drive motor 51L and a right target torque TQR that is the target torque of the right drive motor 51R. These target torques TQL and TQR are calculated using the reference torque TQs and the adjustment value dTQ according to the following formulas.
TQL=TQs+dTQ/2
TQR=TQs-dTQ/2
The adjustment value dTQ is an index value indicating the difference (TQL-TQR=dTQ) between the left target torque TQL and the right target torque TQR. The main controller 110 supplies the drive device controller 300 with an instruction to control the drive motors 51L and 51R so that the torques of the drive motors 51L and 51R become the target torques TQL and TQR. For example, the main control unit 110 supplies information indicating the target torques TQL and TQR to the drive device control unit 300. The drive device control unit 300 supplies electric power corresponding to the target torques TQL and TQR to the drive motors 51L and 51R according to the instruction. The electric power of the left drive motor 51L and the electric power of the right drive motor 51R are specified using the target torques TQL and TQR, similarly to the electric power specified in S350. With the above, S390 ends.
 図16(A)、図16(B)は、車両10の動きの説明図である。各図には、鉛直下方向DDを向いて見た車両10の概略が示されている。図16(A)は、調整値dTQが正値である場合を示している。図中の目標方向D12tは、目標車輪角AFtによって示される前輪12Fの目標方向である。調整値dTQが正値である場合、車輪角差dAFは正値であり、目標方向D12tは、前輪12Fの進行方向D12よりも右方向DR側を向いている。また、調整値dTQが正値である場合、TQL>TQRである。左後輪12Lのトルクが右後輪12Rのトルクよりも大きいので、車両10の進行方向は、右方向DR側へ変化する。この結果、車輪角AFは、目標車輪角AFtに近づく。 16(A) and 16(B) are explanatory views of the movement of the vehicle 10. In each drawing, the outline of the vehicle 10 as viewed in the vertically downward direction DD is shown. FIG. 16A shows the case where the adjustment value dTQ is a positive value. The target direction D12t in the figure is the target direction of the front wheel 12F indicated by the target wheel angle AFt. When the adjustment value dTQ is a positive value, the wheel angle difference dAF is a positive value, and the target direction D12t faces the right side DR side of the traveling direction D12 of the front wheels 12F. When the adjustment value dTQ is a positive value, TQL>TQR. Since the torque of the left rear wheel 12L is larger than the torque of the right rear wheel 12R, the traveling direction of the vehicle 10 changes to the right direction DR side. As a result, the wheel angle AF approaches the target wheel angle AFt.
 図16(B)は、調整値dTQが負値である場合を示している。調整値dTQが負値である場合、車輪角差dAFは負値であり、目標方向D12tは、進行方向D12よりも左方向DL側を向いている。また、調整値dTQが負値である場合、TQR>TQLである。右後輪12Rのトルクが左後輪12Lのトルクよりも大きいので、車両10の進行方向は、左方向DL側へ変化する。この結果、車輪角AFは、目標車輪角AFtに近づく。 FIG. 16B shows a case where the adjustment value dTQ is a negative value. When the adjustment value dTQ is a negative value, the wheel angle difference dAF is a negative value, and the target direction D12t faces the left direction DL side with respect to the traveling direction D12. When the adjustment value dTQ is a negative value, TQR>TQL. Since the torque of the right rear wheel 12R is larger than the torque of the left rear wheel 12L, the traveling direction of the vehicle 10 changes to the left direction DL side. As a result, the wheel angle AF approaches the target wheel angle AFt.
 このように、左後輪12Lと右後輪12Rとの間のトルクの差を利用して、車両10の進行方向を制御できる。 In this way, the traveling direction of the vehicle 10 can be controlled by utilizing the torque difference between the left rear wheel 12L and the right rear wheel 12R.
 図16(C)は、調整値dTQの算出(図14:S385)に利用される係数Kpbの例を示すグラフである。横軸は、車速Vを示し、縦軸は、係数Kpbを示している。車速Vと係数Kpbとの対応関係のグラフの形状は、図15に示す車速VとPゲインKpaとの対応関係のグラフの形状と、同じである。車速Vが第1閾値V1以上である場合、係数Kpbは、ゼロに設定される。車速Vが第1閾値V1未満である場合、係数Kpbはゼロよりも大きい。車速Vが第2閾値V2以下である場合、係数Kpbは、ゼロよりも大きな値Kpb1に設定される。第1閾値V1と第2閾値V2との間では、係数Kpbは、車速Vの増大に応じて、値Kpb1からゼロまで徐々に小さくなる。本実施例では、車速Vと係数Kpbとの対応関係は、係数マップデータMKb(図11)によって、予め、決められている。S385(図14)では、主制御部110は、この係数マップデータMKbを参照することによって、車速Vに対応する係数Kpbを特定する。なお、閾値V1、V2は、図15のグラフで説明した閾値V1、V2と、それぞれ同じである。 FIG. 16C is a graph showing an example of the coefficient Kpb used to calculate the adjustment value dTQ (FIG. 14: S385). The horizontal axis represents the vehicle speed V, and the vertical axis represents the coefficient Kpb. The shape of the graph of the correspondence relationship between the vehicle speed V and the coefficient Kpb is the same as the shape of the graph of the correspondence relationship between the vehicle speed V and the P gain Kpa shown in FIG. 15. When the vehicle speed V is equal to or higher than the first threshold value V1, the coefficient Kpb is set to zero. When the vehicle speed V is less than the first threshold value V1, the coefficient Kpb is greater than zero. When the vehicle speed V is equal to or lower than the second threshold value V2, the coefficient Kpb is set to a value Kpb1 larger than zero. Between the first threshold value V1 and the second threshold value V2, the coefficient Kpb gradually decreases from the value Kpb1 to zero as the vehicle speed V increases. In the present embodiment, the correspondence between the vehicle speed V and the coefficient Kpb is determined in advance by the coefficient map data MKb (FIG. 11). In S385 (FIG. 14), the main control unit 110 identifies the coefficient Kpb corresponding to the vehicle speed V by referring to this coefficient map data MKb. The thresholds V1 and V2 are the same as the thresholds V1 and V2 described in the graph of FIG. 15, respectively.
 図16(D)は、調整値dTQと車速Vとの関係例を示すグラフである。横軸は、車速Vを示し、縦軸は、調整値dTQの絶対値を示している。このグラフは、車輪角差dAFの絶対値がゼロよりも大きい場合のグラフである。図示するように、車速Vが第1閾値V1以上である場合、調整値dTQの絶対値は、ゼロに設定される。車速Vが第1閾値V1未満である場合、調整値dTQの絶対値は、ゼロよりも大きい。車速Vが第2閾値V2以下である場合、調整値dTQの絶対値は、ゼロよりも大きな値dTQ1に設定される。第1閾値V1と第2閾値V2との間では、調整値dTQの絶対値は、車速Vの増大に応じて、値dTQ1からゼロまで徐々に小さくなる。 FIG. 16D is a graph showing an example of the relationship between the adjustment value dTQ and the vehicle speed V. The horizontal axis represents the vehicle speed V, and the vertical axis represents the absolute value of the adjustment value dTQ. This graph is a graph when the absolute value of the wheel angle difference dAF is larger than zero. As shown in the figure, when the vehicle speed V is equal to or higher than the first threshold value V1, the absolute value of the adjustment value dTQ is set to zero. When the vehicle speed V is less than the first threshold value V1, the absolute value of the adjustment value dTQ is greater than zero. When the vehicle speed V is equal to or lower than the second threshold value V2, the absolute value of the adjustment value dTQ is set to a value dTQ1 larger than zero. Between the first threshold value V1 and the second threshold value V2, the absolute value of the adjustment value dTQ gradually decreases from the value dTQ1 to zero as the vehicle speed V increases.
 車速Vが第1閾値V1以上である場合、調整値dTQがゼロであるので、左目標トルクTQLと右目標トルクTQRとの間の差は、車輪角差dAFに拘わらず、ゼロである。また、操舵モータ65の電力がゼロであるので(S370)、前輪12Fの進行方向D12は、傾斜角Tの変化に追随して変化できる。この車両10の状態は、操舵モータ65の状態が不具合状態ではなく(図14:S340:No)、かつ、車速Vが第1閾値V1以上である場合の車両10の状態と、同じである。車両10は、第1目標傾斜角T1に適した方向に向かって、走行できる。 When the vehicle speed V is equal to or higher than the first threshold value V1, the adjustment value dTQ is zero, so the difference between the left target torque TQL and the right target torque TQR is zero regardless of the wheel angle difference dAF. Further, since the electric power of the steering motor 65 is zero (S370), the traveling direction D12 of the front wheels 12F can be changed following the change of the inclination angle T. The state of the vehicle 10 is the same as the state of the vehicle 10 when the steering motor 65 is not in the defective state (FIG. 14: S340: No) and the vehicle speed V is equal to or higher than the first threshold value V1. The vehicle 10 can travel in a direction suitable for the first target tilt angle T1.
 車速Vが第1閾値V1未満である場合、係数Kpbはゼロよりも大きいので、左後輪12Lと右後輪12Rとの間のトルクの差は、大きくなり得る。左後輪12Lと右後輪12Rとの間の大きいトルク差は、車両10の進行方向を目標車輪角AFtに適した方向へ近づける。この結果、前輪12Fの方向D12、すなわち、車輪角AFは、目標車輪角AFtに近づく。このように、操舵モータ65の状態が不具合状態であっても、車両10は、ハンドル角Aiに適した方向に、走行できる。 When the vehicle speed V is less than the first threshold value V1, the coefficient Kpb is greater than zero, so the difference in torque between the left rear wheel 12L and the right rear wheel 12R can be large. The large torque difference between the left rear wheel 12L and the right rear wheel 12R brings the traveling direction of the vehicle 10 closer to a direction suitable for the target wheel angle AFt. As a result, the direction D12 of the front wheels 12F, that is, the wheel angle AF approaches the target wheel angle AFt. As described above, even if the steering motor 65 is in a defective state, the vehicle 10 can travel in a direction suitable for the steering wheel angle Ai.
 また、第1閾値V1と第2閾値V2との間では、係数Kpbは、車速Vの変化に応じて滑らかに変化する。 Also, between the first threshold value V1 and the second threshold value V2, the coefficient Kpb changes smoothly according to the change in the vehicle speed V.
 以上のように、図13、図14の処理、すなわち、図12のS130、S140が、並行して行われる。S120で、「走行モードが「ドライブ」と「ニュートラル」とのいずれかである」という条件が満たされない場合(S120:No)、主制御部110は、S150、S160の処理を並行して実行する。 As described above, the processes of FIGS. 13 and 14, that is, S130 and S140 of FIG. 12 are performed in parallel. In S120, when the condition that "the driving mode is "drive" or "neutral"" is not satisfied (S120: No), the main control unit 110 executes the processes of S150 and S160 in parallel. ..
 S150の処理は、S130の処理と、同じである。傾斜角Tは、第1目標傾斜角T1に、制御される。S160の処理は、S140における車速Vが第2閾値V2以下である場合の処理と、同様に行われる。すなわち、車速Vに拘わらず、操舵モータ65、または、後輪12L、12Rのトルク差によって、車両10の進行方向が制御される。 The process of S150 is the same as the process of S130. The tilt angle T is controlled to the first target tilt angle T1. The process of S160 is performed similarly to the process when the vehicle speed V is equal to or less than the second threshold value V2 in S140. That is, regardless of the vehicle speed V, the traveling direction of the vehicle 10 is controlled by the steering motor 65 or the torque difference between the rear wheels 12L and 12R.
 S130、S140、または、S150、S160の処理が実行されたことに応じて、図12の処理が終了する。制御装置100は、図12の処理を繰り返し実行する。S130、S140を実行するための条件が満たされる場合(S110:Yes)、制御装置100は、S130、S140の処理を、継続して行う。S150、S160を実行するための条件が満たされる場合(S110:No)、制御装置100は、S150、S160の処理を、継続して行う。これらの結果、車両10は、ハンドル角に適した進行方向に向かって、走行する。 The processing of FIG. 12 ends in response to the processing of S130, S140 or S150, S160 being executed. The control device 100 repeatedly executes the processing of FIG. When the conditions for executing S130 and S140 are satisfied (S110: Yes), the control device 100 continuously performs the processes of S130 and S140. When the conditions for executing S150 and S160 are satisfied (S110: No), the control device 100 continuously performs the processes of S150 and S160. As a result, the vehicle 10 travels in the traveling direction suitable for the steering wheel angle.
 図示を省略するが、主制御部110(図11)と駆動装置制御部300とは、ブレーキ操作量に応じて駆動モータ51L、51Rを制御する。ブレーキ操作量がゼロよりも大きくなった場合には、主制御部110は、駆動モータ51L、51Rのトルクを減少させるための指示を、駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、トルクが減少するように、駆動モータ51L、51Rを制御する。なお、車両10は、全ての車輪12F、12L、12Rのうちの少なくとも1つの車輪の回転速度を摩擦によって低減するブレーキ装置を有することが好ましい。そして、ユーザがブレーキペダル46を踏み込んだ場合に、ブレーキ装置が、少なくとも1つの車輪の回転速度を低減することが好ましい。 Although not shown, the main control unit 110 (FIG. 11) and the drive device control unit 300 control the drive motors 51L and 51R according to the brake operation amount. When the brake operation amount becomes greater than zero, the main control unit 110 supplies the drive device control unit 300 with an instruction to reduce the torque of the drive motors 51L and 51R. The drive device control section 300 controls the drive motors 51L and 51R so that the torque decreases in accordance with the instruction. It is preferable that vehicle 10 has a brake device that reduces the rotational speed of at least one of all wheels 12F, 12L, 12R by friction. Then, when the user depresses the brake pedal 46, the braking device preferably reduces the rotation speed of at least one wheel.
 以上のように、本実施例では、車両10(図1~図4、図11)は、車体90と、3個の車輪12F、12L、12Rと、駆動システム51Sと、操舵モータ65と、傾斜装置30と、リーンモータ25と、車速センサ122と、車輪角センサ124と、ハンドル41aと、制御装置100と、を備えている。前輪12Fは、車体90に支持されている回動輪の例である(回動輪の進行方向は、車体90の幅方向に回動可能である)。駆動システム51Sは、左後輪12Lと右後輪12Rとにトルクを印加するように構成されている。 As described above, in this embodiment, the vehicle 10 (FIGS. 1 to 4 and 11) includes the vehicle body 90, the three wheels 12F, 12L, and 12R, the drive system 51S, the steering motor 65, and the inclination motor. The device 30, the lean motor 25, the vehicle speed sensor 122, the wheel angle sensor 124, the steering wheel 41a, and the control device 100 are provided. The front wheel 12F is an example of a rotating wheel supported by the vehicle body 90 (the traveling direction of the rotating wheel is rotatable in the width direction of the vehicle body 90). The drive system 51S is configured to apply torque to the left rear wheel 12L and the right rear wheel 12R.
 図14のS320で説明したように、制御装置100は、車速Vと第1目標傾斜角T1とを用いて、目標車輪角AFtを特定する。図13のS230で説明したように、制御装置100は、ハンドル角Aiと車速Vとを用いて、第1目標傾斜角T1を特定する。従って、制御装置100は、ハンドル角Aiと車速Vとを用いて目標車輪角AFtを特定している。 As described in S320 of FIG. 14, the control device 100 identifies the target wheel angle AFt using the vehicle speed V and the first target inclination angle T1. As described in S230 of FIG. 13, the control device 100 specifies the first target tilt angle T1 using the steering wheel angle Ai and the vehicle speed V. Therefore, the control device 100 specifies the target wheel angle AFt using the steering wheel angle Ai and the vehicle speed V.
 図13のS250で説明したように、制御装置100は、傾斜角差dTがゼロになるようにリーンモータ25を制御する。これにより、傾斜角Tは、第1目標傾斜角T1に近づく。ハンドル角Aiが旋回を示す場合、車体90は、旋回の内側に傾斜する。 As described in S250 of FIG. 13, the control device 100 controls the lean motor 25 so that the tilt angle difference dT becomes zero. As a result, the tilt angle T approaches the first target tilt angle T1. When the steering wheel angle Ai indicates a turn, the vehicle body 90 leans inward of the turn.
 車両10が前進しており(図12:S120:Yes)、かつ、操舵モータ65の状態が予め決められた不具合状態ではない場合(図14:S340:No)、S360で、制御装置100は、PゲインKpa(図15)を用いるP制御を用いて、操舵モータ65によって生成されるトルクを制御する。図15で説明したように、車速Vが第1閾値V1未満である場合、操舵モータ65によって生成されるトルクは、車輪角AFが目標車輪角AFtに近づくように、制御される。このように、車速Vが第1閾値V1未満であり、かつ、操舵モータ65の状態が不具合状態ではないことを含む条件(第1条件とも呼ぶ)が満たされる場合、車輪角AFが目標車輪角AFtに近づくように、操舵モータ65によって生成されるトルクが制御されるので、車体90の傾斜の変化に対する車輪角AFの変化の遅れが抑制される。このような制御が行われるための条件である第1条件は、車速Vが第1閾値V1未満であり、かつ、操舵モータ65の状態が不具合状態ではないことを含む種々の条件であってよい。 When the vehicle 10 is moving forward (FIG. 12: S120: Yes) and the state of the steering motor 65 is not a predetermined malfunction state (FIG. 14: S340: No), in S360, the control device 100 determines that The torque generated by the steering motor 65 is controlled using P control using the P gain Kpa (FIG. 15). As described in FIG. 15, when the vehicle speed V is less than the first threshold value V1, the torque generated by the steering motor 65 is controlled so that the wheel angle AF approaches the target wheel angle AFt. In this way, when the vehicle speed V is less than the first threshold value V1 and the condition including the condition that the steering motor 65 is not in the defective state (also referred to as the first condition) is satisfied, the wheel angle AF is the target wheel angle. Since the torque generated by the steering motor 65 is controlled so as to approach AFt, the delay in the change in the wheel angle AF with respect to the change in the inclination of the vehicle body 90 is suppressed. The first condition, which is a condition for performing such control, may be various conditions including that the vehicle speed V is less than the first threshold value V1 and the state of the steering motor 65 is not in a defective state. ..
 車両10が前進しており(図12:S120:Yes)、かつ、操舵モータ65の状態が不具合状態である場合(図14:S340:Yes)、S380-S390で、制御装置100は、左駆動モータ51Lと右駆動モータ51Rとを制御する。S385で、制御装置100は、車輪角差dAFを用いて調整値dTQを決定する。S390で、制御装置100は、調整値dTQを用いて目標トルクTQL、TQRを決定し、目標トルクTQL、TQRに従って、駆動モータ51L、51Rを制御する。左後輪12Lに印加されるトルクと、右後輪12Rに印加されるトルクとは、目標トルクTQL、TQRに従って制御される。図16(A)~図16(D)で説明したように、車速Vが第1閾値V1未満である場合、調整値dTQ(すなわち、左後輪12Lに印加されるトルクと右後輪12Rに印加されるトルクとの間の差)は、車輪角AFが目標車輪角AFtに近づくように、制御される。このように、車速Vが第1閾値V1未満であり、かつ、操舵モータ65の状態が不具合状態であることを含む条件(第2条件とも呼ぶ)が満たされる場合、車輪角AFが目標車輪角AFtに近づくように、左後輪12Lに印加されるトルクと右後輪12Rに印加されるトルクとの間の差が制御される。従って、操舵モータ65の状態が不具合状態であっても、車体90の傾斜の変化に対する車輪角AFの変化の遅れが抑制される。このような制御が行われるための条件である第2条件は、車速Vが第1閾値V1未満であり、かつ、操舵モータ65の状態が不具合状態であることを含む種々の条件であってよい。 When the vehicle 10 is moving forward (FIG. 12: S120: Yes) and the state of the steering motor 65 is in a defective state (FIG. 14: S340: Yes), the control device 100 drives the left drive in S380-S390. It controls the motor 51L and the right drive motor 51R. In S385, control device 100 determines adjustment value dTQ using wheel angle difference dAF. In S390, control device 100 determines target torques TQL and TQR using adjustment value dTQ, and controls drive motors 51L and 51R according to target torques TQL and TQR. The torque applied to the left rear wheel 12L and the torque applied to the right rear wheel 12R are controlled according to the target torques TQL and TQR. As described with reference to FIGS. 16A to 16D, when the vehicle speed V is less than the first threshold value V1, the adjustment value dTQ (that is, the torque applied to the left rear wheel 12L and the right rear wheel 12R) is adjusted. The difference from the applied torque) is controlled so that the wheel angle AF approaches the target wheel angle AFt. In this way, when the vehicle speed V is less than the first threshold value V1 and the condition (also referred to as the second condition) including the state of the steering motor 65 being in the defective state is satisfied, the wheel angle AF is the target wheel angle. The difference between the torque applied to the left rear wheel 12L and the torque applied to the right rear wheel 12R is controlled so as to approach AFt. Therefore, even if the steering motor 65 is in a defective state, the delay in the change in the wheel angle AF with respect to the change in the inclination of the vehicle body 90 is suppressed. The second condition, which is a condition for performing such control, may be various conditions including that the vehicle speed V is less than the first threshold value V1 and the state of the steering motor 65 is in a defective state. ..
 また、図14のS385で説明したように、係数Kpbは、車輪角差dAFの大きさに対する調整値dTQ(すなわち、左後輪12Lと右後輪12Rの間のトルク差)の大きさの割合を示している(以下、トルク角度割合Kpbとも呼ぶ)。図16(C)で説明したように、制御装置100は、車速Vが第2閾値V2よりも速い場合のトルク角度割合Kpbを、車速Vが第2閾値V2よりも遅い場合のトルク角度割合Kpbと比べて、小さい値に設定する。図14のS390では、制御装置100は、トルク角度割合Kpbに基づいて、左後輪12Lのトルクと右後輪12Rのトルクとを制御する。このように、車速Vが比較的に遅い場合には、左後輪12Lのトルクと右後輪12Rのトルクとの間の大きな差によって、車体90の傾斜の変化に対する車輪角AFの変化の遅れが抑制される。車速Vが比較的に速い場合には、左後輪12Lのトルクと右後輪12Rのトルクとの間の差が小さくなるので、車輪角AFの急な変化を抑制できる。 Further, as described in S385 of FIG. 14, the coefficient Kpb is the ratio of the magnitude of the adjustment value dTQ (that is, the torque difference between the left rear wheel 12L and the right rear wheel 12R) to the magnitude of the wheel angle difference dAF. (Hereinafter also referred to as torque angle ratio Kpb). As described in FIG. 16C, the control device 100 sets the torque angle ratio Kpb when the vehicle speed V is faster than the second threshold value V2 and the torque angle ratio Kpb when the vehicle speed V is slower than the second threshold value V2. Set a smaller value compared to. In S390 of FIG. 14, the control device 100 controls the torque of the left rear wheel 12L and the torque of the right rear wheel 12R based on the torque angle ratio Kpb. Thus, when the vehicle speed V is relatively slow, the change in the wheel angle AF is delayed with respect to the change in the inclination of the vehicle body 90 due to the large difference between the torque of the left rear wheel 12L and the torque of the right rear wheel 12R. Is suppressed. When the vehicle speed V is relatively high, the difference between the torque of the left rear wheel 12L and the torque of the right rear wheel 12R becomes small, so that a sudden change in the wheel angle AF can be suppressed.
B.変形例:
(1)操舵モータ65の制御(図14:S360)に用いられるPゲインKpaと車速Vとの関係は、図15のグラフの関係に代えて、他の種々の関係であってよい。例えば、車速Vが第1閾値V1以上である場合に、PゲインKpaはゼロよりも大きくてよい。この場合も、前輪12Fの方向D12がハンドル角とは独立に幅方向に回動することが許容されるように、PゲインKpa(ひいては、操舵モータ65のトルク)が小さいことが好ましい。また、車速Vが第2閾値V2以下である場合に、PゲインKpaは、車速Vの増大に応じて低減してよい。また、操舵モータ65の制御は、P制御に限らず、車輪角AFが目標車輪角AFtに近づくように操舵モータ65によって生成されるトルクを制御する種々の制御であってよい(例えば、フィードバック制御)。ここで、制御装置100は、操舵モータ65の状態が不具合状態ではない場合であっても、速度Vが第1閾値V1以上である場合には、操舵モータ65によって生成されるトルクを小さいトルク(ゼロ、または、ゼロに近いトルク)に設定することによって、ハンドル角に拘わらずに回動輪の進行方向(例えば、前輪12Fの進行方向D12)が幅方向に回動することを許容する制御モードを有することが好ましい。これにより、回動輪の進行方向は、傾斜角Tの変化に追随して、回動できる。
B. Modification:
(1) The relationship between the P gain Kpa used to control the steering motor 65 (FIG. 14: S360) and the vehicle speed V may be various other relationships instead of the relationship shown in the graph of FIG. For example, when the vehicle speed V is equal to or higher than the first threshold value V1, the P gain Kpa may be larger than zero. Also in this case, the P gain Kpa (and thus the torque of the steering motor 65) is preferably small so that the direction D12 of the front wheels 12F is allowed to rotate in the width direction independently of the steering wheel angle. Further, when the vehicle speed V is equal to or lower than the second threshold value V2, the P gain Kpa may be reduced according to the increase of the vehicle speed V. The control of the steering motor 65 is not limited to P control, but may be various controls for controlling the torque generated by the steering motor 65 such that the wheel angle AF approaches the target wheel angle AFt (for example, feedback control. ). Here, even if the state of the steering motor 65 is not in a defective state, the control device 100 reduces the torque generated by the steering motor 65 to a small torque (when the speed V is equal to or higher than the first threshold value V1). By setting to zero or a torque close to zero, a control mode that allows the traveling direction of the rotating wheel (for example, the traveling direction D12 of the front wheel 12F) to rotate in the width direction regardless of the steering wheel angle is set. It is preferable to have. As a result, the traveling direction of the rotating wheel can be rotated following the change in the inclination angle T.
(2)駆動システム51Sの制御(図14:S380-S390)に用いられる係数Kpbと車速Vとの関係は、図16(C)のグラフの関係に代えて、他の種々の関係であってよい。例えば、車速Vが第1閾値V1以上である場合に、係数Kpbはゼロよりも大きくてよい。この場合も、前輪12Fの方向D12がハンドル角とは独立に幅方向に回動することが許容されるように、係数Kpb(ひいては、調整値dTQの絶対値)が小さいことが好ましい。また、車速Vが第2閾値V2以下である場合に、係数Kpbは、車速Vの増大に応じて低減してよい。また、駆動システム51Sの制御は、係数Kpbを用いる制御に限らず、車輪角AFが目標車輪角AFtに近づくように左右のトルク差を制御する種々の制御であってよい。ここで、制御装置100は、操舵モータ65の状態が不具合状態である場合であっても、速度Vが第1閾値V1以上である場合には、左右のトルク差を小さい値(ゼロ、または、ゼロに近い値)に設定することによって、ハンドル角に拘わらずに回動輪の進行方向(例えば、前輪12Fの進行方向D12)が幅方向に回動することを許容する制御モードを有することが好ましい。これにより、回動輪の進行方向は、傾斜角Tの変化に追随して、回動できる。 (2) The relationship between the coefficient Kpb and the vehicle speed V used for the control of the drive system 51S (FIG. 14: S380-S390) is not limited to the relationship in the graph of FIG. Good. For example, when the vehicle speed V is equal to or higher than the first threshold value V1, the coefficient Kpb may be larger than zero. Also in this case, it is preferable that the coefficient Kpb (and thus the absolute value of the adjustment value dTQ) is small so that the direction D12 of the front wheel 12F is allowed to rotate in the width direction independently of the steering wheel angle. Further, when the vehicle speed V is equal to or lower than the second threshold value V2, the coefficient Kpb may be reduced as the vehicle speed V increases. The control of the drive system 51S is not limited to the control using the coefficient Kpb, but may be various controls for controlling the left and right torque difference so that the wheel angle AF approaches the target wheel angle AFt. Here, even when the state of the steering motor 65 is in a defective state, the control device 100 reduces the left-right torque difference to a small value (zero or, if the speed V is equal to or higher than the first threshold value V1). By setting it to a value close to zero), it is preferable to have a control mode that allows the traveling direction of the rotating wheel (for example, the traveling direction D12 of the front wheel 12F) to rotate in the width direction regardless of the steering wheel angle. .. Thereby, the traveling direction of the rotating wheel can be rotated following the change in the inclination angle T.
(3)車両10の制御処理は、図12-図14の処理に代えて、他の種々の処理であってよい。例えば、目標トルクTQL、TQR(図14:S390)は、アクセル操作量と差dAFと左目標トルクTQLと右目標トルクTQRとを含む複数のパラメータの間の対応関係を示すマップデータを用いて、特定されてよい。いずれの場合も、制御装置100は、車速Vが第2閾値よりも速い場合のトルク角度割合が、車速Vが第2閾値よりも遅い場合のトルク角度割合と比べて、小さくなるように、左後輪12Lのトルクと右後輪12Rのトルクとの間の差を制御することが、好ましい。ここで、トルク角度割合は、車輪角差dAFの大きさに対する左後輪12Lのトルクと右後輪12Rのトルクとの間の差の割合である。第2閾値は、上述の第1閾値V1よりも小さい特定の速度である。また、図12のS150、S160では、第1目標傾斜角T1に代えて、第1目標傾斜角T1の絶対値よりも小さい絶対値を有する第2目標傾斜角T2が、利用されてよい。 (3) The control process of the vehicle 10 may be various other processes instead of the processes of FIGS. For example, the target torques TQL and TQR (FIG. 14: S390) use map data indicating a correspondence relationship among a plurality of parameters including the accelerator operation amount, the difference dAF, the left target torque TQL, and the right target torque TQR, May be specified. In any case, the control device 100 sets the torque angle ratio when the vehicle speed V is higher than the second threshold value to be smaller than the torque angle ratio when the vehicle speed V is lower than the second threshold value. It is preferable to control the difference between the torque of the rear wheel 12L and the torque of the right rear wheel 12R. Here, the torque angle ratio is the ratio of the difference between the torque of the left rear wheel 12L and the torque of the right rear wheel 12R with respect to the magnitude of the wheel angle difference dAF. The second threshold is a specific speed that is smaller than the first threshold V1 described above. In S150 and S160 of FIG. 12, instead of the first target tilt angle T1, the second target tilt angle T2 having an absolute value smaller than the absolute value of the first target tilt angle T1 may be used.
(4)複数の車輪の総数と配置としては、種々の構成を採用可能である。例えば、前輪の総数が2であり、後輪の総数が1であってもよい。前輪の総数が2であり、後輪の総数が2であってもよい。また、車体の幅方向に互いに離れて配置された左駆動輪と右駆動輪とは、前輪であってもよい。また、車体に支持されている回動輪の総数は、1以上の任意の数であってよい。回動輪は、後輪であってよい。また、左駆動輪と右駆動輪とが、回動輪であってよい。また、複数の車輪は、1以上の前輪と1以上の後輪を含んでよい。 (4) Various configurations can be adopted as the total number and the arrangement of the plurality of wheels. For example, the total number of front wheels may be two and the total number of rear wheels may be one. The total number of front wheels may be two and the total number of rear wheels may be two. The left drive wheel and the right drive wheel, which are arranged apart from each other in the width direction of the vehicle body, may be front wheels. Further, the total number of rotating wheels supported by the vehicle body may be an arbitrary number of 1 or more. The rotating wheel may be a rear wheel. Further, the left driving wheel and the right driving wheel may be rotating wheels. Also, the plurality of wheels may include one or more front wheels and one or more rear wheels.
(5)左駆動輪と右駆動輪とにトルクを印加する駆動システムの構成は、種々の構成であってよい。例えば、図4の駆動モータ51L、51Rのように、駆動システムは、左駆動輪を駆動するように構成されている左駆動装置と、右駆動輪を駆動するように構成されている右駆動装置と、を備えてよい。これに代えて、駆動システムは、1個の駆動装置と、駆動装置の駆動力を左駆動輪と右駆動輪とに分配する駆動力分配装置と、を備えてよい。そして、制御装置100は、駆動力分配装置を制御することによって、駆動力の分配率(すなわち、左駆動輪のトルクと右駆動輪のトルク)を調整してよい。 (5) The drive system that applies torque to the left drive wheel and the right drive wheel may have various configurations. For example, like the drive motors 51L and 51R in FIG. 4, the drive system has a left drive device configured to drive the left drive wheel and a right drive device configured to drive the right drive wheel. And may be provided. Alternatively, the drive system may include one drive device and a drive force distribution device that distributes the drive force of the drive device to the left drive wheel and the right drive wheel. Then, the control device 100 may adjust the distribution ratio of the driving force (that is, the torque of the left driving wheel and the torque of the right driving wheel) by controlling the driving force distribution device.
(6)回動輪の進行方向が車体の幅方向に回動可能であるように回動輪を支持する回動輪支持装置の構成は、図1等で説明した前輪支持装置41の構成に代えて、他の種々の構成であってよい。例えば、回動輪を回転可能に支持する支持部材は、前フォーク17に代えて、片持ちの部材であってよい。また、支持部材を車体に対して幅方向に回動可能に支持する回動装置は、軸受68に代えて、他の種々の装置であってよい。例えば、回動装置は、車体と支持部材とを連結するリンク機構であってよい。 (6) The configuration of the turning wheel support device that supports the turning wheel such that the traveling direction of the turning wheel is turnable in the width direction of the vehicle body, instead of the configuration of the front wheel support device 41 described in FIG. Other various configurations may be possible. For example, the support member that rotatably supports the rotating wheel may be a cantilever member instead of the front fork 17. Further, the rotating device that supports the support member so as to be rotatable in the width direction with respect to the vehicle body may be various other devices instead of the bearing 68. For example, the turning device may be a link mechanism that connects the vehicle body and the support member.
 一般的には、車体に固定された回動輪支持装置が、回動輪の進行方向が車体の幅方向に回動可能であるように回動輪を支持することが好ましい。この構成によれば、回動輪の回動軸(例えば、回動軸Ax1(図1))は、車体とともに傾斜する。従って、図9(A)、図9(B)、図10等で説明したように、回動輪の進行方向(例えば、方向D12(図2))は、車体の傾斜角Tの変化に追随して変化できる。ここで、回動輪支持装置は、K個(Kは1以上の整数)の支持部材を備えてよい。各支持部材は、1以上の回動輪を回転可能に支持してよい。そして、回動輪支持装置は、車体に固定されたK個の回動装置を備えてよい。K個の回動装置は、K個の支持部材を、それぞれ幅方向に回動可能に支持してよい。 Generally, it is preferable that the turning wheel support device fixed to the vehicle body supports the turning wheel so that the traveling direction of the turning wheel can be turned in the width direction of the vehicle body. According to this structure, the rotation axis of the rotation wheel (for example, the rotation axis Ax1 (FIG. 1)) is inclined with the vehicle body. Therefore, as described with reference to FIGS. 9A, 9B, 10 and the like, the traveling direction of the rotating wheel (for example, the direction D12 (FIG. 2)) follows the change in the inclination angle T of the vehicle body. Can change. Here, the rotating wheel support device may include K (K is an integer of 1 or more) support members. Each support member may rotatably support one or more rotating wheels. The turning wheel support device may include K turning devices fixed to the vehicle body. The K rotating devices may respectively support the K supporting members so as to be rotatable in the width direction.
(7)回動輪の進行方向を幅方向に回動させる回動トルクを生成する操舵駆動装置の構成は、図1等で説明した操舵モータ65の構成に代えて、他の種々の構成であってよい。例えば、操舵駆動装置は、ポンプを含み、ポンプからの液圧(例えば、油圧)を用いて回動トルクを生成してよい。ここで、操舵駆動装置は、K個の支持部材のそれぞれに回動トルクを印加するように構成されてよい。例えば、操舵駆動装置は、K個の支持部材のそれぞれに連結されてよい。 (7) The configuration of the steering drive device that generates the turning torque for turning the traveling direction of the turning wheel in the width direction is not limited to the configuration of the steering motor 65 described in FIG. You can For example, the steering drive device may include a pump, and the hydraulic pressure (eg, hydraulic pressure) from the pump may be used to generate the turning torque. Here, the steering drive device may be configured to apply a turning torque to each of the K support members. For example, a steering drive may be coupled to each of the K support members.
(8)車体を幅方向に傾斜させる傾斜装置の構成は、図4等で説明したリンク機構30の構成に代えて、他の種々の構成であってよい。例えば、リンク機構30が台に置換されてよい。台には、駆動モータ51L、51Rが固定される。そして、第1支持部82は、軸受によって、幅方向に回転可能に台に連結される。リーンモータ25は、台に対して、第1支持部82を、幅方向に回転させる。これにより、車体90は、右方向DR側と左方向DL側とのそれぞれに、傾斜できる。なお、第1支持部82は、台に対して、軸受の回転軸を中心に、予め決められた角度範囲(例えば、180度未満の範囲)内で、回転可能であってよい。例えば、第1支持部82の特定の部分が、台の特定の部分に接触することによって、角度範囲が制限されてよい。また、左スライド装置が、左後輪12Lと車体とを接続し、右スライド装置が、右後輪12Rと車体とを接続してもよい。各スライド装置は、車体に対する車輪の車体上方向DVUの相対位置を変化させることができる。傾斜装置は、このような2個のスライド装置(例えば、液圧シリンダ)を含んでよい。 (8) The structure of the tilting device for tilting the vehicle body in the width direction may be various other structures instead of the structure of the link mechanism 30 described with reference to FIG. For example, the link mechanism 30 may be replaced with a base. The drive motors 51L and 51R are fixed to the table. The first support portion 82 is rotatably connected to the base by a bearing. The lean motor 25 rotates the first support portion 82 in the width direction with respect to the base. As a result, the vehicle body 90 can be inclined to the right side DR and the left side DL, respectively. The first support portion 82 may be rotatable with respect to the base about a rotation axis of the bearing within a predetermined angular range (for example, a range of less than 180 degrees). For example, the angular range may be limited by contacting a specific portion of the first support portion 82 with a specific portion of the table. Further, the left slide device may connect the left rear wheel 12L and the vehicle body, and the right slide device may connect the right rear wheel 12R and the vehicle body. Each slide device can change the relative position of the vehicle body upward direction DVU with respect to the vehicle body. The tilting device may include two such sliding devices (eg hydraulic cylinders).
 一般的には、傾斜装置は、「車体の幅方向に互いに離れて配置された一対の車輪(例えば、左駆動輪と右駆動輪)の少なくとも一方に直接的または間接的に接続された第1部材」と、「車体に直接的または間接的に接続された第2部材」と、「第1部材を第2部材に可動に接続する接続装置」を含んでよい。図4の実施例では、上横リンク部材31Uは、縦リンク部材33L、33Rとモータ51L、51Rを介して車輪12L、12Rに接続された第1部材の例である。中縦リンク部材21は、第1支持部82とサスペンションシステム70とを介して車体90に接続された第2部材の例である。軸受39は、第1部材を第2部材に可動に接続する接続装置の例である。 In general, the tilting device is referred to as "a first wheel that is directly or indirectly connected to at least one of a pair of wheels (for example, a left drive wheel and a right drive wheel) arranged apart from each other in the width direction of the vehicle body. The “member”, the “second member directly or indirectly connected to the vehicle body”, and the “connecting device for movably connecting the first member to the second member” may be included. In the embodiment of FIG. 4, the upper horizontal link member 31U is an example of a first member connected to the wheels 12L and 12R via the vertical link members 33L and 33R and the motors 51L and 51R. The middle-longitudinal link member 21 is an example of a second member connected to the vehicle body 90 via the first support portion 82 and the suspension system 70. The bearing 39 is an example of a connecting device that movably connects the first member to the second member.
(9)傾斜装置を駆動する傾斜駆動装置は、第1部材と第2部材との相対的な位置を変化させる力(例えば、第1部材に対する第2部材の向きを変化させるトルク)を第1部材と第2部材とに印加する種々の装置であってよい。傾斜駆動装置は、リーンモータ25のような電気モータを含んでよい。また、傾斜装置が液圧シリンダを含む場合、駆動装置は、ポンプを含んでよい。 (9) The tilt drive device that drives the tilt device first applies a force that changes the relative positions of the first member and the second member (for example, torque that changes the orientation of the second member with respect to the first member). It may be various devices that apply to the member and the second member. The tilt drive may include an electric motor, such as lean motor 25. Also, if the tilting device includes a hydraulic cylinder, the drive device may include a pump.
(10)操作入力部は、ハンドル41a(図1)のように左と右とに回転可能な装置に代えて、旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成された他の種々の装置であってよい。例えば、操作入力部は、予め決められた基準方向(例えば、直立方向)から左と右とに傾斜可能なレバーを含んでよい。 (10) The operation input unit is operated to input an operation amount indicating the turning direction and the degree of turning, instead of a device that can rotate left and right like the handle 41a (FIG. 1). It may be other various devices configured as described above. For example, the operation input unit may include a lever that can be tilted leftward and rightward from a predetermined reference direction (for example, an upright direction).
(11)制御装置100の構成は、駆動システム(例えば、駆動システム51S)と操舵駆動装置(例えば、操舵モータ65)と傾斜駆動装置(例えば、リーンモータ25)とを制御するように構成された種々の構成であってよい。例えば、制御装置100は、1つのコンピュータを用いて構成されてもよい。制御装置100の少なくとも一部は、ASIC(Application Specific Integrated Circuit)などの専用のハードウェアによって、構成されてよい。例えば、図11の駆動装置制御部300とリーンモータ制御部400と操舵モータ制御部500とは、ASICによって構成されてよい。また、制御装置100は、種々の電気回路であってよく、例えば、コンピュータを含む電気回路であってよく、コンピュータを含まない電気回路であってもよい。また、マップデータ(例えば、傾斜角マップデータMTなど)によって対応付けられる入力値と出力値とは、他の要素によって対応付けられてよい。例えば、数学的関数、アナログ電気回路などの要素が、入力値と出力値とを対応付けてよい。 (11) The configuration of the control device 100 is configured to control the drive system (for example, the drive system 51S), the steering drive device (for example, the steering motor 65), and the tilt drive device (for example, the lean motor 25). There may be various configurations. For example, the control device 100 may be configured using one computer. At least a part of the control device 100 may be configured by dedicated hardware such as an ASIC (Application Specific Integrated Circuit). For example, the drive device controller 300, the lean motor controller 400, and the steering motor controller 500 of FIG. 11 may be configured by ASIC. The control device 100 may be various electric circuits, for example, an electric circuit including a computer or an electric circuit not including a computer. Further, the input value and the output value associated with the map data (for example, the inclination angle map data MT) may be associated with other elements. For example, an element such as a mathematical function or an analog electric circuit may associate the input value with the output value.
 また、傾斜駆動装置等の制御に利用される傾斜角としては、鉛直上方向DUを基準とする傾斜角T(図5(B))に代えて、車体90の幅方向の傾斜の度合いを示す種々の角度を採用してよい。例えば、制御角Tcが、傾斜角として利用されてよい。この場合、車両10には、制御角Tcを測定するように構成されたセンサが設けられることが好ましい。このセンサは、傾斜角センサの例である。 Further, as the tilt angle used for controlling the tilt drive device or the like, instead of the tilt angle T (FIG. 5B) based on the vertically upward direction DU, the degree of tilt of the vehicle body 90 in the width direction is shown. Various angles may be employed. For example, the control angle Tc may be used as the tilt angle. In this case, the vehicle 10 is preferably provided with a sensor configured to measure the control angle Tc. This sensor is an example of a tilt angle sensor.
(12)車両の構成は、上記の実施例と変形例とのそれぞれの構成に代えて、他の種々の構成であってよい。例えば、図4の実施例において、モータ51L、51Rは、サスペンションを介して、リンク機構30に接続されてもよい。駆動輪を駆動する駆動装置は、電気モータに代えて、車輪を回転させるトルクを生成する任意の装置であってよい(例えば、内燃機関)。車両の最大定員数は、1人に代えて、2人以上であってよい。車両の制御に用いられる対応関係(例えば、マップデータMT、MAF、MTQ、MKpa、MKb、Mp1、Mp2によって示される対応関係)は、車両が適切に走行できるように、実験的に決定されてよい。車両の制御装置は、車両の制御に用いられる対応関係を、車両の状態に応じて、動的に変更してよい。例えば、車両は、車体の重量を測定する重量センサをー備え、制御装置は、車体の重量に応じて対応関係を調整してよい。 (12) The configuration of the vehicle may be various other configurations instead of the configurations of the above-described embodiment and modified examples. For example, in the embodiment of FIG. 4, the motors 51L and 51R may be connected to the link mechanism 30 via a suspension. The drive device that drives the drive wheels may be any device that generates torque that rotates the wheels instead of the electric motor (for example, an internal combustion engine). The maximum number of passengers for the vehicle may be two or more instead of one. The correspondence relationship (for example, the correspondence relationship indicated by the map data MT, MAF, MTQ, MKpa, MKb, Mp1, Mp2) used for controlling the vehicle may be experimentally determined so that the vehicle can travel appropriately. .. The vehicle control device may dynamically change the correspondence relationship used to control the vehicle in accordance with the state of the vehicle. For example, the vehicle may include a weight sensor that measures the weight of the vehicle body, and the control device may adjust the correspondence according to the weight of the vehicle body.
 上記各実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、図11の制御装置100の機能を、専用のハードウェア回路によって実現してもよい。 In each of the above embodiments, part of the configuration realized by hardware may be replaced with software, and conversely, part or all of the configuration realized by software may be replaced with hardware. Good. For example, the function of the control device 100 of FIG. 11 may be realized by a dedicated hardware circuit.
 また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。 When some or all of the functions of the present invention are realized by a computer program, the program is provided in a form stored in a computer-readable recording medium (for example, a non-transitory recording medium). be able to. The program can be used while being stored in the same recording medium (computer-readable recording medium) as that provided or provided. The “computer-readable recording medium” is not limited to a portable recording medium such as a memory card or a CD-ROM, but is connected to an internal storage device in the computer such as various ROMs or a computer such as a hard disk drive. External storage may also be included.
 以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。 Although the present invention has been described above based on the examples and modifications, the above-described embodiments of the invention are for the purpose of facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
 本発明は、車両に、好適に利用できる。 The present invention can be suitably used for vehicles.
10…車両、11…座席、12F…前輪、12L…左後輪(駆動輪)、12R…右後輪(駆動輪)、12Fc…重心、12La、12Ra…ホイール、12Lb、12Rb…タイヤ、17…前フォーク、20…本体部、20a…前壁部、20b…底部、20c…後壁部、20d…支持部、21…中縦リンク部材、25…リーンモータ、30…傾斜装置(リンク機構)、31D…下横リンク部材、31U…上横リンク部材、33L…左縦リンク部材、33R…右縦リンク部材、38、39…軸受、41…前輪支持装置、41a…ハンドル、41ax…支持棒、45…アクセルペダル、46…ブレーキペダル、47…シフトスイッチ、51L…左駆動モータ、51R…右駆動モータ、51S…駆動システム、65…操舵モータ、68…軸受、70…サスペンションシステム、70L…左サスペンション、70R…右サスペンション、71L、71R…コイルスプリング、72L、72R…ショックアブソーバ、75…連結棒、80…後輪支持部、82…第1支持部、83…第2支持部、90…車体、90c…重心、100…制御装置、110…主制御部、300…駆動装置制御部、400…リーンモータ制御部、500…操舵モータ制御部、110g、300g、400g、500g…プログラム、110n、300n、400n、500n…不揮発性記憶装置、110p、300p、400p、500p…プロセッサ、110v、300v、400v、500v…揮発性記憶装置、300c、400c、500c…電力制御部、120…バッテリ、122…車速センサ、123…ハンドル角センサ、124…車輪角センサ、126…鉛直方向センサ、126a…加速度センサ、126c…制御部、126g…ジャイロセンサ、127…傾斜角センサ、145…アクセルペダルセンサ、146…ブレーキペダルセンサ、DF…前方向、DB…後方向、DU…鉛直上方向、DD…鉛直下方向、DL…左方向、DR…右方向 10... Vehicle, 11... Seat, 12F... Front wheel, 12L... Left rear wheel (driving wheel), 12R... Right rear wheel (driving wheel), 12Fc... Center of gravity, 12La, 12Ra... Wheel, 12Lb, 12Rb... Tire, 17... Front fork, 20... Main body portion, 20a... Front wall portion, 20b... Bottom portion, 20c... Rear wall portion, 20d... Support portion, 21... Middle vertical link member, 25... Lean motor, 30... Tilt device (link mechanism), 31D... Lower horizontal link member, 31U... Upper horizontal link member, 33L... Left vertical link member, 33R... Right vertical link member, 38, 39... Bearing, 41... Front wheel support device, 41a... Handle, 41ax... Support rod, 45 ... accelerator pedal, 46... brake pedal, 47... shift switch, 51L... left drive motor, 51R... right drive motor, 51S... drive system, 65... steering motor, 68... bearing, 70... suspension system, 70L... left suspension, 70R... right suspension, 71L, 71R... coil spring, 72L, 72R... shock absorber, 75... connecting rod, 80... rear wheel support part, 82... first support part, 83... second support part, 90... vehicle body, 90c Center of gravity, 100... Control device, 110... Main control unit, 300... Drive device control unit, 400... Lean motor control unit, 500... Steering motor control unit, 110g, 300g, 400g, 500g... Program, 110n, 300n, 400n , 500n... Nonvolatile storage device, 110p, 300p, 400p, 500p... Processor, 110v, 300v, 400v, 500v... Volatile storage device, 300c, 400c, 500c... Power control unit, 120... Battery, 122... Vehicle speed sensor, 123... Steering wheel angle sensor, 124... Wheel angle sensor, 126... Vertical direction sensor, 126a... Acceleration sensor, 126c... Control part, 126g... Gyro sensor, 127... Inclination angle sensor, 145... Accelerator pedal sensor, 146... Brake pedal sensor , DF... frontward, DB... rearward, DU... vertical upward, DD... vertical downward, DL... leftward, DR... rightward

Claims (2)

  1.  車両であって、
     車体と、
     前記車体に支持されている1以上の回動輪を含むN個(Nは3以上の整数)の車輪であって、前記車体の幅方向に互いに離れて配置された左駆動輪と右駆動輪とを含み、前記1以上の回動輪の進行方向は前記車体の前記幅方向に回動可能である、前記N個の車輪と、
     前記左駆動輪と前記右駆動輪とにトルクを印加するように構成されている駆動システムと、
     前記1以上の回動輪を前記幅方向に回動させるトルクを生成するように構成されている操舵駆動装置と、
     前記車体を前記幅方向に傾斜させるように構成されている傾斜装置と、
     前記傾斜装置を駆動するように構成されている傾斜駆動装置と、
     前記車両の車速を測定するように構成されている車速センサと、
     前記車体に対する前記1以上の回動輪の前記進行方向を示す車輪角を測定するように構成されている車輪角センサと、
     旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成されている操作入力部と、
     前記駆動システムと前記操舵駆動装置と前記傾斜駆動装置とを制御するように構成されている制御装置と、
     を備え、
     前記制御装置は、
      前記操作量と前記車速とを用いて目標車輪角を特定し、
      前記操作量が旋回を示す場合に、前記傾斜駆動装置に、前記車体を前記旋回の内側に傾斜させ、
      前記車速が第1閾値未満であり、かつ、前記操舵駆動装置の状態が予め決められた不具合状態ではないことを含む第1条件が満たされる場合、前記車輪角が前記目標車輪角に近づくように、前記操舵駆動装置によって生成されるトルクを制御し、
      前記車速が前記第1閾値未満であり、かつ、前記操舵駆動装置の状態が前記不具合状態であることを含む第2条件が満たされる場合、前記車輪角が前記目標車輪角に近づくように、前記駆動システムによって印加される前記左駆動輪のトルクである左トルクと前記右駆動輪のトルクである右トルクとの間の差を制御する、
     車両。
    A vehicle,
    The car body,
    N (N is an integer of 3 or more) wheels including one or more turning wheels supported by the vehicle body, the left driving wheel and the right driving wheel being spaced apart from each other in the width direction of the vehicle body. The N wheels, wherein the traveling direction of the one or more rotating wheels is rotatable in the width direction of the vehicle body,
    A drive system configured to apply torque to the left drive wheel and the right drive wheel;
    A steering drive device configured to generate a torque for rotating the one or more rotating wheels in the width direction;
    A tilting device configured to tilt the vehicle body in the width direction,
    A tilting drive configured to drive the tilting device,
    A vehicle speed sensor configured to measure the vehicle speed of the vehicle,
    A wheel angle sensor configured to measure a wheel angle indicating the traveling direction of the one or more rotating wheels with respect to the vehicle body;
    An operation input unit configured to be operated to input an operation amount indicating a turning direction and a degree of turning,
    A control device configured to control the drive system, the steering drive device, and the tilt drive device;
    Equipped with
    The control device is
    The target wheel angle is specified using the operation amount and the vehicle speed,
    When the operation amount indicates a turn, the tilt drive device tilts the vehicle body inward of the turn,
    When the vehicle speed is less than a first threshold value and a first condition including that the state of the steering drive device is not a predetermined malfunction state is satisfied, the wheel angle approaches the target wheel angle. Controlling the torque produced by the steering drive,
    When the vehicle speed is less than the first threshold value and the second condition including the state of the steering drive device is in the defective state is satisfied, the wheel angle approaches the target wheel angle, Controlling the difference between the left torque, which is the torque of the left drive wheel, and the right torque, which is the torque of the right drive wheel, applied by a drive system;
    vehicle.
  2.  請求項1に記載の車両であって、
     前記車輪角と前記目標車輪角との間の差の大きさに対する前記左トルクと前記右トルクとの間の差の大きさの割合を、トルク角度割合と呼ぶ場合に、
     前記制御装置は、前記第2条件が満たされる場合、前記車速が第2閾値よりも速い場合の前記トルク角度割合が、前記車速が前記第2閾値よりも遅い場合の前記トルク角度割合と比べて、小さくなるように、前記左トルクと前記右トルクとの間の前記差を制御する、
     車両。
    The vehicle according to claim 1, wherein
    When the ratio of the magnitude of the difference between the left torque and the right torque with respect to the magnitude of the difference between the wheel angle and the target wheel angle is called a torque angle proportion,
    When the second condition is satisfied, the control device compares the torque angle ratio when the vehicle speed is faster than a second threshold value with the torque angle ratio when the vehicle speed is slower than the second threshold value. Controlling the difference between the left torque and the right torque to be smaller,
    vehicle.
PCT/JP2019/051610 2018-12-27 2019-12-27 Vehicle WO2020138494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244189A JP2020104640A (en) 2018-12-27 2018-12-27 vehicle
JP2018-244189 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138494A1 true WO2020138494A1 (en) 2020-07-02

Family

ID=71125955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051610 WO2020138494A1 (en) 2018-12-27 2019-12-27 Vehicle

Country Status (2)

Country Link
JP (1) JP2020104640A (en)
WO (1) WO2020138494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896146A (en) * 2021-04-08 2021-06-04 河南坐骑科技有限公司 Single-wheel steering delay transmission device and method for active side-tipping vehicle
US11603131B2 (en) * 2019-06-17 2023-03-14 Jtekt Corporation Control device and turning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073855A1 (en) * 2021-10-28 2023-05-04 株式会社ストリーモ Vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936306B2 (en) * 1978-08-08 1984-09-03 パナフアコム株式会社 Diagnosis method for computer systems
JPS63279976A (en) * 1987-05-12 1988-11-17 Toyota Motor Corp Steering device for vehicle
JP2006056334A (en) * 2004-08-18 2006-03-02 Mitsubishi Agricult Mach Co Ltd Turning control mechanism in working vehicle
JP2010132095A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Vehicle control system
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle
JP2017178188A (en) * 2016-03-31 2017-10-05 株式会社エクォス・リサーチ vehicle
JP2018172072A (en) * 2017-03-31 2018-11-08 株式会社エクォス・リサーチ vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936306B2 (en) * 1978-08-08 1984-09-03 パナフアコム株式会社 Diagnosis method for computer systems
JPS63279976A (en) * 1987-05-12 1988-11-17 Toyota Motor Corp Steering device for vehicle
JP2006056334A (en) * 2004-08-18 2006-03-02 Mitsubishi Agricult Mach Co Ltd Turning control mechanism in working vehicle
JP2010132095A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Vehicle control system
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle
JP2017178188A (en) * 2016-03-31 2017-10-05 株式会社エクォス・リサーチ vehicle
JP2018172072A (en) * 2017-03-31 2018-11-08 株式会社エクォス・リサーチ vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GWAK, J.S. ET AL.: "Non-official translation: A study in steering stability of a passive front wheel on tilting narrow track vehicle; 2. Examination of steering stability by simulation; 3. Stability evaluation using prototype vehicle", SEISAN KENKYU, vol. 71, no. 2, 1 March 2019 (2019-03-01), pages 63 - 67, XP055722939, ISSN: 1881-2058 (online), 0037-105X (print), DOI: 10.11188/seisankenkyu.71.63 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603131B2 (en) * 2019-06-17 2023-03-14 Jtekt Corporation Control device and turning device
CN112896146A (en) * 2021-04-08 2021-06-04 河南坐骑科技有限公司 Single-wheel steering delay transmission device and method for active side-tipping vehicle

Also Published As

Publication number Publication date
JP2020104640A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
CN108025785B (en) Vehicle with a steering wheel
JP6557880B2 (en) vehicle
JP6524343B2 (en) vehicle
WO2019245042A1 (en) Vehicle
JP7128432B2 (en) vehicle
WO2020138494A1 (en) Vehicle
WO2019088085A1 (en) Vehicle
JP7328628B2 (en) vehicle
WO2020022447A1 (en) Vehicle
WO2018180754A1 (en) Vehicle
WO2018212186A1 (en) Vehicle
JP7290175B2 (en) vehicle
WO2020138495A1 (en) Vehicle
JP2021160608A (en) Moving device
JP7348590B2 (en) vehicle
JP2018193009A (en) vehicle
JP2019081475A (en) vehicle
JP7193780B2 (en) vehicle
JP2020050012A (en) vehicle
JP2018172072A (en) vehicle
WO2019131618A1 (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905035

Country of ref document: EP

Kind code of ref document: A1