WO2019131618A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2019131618A1
WO2019131618A1 PCT/JP2018/047537 JP2018047537W WO2019131618A1 WO 2019131618 A1 WO2019131618 A1 WO 2019131618A1 JP 2018047537 W JP2018047537 W JP 2018047537W WO 2019131618 A1 WO2019131618 A1 WO 2019131618A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
angle
wheels
control unit
Prior art date
Application number
PCT/JP2018/047537
Other languages
French (fr)
Japanese (ja)
Inventor
斉 神谷
敬造 荒木
水野 晃
昇太 久保
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Publication of WO2019131618A1 publication Critical patent/WO2019131618A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/02Steering deflectable wheels not otherwise provided for combined with means for inwardly inclining vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Definitions

  • the present specification relates to a vehicle that leans and turns a vehicle body.
  • the driver controls the traveling direction of the vehicle by operating an operation input unit such as a steering wheel.
  • an operation input unit such as a steering wheel.
  • the traveling direction of the vehicle may deviate from the direction of the target due to various causes such as wind and road inclination.
  • the present specification discloses a technique for suppressing the deviation of the direction of travel of a vehicle from the direction of a target.
  • a vehicle, N (N is an integer of 3 or more) wheels including a pair of wheels disposed apart from one another in the width direction of the vehicle and one or more other wheels, wherein the pair of wheels and the other N at least one of the wheels is configured as one or more pivoting wheels that can be pivoted to the left and right with respect to the forward direction of the vehicle, and includes one or more front wheels and one or more rear wheels With the wheels of With the car body,
  • a tilt mechanism including a drive device for tilting the vehicle body in the width direction by the drive device; An operation input unit for inputting an operation amount indicating a turning direction and a turning degree; A tilt control unit that controls the drive device using the operation amount input to the operation input unit;
  • a pivoting wheel support that supports the one or more pivoting wheels;
  • a sensor that measures the operating condition of the vehicle and is independent of the tilt angle of the vehicle body; Equipped with The pivoting wheel support portion is configured to allow the one or more pivoting wheels to pivot to the left and right with respect to the vehicle body in accordance with
  • the drive device for the inclination mechanism of the vehicle body has the operation amount, the inclination angle, Since the parameter is controlled to approach the target value using the independent parameter, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction.
  • Application Example 2 It is a vehicle described in Application Example 1;
  • the pivoting wheel support is A support member rotatably supporting the one or more pivoting wheels;
  • a rotating device that supports the support member so as to be rotatable to the left and right with respect to the vehicle body;
  • a resistance torque generation unit that generates a resistance torque for rotation of the support member from a direction specified using the operation amount; Equipped with The sensor is a sensor that measures the resistance torque,
  • the tilt control unit controls the drive device such that the torque approaches zero. vehicle.
  • Application Example 3 It is a vehicle described in Application Example 1;
  • the sensor is a sensor that measures a yaw rate of the vehicle.
  • the tilt control unit controls the drive device such that the yaw rate approaches a target value specified using the operation amount. vehicle.
  • the drive device since the drive device is controlled such that the yaw rate approaches the target value specified using the operation amount, the deviation of the traveling direction of the vehicle from the target can be suppressed.
  • Application Example 4 It is a vehicle described in Application Example 1;
  • the sensor is a sensor that measures the direction of the one or more rotating wheels,
  • the tilt control unit controls the drive device such that the direction of the one or more rotating wheels approaches a direction of a target specified using the operation amount. vehicle.
  • the drive device since the drive device is controlled such that the direction of one or more turning wheels approaches the direction of the target specified using the operation amount, the deviation of the traveling direction of the vehicle from the direction of the target It can be suppressed.
  • the technology disclosed in the present specification can be realized in various aspects, and can be realized, for example, in an aspect such as a vehicle, a control device of a vehicle, a control method of a vehicle, and the like.
  • FIG. 2 is a right side view of the vehicle 10;
  • FIG. 1 is a top view of a vehicle 10;
  • FIG. 2 is a bottom view of the vehicle 10;
  • FIG. 2 is a rear view of the vehicle 10;
  • FIG. 2 is a schematic view showing a state of a vehicle 10;
  • FIG. 2 is a schematic view showing a state of a vehicle 10;
  • FIG. 5 is an explanatory view showing a simplified relationship between a wheel angle AF and a turning radius R.
  • It is an explanatory view of torque tq1.
  • FIG. 2 is a block diagram showing a configuration related to control of a vehicle 10.
  • FIG. 2 is an explanatory view showing a state example of a vehicle 10
  • FIG. 6 is an explanatory view showing another example of the state of the vehicle 10
  • It is a graph which shows the example of the correspondence of torque difference dTQx and correction value Vcc.
  • FIGS. 1 to 4 are explanatory views showing a vehicle 10 as one embodiment. 1 shows a right side view of the vehicle 10, FIG. 2 shows a top view of the vehicle 10, FIG. 3 shows a bottom view of the vehicle 10, and FIG. 4 shows a rear view of the vehicle 10. .
  • the vehicle 10 is shown in FIGS. 1 to 4 arranged on a level ground GL (FIG. 1) and in a non-tilted state.
  • FIGS. 2 to 4 a portion used for explanation of the configuration of the vehicle 10 shown in FIG. 1 is illustrated, and the other portions are omitted.
  • Six directions DF, DB, DU, DD, DR, DL are shown in FIGS.
  • the forward direction DF is the forward direction of the vehicle 10, and the backward direction DB is the opposite direction of the forward direction DF.
  • the upward direction DU is a vertically upward direction, and the downward direction DD is an opposite direction of the upward direction DU.
  • the right direction DR is the right direction as viewed from the vehicle 10 traveling in the forward direction DF, and the left direction DL is the opposite direction of the right direction DR.
  • the directions DF, DB, DR, and DL are all horizontal.
  • the right and left directions DR, DL are perpendicular to the forward direction DF.
  • this vehicle 10 is a single-seat small vehicle.
  • Vehicle 10 (FIGS. 1 and 2) includes vehicle body 90, one front wheel 12F connected to vehicle body 90, and one another in the width direction of vehicle 10 (that is, a direction parallel to right direction DR). It is a tricycle having two rear wheels 12L, 12R arranged separately.
  • the front wheel 12F is an example of a pivoting wheel that can pivot in the left-right direction, and is disposed at the center of the vehicle 10 in the width direction.
  • the rear wheels 12L, 12R are drive wheels, and are disposed symmetrically with respect to the center of the vehicle 10 in the width direction.
  • the vehicle body 90 (FIG. 1) has a main body portion 20.
  • the main body portion 20 has a front portion 20a, a bottom portion 20b, a rear portion 20c, and a support portion 20d.
  • the bottom 20 b is a horizontal plate-like portion.
  • the front portion 20a is a plate-like portion extending from the end on the forward direction DF side of the bottom portion 20b to the upper direction DU side.
  • the rear portion 20c is a plate-like portion extending from the end of the bottom portion 20b on the back direction DB side to the top direction DU.
  • the support portion 20d is a plate-like portion extending from the upper end of the rear portion 20c toward the rear direction DB.
  • the main body 20 has, for example, a metal frame and a panel fixed to the frame.
  • the vehicle body 90 further includes a seat 11 fixed on the bottom 20b, an accelerator pedal 45 and a brake pedal 46 disposed on the forward direction DF side of the seat 11, and a control device 110 and a battery 120 fixed to the bottom 20b.
  • the front wheel support device 41 is fixed to the end on the upper direction DU side of the front portion 20a, and the shift switch 47 is attached to the front wheel support device 41.
  • other members for example, a roof, a headlight, etc.
  • the vehicle body 90 includes a member fixed to the main body 20.
  • the accelerator pedal 45 is a pedal for accelerating the vehicle 10.
  • the brake pedal 46 is a pedal for decelerating the vehicle 10.
  • the shift switch 47 is a switch for selecting the traveling mode of the vehicle 10. In this embodiment, one of four driving modes of “drive”, “neutral”, “reverse” and “parking” can be selected.
  • “Drive” is a mode in which the drive wheels 12L and 12R drive forward
  • “Neutral” is a mode in which the drive wheels 12L and 12R are rotatable
  • “Reverse” is drive of the drive wheels 12L and 12R.
  • the “parking” is a mode in which at least one wheel (e.g., the rear wheels 12L, 12R) can not rotate.
  • “Drive” and “Neutral” are normally used when the vehicle 10 advances.
  • the front wheel support device 41 (FIG. 1) is a device that supports the front wheel 12F so as to be pivotable about the pivot axis Ax1.
  • the front wheel support device 41 has a front fork 17, a bearing 68, and a steering motor 65.
  • the front fork 17 rotatably supports the front wheel 12F, and is, for example, a telescopic-type fork incorporating a suspension (a coil spring and a shock absorber).
  • the bearing 68 connects the main body portion 20 (here, the front portion 20 a) and the front fork 17.
  • the bearing 68 supports the front fork 17 (and the front wheel 12F) so as to be rotatable to the left and right with respect to the vehicle body 90, with the rotational axis Ax1 as the center.
  • the steering motor 65 is a motor that rotates the front fork 17.
  • the steering motor 65 includes a rotor and a stator (not shown). One of the rotor and the stator is fixed to the front fork 17, and the other is fixed to the main body 20 (here, the front 20a).
  • the vehicle 10 is provided with a handle 41 a which can be turned to the left and right.
  • the handle 41a is an example of an operation input unit for inputting the turning direction and the degree of turning.
  • the turning direction (right or left) of the handle 41a with respect to the predetermined straight direction indicates the turning direction desired by the user.
  • the magnitude of the rotation angle of the handle 41a (hereinafter also referred to as "handle angle") with respect to the straight direction indicates the degree of turning desired by the user.
  • “handle angle> zero” indicates right turn
  • “handle angle ⁇ zero” indicates left turn.
  • the positive and negative signs of the steering wheel angle indicate the turning direction.
  • the absolute value of the steering wheel angle indicates the degree of turning.
  • Such a steering wheel angle is an example of an operation amount indicating the turning direction and the degree of turning input to the steering wheel 41a.
  • a support rod 41 ax extending along the rotation axis of the handle 41 a is fixed to the handle 41 a.
  • the support rod 41 ax is connected to the front wheel support device 41 so as to be rotatable about the rotation axis.
  • the wheel angle AF (FIG. 2) is an angle of the traveling direction D12 of the rotating front wheel 12F based on the forward direction DF when the vehicle 10 is viewed in the downward direction DD.
  • the traveling direction D12 is a direction perpendicular to the rotation axis of the front wheel 12F.
  • “AF> zero” indicates that the turning direction is the right direction DR (that is, the direction D12 faces the right direction DR side).
  • “AF ⁇ zero” indicates that the turning direction is the left direction DL (that is, the direction D12 faces the left direction DL side).
  • the steering motor 65 is controlled by the controller 110 (FIG. 1).
  • the control mode of the steering motor 65 is selected from two modes of a limit mode and an allowance mode.
  • control device 110 controls steering motor 65 such that direction D12 of front wheel 12F approaches the direction of the target.
  • the direction of the target is identified using the steering wheel angle. Since the direction D12 of the front wheel 12F is controlled by the steering motor 65, free rotation of the front wheel 12F independent of the steering wheel angle is prohibited. In this case, the wheel angle AF corresponds to a so-called steering angle.
  • the control device 110 allows the direction D12 of the front wheel 12F to turn left and right independently of the steering wheel angle by reducing the torque of the steering motor 65. Details of these modes will be described later.
  • An angle CA in FIG. 1 indicates an angle formed by the vertically upward direction DU and a direction toward the vertically upward direction DU along the rotation axis Ax1 (also referred to as a caster angle).
  • the fact that the caster angle CA is larger than zero indicates that the direction toward the vertically upward direction DU side along the pivot axis Ax1 is inclined obliquely backward as in the present embodiment.
  • the intersection point P2 between the pivot axis Ax1 of the front wheel support device 41 and the ground GL is closer to the front direction DF than the contact center P1 of the front wheel 12F with the ground GL. positioned.
  • the distance Lt in the back direction DB between these points P1 and P2 is called a trail.
  • the positive trail Lt indicates that the contact center P1 is located on the back direction DB side of the intersection point P2 as in this embodiment.
  • the contact center P1 is a center of contact area Ca1 of the front wheel 12F and the ground GL.
  • the center of the contact area is the center of gravity of the contact area, specifically, the position of the center of gravity when it is assumed that the mass is evenly distributed in the area.
  • the contact center PbR of the contact area CaR between the right rear wheel 12R and the ground GL and the contact center PbL of the contact area CaL between the left rear wheel 12L and the ground GL are similarly specified.
  • the two rear wheels 12L, 12R are rotatably supported by the rear wheel support 80.
  • the rear wheel support portion 80 is fixed to the link mechanism 30, the lean motor 25 fixed to the upper portion of the link mechanism 30, the first support portion 82 fixed to the upper portion of the link mechanism 30, and the front portion of the link mechanism 30.
  • the second support portion 83 (FIG. 1).
  • a portion of the link mechanism 30, the first support portion 82 and the second support portion 83 which is hidden by the right rear wheel 12 ⁇ / b> R is also shown by a solid line for the sake of explanation.
  • FIG. 1 a portion of the link mechanism 30, the first support portion 82 and the second support portion 83 which is hidden by the right rear wheel 12 ⁇ / b> R is also shown by a solid line for the sake of explanation.
  • the rear wheel support 80, the rear wheels 12 ⁇ / b> L and 12 ⁇ / b> R, and the connecting portion 75 hidden by the main body 20 are shown by solid lines for the purpose of explanation.
  • the link mechanism 30 is shown in a simplified manner.
  • the first support portion 82 (FIG. 4) is disposed on the upper direction DU side of the link mechanism 30.
  • the first support portion 82 includes a plate-like portion extending in parallel to the right direction DR from the upper direction DU side of the left rear wheel 12L to the upper direction DU side of the right rear wheel 12R.
  • the second support portion 83 (FIGS. 1 and 2) is disposed between the left rear wheel 12L and the right rear wheel 12R on the forward direction DF side of the link mechanism 30.
  • the right rear wheel 12R (FIG. 1) has a wheel 12Ra and a tire 12Rb mounted on the wheel 12Ra.
  • the wheel 12Ra (FIG. 4) is connected to the right electric motor 51R.
  • the right electric motor 51R has a stator and a rotor (not shown). One of the rotor and the stator is fixed to the wheel 12Ra, and the other is fixed to the rear wheel support 80.
  • the rotation axis of the right electric motor 51R is the same as the rotation axis of the wheel 12Ra, and is parallel to the right direction DR.
  • the configuration of the left rear wheel 12L is similar to that of the right rear wheel 12R. Specifically, the left rear wheel 12L has a wheel 12La and a tire 12Lb.
  • the wheel 12La is connected to the left electric motor 51L.
  • One of the rotor and the stator of the left electric motor 51L is fixed to the wheel 12La, and the other is fixed to the rear wheel support portion 80.
  • the electric motors 51L, 51R are in-wheel motors that directly drive the rear wheels 12L, 12R.
  • FIGS. 1 and 4 show a state in which the vehicle body 90 is upright without being inclined (a state in which the inclination angle T described later is zero).
  • the rotation axis ArL of the left rear wheel 12L and the rotation axis ArR of the right rear wheel 12R are located on the same straight line.
  • the position of the forward direction DF of the contact center PbR of the right rear wheel 12R with the ground GL is the position of the forward direction DF of the contact center PbL of the left rear wheel 12L with the ground It is almost the same.
  • the link mechanism 30 (FIG. 4) is a so-called parallel link.
  • the link mechanism 30 has three vertical link members 33L, 21, 33R arranged in order toward the right direction DR, and two horizontal link members 31U, 31D arranged in order toward the downward direction DD. .
  • the vertical link members 33L, 21, 33R are parallel to the vertical direction
  • the horizontal link members 31U, 31D are parallel to the horizontal direction.
  • the two vertical link members 33L, 33R and the two horizontal link members 31U, 31D form a parallelogram link mechanism.
  • the upper horizontal link member 31U connects the upper ends of the vertical link members 33L, 33R.
  • the lower horizontal link member 31D connects the lower ends of the vertical link members 33L and 33R.
  • the middle vertical link member 21 connects central portions of the horizontal link members 31U and 31D.
  • the link members 33L, 33R, 31U, 31D, 21 are rotatably connected to each other, and the rotation axis is parallel to the forward direction DF.
  • the left electric motor 51L is fixed to the left vertical link member 33L.
  • the right electric motor 51R is fixed to the right vertical link member 33R.
  • a first support 82 and a second support 83 (FIG. 1) are fixed to the upper portion of the middle vertical link member 21.
  • the link members 33L, 21, 33R, 31U, 31D and the support portions 82, 83 are made of, for example, metal.
  • the link mechanism 30 has a bearing for rotatably connecting a plurality of link members.
  • the bearing 38 rotatably connects the lower horizontal link member 31D and the middle vertical link member 21, and the bearing 39 rotatably connects the upper horizontal link member 31U and the middle vertical link member 21.
  • bearings are also provided in other portions that rotatably connect the plurality of link members.
  • the lean motor 25 is an example of an actuator for operating the link mechanism 30, and in the present embodiment, is an electric motor having a stator and a rotor.
  • One of the stator and the rotor of the lean motor 25 is fixed to the middle vertical link member 21, and the other is fixed to the upper horizontal link member 31U.
  • the rotational axis of the lean motor 25 is the same as the rotational axis of the connecting portion (here, the bearing 39) of the link members 31U and 21, and is located at the center of the vehicle 10 in the width direction.
  • the torque generated by the lean motor 25 is also referred to as a tilting torque.
  • the tilt torque is a torque that tilts the vehicle body 90.
  • FIG. 5 is a schematic view showing the state of the vehicle 10 on the horizontal ground GL.
  • FIG. 5A shows a state in which the vehicle 10 is upright
  • FIG. 5B shows a state in which the vehicle 10 is inclined.
  • a vehicle upward direction DVU in the drawing is an upward direction of the vehicle 10.
  • the vehicle upward direction DVU is the same as the upward direction DU.
  • the upward direction predetermined for the vehicle body 90 is used as the vehicle upward direction DVU.
  • the entire vehicle 10 including the vehicle body 90 tilts with respect to the ground GL.
  • the right rear wheel 12R moves to the vehicle upward direction DVU side
  • the left rear wheel 12L moves to the opposite side.
  • the whole of the vehicle 10 including the wheels 12F, 12L, 12R and by extension the vehicle body 90 inclines in the right direction DR.
  • the vehicle 10 leans in the right direction DR.
  • the vehicle 10 leans to the left direction DL side.
  • the vehicle upward direction DVU is inclined to the right direction DR with respect to the upward direction DU.
  • an angle between the upward direction DU and the upward direction DVU when the vehicle 10 is viewed in the forward direction DF will be referred to as an inclination angle T.
  • T> zero indicates an inclination toward the right direction DR
  • T ⁇ zero indicates an inclination toward the left direction DL.
  • control angle Tc of the link mechanism 30 is shown by FIG. 5 (B).
  • the control angle Tc indicates the angle of orientation of the middle longitudinal link member 21 with respect to the orientation of the upper horizontal link member 31U.
  • Tc> Zero indicates that the middle vertical link member 21 is rotated clockwise with respect to the upper horizontal link member 31U in the rear view of FIG. 5 (B).
  • “Tc ⁇ zero” indicates that the middle vertical link member 21 has rotated counterclockwise with respect to the upper horizontal link member 31U.
  • the control angle Tc is approximately the same as the tilt angle T.
  • inclination-axis AxL is arrange
  • the link mechanism 30 and the lean motor 25 can tilt the vehicle 10 to the right and left around the tilt axis AxL.
  • the inclination axis AxL is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and parallel to the forward direction DF.
  • the link mechanism 30 rotatably supporting the rear wheels 12L and 12R and the lean motor 25 constitute an inclination mechanism 89 for inclining the vehicle body 90 in the width direction of the vehicle 10.
  • the horizontal link member 31U is connected to the wheels 12L and 12R via the vertical link members 33L and 33R and the motors 51L and 51R.
  • the middle vertical link member 21 is connected to the vehicle body 90 via the first support portion 82 and the suspension system 70.
  • the lean motor 25 changes the relative position between the member 31U connected to the wheels 12L and 12R and the member 21 connected to the vehicle body 90 (here, the direction of the member 21 with respect to the member 31U is changed) Torque is applied to members 31U and 21.
  • FIG. 6 shows a simplified rear view of the vehicle 10, as in FIG. Unlike FIG. 5, the ground GLx is inclined obliquely with respect to the vertically upward direction DU (the right is high and the left is low).
  • FIG. 6A shows a state where the control angle Tc is zero. In this state, all the wheels 12F, 12L, 12R stand upright with respect to the ground GLx.
  • the vehicle upward direction DVU is perpendicular to the ground GLx, and is inclined to the left direction DL with respect to the vertically upward direction DU.
  • FIG. 6B shows a state in which the inclination angle T is zero.
  • the upper horizontal link member 31U is approximately parallel to the ground GLx and inclined in the counterclockwise direction with respect to the middle vertical link member 21. Further, the wheels 12F, 12L, 12R are inclined with respect to the ground GL.
  • the magnitude of the inclination angle T of the vehicle body 90 may be different from the magnitude of the control angle Tc of the link mechanism 30.
  • the lean motor 25 has a lock mechanism (not shown) that fixes the lean motor 25 so as not to rotate.
  • the lock mechanism By operating the lock mechanism, the upper horizontal link member 31U is non-rotatably fixed to the middle vertical link member 21.
  • the control angle Tc is fixed.
  • the locking mechanism is preferably a mechanical mechanism that does not consume power while the lean motor 25 (and thus the link mechanism 30) is fixed.
  • the suspension system 70 (FIG. 4) includes an extendable left suspension 70L and an extendable right suspension 70R.
  • each of the suspensions 70L, 70R is a telescopic suspension including coil springs 71L, 71R and shock absorbers 72L, 72R.
  • the ends on the upper direction DU side of the suspensions 70L and 70R are rotatably connected to the support portion 20d of the main body portion 20 (for example, a ball joint, a hinge, or the like).
  • the lower ends DD of the suspensions 70L and 70R are rotatably connected to the first support 82 of the rear wheel support 80 (for example, a ball joint, a hinge, etc.).
  • the connecting portion 75 is a rod extending in the forward direction DF, as shown in FIGS. 1 and 2.
  • the connecting portion 75 is disposed at the center in the width direction of the vehicle 10.
  • the end on the forward direction DF side of the connecting portion 75 is rotatably connected to the rear portion 20c of the main body portion 20 (for example, a ball joint).
  • the end on the back direction DB side of the connection portion 75 is rotatably connected to the second support portion 83 of the rear wheel support portion 80 (for example, a ball joint).
  • the main body 20 (and the vehicle body 90 as a whole) is connected to the rear wheel support 80 via the suspension system 70 and the connection 75.
  • the vehicle body 90 is rotatable in the width direction by the expansion and contraction of the suspensions 70L and 70R.
  • the roll axis AxR in FIG. 1 indicates a central axis when the vehicle body 90 rotates in the right direction DR and the left direction DL with respect to the rear wheel support portion 80.
  • the roll axis AxR is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and the vicinity of the connecting portion 75.
  • the inclination axis AxL of the inclination by the inclination mechanism 89 is different from the roll axis AxR.
  • FIGS. 5 (A) and 5 (B) a vehicle body 90 pivoting about a roll axis AxR is shown by a dotted line.
  • the roll axis AxR in the drawing indicates the position of the roll axis AxR on a plane including the suspensions 70L and 70R and perpendicular to the forward direction DF.
  • the vehicle body 90 is further rotatable in the right direction DR and the left direction DL about the roll axis AxR.
  • the vehicle body 90 is rotated in the width direction of the vehicle 10 with respect to the vertically upward direction DU (thus, the ground GL) by the rotation by the rear wheel support portion 80 and the rotation by the suspension system 70 and the connection portion 75. It can move.
  • the rotation in the width direction of the vehicle body 90 which is realized by integrating the entire vehicle 10 is also referred to as a roll.
  • the roll may also be generated by deformation of members of the vehicle 10 such as the vehicle body 90 and the tires 12Rb and 12Lb.
  • the rotation around the roll axis AxR is a temporary rotation, and the size thereof is smaller than the size of the inclination by the inclination mechanism 89.
  • the gravity center 90c is shown by FIG. 1, FIG. 5 (A), and FIG. 5 (B).
  • the center of gravity 90c is the center of gravity of the vehicle body 90 in the full load state. In the fully loaded state, the vehicle 10 is loaded with passengers (possibly with luggage) such that the total weight of the vehicle 10 is equal to the total weight of the vehicle.
  • the maximum weight of the package may not be specified, but the maximum number of people may be specified.
  • the center of gravity 90 c is the center of gravity in a state where the maximum number of occupants associated with the vehicle 10 get on the vehicle 10.
  • a reference weight for example, 55 kg
  • the maximum weight of the package may be specified.
  • the center of gravity 90c is the center of gravity of the vehicle body 90 in a state in which the maximum number of occupants and the maximum weight of luggage are loaded.
  • the center of gravity 90c is disposed on the lower direction DD side of the roll axis AxR. Therefore, when the vehicle body 90 vibrates about the roll axis AxR, it is possible to suppress the amplitude of the vibration from becoming excessively large.
  • the battery 120 which is a relatively heavy element of the elements of the vehicle body 90 (FIG. 1) is arranged at a low position. Specifically, the battery 120 is fixed to the bottom portion 20 b which is the lowest portion of the main body portion 20 of the vehicle body 90. Therefore, the center of gravity 90c can be easily made lower than the roll axis AxR.
  • FIG. 7 is an explanatory view of balance of force at the time of turning.
  • a rear view of the rear wheels 12L and 12R when the turning direction is the right direction is shown in the figure.
  • the control device 110 (FIG. 1) is lean so that the rear wheels 12L, 12R (and consequently the vehicle 10) incline in the right direction DR with respect to the ground GL
  • the motor 25 may be controlled.
  • the first force F1 in the figure is a centrifugal force acting on the vehicle body 90.
  • the second force F 2 is gravity acting on the vehicle body 90.
  • the mass of the vehicle body 90 is m (kg)
  • the gravitational acceleration is g (approximately 9.8 m / s 2 )
  • the inclination angle of the vehicle 10 with respect to the vertical direction is T (degrees).
  • the velocity of V is m (m / s) and the radius of gyration is R (m).
  • the first force F1 and the second force F2 are expressed by the following equations 1 and 2.
  • F1 (m * V 2 ) / R (Equation 1)
  • F2 m * g (equation 2)
  • * is a multiplication symbol (same below).
  • the force F1b in the drawing is a component of the first force F1 in the direction perpendicular to the vehicle upward direction DVU.
  • the force F2b is a component of the second force F2 in the direction perpendicular to the vehicle upward direction DVU.
  • the force F1b and the force F2b are represented by the following equations 3 and 4.
  • F1b F1 * cos (T) (Equation 3)
  • F2b F2 * sin (T) (Equation 4)
  • cos () is a cosine function
  • sin () is a sine function (the same applies hereinafter).
  • the force F1b is a component for rotating the vehicle upward direction DVU to the left direction DL side
  • the force F2b is a component for rotating the vehicle upward direction DVU to the right direction DR side.
  • F1b F2b ( Formula 5)
  • the turning radius R is expressed by the following equation 6.
  • R V 2 / (g * tan (T)) (Equation 6)
  • tan () is a tangent function (same below).
  • Expression 6 is established without depending on the mass m of the vehicle body 90.
  • T the absolute value of the inclination angle T
  • Equation 6a the absolute value of the inclination angle without distinguishing between the left direction and the right direction. Equation 6a is satisfied regardless of the inclination direction of the vehicle body 90.
  • R V 2 / (g * tan (Ta)) (Equation 6a)
  • FIG. 8 is an explanatory view showing a simplified relationship between the wheel angle AF and the turning radius R.
  • the wheels 12F, 12L, 12R viewed from the lower direction DD are shown.
  • the front wheel 12F rotates in the right direction DR, and the vehicle 10 turns in the right direction DR.
  • the front center Cf in the figure is the center of the front wheel 12F.
  • the front center Cf is located on the rotation axis of the front wheel 12F.
  • the front center Cf is approximately at the same position as the contact center P1 (FIG. 1).
  • the rear center Cb is the center of the two rear wheels 12L, 12R.
  • the rear center Cb is located at the center between the rear wheels 12L, 12R on the rotation axis of the rear wheels 12L, 12R.
  • the position of the rear center Cb is the same as the center position between the contact centers PbL and PbR of the two rear wheels 12L and 12R.
  • the center Cr is the center of turning (referred to as turning center Cr).
  • the wheel base Lh is a distance in the forward direction DF between the front center Cf and the rear center Cb. As shown in FIG. 1, the wheel base Lh is a distance in the forward direction DF between the rotation axis of the front wheel 12F and the rotation axis of the rear wheels 12L, 12R.
  • the front center Cf, the back center Cb, and the turning center Cr form a right triangle.
  • the interior angle of the point Cb is 90 degrees.
  • the interior angle of the point Cr is the same as the wheel angle AF. Therefore, the relationship between the wheel angle AF and the turning radius R is expressed by the following equation 7.
  • AF arctan (Lh / R) (Equation 7)
  • arctan () is an inverse function of the tangent function (the same applies hereinafter).
  • Equation 7 can be used as a good approximate expression showing the relationship between the wheel angle AF and the turning radius R.
  • the traveling direction of the vehicle 10 is to the right direction DR side Change.
  • the front wheel support device 41 (and, consequently, the pivot axis Ax1 (FIG. 5B)) also moves in the right direction DR.
  • the contact center P1 between the front wheel 12F and the ground GL can not move immediately to the right direction DR due to friction.
  • the front wheel 12F has a positive trail Lt.
  • the contact center P1 is located on the back direction DB side with respect to the intersection point P2 of the rotation axis Ax1 and the ground GL.
  • the direction of the front wheel 12F that is, the travel direction D12 (FIG. 2)
  • the pivoting direction RF in FIG. 5B indicates the pivoting direction of the front wheel 12F centered on the pivot axis Ax1 when the vehicle body 90 inclines to the right direction DR side.
  • the forces F1b and F2b (FIG. 7, equation 5) are balanced, so the behavior of the vehicle 10 Stability is improved.
  • the vehicle 10 turning at the inclination angle T tries to turn at a turning radius R expressed by Equation 6.
  • the traveling direction D12 of the front wheel 12F naturally becomes the same as the traveling direction of the vehicle 10. Therefore, when the vehicle 10 turns at the inclination angle T, the orientation of the front wheel 12F that can turn to the left and right (ie, the wheel angle AF) is specified from the turning radius R expressed by Expression 6 and Expression 7. You can calm down in the direction of the wheel angle AF.
  • the wheel angle AF changes following the inclination of the vehicle body 90.
  • FIG. 9 is an explanatory diagram of the first torque tq1.
  • FIG. 9 (A) shows a schematic of the vehicle 10 viewed from the lower direction DD
  • FIG. 9 (B) shows a schematic of the front wheel 12F viewed from the forward direction DF.
  • FIG. 9B show a state in which the vehicle body 90 of the vehicle 10 moving forward on the horizontal ground GL is inclined to the right direction DR.
  • the front wheel 12F is inclined toward the right direction DR.
  • the front wheel 12F contacts the ground GL and supports a portion of the weight of the vehicle 10. Therefore, the front wheel 12F receives the force Fpa in the upward direction DU from the ground GL.
  • the force Fpa acts on the contact center P1 of the front wheel 12F.
  • Such force Fpa includes a component Fpax parallel to the rotation axis Ax1 of the front wheel 12F, and a component Fpa1 perpendicular to the rotation axis Ax1 and directed to the left direction DL side.
  • the vertical component Fpa1 moves the contact center P1 of the front wheel 12F in the left direction DL.
  • a force Fpa1 directed to the left direction DL acts on the contact center P1 of the front wheel 12F.
  • an intersection point P2 between the rotation axis Ax1 of the front wheel 12F and the ground is located on the front direction DF side with respect to the contact center P1. Therefore, due to the force Fpa1, a first partial torque tq11 that rotates the direction D12 of the front wheel 12F to the right direction DR acts on the front wheel 12F.
  • the force Fpa1 increases as the absolute value of the tilt angle T increases from zero. Therefore, the first partial torque tq11 resulting from the force Fpa1 increases as the absolute value of the inclination angle T increases.
  • FIG. 9C shows a schematic view of the front wheel 12F as viewed in the right direction DR.
  • This figure shows the front wheel 12F in the same state as in FIGS. 9 (A) and 9 (B).
  • the contact center P1 of the front wheel 12F receives the force Fpa in the upward direction DU from the ground GL.
  • the caster angle CA of the front wheel 12F is larger than zero.
  • the force Fpa includes a component Fpax parallel to the rotation axis Ax1 of the front wheel 12F, and a component Fpa2 perpendicular to the rotation axis Ax1 and heading in the forward direction DF.
  • the vertical component Fpa2 moves the contact center P1 of the front wheel 12F in the forward direction DF.
  • FIG. 9D schematically shows the front wheel 12F viewed from the lower direction DD.
  • This figure shows the front wheel 12F in the same state as in FIGS. 9 (A) and 9 (B).
  • a front wheel 12F with a relatively small wheel angle AF1 and a front wheel 12F with a relatively large wheel angle AF2 are shown.
  • a force Fpa2 directed to the forward direction DF acts on the contact center P1 of the front wheel 12F.
  • the traveling direction D12 of the front wheel 12F is pivoted to the right direction DR side, the contact center P1 is positioned on the left direction DL side with respect to the intersection point P2 of the pivot axis Ax1.
  • a second partial torque tq12 that rotates the direction D12 of the front wheel 12F to the right direction DR acts on the front wheel 12F.
  • the magnitude of the force Fpa2 is constant, the magnitude of the second partial torque tq12 is perpendicular to the direction of the force Fpa2 between the contact center P1 and the intersection point P2 of the rotation axis Ax1 (here, the right The larger the distance in the direction DR), the larger the distance (called vertical distance).
  • a distance D1 in the drawing is a vertical distance when the wheel angle AF is a relatively small wheel angle AF1
  • a distance D2 is a vertical distance when the wheel angle AF is a relatively large wheel angle AF2.
  • the trail Lt (FIG. 1) of the front wheel 12F is larger than zero. Therefore, as shown in FIG. 9 (D), the larger the wheel angle AF, the larger the vertical distance. Therefore, the second partial torque tq12 is larger as the wheel angle AF is larger.
  • the first torque tq1 (FIG. 9A) is the sum of these partial torques tq11 and tq12.
  • the first torque tq1 rotates the direction D12 of the front wheel 12F in the inclination direction of the vehicle body 90.
  • illustration is omitted, even when the ground GLx is inclined with respect to the vertically upward direction DU as shown in FIG. 6B, the first torque tq1 is caused by the vehicle body 90 being inclined with respect to the vertically upward direction DU.
  • the direction of the first torque tq1 is the inclination direction of the vehicle body 90 with respect to the direction D12 of the front wheel 12F with respect to the vertically upward direction DU.
  • FIG. 10 is an explanatory view of a force acting on the rotating front wheel 12F.
  • a perspective view of the front wheel 12F is shown in the figure.
  • the direction D12 of the front wheel 12F is the same as the forward direction DF.
  • the rotation axis Ax2 is a rotation axis of the front wheel 12F.
  • the front wheel 12F rotates about the rotation axis Ax2.
  • a pivot axis Ax1 of the front wheel support device 41 FIG.
  • the rotation axis Ax1 extends from the upper direction DU to the lower direction DD.
  • the front axis Ax3 passes through the center of gravity 12Fc of the front wheel 12F and is parallel to the direction D12 of the front wheel 12F.
  • the rotation axis Ax2 of the front wheel 12F also passes through the center of gravity 12Fc of the front wheel 12F.
  • the front wheel support device 41 is fixed to the vehicle body 90. Therefore, when the vehicle body 90 inclines, the front wheel support device 41 inclines together with the vehicle body 90, so the rotation axis Ax2 of the front wheel 12F also tends to incline in the same direction.
  • a torque Tqx (FIG. 10) acting on the front wheel 12F rotating about the rotation axis Ax2 acts on the front wheel 12F.
  • the torque Tqx includes a component of force that causes the front wheel 12F to lean toward the right direction DR about the front axis Ax3.
  • precession the motion of an object when an external torque is applied to the rotating object is known as precession.
  • a rotating object pivots about an axis perpendicular to the axis of rotation and the axis of external torque.
  • the rotating front wheel 12F pivots in the right direction DR about the pivot axis Ax1 of the front wheel support device 41 by the application of the torque Tqx.
  • the direction D12 of the front wheel 12F ie, the wheel angle AF
  • the front wheel support device 41 supports the front wheel 12F as follows. That is, the front wheel 12F can turn to the left and right with respect to the vehicle body 90 following the change of the inclination of the vehicle body 90 regardless of the information input to the steering wheel 41a. For example, even when the steering wheel 41a is maintained in a predetermined direction indicating straight travel, the front wheel 12F changes in the inclination angle T when the inclination angle T of the vehicle body 90 changes in the right direction. Following, it can turn to the right (ie, the wheel angle AF can change to the right).
  • the fact that the front wheel support device 41 supports the front wheel 12F in this manner is paraphrased as follows.
  • the front wheel support device 41 follows the change of the inclination of the vehicle body 90 to the vehicle body 90 so that the wheel angle AF of the front wheel 12F is not limited to one wheel angle AF with respect to one operation amount input to the steering wheel 41a.
  • the front wheel 12F is supported so as to be rotatable to the left and right.
  • the front wheel support device 41 has a connecting portion 50 that connects the support bar 41 ax of the handle 41 a and the front fork 17.
  • the connecting portion 50 includes a first portion 51 fixed to the support rod 41 ax, a second portion 52 fixed to the front fork 17, and a third portion 53 connecting the first portion 51 and the second portion 52. Contains.
  • the connection portion 50 is indirectly connected to the handle 41 a via the support rod 41 ax and directly connected to the front fork 17.
  • the third portion 53 is an elastic body, and more specifically, a coil spring.
  • the right- or left-directed force applied by the user to the handle 41 a is transmitted to the front fork 17 via the connection portion 50. That is, the user can apply a rightward or leftward force to the front fork 17 and thus to the front wheel 12F by operating the handle 41a.
  • the steering motor 65 is controlled in the allowable mode, the direction D12 of the front wheel 12F may change in an unintended direction (ie, the wheel angle AF may differ from the intended angle).
  • the user can correct the orientation of the front wheel 12F (ie, the wheel angle AF) by operating the steering wheel 41a. This can improve the running stability. For example, when the wheel angle AF changes in accordance with external factors such as road surface irregularities, the user can correct the wheel angle AF by operating the steering wheel 41a.
  • connection portion 50 loosely connects the handle 41 a and the front fork 17.
  • the spring constant of the third portion 53 of the connection portion 50 is set to a sufficiently small value.
  • the vehicle 10 may operate as follows. For example, even when the handle 41a is pivoted to the left, when the vehicle body 90 is inclined to the right, the front wheel 12F can pivot to the right. Moreover, in the state where the vehicle 10 is stopped on a flat and dry road which is asphalt-paved, when the steering wheel 41a is turned to the right and left, the one-to-one relationship between the steering wheel angle and the wheel angle AF is Not maintained. The force applied to the handle 41a is transmitted to the front fork 17 via the connection 50, so that the wheel angle AF may change in response to a change in the steering wheel angle.
  • the wheel angle AF is not fixed to one value and may change.
  • the steering wheel 41a is turned to the right while both the steering wheel 41a and the front wheel 12F are in the linear direction. Thereby, the front wheel 12F turns to the right. After this, the handle 41a is returned to the straight ahead direction again.
  • the front wheel 12F can be maintained in a state in which it does not go straight ahead, but faces right.
  • the vehicle 10 may not be able to turn in the direction of the steering wheel 41a.
  • the ratio of the change amount of the wheel angle AF to the change amount of the steering wheel angle may be smaller than when the vehicle 10 is traveling.
  • connection unit 50 is an example of a resistance torque generation unit that generates a resistance torque for the rotation of the front fork 17 from the direction specified using the steering wheel angle.
  • FIG. 11 is a block diagram showing a configuration regarding control of the vehicle 10.
  • the vehicle 10 has a vehicle speed sensor 122, a steering wheel angle sensor 123, a wheel angle sensor 124, a control angle sensor 125, a vertical direction sensor 126, an axial torque sensor 127, and an accelerator pedal sensor 145 as components related to control.
  • a brake pedal sensor 146, a shift switch 47, a control device 110, a right electric motor 51R, a left electric motor 51L, a lean motor 25, and a steering motor 65 are provided.
  • the vehicle speed sensor 122 is a sensor that detects the vehicle speed of the vehicle 10.
  • the vehicle speed sensor 122 is attached to the lower end of the front fork 17 (FIG. 1), and detects the rotational speed of the front wheel 12F, that is, the vehicle speed.
  • the steering wheel angle sensor 123 is a sensor that detects the orientation of the steering wheel 41a (ie, the steering wheel angle).
  • the handle angle sensor 123 is attached to a support bar 41 ax fixed to the handle 41 a (FIG. 1).
  • the wheel angle sensor 124 is a sensor that detects the wheel angle AF of the front wheel 12F.
  • the wheel angle sensor 124 is attached to the steering motor 65 (FIG. 1).
  • the control angle sensor 125 is a sensor that detects the control angle Tc.
  • the control angle sensor 125 is attached to the lean motor 25 (FIG. 4).
  • the vertical direction sensor 126 is a sensor that specifies the vertically downward direction DD.
  • the vertical direction sensor 126 includes an acceleration sensor 126a, a gyro sensor 126g, and a control unit 126c.
  • the acceleration sensor is a sensor that detects acceleration in any direction, and is, for example, a three-axis acceleration sensor.
  • the direction of acceleration detected by the acceleration sensor 126a is referred to as a detection direction.
  • the detection direction In the state where the vehicle 10 is stopped, the detection direction is the same as the vertically downward direction DD. That is, the direction opposite to the detection direction is the vertically upward direction DU.
  • the gyro sensor 126g is a sensor that detects an angular acceleration centered on a rotation axis in an arbitrary direction, and is, for example, a three-axis angular acceleration sensor.
  • the control unit 126c is a device that specifies the vertically downward direction DD using the signal from the acceleration sensor 126a and the signal from the gyro sensor 126g.
  • the control unit 126c is, for example, a data processing apparatus including a computer.
  • the acceleration sensor 126 a and the gyro sensor 126 g may be fixed to various members of the vehicle 10.
  • the acceleration sensor 126a and the gyro sensor 126g are fixed to the same member.
  • the acceleration sensor 126 a and the gyro sensor 126 g and hence the vertical direction sensor 126 are fixed to the rear portion 20 c of the main body 20.
  • the detection direction may be offset from the vertically downward direction DD according to the movement of the vehicle 10. For example, when the vehicle 10 accelerates while moving forward, the detection direction is shifted in the direction to lean backward DB with respect to the vertically downward direction DD. When the vehicle 10 decelerates during forward travel, the detection direction is shifted in a direction in which it leans forward with respect to the vertically downward direction DD. When the vehicle 10 turns to the left during forward movement, the detection direction is shifted in the direction inclined to the right direction DR with respect to the vertically downward direction DD. When the vehicle 10 turns to the right during forward movement, the detection direction is shifted in the direction to lean to the left direction DL with respect to the vertically downward direction DD.
  • the control unit 126 c of the vertical direction sensor 126 calculates the acceleration of the vehicle 10 by using the vehicle speed V specified by the vehicle speed sensor 122. Then, the control unit 126c specifies the deviation of the detection direction with respect to the vertically downward direction DD due to the acceleration of the vehicle 10 by using the acceleration (for example, the deviation of the forward direction DF or the backward direction DB of the detection direction is specified) ). Further, the control unit 126c specifies the deviation of the detection direction with respect to the vertically downward direction DD caused by the angular acceleration of the vehicle 10 by using the angular acceleration specified by the gyro sensor 126g (for example, right direction DR of the detection direction). Or a shift in the left direction DL is identified). The control unit 126c identifies the vertically downward direction DD by correcting the detection direction using the identified deviation. Thus, the vertical direction sensor 126 can specify an appropriate vertically downward direction DD in various traveling states of the vehicle 10.
  • the control unit 126c outputs vertically downward information indicating the specified vertically downward direction DD.
  • the vertically downward direction information indicates a vertically downward direction DD with respect to a predetermined reference direction of the vertical direction sensor 126.
  • the vertical direction sensor 126 is fixed to the vehicle body 90 (specifically, the main body portion 20). Therefore, the correspondence between the vehicle upward direction DVU of the vehicle body 90 and the reference direction of the vertical direction sensor 126 is determined in advance (referred to as a sensor direction relationship).
  • the vertically downward direction DD indicated by the vertically downward direction information can be converted into the vertically downward direction DD with respect to the upward direction DVU of the vehicle body 90.
  • the axial torque sensor 127 (FIG. 11) is a device that measures torque centered on the pivot axis Ax1 acting on the front fork 17.
  • the axial torque sensor 127 is attached to the third portion 53 of the connection portion 50.
  • the axial torque sensor 127 measures the torque acting between the handle 41 a and the front fork 17.
  • the configuration of the shaft torque sensor 127 may be various configurations.
  • the axial torque sensor 127 may be a strain gauge fixed to the third portion 53.
  • the shaft torque sensor 127 may be a spring type torque sensor.
  • An accelerator pedal sensor 145 is attached to the accelerator pedal 45 (FIG. 1) and detects an accelerator operation amount.
  • the brake pedal sensor 146 is attached to the brake pedal 46 (FIG. 1) and detects the amount of brake operation.
  • Each sensor 122, 123, 124, 125, 145, 146 is configured using, for example, a resolver or an encoder.
  • the control device 110 includes a main control unit 100, a drive device control unit 101, a lean motor control unit 102, and a steering motor control unit 103.
  • Control device 110 operates using power from battery 120 (FIG. 1).
  • the control units 100, 101, 102, and 103 each have a computer.
  • the control units 100, 101, 102, and 103 include processors 100p, 101p, 102p, and 103p (for example, CPUs), volatile storage devices 100v, 101v, 102v, and 103v (for example, DRAMs), and non-volatiles.
  • Memory storage 100n, 101n, 102n, 103n for example, flash memory).
  • Programs for operations of the corresponding control units 100, 101, 102, and 103 are stored in advance in the non-volatile storage devices 100n, 101n, 102n, and 103n (not shown). Further, in the non-volatile storage device 100n of the main control unit 100, map data MT and MAF representing a map referred to in the processing described later are stored in advance. The map data Mx is used in another embodiment described later.
  • the processors 100p, 101p, 102p, and 103p execute various processes by executing corresponding programs.
  • the processor 100 p of the main control unit 100 receives signals from the sensors 122, 123, 124, 125, 126, 127, 145, 146 and the shift switch 47, and controls the vehicle 10 according to the received signals. Specifically, the processor 100p of the main control unit 100 controls the vehicle 10 by outputting an instruction to the drive device control unit 101, the lean motor control unit 102, and the steering motor control unit 103 (details will be described later) .
  • the processor 101 p of the drive control unit 101 controls the electric motors 51 L and 51 R in accordance with an instruction from the main control unit 100.
  • the processor 102 p of the lean motor control unit 102 controls the lean motor 25 in accordance with an instruction from the main control unit 100.
  • the processor 103 p of the steering motor control unit 103 controls the steering motor 65 in accordance with an instruction from the main control unit 100.
  • These control units 101, 102, and 103 have electric circuits 101c, 102c, and 103c (for example, inverter circuits) for supplying electric power from the battery 120 to the motors 51L, 51R, 25, and 65 to be controlled, respectively. There is.
  • control units 100, 101, 102, and 103 execute processing.
  • FIG. 12 is a flowchart showing an example of control processing executed by the control device 110 (FIG. 11).
  • the flowchart of FIG. 12 shows the procedure of control of the rear wheel support 80 and the front wheel support device 41.
  • a code combining the character “S” and the numeral following the character “S” is attached to each process.
  • the main control unit 100 acquires signals from the sensors 122, 123, 124, 125, 126, 127, 145, 146 and the shift switch 47. Then, the main control unit 100 specifies the velocity V, the steering wheel angle, the wheel angle AF, the control angle Tc, the vertically downward direction DD, the accelerator operation amount, the brake operation amount, and the traveling mode.
  • main control unit 100 determines whether or not the condition that "the travel mode is any one of” reverse “and” parking "is satisfied. If the traveling mode is different from either “reverse” or “parking” (here, if the traveling mode is either "drive” or “neutral"), the determination result of S110 is No. In this case, the main control unit 100 proceeds to S130. Generally, the determination result of S110 being No indicates that the vehicle 10 is moving forward.
  • the main control unit 100 specifies a first target inclination angle T1 associated with the steering wheel angle.
  • the first target inclination angle T1 indicates a target value of the inclination angle T.
  • the first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V.
  • the correspondence relationship between the steering wheel angle, the vehicle speed V, and the first target inclination angle T1 is determined in advance by the map data MT stored in the non-volatile storage device 100n of the main control unit 100.
  • the main control unit 100 specifies the first target inclination angle T1 corresponding to the combination of the steering wheel angle and the vehicle speed V by referring to the map data MT.
  • the absolute value of the first target inclination angle T1 is larger as the absolute value of the steering wheel angle is larger.
  • the turning radius R decreases as the absolute value of the steering wheel angle increases, so the vehicle 10 can turn at a turning radius R suitable for the steering wheel angle.
  • the first target inclination angle T1 may be determined to maintain the turning radius R at a constant value regardless of the vehicle speed V when the steering wheel angle is constant.
  • the inclination angle T becomes significantly large.
  • the traveling stability of the vehicle 10 may be reduced. Therefore, when the steering wheel angle is constant, the first target inclination angle T1 may be determined such that the turning radius R becomes larger as the vehicle speed V increases.
  • the map data MT defines the correspondence between the steering wheel angle, the vehicle speed V, and the first target inclination angle T1 described above.
  • the information used to specify the first target inclination angle T1 is not limited to the combination of the steering wheel angle and the vehicle speed V, and may be any information including the steering wheel angle.
  • the equation 6 shows the correspondence between the inclination angle T, the velocity V and the turning radius R
  • the equation 7 shows the correspondence between the turning radius R and the wheel angle AF.
  • the main control unit 100 supplies the lean motor control unit 102 with an instruction for controlling the lean motor 25 such that the inclination angle T becomes the first target inclination angle T1.
  • the lean motor control unit 102 drives the lean motor 25 such that the inclination angle T becomes the first target inclination angle T1.
  • the lean motor control unit 102 performs feedback control of the lean motor 25 using the difference between the inclination angle T and the first target inclination angle T1. For example, so-called PID (Proportional Integral Derivative) control is performed.
  • the entire main control unit 100 and the lean motor control unit 102 function as a tilt control unit that controls the link mechanism 30 and the lean motor 25 (also referred to as a tilt control unit 190).
  • the tilt control unit 190 performs control for suppressing the deviation of the traveling direction of the vehicle 10 from the direction of the target. Details of S130 will be described later.
  • control device 110 executes a process of controlling front wheel support device 41.
  • the main control unit 100 determines the first target wheel angle AFt1 using the steering wheel angle and the vehicle speed V.
  • Information indicating the correspondence between the first target wheel angle AFt1, the steering wheel angle, and the vehicle speed V is determined in advance by map data MAF stored in the non-volatile storage device 100n of the main control unit 100 (FIG. 11) There is.
  • the main control unit 100 specifies a first target wheel angle AFt1 corresponding to the combination of the steering wheel angle and the vehicle speed V with reference to the map data MAF.
  • the correspondence relationship between the steering wheel angle, the vehicle speed V, and the first target wheel angle AFt1 is the first target inclination angle T1 identified using the steering wheel angle in S130 of FIG. It is the same as the corresponding relationship with the wheel angle AF specified using Equation 6 and Equation 7. Therefore, the same first target wheel angle AFt1 can be identified using the first target inclination angle T1 and the vehicle speed V.
  • the map data MAF may define the correspondence between the combination of the first target inclination angle T1 and the vehicle speed V and the first target wheel angle AFt1. Then, the main control unit 100 may specify the first target wheel angle AFt1 using the first target inclination angle T1 and the vehicle speed V.
  • the main control unit 100 supplies the steering motor control unit 103 with an instruction for controlling the steering motor 65 so that the wheel angle AF becomes the first target wheel angle AFt1.
  • the steering motor control unit 103 drives the steering motor 65 according to the instruction so that the wheel angle AF becomes the first target wheel angle AFt1.
  • the wheel angle AF of the front wheel 12F is changed to the first target wheel angle AFt1 suitable for the steering wheel angle.
  • the steering motor control unit 103 performs feedback control of the steering motor 65 using the difference between the wheel angle AF and the first target wheel angle AFt1. For example, so-called PID (Proportional Integral Derivative) control is performed.
  • the entire main control unit 100 and the steering motor control unit 103 function as a rotation control unit that controls the torque of the steering motor 65 (also referred to as a rotation control unit 170).
  • the traveling direction D12 of the front wheel 12F can naturally turn in the inclination direction of the vehicle body 90.
  • the direction D12 of the front wheel 12F ie, the wheel angle AF
  • the steering motor control unit 103 controls the steering motor 65 in the allowable mode. In the allowable mode, the steering motor control unit 103 reduces the torque of the steering motor 65 to allow the direction D12 of the front wheel 12F to turn left and right independently of the steering wheel angle.
  • the traveling direction D12 of the front wheel 12F can be changed following the change of the inclination of the vehicle body 90, so that the traveling stability of the vehicle can be improved.
  • the steering motor control unit 103 controls the steering motor 65 in the limit mode. In the limit mode, the steering motor control unit 103 performs control such that the direction D12 of the front wheel 12F, that is, the wheel angle AF approaches the first target wheel angle AFt1 by increasing the torque of the steering motor 65. Thereby, the running stability of the vehicle can be improved.
  • the control method of the torque of the steering motor 65 may be various methods.
  • the steering motor control unit 103 decreases the P gain of the PID control as the vehicle speed V increases.
  • the allowable speed range which is the range of the vehicle speed V at which the control according to the allowable mode is performed may be various ranges, and may be predetermined, for example.
  • the lower limit of the allowable speed range may be a reference speed greater than zero (e.g., 20 km per hour).
  • the torque of the steering motor 65 within the allowable speed range may be zero or may be a value larger than zero.
  • the steering motor control unit 103 smoothly change the P gain of the PID control with respect to the change in the vehicle speed V.
  • FIG. 11 has shown the rotation wheel support part 180 which supports the front wheel 12F.
  • the pivoting wheel support portion 180 pivots the front fork 17, which is an example of a support member that rotatably supports the front wheel 12 F, a bearing 68 that supports the front fork 17 so that it can pivot to the left and right, and It includes a steering motor 65, which is an example of an actuator to be driven, a rotation control unit 170 that controls the torque of the steering motor 65, and a connection unit 50.
  • the process of S170 is the same as the process of S130.
  • the inclination angle T is controlled to the first target inclination angle T1.
  • the process of S180 is the same as the process of the restriction mode of S140 (the steering motor 65 is controlled in the restriction mode regardless of the vehicle speed V).
  • the wheel angle AF is controlled to the first target wheel angle AFt1.
  • the process of FIG. 12 ends in response to the execution of the process of S130, S140, or S170, S180.
  • the control device 110 repeatedly executes the process of FIG.
  • the processing of S130, S140, or S170, S180 is repeated.
  • the vehicle 10 travels in the traveling direction suitable for the steering wheel angle.
  • the main control unit 100 (FIG. 11) and the drive device control unit 101 function as a drive control unit that controls the electric motors 51L and 51R according to the accelerator operation amount and the brake operation amount.
  • the main control unit 100 supplies the driving device control unit 101 with an instruction to increase the output power of the electric motors 51L, 51R.
  • the drive control unit 101 controls the electric motors 51L and 51R to increase the output power according to the instruction.
  • the main control unit 100 supplies the drive device control unit 101 with an instruction to reduce the output power of the electric motors 51L, 51R.
  • the drive control unit 101 controls the electric motors 51L and 51R so that the output power decreases according to the instruction.
  • the main control unit 100 supplies the drive device control unit 101 with an instruction to reduce the output power of the electric motors 51L, 51R.
  • the drive control unit 101 controls the electric motors 51L and 51R so that the output power decreases according to the instruction.
  • the vehicle 10 has a brake device that frictionally reduces the rotational speed of at least one of all the wheels 12F, 12L, 12R. Then, when the user depresses the brake pedal 46, the brake device preferably reduces the rotational speed of at least one wheel.
  • FIG. 13 is a flowchart showing an example of tilt control (FIG. 12: S130).
  • the main control unit 100 (FIG. 11) specifies the information acquired in S100 (FIG. 12). In the present embodiment, information indicating the axial torque, the detection direction of the vertical direction sensor 126, the vehicle speed V, and the steering wheel angle is specified.
  • the main control unit 100 specifies the vertically downward direction DD with respect to the vehicle body 90 using the detection direction and the above-described sensor direction relation. Then, the main control unit 100 calculates, as the inclination angle T, an angle between the vertically upward direction DU which is the opposite direction of the vertically downward direction DD, and the vehicle upward direction DVU.
  • the main control unit 100 specifies the first target inclination angle T1 using the steering wheel angle and the vehicle speed V. Then, the main control unit 100 supplies the lean motor control unit 102 with information indicating each of the inclination angle T, the first target inclination angle T1, and the shaft torque.
  • the lean motor control unit 102 determines a control value for controlling the lean motor 25 using the inclination angle T and the first target inclination angle T1 (referred to as a standard control value).
  • the control value indicates the power to be supplied to the lean motor 25 in order to bring the inclination angle T close to the first target inclination angle T1.
  • the control value indicates, for example, the direction and magnitude of the current to be supplied to the lean motor 25.
  • Such a control value can be said to indicate the direction and magnitude of the torque of the lean motor 25.
  • the absolute value of the control value indicates the magnitude of the current (thus, the magnitude of the torque), and the positive or negative sign of the control value indicates the direction of the current (thus, the direction of the torque).
  • the lean motor control unit 102 calculates a standard control value, for example, by PID control using the difference between the inclination angle T and the first target inclination angle T1.
  • the lean motor control unit 102 determines whether the shaft torque is the same as the target shaft torque. As described above, when the vehicle 10 travels stably, the direction D12 of the front wheel 12F is suitable for the inclination angle T regardless of whether the control mode of the steering motor 65 is either the limit mode or the permissible mode Turn to the target direction). As described in S510 of FIG. 13, the first target inclination angle T1 of the inclination angle T is determined using the steering wheel angle. Therefore, the direction D12 of the front wheel 12F is a direction suitable for the steering wheel angle. As a result of these, the axial torque acting on the front fork 17 is zero. Thus, the target shaft torque is predetermined and is zero.
  • the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the standard control value. Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 13 ends.
  • FIG. 14 is an explanatory view showing a state example of the vehicle 10.
  • FIGS. 14A, 14C, and 14E show simplified rear views of the vehicle 10, respectively.
  • 14 (B), 14 (D) and 14 (F) show top views of the vehicle 10 corresponding to FIGS. 14 (A), 14 (C) and 14 (E), respectively.
  • the vehicle 10 is advancing on the level ground GL.
  • the handle angle is zero. That is, the target direction of the front wheel 12F is the forward direction DF. Then, the vehicle 10 receives the wind Wnd in the left direction DL.
  • FIG. 14A and FIG. 14B show the state of the vehicle 10 of the reference example.
  • the vehicle body 90 can be inclined to the left direction DL side by the force received from the wind Wnd in the left direction DL.
  • the traveling direction D12 (FIG. 14B) of the front wheel 12F can naturally pivot in the left direction DL. .
  • the vehicle body 90 receives a force F9 in the left direction DL from the wind Wnd.
  • the force F9 causes the vehicle body 90 to move in the left direction DL.
  • the contact centers P1, PbL, PbR of the wheels 12F, 12L, 12R respectively receive forces F9F, F9L, F9R in the right direction DR from the ground GL.
  • an intersection point P2 between the rotation axis Ax1 of the front wheel 12F and the ground is located on the front direction DF side with respect to the contact center P1. Therefore, due to the force F9F, a torque F9T that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F.
  • FIG. 14C and FIG. 14D show the state of the vehicle 10 when the inclination angle T is controlled in accordance with the first target inclination angle T1 (FIG. 13: S510).
  • the target direction DT1 in FIG. 14 (C) is a target direction of the vehicle upward direction DVU indicated by the first target inclination angle T1. Since the steering wheel angle is zero, the first target inclination angle T1 is zero, and the target direction DT1 is the same as the vertically upward direction DU.
  • the lean motor 25 is controlled such that the inclination angle T becomes the first target inclination angle T1. Therefore, the vehicle upward direction DVU is directed to the target direction DT1, that is, the vertically upward direction DU.
  • the vehicle body 90 is not inclined. Therefore, the deviation from the target direction of the direction D12 of the front wheel 12F due to the inclination of the vehicle body 90 is suppressed.
  • torque F9T acts on the front wheel 12F as in the reference example of FIG. 14 (B).
  • the direction D12 of the front wheel 12F may be shifted from the target direction to the left direction DL side.
  • the second locus Tr2 in FIG. 14 (G) is the locus of the vehicle 10 in FIGS. 14 (C) and 14 (D).
  • the locus Tr2 is shifted to the left direction DL side.
  • the deviation of the second locus Tr2 is smaller than the deviation of the first locus Tr1.
  • FIG. 15 is an explanatory view showing another example of the state of the vehicle 10.
  • FIGS. 15 (A), 15 (C) and 15 (E) show simplified rear views of the vehicle 10, respectively.
  • 15 (B), 15 (D) and 15 (F) respectively show top views of the vehicle 10 corresponding to FIGS. 15 (A), 15 (C) and 15 (E).
  • the vehicle 10 is moving forward on sloped ground GLx (high on the right and low on the left).
  • the handle angle is zero. That is, the target direction of the front wheel 12F is the forward direction DF.
  • FIG. 15A and FIG. 15B show the state of the vehicle 10 of the reference example.
  • the control angle Tc is assumed to be zero. If the ground is horizontal and the steering wheel angle is zero, an inclination angle T of zero is appropriate and a control angle Tc of zero is appropriate. However, when the ground GLx is inclined as shown in FIG. 15A, the zero control angle Tc is not appropriate, and the vehicle 10 is inclined in the left direction DL.
  • the gravity acting on the vehicle body 90 includes a component F8 parallel to the ground GLx.
  • the force F8 is directed to the left direction DL side.
  • the vehicle body 90 tends to move to the left direction DL side.
  • the contact centers P1, PbL, PbR of the wheels 12F, 12L, 12R are forces F8F, F8L directed from the ground GL to the right direction DR parallel to the ground GLx. , F8R, respectively.
  • a torque F8T that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F.
  • FIG. 15 (G) shows an example of the trajectory of the vehicle 10 traveling from the start position SP toward the forward direction DF, as in FIG. 14 (G).
  • the first trajectory Tr11 is a trajectory of the vehicle 10 of the reference example. As illustrated, the trajectory Tr11 is largely shifted to the left direction DL side.
  • FIGS. 15C and 15D show the state of the vehicle 10 when the inclination angle T is controlled in accordance with the first target inclination angle T1 (FIG. 13: S510).
  • the target direction DT1 in FIG. 15C is a target direction of the vehicle upward direction DVU indicated by the first target inclination angle T1. Since the steering wheel angle is zero, the first target inclination angle T1 is zero, and the target direction DT1 is the same as the vertically upward direction DU.
  • the lean motor 25 is controlled such that the inclination angle T becomes the first target inclination angle T1. Therefore, the vehicle upward direction DVU is directed to the target direction DT1, that is, the vertically upward direction DU.
  • the vehicle body 90 is not inclined with respect to the vertically upward direction DU, but is inclined with respect to the ground GLx.
  • the contact centers P1, PbL and PbR of the wheels 12F, 12L and 12R are parallel to the ground GLx from the ground GL as in the reference example of FIG.
  • These forces FcF, FcL, and FcR include so-called camber thrust in addition to the forces described in FIG.
  • Camber thrust is a force in the direction perpendicular to the direction of travel of the rotating wheel and is caused by the inclination of the wheel relative to the ground (also called the camber angle).
  • Camber thrust is the force in the direction of wheel tilt.
  • the wheel is inclined to the right direction DR with respect to the ground GLx. Therefore, the camber thrust points in the right direction DR in parallel to the ground GLx. As a result, the forces FcF, FcL, FcR including the camber thrust face the right direction DR in parallel to the ground GLx.
  • a torque FcT that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F by such a force FcF.
  • the direction D12 of the front wheel 12F may be shifted from the target direction to the left direction DL side.
  • the absolute value of the shaft torque becomes larger than zero.
  • the second locus Tr12 in FIG. 15 (G) is the locus of the vehicle 10 in FIGS. 15 (C) and 15 (D).
  • the locus Tr12 is shifted to the left direction DL side.
  • the direction D12 of the front wheel 12F may deviate from the target direction suitable for the steering wheel angle due to an external factor such as the wind Wnd or the inclination of the ground GLx.
  • the traveling direction D12 of the front wheel 12F is deviated from the target direction, the shaft torque is different from the target shaft torque. If the shaft torque is different from the target shaft torque (FIG. 13: S540: No), the lean motor control unit 102 executes processing for suppressing the deviation of the direction D12 of the front wheel 12F in S550 and S560.
  • the lean motor control unit 102 determines a correction value for bringing the shaft torque close to the target shaft torque.
  • This correction value is a value for correcting the standard control value specified in S530.
  • FIG. 16 is a graph showing an example of the correspondence between the torque difference dTQx and the correction value Vcc.
  • the torque difference dTQx is a difference between the shaft torque and the target shaft torque. In the present embodiment, since the target shaft torque is zero, the torque difference dTQx is the same as the shaft torque.
  • the horizontal axis indicates the torque difference dTQx, and the vertical axis indicates the correction value Vcc.
  • the positive and negative signs and the absolute value of the torque difference dTQx respectively indicate the direction and the magnitude of the axial torque acting on the front wheel 12F.
  • the positive torque difference dTQx indicates an axial torque for rotating the front wheel 12F in the right direction DR.
  • the negative torque difference dTQx indicates the axial torque in the opposite direction.
  • the positive and negative signs and the absolute value of the correction value Vcc respectively indicate the direction and the magnitude of the change in the vehicle upward direction DVU due to the correction.
  • the positive correction value Vcc indicates a correction value that changes the vehicle upward direction DVU to the right direction DR
  • the negative correction value Vcc indicates a correction value that changes the vehicle upward direction DVU to the left direction DL.
  • the correction value Vcc when the torque difference dTQx is a positive value, the correction value Vcc is set to a negative value, and when the torque difference dTQx is a negative value, the correction value Vcc is set to a positive value.
  • the correction value Vcc changes linearly with respect to the change of the torque difference dTQx.
  • the correction value Vcc may change in a curve as the torque difference dTQx changes.
  • the correspondence between the torque difference dTQx and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102n of the lean motor control unit 102.
  • the lean motor control unit 102 specifies the correction value Vcc corresponding to the torque difference dTQx by referring to the map data Mc.
  • the torques F9T and FcT acting on the front wheel 12F turn the front wheel 12F in the left direction DL. Therefore, the torque difference dTQx is a negative value. As a result, the correction value Vcc is determined to be a positive value.
  • the lean motor control unit 102 corrects the standard control value using the correction value Vcc.
  • the lean motor control unit 102 calculates the corrected control value by adding the correction value Vcc to the standard control value.
  • the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the corrected control value.
  • FIGS. 14E, 14F, 15E, and 15F show the state of the vehicle 10 when the lean motor 25 is controlled in accordance with the corrected control value.
  • the vehicle upward direction DVU changes to the right direction DR.
  • torques FTa and FTb that cause the front wheel 12F to rotate the direction D12 of the front wheel 12F to the right direction DR 14 (F), FIG. 15 (F) work.
  • the process of FIG. 13 ends in response to the execution of S570.
  • the determination of the correction value Vcc (S550), the correction of the control value (S560), and the control of the lean motor 25 based on the corrected control value (S570) is repeated.
  • the vehicle 10 travels in the direction corresponding to the steering wheel angle.
  • the axial torque sensor 127 (FIGS. 1 and 11) measures axial torque which is torque around the pivot axis Ax1 acting on the front wheel 12F.
  • the axial torque is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the axial torque can change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
  • the front wheel support device 41 is configured to allow the front wheel 12F to rotate left and right with respect to the vehicle body 90 following the inclination of the vehicle body 90 regardless of the amount of operation of the steering wheel 41a.
  • the control in the allowable mode in which the rotation of the front wheel 12F is permitted is performed as described in S140 of FIG. 12 when the predetermined allowable condition is satisfied.
  • the allowable condition is that the vehicle speed V is within the allowable speed range.
  • the tilt control unit 190 controls the lean motor 25 so that the axial torque approaches the target axial torque, using the steering wheel angle and the axial torque.
  • the traveling direction of the vehicle 10 is , May shift to the left direction DL side.
  • the lean motor 25 is controlled using the axial torque which is a parameter independent of the inclination angle T, so the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the traveling direction of the vehicle 10 Deviation can be suppressed appropriately.
  • the front wheel support device 41 (FIG. 1) has a connecting portion 50 for connecting the support bar 41ax of the handle 41a and the front fork 17.
  • the connection portion 50 loosely connects the support bar 41 ax of the handle 41 a and the front fork 17. That is, the connection portion 50 allows the front wheel 12F to rotate left and right following the change in the inclination of the vehicle body 90 regardless of the steering wheel angle.
  • connection portion 50 transmits torque between support bar 41ax and front fork 17, that is, between handle 41a and front wheel 12F.
  • the tilt control unit 190 controls the lean motor 25 so that the shaft torque approaches zero, which is the target shaft torque.
  • the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10.
  • the correspondence relationship between the torque difference dTQx and the correction value Vcc may be determined experimentally so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
  • FIG. 17 is a flowchart showing another embodiment of the tilt control.
  • a yaw rate is used instead of the shaft torque.
  • S500, S540, and S550 are replaced with S500a, S540a, and S550a, respectively, and S520a is added between S510 and S530.
  • S500a, S540a, and S550a are replaced with S500a, S540a, and S550a, respectively, and S520a is added between S510 and S530.
  • the main control unit 100 (FIG. 11) specifies information indicating the yaw rate, the inclination angle T, the vehicle speed V, and the steering wheel angle.
  • the main control unit 100 acquires information indicating the angular velocity measured by the gyro sensor 126g from the vertical direction sensor 126 (FIG. 1), and specifies the yaw rate using the acquired information.
  • the method of specifying each of the inclination angle T, the vehicle speed V, and the steering wheel angle is the same as the method of S500 in FIG.
  • the main control unit 100 specifies the target yaw rate by using the vehicle speed V and the steering wheel angle.
  • the target yaw rate is specified as the vehicle 10 travels stably without slipping.
  • the yaw rate Y is expressed by the following equation 8.
  • Y V / R (Equation 8)
  • Equation 9 Equation 9 below.
  • the inclination angle T is controlled to the first target inclination angle T1.
  • the first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V at S510.
  • the yaw rate Y is expressed by the steering wheel angle and the vehicle speed V.
  • map data Mx is stored in advance in the non-volatile storage device 100n of the main control unit 100 (FIG. 11).
  • the map data Mx represents such a correspondence relationship between the yaw rate Y, the steering wheel angle, and the vehicle speed V.
  • the main control unit 100 specifies the target yaw rate Yt corresponding to the combination of the steering wheel angle and the vehicle speed V by referring to the map data Mx.
  • the positive target yaw rate Yt indicates turning in the right direction DR
  • the zero target yaw rate Yt indicates straight going
  • the negative target yaw rate Yt indicates turning in the left direction DL.
  • the main control unit 100 supplies the lean motor control unit 102 with information indicating each of the inclination angle T, the first target inclination angle T1, the yaw rate, and the target yaw rate.
  • the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the standard control value. Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 17 ends.
  • the direction D12 of the front wheel 12F may be offset from the target direction.
  • the yaw rate is different from the target yaw rate because the traveling direction of the vehicle 10 is different from the target direction.
  • the lean motor control unit 102 determines a correction value for bringing the yaw rate closer to the target yaw rate in S550a.
  • This correction value is a value for correcting the standard control value specified in S530.
  • FIG. 18 is a graph showing an example of the correspondence between the yaw rate difference dY and the correction value Vcc.
  • the yaw rate difference dY is a difference obtained by subtracting the target yaw rate from the yaw rate.
  • the horizontal axis indicates the yaw rate difference dY, and the vertical axis indicates the correction value Vcc.
  • the negative yaw rate difference dY indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the left direction DL, as shown in FIGS. 15 (D) and 15 (D).
  • the positive yaw rate difference dY indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the right direction DR.
  • the correction value Vcc is the same as the correction value Vcc of FIG.
  • the correction value Vcc when the yaw rate difference dY is a positive value, the correction value Vcc is set to a negative value, and when the yaw rate difference dY is a negative value, the correction value Vcc is set to a positive value.
  • the correction value Vcc changes linearly with respect to the change of the yaw rate difference dY.
  • the correction value Vcc may change so as to draw a curve with respect to the change in the yaw rate difference dY.
  • the correspondence between the yaw rate difference dY and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102 n of the lean motor control unit 102.
  • the lean motor control unit 102 specifies the correction value Vcc corresponding to the yaw rate difference dY by referring to the map data Mc.
  • the direction D12 of the front wheel 12F is shifted to the left direction DL side from the direction of the target. Therefore, the yaw rate difference dY is a negative value. As a result, the correction value Vcc is determined to be a positive value.
  • S560 and S570 are respectively the same as S560 and S570 of FIG.
  • the standard control value is corrected using the correction value Vcc.
  • the lean motor 25 is controlled in accordance with the corrected control value.
  • the gyro sensor 126g of the vertical direction sensor 126 measures the yaw rate of the vehicle 10.
  • the yaw rate is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the yaw rate may change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
  • the tilt control unit 190 controls the lean motor 25 so that the yaw rate approaches the target yaw rate, using the steering wheel angle and the yaw rate.
  • the tilt control unit 190 controls the lean motor 25 so that the yaw rate approaches the target yaw rate, using the steering wheel angle and the yaw rate.
  • the traveling direction of the vehicle 10 is , May shift to the left direction DL side.
  • the lean motor 25 is controlled using the yaw rate which is a parameter independent of the inclination angle T, the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the deviation of the traveling direction of the vehicle 10. Can be suppressed appropriately.
  • the gyro sensor 126 g measures the yaw rate of the vehicle 10.
  • the tilt control unit 190 specifies the target yaw rate using the steering wheel angle.
  • the tilt control unit 190 controls the lean motor 25 such that the yaw rate approaches the target yaw rate.
  • the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10.
  • the correspondence relationship between the yaw rate difference dY and the correction value Vcc may be experimentally determined so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
  • FIG. 19 is a flowchart showing another embodiment of the tilt control.
  • the wheel angle is used instead of the yaw rate.
  • S500a, S520a, S540a, and S550a are replaced with S500b, S520b, S540b, and S550b, respectively.
  • steps of FIG. 19 the same steps as the steps of FIG.
  • the main control unit 100 (FIG. 11) specifies information indicating the wheel angle, the inclination angle T, the vehicle speed V, and the steering wheel angle.
  • the wheel angle is identified using a signal from the wheel angle sensor 124.
  • the other information identification method is the same as the method of S500a of FIG.
  • the main control unit 100 specifies the target wheel angle by using the vehicle speed V and the steering wheel angle.
  • the specified target wheel angle is the same as the first target wheel angle AFt1 specified in S130 of FIG. Specifically, it is as follows.
  • the wheel angle AF is expressed by Equation 7 above.
  • R represented by Equation 6 into R of Equation 7 yields Equation 10 below.
  • AF arctan (Lh / (V 2 / (g * tan (T)))) (Equation 10)
  • the inclination angle T is controlled to the first target inclination angle T1.
  • the first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V at S510.
  • the wheel angle AF is expressed by the steering wheel angle and the vehicle speed V.
  • the wheel angle AF specified using this correspondence relationship is a first target wheel angle AFt1.
  • the main control unit 100 is a lean motor control unit for information indicating each of the wheel angle AF, the first target wheel angle AFt1, the inclination angle T, the first target inclination angle T1, the wheel angle AF and the first target wheel angle AFt1. It supplies to 102.
  • the lean motor control unit 102 determines whether the wheel angle AF is the same as the first target wheel angle AFt1. As described above, when the vehicle 10 travels stably, the direction D12 of the front wheel 12F is a target direction suitable for the inclination angle T regardless of whether the control mode of the steering motor 65 is either the limit mode or the permissible mode. Turn to In this case, the wheel angle AF is the same as the first target wheel angle AFt1.
  • the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c according to the standard control value in S570. . Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 19 ends.
  • the direction D12 of the front wheel 12F may be offset from the target direction.
  • the wheel angle AF is different from the first target wheel angle AFt1.
  • the lean motor control unit 102 determines a correction value for bringing the wheel angle AF close to the first target wheel angle AFt1 in S550b.
  • This correction value is a value for correcting the standard control value specified in S530.
  • FIG. 20 is a graph showing an example of the correspondence between the wheel angle difference dAF and the correction value Vcc.
  • the wheel angle difference dAF is a difference obtained by subtracting the first target wheel angle AFt1 from the wheel angle AF.
  • the horizontal axis indicates the wheel angle difference dAF, and the vertical axis indicates the correction value Vcc.
  • the negative wheel angle difference dAF indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the left direction DL, as shown in FIGS. 15 (D) and 15 (D).
  • the positive wheel angle difference dAF indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the right direction DR.
  • the correction value Vcc is the same as the correction value Vcc of FIG.
  • the correction value Vcc when the wheel angle difference dAF is a positive value, the correction value Vcc is set to a negative value, and when the wheel angle difference dAF is a negative value, the correction value Vcc is set to a positive value.
  • the correction value Vcc changes linearly with respect to the change of the wheel angle difference dAF.
  • the correction value Vcc may change so as to draw a curve with respect to the change in the wheel angle difference dAF.
  • the correspondence between the wheel angle difference dAF and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102 n of the lean motor control unit 102.
  • the lean motor control unit 102 specifies the correction value Vcc corresponding to the wheel angle difference dAF by referring to the map data Mc.
  • the direction D12 of the front wheel 12F is shifted to the left direction DL side from the direction of the target. Therefore, the wheel angle difference dAF is a negative value. As a result, the correction value Vcc is determined to be a positive value.
  • S560 and S570 are the same as S560 and S570 of FIG. 13 and FIG. 17, respectively.
  • the standard control value is corrected using the correction value Vcc.
  • the lean motor 25 is controlled in accordance with the corrected control value.
  • the wheel angle sensor 124 (FIGS. 1 and 11) measures the wheel angle AF of the front wheel 12F.
  • the wheel angle AF is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the wheel angle AF may change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
  • the tilt control unit 190 controls the lean motor 25 so that the wheel angle AF approaches the first target wheel angle AFt1, using the steering wheel angle and the wheel angle AF.
  • the traveling direction of the vehicle 10 is , May shift to the left direction DL side.
  • the lean motor 25 is controlled using the wheel angle AF which is a parameter independent of the inclination angle T, the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the traveling direction of the vehicle 10 It is possible to properly suppress the deviation of the
  • the wheel angle sensor 124 measures the wheel angle AF, that is, the direction D12 of the front wheel 12F.
  • the tilt control unit 190 specifies the first target wheel angle AFt1, that is, the direction of the target of the front wheel 12F using the steering wheel angle.
  • the inclination control unit 190 causes the wheel angle AF to approach the first target wheel angle AFt1, that is, the direction D12 of the front wheel 12F corresponds to the first target wheel angle AFt1.
  • the lean motor 25 is controlled to approach the direction of the desired target.
  • the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10.
  • the correspondence relationship between the wheel angle difference dAF and the correction value Vcc may be determined experimentally so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
  • the sensor for measuring the torque acting on the front fork 17 may be various other sensors instead of the sensor for measuring the torque using deformation of the member like a strain gauge.
  • the magnitude of the current flowing through the steering motor 65 is used to May be identified. The greater the current, the greater the axial torque.
  • a current sensor may be used as a sensor that measures the torque acting on the front fork 17.
  • the steering motor 65 is an example of a resistance torque generation unit that generates a resistance torque against the rotation of the front fork 17 from the direction of the target specified using the steering wheel angle.
  • the vehicle 10 is provided with the vertical direction sensor 126 (FIGS. 1 and 11) for measuring the vertical direction. Then, the tilt control unit 190 controls the tilt angle T of the vehicle body 90 with respect to the vertical direction measured by the vertical direction sensor 126. Therefore, the deviation from the target direction of the traveling direction of the vehicle 10 can be appropriately suppressed.
  • the standard control value is corrected using the correction value Vcc.
  • the map data Mc (FIG. 11) may define the correspondence between input information including the steering wheel angle and the shaft torque, and the corrected control value. Then, the lean motor control unit 102 specifies the corrected control value associated with the input information with reference to the map data Mc, and controls the electric motor 102 c in accordance with the corrected control value to obtain the lean motor 25. You may control. Also in the examples of FIGS. 17 and 19, the map data Mc may similarly define the correspondence between input information including the yaw rate or the wheel angle in addition to the steering wheel angle, and the corrected control value. Then, the lean motor control unit 102 specifies the corrected control value associated with the input information with reference to the map data Mc, and controls the electric motor 102 c in accordance with the corrected control value to obtain the lean motor 25. You may control.
  • the control process of the lean motor 25 may be other various processes instead of the control process of each of the above embodiments.
  • the inclination angle T may be controlled to a second target inclination angle T2 whose absolute value is smaller than the first target inclination angle T1.
  • the second target inclination angle T2 expressed by the above equation changes in proportion to the vehicle speed V from zero to the reference speed Vth.
  • the absolute value of the second target inclination angle T2 is less than or equal to the absolute value of the first target inclination angle T1.
  • the reason is as follows. At low speeds, the direction of travel changes more frequently than at high speeds. Therefore, at low speeds, by reducing the absolute value of the inclination angle T, traveling with frequent changes in the traveling direction can be stabilized.
  • the relationship between the second target inclination angle T2 and the vehicle speed V may be various other relationships such that the absolute value of the second target inclination angle T2 increases as the vehicle speed V increases.
  • the control process of the steering motor 65 may be other various processes instead of the control process of the above embodiment.
  • the wheel angle AF may be controlled to a second target wheel angle AFt2 whose absolute value is larger than the first target wheel angle AFt1.
  • the second target wheel angle AFt2 may be determined such that the absolute value of the second target wheel angle AFt2 increases as the vehicle speed V decreases when the steering wheel angle Ai is the same. According to this configuration, the minimum turning radius of the vehicle 10 when the speed V is low can be reduced.
  • the second target wheel angle AFt2 is determined so that the absolute value of the second target wheel angle AFt2 increases as the absolute value of the steering wheel angle Ai increases. preferable.
  • the configuration of the pivoting wheel support that supports one or more pivoting wheels that can pivot to the left and right may be various other configurations instead of the configuration of the pivoting wheel support 180 of FIG. 1.
  • the support member that rotatably supports the pivoting wheel may be various other members (e.g., a cantilevered member) instead of the front fork 17.
  • the bearing 68 may be a rolling bearing or a sliding bearing.
  • a pivoting device e.g., a bearing 68 for pivotally supporting the support member to the vehicle body 90 in the lateral direction is connected to the vehicle body 90 directly or indirectly via another member. Good.
  • the pivoting device may be connected to the support member (for example, the front fork 17) directly or indirectly via another member.
  • the rotation device connect the support member and the vehicle body such that the support member is also inclined with the vehicle body when the vehicle body is inclined.
  • the rotational drive device that applies torque for rotating the support member to the left and right to the support member may be another device such as a pump instead of the electric motor such as the steering motor 65. Also, the rotational drive may be omitted.
  • one support member may rotatably support a plurality of pivoting wheels.
  • the vehicle when the vehicle includes a plurality of turning wheels, the vehicle may include a plurality of support members. Each of the plurality of support members may rotatably support one or more pivoting wheels.
  • one rotation device may be provided for each support member.
  • the trail Lt described in FIG. 1 is preferably a positive value. That is, it is preferable that the ground contact position of each of the one or more pivoting wheels supported by the support member is located on the back direction DB side of the intersection point between the pivot shaft of the support member and the ground. According to this configuration, as shown in FIG. 9, the torque can be easily applied to the turning wheel by adjusting the inclination angle T, so that the deviation of the traveling direction of the vehicle from the target direction is easily suppressed. it can.
  • the rotation control unit 170 controls the front wheel support device 41 in the allowable mode when the specific condition is satisfied.
  • the specific condition is that the vehicle speed V is within the allowable speed range.
  • the particular condition may be any other condition.
  • the front wheel support device 41 may be controlled at all times in the permissible mode. In any case, the front wheel support device 41 is configured to allow the pivoting wheel to pivot to the left and right with respect to the vehicle body 90 following the change in the inclination of the vehicle body 90 regardless of the steering wheel angle. It can be said.
  • the configuration of the connection portion connected to the operation input portion and the support member may be other various configurations instead of the configuration of the connection portion 50 of FIG. 1.
  • the third portion 53 of the connection portion 50 may be various elastic bodies such as a torsion spring, rubber, etc., instead of the coil spring.
  • the third portion 53 is not limited to an elastic body, and may be another type of device (for example, a damper).
  • the third portion 53 may be a device that transmits torque via fluid, such as a fluid clutch, a fluid torque converter, or the like.
  • the third portion 53 of the connection 50 may include at least one of an elastic body, a damper, a fluid clutch, and a fluid torque converter.
  • connection portion may be connected to the operation input portion directly or indirectly via another member (for example, the support rod 41ax).
  • the connection portion 50 may be connected to the support member (for example, the front fork 17) directly or indirectly via another member.
  • the connection portion preferably includes a movable portion that allows change in at least one of the relative position and the relative direction between the operation input portion and the support member. Further, the connection portion is configured to apply torque to the operation input portion and the support member in accordance with at least one of a relative position between the operation input portion and the support member and a relative direction. preferable.
  • the connecting portion is configured to allow one or more pivoting wheels connected to the support member to rotate left and right following the change in the inclination of the vehicle body regardless of the amount of operation input to the operation input portion. It is preferable to be configured.
  • the connection may be omitted.
  • the link mechanism 30 may be replaced by a stand.
  • the motors 51L, 51R are fixed to the table.
  • a stand and the 1st support part 82 are rotatably connected with a bearing.
  • the lean motor 25 rotates the first support portion 82 with respect to the base in each of the right direction DR side and the left direction DL side.
  • the vehicle body 90 can be inclined to each of the right direction DR side and the left direction DL side.
  • each of the pair of wheels 12L and 12R may be slidably attached to a member 82 supporting the vehicle body 90 in the vertical direction.
  • a first hydraulic cylinder connecting the member 82 and the wheel 12L, and a second hydraulic cylinder connecting the member 82 and the wheel 12R, and the relative position between the pair of wheels 12L and 12R in the vertical direction connects the member 82 and the wheel 12L; It may be changed by
  • the tilting mechanism may be various devices that include a drive and cause the vehicle to tilt in the width direction by the drive.
  • the tilting mechanism is connected to the vehicle body directly or indirectly with "the first member directly or indirectly connected to at least one of a pair of wheels disposed apart from each other in the width direction of the vehicle".
  • the driving device applies a force to change the relative position between the first member and the second member (for example, a torque that changes the direction of the second member with respect to the first member) to the first member and the second member .
  • the tilting mechanism may further include "a connecting device for movably connecting the first member to the second member".
  • the connecting device may be, for example, a hydraulic cylinder that slidably connects the first member to the second member.
  • the connecting device may be a bearing (for example, a rolling bearing or a sliding bearing) rotatably connecting the first member and the second member.
  • the drive may be an electric motor, such as a lean motor 25. If the tilting mechanism comprises a hydraulic cylinder, the drive may be a pump.
  • the operation input unit for inputting the operation amount indicating the turning direction and the turning degree is a variety of devices instead of a member that can be turned to the left and right like the handle 41a (FIG. 1) It may be.
  • the operation input unit may be a lever that can be tilted left and right from a predetermined reference direction (for example, an upright direction).
  • the inclination direction of the lever indicates the pivoting direction, and the inclination angle of the lever from the reference direction indicates the degree of pivoting.
  • the operation input unit may be a device that electrically receives an operation amount, such as a touch panel, instead of a device that receives an operation amount by mechanical movement (for example, either rotation or tilt).
  • the total number of front wheels may be two and the total number of rear wheels may be one.
  • the total number of front wheels may be two, and the total number of rear wheels may be two.
  • the pair of wheels disposed apart from each other in the width direction may be front wheels or pivot wheels.
  • the rear wheel may be a pivoting wheel.
  • the driving wheels may be front wheels.
  • the vehicle includes N (N is an integer of 3 or more) wheels including a pair of wheels disposed apart from one another in the width direction of the vehicle and one or more other wheels. Is preferred.
  • the N wheels preferably include one or more front wheels and one or more rear wheels disposed closer to the rear direction DB than the front wheels.
  • the vehicle can stand on its own when the vehicle is stopped.
  • at least one of the pair of wheels and the other wheel is configured as one or more pivoting wheels that can pivot to the left and right with respect to the forward direction of the vehicle. That is, only a pair of wheels may be pivoting wheels, only the other wheels may be pivoting wheels, and three or more wheels including the pair of wheels and the other wheels may be pivoting wheels.
  • the total number of other wheels included in the one or more pivoting wheels may be any number.
  • the drive device for driving the drive wheels may be any device that rotates the wheels (for example, an internal combustion engine) instead of the electric motor. Further, the maximum number of vehicles may be two or more instead of one.
  • the motors 51L, 51R may be connected to the link mechanism 30 via a suspension.
  • At least a part of the functions of the main control unit 100 may be realized by another control unit.
  • at least a part of the functions for controlling the lean motor 25 among the functions of the main control unit 100 (FIG. 11) may be realized by the lean motor control unit 102.
  • At least a part of the functions for controlling the steering motor 65 among the functions of the main control unit 100 (FIG. 11) may be realized by the steering motor control unit 103.
  • the control device 110 may be configured by one control unit.
  • the control device 110 may be configured by an electric circuit not including a computer (for example, an application specific integrated circuit (ASIC), an analog electric circuit, etc.).
  • the correspondence for example, the correspondence shown by map data MT, MAF, Mx, Mc
  • the control device may dynamically change the correspondence used for control of the vehicle according to the state of the vehicle.
  • the vehicle may include a weight sensor that measures the weight of the vehicle body, and the controller may adjust the correspondence according to the weight of the vehicle body.
  • the control unit 126c of the vertical direction sensor 126 detects the vertically downward direction DD using other information related to the movement of the vehicle 10 in addition to the information from the gyro sensor 126g and the acceleration sensor 126a. Good. As other information, for example, the position of the vehicle 10 identified using GPS (Global Positioning System) may be used. The control unit 126c may correct the vertically downward direction DD in accordance with a change in position due to GPS. The correction amount based on the change in position by GPS may be determined in advance experimentally.
  • the control unit 126c may be various electric circuits, for example, an electric circuit including a computer, or an electric circuit not including a computer (for example, an ASIC).
  • the gyro sensor 126 g may be a sensor that detects an angular velocity instead of the angular acceleration.
  • part of the configuration realized by hardware may be replaced by software, and conversely, part or all of the configuration implemented by software is replaced by hardware You may do so.
  • the functions of the control device 110 of FIG. 11 may be realized by a dedicated hardware circuit.
  • the program when part or all of the functions of the present invention are realized by a computer program, the program is provided in the form of being stored in a computer readable recording medium (for example, a non-temporary recording medium). be able to.
  • the program may be used while being stored on the same or different recording medium (computer readable recording medium) as provided.
  • the “computer readable recording medium” is not limited to portable recording mediums such as memory cards and CD-ROMs, but is connected to internal storage devices in computers such as various ROMs and computers such as hard disk drives. It may also include external storage.
  • the present invention is suitably applicable to a vehicle.
  • Reference Signs List 10 vehicle 11 seat 12F front wheel 12L left rear wheel (drive wheel) 12R right rear wheel (drive wheel) 12Fc center of gravity 12La 12Ra wheel 12Lb 12Rb tire 17 17 Front fork 20 body part 20a front part 20b bottom part 20c rear part 20d support part 25 lean motor 30 link mechanism 21 middle vertical link member 31D lower horizontal link member 31U ... upper horizontal link member, 33L ... left vertical link member, 33R ... right vertical link member, 38, 39 ... bearing, 41 ... front wheel support device, 41a ... handle, 41ax ... support rod, 45 ... accelerator pedal, 46 ...
  • nonvolatile memory 101c, 102c, 103c ... electricity Circuit (power control unit), 120: battery, 122: vehicle speed sensor, 123: han Wheel angle sensor 124 wheel angle sensor 125 control angle sensor 126 vertical direction sensor 126a acceleration sensor 126c control unit 126g gyro sensor 127 axis torque sensor 145 accelerator pedal sensor 146 ... brake pedal sensor, 170 ... rotation control unit, 180 ... rotation wheel support unit, 190 ... inclination control unit, MAF, MT, Mc, Mx ... map data, DF ... forward direction, DB ... backward direction, DL ... left direction , DR ... rightward direction, DU ... vertically upward direction, DD ... vertically downward direction, CA ...

Abstract

This vehicle is provided with: a vehicle body; a tilting mechanism that includes a drive device and tilts the vehicle body using the drive device; an operation input unit; a tilting control unit; a turning wheel support part that supports at least one turning wheel that can turn left and right; and a sensor that measures a parameter independent from the tilt angle of the vehicle body. The turning wheel support part is configured so as to allow the at least one turning wheel to turn to the left and right with respect to the vehicle body so as to track changes in the tilt of the vehicle body, regardless of an operation quantity. The tilting control unit, using a parameter in addition to the operation quantity, controls the drive device so that the parameter approaches a target value.

Description

車両vehicle
 本明細書は、車体を傾斜させて旋回する車両に関する。 The present specification relates to a vehicle that leans and turns a vehicle body.
 旋回時に車体を傾斜させる車両が提案されている。例えば、前輪が自由にキャスター動作するように構成され、そして、運転者が制御デバイスを動かす方向によって示される方向に車体を傾斜させる技術が提案されている。 There have been proposed vehicles in which the vehicle body is inclined when turning. For example, techniques have been proposed in which the front wheels are configured to caster freely and the vehicle body is tilted in the direction indicated by the direction in which the driver moves the control device.
国際公開第2011/083335号International Publication No. 2011/083335
 運転者は、ハンドルなどの操作入力部を操作することによって、車両の進行方向を制御する。ところが、風や道路の傾斜などの種々の原因によって、車両の進行方向が目標の方向からずれる場合があった。 The driver controls the traveling direction of the vehicle by operating an operation input unit such as a steering wheel. However, the traveling direction of the vehicle may deviate from the direction of the target due to various causes such as wind and road inclination.
 本明細書は、車両の進行方向の目標の方向からのずれを抑制する技術を開示する。 The present specification discloses a technique for suppressing the deviation of the direction of travel of a vehicle from the direction of a target.
 本明細書は、例えば、以下の適用例を開示する。 This specification, for example, discloses the following application example.
[適用例1]
 車両であって、
 前記車両の幅方向に互いに離れて配置された一対の車輪と、1個以上の他の車輪と、を含むN個(Nは3以上の整数)の車輪であって、前記一対の車輪と他の車輪との少なくとも一方が前記車両の前進方向に対して左右に回動可能な1以上の回動輪として構成されるとともに、1個以上の前輪と1個以上の後輪とを含む、N個の車輪と、
 車体と、
 駆動装置を含み前記駆動装置により前記車体を前記幅方向に傾斜させる傾斜機構と、
 旋回方向と旋回の程度とを示す操作量を入力するための操作入力部と、
 前記操作入力部へ入力される前記操作量を用いて前記駆動装置を制御する傾斜制御部と、
 前記1以上の回動輪を支持する回動輪支持部と、
 車両の動作状態を示すパラメータであって前記車体の傾斜角とは独立なパラメータを測定するセンサと、
 を備え、
 前記回動輪支持部は、前記1以上の回動輪が前記操作量に拘わらず前記車体の傾斜の変化に追随して前記車体に対して左右に回動することを許容するように構成されており、
 前記傾斜制御部は、前記操作量に加えて前記パラメータを用いて、前記パラメータが目標値に近づくように、前記駆動装置を制御する、
 車両。
Application Example 1
A vehicle,
N (N is an integer of 3 or more) wheels including a pair of wheels disposed apart from one another in the width direction of the vehicle and one or more other wheels, wherein the pair of wheels and the other N at least one of the wheels is configured as one or more pivoting wheels that can be pivoted to the left and right with respect to the forward direction of the vehicle, and includes one or more front wheels and one or more rear wheels With the wheels of
With the car body,
A tilt mechanism including a drive device for tilting the vehicle body in the width direction by the drive device;
An operation input unit for inputting an operation amount indicating a turning direction and a turning degree;
A tilt control unit that controls the drive device using the operation amount input to the operation input unit;
A pivoting wheel support that supports the one or more pivoting wheels;
A sensor that measures the operating condition of the vehicle and is independent of the tilt angle of the vehicle body;
Equipped with
The pivoting wheel support portion is configured to allow the one or more pivoting wheels to pivot to the left and right with respect to the vehicle body in accordance with a change in inclination of the vehicle body regardless of the operation amount. ,
The tilt control unit controls the drive device such that the parameter approaches a target value using the parameter in addition to the operation amount.
vehicle.
 この構成によれば、1以上の回動輪が車体の傾斜の変化に追随して左右に回動することが許容される場合に、車体の傾斜機構の駆動装置が、操作量と、傾斜角とは独立なパラメータと、を用いて、パラメータが目標値に近づくように制御されるので、車両の進行方向の目標の方向からのずれを抑制できる。 According to this configuration, when the one or more pivoting wheels are allowed to turn to the left and right following the change in the inclination of the vehicle body, the drive device for the inclination mechanism of the vehicle body has the operation amount, the inclination angle, Since the parameter is controlled to approach the target value using the independent parameter, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction.
[適用例2]
 適用例1に記載の車両であって、
 前記回動輪支持部は、
  前記1以上の回動輪を、回転可能に支持する支持部材と、
  前記支持部材を、前記車体に対して左右に回動可能に支持する回動装置と、
  前記操作量を用いて特定される方向からの前記支持部材の回動に対する抵抗トルクを生成する抵抗トルク生成部と、
 を備え、
 前記センサは、前記抵抗トルクを測定するセンサであり、
 前記傾斜制御部は、前記トルクがゼロに近づくように、前記駆動装置を制御する、
 車両。
Application Example 2
It is a vehicle described in Application Example 1;
The pivoting wheel support is
A support member rotatably supporting the one or more pivoting wheels;
A rotating device that supports the support member so as to be rotatable to the left and right with respect to the vehicle body;
A resistance torque generation unit that generates a resistance torque for rotation of the support member from a direction specified using the operation amount;
Equipped with
The sensor is a sensor that measures the resistance torque,
The tilt control unit controls the drive device such that the torque approaches zero.
vehicle.
 この構成によれば、操作入力部と支持部材との間に作用するトルクがゼロに近づくように駆動装置が制御されるので、車両の進行方向の目標の方向からのずれを抑制できる。 According to this configuration, since the drive device is controlled so that the torque acting between the operation input unit and the support member approaches zero, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction.
[適用例3]
 適用例1に記載の車両であって、
 前記センサは、前記車両のヨーレートを測定するセンサであり、
 前記傾斜制御部は、前記ヨーレートが前記操作量を用いて特定される目標値に近づくように、前記駆動装置を制御する、
 車両。
Application Example 3
It is a vehicle described in Application Example 1;
The sensor is a sensor that measures a yaw rate of the vehicle.
The tilt control unit controls the drive device such that the yaw rate approaches a target value specified using the operation amount.
vehicle.
 この構成によれば、ヨーレートが、操作量を用いて特定される目標値に近づくように駆動装置が制御されるので、車両の進行方向の目標の方向からのずれを抑制できる。 According to this configuration, since the drive device is controlled such that the yaw rate approaches the target value specified using the operation amount, the deviation of the traveling direction of the vehicle from the target can be suppressed.
[適用例4]
 適用例1に記載の車両であって、
 前記センサは、前記1以上の回動輪の方向を測定するセンサであり、
 前記傾斜制御部は、前記1以上の回動輪の方向が前記操作量を用いて特定される目標の方向に近づくように、前記駆動装置を制御する、
 車両。
Application Example 4
It is a vehicle described in Application Example 1;
The sensor is a sensor that measures the direction of the one or more rotating wheels,
The tilt control unit controls the drive device such that the direction of the one or more rotating wheels approaches a direction of a target specified using the operation amount.
vehicle.
 この構成によれば、1以上の回動輪の方向が、操作量を用いて特定される目標の方向に近づくように駆動装置が制御されるので、車両の進行方向の目標の方向からのずれを抑制できる。 According to this configuration, since the drive device is controlled such that the direction of one or more turning wheels approaches the direction of the target specified using the operation amount, the deviation of the traveling direction of the vehicle from the direction of the target It can be suppressed.
 なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、車両、車両の制御装置、車両の制御方法、等の態様で実現することができる。 Note that the technology disclosed in the present specification can be realized in various aspects, and can be realized, for example, in an aspect such as a vehicle, a control device of a vehicle, a control method of a vehicle, and the like.
車両10の右側面図である。FIG. 2 is a right side view of the vehicle 10; 車両10の上面図である。FIG. 1 is a top view of a vehicle 10; 車両10の下面図である。FIG. 2 is a bottom view of the vehicle 10; 車両10の背面図である。FIG. 2 is a rear view of the vehicle 10; 車両10の状態を示す概略図である。FIG. 2 is a schematic view showing a state of a vehicle 10; 車両10の状態を示す概略図である。FIG. 2 is a schematic view showing a state of a vehicle 10; 旋回時の力のバランスの説明図である。It is explanatory drawing of the balance of the force at the time of turning. 車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。FIG. 5 is an explanatory view showing a simplified relationship between a wheel angle AF and a turning radius R. トルクtq1の説明図である。It is an explanatory view of torque tq1. 回転する前輪12Fに作用する力の説明図である。It is explanatory drawing of the force which acts on the front wheel 12F which rotates. 車両10の制御に関する構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration related to control of a vehicle 10. 制御処理の例を示すフローチャートである。It is a flow chart which shows an example of control processing. 傾斜制御の例を示すフローチャートである。It is a flowchart which shows the example of inclination control. 車両10の状態例を示す説明図である。FIG. 2 is an explanatory view showing a state example of a vehicle 10; 車両10の別の状態例を示す説明図である。FIG. 6 is an explanatory view showing another example of the state of the vehicle 10; トルク差分dTQxと補正値Vccとの対応関係の例を示すグラフである。It is a graph which shows the example of the correspondence of torque difference dTQx and correction value Vcc. 傾斜制御の別の実施例を示すフローチャートである。It is a flowchart which shows another Example of inclination control. ヨーレート差分dYと補正値Vccとの対応関係の例を示すグラフである。It is a graph which shows the example of the correspondence of the yaw rate difference dY and the correction value Vcc. 傾斜制御の別の実施例を示すフローチャートである。It is a flowchart which shows another Example of inclination control. 車輪角差分dAFと補正値Vccとの対応関係の例を示すグラフである。It is a graph which shows the example of the correspondence of wheel angle difference dAF and correction value Vcc.
A1.車両10の構成:
 図1~図4は、一実施例としての車両10を示す説明図である。図1は、車両10の右側面図を示し、図2は、車両10の上面図を示し、図3は、車両10の下面図を示し、図4は、車両10の背面図を示している。図1~図4には、水平な地面GL(図1)上に配置され、傾斜していない状態の車両10が、示されている。図2~図4では、図1に示す車両10の構成のうち説明に用いる部分が図示され、他の部分の図示が省略されている。図1~図4には、6つの方向DF、DB、DU、DD、DR、DLが示されている。前方向DFは、車両10の前進方向であり、後方向DBは、前方向DFの反対方向である。上方向DUは、鉛直上方向であり、下方向DDは、上方向DUの反対方向である。右方向DRは、前方向DFに走行する車両10から見た右方向であり、左方向DLは、右方向DRの反対方向である。方向DF、DB、DR、DLは、いずれも、水平な方向である。右と左の方向DR、DLは、前方向DFに垂直である。
A1. Configuration of Vehicle 10:
1 to 4 are explanatory views showing a vehicle 10 as one embodiment. 1 shows a right side view of the vehicle 10, FIG. 2 shows a top view of the vehicle 10, FIG. 3 shows a bottom view of the vehicle 10, and FIG. 4 shows a rear view of the vehicle 10. . The vehicle 10 is shown in FIGS. 1 to 4 arranged on a level ground GL (FIG. 1) and in a non-tilted state. In FIGS. 2 to 4, a portion used for explanation of the configuration of the vehicle 10 shown in FIG. 1 is illustrated, and the other portions are omitted. Six directions DF, DB, DU, DD, DR, DL are shown in FIGS. The forward direction DF is the forward direction of the vehicle 10, and the backward direction DB is the opposite direction of the forward direction DF. The upward direction DU is a vertically upward direction, and the downward direction DD is an opposite direction of the upward direction DU. The right direction DR is the right direction as viewed from the vehicle 10 traveling in the forward direction DF, and the left direction DL is the opposite direction of the right direction DR. The directions DF, DB, DR, and DL are all horizontal. The right and left directions DR, DL are perpendicular to the forward direction DF.
 本実施例では、この車両10は、一人乗り用の小型車両である。車両10(図1、図2)は、車体90と、車体90に連結された1つの前輪12Fと、車体90に連結され車両10の幅方向(すなわち、右方向DRに平行な方向)に互いに離れて配置された2つの後輪12L、12Rと、を有する三輪車である。前輪12Fは、左右方向に回動可能な回動輪の例であり、車両10の幅方向の中心に配置されている。後輪12L、12Rは、駆動輪であり、車両10の幅方向の中心に対して対称に配置されている。 In the present embodiment, this vehicle 10 is a single-seat small vehicle. Vehicle 10 (FIGS. 1 and 2) includes vehicle body 90, one front wheel 12F connected to vehicle body 90, and one another in the width direction of vehicle 10 (that is, a direction parallel to right direction DR). It is a tricycle having two rear wheels 12L, 12R arranged separately. The front wheel 12F is an example of a pivoting wheel that can pivot in the left-right direction, and is disposed at the center of the vehicle 10 in the width direction. The rear wheels 12L, 12R are drive wheels, and are disposed symmetrically with respect to the center of the vehicle 10 in the width direction.
 車体90(図1)は、本体部20を有している。本体部20は、前部20aと、底部20bと、後部20cと、支持部20dと、を有している。底部20bは、水平な板状の部分である。前部20aは、底部20bの前方向DF側の端部から上方向DU側に延びる板状の部分である。後部20cは、底部20bの後方向DB側の端部から上方向DU側に延びる板状の部分である。支持部20dは、後部20cの上端から後方向DBに向かって延びる板状の部分である。本体部20は、例えば、金属製のフレームと、フレームに固定されたパネルと、を有している。 The vehicle body 90 (FIG. 1) has a main body portion 20. The main body portion 20 has a front portion 20a, a bottom portion 20b, a rear portion 20c, and a support portion 20d. The bottom 20 b is a horizontal plate-like portion. The front portion 20a is a plate-like portion extending from the end on the forward direction DF side of the bottom portion 20b to the upper direction DU side. The rear portion 20c is a plate-like portion extending from the end of the bottom portion 20b on the back direction DB side to the top direction DU. The support portion 20d is a plate-like portion extending from the upper end of the rear portion 20c toward the rear direction DB. The main body 20 has, for example, a metal frame and a panel fixed to the frame.
 車体90は、さらに、底部20b上に固定された座席11と、座席11の前方向DF側に配置されたアクセルペダル45とブレーキペダル46と、底部20bに固定された制御装置110とバッテリ120と、前部20aの上方向DU側の端部に固定された前輪支持装置41と、前輪支持装置41に取り付けられたシフトスイッチ47と、を有している。図示を省略するが、本体部20には、他の部材(例えば、屋根、前照灯など)が固定され得る。車体90は、本体部20に固定された部材を含んでいる。 The vehicle body 90 further includes a seat 11 fixed on the bottom 20b, an accelerator pedal 45 and a brake pedal 46 disposed on the forward direction DF side of the seat 11, and a control device 110 and a battery 120 fixed to the bottom 20b. The front wheel support device 41 is fixed to the end on the upper direction DU side of the front portion 20a, and the shift switch 47 is attached to the front wheel support device 41. Although illustration is omitted, other members (for example, a roof, a headlight, etc.) may be fixed to the main body 20. The vehicle body 90 includes a member fixed to the main body 20.
 アクセルペダル45は、車両10を加速するためのペダルである。ブレーキペダル46は、車両10を減速するためのペダルである。シフトスイッチ47は、車両10の走行モードを選択するためのスイッチである。本実施例では、「ドライブ」と「ニュートラル」と「リバース」と「パーキング」との4つの走行モードから1つを選択可能である。「ドライブ」は、駆動輪12L、12Rの駆動によって前進するモードであり、「ニュートラル」は、駆動輪12L、12Rが回転自在であるモードであり、「リバース」は、駆動輪12L、12Rの駆動によって後退するモードであり、「パーキング」は、少なくとも1つの車輪(例えば、後輪12L、12R)が回転不能であるモードである。「ドライブ」と「ニュートラル」とは、通常は、車両10の前進時に利用される。 The accelerator pedal 45 is a pedal for accelerating the vehicle 10. The brake pedal 46 is a pedal for decelerating the vehicle 10. The shift switch 47 is a switch for selecting the traveling mode of the vehicle 10. In this embodiment, one of four driving modes of "drive", "neutral", "reverse" and "parking" can be selected. "Drive" is a mode in which the drive wheels 12L and 12R drive forward, "Neutral" is a mode in which the drive wheels 12L and 12R are rotatable, and "Reverse" is drive of the drive wheels 12L and 12R. The "parking" is a mode in which at least one wheel (e.g., the rear wheels 12L, 12R) can not rotate. “Drive” and “Neutral” are normally used when the vehicle 10 advances.
 前輪支持装置41(図1)は、回動軸Ax1を中心に回動可能に前輪12Fを支持する装置である。前輪支持装置41は、前フォーク17と、軸受68と、操舵モータ65と、を有している。前フォーク17は、前輪12Fを回転可能に支持しており、例えば、サスペンション(コイルスプリングとショックアブソーバ)を内蔵したテレスコピックタイプのフォークである。軸受68は、本体部20(ここでは、前部20a)と、前フォーク17と、を連結している。軸受68は、回動軸Ax1を中心に、前フォーク17(ひいては、前輪12F)を、車体90に対して左右に回動可能に支持している。操舵モータ65は、前フォーク17を回動させるモータである。操舵モータ65は、図示しないロータとステータとを含んでいる。ロータとステータとのうち、一方は、前フォーク17に固定され、他方は、本体部20(ここでは、前部20a)に固定されている。 The front wheel support device 41 (FIG. 1) is a device that supports the front wheel 12F so as to be pivotable about the pivot axis Ax1. The front wheel support device 41 has a front fork 17, a bearing 68, and a steering motor 65. The front fork 17 rotatably supports the front wheel 12F, and is, for example, a telescopic-type fork incorporating a suspension (a coil spring and a shock absorber). The bearing 68 connects the main body portion 20 (here, the front portion 20 a) and the front fork 17. The bearing 68 supports the front fork 17 (and the front wheel 12F) so as to be rotatable to the left and right with respect to the vehicle body 90, with the rotational axis Ax1 as the center. The steering motor 65 is a motor that rotates the front fork 17. The steering motor 65 includes a rotor and a stator (not shown). One of the rotor and the stator is fixed to the front fork 17, and the other is fixed to the main body 20 (here, the front 20a).
 車両10には、左右に回動可能なハンドル41aが、設けられている。ハンドル41aは、旋回方向と旋回の程度とを入力するための操作入力部の例である。所定の直進方向に対するハンドル41aの回動方向(右、または、左)は、ユーザの望む旋回方向を示している。直進方向に対するハンドル41aの回動角度(以下、「ハンドル角」とも呼ぶ)の大きさは、ユーザの望む旋回の程度を示している。本実施例では、「ハンドル角=ゼロ」は、直進を示し、「ハンドル角>ゼロ」は、右旋回を示し、「ハンドル角<ゼロ」は、左旋回を示している。このように、ハンドル角の正負の符号は、旋回方向を示している。また、ハンドル角の絶対値は、旋回の程度を示している。このようなハンドル角は、ハンドル41aに入力される旋回方向と旋回の程度とを表す操作量の例である。 The vehicle 10 is provided with a handle 41 a which can be turned to the left and right. The handle 41a is an example of an operation input unit for inputting the turning direction and the degree of turning. The turning direction (right or left) of the handle 41a with respect to the predetermined straight direction indicates the turning direction desired by the user. The magnitude of the rotation angle of the handle 41a (hereinafter also referred to as "handle angle") with respect to the straight direction indicates the degree of turning desired by the user. In the present embodiment, “handle angle = zero” indicates straight movement, “handle angle> zero” indicates right turn, and “handle angle <zero” indicates left turn. Thus, the positive and negative signs of the steering wheel angle indicate the turning direction. Also, the absolute value of the steering wheel angle indicates the degree of turning. Such a steering wheel angle is an example of an operation amount indicating the turning direction and the degree of turning input to the steering wheel 41a.
 なお、本実施例では、ハンドル41aには、ハンドル41aの回転軸に沿って延びる支持棒41axが固定されている。支持棒41axは、回転軸を中心に回転可能に前輪支持装置41に接続されている。 In the present embodiment, a support rod 41 ax extending along the rotation axis of the handle 41 a is fixed to the handle 41 a. The support rod 41 ax is connected to the front wheel support device 41 so as to be rotatable about the rotation axis.
 車輪角AF(図2)は、下方向DDを向いて車両10を見る場合に、前方向DFを基準とする、回転する前輪12Fの進行方向D12の角度である。進行方向D12は、前輪12Fの回転軸に垂直な方向である。本実施例では、「AF=ゼロ」は、「方向D12=前方向DF」を示している。「AF>ゼロ」は、旋回方向が右方向DRであること(すなわち、方向D12が右方向DR側を向いている)を示している。「AF<ゼロ」は、旋回方向が左方向DLであること(すなわち、方向D12が左方向DL側を向いている)を示している。 The wheel angle AF (FIG. 2) is an angle of the traveling direction D12 of the rotating front wheel 12F based on the forward direction DF when the vehicle 10 is viewed in the downward direction DD. The traveling direction D12 is a direction perpendicular to the rotation axis of the front wheel 12F. In the present embodiment, “AF = zero” indicates “direction D12 = forward direction DF”. “AF> zero” indicates that the turning direction is the right direction DR (that is, the direction D12 faces the right direction DR side). “AF <zero” indicates that the turning direction is the left direction DL (that is, the direction D12 faces the left direction DL side).
 操舵モータ65は、制御装置110(図1)によって制御される。本実施例では、操舵モータ65の制御モードは、制限モードと許容モードとの2つのモードから選択される。制限モードでは、制御装置110は、前輪12Fの方向D12が目標の方向に近づくように、操舵モータ65を制御する。目標の方向は、ハンドル角を用いて特定される。前輪12Fの方向D12が操舵モータ65によって制御されるので、ハンドル角とは独立な前輪12Fの自由な回動は、禁止される。この場合、車輪角AFは、いわゆる操舵角に対応する。許容モードでは、制御装置110は、操舵モータ65のトルクを小さくすることによって、前輪12Fの方向D12がハンドル角とは独立に左右に回動することを許容する。これらのモードの詳細については、後述する。 The steering motor 65 is controlled by the controller 110 (FIG. 1). In the present embodiment, the control mode of the steering motor 65 is selected from two modes of a limit mode and an allowance mode. In the limit mode, control device 110 controls steering motor 65 such that direction D12 of front wheel 12F approaches the direction of the target. The direction of the target is identified using the steering wheel angle. Since the direction D12 of the front wheel 12F is controlled by the steering motor 65, free rotation of the front wheel 12F independent of the steering wheel angle is prohibited. In this case, the wheel angle AF corresponds to a so-called steering angle. In the allowance mode, the control device 110 allows the direction D12 of the front wheel 12F to turn left and right independently of the steering wheel angle by reducing the torque of the steering motor 65. Details of these modes will be described later.
 図1中の角度CAは、鉛直上方向DUと、回動軸Ax1に沿って鉛直上方向DU側へ向かう方向と、のなす角度を示している(キャスター角とも呼ばれる)。キャスター角CAがゼロよりも大きいことは、本実施例のように回動軸Ax1に沿って鉛直上方向DU側へ向かう方向が斜め後ろに傾斜していることを、示している。 An angle CA in FIG. 1 indicates an angle formed by the vertically upward direction DU and a direction toward the vertically upward direction DU along the rotation axis Ax1 (also referred to as a caster angle). The fact that the caster angle CA is larger than zero indicates that the direction toward the vertically upward direction DU side along the pivot axis Ax1 is inclined obliquely backward as in the present embodiment.
 また、図1に示すように、本実施例では、前輪支持装置41の回動軸Ax1と地面GLとの交点P2は、前輪12Fの地面GLとの接触中心P1よりも、前方向DF側に位置している。これらの点P1、P2の間の後方向DBの距離Ltは、トレールと呼ばれる。正のトレールLtは、本実施例のように接触中心P1が交点P2よりも後方向DB側に位置していることを示している。なお、図1、図3に示すように、接触中心P1は、前輪12Fと地面GLとの接触領域Ca1の中心である。接触領域の中心は、接触領域の重心であり、具体的には、領域内に質量が均等に分布していると仮定する場合の重心の位置である。右後輪12Rと地面GLとの接触領域CaRの接触中心PbRと、左後輪12Lと地面GLとの接触領域CaLの接触中心PbLとも、同様に特定される。 Further, as shown in FIG. 1, in the present embodiment, the intersection point P2 between the pivot axis Ax1 of the front wheel support device 41 and the ground GL is closer to the front direction DF than the contact center P1 of the front wheel 12F with the ground GL. positioned. The distance Lt in the back direction DB between these points P1 and P2 is called a trail. The positive trail Lt indicates that the contact center P1 is located on the back direction DB side of the intersection point P2 as in this embodiment. In addition, as shown to FIG. 1, FIG. 3, the contact center P1 is a center of contact area Ca1 of the front wheel 12F and the ground GL. The center of the contact area is the center of gravity of the contact area, specifically, the position of the center of gravity when it is assumed that the mass is evenly distributed in the area. The contact center PbR of the contact area CaR between the right rear wheel 12R and the ground GL and the contact center PbL of the contact area CaL between the left rear wheel 12L and the ground GL are similarly specified.
 2つの後輪12L、12R(図4)は、後輪支持部80に回転可能に支持されている。後輪支持部80は、リンク機構30と、リンク機構30の上部に固定されたリーンモータ25と、リンク機構30の上部に固定された第1支持部82と、リンク機構30の前部に固定された第2支持部83(図1)と、を有している。図1では、説明のために、リンク機構30と第1支持部82と第2支持部83のうちの右後輪12Rに隠れている部分も実線で示されている。図2では、説明のために、本体部20に隠れている後輪支持部80と後輪12L、12Rと連結部75とが、実線で示されている。図1~図3では、リンク機構30が簡略化して示されている。 The two rear wheels 12L, 12R (FIG. 4) are rotatably supported by the rear wheel support 80. The rear wheel support portion 80 is fixed to the link mechanism 30, the lean motor 25 fixed to the upper portion of the link mechanism 30, the first support portion 82 fixed to the upper portion of the link mechanism 30, and the front portion of the link mechanism 30. And the second support portion 83 (FIG. 1). In FIG. 1, a portion of the link mechanism 30, the first support portion 82 and the second support portion 83 which is hidden by the right rear wheel 12 </ b> R is also shown by a solid line for the sake of explanation. In FIG. 2, the rear wheel support 80, the rear wheels 12 </ b> L and 12 </ b> R, and the connecting portion 75 hidden by the main body 20 are shown by solid lines for the purpose of explanation. In FIGS. 1 to 3, the link mechanism 30 is shown in a simplified manner.
 第1支持部82(図4)は、リンク機構30の上方向DU側に配置されている。第1支持部82は、左後輪12Lの上方向DU側から、右後輪12Rの上方向DU側まで、右方向DRに平行に延びる板状の部分を含んでいる。第2支持部83(図1、図2)は、リンク機構30の前方向DF側の、左後輪12Lと右後輪12Rとの間に配置されている。 The first support portion 82 (FIG. 4) is disposed on the upper direction DU side of the link mechanism 30. The first support portion 82 includes a plate-like portion extending in parallel to the right direction DR from the upper direction DU side of the left rear wheel 12L to the upper direction DU side of the right rear wheel 12R. The second support portion 83 (FIGS. 1 and 2) is disposed between the left rear wheel 12L and the right rear wheel 12R on the forward direction DF side of the link mechanism 30.
 右後輪12R(図1)は、ホイール12Raと、ホイール12Raに装着されたタイヤ12Rbと、を有している。ホイール12Ra(図4)は、右電気モータ51Rに接続されている。右電気モータ51Rは、ステータとロータとを有している(図示省略)。ロータとステータとのうちの一方は、ホイール12Raに固定され、他方は、後輪支持部80に固定されている。右電気モータ51Rの回転軸は、ホイール12Raの回転軸と同じであり、右方向DRに平行である。左後輪12Lの構成は、右後輪12Rの構成と、同様である。具体的には、左後輪12Lは、ホイール12Laとタイヤ12Lbとを有している。ホイール12Laは、左電気モータ51Lに接続されている。左電気モータ51Lのロータとステータとのうちの一方は、ホイール12Laに固定され、他方は、後輪支持部80に固定されている。これらの電気モータ51L、51Rは、後輪12L、12Rを直接的に駆動するインホイールモータである。 The right rear wheel 12R (FIG. 1) has a wheel 12Ra and a tire 12Rb mounted on the wheel 12Ra. The wheel 12Ra (FIG. 4) is connected to the right electric motor 51R. The right electric motor 51R has a stator and a rotor (not shown). One of the rotor and the stator is fixed to the wheel 12Ra, and the other is fixed to the rear wheel support 80. The rotation axis of the right electric motor 51R is the same as the rotation axis of the wheel 12Ra, and is parallel to the right direction DR. The configuration of the left rear wheel 12L is similar to that of the right rear wheel 12R. Specifically, the left rear wheel 12L has a wheel 12La and a tire 12Lb. The wheel 12La is connected to the left electric motor 51L. One of the rotor and the stator of the left electric motor 51L is fixed to the wheel 12La, and the other is fixed to the rear wheel support portion 80. The electric motors 51L, 51R are in-wheel motors that directly drive the rear wheels 12L, 12R.
 図1、図4には、車体90が傾斜せずに直立している状態(後述する傾斜角Tがゼロである状態)が、示されている。この状態で、左後輪12Lの回転軸ArLと右後輪12Rの回転軸ArRとは、同じ直線上に位置している。図1、図3に示すように、右後輪12Rの地面GLとの接触中心PbRの前方向DFの位置は、左後輪12Lの地面GLとの接触中心PbLの前方向DFの位置と、おおよそ同じである。 FIGS. 1 and 4 show a state in which the vehicle body 90 is upright without being inclined (a state in which the inclination angle T described later is zero). In this state, the rotation axis ArL of the left rear wheel 12L and the rotation axis ArR of the right rear wheel 12R are located on the same straight line. As shown in FIGS. 1 and 3, the position of the forward direction DF of the contact center PbR of the right rear wheel 12R with the ground GL is the position of the forward direction DF of the contact center PbL of the left rear wheel 12L with the ground It is almost the same.
 リンク機構30(図4)は、いわゆる、平行リンクである。リンク機構30は、右方向DRに向かって順番に並ぶ3つの縦リンク部材33L、21、33Rと、下方向DDに向かって順番に並ぶ2つの横リンク部材31U、31Dと、を有している。水平な地面GL上で車体90が傾斜せずに直立している場合、縦リンク部材33L、21、33Rは、鉛直方向に平行であり、横リンク部材31U、31Dは、水平方向に平行である。2つの縦リンク部材33L、33Rと、2つの横リンク部材31U、31Dとは、平行四辺形リンク機構を形成している。上横リンク部材31Uは、縦リンク部材33L、33Rの上端を連結している。下横リンク部材31Dは、縦リンク部材33L、33Rの下端を連結している。中縦リンク部材21は、横リンク部材31U、31Dの中央部分を連結している。これらのリンク部材33L、33R、31U、31D、21は、互いに回動可能に連結されており、回動軸は、前方向DFに平行である。左縦リンク部材33Lには、左電気モータ51Lが固定されている。右縦リンク部材33Rには、右電気モータ51Rが固定されている。中縦リンク部材21の上部には、第1支持部82と第2支持部83(図1)とが、固定されている。リンク部材33L、21、33R、31U、31Dと、支持部82、83とは、例えば、金属で形成されている。 The link mechanism 30 (FIG. 4) is a so-called parallel link. The link mechanism 30 has three vertical link members 33L, 21, 33R arranged in order toward the right direction DR, and two horizontal link members 31U, 31D arranged in order toward the downward direction DD. . When the vehicle body 90 stands upright without being inclined on the horizontal ground GL, the vertical link members 33L, 21, 33R are parallel to the vertical direction, and the horizontal link members 31U, 31D are parallel to the horizontal direction. . The two vertical link members 33L, 33R and the two horizontal link members 31U, 31D form a parallelogram link mechanism. The upper horizontal link member 31U connects the upper ends of the vertical link members 33L, 33R. The lower horizontal link member 31D connects the lower ends of the vertical link members 33L and 33R. The middle vertical link member 21 connects central portions of the horizontal link members 31U and 31D. The link members 33L, 33R, 31U, 31D, 21 are rotatably connected to each other, and the rotation axis is parallel to the forward direction DF. The left electric motor 51L is fixed to the left vertical link member 33L. The right electric motor 51R is fixed to the right vertical link member 33R. A first support 82 and a second support 83 (FIG. 1) are fixed to the upper portion of the middle vertical link member 21. The link members 33L, 21, 33R, 31U, 31D and the support portions 82, 83 are made of, for example, metal.
 本実施例では、リンク機構30は、複数のリンク部材を回動可能に連結するための軸受けを有している。例えば、軸受38は、下横リンク部材31Dと中縦リンク部材21とを回動可能に連結し、軸受39は、上横リンク部材31Uと中縦リンク部材21とを回動可能に連結している。説明を省略するが、複数のリンク部材を回動可能に連結する他の部分にも、軸受が設けられている。 In the present embodiment, the link mechanism 30 has a bearing for rotatably connecting a plurality of link members. For example, the bearing 38 rotatably connects the lower horizontal link member 31D and the middle vertical link member 21, and the bearing 39 rotatably connects the upper horizontal link member 31U and the middle vertical link member 21. There is. Although the description is omitted, bearings are also provided in other portions that rotatably connect the plurality of link members.
 リーンモータ25は、リンク機構30を作動させるアクチュエータの例であり、本実施例では、ステータとロータとを有する電気モータである。リーンモータ25のステータとロータのうちの一方は、中縦リンク部材21に固定され、他方は、上横リンク部材31Uに固定されている。リーンモータ25の回動軸は、これらのリンク部材31U、21の連結部分(ここでは、軸受39)の回動軸と同じであり、車両10の幅方向の中心に位置している。リーンモータ25のロータがステータに対して回動すると、上横リンク部材31Uが、中縦リンク部材21に対して、傾斜する。これにより、車両10が傾斜する。以下、リーンモータ25によって生成されるトルクを、傾斜トルクとも呼ぶ。傾斜トルクは、車体90を傾斜させるトルクである。 The lean motor 25 is an example of an actuator for operating the link mechanism 30, and in the present embodiment, is an electric motor having a stator and a rotor. One of the stator and the rotor of the lean motor 25 is fixed to the middle vertical link member 21, and the other is fixed to the upper horizontal link member 31U. The rotational axis of the lean motor 25 is the same as the rotational axis of the connecting portion (here, the bearing 39) of the link members 31U and 21, and is located at the center of the vehicle 10 in the width direction. When the rotor of the lean motor 25 rotates with respect to the stator, the upper horizontal link member 31U inclines with respect to the middle vertical link member 21. Thereby, the vehicle 10 is inclined. Hereinafter, the torque generated by the lean motor 25 is also referred to as a tilting torque. The tilt torque is a torque that tilts the vehicle body 90.
 図5は、水平な地面GL上の車両10の状態を示す概略図である。図中には、車両10の簡略化された背面図が示されている。図5(A)は、車両10が直立している状態を示し、図5(B)は、車両10が傾斜している状態を示している。図5(A)に示すように、上横リンク部材31Uが中縦リンク部材21に対して直交する場合、全ての車輪12F、12L、12Rが、水平な地面GLに対して直立する。そして、車体90を含む車両10の全体は、地面GLに対して、直立する。図中の車両上方向DVUは、車両10の上方向である。車両10が傾斜していない状態では、車両上方向DVUは、上方向DUと同じである。本実施例では、車体90に対して予め決められた上方向が、車両上方向DVUとして用いられる。 FIG. 5 is a schematic view showing the state of the vehicle 10 on the horizontal ground GL. A simplified rear view of the vehicle 10 is shown in the figure. FIG. 5A shows a state in which the vehicle 10 is upright, and FIG. 5B shows a state in which the vehicle 10 is inclined. As shown in FIG. 5A, when the upper horizontal link member 31U is orthogonal to the middle vertical link member 21, all the wheels 12F, 12L, 12R stand upright with respect to the horizontal ground GL. Then, the entire vehicle 10 including the vehicle body 90 stands upright with respect to the ground GL. A vehicle upward direction DVU in the drawing is an upward direction of the vehicle 10. When the vehicle 10 is not inclined, the vehicle upward direction DVU is the same as the upward direction DU. In the present embodiment, the upward direction predetermined for the vehicle body 90 is used as the vehicle upward direction DVU.
 図5(B)に示すように、上横リンク部材31Uが中縦リンク部材21に対して傾斜する場合、右後輪12Rと左後輪12Lとの一方が、車両上方向DVU側に移動し、他方は、車両上方向DVUとは反対方向側に移動する。すなわち、リンク機構30とリーンモータ25とは、幅方向に互いに離れて配置された一対の車輪12L、12Rの間の車輪12L、12Rの回転軸に垂直な方向の相対位置を変化させる。この結果、全ての車輪12F、12L、12Rが地面GLに接触した状態で、これらの車輪12F、12L、12Rは、地面GLに対して傾斜する。そして、車体90を含む車両10の全体は、地面GLに対して、傾斜する。図5(B)の例では、右後輪12Rが車両上方向DVU側に移動し、左後輪12Lが反対側に移動している。この結果、車輪12F、12L、12R、ひいては、車体90を含む車両10の全体は、右方向DR側に、傾斜する。後述するように、車両10が右方向DR側に旋回する場合に、車両10は、右方向DR側に傾斜する。車両10が左方向DL側に旋回する場合に、車両10は、左方向DL側に傾斜する。 As shown in FIG. 5B, when the upper horizontal link member 31U is inclined with respect to the middle vertical link member 21, one of the right rear wheel 12R and the left rear wheel 12L moves in the vehicle upward direction DVU side. , And the other move in the direction opposite to the vehicle upward direction DVU. That is, the link mechanism 30 and the lean motor 25 change the relative position in the direction perpendicular to the rotation axis of the wheels 12L and 12R between the pair of wheels 12L and 12R arranged apart from each other in the width direction. As a result, in a state where all the wheels 12F, 12L, 12R are in contact with the ground GL, these wheels 12F, 12L, 12R are inclined relative to the ground GL. Then, the entire vehicle 10 including the vehicle body 90 tilts with respect to the ground GL. In the example of FIG. 5 (B), the right rear wheel 12R moves to the vehicle upward direction DVU side, and the left rear wheel 12L moves to the opposite side. As a result, the whole of the vehicle 10 including the wheels 12F, 12L, 12R and by extension the vehicle body 90 inclines in the right direction DR. As described later, when the vehicle 10 turns in the right direction DR, the vehicle 10 leans in the right direction DR. When the vehicle 10 turns to the left direction DL side, the vehicle 10 leans to the left direction DL side.
 図5(B)では、車両上方向DVUは、上方向DUに対して、右方向DR側に傾斜している。以下、前方向DFを向いて車両10を見る場合の、上方向DUと車両上方向DVUとの間の角度を、傾斜角Tと呼ぶ。ここで、「T>ゼロ」は、右方向DR側への傾斜を示し、「T<ゼロ」は、左方向DL側への傾斜を示している。車両10が傾斜する場合、車体90を含む車両10の全体が、おおよそ、同じ方向に傾斜する。従って、車体90の傾斜角Tは、車両10の傾斜角Tであると言うことができる。 In FIG. 5B, the vehicle upward direction DVU is inclined to the right direction DR with respect to the upward direction DU. Hereinafter, an angle between the upward direction DU and the upward direction DVU when the vehicle 10 is viewed in the forward direction DF will be referred to as an inclination angle T. Here, “T> zero” indicates an inclination toward the right direction DR, and “T <zero” indicates an inclination toward the left direction DL. When the vehicle 10 inclines, the entire vehicle 10 including the vehicle body 90 inclines in the same direction. Therefore, it can be said that the inclination angle T of the vehicle body 90 is the inclination angle T of the vehicle 10.
 また、図5(B)には、リンク機構30の制御角Tcが示されている。制御角Tcは、上横リンク部材31Uの向きに対する中縦リンク部材21の向きの角度を示している。「Tc=ゼロ」は、上横リンク部材31Uに対して中縦リンク部材21が垂直であることを、示している。「Tc>ゼロ」は、図5(B)の背面図において、中縦リンク部材21が、上横リンク部材31Uに対して、時計回りに回動したことを示している。「Tc<ゼロ」は、中縦リンク部材21が、上横リンク部材31Uに対して、反時計回りに回動したことを示している。図示するように、車両10が、水平な地面GL(すなわち、鉛直上方向DUに垂直な地面GL)上に位置している場合、制御角Tcは、傾斜角Tと、おおよそ同じである。 Moreover, control angle Tc of the link mechanism 30 is shown by FIG. 5 (B). The control angle Tc indicates the angle of orientation of the middle longitudinal link member 21 with respect to the orientation of the upper horizontal link member 31U. “Tc = zero” indicates that the middle vertical link member 21 is perpendicular to the upper horizontal link member 31U. “Tc> Zero” indicates that the middle vertical link member 21 is rotated clockwise with respect to the upper horizontal link member 31U in the rear view of FIG. 5 (B). “Tc <zero” indicates that the middle vertical link member 21 has rotated counterclockwise with respect to the upper horizontal link member 31U. As shown, when the vehicle 10 is located on the horizontal ground GL (ie, the ground GL perpendicular to the vertically upward direction DU), the control angle Tc is approximately the same as the tilt angle T.
 図5(A)、図5(B)に示すように、地面GL上には、傾斜軸AxLが配置されている。リンク機構30とリーンモータ25とは、車両10を、傾斜軸AxLを中心に、右と左とに傾斜させることができる。本実施例では、傾斜軸AxLは、前輪12Fと地面GLとの接触中心P1を通り前方向DFに平行な直線である。後輪12L、12Rを回転可能に支持するリンク機構30とリーンモータ25とは、車体90を車両10の幅方向に傾斜させる傾斜機構89を構成する。 As shown to FIG. 5 (A) and FIG. 5 (B), inclination-axis AxL is arrange | positioned on the ground GL. The link mechanism 30 and the lean motor 25 can tilt the vehicle 10 to the right and left around the tilt axis AxL. In the present embodiment, the inclination axis AxL is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and parallel to the forward direction DF. The link mechanism 30 rotatably supporting the rear wheels 12L and 12R and the lean motor 25 constitute an inclination mechanism 89 for inclining the vehicle body 90 in the width direction of the vehicle 10.
 なお、横リンク部材31Uは、縦リンク部材33L、33Rとモータ51L、51Rとを介して車輪12L、12Rに接続されている。中縦リンク部材21は、第1支持部82とサスペンションシステム70とを介して、車体90に接続されている。リーンモータ25は、車輪12L、12Rに接続された部材31Uと、車体90に接続された部材21と、の相対的な位置を変化させる力(ここでは、部材31Uに対する部材21の向きを変化させるトルク)を、部材31Uと部材21とに印加する。 The horizontal link member 31U is connected to the wheels 12L and 12R via the vertical link members 33L and 33R and the motors 51L and 51R. The middle vertical link member 21 is connected to the vehicle body 90 via the first support portion 82 and the suspension system 70. The lean motor 25 changes the relative position between the member 31U connected to the wheels 12L and 12R and the member 21 connected to the vehicle body 90 (here, the direction of the member 21 with respect to the member 31U is changed) Torque is applied to members 31U and 21.
 図6は、図5と同様に、車両10の簡略化された背面図を示している。図5とは異なり、地面GLxは、鉛直上方向DUに対して斜めに傾斜している(右側が高く、左側が低い)。図6(A)は、制御角Tcがゼロである状態を示している。この状態では、全ての車輪12F、12L、12Rが、地面GLxに対して直立する。そして、車両上方向DVUは、地面GLxに対して垂直であり、また、鉛直上方向DUに対して左方向DL側に傾斜している。 6 shows a simplified rear view of the vehicle 10, as in FIG. Unlike FIG. 5, the ground GLx is inclined obliquely with respect to the vertically upward direction DU (the right is high and the left is low). FIG. 6A shows a state where the control angle Tc is zero. In this state, all the wheels 12F, 12L, 12R stand upright with respect to the ground GLx. The vehicle upward direction DVU is perpendicular to the ground GLx, and is inclined to the left direction DL with respect to the vertically upward direction DU.
 図6(B)は、傾斜角Tがゼロである状態を示している。この状態では、上横リンク部材31Uは、地面GLxにおおよそ平行であり、中縦リンク部材21に対して反時計回りの方向に傾斜している。また、車輪12F、12L、12Rは、地面GLに対して傾斜している。 FIG. 6B shows a state in which the inclination angle T is zero. In this state, the upper horizontal link member 31U is approximately parallel to the ground GLx and inclined in the counterclockwise direction with respect to the middle vertical link member 21. Further, the wheels 12F, 12L, 12R are inclined with respect to the ground GL.
 このように、地面GLxが傾斜している場合、車体90の傾斜角Tの大きさは、リンク機構30の制御角Tcの大きさと、異なり得る。 Thus, when the ground GLx is inclined, the magnitude of the inclination angle T of the vehicle body 90 may be different from the magnitude of the control angle Tc of the link mechanism 30.
 なお、リーンモータ25は、リーンモータ25を回動不能に固定する図示しないロック機構を有している。ロック機構を作動させることによって、上横リンク部材31Uは、中縦リンク部材21に対して回動不能に固定される。この結果、制御角Tcが固定される。例えば、車両10の駐車時に、制御角Tcはゼロに固定される。ロック機構としては、メカニカルな機構であって、リーンモータ25(ひいては、リンク機構30)を固定している最中に電力を消費しない機構が好ましい。 The lean motor 25 has a lock mechanism (not shown) that fixes the lean motor 25 so as not to rotate. By operating the lock mechanism, the upper horizontal link member 31U is non-rotatably fixed to the middle vertical link member 21. As a result, the control angle Tc is fixed. For example, when the vehicle 10 is parked, the control angle Tc is fixed to zero. The locking mechanism is preferably a mechanical mechanism that does not consume power while the lean motor 25 (and thus the link mechanism 30) is fixed.
 図2、図4に示すように、本実施例では、本体部20は、サスペンションシステム70と連結部75とによって、後輪支持部80に連結されている。サスペンションシステム70(図4)は、伸縮可能な左サスペンション70Lと、伸縮可能な右サスペンション70Rと、を有している。本実施例では、各サスペンション70L、70Rは、コイルスプリング71L、71Rとショックアブソーバ72L、72Rとを内蔵するテレスコピックタイプのサスペンションである。サスペンション70L、70Rの上方向DU側の端部は、本体部20の支持部20dに、回動可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。サスペンション70L、70Rの下方向DD側の端部は、後輪支持部80の第1支持部82に、回動可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。 As shown in FIGS. 2 and 4, in the present embodiment, the main body 20 is connected to the rear wheel support 80 by the suspension system 70 and the connection 75. The suspension system 70 (FIG. 4) includes an extendable left suspension 70L and an extendable right suspension 70R. In the present embodiment, each of the suspensions 70L, 70R is a telescopic suspension including coil springs 71L, 71R and shock absorbers 72L, 72R. The ends on the upper direction DU side of the suspensions 70L and 70R are rotatably connected to the support portion 20d of the main body portion 20 (for example, a ball joint, a hinge, or the like). The lower ends DD of the suspensions 70L and 70R are rotatably connected to the first support 82 of the rear wheel support 80 (for example, a ball joint, a hinge, etc.).
 連結部75は、図1、図2に示すように、前方向DFに延びる棒である。連結部75は、車両10の幅方向の中心に配置されている。連結部75の前方向DF側の端部は、本体部20の後部20cに、回動可能に連結されている(例えば、玉継ぎ手)。連結部75の後方向DB側の端部は、後輪支持部80の第2支持部83に、回動可能に連結されている(例えば、玉継ぎ手)。 The connecting portion 75 is a rod extending in the forward direction DF, as shown in FIGS. 1 and 2. The connecting portion 75 is disposed at the center in the width direction of the vehicle 10. The end on the forward direction DF side of the connecting portion 75 is rotatably connected to the rear portion 20c of the main body portion 20 (for example, a ball joint). The end on the back direction DB side of the connection portion 75 is rotatably connected to the second support portion 83 of the rear wheel support portion 80 (for example, a ball joint).
 このように、本体部20(ひいては、車体90)は、サスペンションシステム70と連結部75とを介して、後輪支持部80に連結されている。車体90は、サスペンション70L、70Rの伸縮によって、幅方向に回動可能である。図1のロール軸AxRは、車体90が後輪支持部80に対して右方向DRと左方向DLとに回動する場合の中心軸を示している。本実施例では、ロール軸AxRは、前輪12Fと地面GLとの接触中心P1と、連結部75の近傍と、を通る直線である。なお、本実施例では、傾斜機構89による傾斜の傾斜軸AxLは、ロール軸AxRと異なっている。 As described above, the main body 20 (and the vehicle body 90 as a whole) is connected to the rear wheel support 80 via the suspension system 70 and the connection 75. The vehicle body 90 is rotatable in the width direction by the expansion and contraction of the suspensions 70L and 70R. The roll axis AxR in FIG. 1 indicates a central axis when the vehicle body 90 rotates in the right direction DR and the left direction DL with respect to the rear wheel support portion 80. In the present embodiment, the roll axis AxR is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and the vicinity of the connecting portion 75. In the present embodiment, the inclination axis AxL of the inclination by the inclination mechanism 89 is different from the roll axis AxR.
 図5(A)、図5(B)には、ロール軸AxRを中心に回動する車体90が、点線で示されている。図中のロール軸AxRは、サスペンション70L、70Rを含み前方向DFに垂直な平面上のロール軸AxRの位置を示している。図5(B)に示すように、車両10が傾斜した状態においても、車体90は、さらに、ロール軸AxRを中心に、右方向DRと左方向DLとに回動可能である。 In FIGS. 5 (A) and 5 (B), a vehicle body 90 pivoting about a roll axis AxR is shown by a dotted line. The roll axis AxR in the drawing indicates the position of the roll axis AxR on a plane including the suspensions 70L and 70R and perpendicular to the forward direction DF. As shown in FIG. 5 (B), even when the vehicle 10 is inclined, the vehicle body 90 is further rotatable in the right direction DR and the left direction DL about the roll axis AxR.
 車体90は、後輪支持部80による回動と、サスペンションシステム70と連結部75とによる回動と、によって、鉛直上方向DU(ひいては、地面GL)に対して、車両10の幅方向に回動し得る。このように、車両10の全体を総合して実現される車体90の幅方向の回動を、ロールとも呼ぶ。ロールは、車体90やタイヤ12Rb、12Lbなどの車両10の部材の変形によっても、生じ得る。なお、通常は、ロール軸AxRを中心とする回動は、一時的な回動であり、その大きさは、傾斜機構89による傾斜の大きさと比べて、小さい。 The vehicle body 90 is rotated in the width direction of the vehicle 10 with respect to the vertically upward direction DU (thus, the ground GL) by the rotation by the rear wheel support portion 80 and the rotation by the suspension system 70 and the connection portion 75. It can move. Thus, the rotation in the width direction of the vehicle body 90 which is realized by integrating the entire vehicle 10 is also referred to as a roll. The roll may also be generated by deformation of members of the vehicle 10 such as the vehicle body 90 and the tires 12Rb and 12Lb. Usually, the rotation around the roll axis AxR is a temporary rotation, and the size thereof is smaller than the size of the inclination by the inclination mechanism 89.
 図1、図5(A)、図5(B)には、重心90cが示されている。この重心90cは、満載状態での車体90の重心である。満載状態は、車両10が、車両10の総重量が許容される車両総重量になるように、乗員(可能なら荷物も)を積んだ状態である。例えば、荷物の最大重量は規定されず、最大定員数が規定される場合がある。この場合、重心90cは、車両10に対応付けられた最大定員数の乗員が車両10に搭乗した状態の重心である。乗員の体重としては、最大定員数に予め対応付けられた基準体重(例えば、55kg)が採用される。また、最大定員数に加えて、荷物の最大重量が規定される場合がある。この場合、重心90cは、最大定員数の乗員と、最大重量の荷物と、を積んだ状態での、車体90の重心である。 The gravity center 90c is shown by FIG. 1, FIG. 5 (A), and FIG. 5 (B). The center of gravity 90c is the center of gravity of the vehicle body 90 in the full load state. In the fully loaded state, the vehicle 10 is loaded with passengers (possibly with luggage) such that the total weight of the vehicle 10 is equal to the total weight of the vehicle. For example, the maximum weight of the package may not be specified, but the maximum number of people may be specified. In this case, the center of gravity 90 c is the center of gravity in a state where the maximum number of occupants associated with the vehicle 10 get on the vehicle 10. As the weight of the occupant, a reference weight (for example, 55 kg) previously associated with the maximum number of people is adopted. Also, in addition to the maximum capacity, the maximum weight of the package may be specified. In this case, the center of gravity 90c is the center of gravity of the vehicle body 90 in a state in which the maximum number of occupants and the maximum weight of luggage are loaded.
 図示するように、本実施例では、重心90cは、ロール軸AxRの下方向DD側に配置されている。従って、車体90がロール軸AxRを中心に振動する場合に、振動の振幅が過度に大きくなることを抑制できる。本実施例では、重心90cをロール軸AxRの下方向DD側に配置するために、車体90(図1)の要素のうち比較的重い要素であるバッテリ120が、低い位置に配置されている。具体的には、バッテリ120は、車体90の本体部20のうちの最も低い部分である底部20bに固定されている。従って、重心90cを、容易に、ロール軸AxRよりも低くできる。 As illustrated, in the present embodiment, the center of gravity 90c is disposed on the lower direction DD side of the roll axis AxR. Therefore, when the vehicle body 90 vibrates about the roll axis AxR, it is possible to suppress the amplitude of the vibration from becoming excessively large. In this embodiment, in order to arrange the center of gravity 90c on the lower direction DD side of the roll axis AxR, the battery 120 which is a relatively heavy element of the elements of the vehicle body 90 (FIG. 1) is arranged at a low position. Specifically, the battery 120 is fixed to the bottom portion 20 b which is the lowest portion of the main body portion 20 of the vehicle body 90. Therefore, the center of gravity 90c can be easily made lower than the roll axis AxR.
 図7は、旋回時の力のバランスの説明図である。図中には、旋回方向が右方向である場合の後輪12L、12Rの背面図が示されている。後述するように、旋回方向が右方向である場合、制御装置110(図1)は、後輪12L、12R(ひいては、車両10)が地面GLに対して右方向DRに傾斜するように、リーンモータ25を制御する場合がある。 FIG. 7 is an explanatory view of balance of force at the time of turning. A rear view of the rear wheels 12L and 12R when the turning direction is the right direction is shown in the figure. As described later, when the turning direction is the right direction, the control device 110 (FIG. 1) is lean so that the rear wheels 12L, 12R (and consequently the vehicle 10) incline in the right direction DR with respect to the ground GL The motor 25 may be controlled.
 図中の第1力F1は、車体90に作用する遠心力である。第2力F2は、車体90に作用する重力である。ここで、車体90の質量をm(kg)とし、重力加速度をg(おおよそ、9.8m/s)とし、鉛直方向に対する車両10の傾斜角をT(度)とし、旋回時の車両10の速度をV(m/s)とし、旋回半径をR(m)とする。第1力F1と第2力F2とは、以下の式1、式2で表される。
   F1 = (m*V)/R        (式1)
   F2 = m*g             (式2)
 ここで、*は、乗算記号(以下、同じ)。
The first force F1 in the figure is a centrifugal force acting on the vehicle body 90. The second force F 2 is gravity acting on the vehicle body 90. Here, the mass of the vehicle body 90 is m (kg), the gravitational acceleration is g (approximately 9.8 m / s 2 ), and the inclination angle of the vehicle 10 with respect to the vertical direction is T (degrees). The velocity of V is m (m / s) and the radius of gyration is R (m). The first force F1 and the second force F2 are expressed by the following equations 1 and 2.
F1 = (m * V 2 ) / R (Equation 1)
F2 = m * g (equation 2)
Here, * is a multiplication symbol (same below).
 また、図中の力F1bは、第1力F1の、車両上方向DVUに垂直な方向の成分である。力F2bは、第2力F2の、車両上方向DVUに垂直な方向の成分である。力F1bと力F2bとは、以下の式3、式4で表される。
   F1b = F1*cos(T)      (式3)
   F2b = F2*sin(T)      (式4)
 ここで、「cos()」は、余弦関数であり、「sin()」は、正弦関数である(以下、同じ)。
The force F1b in the drawing is a component of the first force F1 in the direction perpendicular to the vehicle upward direction DVU. The force F2b is a component of the second force F2 in the direction perpendicular to the vehicle upward direction DVU. The force F1b and the force F2b are represented by the following equations 3 and 4.
F1b = F1 * cos (T) (Equation 3)
F2b = F2 * sin (T) (Equation 4)
Here, "cos ()" is a cosine function, and "sin ()" is a sine function (the same applies hereinafter).
 力F1bは、車両上方向DVUを左方向DL側に回動させる成分であり、力F2bは、車両上方向DVUを右方向DR側に回動させる成分である。車両10が傾斜角T(さらには、速度Vと旋回半径R)を保ちつつ安定して旋回を続ける場合には、F1bとF2bとの関係は、以下の式5で表される
   F1b = F2b           (式5)
 式5に上記の式1~式4を代入すると、旋回半径Rは、以下の式6で表される。
   R = V/(g*tan(T))   (式6)
 ここで、「tan()」は、正接関数である(以下、同じ)。
 式6は、車体90の質量mに依存せずに、成立する。ここで、式6の「T」を、左方向と右方向とを区別せずに傾斜角の大きさを表すパラメータTa(ここでは、傾斜角Tの絶対値)に置換することによって得られる以下の式6aは、車体90の傾斜方向に拘わらずに、成立する。
   R = V/(g*tan(Ta))   (式6a)
The force F1b is a component for rotating the vehicle upward direction DVU to the left direction DL side, and the force F2b is a component for rotating the vehicle upward direction DVU to the right direction DR side. In the case where the vehicle 10 continues turning stably while maintaining the inclination angle T (further, the velocity V and the turning radius R), the relationship between F1b and F2b is expressed by the following equation 5: F1b = F2b ( Formula 5)
Substituting the equations 1 to 4 into the equation 5, the turning radius R is expressed by the following equation 6.
R = V 2 / (g * tan (T)) (Equation 6)
Here, "tan ()" is a tangent function (same below).
Expression 6 is established without depending on the mass m of the vehicle body 90. Here, the following can be obtained by substituting “T” in Equation 6 with a parameter Ta (here, the absolute value of the inclination angle T) representing the size of the inclination angle without distinguishing between the left direction and the right direction. Equation 6a is satisfied regardless of the inclination direction of the vehicle body 90.
R = V 2 / (g * tan (Ta)) (Equation 6a)
 図8は、車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。図中には、下方向DDを向いて見た車輪12F、12L、12Rが示されている。図中では、前輪12Fは、右方向DRに回動しており、車両10は、右方向DRに旋回する。図中の前中心Cfは、前輪12Fの中心である。前中心Cfは、前輪12Fの回転軸上に位置している。下方向DDを向いて車両10を見る場合、前中心Cfは、接触中心P1(図1)とおおよそ同じ位置に位置している。後中心Cbは、2つの後輪12L、12Rの中心である。車体90が傾斜していない場合、後中心Cbは、後輪12L、12Rの回転軸上の、後輪12L、12Rの間の中央に位置している。下方向DDを向いて車両10を見る場合、後中心Cbの位置は、2個の後輪12L、12Rの接触中心PbL、PbRの間の中央の位置と、同じである。中心Crは、旋回の中心である(旋回中心Crと呼ぶ)。ホイールベースLhは、前中心Cfと後中心Cbとの間の前方向DFの距離である。図1に示すように、ホイールベースLhは、前輪12Fの回転軸と、後輪12L、12Rの回転軸との間の前方向DFの距離である。 FIG. 8 is an explanatory view showing a simplified relationship between the wheel angle AF and the turning radius R. As shown in FIG. In the drawing, the wheels 12F, 12L, 12R viewed from the lower direction DD are shown. In the drawing, the front wheel 12F rotates in the right direction DR, and the vehicle 10 turns in the right direction DR. The front center Cf in the figure is the center of the front wheel 12F. The front center Cf is located on the rotation axis of the front wheel 12F. When the vehicle 10 is viewed in the downward direction DD, the front center Cf is approximately at the same position as the contact center P1 (FIG. 1). The rear center Cb is the center of the two rear wheels 12L, 12R. When the vehicle body 90 is not inclined, the rear center Cb is located at the center between the rear wheels 12L, 12R on the rotation axis of the rear wheels 12L, 12R. When the vehicle 10 is viewed in the downward direction DD, the position of the rear center Cb is the same as the center position between the contact centers PbL and PbR of the two rear wheels 12L and 12R. The center Cr is the center of turning (referred to as turning center Cr). The wheel base Lh is a distance in the forward direction DF between the front center Cf and the rear center Cb. As shown in FIG. 1, the wheel base Lh is a distance in the forward direction DF between the rotation axis of the front wheel 12F and the rotation axis of the rear wheels 12L, 12R.
 図8に示すように、前中心Cfと後中心Cbと旋回中心Crとは、直角三角形を形成する。点Cbの内角は、90度である。点Crの内角は、車輪角AFと同じである。従って、車輪角AFと旋回半径Rとの関係は、以下の式7で表される。
   AF = arctan(Lh/R)   (式7)
  ここで「arctan()」は、正接関数の逆関数である(以下、同じ)。
As shown in FIG. 8, the front center Cf, the back center Cb, and the turning center Cr form a right triangle. The interior angle of the point Cb is 90 degrees. The interior angle of the point Cr is the same as the wheel angle AF. Therefore, the relationship between the wheel angle AF and the turning radius R is expressed by the following equation 7.
AF = arctan (Lh / R) (Equation 7)
Here, "arctan ()" is an inverse function of the tangent function (the same applies hereinafter).
 なお、現実の車両10の挙動と、図8の簡略化された挙動と、の間には、種々の差異が存在する。例えば、現実の車輪12F、12L、12Rは、地面GLに対して滑り得る。また、現実の前輪12Fと後輪12L、12Rは、傾斜する。従って、現実の旋回半径は、式7の旋回半径Rと異なり得る。ただし、式7は、車輪角AFと旋回半径Rとの関係を示す良い近似式として、利用可能である。 There are various differences between the actual behavior of the vehicle 10 and the simplified behavior of FIG. 8. For example, real wheels 12F, 12L, 12R may slide relative to the ground GL. Also, the real front wheels 12F and rear wheels 12L and 12R are inclined. Thus, the actual turning radius may be different from the turning radius R of Equation 7. However, Equation 7 can be used as a good approximate expression showing the relationship between the wheel angle AF and the turning radius R.
 前進中に図5(B)のように車両10が右方向DR側へ傾斜した場合、車体90の重心90cが右方向DR側へ移動するので、車両10の進行方向は、右方向DR側へ変化する。これにより、前輪支持装置41(図1)(ひいては、回動軸Ax1(図5(B)))も、右方向DR側へ移動する。一方、前輪12Fと地面GLとの接触中心P1は、摩擦によって、直ぐに右方向DR側へ移動することはできない。そして、本実施例では、図1で説明したように、前輪12Fは、正のトレールLtを有する。すなわち、接触中心P1は、回動軸Ax1と地面GLとの交点P2よりも、後方向DB側に位置している。これらの結果、前進中に車両10が右方向DR側へ傾斜した場合、前輪12Fの向き(すなわち、進行方向D12(図2))は、自然に、車両10の新たな進行方向、すなわち、傾斜方向(図5(B)の例では、右方向DR)に、回動可能である。図5(B)中の回動方向RFは、車体90が右方向DR側へ傾斜する場合の、回動軸Ax1を中心とする前輪12Fの回動方向を示している。操舵モータ65のトルクが小さい場合には、前輪12Fの向きは、傾斜角Tの変更開始に続いて、自然に、傾斜方向に回動する。そして、車両10は、傾斜方向に向かって、旋回する。 Since the center of gravity 90c of the vehicle body 90 moves to the right direction DR side when the vehicle 10 leans to the right direction DR side as shown in FIG. 5 (B) during forward movement, the traveling direction of the vehicle 10 is to the right direction DR side Change. As a result, the front wheel support device 41 (FIG. 1) (and, consequently, the pivot axis Ax1 (FIG. 5B)) also moves in the right direction DR. On the other hand, the contact center P1 between the front wheel 12F and the ground GL can not move immediately to the right direction DR due to friction. Further, in the present embodiment, as described in FIG. 1, the front wheel 12F has a positive trail Lt. That is, the contact center P1 is located on the back direction DB side with respect to the intersection point P2 of the rotation axis Ax1 and the ground GL. As a result, when the vehicle 10 leans to the right direction DR during forward travel, the direction of the front wheel 12F (that is, the travel direction D12 (FIG. 2)) naturally becomes the new travel direction of the vehicle 10, that is, It is rotatable in the direction (right direction DR in the example of FIG. 5B). The pivoting direction RF in FIG. 5B indicates the pivoting direction of the front wheel 12F centered on the pivot axis Ax1 when the vehicle body 90 inclines to the right direction DR side. When the torque of the steering motor 65 is small, the direction of the front wheel 12F naturally rotates in the inclination direction following the start of the change of the inclination angle T. Then, the vehicle 10 turns in the inclination direction.
 また、旋回半径が上記の式6(ひいては、式6a)で表される旋回半径Rと同じである場合には、力F1b、F2b(図7、式5)が釣り合うので、車両10の挙動の安定性が向上する。傾斜角Tで旋回する車両10は、式6で表される旋回半径Rで旋回しようとする。また、車両10が正のトレールLtを有するので、前輪12Fの進行方向D12は、自然に、車両10の進行方向と同じになる。従って、車両10が傾斜角Tで旋回する場合、左右に回動できる前輪12Fの向き(すなわち、車輪角AF)は、式6で表される旋回半径Rと、式7と、から特定される車輪角AFの向きに、落ち着き得る。このように、車輪角AFは、車体90の傾斜に追随して、変化する。 Further, when the turning radius is the same as the turning radius R represented by the above equation 6 (and consequently the equation 6a), the forces F1b and F2b (FIG. 7, equation 5) are balanced, so the behavior of the vehicle 10 Stability is improved. The vehicle 10 turning at the inclination angle T tries to turn at a turning radius R expressed by Equation 6. Further, since the vehicle 10 has the positive trail Lt, the traveling direction D12 of the front wheel 12F naturally becomes the same as the traveling direction of the vehicle 10. Therefore, when the vehicle 10 turns at the inclination angle T, the orientation of the front wheel 12F that can turn to the left and right (ie, the wheel angle AF) is specified from the turning radius R expressed by Expression 6 and Expression 7. You can calm down in the direction of the wheel angle AF. Thus, the wheel angle AF changes following the inclination of the vehicle body 90.
 また、図1で説明したように、本実施例では、前輪支持装置41は、車体90に固定されている。従って、車体90が傾斜する場合、前輪支持装置41の回動軸Ax1は、車体90とともに傾斜する。さらに、本実施例では、トレールLtは正である。この場合、車両10の傾斜は、前輪12Fに、進行方向D12を傾斜方向に回動させる第1トルクを作用させる。図9は、第1トルクtq1の説明図である。図9(A)には、下方向DDを向いて見た車両10の概略が示され、図9(B)には、前方向DFを向いて見た前輪12Fの概略が示されている。これらの図は、水平な地面GL上で前進中の車両10の車体90が右方向DR側へ傾斜した状態を、示している。図9(B)に示すように、前輪12Fは、右方向DR側に傾斜している。この状態で、前輪12Fは、地面GLに接触して、車両10の重量の一部を、支えている。従って、前輪12Fは、地面GLから、上方向DUの力Fpaを受ける。力Fpaは、前輪12Fの接触中心P1に、作用する。このような力Fpaは、前輪12Fの回動軸Ax1に平行な成分Fpaxと、回動軸Ax1に垂直に左方向DL側に向かう成分Fpa1と、を含んでいる。垂直成分Fpa1は、前輪12Fの接触中心P1を左方向DLへ移動させる。 Further, as described in FIG. 1, in the present embodiment, the front wheel support device 41 is fixed to the vehicle body 90. Therefore, when the vehicle body 90 is inclined, the pivot axis Ax1 of the front wheel support device 41 is inclined together with the vehicle body 90. Furthermore, in the present embodiment, the trail Lt is positive. In this case, the inclination of the vehicle 10 causes the front wheel 12F to exert a first torque that causes the traveling direction D12 to rotate in the inclination direction. FIG. 9 is an explanatory diagram of the first torque tq1. FIG. 9 (A) shows a schematic of the vehicle 10 viewed from the lower direction DD, and FIG. 9 (B) shows a schematic of the front wheel 12F viewed from the forward direction DF. These drawings show a state in which the vehicle body 90 of the vehicle 10 moving forward on the horizontal ground GL is inclined to the right direction DR. As shown in FIG. 9B, the front wheel 12F is inclined toward the right direction DR. In this state, the front wheel 12F contacts the ground GL and supports a portion of the weight of the vehicle 10. Therefore, the front wheel 12F receives the force Fpa in the upward direction DU from the ground GL. The force Fpa acts on the contact center P1 of the front wheel 12F. Such force Fpa includes a component Fpax parallel to the rotation axis Ax1 of the front wheel 12F, and a component Fpa1 perpendicular to the rotation axis Ax1 and directed to the left direction DL side. The vertical component Fpa1 moves the contact center P1 of the front wheel 12F in the left direction DL.
 図9(A)に示すように、前輪12Fの接触中心P1には、左方向DL側を向いた力Fpa1が、作用する。また、前輪12Fの回動軸Ax1と地面との交点P2は、接触中心P1よりも、前方向DF側に位置している。従って、力Fpa1に起因して、前輪12Fには、前輪12Fの方向D12を右方向DR側に回動させる第1部分トルクtq11が、作用する。力Fpa1は、傾斜角Tの絶対値がゼロから増大することに応じて、大きくなる。従って、力Fpa1に起因する第1部分トルクtq11は、傾斜角Tの絶対値が大きいほど、大きい。 As shown in FIG. 9A, a force Fpa1 directed to the left direction DL acts on the contact center P1 of the front wheel 12F. Further, an intersection point P2 between the rotation axis Ax1 of the front wheel 12F and the ground is located on the front direction DF side with respect to the contact center P1. Therefore, due to the force Fpa1, a first partial torque tq11 that rotates the direction D12 of the front wheel 12F to the right direction DR acts on the front wheel 12F. The force Fpa1 increases as the absolute value of the tilt angle T increases from zero. Therefore, the first partial torque tq11 resulting from the force Fpa1 increases as the absolute value of the inclination angle T increases.
 図9(C)には、右方向DRを向いて見た前輪12Fの概略が示されている。この図は、図9(A)、図9(B)と同じ状態の前輪12Fを示している。上述したように、前輪12Fの接触中心P1は、地面GLから、上方向DUの力Fpaを受ける。また、図示するように、本実施例では、前輪12Fのキャスター角CAは、ゼロよりも大きい。力Fpaは、前輪12Fの回動軸Ax1に平行な成分Fpaxと、回動軸Ax1に垂直に前方向DF側に向かう成分Fpa2と、を含んでいる。垂直成分Fpa2は、前輪12Fの接触中心P1を前方向DFへ移動させる。 FIG. 9C shows a schematic view of the front wheel 12F as viewed in the right direction DR. This figure shows the front wheel 12F in the same state as in FIGS. 9 (A) and 9 (B). As described above, the contact center P1 of the front wheel 12F receives the force Fpa in the upward direction DU from the ground GL. Further, as illustrated, in the present embodiment, the caster angle CA of the front wheel 12F is larger than zero. The force Fpa includes a component Fpax parallel to the rotation axis Ax1 of the front wheel 12F, and a component Fpa2 perpendicular to the rotation axis Ax1 and heading in the forward direction DF. The vertical component Fpa2 moves the contact center P1 of the front wheel 12F in the forward direction DF.
 図9(D)には、下方向DDを向いて見た前輪12Fの概略が示されている。この図は、図9(A)、図9(B)と同様の状態の前輪12Fを示している。図中には、比較的小さい車輪角AF1の前輪12Fと、比較的大きい車輪角AF2の前輪12Fとが、示されている。図9(C)で説明したように、前輪12Fの接触中心P1には、前方向DF側に向かう力Fpa2が作用する。また、前輪12Fの進行方向D12が右方向DR側に回動している場合、接触中心P1は、回動軸Ax1の交点P2よりも左方向DL側に位置している。従って、力Fpa2に起因して、前輪12Fには、前輪12Fの方向D12を右方向DR側に回動させる第2部分トルクtq12が、作用する。第2部分トルクtq12の大きさは、力Fpa2の大きさが一定である場合、接触中心P1と回動軸Ax1の交点P2との間の、力Fpa2の方向に垂直な方向(ここでは、右方向DRと同じ)の距離が大きいほど、大きい(垂直距離と呼ぶ)。図中の距離D1は、車輪角AFが比較的小さい車輪角AF1である場合の垂直距離であり、距離D2は、車輪角AFが比較的大きい車輪角AF2である場合の垂直距離である。前輪12FのトレールLt(図1)は、ゼロよりも大きい。従って、図9(D)に示すように、車輪角AFが大きいほど、垂直距離は大きい。従って、第2部分トルクtq12は、車輪角AFが大きいほど、大きい。 FIG. 9D schematically shows the front wheel 12F viewed from the lower direction DD. This figure shows the front wheel 12F in the same state as in FIGS. 9 (A) and 9 (B). In the figure, a front wheel 12F with a relatively small wheel angle AF1 and a front wheel 12F with a relatively large wheel angle AF2 are shown. As described in FIG. 9C, a force Fpa2 directed to the forward direction DF acts on the contact center P1 of the front wheel 12F. Further, when the traveling direction D12 of the front wheel 12F is pivoted to the right direction DR side, the contact center P1 is positioned on the left direction DL side with respect to the intersection point P2 of the pivot axis Ax1. Therefore, due to the force Fpa2, a second partial torque tq12 that rotates the direction D12 of the front wheel 12F to the right direction DR acts on the front wheel 12F. When the magnitude of the force Fpa2 is constant, the magnitude of the second partial torque tq12 is perpendicular to the direction of the force Fpa2 between the contact center P1 and the intersection point P2 of the rotation axis Ax1 (here, the right The larger the distance in the direction DR), the larger the distance (called vertical distance). A distance D1 in the drawing is a vertical distance when the wheel angle AF is a relatively small wheel angle AF1, and a distance D2 is a vertical distance when the wheel angle AF is a relatively large wheel angle AF2. The trail Lt (FIG. 1) of the front wheel 12F is larger than zero. Therefore, as shown in FIG. 9 (D), the larger the wheel angle AF, the larger the vertical distance. Therefore, the second partial torque tq12 is larger as the wheel angle AF is larger.
 第1トルクtq1(図9(A))は、これらの部分トルクtq11、tq12の合計である。第1トルクtq1は、前輪12Fの方向D12を車体90の傾斜方向に回動させる。図示を省略するが、図6(B)のように地面GLxが鉛直上方向DUに対して傾斜している場合も、鉛直上方向DUに対して車体90が傾斜することによって、第1トルクtq1が前輪12Fに作用する。第1トルクtq1の向きは、前輪12Fの方向D12を鉛直上方向DUに対する車体90の傾斜方向である。 The first torque tq1 (FIG. 9A) is the sum of these partial torques tq11 and tq12. The first torque tq1 rotates the direction D12 of the front wheel 12F in the inclination direction of the vehicle body 90. Although illustration is omitted, even when the ground GLx is inclined with respect to the vertically upward direction DU as shown in FIG. 6B, the first torque tq1 is caused by the vehicle body 90 being inclined with respect to the vertically upward direction DU. Acts on the front wheel 12F. The direction of the first torque tq1 is the inclination direction of the vehicle body 90 with respect to the direction D12 of the front wheel 12F with respect to the vertically upward direction DU.
 また、本実施例では、車体90が傾斜する場合に、前輪12Fには、トレールLtに依存せずに、車輪角AFを傾斜方向に回動させる力が作用する。図10は、回転する前輪12Fに作用する力の説明図である。図中には、前輪12Fの斜視図が示されている。図10の例では、前輪12Fの方向D12は、前方向DFと同じである。回転軸Ax2は、前輪12Fの回転軸である。車両10が前進する場合、前輪12Fは、この回転軸Ax2を中心に、回転する。図中には、前輪支持装置41(図1)の回動軸Ax1と、前軸Ax3とが示されている。回動軸Ax1は、上方向DU側から下方向DD側に向かって延びている。前軸Ax3は、前輪12Fの重心12Fcを通り、前輪12Fの方向D12に平行な軸である。なお、前輪12Fの回転軸Ax2も、前輪12Fの重心12Fcを通っている。 Further, in the present embodiment, when the vehicle body 90 inclines, a force that rotates the wheel angle AF in the inclination direction acts on the front wheel 12F without depending on the trail Lt. FIG. 10 is an explanatory view of a force acting on the rotating front wheel 12F. A perspective view of the front wheel 12F is shown in the figure. In the example of FIG. 10, the direction D12 of the front wheel 12F is the same as the forward direction DF. The rotation axis Ax2 is a rotation axis of the front wheel 12F. When the vehicle 10 moves forward, the front wheel 12F rotates about the rotation axis Ax2. In the drawing, a pivot axis Ax1 of the front wheel support device 41 (FIG. 1) and a front axis Ax3 are shown. The rotation axis Ax1 extends from the upper direction DU to the lower direction DD. The front axis Ax3 passes through the center of gravity 12Fc of the front wheel 12F and is parallel to the direction D12 of the front wheel 12F. The rotation axis Ax2 of the front wheel 12F also passes through the center of gravity 12Fc of the front wheel 12F.
 本実施例では、前輪支持装置41が車体90に固定されている。従って、車体90が傾斜する場合には、前輪支持装置41が車体90とともに傾斜するので、前輪12Fの回転軸Ax2も、同様に、同じ方向へ傾斜しようとする。走行中の車両10の車体90が右方向DR側に傾斜する場合、回転軸Ax2を中心に回転する前輪12Fに、右方向DR側へ傾斜させるトルクTqx(図10)が作用する。このトルクTqxは、前軸Ax3を中心に前輪12Fを右方向DR側へ傾斜させようとする力の成分を含んでいる。このように、回転する物体に外部トルクが印加される場合の物体の運動は、歳差運動として知られている。例えば、回転する物体は、回転軸と外部トルクの軸とに垂直な軸を中心に、回動する。図10の例では、トルクTqxの印加によって、回転する前輪12Fは、前輪支持装置41の回動軸Ax1を中心に右方向DR側へ回動する。このように、回転する前輪12Fの角運動量に起因して、前輪12Fの方向D12(すなわち、車輪角AF)は、車体90の傾斜に追随して変化する。 In the present embodiment, the front wheel support device 41 is fixed to the vehicle body 90. Therefore, when the vehicle body 90 inclines, the front wheel support device 41 inclines together with the vehicle body 90, so the rotation axis Ax2 of the front wheel 12F also tends to incline in the same direction. When the vehicle body 90 of the traveling vehicle 10 leans in the right direction DR, a torque Tqx (FIG. 10) acting on the front wheel 12F rotating about the rotation axis Ax2 acts on the front wheel 12F. The torque Tqx includes a component of force that causes the front wheel 12F to lean toward the right direction DR about the front axis Ax3. Thus, the motion of an object when an external torque is applied to the rotating object is known as precession. For example, a rotating object pivots about an axis perpendicular to the axis of rotation and the axis of external torque. In the example of FIG. 10, the rotating front wheel 12F pivots in the right direction DR about the pivot axis Ax1 of the front wheel support device 41 by the application of the torque Tqx. Thus, due to the angular momentum of the rotating front wheel 12F, the direction D12 of the front wheel 12F (ie, the wheel angle AF) changes following the inclination of the vehicle body 90.
 以上、車両10が右方向DR側に傾斜する場合について説明した。車両10が左方向DL側に傾斜する場合も、同様に、前輪12Fの方向D12(すなわち、車輪角AF)は、車体90の傾斜に追随して左方向DL側へ回動する。 In the above, the case where the vehicle 10 leans to the right direction DR side was demonstrated. Similarly, when the vehicle 10 leans to the left direction DL, the direction D12 of the front wheel 12F (ie, the wheel angle AF) rotates to the left direction DL following the inclination of the vehicle body 90.
 操舵モータ65のトルクが小さい場合、前輪支持装置41は、以下のように、前輪12Fを支持している。すなわち、前輪12Fは、ハンドル41aに入力される情報に拘わらず、車体90の傾斜の変化に追随して、車体90に対して左右に回動可能である。例えば、ハンドル41aが直進を示す所定方向を向いた状態に維持される場合であっても、車体90の傾斜角Tが右方向に変化する場合には、前輪12Fは、傾斜角Tの変化に追随して、右方向に回動し得る(すなわち、車輪角AFは、右方向に変化し得る)。前輪支持装置41がこのように前輪12Fを支持していることは、以下のように言い換えられる。すなわち、前輪支持装置41は、ハンドル41aに入力される1つの操作量に対する前輪12Fの車輪角AFが1つの車輪角AFに制限されないように、車体90の傾斜の変化に追随して車体90に対して左右に回動可能に、前輪12Fを支持している。 When the torque of the steering motor 65 is small, the front wheel support device 41 supports the front wheel 12F as follows. That is, the front wheel 12F can turn to the left and right with respect to the vehicle body 90 following the change of the inclination of the vehicle body 90 regardless of the information input to the steering wheel 41a. For example, even when the steering wheel 41a is maintained in a predetermined direction indicating straight travel, the front wheel 12F changes in the inclination angle T when the inclination angle T of the vehicle body 90 changes in the right direction. Following, it can turn to the right (ie, the wheel angle AF can change to the right). The fact that the front wheel support device 41 supports the front wheel 12F in this manner is paraphrased as follows. That is, the front wheel support device 41 follows the change of the inclination of the vehicle body 90 to the vehicle body 90 so that the wheel angle AF of the front wheel 12F is not limited to one wheel angle AF with respect to one operation amount input to the steering wheel 41a. The front wheel 12F is supported so as to be rotatable to the left and right.
 なお、図1に示すように、前輪支持装置41は、ハンドル41aの支持棒41axと前フォーク17とを連結する接続部50を、有している。接続部50は、支持棒41axに固定された第1部分51と、前フォーク17に固定された第2部分52と、第1部分51と第2部分52とを接続する第3部分53と、を含んでいる。接続部50は、ハンドル41aに、支持棒41axを介して間接的に接続され、前フォーク17に、直接的に接続されている。第3部分53は、本実施例では、弾性体であり、具体的には、コイルバネである。ユーザがハンドル41aを右または左に回動させる場合、ハンドル41aにユーザによって印加された右向きまたは左向きの力は、接続部50を介して、前フォーク17へ伝達される。すなわち、ユーザは、ハンドル41aを操作することによって、前フォーク17、ひいては、前輪12Fに、右向きまたは左向きの力を、印加できる。操舵モータ65が許容モードで制御される場合、前輪12Fの方向D12が意図しない方向に変化し得る(すなわち、車輪角AFが意図する角度と異なり得る)。この場合、ユーザは、ハンドル41aを操作することによって、前輪12Fの向き(すなわち、車輪角AF)を修正できる。これにより、走行安定性を向上できる。例えば、路面の凹凸などの外部の要因に応じて、車輪角AFが変化する場合に、ユーザは、ハンドル41aを操作することによって、車輪角AFを修正できる。 As shown in FIG. 1, the front wheel support device 41 has a connecting portion 50 that connects the support bar 41 ax of the handle 41 a and the front fork 17. The connecting portion 50 includes a first portion 51 fixed to the support rod 41 ax, a second portion 52 fixed to the front fork 17, and a third portion 53 connecting the first portion 51 and the second portion 52. Contains. The connection portion 50 is indirectly connected to the handle 41 a via the support rod 41 ax and directly connected to the front fork 17. In the present embodiment, the third portion 53 is an elastic body, and more specifically, a coil spring. When the user turns the handle 41 a to the right or to the left, the right- or left-directed force applied by the user to the handle 41 a is transmitted to the front fork 17 via the connection portion 50. That is, the user can apply a rightward or leftward force to the front fork 17 and thus to the front wheel 12F by operating the handle 41a. When the steering motor 65 is controlled in the allowable mode, the direction D12 of the front wheel 12F may change in an unintended direction (ie, the wheel angle AF may differ from the intended angle). In this case, the user can correct the orientation of the front wheel 12F (ie, the wheel angle AF) by operating the steering wheel 41a. This can improve the running stability. For example, when the wheel angle AF changes in accordance with external factors such as road surface irregularities, the user can correct the wheel angle AF by operating the steering wheel 41a.
 接続部50は、ハンドル41aと前フォーク17とを緩く接続する。例えば、接続部50の第3部分53のバネ定数は、十分に小さい値に設定されている。このような接続部50は、操舵モータ65のトルクが小さい場合に、ハンドル41aに入力されるハンドル角に拘わらずに、前輪12Fが車体90の傾斜の変化に追随して車体90に対して左右に回動することを、許容する。従って、車輪角AFは傾斜角Tに適した角度に変化できるので、走行安定性が向上する。 The connection portion 50 loosely connects the handle 41 a and the front fork 17. For example, the spring constant of the third portion 53 of the connection portion 50 is set to a sufficiently small value. In such a connecting portion 50, when the torque of the steering motor 65 is small, the front wheels 12F follow the change in the inclination of the vehicle body 90 and thereby the left and right with respect to the vehicle body 90 regardless of the steering wheel angle input to the steering wheel 41a Allow to rotate to Therefore, since the wheel angle AF can be changed to an angle suitable for the inclination angle T, the traveling stability is improved.
 接続部50が、緩い接続を実現する場合、すなわち、前輪12Fの上記のような回動を許容する場合、車両10は、以下のように動作し得る。例えば、ハンドル41aが左方向に回動される場合であっても、車体90が右方向に傾斜する場合には、前輪12Fは、右方向に回動し得る。また、アスファルト舗装された平らで乾燥した道路上に車両10が停止している状態で、ハンドル41aを右と左とに回動させる場合に、ハンドル角と車輪角AFとの一対一の関係は維持されない。ハンドル41aに印加される力は、接続部50を介して、前フォーク17に伝達されるので、車輪角AFは、ハンドル角の変化に応じて、変化し得る。ただし、ハンドル角が1つの特定の値になるようにハンドル41aの向きが調整された時の車輪角AFは、1つの値に固定されず、変化し得る。例えば、ハンドル41aと前輪12Fとの両方が直進方向を向く状態で、ハンドル41aが右方向に回動される。これにより、前輪12Fは、右を向く。この後に、ハンドル41aが再び直進方向に戻される。ここで、前輪12Fは、直進方向を向かず、右を向いた状態に、維持され得る。また、ハンドル41aを右または左に回動させたとしても、車両10は、ハンドル41aの方向に旋回できない場合がある。また、車両10が停止している場合には、車両10が走行している場合と比べて、ハンドル角の変化量に対する車輪角AFの変化量の割合が小さい場合がある。 If the connection 50 realizes a loose connection, that is, if the above-described pivoting of the front wheel 12F is permitted, the vehicle 10 may operate as follows. For example, even when the handle 41a is pivoted to the left, when the vehicle body 90 is inclined to the right, the front wheel 12F can pivot to the right. Moreover, in the state where the vehicle 10 is stopped on a flat and dry road which is asphalt-paved, when the steering wheel 41a is turned to the right and left, the one-to-one relationship between the steering wheel angle and the wheel angle AF is Not maintained. The force applied to the handle 41a is transmitted to the front fork 17 via the connection 50, so that the wheel angle AF may change in response to a change in the steering wheel angle. However, when the orientation of the steering wheel 41a is adjusted such that the steering wheel angle becomes one specific value, the wheel angle AF is not fixed to one value and may change. For example, the steering wheel 41a is turned to the right while both the steering wheel 41a and the front wheel 12F are in the linear direction. Thereby, the front wheel 12F turns to the right. After this, the handle 41a is returned to the straight ahead direction again. Here, the front wheel 12F can be maintained in a state in which it does not go straight ahead, but faces right. In addition, even if the steering wheel 41a is turned to the right or to the left, the vehicle 10 may not be able to turn in the direction of the steering wheel 41a. When the vehicle 10 is stopped, the ratio of the change amount of the wheel angle AF to the change amount of the steering wheel angle may be smaller than when the vehicle 10 is traveling.
 また、前輪12Fの方向D12がハンドル角に対応付けられた適切な方向である場合、接続部50によって前フォーク17に付与されるトルクは、ゼロである。前輪12Fの方向D12がハンドル角に対応付けられた適切な方向からずれた場合、接続部50は、前輪12Fの方向D12のずれを抑制するトルクを、前フォーク17に付与する。このように、接続部50は、ハンドル角を用いて特定される方向からの前フォーク17の回動に対する抵抗トルクを生成する抵抗トルク生成部の例である。 Further, when the direction D12 of the front wheel 12F is an appropriate direction associated with the steering wheel angle, the torque applied to the front fork 17 by the connecting portion 50 is zero. When the direction D12 of the front wheel 12F deviates from the appropriate direction associated with the steering wheel angle, the connection unit 50 applies a torque that suppresses the deviation of the direction D12 of the front wheel 12F to the front fork 17. Thus, the connection unit 50 is an example of a resistance torque generation unit that generates a resistance torque for the rotation of the front fork 17 from the direction specified using the steering wheel angle.
A2.車両10の制御:
 図11は、車両10の制御に関する構成を示すブロック図である。車両10は、制御に関する構成として、車速センサ122と、ハンドル角センサ123と、車輪角センサ124と、制御角センサ125と、鉛直方向センサ126と、軸トルクセンサ127と、アクセルペダルセンサ145と、ブレーキペダルセンサ146と、シフトスイッチ47と、制御装置110と、右電気モータ51Rと、左電気モータ51Lと、リーンモータ25と、操舵モータ65と、を有している。
A2. Control of Vehicle 10:
FIG. 11 is a block diagram showing a configuration regarding control of the vehicle 10. As shown in FIG. The vehicle 10 has a vehicle speed sensor 122, a steering wheel angle sensor 123, a wheel angle sensor 124, a control angle sensor 125, a vertical direction sensor 126, an axial torque sensor 127, and an accelerator pedal sensor 145 as components related to control. A brake pedal sensor 146, a shift switch 47, a control device 110, a right electric motor 51R, a left electric motor 51L, a lean motor 25, and a steering motor 65 are provided.
 車速センサ122は、車両10の車速を検出するセンサである。本実施例では、車速センサ122は、前フォーク17(図1)の下端に取り付けられており、前輪12Fの回転速度、すなわち、車速を検出する。 The vehicle speed sensor 122 is a sensor that detects the vehicle speed of the vehicle 10. In the present embodiment, the vehicle speed sensor 122 is attached to the lower end of the front fork 17 (FIG. 1), and detects the rotational speed of the front wheel 12F, that is, the vehicle speed.
 ハンドル角センサ123は、ハンドル41aの向き(すなわち、ハンドル角)を検出するセンサである。本実施例では、ハンドル角センサ123は、ハンドル41a(図1)に固定された支持棒41axに取り付けられている。 The steering wheel angle sensor 123 is a sensor that detects the orientation of the steering wheel 41a (ie, the steering wheel angle). In the present embodiment, the handle angle sensor 123 is attached to a support bar 41 ax fixed to the handle 41 a (FIG. 1).
 車輪角センサ124は、前輪12Fの車輪角AFを検出するセンサである。本実施例では、車輪角センサ124は、操舵モータ65(図1)に取り付けられている。 The wheel angle sensor 124 is a sensor that detects the wheel angle AF of the front wheel 12F. In the present embodiment, the wheel angle sensor 124 is attached to the steering motor 65 (FIG. 1).
 制御角センサ125は、制御角Tcを検出するセンサである。制御角センサ125は、リーンモータ25に取り付けられている(図4)。 The control angle sensor 125 is a sensor that detects the control angle Tc. The control angle sensor 125 is attached to the lean motor 25 (FIG. 4).
 鉛直方向センサ126は、鉛直下方向DDを特定するセンサである。本実施例では、鉛直方向センサ126は、加速度センサ126aと、ジャイロセンサ126gと、制御部126cと、を含んでいる。 The vertical direction sensor 126 is a sensor that specifies the vertically downward direction DD. In the present embodiment, the vertical direction sensor 126 includes an acceleration sensor 126a, a gyro sensor 126g, and a control unit 126c.
 加速度センサは、任意の方向の加速度を検出するセンサであり、例えば、3軸の加速度センサである。以下、加速度センサ126aによって検出される加速度の方向を、検出方向と呼ぶ。車両10が停止している状態では、検出方向は、鉛直下方向DDと同じである。すなわち、検出方向の反対の方向が、鉛直上方向DUである。 The acceleration sensor is a sensor that detects acceleration in any direction, and is, for example, a three-axis acceleration sensor. Hereinafter, the direction of acceleration detected by the acceleration sensor 126a is referred to as a detection direction. In the state where the vehicle 10 is stopped, the detection direction is the same as the vertically downward direction DD. That is, the direction opposite to the detection direction is the vertically upward direction DU.
 ジャイロセンサ126gは、任意の方向の回転軸を中心とする角加速度を検出するセンサであり、例えば、3軸の角加速度センサである。 The gyro sensor 126g is a sensor that detects an angular acceleration centered on a rotation axis in an arbitrary direction, and is, for example, a three-axis angular acceleration sensor.
 制御部126cは、加速度センサ126aからの信号とジャイロセンサ126gからの信号とを用いて鉛直下方向DDを特定する装置である。制御部126cは、例えば、コンピュータを含むデータ処理装置である。 The control unit 126c is a device that specifies the vertically downward direction DD using the signal from the acceleration sensor 126a and the signal from the gyro sensor 126g. The control unit 126c is, for example, a data processing apparatus including a computer.
 加速度センサ126aとジャイロセンサ126gとは、車両10の種々の部材に固定されてよい。例えば、加速度センサ126aとジャイロセンサ126gは、同じ部材に固定される。図1の実施例では、加速度センサ126aとジャイロセンサ126g、ひいては、鉛直方向センサ126は、本体部20の後部20cに固定されている。 The acceleration sensor 126 a and the gyro sensor 126 g may be fixed to various members of the vehicle 10. For example, the acceleration sensor 126a and the gyro sensor 126g are fixed to the same member. In the embodiment of FIG. 1, the acceleration sensor 126 a and the gyro sensor 126 g and hence the vertical direction sensor 126 are fixed to the rear portion 20 c of the main body 20.
 車両10の走行時には、検出方向は、車両10の動きに応じて、鉛直下方向DDからずれ得る。例えば、車両10が前進中に加速する場合、検出方向は、鉛直下方向DDに対して後方向DB側に傾斜する方向に、ずれる。車両10が前進中に減速する場合、検出方向は、鉛直下方向DDに対して前方向DF側に傾斜する方向に、ずれる。車両10が前進中に左方向に旋回する場合、検出方向は、鉛直下方向DDに対して右方向DR側に傾斜する方向に、ずれる。車両10が前進中に右方向に旋回する場合、検出方向は、鉛直下方向DDに対して左方向DL側に傾斜する方向に、ずれる。 When the vehicle 10 travels, the detection direction may be offset from the vertically downward direction DD according to the movement of the vehicle 10. For example, when the vehicle 10 accelerates while moving forward, the detection direction is shifted in the direction to lean backward DB with respect to the vertically downward direction DD. When the vehicle 10 decelerates during forward travel, the detection direction is shifted in a direction in which it leans forward with respect to the vertically downward direction DD. When the vehicle 10 turns to the left during forward movement, the detection direction is shifted in the direction inclined to the right direction DR with respect to the vertically downward direction DD. When the vehicle 10 turns to the right during forward movement, the detection direction is shifted in the direction to lean to the left direction DL with respect to the vertically downward direction DD.
 鉛直方向センサ126の制御部126cは、車速センサ122によって特定される車速Vを用いることによって、車両10の加速度を算出する。そして、制御部126cは、加速度を用いることによって、車両10の加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の前方向DFまたは後方向DBのずれが特定される)。また、制御部126cは、ジャイロセンサ126gによって特定される角加速度を用いることによって、車両10の角加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の右方向DRまたは左方向DLのずれが、特定される)。制御部126cは、特定されたずれを用いて検出方向を修正することによって、鉛直下方向DDを特定する。このように鉛直方向センサ126は、車両10の種々の走行状態において、適切な鉛直下方向DDを特定できる。 The control unit 126 c of the vertical direction sensor 126 calculates the acceleration of the vehicle 10 by using the vehicle speed V specified by the vehicle speed sensor 122. Then, the control unit 126c specifies the deviation of the detection direction with respect to the vertically downward direction DD due to the acceleration of the vehicle 10 by using the acceleration (for example, the deviation of the forward direction DF or the backward direction DB of the detection direction is specified) ). Further, the control unit 126c specifies the deviation of the detection direction with respect to the vertically downward direction DD caused by the angular acceleration of the vehicle 10 by using the angular acceleration specified by the gyro sensor 126g (for example, right direction DR of the detection direction). Or a shift in the left direction DL is identified). The control unit 126c identifies the vertically downward direction DD by correcting the detection direction using the identified deviation. Thus, the vertical direction sensor 126 can specify an appropriate vertically downward direction DD in various traveling states of the vehicle 10.
 制御部126cは、特定した鉛直下方向DDを示す鉛直下方向情報を、出力する。鉛直下方向情報は、鉛直方向センサ126の予め決められた基準方向に対する鉛直下方向DDを示している。本実施例では、鉛直方向センサ126は、車体90(具体的には、本体部20)に固定されている。従って、車体90の車両上方向DVUと、鉛直方向センサ126の基準方向と、の間の対応関係は、予め決められている(センサ方向関係と呼ぶ)。このセンサ方向関係を用いることによって、鉛直下方向情報によって示される鉛直下方向DDを、車体90の車両上方向DVUに対する鉛直下方向DDに、変換できる。 The control unit 126c outputs vertically downward information indicating the specified vertically downward direction DD. The vertically downward direction information indicates a vertically downward direction DD with respect to a predetermined reference direction of the vertical direction sensor 126. In the present embodiment, the vertical direction sensor 126 is fixed to the vehicle body 90 (specifically, the main body portion 20). Therefore, the correspondence between the vehicle upward direction DVU of the vehicle body 90 and the reference direction of the vertical direction sensor 126 is determined in advance (referred to as a sensor direction relationship). By using this sensor direction relation, the vertically downward direction DD indicated by the vertically downward direction information can be converted into the vertically downward direction DD with respect to the upward direction DVU of the vehicle body 90.
 軸トルクセンサ127(図11)は、前フォーク17に作用する回動軸Ax1を中心とするトルクを測定する装置である。本実施例では、軸トルクセンサ127は、接続部50の第3部分53に取り付けられている。軸トルクセンサ127は、ハンドル41aと前フォーク17との間に作用するトルクを測定する。軸トルクセンサ127の構成は、種々の構成であってよい。例えば、軸トルクセンサ127は、第3部分53に固定された歪みゲージであってよい。また、軸トルクセンサ127は、バネ式のトルクセンサであってよい。 The axial torque sensor 127 (FIG. 11) is a device that measures torque centered on the pivot axis Ax1 acting on the front fork 17. In the present embodiment, the axial torque sensor 127 is attached to the third portion 53 of the connection portion 50. The axial torque sensor 127 measures the torque acting between the handle 41 a and the front fork 17. The configuration of the shaft torque sensor 127 may be various configurations. For example, the axial torque sensor 127 may be a strain gauge fixed to the third portion 53. Further, the shaft torque sensor 127 may be a spring type torque sensor.
 アクセルペダルセンサ145は、アクセルペダル45(図1)に取り付けられており、アクセル操作量を検出する。ブレーキペダルセンサ146は、ブレーキペダル46(図1)に取り付けられており、ブレーキ操作量を検出する。 An accelerator pedal sensor 145 is attached to the accelerator pedal 45 (FIG. 1) and detects an accelerator operation amount. The brake pedal sensor 146 is attached to the brake pedal 46 (FIG. 1) and detects the amount of brake operation.
 各センサ122、123、124、125、145、146は、例えば、レゾルバ、または、エンコーダを用いて構成されている。 Each sensor 122, 123, 124, 125, 145, 146 is configured using, for example, a resolver or an encoder.
 制御装置110は、主制御部100と、駆動装置制御部101と、リーンモータ制御部102と、操舵モータ制御部103と、を有している。制御装置110は、バッテリ120(図1)からの電力を用いて動作する。本実施例では、制御部100、101、102、103は、それぞれ、コンピュータを有している。具体的には、制御部100、101、102、103は、プロセッサ100p、101p、102p、103p(例えば、CPU)と、揮発性記憶装置100v、101v、102v、103v(例えば、DRAM)と、不揮発性記憶装置100n、101n、102n、103n(例えば、フラッシュメモリ)と、を有している。不揮発性記憶装置100n、101n、102n、103nには、対応する制御部100、101、102、103の動作のためのプログラムが、予め格納されている(図示省略)。また、主制御部100の不揮発性記憶装置100nには、後述する処理で参照されるマップを表すマップデータMT、MAFが、予め格納されている。マップデータMxは、後述する別の実施例で用いられる。プロセッサ100p、101p、102p、103pは、それぞれ、対応するプログラムを実行することによって、種々の処理を実行する。 The control device 110 includes a main control unit 100, a drive device control unit 101, a lean motor control unit 102, and a steering motor control unit 103. Control device 110 operates using power from battery 120 (FIG. 1). In the present embodiment, the control units 100, 101, 102, and 103 each have a computer. Specifically, the control units 100, 101, 102, and 103 include processors 100p, 101p, 102p, and 103p (for example, CPUs), volatile storage devices 100v, 101v, 102v, and 103v (for example, DRAMs), and non-volatiles. Memory storage 100n, 101n, 102n, 103n (for example, flash memory). Programs for operations of the corresponding control units 100, 101, 102, and 103 are stored in advance in the non-volatile storage devices 100n, 101n, 102n, and 103n (not shown). Further, in the non-volatile storage device 100n of the main control unit 100, map data MT and MAF representing a map referred to in the processing described later are stored in advance. The map data Mx is used in another embodiment described later. The processors 100p, 101p, 102p, and 103p execute various processes by executing corresponding programs.
 主制御部100のプロセッサ100pは、センサ122、123、124、125、126、127、145、146とシフトスイッチ47とからの信号を受信し、受信した信号に応じて車両10を制御する。具体的には、主制御部100のプロセッサ100pは、駆動装置制御部101とリーンモータ制御部102と操舵モータ制御部103とに指示を出力することによって、車両10を制御する(詳細は後述)。 The processor 100 p of the main control unit 100 receives signals from the sensors 122, 123, 124, 125, 126, 127, 145, 146 and the shift switch 47, and controls the vehicle 10 according to the received signals. Specifically, the processor 100p of the main control unit 100 controls the vehicle 10 by outputting an instruction to the drive device control unit 101, the lean motor control unit 102, and the steering motor control unit 103 (details will be described later) .
 駆動装置制御部101のプロセッサ101pは、主制御部100からの指示に従って、電気モータ51L、51Rを制御する。リーンモータ制御部102のプロセッサ102pは、主制御部100からの指示に従って、リーンモータ25を制御する。操舵モータ制御部103のプロセッサ103pは、主制御部100からの指示に従って、操舵モータ65を制御する。これらの制御部101、102、103は、それぞれ、制御対象のモータ51L、51R、25、65にバッテリ120からの電力を供給する電気回路101c、102c、103c(例えば、インバータ回路)を有している。 The processor 101 p of the drive control unit 101 controls the electric motors 51 L and 51 R in accordance with an instruction from the main control unit 100. The processor 102 p of the lean motor control unit 102 controls the lean motor 25 in accordance with an instruction from the main control unit 100. The processor 103 p of the steering motor control unit 103 controls the steering motor 65 in accordance with an instruction from the main control unit 100. These control units 101, 102, and 103 have electric circuits 101c, 102c, and 103c (for example, inverter circuits) for supplying electric power from the battery 120 to the motors 51L, 51R, 25, and 65 to be controlled, respectively. There is.
 以下、制御部100、101、102、103のプロセッサ100p、101p、102p、103pが処理を実行することを、単に、制御部100、101、102、103が処理を実行する、とも表現する。 Hereinafter, the execution of processing by the processors 100p, 101p, 102p, and 103p of the control units 100, 101, 102, and 103 will be expressed simply as that the control units 100, 101, 102, and 103 execute processing.
 図12は、制御装置110(図11)によって実行される制御処理の例を示すフローチャートである。図12のフローチャートは、後輪支持部80と前輪支持装置41との制御の手順を示している。図12では、各処理に、文字「S」と、文字「S」に続く数字と、を組み合わせた符号が、付されている。 FIG. 12 is a flowchart showing an example of control processing executed by the control device 110 (FIG. 11). The flowchart of FIG. 12 shows the procedure of control of the rear wheel support 80 and the front wheel support device 41. In FIG. 12, a code combining the character “S” and the numeral following the character “S” is attached to each process.
 S100では、主制御部100は、センサ122、123、124、125、126、127、145、146とシフトスイッチ47とからの信号を取得する。そして、主制御部100は、速度Vとハンドル角と車輪角AFと制御角Tcと鉛直下方向DDとアクセル操作量とブレーキ操作量と走行モードとを、特定する。 In S100, the main control unit 100 acquires signals from the sensors 122, 123, 124, 125, 126, 127, 145, 146 and the shift switch 47. Then, the main control unit 100 specifies the velocity V, the steering wheel angle, the wheel angle AF, the control angle Tc, the vertically downward direction DD, the accelerator operation amount, the brake operation amount, and the traveling mode.
 S110では、主制御部100は、「走行モードが「リバース」と「パーキング」とのいずれかである」という条件が満たされるか否かを判断する。走行モードが「リバース」と「パーキング」とのいずれとも異なる場合(ここでは、走行モードが「ドライブ」と「ニュートラル」とのいずれかである場合)、S110の判断結果は、Noである。この場合、主制御部100は、S130へ移行する。S110の判断結果がNoであることは、通常は、車両10が前進していることを、示している。 In S110, main control unit 100 determines whether or not the condition that "the travel mode is any one of" reverse "and" parking "is satisfied. If the traveling mode is different from either "reverse" or "parking" (here, if the traveling mode is either "drive" or "neutral"), the determination result of S110 is No. In this case, the main control unit 100 proceeds to S130. Generally, the determination result of S110 being No indicates that the vehicle 10 is moving forward.
 ここで、S130の概略について説明する。S130では、主制御部100は、ハンドル角に対応付けられた第1目標傾斜角T1を特定する。第1目標傾斜角T1は、傾斜角Tの目標値を示している。本実施例では、第1目標傾斜角T1は、ハンドル角と車速Vとを用いて特定される。ハンドル角と車速Vと第1目標傾斜角T1との対応関係は、主制御部100の不揮発性記憶装置100nに格納されているマップデータMTによって、予め、決められている。主制御部100は、このマップデータMTを参照することによって、ハンドル角と車速Vとの組み合わせに対応する第1目標傾斜角T1を特定する。本実施例では、車速Vが一定である場合には、ハンドル角の絶対値が大きいほど、第1目標傾斜角T1の絶対値が大きい。これにより、ハンドル角の絶対値が大きいほど旋回半径Rが小さくなるので、車両10は、ハンドル角に適した旋回半径Rで、旋回できる。ここで、第1目標傾斜角T1は、ハンドル角が一定である場合には、車速Vに拘わらずに旋回半径Rを一定値に維持するような角度に、決定されてよい。ただし、上記の式6によれば、旋回半径Rが一定値に維持されるという条件下においては、車速Vが速い場合には、傾斜角Tは大幅に大きくなる。このように車速Vが速く、かつ、傾斜角Tが大きい状態で、傾斜角Tが急に変化すると、車両10の走行安定性が低下し得る。そこで、ハンドル角が一定である場合には、車速Vの増大に応じて旋回半径Rが大きくなるように、第1目標傾斜角T1が決定されてもよい。マップデータMTは、以上説明したハンドル角と車速Vと第1目標傾斜角T1との対応関係を、定めている。なお、第1目標傾斜角T1の特定に用いられる情報は、ハンドル角と車速Vとの組み合わせに限らず、ハンドル角を含む任意の情報であってよい。 Here, an outline of S130 will be described. In S130, the main control unit 100 specifies a first target inclination angle T1 associated with the steering wheel angle. The first target inclination angle T1 indicates a target value of the inclination angle T. In the present embodiment, the first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V. The correspondence relationship between the steering wheel angle, the vehicle speed V, and the first target inclination angle T1 is determined in advance by the map data MT stored in the non-volatile storage device 100n of the main control unit 100. The main control unit 100 specifies the first target inclination angle T1 corresponding to the combination of the steering wheel angle and the vehicle speed V by referring to the map data MT. In the present embodiment, when the vehicle speed V is constant, the absolute value of the first target inclination angle T1 is larger as the absolute value of the steering wheel angle is larger. Thus, the turning radius R decreases as the absolute value of the steering wheel angle increases, so the vehicle 10 can turn at a turning radius R suitable for the steering wheel angle. Here, the first target inclination angle T1 may be determined to maintain the turning radius R at a constant value regardless of the vehicle speed V when the steering wheel angle is constant. However, according to the above equation 6, under the condition that the turning radius R is maintained at a constant value, when the vehicle speed V is fast, the inclination angle T becomes significantly large. As described above, when the inclination angle T is suddenly changed while the vehicle speed V is high and the inclination angle T is large, the traveling stability of the vehicle 10 may be reduced. Therefore, when the steering wheel angle is constant, the first target inclination angle T1 may be determined such that the turning radius R becomes larger as the vehicle speed V increases. The map data MT defines the correspondence between the steering wheel angle, the vehicle speed V, and the first target inclination angle T1 described above. The information used to specify the first target inclination angle T1 is not limited to the combination of the steering wheel angle and the vehicle speed V, and may be any information including the steering wheel angle.
 上述したように、式6は、傾斜角Tと速度Vと旋回半径Rとの対応関係を示し、式7は、旋回半径Rと車輪角AFとの対応関係を示している。これらの式6、7を総合すれば、傾斜角Tと速度Vと車輪角AFとの対応関係が特定される。ハンドル角と第1目標傾斜角T1との対応関係は、傾斜角Tと速度Vと車輪角AFとの対応関係を通じて、ハンドル角と車輪角AFとを対応付けている、ということができる(ここで、車輪角AFは、速度Vに依存して変化し得る)。 As described above, the equation 6 shows the correspondence between the inclination angle T, the velocity V and the turning radius R, and the equation 7 shows the correspondence between the turning radius R and the wheel angle AF. By combining these equations 6 and 7, the correspondence relationship between the inclination angle T, the speed V and the wheel angle AF is specified. The correspondence relation between the steering wheel angle and the first target inclination angle T1 can be said to correspond to the steering wheel angle and the wheel angle AF through the correspondence relation between the inclination angle T, the speed V and the wheel angle AF (here And the wheel angle AF may vary depending on the speed V).
 主制御部100(図11)は、傾斜角Tが第1目標傾斜角T1となるようにリーンモータ25を制御するための指示を、リーンモータ制御部102に供給する。リーンモータ制御部102は、指示に従って、傾斜角Tが第1目標傾斜角T1になるように、リーンモータ25を駆動する。これにより、車両10の傾斜角Tが、ハンドル角に対応付けられた第1目標傾斜角T1に、変更される。本実施例では、リーンモータ制御部102は、傾斜角Tと第1目標傾斜角T1との差を用いるリーンモータ25のフィードバック制御を行う。例えば、いわゆるPID(Proportional Integral Derivative)制御が行われる。主制御部100とリーンモータ制御部102との全体は、リンク機構30とリーンモータ25とを制御する傾斜制御部として、機能する(傾斜制御部190とも呼ぶ)。 The main control unit 100 (FIG. 11) supplies the lean motor control unit 102 with an instruction for controlling the lean motor 25 such that the inclination angle T becomes the first target inclination angle T1. In accordance with the instruction, the lean motor control unit 102 drives the lean motor 25 such that the inclination angle T becomes the first target inclination angle T1. Thereby, the inclination angle T of the vehicle 10 is changed to the first target inclination angle T1 associated with the steering wheel angle. In the present embodiment, the lean motor control unit 102 performs feedback control of the lean motor 25 using the difference between the inclination angle T and the first target inclination angle T1. For example, so-called PID (Proportional Integral Derivative) control is performed. The entire main control unit 100 and the lean motor control unit 102 function as a tilt control unit that controls the link mechanism 30 and the lean motor 25 (also referred to as a tilt control unit 190).
 また、S130では、傾斜制御部190は、車両10の進行方向の目標の方向からのずれを抑制するための制御を行う。S130の詳細については、後述する。 Further, in S130, the tilt control unit 190 performs control for suppressing the deviation of the traveling direction of the vehicle 10 from the direction of the target. Details of S130 will be described later.
 S140では、制御装置110は、前輪支持装置41を制御する処理を、実行する。具体的には、主制御部100は、ハンドル角と車速Vとを用いて、第1目標車輪角AFt1を決定する。第1目標車輪角AFt1とハンドル角と車速Vとの対応関係を表す情報は、主制御部100(図11)の不揮発性記憶装置100nに格納されているマップデータMAFによって、予め、決められている。主制御部100は、このマップデータMAFを参照し、ハンドル角と車速Vとの組み合わせに対応する第1目標車輪角AFt1を特定する。 At S140, control device 110 executes a process of controlling front wheel support device 41. Specifically, the main control unit 100 determines the first target wheel angle AFt1 using the steering wheel angle and the vehicle speed V. Information indicating the correspondence between the first target wheel angle AFt1, the steering wheel angle, and the vehicle speed V is determined in advance by map data MAF stored in the non-volatile storage device 100n of the main control unit 100 (FIG. 11) There is. The main control unit 100 specifies a first target wheel angle AFt1 corresponding to the combination of the steering wheel angle and the vehicle speed V with reference to the map data MAF.
 本実施例では、ハンドル角と車速Vと第1目標車輪角AFt1との対応関係は、図12のS130でハンドル角を用いて特定される第1目標傾斜角T1と、車速Vと、上記の式6、式7とを用いて特定される車輪角AFと、の対応関係と同じである。従って、同じ第1目標車輪角AFt1は、第1目標傾斜角T1と車速Vとを用いて、特定可能である。例えば、マップデータMAFは、第1目標傾斜角T1と車速Vとの組み合わせと、第1目標車輪角AFt1と、の対応関係を規定してよい。そして、主制御部100は、第1目標傾斜角T1と車速Vとを用いて、第1目標車輪角AFt1を特定してよい。 In the present embodiment, the correspondence relationship between the steering wheel angle, the vehicle speed V, and the first target wheel angle AFt1 is the first target inclination angle T1 identified using the steering wheel angle in S130 of FIG. It is the same as the corresponding relationship with the wheel angle AF specified using Equation 6 and Equation 7. Therefore, the same first target wheel angle AFt1 can be identified using the first target inclination angle T1 and the vehicle speed V. For example, the map data MAF may define the correspondence between the combination of the first target inclination angle T1 and the vehicle speed V and the first target wheel angle AFt1. Then, the main control unit 100 may specify the first target wheel angle AFt1 using the first target inclination angle T1 and the vehicle speed V.
 主制御部100は、車輪角AFが第1目標車輪角AFt1となるように操舵モータ65を制御するための指示を、操舵モータ制御部103に供給する。操舵モータ制御部103は、指示に従って、車輪角AFが第1目標車輪角AFt1になるように、操舵モータ65を駆動する。これにより、前輪12Fの車輪角AFが、ハンドル角に適した第1目標車輪角AFt1に、変更される。本実施例では、操舵モータ制御部103は、車輪角AFと第1目標車輪角AFt1との差を用いる操舵モータ65のフィードバック制御を行う。例えば、いわゆるPID(Proportional Integral Derivative)制御が行われる。主制御部100と操舵モータ制御部103との全体は、操舵モータ65のトルクを制御する回動制御部として、機能する(回動制御部170とも呼ぶ)。 The main control unit 100 supplies the steering motor control unit 103 with an instruction for controlling the steering motor 65 so that the wheel angle AF becomes the first target wheel angle AFt1. The steering motor control unit 103 drives the steering motor 65 according to the instruction so that the wheel angle AF becomes the first target wheel angle AFt1. Thereby, the wheel angle AF of the front wheel 12F is changed to the first target wheel angle AFt1 suitable for the steering wheel angle. In the present embodiment, the steering motor control unit 103 performs feedback control of the steering motor 65 using the difference between the wheel angle AF and the first target wheel angle AFt1. For example, so-called PID (Proportional Integral Derivative) control is performed. The entire main control unit 100 and the steering motor control unit 103 function as a rotation control unit that controls the torque of the steering motor 65 (also referred to as a rotation control unit 170).
 また、図9、図10等で説明したように、前輪12Fの進行方向D12は、自然に、車体90の傾斜方向に回動し得る。特に、車速Vが速い場合には、前輪12Fの方向D12(すなわち、車輪角AF)は、車体90の傾斜に追随して容易に変化できる。そこで、本実施例では、操舵モータ制御部103は、車速Vが速い場合には、許容モードで操舵モータ65を制御する。許容モードでは、操舵モータ制御部103は、操舵モータ65のトルクを小さくすることによって、前輪12Fの方向D12がハンドル角とは独立に左右に回動することを、許容する。これにより、車速Vが速い場合には、前輪12Fの進行方向D12は、車体90の傾斜の変化に追随して変化できるので、車両の走行安定性を向上できる。また、車速Vが遅い場合には、操舵モータ制御部103は、制限モードで操舵モータ65を制御する。制限モードでは、操舵モータ制御部103は、操舵モータ65のトルクを大きくすることによって、前輪12Fの方向D12、すなわち、車輪角AFが、第1目標車輪角AFt1に近づくように、制御する。これにより、車両の走行安定性を向上できる。 Further, as described in FIGS. 9 and 10, etc., the traveling direction D12 of the front wheel 12F can naturally turn in the inclination direction of the vehicle body 90. In particular, when the vehicle speed V is high, the direction D12 of the front wheel 12F (ie, the wheel angle AF) can be easily changed following the inclination of the vehicle body 90. Thus, in the present embodiment, when the vehicle speed V is high, the steering motor control unit 103 controls the steering motor 65 in the allowable mode. In the allowable mode, the steering motor control unit 103 reduces the torque of the steering motor 65 to allow the direction D12 of the front wheel 12F to turn left and right independently of the steering wheel angle. Thereby, when the vehicle speed V is high, the traveling direction D12 of the front wheel 12F can be changed following the change of the inclination of the vehicle body 90, so that the traveling stability of the vehicle can be improved. When the vehicle speed V is low, the steering motor control unit 103 controls the steering motor 65 in the limit mode. In the limit mode, the steering motor control unit 103 performs control such that the direction D12 of the front wheel 12F, that is, the wheel angle AF approaches the first target wheel angle AFt1 by increasing the torque of the steering motor 65. Thereby, the running stability of the vehicle can be improved.
 操舵モータ65のトルクの制御方法は、種々の方法であってよい。例えば、操舵モータ制御部103は、PID制御のPゲインを、車速Vが速いほど小さくする。これにより、車速Vが速い場合に、操舵モータ65のトルクが小さくなる。許容モードによる制御が実行される車速Vの範囲である許容速度範囲は、種々の範囲であってよく、例えば、予め決められてよい。例えば、許容速度範囲の下限は、ゼロよりも大きい基準速度(例えば、時速20km)であってよい。許容速度範囲内での操舵モータ65のトルクは、ゼロであってよく、また、ゼロよりも大きい値であってよい。いずれの場合も、操舵モータ65のトルクは、車速Vの変化に対して滑らかに変化することが、好ましい。例えば、操舵モータ制御部103は、PID制御のPゲインを、車速Vに変化に対して滑らかに変化させることが、好ましい。 The control method of the torque of the steering motor 65 may be various methods. For example, the steering motor control unit 103 decreases the P gain of the PID control as the vehicle speed V increases. Thus, when the vehicle speed V is high, the torque of the steering motor 65 is reduced. The allowable speed range which is the range of the vehicle speed V at which the control according to the allowable mode is performed may be various ranges, and may be predetermined, for example. For example, the lower limit of the allowable speed range may be a reference speed greater than zero (e.g., 20 km per hour). The torque of the steering motor 65 within the allowable speed range may be zero or may be a value larger than zero. In any case, it is preferable that the torque of the steering motor 65 smoothly changes with the change of the vehicle speed V. For example, it is preferable that the steering motor control unit 103 smoothly change the P gain of the PID control with respect to the change in the vehicle speed V.
 なお、図1、図11の符号180は、前輪12Fを支持する回動輪支持部180を示している。回動輪支持部180は、前輪12Fを回転可能に支持する支持部材の例である前フォーク17と、前フォーク17を左右に回動可能に支持する軸受68と、前フォーク17を左右に回動させるアクチュエータの例である操舵モータ65と、操舵モータ65のトルクを制御する回動制御部170と、接続部50と、を含んでいる。 In addition, the code | symbol 180 of FIG. 1, FIG. 11 has shown the rotation wheel support part 180 which supports the front wheel 12F. The pivoting wheel support portion 180 pivots the front fork 17, which is an example of a support member that rotatably supports the front wheel 12 F, a bearing 68 that supports the front fork 17 so that it can pivot to the left and right, and It includes a steering motor 65, which is an example of an actuator to be driven, a rotation control unit 170 that controls the torque of the steering motor 65, and a connection unit 50.
 図12のS110で、「走行モードが「リバース」と「パーキング」とのいずれかである」という条件が満たされる場合(S110:Yes)、制御装置110は、S170、S180の処理を実行する。 In S110 of FIG. 12, when the condition “traveling mode is either“ reverse ”or“ parking ”is satisfied (S110: Yes), the control device 110 executes the processing of S170 and S180.
 S170の処理は、S130の処理と、同じである。傾斜角Tは、第1目標傾斜角T1に、制御される。S180の処理は、S140の制限モードの処理と同じである(車速Vに拘わらず、制限モードで操舵モータ65が制御される)。車輪角AFは、第1目標車輪角AFt1に、制御される。 The process of S170 is the same as the process of S130. The inclination angle T is controlled to the first target inclination angle T1. The process of S180 is the same as the process of the restriction mode of S140 (the steering motor 65 is controlled in the restriction mode regardless of the vehicle speed V). The wheel angle AF is controlled to the first target wheel angle AFt1.
 S130、S140、または、S170、S180の処理が実行されたことに応じて、図12の処理が終了する。制御装置110は、図12の処理を繰り返し実行する。このように、S130、S140、または、S170、S180の処理が、繰り返される。この結果、車両10は、ハンドル角に適した進行方向に向かって、走行する。 The process of FIG. 12 ends in response to the execution of the process of S130, S140, or S170, S180. The control device 110 repeatedly executes the process of FIG. Thus, the processing of S130, S140, or S170, S180 is repeated. As a result, the vehicle 10 travels in the traveling direction suitable for the steering wheel angle.
 図示を省略するが、主制御部100(図11)と駆動装置制御部101とは、アクセル操作量とブレーキ操作量とに応じて電気モータ51L、51Rを制御する駆動制御部として機能する。本実施例では、アクセル操作量が増大した場合には、主制御部100は、電気モータ51L、51Rの出力パワーを増大させるための指示を、駆動装置制御部101に供給する。駆動装置制御部101は、指示に従って、出力パワーが増大するように、電気モータ51L、51Rを制御する。アクセル操作量が減少した場合には、主制御部100は、電気モータ51L、51Rの出力パワーを減少させるための指示を、駆動装置制御部101に供給する。駆動装置制御部101は、指示に従って、出力パワーが減少するように、電気モータ51L、51Rを制御する。 Although not shown, the main control unit 100 (FIG. 11) and the drive device control unit 101 function as a drive control unit that controls the electric motors 51L and 51R according to the accelerator operation amount and the brake operation amount. In the present embodiment, when the accelerator operation amount increases, the main control unit 100 supplies the driving device control unit 101 with an instruction to increase the output power of the electric motors 51L, 51R. The drive control unit 101 controls the electric motors 51L and 51R to increase the output power according to the instruction. When the accelerator operation amount decreases, the main control unit 100 supplies the drive device control unit 101 with an instruction to reduce the output power of the electric motors 51L, 51R. The drive control unit 101 controls the electric motors 51L and 51R so that the output power decreases according to the instruction.
 ブレーキ操作量がゼロよりも大きくなった場合には、主制御部100は、電気モータ51L、51Rの出力パワーを減少させるための指示を、駆動装置制御部101に供給する。駆動装置制御部101は、指示に従って、出力パワーが減少するように、電気モータ51L、51Rを制御する。なお、車両10は、全ての車輪12F、12L、12Rのうちの少なくとも1つの車輪の回転速度を摩擦によって低減するブレーキ装置を有することが好ましい。そして、ユーザがブレーキペダル46を踏み込んだ場合に、ブレーキ装置が、少なくとも1つの車輪の回転速度を低減することが好ましい。 When the brake operation amount becomes larger than zero, the main control unit 100 supplies the drive device control unit 101 with an instruction to reduce the output power of the electric motors 51L, 51R. The drive control unit 101 controls the electric motors 51L and 51R so that the output power decreases according to the instruction. Preferably, the vehicle 10 has a brake device that frictionally reduces the rotational speed of at least one of all the wheels 12F, 12L, 12R. Then, when the user depresses the brake pedal 46, the brake device preferably reduces the rotational speed of at least one wheel.
A3.傾斜角Tの制御:
 図13は、傾斜制御(図12:S130)の例を示すフローチャートである。S500では、主制御部100(図11)は、S100(図12)で取得した情報を特定する。本実施例では、軸トルク、鉛直方向センサ126の検出方向、車速V、ハンドル角を示す情報が、それぞれ、特定される。主制御部100は、検出方向と上記のセンサ方向関係とを用いて、車体90に対する鉛直下方向DDを特定する。そして、主制御部100は、鉛直下方向DDの反対の方向である鉛直上方向DUと、車両上方向DVUと、の間の角度を、傾斜角Tとして算出する。
A3. Control of tilt angle T:
FIG. 13 is a flowchart showing an example of tilt control (FIG. 12: S130). In S500, the main control unit 100 (FIG. 11) specifies the information acquired in S100 (FIG. 12). In the present embodiment, information indicating the axial torque, the detection direction of the vertical direction sensor 126, the vehicle speed V, and the steering wheel angle is specified. The main control unit 100 specifies the vertically downward direction DD with respect to the vehicle body 90 using the detection direction and the above-described sensor direction relation. Then, the main control unit 100 calculates, as the inclination angle T, an angle between the vertically upward direction DU which is the opposite direction of the vertically downward direction DD, and the vehicle upward direction DVU.
 S510では、主制御部100は、ハンドル角と車速Vとを用いて第1目標傾斜角T1を特定する。そして、主制御部100は、傾斜角Tと第1目標傾斜角T1と軸トルクとのそれぞれを示す情報を、リーンモータ制御部102に供給する。 In S510, the main control unit 100 specifies the first target inclination angle T1 using the steering wheel angle and the vehicle speed V. Then, the main control unit 100 supplies the lean motor control unit 102 with information indicating each of the inclination angle T, the first target inclination angle T1, and the shaft torque.
 S530では、リーンモータ制御部102は、傾斜角Tと第1目標傾斜角T1とを用いて、リーンモータ25を制御するための制御値を決定する(標準制御値と呼ぶ)。制御値は、傾斜角Tを第1目標傾斜角T1に近づけるためにリーンモータ25に供給すべき電力を示している。制御値は、例えば、リーンモータ25に供給すべき電流の向きと大きさとを示している。このような制御値は、リーンモータ25のトルクの向きと大きさとを示している、ということができる。例えば、制御値の絶対値は、電流の大きさ(ひいては、トルクの大きさ)を示し、制御値の正負の符号は、電流の向き(ひいては、トルクの向き)を示している。リーンモータ制御部102は、例えば、傾斜角Tと第1目標傾斜角T1との差分を用いるPID制御によって、標準制御値を算出する。 In S530, the lean motor control unit 102 determines a control value for controlling the lean motor 25 using the inclination angle T and the first target inclination angle T1 (referred to as a standard control value). The control value indicates the power to be supplied to the lean motor 25 in order to bring the inclination angle T close to the first target inclination angle T1. The control value indicates, for example, the direction and magnitude of the current to be supplied to the lean motor 25. Such a control value can be said to indicate the direction and magnitude of the torque of the lean motor 25. For example, the absolute value of the control value indicates the magnitude of the current (thus, the magnitude of the torque), and the positive or negative sign of the control value indicates the direction of the current (thus, the direction of the torque). The lean motor control unit 102 calculates a standard control value, for example, by PID control using the difference between the inclination angle T and the first target inclination angle T1.
 S540では、リーンモータ制御部102は、軸トルクが、目標軸トルクと同じであるか否かを判断する。上述したように、車両10が安定して走行する場合、操舵モータ65の制御モードが制限モードと許容モードとのいずれであっても、前輪12Fの方向D12は、傾斜角Tに適した方向(目標方向とも呼ぶ)を向く。図13のS510で説明したように、傾斜角Tの第1目標傾斜角T1は、ハンドル角を用いて決定される。従って、前輪12Fの方向D12は、ハンドル角に適した方向である。これらの結果、前フォーク17に作用する軸トルクは、ゼロである。このように、目標軸トルクは、予め決められており、ゼロである。 In S540, the lean motor control unit 102 determines whether the shaft torque is the same as the target shaft torque. As described above, when the vehicle 10 travels stably, the direction D12 of the front wheel 12F is suitable for the inclination angle T regardless of whether the control mode of the steering motor 65 is either the limit mode or the permissible mode Turn to the target direction). As described in S510 of FIG. 13, the first target inclination angle T1 of the inclination angle T is determined using the steering wheel angle. Therefore, the direction D12 of the front wheel 12F is a direction suitable for the steering wheel angle. As a result of these, the axial torque acting on the front fork 17 is zero. Thus, the target shaft torque is predetermined and is zero.
 軸トルクが目標軸トルクと同じである場合(S540:Yes)、S570で、リーンモータ制御部102は、標準制御値に従って電気回路102cを制御することによって、リーンモータ25を制御する。これにより、傾斜角Tは、第1目標傾斜角T1に近づく。以上により、図13の処理が終了する。傾斜制御部190は、図13の処理を、繰り返し実行する。「軸トルク=目標軸トルク」という条件が満たされる場合(S540:Yes)、標準制御値に基づくリーンモータ25の制御が繰り返される。この結果、傾斜角Tは、第1目標傾斜角T1に維持される。 If the axial torque is the same as the target axial torque (S540: Yes), in S570, the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the standard control value. Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 13 ends. The tilt control unit 190 repeatedly executes the process of FIG. When the condition of “shaft torque = target shaft torque” is satisfied (S540: Yes), the control of the lean motor 25 based on the standard control value is repeated. As a result, the inclination angle T is maintained at the first target inclination angle T1.
 ところで、種々の原因によって、前輪12Fの方向D12は、目標方向からズレ得る。図14は、車両10の状態例を示す説明図である。図14(A)、図14(C)、図14(E)は、それぞれ、車両10の簡略化された背面図を示している。図14(B)、図14(D)、図14(F)は、図14(A)、図14(C)、図14(E)に対応する車両10の上面図を、それぞれ、示している。これらの図では、車両10は、水平な地面GL上を前進している。ハンドル角は、ゼロである。すなわち、前輪12Fの目標方向は、前方向DFである。そして、車両10は、左方向DLの風Wndを、受けている。 By the way, the direction D12 of the front wheel 12F may be shifted from the target direction due to various causes. FIG. 14 is an explanatory view showing a state example of the vehicle 10. As shown in FIG. FIGS. 14A, 14C, and 14E show simplified rear views of the vehicle 10, respectively. 14 (B), 14 (D) and 14 (F) show top views of the vehicle 10 corresponding to FIGS. 14 (A), 14 (C) and 14 (E), respectively. There is. In these figures, the vehicle 10 is advancing on the level ground GL. The handle angle is zero. That is, the target direction of the front wheel 12F is the forward direction DF. Then, the vehicle 10 receives the wind Wnd in the left direction DL.
 図14(A)、図14(B)は、参考例の車両10の状態を示している。図14(A)に示すように、車体90は、左方向DLの風Wndから受ける力によって、左方向DL側へ傾斜し得る。図9、図10で説明したように、車体90が左方向DL側へ傾斜する場合、前輪12Fの進行方向D12(図14(B))は、自然に、左方向DL側に回動し得る。 FIG. 14A and FIG. 14B show the state of the vehicle 10 of the reference example. As shown in FIG. 14 (A), the vehicle body 90 can be inclined to the left direction DL side by the force received from the wind Wnd in the left direction DL. As described in FIGS. 9 and 10, when the vehicle body 90 inclines in the left direction DL, the traveling direction D12 (FIG. 14B) of the front wheel 12F can naturally pivot in the left direction DL. .
 また、図14(B)に示すように、車体90は、風Wndから、左方向DLの力F9を受ける。この力F9によって、車体90は、左方向DL側へ移動しようとする。これにより、車輪12F、12L、12Rの接触中心P1、PbL、PbRは、地面GLから、右方向DRの力F9F、F9L、F9Rを、それぞれ受ける。ここで、前輪12Fの回動軸Ax1と地面との交点P2は、接触中心P1よりも、前方向DF側に位置している。従って、力F9Fに起因して、前輪12Fには、前輪12Fの方向D12を左方向DL側に回動させるトルクF9Tが、作用する。 Further, as shown in FIG. 14B, the vehicle body 90 receives a force F9 in the left direction DL from the wind Wnd. The force F9 causes the vehicle body 90 to move in the left direction DL. Thereby, the contact centers P1, PbL, PbR of the wheels 12F, 12L, 12R respectively receive forces F9F, F9L, F9R in the right direction DR from the ground GL. Here, an intersection point P2 between the rotation axis Ax1 of the front wheel 12F and the ground is located on the front direction DF side with respect to the contact center P1. Therefore, due to the force F9F, a torque F9T that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F.
 以上のように、前輪12Fの方向D12は、左方向DLの風Wndから受ける力によって、目標方向(ここでは、前方向DF)から左方向DL側へずれ得る。ハンドル角がゼロである場合、前輪12Fの方向D12は、ハンドル41aの方向である直進方向からずれているので、軸トルクの絶対値は、ゼロよりも大きくなる。そして、車両10は、左方向DL側へ流され得る。図14(G)は、開始位置SPから前方向DF側へ走行する車両10の軌跡の例を示している。図中の方向DF、DL、DR、DBは、開始位置SPでの車両10から見た方向を示している。第1軌跡Tr1は、参考例の車両10の軌跡である。図示するように、軌跡Tr1は、左方向DL側へ大きくずれている。 As described above, the direction D12 of the front wheel 12F can be shifted from the target direction (here, the forward direction DF) to the left direction DL side by the force received from the wind Wnd in the left direction DL. When the steering wheel angle is zero, the direction D12 of the front wheel 12F is deviated from the straight direction which is the direction of the steering wheel 41a, so the absolute value of the axial torque is larger than zero. Then, the vehicle 10 can be flowed to the left direction DL side. FIG. 14G shows an example of the trajectory of the vehicle 10 traveling from the start position SP toward the forward direction DF. Directions DF, DL, DR, and DB in the figure indicate directions as viewed from the vehicle 10 at the start position SP. The first trajectory Tr1 is a trajectory of the vehicle 10 of the reference example. As illustrated, the locus Tr1 is largely deviated to the left direction DL side.
 図14(C)、図14(D)は、第1目標傾斜角T1(図13:S510)に従って傾斜角Tが制御される場合の車両10の状態を示している。図14(C)中の目標方向DT1は、第1目標傾斜角T1によって示される車両上方向DVUの目標方向である。ハンドル角がゼロであるので、第1目標傾斜角T1はゼロであり、目標方向DT1は、鉛直上方向DUと同じである。リーンモータ25は、傾斜角Tが第1目標傾斜角T1となるように、制御される。従って、車両上方向DVUは、目標方向DT1、すなわち、鉛直上方向DUを、向いている。図14(A)の参考例とは異なり、車体90は、傾斜していない。従って、車体90の傾斜に起因する前輪12Fの方向D12の目標方向からのずれは、抑制される。 FIG. 14C and FIG. 14D show the state of the vehicle 10 when the inclination angle T is controlled in accordance with the first target inclination angle T1 (FIG. 13: S510). The target direction DT1 in FIG. 14 (C) is a target direction of the vehicle upward direction DVU indicated by the first target inclination angle T1. Since the steering wheel angle is zero, the first target inclination angle T1 is zero, and the target direction DT1 is the same as the vertically upward direction DU. The lean motor 25 is controlled such that the inclination angle T becomes the first target inclination angle T1. Therefore, the vehicle upward direction DVU is directed to the target direction DT1, that is, the vertically upward direction DU. Unlike the reference example of FIG. 14 (A), the vehicle body 90 is not inclined. Therefore, the deviation from the target direction of the direction D12 of the front wheel 12F due to the inclination of the vehicle body 90 is suppressed.
 ただし、図14(D)に示すように、前輪12Fには、図14(B)の参考例と同様に、トルクF9Tが作用する。これにより、前輪12Fの方向D12は、目標方向から左方向DL側へずれ得る。ハンドル角がゼロである場合、前輪12Fの方向D12は、ハンドル41aの方向である直進方向からずれているので、軸トルクの絶対値は、ゼロよりも大きくなる。図14(G)の第2軌跡Tr2は、図14(C)、図14(D)の車両10の軌跡である。軌跡Tr2は、左方向DL側へずれている。なお、第2軌跡Tr2のずれは、第1軌跡Tr1のずれよりも、小さい。 However, as shown in FIG. 14 (D), torque F9T acts on the front wheel 12F as in the reference example of FIG. 14 (B). Thereby, the direction D12 of the front wheel 12F may be shifted from the target direction to the left direction DL side. When the steering wheel angle is zero, the direction D12 of the front wheel 12F is deviated from the straight direction which is the direction of the steering wheel 41a, so the absolute value of the axial torque is larger than zero. The second locus Tr2 in FIG. 14 (G) is the locus of the vehicle 10 in FIGS. 14 (C) and 14 (D). The locus Tr2 is shifted to the left direction DL side. The deviation of the second locus Tr2 is smaller than the deviation of the first locus Tr1.
 図15は、車両10の別の状態例を示す説明図である。図15(A)、図15(C)、図15(E)は、それぞれ、車両10の簡略化された背面図を示している。図15(B)、図15(D)、図15(F)は、図15(A)、図15(C)、図15(E)に対応する車両10の上面図を、それぞれ、示している。これらの図では、車両10は、傾斜した地面GLx上を前進している(右側が高く、左側が低い)。ハンドル角は、ゼロである。すなわち、前輪12Fの目標方向は、前方向DFである。 FIG. 15 is an explanatory view showing another example of the state of the vehicle 10. FIGS. 15 (A), 15 (C) and 15 (E) show simplified rear views of the vehicle 10, respectively. 15 (B), 15 (D) and 15 (F) respectively show top views of the vehicle 10 corresponding to FIGS. 15 (A), 15 (C) and 15 (E). There is. In these figures, the vehicle 10 is moving forward on sloped ground GLx (high on the right and low on the left). The handle angle is zero. That is, the target direction of the front wheel 12F is the forward direction DF.
 図15(A)、図15(B)は、参考例の車両10の状態を示している。この状態では、制御角Tcはゼロであることとしている。仮に地面が水平であり、かつ、ハンドル角がゼロである場合には、ゼロの傾斜角Tが適切であり、ゼロの制御角Tcが適切である。ただし、図15(A)のように地面GLxが傾斜している場合には、ゼロの制御角Tcは適切ではなく、車両10は、左方向DL側に傾斜している。 FIG. 15A and FIG. 15B show the state of the vehicle 10 of the reference example. In this state, the control angle Tc is assumed to be zero. If the ground is horizontal and the steering wheel angle is zero, an inclination angle T of zero is appropriate and a control angle Tc of zero is appropriate. However, when the ground GLx is inclined as shown in FIG. 15A, the zero control angle Tc is not appropriate, and the vehicle 10 is inclined in the left direction DL.
 地面GLxが傾斜している場合、図15(B)に示すように、車体90に作用する重力は、地面GLxに平行な成分F8を含んでいる。力F8は、左方向DL側を向いている。この力F8によって、車体90は、左方向DL側へ移動しようとする。これにより、図14(B)の参考例と同様に、車輪12F、12L、12Rの接触中心P1、PbL、PbRは、地面GLから、地面GLxに平行に右方向DR側を向く力F8F、F8L、F8Rを、それぞれ受ける。そして、前輪12Fには、前輪12Fの方向D12を左方向DL側に回動させるトルクF8Tが、作用する。 When the ground GLx is inclined, as shown in FIG. 15B, the gravity acting on the vehicle body 90 includes a component F8 parallel to the ground GLx. The force F8 is directed to the left direction DL side. By the force F8, the vehicle body 90 tends to move to the left direction DL side. Thus, as in the reference example of FIG. 14B, the contact centers P1, PbL, PbR of the wheels 12F, 12L, 12R are forces F8F, F8L directed from the ground GL to the right direction DR parallel to the ground GLx. , F8R, respectively. A torque F8T that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F.
 このように、地面GLxが傾斜している場合には、前輪12Fの方向D12は、目標方向(ここでは、前方向DF)から左方向DL側へずれ得る。そして、図14(A)、図14(B)の参考例と同様に、軸トルクの絶対値は、ゼロよりも大きくなる。図15(G)は、図14(G)と同様に、開始位置SPから前方向DF側へ走行する車両10の軌跡の例を示している。第1軌跡Tr11は、参考例の車両10の軌跡である。図示するように、軌跡Tr11は、左方向DL側へ大きくずれている。 Thus, when the ground GLx is inclined, the direction D12 of the front wheel 12F may be shifted from the target direction (here, the forward direction DF) to the left direction DL side. Then, as in the reference example of FIGS. 14 (A) and 14 (B), the absolute value of the shaft torque becomes larger than zero. FIG. 15 (G) shows an example of the trajectory of the vehicle 10 traveling from the start position SP toward the forward direction DF, as in FIG. 14 (G). The first trajectory Tr11 is a trajectory of the vehicle 10 of the reference example. As illustrated, the trajectory Tr11 is largely shifted to the left direction DL side.
 図15(C)、図15(D)は、第1目標傾斜角T1(図13:S510)に従って傾斜角Tが制御される場合の車両10の状態を示している。図15(C)中の目標方向DT1は、第1目標傾斜角T1によって示される車両上方向DVUの目標方向である。ハンドル角がゼロであるので、第1目標傾斜角T1はゼロであり、目標方向DT1は、鉛直上方向DUと同じである。リーンモータ25は、傾斜角Tが第1目標傾斜角T1となるように、制御される。従って、車両上方向DVUは、目標方向DT1、すなわち、鉛直上方向DUを、向いている。図15(A)の参考例とは異なり、車体90は、鉛直上方向DUに対して傾斜せず、地面GLxに対して傾斜している。 FIGS. 15C and 15D show the state of the vehicle 10 when the inclination angle T is controlled in accordance with the first target inclination angle T1 (FIG. 13: S510). The target direction DT1 in FIG. 15C is a target direction of the vehicle upward direction DVU indicated by the first target inclination angle T1. Since the steering wheel angle is zero, the first target inclination angle T1 is zero, and the target direction DT1 is the same as the vertically upward direction DU. The lean motor 25 is controlled such that the inclination angle T becomes the first target inclination angle T1. Therefore, the vehicle upward direction DVU is directed to the target direction DT1, that is, the vertically upward direction DU. Unlike the reference example of FIG. 15A, the vehicle body 90 is not inclined with respect to the vertically upward direction DU, but is inclined with respect to the ground GLx.
 この場合も、図15(D)に示すように、図15(B)の参考例と同様に、車輪12F、12L、12Rの接触中心P1、PbL、PbRは、地面GLから、地面GLxに平行に右方向DR側を向く力FcF、FcL、FcRを、それぞれ受ける。これらの力FcF、FcL、FcRは、図15(A)で説明した力に加えて、いわゆるキャンバースラストを含んでいる。キャンバースラストは、回転する車輪の進行方向に垂直な方向の力であり、地面に対する車輪の傾斜(キャンバー角とも呼ばれる)によって生じる。キャンバースラストは、車輪の傾斜方向の力である。図15(C)の状態では、車輪は、地面GLxに対して、右方向DR側に傾斜している。従って、キャンバースラストは、地面GLxに平行に右方向DR側を向いている。この結果、キャンバースラストを含む力FcF、FcL、FcRは、地面GLxに平行に右方向DR側を向いている。 Also in this case, as shown in FIG. 15D, the contact centers P1, PbL and PbR of the wheels 12F, 12L and 12R are parallel to the ground GLx from the ground GL as in the reference example of FIG. Receive forces FcF, FcL, and FcR directed to the right side DR side respectively. These forces FcF, FcL, and FcR include so-called camber thrust in addition to the forces described in FIG. Camber thrust is a force in the direction perpendicular to the direction of travel of the rotating wheel and is caused by the inclination of the wheel relative to the ground (also called the camber angle). Camber thrust is the force in the direction of wheel tilt. In the state of FIG. 15C, the wheel is inclined to the right direction DR with respect to the ground GLx. Therefore, the camber thrust points in the right direction DR in parallel to the ground GLx. As a result, the forces FcF, FcL, FcR including the camber thrust face the right direction DR in parallel to the ground GLx.
 このような力FcFによって、前輪12Fには、前輪12Fの方向D12を左方向DL側に回動させるトルクFcTが、作用する。これにより、前輪12Fの方向D12は、目標方向から左方向DL側へずれ得る。そして、軸トルクの絶対値は、ゼロよりも大きくなる。図15(G)の第2軌跡Tr12は、図15(C)、図15(D)の車両10の軌跡である。軌跡Tr12は、左方向DL側へずれている。 A torque FcT that rotates the direction D12 of the front wheel 12F to the left direction DL acts on the front wheel 12F by such a force FcF. Thereby, the direction D12 of the front wheel 12F may be shifted from the target direction to the left direction DL side. Then, the absolute value of the shaft torque becomes larger than zero. The second locus Tr12 in FIG. 15 (G) is the locus of the vehicle 10 in FIGS. 15 (C) and 15 (D). The locus Tr12 is shifted to the left direction DL side.
 このように、風Wndや地面GLxの傾斜などの外部要因によって、前輪12Fの方向D12は、ハンドル角に適した目標方向からずれ得る。前輪12Fの進行方向D12が目標方向からずれている場合、軸トルクは、目標軸トルクと異なっている。軸トルクが目標軸トルクと異なる場合(図13:S540:No)、リーンモータ制御部102は、S550、S560で、前輪12Fの方向D12のずれを抑制するための処理を実行する。 Thus, the direction D12 of the front wheel 12F may deviate from the target direction suitable for the steering wheel angle due to an external factor such as the wind Wnd or the inclination of the ground GLx. When the traveling direction D12 of the front wheel 12F is deviated from the target direction, the shaft torque is different from the target shaft torque. If the shaft torque is different from the target shaft torque (FIG. 13: S540: No), the lean motor control unit 102 executes processing for suppressing the deviation of the direction D12 of the front wheel 12F in S550 and S560.
 S550では、リーンモータ制御部102は、軸トルクを目標軸トルクに近づけるための補正値を決定する。この補正値は、S530で特定された標準制御値を補正するための値である。 In S550, the lean motor control unit 102 determines a correction value for bringing the shaft torque close to the target shaft torque. This correction value is a value for correcting the standard control value specified in S530.
 図16は、トルク差分dTQxと補正値Vccとの対応関係の例を示すグラフである。トルク差分dTQxは、軸トルクと目標軸トルクとの間の差分である。本実施例では、目標軸トルクはゼロであるので、トルク差分dTQxは、軸トルクと同じである。横軸は、トルク差分dTQxを示し、縦軸は、補正値Vccを示している。トルク差分dTQxの正負の符号と絶対値は、前輪12Fに作用する軸トルクの方向と大きさを、それぞれ示している。正のトルク差分dTQxは、前輪12Fを右方向DRへ回動させる軸トルクを示している。負のトルク差分dTQxは、反対方向の軸トルクを示している。補正値Vccの正負の符号と絶対値は、補正に起因する車両上方向DVUの変化の方向と大きさを、それぞれ示している。正の補正値Vccは、車両上方向DVUを右方向DR側へ変化させる補正値を示し、負の補正値Vccは、車両上方向DVUを左方向DL側へ変化させる補正値を示している。 FIG. 16 is a graph showing an example of the correspondence between the torque difference dTQx and the correction value Vcc. The torque difference dTQx is a difference between the shaft torque and the target shaft torque. In the present embodiment, since the target shaft torque is zero, the torque difference dTQx is the same as the shaft torque. The horizontal axis indicates the torque difference dTQx, and the vertical axis indicates the correction value Vcc. The positive and negative signs and the absolute value of the torque difference dTQx respectively indicate the direction and the magnitude of the axial torque acting on the front wheel 12F. The positive torque difference dTQx indicates an axial torque for rotating the front wheel 12F in the right direction DR. The negative torque difference dTQx indicates the axial torque in the opposite direction. The positive and negative signs and the absolute value of the correction value Vcc respectively indicate the direction and the magnitude of the change in the vehicle upward direction DVU due to the correction. The positive correction value Vcc indicates a correction value that changes the vehicle upward direction DVU to the right direction DR, and the negative correction value Vcc indicates a correction value that changes the vehicle upward direction DVU to the left direction DL.
 図示するように、トルク差分dTQxが正値である場合、補正値Vccは、負値に設定され、トルク差分dTQxが負値である場合、補正値Vccは、正値に設定される。そして、トルク差分dTQxの絶対値が大きいほど、補正値Vccの絶対値は大きい。なお、図16の例では、補正値Vccは、トルク差分dTQxの変化に対して、直線的に変化している。ただし、補正値Vccは、トルク差分dTQxの変化に対して、曲線を描くように変化してもよい。 As illustrated, when the torque difference dTQx is a positive value, the correction value Vcc is set to a negative value, and when the torque difference dTQx is a negative value, the correction value Vcc is set to a positive value. The larger the absolute value of the torque difference dTQx, the larger the absolute value of the correction value Vcc. In the example of FIG. 16, the correction value Vcc changes linearly with respect to the change of the torque difference dTQx. However, the correction value Vcc may change in a curve as the torque difference dTQx changes.
 本実施例では、トルク差分dTQxと補正値Vccとの対応関係は、リーンモータ制御部102の不揮発性記憶装置102nに格納されているマップデータMcによって、予め、決められている。リーンモータ制御部102は、このマップデータMcを参照することによって、トルク差分dTQxに対応する補正値Vccを特定する。 In the present embodiment, the correspondence between the torque difference dTQx and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102n of the lean motor control unit 102. The lean motor control unit 102 specifies the correction value Vcc corresponding to the torque difference dTQx by referring to the map data Mc.
 図14(D)、図15(D)の例では、前輪12Fに作用するトルクF9T、FcTは、前輪12Fを左方向DLへ回動させる。従って、トルク差分dTQxは、負値である。この結果、補正値Vccは、正値に決定される。 In the example of FIGS. 14D and 15D, the torques F9T and FcT acting on the front wheel 12F turn the front wheel 12F in the left direction DL. Therefore, the torque difference dTQx is a negative value. As a result, the correction value Vcc is determined to be a positive value.
 図13のS560では、リーンモータ制御部102は、標準制御値を、補正値Vccを用いて、補正する。本実施例では、リーンモータ制御部102は、標準制御値に補正値Vccを加算することによって、補正済制御値を算出する。S570では、リーンモータ制御部102は、補正済制御値に従って電気回路102cを制御することによって、リーンモータ25を制御する。 In S560 of FIG. 13, the lean motor control unit 102 corrects the standard control value using the correction value Vcc. In the present embodiment, the lean motor control unit 102 calculates the corrected control value by adding the correction value Vcc to the standard control value. In S570, the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the corrected control value.
 図14(E)、図14(F)、図15(E)、図15(F)は、補正済制御値に従ってリーンモータ25が制御される場合の車両10の状態を示している。図14(C)、図15(C)の状態と比べて、車両上方向DVUは、右方向DR側に変化している。図9、図10で説明したように、車両上方向DVUが右方向DR側に変化する場合、前輪12Fには、前輪12Fの方向D12を右方向DR側に回動させるトルクFTa、FTb(図14(F)、図15(F))が、作用する。特に、図9で説明した第1トルクtq1は、地面が水平であるか傾斜しているかに拘わらずに、鉛直上方向DUに対する回動軸Ax1の傾斜に起因して、生じ得る。これにより、前輪12Fの方向D12の目標方向(ここでは、前方向DF)からのずれが、抑制される。そして、車両10は、ハンドル角に対応する方向である前方向DFに向かって、走行する。図14(G)、図15(G)の第3軌跡Tr3、Tr13は、図14(D)、図15(D)の車両10の軌跡である。軌跡Tr3、Tr13は、前方向DFに向かっている。 FIGS. 14E, 14F, 15E, and 15F show the state of the vehicle 10 when the lean motor 25 is controlled in accordance with the corrected control value. As compared with the states shown in FIGS. 14C and 15C, the vehicle upward direction DVU changes to the right direction DR. As described in FIG. 9 and FIG. 10, when the vehicle upward direction DVU changes to the right direction DR side, torques FTa and FTb that cause the front wheel 12F to rotate the direction D12 of the front wheel 12F to the right direction DR 14 (F), FIG. 15 (F)) work. In particular, the first torque tq1 described in FIG. 9 can occur due to the inclination of the pivot axis Ax1 with respect to the vertically upward direction DU, regardless of whether the ground is horizontal or inclined. Thus, the deviation of the front wheel 12F from the target direction (the forward direction DF here) in the direction D12 is suppressed. Then, the vehicle 10 travels in the forward direction DF, which is a direction corresponding to the steering wheel angle. The third trajectories Tr3 and Tr13 in FIGS. 14G and 15G are trajectories of the vehicle 10 in FIGS. 14D and 15D. Trajectories Tr3 and Tr13 are directed in the forward direction DF.
 S570が実行されたことに応じて、図13の処理が終了する。「軸トルク=目標軸トルク」という条件が満たされない場合(S540:No)、補正値Vccの決定(S550)と、制御値の補正(S560)と、補正済制御値に基づくリーンモータ25の制御(S570)とが繰り返される。この結果、車両10は、ハンドル角に対応する方向に向かって、走行する。 The process of FIG. 13 ends in response to the execution of S570. When the condition of “shaft torque = target shaft torque” is not satisfied (S540: No), the determination of the correction value Vcc (S550), the correction of the control value (S560), and the control of the lean motor 25 based on the corrected control value (S570) is repeated. As a result, the vehicle 10 travels in the direction corresponding to the steering wheel angle.
 以上のように、本実施例では、軸トルクセンサ127(図1、図11)は、前輪12Fに作用する回動軸Ax1を中心とするトルクである軸トルクを測定する。軸トルクは、車両10の動作状態を示すパラメータであって、傾斜角Tとは独立に変化し得る。例えば、傾斜角Tが一定であっても、軸トルクは、風Wnd(図14(D))や地面GLxの傾斜(図15(D))などの外部要因によって、変化し得る。 As described above, in the present embodiment, the axial torque sensor 127 (FIGS. 1 and 11) measures axial torque which is torque around the pivot axis Ax1 acting on the front wheel 12F. The axial torque is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the axial torque can change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
 また、前輪支持装置41は、ハンドル41aの操作量に拘わらずに前輪12Fが車体90の傾斜に追随して車体90に対して左右に回動することを許容するように構成されている。このような前輪12Fの回動が許容される許容モードでの制御は、図12のS140で説明したように、予め決められた許容条件が満たされる場合に、実行される。本実施例では、許容条件は、車速Vが、許容速度範囲内であることである。 Further, the front wheel support device 41 is configured to allow the front wheel 12F to rotate left and right with respect to the vehicle body 90 following the inclination of the vehicle body 90 regardless of the amount of operation of the steering wheel 41a. The control in the allowable mode in which the rotation of the front wheel 12F is permitted is performed as described in S140 of FIG. 12 when the predetermined allowable condition is satisfied. In the present embodiment, the allowable condition is that the vehicle speed V is within the allowable speed range.
 そして、傾斜制御部190は、図13で説明したように、ハンドル角と軸トルクとを用いて、軸トルクが目標軸トルクに近づくように、リーンモータ25を制御する。これにより、車両の進行方向の目標の方向からのずれを抑制できる。例えば、図14(D)、図15(D)で説明したように、ハンドル角がゼロであり、傾斜角Tが鉛直上方向DUに維持される場合であっても、車両10の進行方向は、左方向DL側にずれ得る。本実施例では、傾斜角Tとは独立なパラメータである軸トルクを用いて、リーンモータ25が制御されるので、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。 Then, as described with reference to FIG. 13, the tilt control unit 190 controls the lean motor 25 so that the axial torque approaches the target axial torque, using the steering wheel angle and the axial torque. Thus, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction. For example, as described in FIG. 14D and FIG. 15D, even when the steering wheel angle is zero and the inclination angle T is maintained in the vertically upward direction DU, the traveling direction of the vehicle 10 is , May shift to the left direction DL side. In the present embodiment, the lean motor 25 is controlled using the axial torque which is a parameter independent of the inclination angle T, so the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the traveling direction of the vehicle 10 Deviation can be suppressed appropriately.
 また、本実施例では、前輪支持装置41(図1)は、ハンドル41aの支持棒41axと前フォーク17とを連結する接続部50を、有している。上述したように、接続部50は、ハンドル41aの支持棒41axと前フォーク17とを緩く接続する。すなわち、接続部50は、前輪12Fがハンドル角に拘わらず車体90の傾斜の変化に追随して左右に回動することを許容する。このように、前輪12Fの左右の回動が許容されている状態で、接続部50は、支持棒41axと前フォーク17との間、すなわち、ハンドル41aと前輪12Fとの間で、トルクを伝達する。従って、前輪12Fの進行方向D12がハンドル41aの方向からずれている場合には、ハンドル41aと前フォーク17との間に軸トルクが作用する。軸トルクセンサ127は、このような軸トルク(すなわち、抵抗トルク)を測定する。そして、図13のS540~S570で説明したように、傾斜制御部190は、軸トルクが目標軸トルクであるゼロに近づくように、リーンモータ25を制御する。この結果、傾斜制御部190は、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。なお、トルク差分dTQxと補正値Vccとの対応関係は、種々の条件下において車両10の進行方向のずれを抑制できるように、実験的に決定されてよい。 Further, in the present embodiment, the front wheel support device 41 (FIG. 1) has a connecting portion 50 for connecting the support bar 41ax of the handle 41a and the front fork 17. As described above, the connection portion 50 loosely connects the support bar 41 ax of the handle 41 a and the front fork 17. That is, the connection portion 50 allows the front wheel 12F to rotate left and right following the change in the inclination of the vehicle body 90 regardless of the steering wheel angle. Thus, in a state where left and right rotation of front wheel 12F is permitted, connection portion 50 transmits torque between support bar 41ax and front fork 17, that is, between handle 41a and front wheel 12F. Do. Therefore, when the traveling direction D12 of the front wheel 12F deviates from the direction of the steering wheel 41a, an axial torque acts between the steering wheel 41a and the front fork 17. The shaft torque sensor 127 measures such shaft torque (i.e., resistance torque). Then, as described in S540 to S570 in FIG. 13, the tilt control unit 190 controls the lean motor 25 so that the shaft torque approaches zero, which is the target shaft torque. As a result, the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10. The correspondence relationship between the torque difference dTQx and the correction value Vcc may be determined experimentally so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
B.第2実施例:
 図17は、傾斜制御の別の実施例を示すフローチャートである。図13の実施例との際は、軸トルクの代わりにヨーレートが用いられる点である。S500、S540、S550は、S500a、S540a、S550aに、それぞれ置換され、そして、S510とS530との間にS520aが追加されている。図17のステップのうち、図13のステップと同じステップには、同じ符号を付して、説明を省略する。
B. Second embodiment:
FIG. 17 is a flowchart showing another embodiment of the tilt control. In the case of the embodiment of FIG. 13, a yaw rate is used instead of the shaft torque. S500, S540, and S550 are replaced with S500a, S540a, and S550a, respectively, and S520a is added between S510 and S530. Among the steps of FIG. 17, the same steps as the steps of FIG.
 S500aでは、主制御部100(図11)は、ヨーレート、傾斜角T、車速V、ハンドル角を示す情報を、それぞれ、特定する。主制御部100は、鉛直方向センサ126(図1)からジャイロセンサ126gによって測定された角速度を示す情報を取得し、取得した情報を用いてヨーレートを特定する。傾斜角Tと車速Vとハンドル角とのそれぞれの特定方法は、図13のS500の方法と、同じである。 In S500a, the main control unit 100 (FIG. 11) specifies information indicating the yaw rate, the inclination angle T, the vehicle speed V, and the steering wheel angle. The main control unit 100 acquires information indicating the angular velocity measured by the gyro sensor 126g from the vertical direction sensor 126 (FIG. 1), and specifies the yaw rate using the acquired information. The method of specifying each of the inclination angle T, the vehicle speed V, and the steering wheel angle is the same as the method of S500 in FIG.
 S520aでは、主制御部100は、車速Vとハンドル角とを用いることによって、目標ヨーレートを特定する。本実施例では、車両10が滑らずに安定して走行することとして、目標ヨーレートが特定される。この場合、ヨーレートYは、以下の式8で表される。
   Y = V/R                    (式8)
 式8のRに、式6で表されるRを代入すると、以下の式9が得られる。
   Y = V/(V/(g*tan(T)))
     =(g*tan(T))/V           (式9)
 ここで、傾斜角Tが第1目標傾斜角T1に制御されると仮定する。第1目標傾斜角T1は、S510で、ハンドル角と車速Vとを用いて特定される。この第1目標傾斜角T1を式9のTに代入することによって、ヨーレートYは、ハンドル角と車速Vとで表される。本実施例では、主制御部100(図11)の不揮発性記憶装置100nには、マップデータMxが予め格納されている。マップデータMxは、このようなヨーレートYとハンドル角と車速Vとの対応関係を表している。主制御部100は、マップデータMxを参照することによって、ハンドル角と車速Vとの組み合わせに対応する目標ヨーレートYtを特定する。正の目標ヨーレートYtは、右方向DRの旋回を示し、ゼロの目標ヨーレートYtは、直進を示し、負の目標ヨーレートYtは、左方向DLの旋回を示している。主制御部100は、傾斜角Tと第1目標傾斜角T1とヨーレートと目標ヨーレートとのそれぞれを示す情報を、リーンモータ制御部102に供給する。
In S520a, the main control unit 100 specifies the target yaw rate by using the vehicle speed V and the steering wheel angle. In the present embodiment, the target yaw rate is specified as the vehicle 10 travels stably without slipping. In this case, the yaw rate Y is expressed by the following equation 8.
Y = V / R (Equation 8)
Substituting R represented by Equation 6 into R of Equation 8 gives Equation 9 below.
Y = V / (V 2 / (g * tan (T)))
= (G * tan (T)) / V (equation 9)
Here, it is assumed that the inclination angle T is controlled to the first target inclination angle T1. The first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V at S510. By substituting the first target inclination angle T1 into T in equation 9, the yaw rate Y is expressed by the steering wheel angle and the vehicle speed V. In the present embodiment, map data Mx is stored in advance in the non-volatile storage device 100n of the main control unit 100 (FIG. 11). The map data Mx represents such a correspondence relationship between the yaw rate Y, the steering wheel angle, and the vehicle speed V. The main control unit 100 specifies the target yaw rate Yt corresponding to the combination of the steering wheel angle and the vehicle speed V by referring to the map data Mx. The positive target yaw rate Yt indicates turning in the right direction DR, the zero target yaw rate Yt indicates straight going, and the negative target yaw rate Yt indicates turning in the left direction DL. The main control unit 100 supplies the lean motor control unit 102 with information indicating each of the inclination angle T, the first target inclination angle T1, the yaw rate, and the target yaw rate.
 S540aでは、リーンモータ制御部102は、ヨーレートが、目標ヨーレートと同じであるか否かを判断する。上述したように、車両10が安定して走行する場合、操舵モータ65の制御モードが制限モードと許容モードとのいずれであっても、前輪12Fの方向D12は、傾斜角Tに適した方向(目標方向とも呼ぶ)を向く。図13のS510で説明したように、傾斜角Tの第1目標傾斜角T1は、ハンドル角を用いて決定される。従って、前輪12Fの方向D12は、ハンドル角に適した方向である。これらの結果、車両10のヨーレートは、目標ヨーレートと同じである。 In S540a, the lean motor control unit 102 determines whether the yaw rate is the same as the target yaw rate. As described above, when the vehicle 10 travels stably, the direction D12 of the front wheel 12F is suitable for the inclination angle T regardless of whether the control mode of the steering motor 65 is either the limit mode or the permissible mode Turn to the target direction). As described in S510 of FIG. 13, the first target inclination angle T1 of the inclination angle T is determined using the steering wheel angle. Therefore, the direction D12 of the front wheel 12F is a direction suitable for the steering wheel angle. As a result of these, the yaw rate of the vehicle 10 is the same as the target yaw rate.
 ヨーレートが目標ヨーレートと同じである場合(S540a:Yes)、S570で、リーンモータ制御部102は、標準制御値に従って電気回路102cを制御することによって、リーンモータ25を制御する。これにより、傾斜角Tは、第1目標傾斜角T1に近づく。以上により、図17の処理が終了する。傾斜制御部190は、図17の処理を、繰り返し実行する。「ヨーレート=目標ヨーレート」という条件が満たされる場合(S540a:Yes)、標準制御値に基づくリーンモータ25の制御が繰り返される。この結果、傾斜角Tは、第1目標傾斜角T1に維持される。 If the yaw rate is the same as the target yaw rate (S540a: Yes), in S570, the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c in accordance with the standard control value. Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 17 ends. The tilt control unit 190 repeatedly executes the process of FIG. When the condition of “yaw rate = target yaw rate” is satisfied (S 540 a: Yes), the control of the lean motor 25 based on the standard control value is repeated. As a result, the inclination angle T is maintained at the first target inclination angle T1.
 図14、図15で説明したように、前輪12Fの方向D12は、目標方向からずれ得る。前輪12Fの方向D12が目標方向と異なる場合、車両10の進行方向が目標の方向と異なるので、ヨーレートは、目標ヨーレートと異なる。この場合(S540a:No)、S550aで、リーンモータ制御部102は、ヨーレートを目標ヨーレートに近づけるための補正値を決定する。この補正値は、S530で特定された標準制御値を補正するための値である。 As described in FIGS. 14 and 15, the direction D12 of the front wheel 12F may be offset from the target direction. When the direction D12 of the front wheel 12F is different from the target direction, the yaw rate is different from the target yaw rate because the traveling direction of the vehicle 10 is different from the target direction. In this case (S540a: No), the lean motor control unit 102 determines a correction value for bringing the yaw rate closer to the target yaw rate in S550a. This correction value is a value for correcting the standard control value specified in S530.
 図18は、ヨーレート差分dYと補正値Vccとの対応関係の例を示すグラフである。ヨーレート差分dYは、ヨーレートから目標ヨーレートを減算した差分である。横軸は、ヨーレート差分dYを示し、縦軸は、補正値Vccを示している。負のヨーレート差分dYは、図15(D)、図15(D)のように、前輪12Fの方向D12が目標の方向から左方向DL側にずれていることを示している。正のヨーレート差分dYは、前輪12Fの方向D12が目標の方向から右方向DR側にずれていることを示している。補正値Vccは、図16の補正値Vccと同じである。 FIG. 18 is a graph showing an example of the correspondence between the yaw rate difference dY and the correction value Vcc. The yaw rate difference dY is a difference obtained by subtracting the target yaw rate from the yaw rate. The horizontal axis indicates the yaw rate difference dY, and the vertical axis indicates the correction value Vcc. The negative yaw rate difference dY indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the left direction DL, as shown in FIGS. 15 (D) and 15 (D). The positive yaw rate difference dY indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the right direction DR. The correction value Vcc is the same as the correction value Vcc of FIG.
 図示するように、ヨーレート差分dYが正値である場合、補正値Vccは、負値に設定され、ヨーレート差分dYが負値である場合、補正値Vccは、正値に設定される。そして、ヨーレート差分dYの絶対値が大きいほど、補正値Vccの絶対値は大きい。なお、図18の例では、補正値Vccは、ヨーレート差分dYの変化に対して、直線的に変化している。ただし、補正値Vccは、ヨーレート差分dYの変化に対して、曲線を描くように変化してもよい。 As illustrated, when the yaw rate difference dY is a positive value, the correction value Vcc is set to a negative value, and when the yaw rate difference dY is a negative value, the correction value Vcc is set to a positive value. The larger the absolute value of the yaw rate difference dY, the larger the absolute value of the correction value Vcc. In the example of FIG. 18, the correction value Vcc changes linearly with respect to the change of the yaw rate difference dY. However, the correction value Vcc may change so as to draw a curve with respect to the change in the yaw rate difference dY.
 本実施例では、ヨーレート差分dYと補正値Vccとの対応関係は、リーンモータ制御部102の不揮発性記憶装置102nに格納されているマップデータMcによって、予め、決められている。リーンモータ制御部102は、このマップデータMcを参照することによって、ヨーレート差分dYに対応する補正値Vccを特定する。 In the present embodiment, the correspondence between the yaw rate difference dY and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102 n of the lean motor control unit 102. The lean motor control unit 102 specifies the correction value Vcc corresponding to the yaw rate difference dY by referring to the map data Mc.
 図14(D)、図15(D)の例では、前輪12Fの方向D12が目標の方向から左方向DL側にずれている。従って、ヨーレート差分dYは、負値である。この結果、補正値Vccは、正値に決定される。 In the example of FIG. 14 (D) and FIG. 15 (D), the direction D12 of the front wheel 12F is shifted to the left direction DL side from the direction of the target. Therefore, the yaw rate difference dY is a negative value. As a result, the correction value Vcc is determined to be a positive value.
 S560、S570は、図13のS560、S570と、それぞれ同じである。S560では、標準制御値は、補正値Vccを用いて補正される。S570では、補正済制御値に従って、リーンモータ25が制御される。これにより、図13の実施例と同様に、前輪12Fの方向D12の目標方向からのずれが、抑制される。 S560 and S570 are respectively the same as S560 and S570 of FIG. At S560, the standard control value is corrected using the correction value Vcc. In S570, the lean motor 25 is controlled in accordance with the corrected control value. Thus, as in the embodiment of FIG. 13, the deviation of the front wheel 12F from the target direction in the direction D12 is suppressed.
 以上のように、本実施例では、鉛直方向センサ126(図1、図11)のジャイロセンサ126gは、車両10のヨーレートを測定する。ヨーレートは、車両10の動作状態を示すパラメータであって、傾斜角Tとは独立に変化し得る。例えば、傾斜角Tが一定であってもヨーレートは、風Wnd(図14(D))や地面GLxの傾斜(図15(D))などの外部要因によって、変化し得る。 As described above, in the present embodiment, the gyro sensor 126g of the vertical direction sensor 126 (FIGS. 1 and 11) measures the yaw rate of the vehicle 10. The yaw rate is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the yaw rate may change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
 そして、傾斜制御部190は、図17で説明したように、ハンドル角とヨーレートとを用いて、ヨーレートが目標ヨーレートに近づくように、リーンモータ25を制御する。これにより、車両の進行方向の目標の方向からのずれを抑制できる。例えば、図14(D)、図15(D)で説明したように、ハンドル角がゼロであり、傾斜角Tが鉛直上方向DUに維持される場合であっても、車両10の進行方向は、左方向DL側にずれ得る。本実施例では、傾斜角Tとは独立なパラメータであるヨーレートを用いて、リーンモータ25が制御されるので、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。 Then, as described with reference to FIG. 17, the tilt control unit 190 controls the lean motor 25 so that the yaw rate approaches the target yaw rate, using the steering wheel angle and the yaw rate. Thus, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction. For example, as described in FIG. 14D and FIG. 15D, even when the steering wheel angle is zero and the inclination angle T is maintained in the vertically upward direction DU, the traveling direction of the vehicle 10 is , May shift to the left direction DL side. In this embodiment, since the lean motor 25 is controlled using the yaw rate which is a parameter independent of the inclination angle T, the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the deviation of the traveling direction of the vehicle 10. Can be suppressed appropriately.
 また、本実施例では、ジャイロセンサ126gは、車両10のヨーレートを測定する。図17のS520aで説明したように、傾斜制御部190は、ハンドル角を用いて目標ヨーレートを特定する。図17のS540a~S570で説明したように、傾斜制御部190は、ヨーレートが目標ヨーレートに近づくように、リーンモータ25を制御する。この結果、傾斜制御部190は、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。なお、ヨーレート差分dYと補正値Vccとの対応関係は、種々の条件下において車両10の進行方向のずれを抑制できるように、実験的に決定されてよい。 Further, in the present embodiment, the gyro sensor 126 g measures the yaw rate of the vehicle 10. As described in S520a of FIG. 17, the tilt control unit 190 specifies the target yaw rate using the steering wheel angle. As described in S540a to S570 in FIG. 17, the tilt control unit 190 controls the lean motor 25 such that the yaw rate approaches the target yaw rate. As a result, the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10. The correspondence relationship between the yaw rate difference dY and the correction value Vcc may be experimentally determined so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
C.第3実施例:
 図19は、傾斜制御の別の実施例を示すフローチャートである。図17の実施例との際は、ヨーレートの代わりに車輪角が用いられる点である。S500a、S520a、S540a、S550aは、S500b、S520b、S540b、S550bに、それぞれ置換されている。図19のステップのうち、図17のステップと同じステップには、同じ符号を付して、説明を省略する。
C. Third embodiment:
FIG. 19 is a flowchart showing another embodiment of the tilt control. In the case of the embodiment of FIG. 17, the wheel angle is used instead of the yaw rate. S500a, S520a, S540a, and S550a are replaced with S500b, S520b, S540b, and S550b, respectively. Among the steps of FIG. 19, the same steps as the steps of FIG.
 S500bでは、主制御部100(図11)は、車輪角、傾斜角T、車速V、ハンドル角を示す情報を、それぞれ、特定する。車輪角は、車輪角センサ124からの信号を用いて、特定される。他の情報の特定方法は、図17のS500aの方法と、同じである。 In S500b, the main control unit 100 (FIG. 11) specifies information indicating the wheel angle, the inclination angle T, the vehicle speed V, and the steering wheel angle. The wheel angle is identified using a signal from the wheel angle sensor 124. The other information identification method is the same as the method of S500a of FIG.
 S520bでは、主制御部100は、車速Vとハンドル角とを用いることによって、目標車輪角を特定する。特定される目標車輪角は、図12のS130で特定される第1目標車輪角AFt1と同じである。具体的には、以下の通りである。車輪角AFは、上記の式7で表される。式7のRに、式6で表されるRを代入すると、以下の式10が得られる。
   AF=arctan(Lh/(V/(g*tan(T))))  (式10)
ここで、傾斜角Tが第1目標傾斜角T1に制御されると仮定する。第1目標傾斜角T1は、S510で、ハンドル角と車速Vとを用いて特定される。この第1目標傾斜角T1を式10のTに代入することによって、車輪角AFは、ハンドル角と車速Vとで表される。この対応関係を用いて特定される車輪角AFが、第1目標車輪角AFt1である。主制御部100は、車輪角AFと第1目標車輪角AFt1と傾斜角Tと第1目標傾斜角T1と車輪角AFと第1目標車輪角AFt1とのそれぞれを示す情報を、リーンモータ制御部102に供給する。
In S520b, the main control unit 100 specifies the target wheel angle by using the vehicle speed V and the steering wheel angle. The specified target wheel angle is the same as the first target wheel angle AFt1 specified in S130 of FIG. Specifically, it is as follows. The wheel angle AF is expressed by Equation 7 above. Substituting R represented by Equation 6 into R of Equation 7 yields Equation 10 below.
AF = arctan (Lh / (V 2 / (g * tan (T)))) (Equation 10)
Here, it is assumed that the inclination angle T is controlled to the first target inclination angle T1. The first target inclination angle T1 is specified using the steering wheel angle and the vehicle speed V at S510. By substituting the first target inclination angle T1 into T in equation 10, the wheel angle AF is expressed by the steering wheel angle and the vehicle speed V. The wheel angle AF specified using this correspondence relationship is a first target wheel angle AFt1. The main control unit 100 is a lean motor control unit for information indicating each of the wheel angle AF, the first target wheel angle AFt1, the inclination angle T, the first target inclination angle T1, the wheel angle AF and the first target wheel angle AFt1. It supplies to 102.
 S540bでは、リーンモータ制御部102は、車輪角AFが、第1目標車輪角AFt1と同じであるか否かを判断する。上述したように、車両10が安定して走行する場合、操舵モータ65の制御モードが制限モードと許容モードとのいずれであっても、前輪12Fの方向D12は、傾斜角Tに適した目標方向を向く。この場合、車輪角AFは、第1目標車輪角AFt1と同じである。 In S540b, the lean motor control unit 102 determines whether the wheel angle AF is the same as the first target wheel angle AFt1. As described above, when the vehicle 10 travels stably, the direction D12 of the front wheel 12F is a target direction suitable for the inclination angle T regardless of whether the control mode of the steering motor 65 is either the limit mode or the permissible mode. Turn to In this case, the wheel angle AF is the same as the first target wheel angle AFt1.
 車輪角AFが第1目標車輪角AFt1と同じである場合(S540b:Yes)、S570で、リーンモータ制御部102は、標準制御値に従って電気回路102cを制御することによって、リーンモータ25を制御する。これにより、傾斜角Tは、第1目標傾斜角T1に近づく。以上により、図19の処理が終了する。傾斜制御部190は、図19の処理を、繰り返し実行する。「AF=AFt1」という条件が満たされる場合(S540b:Yes)、標準制御値に基づくリーンモータ25の制御が繰り返される。この結果、傾斜角Tは、第1目標傾斜角T1に維持される。 If the wheel angle AF is the same as the first target wheel angle AFt1 (S540b: Yes), the lean motor control unit 102 controls the lean motor 25 by controlling the electric circuit 102c according to the standard control value in S570. . Thereby, the inclination angle T approaches the first target inclination angle T1. Thus, the process of FIG. 19 ends. The tilt control unit 190 repeatedly executes the process of FIG. If the condition “AF = AFt1” is satisfied (S540 b: Yes), the control of the lean motor 25 based on the standard control value is repeated. As a result, the inclination angle T is maintained at the first target inclination angle T1.
 図14、図15で説明したように、前輪12Fの方向D12は、目標方向からずれ得る。前輪12Fの方向D12が目標方向と異なる場合、車輪角AFは、第1目標車輪角AFt1と異なる。この場合(S540b:No)、S550bで、リーンモータ制御部102は、車輪角AFを第1目標車輪角AFt1に近づけるための補正値を決定する。この補正値は、S530で特定された標準制御値を補正するための値である。 As described in FIGS. 14 and 15, the direction D12 of the front wheel 12F may be offset from the target direction. When the direction D12 of the front wheel 12F is different from the target direction, the wheel angle AF is different from the first target wheel angle AFt1. In this case (S540b: No), the lean motor control unit 102 determines a correction value for bringing the wheel angle AF close to the first target wheel angle AFt1 in S550b. This correction value is a value for correcting the standard control value specified in S530.
 図20は、車輪角差分dAFと補正値Vccとの対応関係の例を示すグラフである。車輪角差分dAFは、車輪角AFから第1目標車輪角AFt1を減算した差分である。横軸は、車輪角差分dAFを示し、縦軸は、補正値Vccを示している。負の車輪角差分dAFは、図15(D)、図15(D)のように、前輪12Fの方向D12が目標の方向から左方向DL側にずれていることを示している。正の車輪角差分dAFは、前輪12Fの方向D12が目標の方向から右方向DR側にずれていることを示している。補正値Vccは、図16の補正値Vccと同じである。 FIG. 20 is a graph showing an example of the correspondence between the wheel angle difference dAF and the correction value Vcc. The wheel angle difference dAF is a difference obtained by subtracting the first target wheel angle AFt1 from the wheel angle AF. The horizontal axis indicates the wheel angle difference dAF, and the vertical axis indicates the correction value Vcc. The negative wheel angle difference dAF indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the left direction DL, as shown in FIGS. 15 (D) and 15 (D). The positive wheel angle difference dAF indicates that the direction D12 of the front wheel 12F is shifted from the target direction to the right direction DR. The correction value Vcc is the same as the correction value Vcc of FIG.
 図示するように、車輪角差分dAFが正値である場合、補正値Vccは、負値に設定され、車輪角差分dAFが負値である場合、補正値Vccは、正値に設定される。そして、車輪角差分dAFの絶対値が大きいほど、補正値Vccの絶対値は大きい。なお、図20の例では、補正値Vccは、車輪角差分dAFの変化に対して、直線的に変化している。ただし、補正値Vccは、車輪角差分dAFの変化に対して、曲線を描くように変化してもよい。 As shown, when the wheel angle difference dAF is a positive value, the correction value Vcc is set to a negative value, and when the wheel angle difference dAF is a negative value, the correction value Vcc is set to a positive value. The larger the absolute value of the wheel angle difference dAF, the larger the absolute value of the correction value Vcc. In the example of FIG. 20, the correction value Vcc changes linearly with respect to the change of the wheel angle difference dAF. However, the correction value Vcc may change so as to draw a curve with respect to the change in the wheel angle difference dAF.
 本実施例では、車輪角差分dAFと補正値Vccとの対応関係は、リーンモータ制御部102の不揮発性記憶装置102nに格納されているマップデータMcによって、予め、決められている。リーンモータ制御部102は、このマップデータMcを参照することによって、車輪角差分dAFに対応する補正値Vccを特定する。 In the present embodiment, the correspondence between the wheel angle difference dAF and the correction value Vcc is determined in advance by the map data Mc stored in the non-volatile storage device 102 n of the lean motor control unit 102. The lean motor control unit 102 specifies the correction value Vcc corresponding to the wheel angle difference dAF by referring to the map data Mc.
 図14(D)、図15(D)の例では、前輪12Fの方向D12が目標の方向から左方向DL側にずれている。従って、車輪角差分dAFは、負値である。この結果、補正値Vccは、正値に決定される。 In the example of FIG. 14 (D) and FIG. 15 (D), the direction D12 of the front wheel 12F is shifted to the left direction DL side from the direction of the target. Therefore, the wheel angle difference dAF is a negative value. As a result, the correction value Vcc is determined to be a positive value.
 S560、S570は、図13、図17のS560、S570と、それぞれ同じである。S560では、標準制御値は、補正値Vccを用いて補正される。S570では、補正済制御値に従って、リーンモータ25が制御される。これにより、図13、図17の実施例と同様に、前輪12Fの方向D12の目標方向からのずれが、抑制される。 S560 and S570 are the same as S560 and S570 of FIG. 13 and FIG. 17, respectively. At S560, the standard control value is corrected using the correction value Vcc. In S570, the lean motor 25 is controlled in accordance with the corrected control value. Thus, as in the embodiment of FIGS. 13 and 17, the deviation of the front wheel 12F from the target direction in the direction D12 is suppressed.
 以上のように、本実施例では、車輪角センサ124(図1、図11)は、前輪12Fの車輪角AFを測定する。車輪角AFは、車両10の動作状態を示すパラメータであって、傾斜角Tとは独立に変化し得る。例えば、傾斜角Tが一定であっても、車輪角AFは、風Wnd(図14(D))や地面GLxの傾斜(図15(D))などの外部要因によって、変化し得る。 As described above, in the present embodiment, the wheel angle sensor 124 (FIGS. 1 and 11) measures the wheel angle AF of the front wheel 12F. The wheel angle AF is a parameter indicating the operating state of the vehicle 10, and may change independently of the tilt angle T. For example, even if the inclination angle T is constant, the wheel angle AF may change due to external factors such as the wind Wnd (FIG. 14D) and the inclination of the ground GLx (FIG. 15D).
 そして、傾斜制御部190は、図19で説明したように、ハンドル角と車輪角AFとを用いて、車輪角AFが第1目標車輪角AFt1に近づくように、リーンモータ25を制御する。これにより、車両の進行方向の目標の方向からのずれを抑制できる。例えば、図14(D)、図15(D)で説明したように、ハンドル角がゼロであり、傾斜角Tが鉛直上方向DUに維持される場合であっても、車両10の進行方向は、左方向DL側にずれ得る。本実施例では、傾斜角Tとは独立なパラメータである車輪角AFを用いて、リーンモータ25が制御されるので、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。 Then, as described with reference to FIG. 19, the tilt control unit 190 controls the lean motor 25 so that the wheel angle AF approaches the first target wheel angle AFt1, using the steering wheel angle and the wheel angle AF. Thus, it is possible to suppress the deviation of the traveling direction of the vehicle from the target direction. For example, as described in FIG. 14D and FIG. 15D, even when the steering wheel angle is zero and the inclination angle T is maintained in the vertically upward direction DU, the traveling direction of the vehicle 10 is , May shift to the left direction DL side. In this embodiment, since the lean motor 25 is controlled using the wheel angle AF which is a parameter independent of the inclination angle T, the deviation of the direction D12 of the front wheel 12F from the target direction, ie, the traveling direction of the vehicle 10 It is possible to properly suppress the deviation of the
 また、本実施例では、車輪角センサ124は、車輪角AF、すなわち、前輪12Fの方向D12を測定する。図19のS520bで説明したように、傾斜制御部190は、ハンドル角を用いて第1目標車輪角AFt1、すなわち、前輪12Fの目標の方向を特定する。図19のS540b~S570で説明したように、傾斜制御部190は、車輪角AFが第1目標車輪角AFt1に近づくように、すなわち、前輪12Fの方向D12が、第1目標車輪角AFt1に対応する目標の方向に近づくように、リーンモータ25を制御する。この結果、傾斜制御部190は、前輪12Fの方向D12の目標方向からのずれ、すなわち、車両10の進行方向のずれを、適切に、抑制できる。なお、車輪角差分dAFと補正値Vccとの対応関係は、種々の条件下において車両10の進行方向のずれを抑制できるように、実験的に決定されてよい。 Further, in the present embodiment, the wheel angle sensor 124 measures the wheel angle AF, that is, the direction D12 of the front wheel 12F. As described in S520b of FIG. 19, the tilt control unit 190 specifies the first target wheel angle AFt1, that is, the direction of the target of the front wheel 12F using the steering wheel angle. As described in S540b to S570 in FIG. 19, the inclination control unit 190 causes the wheel angle AF to approach the first target wheel angle AFt1, that is, the direction D12 of the front wheel 12F corresponds to the first target wheel angle AFt1. The lean motor 25 is controlled to approach the direction of the desired target. As a result, the tilt control unit 190 can appropriately suppress the deviation of the front wheel 12F in the direction D12 from the target direction, that is, the deviation in the traveling direction of the vehicle 10. The correspondence relationship between the wheel angle difference dAF and the correction value Vcc may be determined experimentally so as to suppress a deviation in the traveling direction of the vehicle 10 under various conditions.
D.変形例:
(1)前フォーク17に作用するトルクを測定するセンサは、歪みゲージのように部材の変形を用いてトルクを測定するセンサに代えて、他の種々のセンサであってよい。例えば、操舵モータ65が、前輪12Fの方向D12を、ハンドル角を用いて特定される目標の方向に近づくように制御する場合には、操舵モータ65を流れる電流の大きさを用いて、軸トルクが特定されてよい。電流が大きいほど、軸トルクは大きい。この場合、電流センサが、前フォーク17に作用するトルクを測定するセンサとして、用いられてよい。また、操舵モータ65は、ハンドル角を用いて特定される目標の方向からの前フォーク17の回動に対する抵抗トルクを生成する抵抗トルク生成部の例である。
D. Modification:
(1) The sensor for measuring the torque acting on the front fork 17 may be various other sensors instead of the sensor for measuring the torque using deformation of the member like a strain gauge. For example, in the case where the steering motor 65 controls the direction D12 of the front wheel 12F to approach the direction of the target specified using the steering wheel angle, the magnitude of the current flowing through the steering motor 65 is used to May be identified. The greater the current, the greater the axial torque. In this case, a current sensor may be used as a sensor that measures the torque acting on the front fork 17. The steering motor 65 is an example of a resistance torque generation unit that generates a resistance torque against the rotation of the front fork 17 from the direction of the target specified using the steering wheel angle.
(2)上記各実施例では、車両10は、鉛直方向を測定する鉛直方向センサ126(図1、図11)を備えている。そして、傾斜制御部190は、鉛直方向センサ126によって測定される鉛直方向に対する車体90の傾斜角Tを制御する。従って、車両10の進行方向の目標の方向からのずれを、適切に、抑制できる。 (2) In the above embodiments, the vehicle 10 is provided with the vertical direction sensor 126 (FIGS. 1 and 11) for measuring the vertical direction. Then, the tilt control unit 190 controls the tilt angle T of the vehicle body 90 with respect to the vertical direction measured by the vertical direction sensor 126. Therefore, the deviation from the target direction of the traveling direction of the vehicle 10 can be appropriately suppressed.
(3)図13の実施例では、標準の制御値が、補正値Vccを用いて補正される。これに代えて、マップデータMc(図11)は、ハンドル角と軸トルクとを含む入力情報と、補正済制御値と、の対応関係を定めてもよい。そして、リーンモータ制御部102は、入力情報に対応付けられた補正済制御値を、マップデータMcを参照して特定し、補正済制御値に従って電気回路102cを制御することによって、リーンモータ25を制御してよい。図17、図19の実施例においても、同様に、マップデータMcは、ハンドル角に加えて、ヨーレートまたは車輪角を含む入力情報と、補正済制御値と、の対応関係を定めてもよい。そして、リーンモータ制御部102は、入力情報に対応付けられた補正済制御値を、マップデータMcを参照して特定し、補正済制御値に従って電気回路102cを制御することによって、リーンモータ25を制御してよい。 (3) In the embodiment of FIG. 13, the standard control value is corrected using the correction value Vcc. Alternatively, the map data Mc (FIG. 11) may define the correspondence between input information including the steering wheel angle and the shaft torque, and the corrected control value. Then, the lean motor control unit 102 specifies the corrected control value associated with the input information with reference to the map data Mc, and controls the electric motor 102 c in accordance with the corrected control value to obtain the lean motor 25. You may control. Also in the examples of FIGS. 17 and 19, the map data Mc may similarly define the correspondence between input information including the yaw rate or the wheel angle in addition to the steering wheel angle, and the corrected control value. Then, the lean motor control unit 102 specifies the corrected control value associated with the input information with reference to the map data Mc, and controls the electric motor 102 c in accordance with the corrected control value to obtain the lean motor 25. You may control.
(4)リーンモータ25の制御処理は、上記各実施例の制御処理に代えて、他の種々の処理であってよい。例えば、低速時(例えば、速度Vが基準速度Vth以下である場合)には、傾斜角Tは、第1目標傾斜角T1よりも絶対値が小さい第2目標傾斜角T2に制御されてもよい。第2目標傾斜角T2は、例えば、以下の式で表されてよい。
   T2 = (V/Vth)T1
 上記の式で表される第2目標傾斜角T2は、ゼロから基準速度Vthまで車速Vに比例して変化する。第2目標傾斜角T2の絶対値は、第1目標傾斜角T1の絶対値以下である。この理由は、以下の通りである。低速時には、高速時と比べて、進行方向が頻繁に変更される。従って、低速時には、傾斜角Tの絶対値を小さくすることによって、進行方向の頻繁な変更を伴う走行を、安定化できる。なお、第2目標傾斜角T2と車速Vとの関係は、車速Vが大きいほど第2目標傾斜角T2の絶対値が大きくなるような、他の種々の関係であってよい。
(4) The control process of the lean motor 25 may be other various processes instead of the control process of each of the above embodiments. For example, at low speed (for example, when the velocity V is equal to or less than the reference velocity Vth), the inclination angle T may be controlled to a second target inclination angle T2 whose absolute value is smaller than the first target inclination angle T1. . The second target inclination angle T2 may be expressed, for example, by the following equation.
T2 = (V / Vth) T1
The second target inclination angle T2 expressed by the above equation changes in proportion to the vehicle speed V from zero to the reference speed Vth. The absolute value of the second target inclination angle T2 is less than or equal to the absolute value of the first target inclination angle T1. The reason is as follows. At low speeds, the direction of travel changes more frequently than at high speeds. Therefore, at low speeds, by reducing the absolute value of the inclination angle T, traveling with frequent changes in the traveling direction can be stabilized. The relationship between the second target inclination angle T2 and the vehicle speed V may be various other relationships such that the absolute value of the second target inclination angle T2 increases as the vehicle speed V increases.
(5)操舵モータ65の制御処理は、上記実施例の制御処理に代えて、他の種々の処理であってよい。例えば、低速時(例えば、車速Vが基準速度Vth以下である場合)には、車輪角AFは、第1目標車輪角AFt1よりも絶対値が大きい第2目標車輪角AFt2に制御されてもよい。例えば、第2目標車輪角AFt2は、ハンドル角Aiが同じ場合には、車速Vが小さいほど第2目標車輪角AFt2の絶対値が大きくなるように、決定されてよい。この構成によれば、速度Vが小さい場合の車両10の最小回転半径を小さくできる。いずれの場合も、第2目標車輪角AFt2は、車速Vが同じ場合には、ハンドル角Aiの絶対値が大きいほど第2目標車輪角AFt2の絶対値が大きくなるように、決定されることが好ましい。 (5) The control process of the steering motor 65 may be other various processes instead of the control process of the above embodiment. For example, at low speed (for example, when the vehicle speed V is equal to or less than the reference speed Vth), the wheel angle AF may be controlled to a second target wheel angle AFt2 whose absolute value is larger than the first target wheel angle AFt1. . For example, the second target wheel angle AFt2 may be determined such that the absolute value of the second target wheel angle AFt2 increases as the vehicle speed V decreases when the steering wheel angle Ai is the same. According to this configuration, the minimum turning radius of the vehicle 10 when the speed V is low can be reduced. In any case, when the vehicle speed V is the same, the second target wheel angle AFt2 is determined so that the absolute value of the second target wheel angle AFt2 increases as the absolute value of the steering wheel angle Ai increases. preferable.
(6)左右に回動可能な1以上の回動輪を支持する回動輪支持部の構成は、図1の回動輪支持部180の構成に代えて、他の種々の構成であってよい。例えば、回動輪を回転可能に支持する支持部材は、前フォーク17に代えて、他の種々の部材(例えば、片持ちの部材)であってよい。軸受68は、転がり軸受であってよく、滑り軸受であってもよい。支持部材を車体90に対して左右に回動可能に支持する回動装置(例えば、軸受68)は、車体90に、直接的に、または、他の部材を介して間接的に、接続されてよい。また、回動装置は、支持部材(例えば、前フォーク17)に、直接的に、または、他の部材を介して間接的に、接続されてよい。ここで、回動装置は、車体が傾斜する場合に支持部材も車体と共に傾斜するように、支持部材と車体とを接続していることが好ましい。支持部材を左右に回動させるトルクを支持部材に印加する回動駆動装置は、操舵モータ65のような電気モータに代えて、ポンプなどの他の装置であってよい。また、回動駆動装置は、省略されてもよい。 (6) The configuration of the pivoting wheel support that supports one or more pivoting wheels that can pivot to the left and right may be various other configurations instead of the configuration of the pivoting wheel support 180 of FIG. 1. For example, the support member that rotatably supports the pivoting wheel may be various other members (e.g., a cantilevered member) instead of the front fork 17. The bearing 68 may be a rolling bearing or a sliding bearing. A pivoting device (e.g., a bearing 68) for pivotally supporting the support member to the vehicle body 90 in the lateral direction is connected to the vehicle body 90 directly or indirectly via another member. Good. Also, the pivoting device may be connected to the support member (for example, the front fork 17) directly or indirectly via another member. Here, it is preferable that the rotation device connect the support member and the vehicle body such that the support member is also inclined with the vehicle body when the vehicle body is inclined. The rotational drive device that applies torque for rotating the support member to the left and right to the support member may be another device such as a pump instead of the electric motor such as the steering motor 65. Also, the rotational drive may be omitted.
 なお、1つの支持部材は、複数の回動輪を、回転可能に支持してよい。また、車両が複数の回動輪を備える場合、車両は、複数の支持部材を備えてよい。そして、複数の支持部材のそれぞれが、1以上の回動輪を回転可能に支持してよい。また、回動装置は、各支持部材に1つずつ、設けられていてよい。 Note that one support member may rotatably support a plurality of pivoting wheels. In addition, when the vehicle includes a plurality of turning wheels, the vehicle may include a plurality of support members. Each of the plurality of support members may rotatably support one or more pivoting wheels. In addition, one rotation device may be provided for each support member.
 いずれの場合も、図1で説明したトレールLtは、正値であることが好ましい。すなわち、支持部材に支持されている1以上の回動輪のそれぞれの接地位置は、その支持部材の回動軸と地面との交点よりも後方向DB側に位置していることが好ましい。この構成によれば、図9のように、傾斜角Tを調整することによって、容易に回動輪にトルクを作用させることができるので、車両の進行方向の目標の方向からのずれを容易に抑制できる。 In any case, the trail Lt described in FIG. 1 is preferably a positive value. That is, it is preferable that the ground contact position of each of the one or more pivoting wheels supported by the support member is located on the back direction DB side of the intersection point between the pivot shaft of the support member and the ground. According to this configuration, as shown in FIG. 9, the torque can be easily applied to the turning wheel by adjusting the inclination angle T, so that the deviation of the traveling direction of the vehicle from the target direction is easily suppressed. it can.
(7)回動制御部170(図11)は、特定の条件が満たされる場合に、前輪支持装置41を許容モードで制御する。上記実施例では、特定の条件は、車速Vが許容速度範囲内であることである。特定の条件は、他の任意の条件であってよい。また、前輪支持装置41は、常時、許容モードで制御されてよい。いずれの場合も、前輪支持装置41は、回動輪がハンドル角に拘わらず車体90の傾斜の変化に追随して車体90に対して左右に回動することを許容するように構成されている、と言える。 (7) The rotation control unit 170 (FIG. 11) controls the front wheel support device 41 in the allowable mode when the specific condition is satisfied. In the above embodiment, the specific condition is that the vehicle speed V is within the allowable speed range. The particular condition may be any other condition. Also, the front wheel support device 41 may be controlled at all times in the permissible mode. In any case, the front wheel support device 41 is configured to allow the pivoting wheel to pivot to the left and right with respect to the vehicle body 90 following the change in the inclination of the vehicle body 90 regardless of the steering wheel angle. It can be said.
(8)操作入力部と支持部材とに接続されている接続部の構成は、図1の接続部50の構成に代えて、他の種々の構成であってよい。接続部50の第3部分53は、コイルバネに代えて、トーションバネ、ゴム等の種々の弾性体であってよい。また、第3部分53は、弾性体に限らず、他の種類の装置であってよい(例えば、ダンパ)。また、第3部分53は、流体クラッチ、流体トルクコンバータなどの、流体を介してトルクを伝達する装置であってよい。このように、接続部50の第3部分53は、弾性体とダンパと流体クラッチと流体トルクコンバータとのうちの少なくとも1つを含んでよい。 (8) The configuration of the connection portion connected to the operation input portion and the support member may be other various configurations instead of the configuration of the connection portion 50 of FIG. 1. The third portion 53 of the connection portion 50 may be various elastic bodies such as a torsion spring, rubber, etc., instead of the coil spring. In addition, the third portion 53 is not limited to an elastic body, and may be another type of device (for example, a damper). In addition, the third portion 53 may be a device that transmits torque via fluid, such as a fluid clutch, a fluid torque converter, or the like. Thus, the third portion 53 of the connection 50 may include at least one of an elastic body, a damper, a fluid clutch, and a fluid torque converter.
 また、接続部は、操作入力部に、直接的、または、他の部材(例えば、支持棒41ax)を介して間接的に、接続されてよい。また、接続部50は、支持部材(例えば、前フォーク17)に、直接的、または、他の部材を介して間接的に、接続されてよい。そして、接続部は、操作入力部と支持部材との間の相対位置と相対方向との少なくとも一方の変化を許容する可動部分を含むことが好ましい。また、接続部は、操作入力部と支持部材との間の相対位置と相対方向との少なくとも一方のズレに応じて操作入力部と支持部材とにトルクを付与するように構成されていることが好ましい。ここで、接続部は、操作入力部に入力される操作量に拘わらず車体の傾斜の変化に追随して支持部材に接続された1以上の回動輪が左右に回動することを許容するように構成されていることが好ましい。なお、接続部は、省略されてよい。 Also, the connection portion may be connected to the operation input portion directly or indirectly via another member (for example, the support rod 41ax). Also, the connection portion 50 may be connected to the support member (for example, the front fork 17) directly or indirectly via another member. The connection portion preferably includes a movable portion that allows change in at least one of the relative position and the relative direction between the operation input portion and the support member. Further, the connection portion is configured to apply torque to the operation input portion and the support member in accordance with at least one of a relative position between the operation input portion and the support member and a relative direction. preferable. Here, the connecting portion is configured to allow one or more pivoting wheels connected to the support member to rotate left and right following the change in the inclination of the vehicle body regardless of the amount of operation input to the operation input portion. It is preferable to be configured. The connection may be omitted.
(9)車体90を幅方向に傾斜させる傾斜機構の構成としては、リンク機構30(図4)を含む傾斜機構89の構成に代えて、他の種々の構成を採用可能である。例えば、リンク機構30が台に置換されてよい。台には、モータ51L、51Rが固定される。そして、台と第1支持部82とは、軸受によって、回動可能に連結される。リーンモータ25は、台に対して、第1支持部82を、右方向DR側と左方向DL側とのそれぞれに回動させる。これにより、車体90は、右方向DR側と左方向DL側とのそれぞれに、傾斜できる。 (9) As the configuration of the tilting mechanism for tilting the vehicle body 90 in the width direction, various other configurations can be adopted instead of the configuration of the tilting mechanism 89 including the link mechanism 30 (FIG. 4). For example, the link mechanism 30 may be replaced by a stand. The motors 51L, 51R are fixed to the table. And a stand and the 1st support part 82 are rotatably connected with a bearing. The lean motor 25 rotates the first support portion 82 with respect to the base in each of the right direction DR side and the left direction DL side. Thereby, the vehicle body 90 can be inclined to each of the right direction DR side and the left direction DL side.
 また、一対の車輪12L、12R(図5(B))のそれぞれが、車体90を支持する部材82に上下方向にスライド可能に取り付けられてよい。そして、一対の車輪12L、12Rの間の上下方向の相対位置が、部材82と車輪12Lとを連結する第1液圧シリンダと、部材82と車輪12Rとを連結する第2液圧シリンダと、によって変更されてもよい。 Further, each of the pair of wheels 12L and 12R (FIG. 5B) may be slidably attached to a member 82 supporting the vehicle body 90 in the vertical direction. A first hydraulic cylinder connecting the member 82 and the wheel 12L, and a second hydraulic cylinder connecting the member 82 and the wheel 12R, and the relative position between the pair of wheels 12L and 12R in the vertical direction connects the member 82 and the wheel 12L; It may be changed by
 一般的には、傾斜機構は、駆動装置を含み、駆動装置により車体を幅方向に傾斜させる種々の装置であってよい。例えば、傾斜機構は、「車両の幅方向に互いに離れて配置された一対の車輪の少なくとも一方に直接的または間接的に接続された第1部材」と、「車体に直接的または間接的に接続された第2部材」と、駆動装置と、を含んでよい。駆動装置は、第1部材と第2部材との相対的な位置を変化させる力(例えば、第1部材に対する第2部材の向きを変化させるトルク)を第1部材と第2部材とに印加する。傾斜機構は、さらに、「第1部材を第2部材に可動に接続する接続装置」を含んでよい。接続装置は、例えば、第1部材を第2部材にスライド可能に接続する液圧シリンダであってよい。また、接続装置は、第1部材と第2部材とを回動可能に連結する軸受(例えば、転がり軸受、または、滑り軸受)であってよい。駆動装置は、リーンモータ25のような電気モータであってよい。傾斜機構が、液圧シリンダを含む場合、駆動装置は、ポンプであってよい。 In general, the tilting mechanism may be various devices that include a drive and cause the vehicle to tilt in the width direction by the drive. For example, the tilting mechanism is connected to the vehicle body directly or indirectly with "the first member directly or indirectly connected to at least one of a pair of wheels disposed apart from each other in the width direction of the vehicle". And the driving device. The driving device applies a force to change the relative position between the first member and the second member (for example, a torque that changes the direction of the second member with respect to the first member) to the first member and the second member . The tilting mechanism may further include "a connecting device for movably connecting the first member to the second member". The connecting device may be, for example, a hydraulic cylinder that slidably connects the first member to the second member. The connecting device may be a bearing (for example, a rolling bearing or a sliding bearing) rotatably connecting the first member and the second member. The drive may be an electric motor, such as a lean motor 25. If the tilting mechanism comprises a hydraulic cylinder, the drive may be a pump.
(10)旋回方向と旋回の程度とを示す操作量を入力するための操作入力部は、ハンドル41a(図1)のように左と右とに回動可能な部材に代えて、種々の装置であってよい。例えば、操作入力部は、予め決められた基準方向(例えば、直立方向)から左と右とに傾斜可能なレバーであってよい。レバーの傾斜方向(右と左とのいずれか)は、旋回方向を示し、基準方向からのレバーの傾斜の角度は、旋回の程度を示している。操作入力部は、機械的な動き(例えば、回動と傾斜とのいずれか)によって操作量を受け付ける装置に代えて、タッチパネル等のように電気的に操作量を受け付ける装置であってもよい。 (10) The operation input unit for inputting the operation amount indicating the turning direction and the turning degree is a variety of devices instead of a member that can be turned to the left and right like the handle 41a (FIG. 1) It may be. For example, the operation input unit may be a lever that can be tilted left and right from a predetermined reference direction (for example, an upright direction). The inclination direction of the lever (either right or left) indicates the pivoting direction, and the inclination angle of the lever from the reference direction indicates the degree of pivoting. The operation input unit may be a device that electrically receives an operation amount, such as a touch panel, instead of a device that receives an operation amount by mechanical movement (for example, either rotation or tilt).
(11)車両の複数の車輪の総数と配置としては、種々の構成を採用可能である。例えば、前輪の総数が2であり、後輪の総数が1であってもよい。前輪の総数が2であり、後輪の総数が2であってもよい。幅方向に互いに離れて配置された一対の車輪が、前輪であってもよく、また、回動輪であってもよい。後輪が回動輪であってもよい。駆動輪が前輪であってもよい。いずれの場合も、車両は、車両の幅方向に互いに離れて配置された一対の車輪と、1個以上の他の車輪と、を含むN個(Nは3以上の整数)の車輪を備えることが好ましい。そして、N個の車輪は、1個以上の前輪と、前輪よりも後方向DB側に配置された1個以上の後輪と、を含むことが好ましい。この構成によれば、車両の停止時に車両が自立できる。ここで、一対の車輪と他の車輪との少なくとも一方が、車両の前進方向に対して左右に回動可能な1以上の回動輪として構成されていることが好ましい。すなわち、一対の車輪のみが回動輪であってよく、他の車輪のみが回動輪であってよく、一対の車輪と他の車輪とを含む3以上の車輪が回動輪であってよい。ここで、1以上の回動輪に含まれる他の車輪の総数は、任意の数であってよい。また、駆動輪を駆動する駆動装置は、電気モータに代えて、車輪を回転させる任意の装置であってよい(例えば、内燃機関)。また、車両の最大定員数は、1人に代えて、2人以上であってもよい。 (11) Various configurations can be adopted as the total number and arrangement of the plurality of wheels of the vehicle. For example, the total number of front wheels may be two and the total number of rear wheels may be one. The total number of front wheels may be two, and the total number of rear wheels may be two. The pair of wheels disposed apart from each other in the width direction may be front wheels or pivot wheels. The rear wheel may be a pivoting wheel. The driving wheels may be front wheels. In any case, the vehicle includes N (N is an integer of 3 or more) wheels including a pair of wheels disposed apart from one another in the width direction of the vehicle and one or more other wheels. Is preferred. The N wheels preferably include one or more front wheels and one or more rear wheels disposed closer to the rear direction DB than the front wheels. According to this configuration, the vehicle can stand on its own when the vehicle is stopped. Here, it is preferable that at least one of the pair of wheels and the other wheel is configured as one or more pivoting wheels that can pivot to the left and right with respect to the forward direction of the vehicle. That is, only a pair of wheels may be pivoting wheels, only the other wheels may be pivoting wheels, and three or more wheels including the pair of wheels and the other wheels may be pivoting wheels. Here, the total number of other wheels included in the one or more pivoting wheels may be any number. Also, the drive device for driving the drive wheels may be any device that rotates the wheels (for example, an internal combustion engine) instead of the electric motor. Further, the maximum number of vehicles may be two or more instead of one.
(12)車両の構成としては、上述の構成に代えて、他の種々の構成を採用可能である。図4の実施例において、モータ51L、51Rは、サスペンションを介して、リンク機構30に接続されてもよい。主制御部100(図11)の機能のうちの少なくとも一部が、他の制御部によって実現されてもよい。例えば、主制御部100(図11)の機能のうちのリーンモータ25を制御するための機能の少なくとも一部が、リーンモータ制御部102によって実現されてもよい。主制御部100(図11)の機能のうちの操舵モータ65を制御するための機能の少なくとも一部が、操舵モータ制御部103によって実現されてもよい。制御装置110が、1つの制御部によって構成されてもよい。制御装置110は、コンピュータを含まない電気回路(例えば、ASIC(Application Specific Integrated Circuit)、アナログ電気回路等)によって、構成されてよい。車両の制御に用いられる対応関係(例えば、マップデータMT、MAF、Mx、Mcによって示される対応関係)は、車両10が適切に走行できるように、実験的に決定されてよい。また、制御装置は、車両の制御に用いられる対応関係を、車両の状態に応じて、動的に変更してよい。例えば、車両は、車体の重量を測定する重量センサをー備え、制御装置は、車体の重量に応じて対応関係を調整してよい。 (12) As the configuration of the vehicle, various other configurations can be adopted instead of the above-described configuration. In the embodiment of FIG. 4, the motors 51L, 51R may be connected to the link mechanism 30 via a suspension. At least a part of the functions of the main control unit 100 (FIG. 11) may be realized by another control unit. For example, at least a part of the functions for controlling the lean motor 25 among the functions of the main control unit 100 (FIG. 11) may be realized by the lean motor control unit 102. At least a part of the functions for controlling the steering motor 65 among the functions of the main control unit 100 (FIG. 11) may be realized by the steering motor control unit 103. The control device 110 may be configured by one control unit. The control device 110 may be configured by an electric circuit not including a computer (for example, an application specific integrated circuit (ASIC), an analog electric circuit, etc.). The correspondence (for example, the correspondence shown by map data MT, MAF, Mx, Mc) used for control of the vehicle may be experimentally determined so that the vehicle 10 can appropriately travel. Further, the control device may dynamically change the correspondence used for control of the vehicle according to the state of the vehicle. For example, the vehicle may include a weight sensor that measures the weight of the vehicle body, and the controller may adjust the correspondence according to the weight of the vehicle body.
(13)鉛直方向センサ126の制御部126cは、ジャイロセンサ126gと加速度センサ126aとからの情報に加えて、車両10の動きに関連する他の情報を用いて、鉛直下方向DDを検出してよい。他の情報としては、例えば、GPS(Global Positioning System)を用いて特定される車両10の位置が、用いられてよい。制御部126cは、鉛直下方向DDを、GPSによる位置の変化に応じて、補正してもよい。GPSによる位置の変化に基づく補正量は、予め実験的に決定されてよい。なお、制御部126cは、種々の電気回路であってよく、例えば、コンピュータを含む電気回路であってよく、コンピュータを含まない電気回路(例えば、ASIC)であってもよい。ジャイロセンサ126gは、角加速度に代えて、角速度を検出するセンサであってよい。 (13) The control unit 126c of the vertical direction sensor 126 detects the vertically downward direction DD using other information related to the movement of the vehicle 10 in addition to the information from the gyro sensor 126g and the acceleration sensor 126a. Good. As other information, for example, the position of the vehicle 10 identified using GPS (Global Positioning System) may be used. The control unit 126c may correct the vertically downward direction DD in accordance with a change in position due to GPS. The correction amount based on the change in position by GPS may be determined in advance experimentally. The control unit 126c may be various electric circuits, for example, an electric circuit including a computer, or an electric circuit not including a computer (for example, an ASIC). The gyro sensor 126 g may be a sensor that detects an angular velocity instead of the angular acceleration.
(14)上記各実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、図11の制御装置110の機能を、専用のハードウェア回路によって実現してもよい。 (14) In each of the above embodiments, part of the configuration realized by hardware may be replaced by software, and conversely, part or all of the configuration implemented by software is replaced by hardware You may do so. For example, the functions of the control device 110 of FIG. 11 may be realized by a dedicated hardware circuit.
 また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。 In addition, when part or all of the functions of the present invention are realized by a computer program, the program is provided in the form of being stored in a computer readable recording medium (for example, a non-temporary recording medium). be able to. The program may be used while being stored on the same or different recording medium (computer readable recording medium) as provided. The “computer readable recording medium” is not limited to portable recording mediums such as memory cards and CD-ROMs, but is connected to internal storage devices in computers such as various ROMs and computers such as hard disk drives. It may also include external storage.
 以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。 Although the present invention has been described above based on the examples and modifications, the above-described embodiment of the present invention is for the purpose of facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be modified and improved without departing from the spirit and the scope of the claims, and the present invention includes the equivalents thereof.
 本発明は、車両に、好適に利用できる。 The present invention is suitably applicable to a vehicle.
10…車両、11…座席、12F…前輪、12L…左後輪(駆動輪)、12R…右後輪(駆動輪)、12Fc…重心、12La、12Ra…ホイール、12Lb、12Rb…タイヤ、17…前フォーク、20…本体部、20a…前部、20b…底部、20c…後部、20d…支持部、25…リーンモータ、30…リンク機構、21…中縦リンク部材、31D…下横リンク部材、31U…上横リンク部材、33L…左縦リンク部材、33R…右縦リンク部材、38、39…軸受、41…前輪支持装置、41a…ハンドル、41ax…支持棒、45…アクセルペダル、46…ブレーキペダル、47…シフトスイッチ、50…接続部、51…第1部分、52…第2部分、53…第3部分、51L…左電気モータ、51R…右電気モータ、65…操舵モータ、68…軸受、70…サスペンションシステム、70L…左サスペンション、70R…右サスペンション、71L、71R…コイルスプリング、72L、72R…ショックアブソーバ、75…連結部、80…後輪支持部、82…第1支持部、83…第2支持部、89…傾斜機構、90…車体、90c…重心、110…制御装置、100…主制御部、101…駆動装置制御部、102…リーンモータ制御部、103…操舵モータ制御部、100p、101p、102p、103p…プロセッサ、100v、101v、102v、103v…揮発性記憶装置、100n、101n、102n、103n…不揮発性記憶装置、101c、102c、103c…電気回路(電力制御部)、120…バッテリ、122…車速センサ、123…ハンドル角センサ、124…車輪角センサ、125…制御角センサ、126…鉛直方向センサ、126a…加速度センサ、126c…制御部、126g…ジャイロセンサ、127…軸トルクセンサ、145…アクセルペダルセンサ、146…ブレーキペダルセンサ、170…回動制御部、180…回動輪支持部、190…傾斜制御部、MAF、MT、Mc、Mx…マップデータ、DF…前方向、DB…後方向、DL…左方向、DR…右方向、DU…鉛直上方向、DD…鉛直下方向、CA…キャスター角、AF…車輪角、P1…接触中心、P2…交点、GL…地面、Cf…前中心、Cb…後中心、Cr…旋回中心、Lh…ホイールベース、Lt…トレール、Tc…制御角 Reference Signs List 10 vehicle 11 seat 12F front wheel 12L left rear wheel (drive wheel) 12R right rear wheel (drive wheel) 12Fc center of gravity 12La 12Ra wheel 12Lb 12Rb tire 17 17 Front fork 20 body part 20a front part 20b bottom part 20c rear part 20d support part 25 lean motor 30 link mechanism 21 middle vertical link member 31D lower horizontal link member 31U ... upper horizontal link member, 33L ... left vertical link member, 33R ... right vertical link member, 38, 39 ... bearing, 41 ... front wheel support device, 41a ... handle, 41ax ... support rod, 45 ... accelerator pedal, 46 ... brake Pedal 47 shift switch 50 connection portion 51 first portion 52 second portion 53 third portion 51 L left electric motor 51 R right electric motor 65 steering 68, bearings 70, suspension systems 70L, left suspension 70R, right suspension 71L, 71R coil springs 72L, 72R shock absorbers 75, connection portions 80, rear wheel support portions 82, 82 First support portion 83 Second support portion 89 Tilting mechanism 90 Car body 90c Center of gravity 110 Control device 100 Main control portion 101 Drive device control portion 102 Lean motor control portion 103 ... steering motor control unit, 100p, 101p, 102p, 103p ... processor, 100v, 101v, 102v, 103v ... volatile memory, 100n, 101n, 102n, 103n ... nonvolatile memory, 101c, 102c, 103c ... electricity Circuit (power control unit), 120: battery, 122: vehicle speed sensor, 123: han Wheel angle sensor 124 wheel angle sensor 125 control angle sensor 126 vertical direction sensor 126a acceleration sensor 126c control unit 126g gyro sensor 127 axis torque sensor 145 accelerator pedal sensor 146 ... brake pedal sensor, 170 ... rotation control unit, 180 ... rotation wheel support unit, 190 ... inclination control unit, MAF, MT, Mc, Mx ... map data, DF ... forward direction, DB ... backward direction, DL ... left direction , DR ... rightward direction, DU ... vertically upward direction, DD ... vertically downward direction, CA ... caster angle, AF ... wheel angle, P1 ... contact center, P2 ... intersection point, GL ... ground, Cf ... front center, Cb ... rear center , Cr ... turning center, Lh ... wheel base, Lt ... trail, Tc ... control angle

Claims (4)

  1.  車両であって、
     前記車両の幅方向に互いに離れて配置された一対の車輪と、1個以上の他の車輪と、を含むN個(Nは3以上の整数)の車輪であって、前記一対の車輪と他の車輪との少なくとも一方が前記車両の前進方向に対して左右に回動可能な1以上の回動輪として構成されるとともに、1個以上の前輪と1個以上の後輪とを含む、N個の車輪と、
     車体と、
     駆動装置を含み前記駆動装置により前記車体を前記幅方向に傾斜させる傾斜機構と、
     旋回方向と旋回の程度とを示す操作量を入力するための操作入力部と、
     前記操作入力部へ入力される前記操作量を用いて前記駆動装置を制御する傾斜制御部と、
     前記1以上の回動輪を支持する回動輪支持部と、
     車両の動作状態を示すパラメータであって前記車体の傾斜角とは独立なパラメータを測定するセンサと、
     を備え、
     前記回動輪支持部は、前記1以上の回動輪が前記操作量に拘わらず前記車体の傾斜の変化に追随して前記車体に対して左右に回動することを許容するように構成されており、
     前記傾斜制御部は、前記操作量に加えて前記パラメータを用いて、前記パラメータが目標値に近づくように、前記駆動装置を制御する、
     車両。
    A vehicle,
    N (N is an integer of 3 or more) wheels including a pair of wheels disposed apart from one another in the width direction of the vehicle and one or more other wheels, wherein the pair of wheels and the other N at least one of the wheels is configured as one or more pivoting wheels that can be pivoted to the left and right with respect to the forward direction of the vehicle, and includes one or more front wheels and one or more rear wheels With the wheels of
    With the car body,
    A tilt mechanism including a drive device for tilting the vehicle body in the width direction by the drive device;
    An operation input unit for inputting an operation amount indicating a turning direction and a turning degree;
    A tilt control unit that controls the drive device using the operation amount input to the operation input unit;
    A pivoting wheel support that supports the one or more pivoting wheels;
    A sensor that measures the operating condition of the vehicle and is independent of the tilt angle of the vehicle body;
    Equipped with
    The pivoting wheel support portion is configured to allow the one or more pivoting wheels to pivot to the left and right with respect to the vehicle body in accordance with a change in inclination of the vehicle body regardless of the operation amount. ,
    The tilt control unit controls the drive device such that the parameter approaches a target value using the parameter in addition to the operation amount.
    vehicle.
  2.  請求項1に記載の車両であって、
     前記回動輪支持部は、
      前記1以上の回動輪を、回転可能に支持する支持部材と、
      前記支持部材を、前記車体に対して左右に回動可能に支持する回動装置と、
      前記操作量を用いて特定される方向からの前記支持部材の回動に対する抵抗トルクを生成する抵抗トルク生成部と、
     を備え、
     前記センサは、前記抵抗トルクを測定するセンサであり、
     前記傾斜制御部は、前記トルクがゼロに近づくように、前記駆動装置を制御する、
     車両。
    A vehicle according to claim 1, wherein
    The pivoting wheel support is
    A support member rotatably supporting the one or more pivoting wheels;
    A rotating device that supports the support member so as to be rotatable to the left and right with respect to the vehicle body;
    A resistance torque generation unit that generates a resistance torque for rotation of the support member from a direction specified using the operation amount;
    Equipped with
    The sensor is a sensor that measures the resistance torque,
    The tilt control unit controls the drive device such that the torque approaches zero.
    vehicle.
  3.  請求項1に記載の車両であって、
     前記センサは、前記車両のヨーレートを測定するセンサであり、
     前記傾斜制御部は、前記ヨーレートが前記操作量を用いて特定される目標値に近づくように、前記駆動装置を制御する、
     車両。
    A vehicle according to claim 1, wherein
    The sensor is a sensor that measures a yaw rate of the vehicle.
    The tilt control unit controls the drive device such that the yaw rate approaches a target value specified using the operation amount.
    vehicle.
  4.  請求項1に記載の車両であって、
     前記センサは、前記1以上の回動輪の方向を測定するセンサであり、
     前記傾斜制御部は、前記1以上の回動輪の方向が前記操作量を用いて特定される目標の方向に近づくように、前記駆動装置を制御する、
     車両。
    A vehicle according to claim 1, wherein
    The sensor is a sensor that measures the direction of the one or more rotating wheels,
    The tilt control unit controls the drive device such that the direction of the one or more rotating wheels approaches a direction of a target specified using the operation amount.
    vehicle.
PCT/JP2018/047537 2017-12-28 2018-12-25 Vehicle WO2019131618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253934A JP2019119276A (en) 2017-12-28 2017-12-28 vehicle
JP2017-253934 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131618A1 true WO2019131618A1 (en) 2019-07-04

Family

ID=67067375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047537 WO2019131618A1 (en) 2017-12-28 2018-12-25 Vehicle

Country Status (2)

Country Link
JP (1) JP2019119276A (en)
WO (1) WO2019131618A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000168586A (en) * 1998-12-04 2000-06-20 Honda Motor Co Ltd Electric power steering device
JP2011046273A (en) * 2009-08-27 2011-03-10 Equos Research Co Ltd Vehicle
JP2012051460A (en) * 2010-09-01 2012-03-15 Toyota Motor Corp Vehicle
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000168586A (en) * 1998-12-04 2000-06-20 Honda Motor Co Ltd Electric power steering device
JP2011046273A (en) * 2009-08-27 2011-03-10 Equos Research Co Ltd Vehicle
JP2012051460A (en) * 2010-09-01 2012-03-15 Toyota Motor Corp Vehicle
JP2016222024A (en) * 2015-05-27 2016-12-28 株式会社エクォス・リサーチ vehicle

Also Published As

Publication number Publication date
JP2019119276A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP6557880B2 (en) vehicle
CN108025785B (en) Vehicle with a steering wheel
JP6524343B2 (en) vehicle
WO2018180755A1 (en) Vehicle
US20210269017A1 (en) Vehicle
WO2019088085A1 (en) Vehicle
WO2020138494A1 (en) Vehicle
US20210206446A1 (en) Vehicle
WO2018212186A1 (en) Vehicle
WO2019131618A1 (en) Vehicle
JP2019081475A (en) vehicle
JP7290175B2 (en) vehicle
WO2018180754A1 (en) Vehicle
WO2020138495A1 (en) Vehicle
JP2019098885A (en) vehicle
JP2018193009A (en) vehicle
JP2018172072A (en) vehicle
JP2020050012A (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894682

Country of ref document: EP

Kind code of ref document: A1