WO2020136938A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2020136938A1
WO2020136938A1 PCT/JP2019/020680 JP2019020680W WO2020136938A1 WO 2020136938 A1 WO2020136938 A1 WO 2020136938A1 JP 2019020680 W JP2019020680 W JP 2019020680W WO 2020136938 A1 WO2020136938 A1 WO 2020136938A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
inflow
outflow port
heat exchanger
port
Prior art date
Application number
PCT/JP2019/020680
Other languages
English (en)
French (fr)
Inventor
和平 新宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19906431.2A priority Critical patent/EP3904787A4/en
Priority to JP2020562313A priority patent/JP6984046B2/ja
Publication of WO2020136938A1 publication Critical patent/WO2020136938A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/133Mass flow of refrigerants through the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle device.
  • the refrigeration cycle apparatus includes a compressor that compresses and raises the temperature of the gaseous refrigerant, a condenser that radiatively condenses and liquefies the pressurized and elevated temperature of the gaseous refrigerant, and expands the liquefied refrigerant under reduced pressure to It is provided with an expansion valve that partially evaporates, and an evaporator that evaporates and vaporizes the remaining liquid refrigerant to remove heat from the surroundings.
  • the refrigerant vaporized in the evaporator is returned to the compressor.
  • the refrigerant circulates among the compressor, the condenser, the expansion valve, and the evaporator.
  • the refrigerant releases heat to the environment outside the condenser while passing through the condenser. While passing through the evaporator, the refrigerant absorbs heat from the environment outside the evaporator.
  • Both the condenser and the evaporator are heat exchangers that collect heat between the refrigerant and the external environment, and have the same basic mechanical structure.
  • the refrigeration cycle device is used as a heat source for a refrigerator or a freezer, but it is also used as a heat source for an air conditioner.
  • a refrigeration cycle apparatus used as a heat source for a refrigerator or the like an evaporator is always arranged inside a refrigerator or the like, and a condenser is always arranged outside the refrigerator.
  • the air conditioner When using the air conditioner as a cooler, it is necessary to make the heat exchanger arranged indoors function as an evaporator and the heat exchanger arranged outdoors function as a condenser.
  • the air conditioner When the air conditioner is used as a heater, it is necessary that the heat exchanger arranged indoors functions as a condenser and the heat exchanger arranged outdoors functions as an evaporator. Therefore, the refrigeration cycle device used as the heat source of the air conditioner needs to be provided with the flow path switching device that changes the flowing direction of the refrigerant between the cooling operation and the heating operation.
  • the heat exchanger arranged indoors is called the utilization side heat exchanger
  • the heat exchanger arranged outdoors is called the heat source side heat exchanger. ..
  • Patent Document 1 discloses a vehicle air conditioner including a four-way valve as a flow path switching device.
  • Patent Document 2 The specific configuration of the four-way valve is shown in Patent Document 2.
  • the four-way valve described in Patent Document 2 is disposed inside the valve housing in which the first to fourth ports are opened, and is rotated about an axis perpendicular to a plane in which the first to fourth ports are disposed. It is equipped with a valve body.
  • this four-way valve by rotating the valve element about the axis, the first port and the second port are in communication connection, and the third port and the fourth port are in communication connection, It is possible to switch between a state in which the first port and the fourth port are communicatively connected and a state in which the second port and the third port are communicatively connected.
  • R407C freon-based refrigerant
  • GWP Global Warming Potential
  • carbon dioxide which has both noncombustibility and low GWP properties, is considered promising as an alternative refrigerant for an air conditioner for vehicles.
  • the use of carbon dioxide as a refrigerant of an air conditioner for a vehicle is also described in Patent Document 1.
  • Carbon dioxide has a design pressure of 14.0 Mpa when used as a refrigerant for a refrigeration cycle device, which is considerably higher than the design pressure of R407C of 2.94 Mpa. Therefore, when carbon dioxide is used as the refrigerant, it is necessary to enhance the pressure resistance of the refrigeration cycle device. Naturally, it is necessary to improve the pressure resistance of the flow path switching device.
  • refrigerant stagnation occurs in which the refrigerant stays in the compressor.
  • the refrigerant dissolves in the lubricating oil in the compressor and the viscosity of the lubricating oil decreases, resulting in poor lubrication.
  • the compressor is restarted after the stagnation of the refrigerant, the refrigerant dissolved in the lubricating oil may be gasified at a dash, and the lubricating oil may be foamed to make it impossible to sufficiently supply the oil.
  • the present invention has been made in view of the above problems, is a refrigeration cycle apparatus that can use a high-pressure refrigerant, can be made smaller and lighter, and can suppress refrigerant stagnation.
  • the purpose is to provide.
  • the refrigeration cycle apparatus includes an inflow port into which a refrigerant flows, an outflow port from which a refrigerant flows out, first and second inflow/outflow ports into and out of which a refrigerant flows, an inflow port and a first outflow/outflow port.
  • a first communication flow path communicating with the port, a second communication flow path communicating with the first inflow/outflow port and the outflow port, and an outflow port and the second inflow/outflow port A third communication flow path for communicating with each other, a fourth communication flow path for communication between the second inflow/outflow port and the inflow port, and a fourth communication flow path arranged in each of the first to fourth communication flow paths.
  • a flow passage switching device including first to fourth two-way valves that open and close each of the communication passages 1 to 4; and a compressor arranged between an outflow port and an inflow port of the flow passage switching device.
  • a heat exchanger on the use side connected to the first inflow/outflow port of the flow path switching device, a heat exchanger on the heat source side connected to the second inflow/outflow port of the flow path switching device, and a heat exchanger on the use side
  • an expansion valve arranged between the heat source side heat exchanger and a first annular flow that starts from the outflow port of the flow path switching device and returns to the inflow port of the flow path switching device through the compressor.
  • the second inflow/outflow port of the flow path switching device starting from the channel and the first inflow/outflow port of the flow path switching device, passing through the use side heat exchanger, the expansion valve, and the heat source side heat exchanger in this order.
  • a second annular flow path returning to the.
  • the flow path switching device is constituted by four two-way valves instead of the conventional four-way valve. Since the structure of the two-way valve is simpler than that of the four-way valve, the pressure resistance can be enhanced relatively easily. Therefore, the increase in external dimensions and mass is small when the pressure resistance is improved. In addition, since the first to fourth communication channels can be closed at the same time, when the refrigeration cycle device is stopped, the compressor can be isolated from the second annular channel to prevent refrigerant stagnation.
  • Explanatory drawing which shows the structure of the refrigerating-cycle apparatus which concerns on the 1st Embodiment of this invention.
  • Explanatory drawing which shows the structure of the flow-path switching device with which the refrigerating-cycle apparatus shown in FIG. 1 is equipped.
  • Explanatory drawing which shows the effect
  • Explanatory drawing which shows the effect
  • Explanatory drawing which shows the structure of the flow-path switching device with which the refrigeration cycle apparatus which concerns on 2nd Embodiment is equipped.
  • Explanatory drawing which shows the structure of the refrigerating-cycle apparatus which concerns on a 1st modification.
  • Explanatory drawing which shows the structure of the refrigerating-cycle apparatus which concerns on a 2nd modification.
  • Explanatory drawing which shows the structure of the refrigerating-cycle apparatus which concerns on a 3rd modification.
  • Explanatory drawing which shows the structure of the refrigerating-cycle apparatus which concerns on a 4th modification.
  • FIG. 1 is an explanatory diagram showing a configuration of a refrigeration cycle apparatus 1 according to the first embodiment of the present invention.
  • the refrigeration cycle device 1 is a device that is mounted on a vehicle (not shown) and adjusts the temperature of the air in the vehicle interior of the vehicle, that is, cools and heats the vehicle interior. Further, the refrigeration cycle device 1 uses carbon dioxide as a refrigerant.
  • the refrigeration cycle device 1 includes a flow path switching device 2 that changes the direction in which the refrigerant flows.
  • the flow path switching device 2 includes an inflow port 2a into which the refrigerant flows, an outflow port 2b from which the refrigerant flows, and first and second inflow/outflow ports 2c and 2d through which the refrigerant flows in or out.
  • the detailed configuration of the flow path switching device 2 will be described later.
  • a compressor 3 is arranged between the inflow port 2a and the outflow port 2b of the flow path switching device 2.
  • a pipe line 4 a is arranged between the outflow port 2 b and the compressor 3. Therefore, the refrigerant flowing out of the outflow port 2b flows into the compressor 3 through the pipe line 4a.
  • a pipe line 4b is arranged between the compressor 3 and the inflow port 2a. Therefore, the refrigerant that has been compressed inside the compressor 3 and has become high temperature and high pressure flows into the inflow port 2a through the pipe line 4b. In this way, the refrigerant circulates between the flow path switching device 2 and the compressor 3.
  • the first annular shape that starts from the outflow port 2 b of the flow path switching device 2 and returns to the inflow port 2 a of the flow path switching device 2 through the compressor 3.
  • the flow path 4 is formed.
  • the refrigeration cycle apparatus 1 includes a use side heat exchanger 5, a heat source side heat exchanger 6, and an expansion valve 7.
  • the utilization side heat exchanger 5 is connected to the first inflow/outflow port 2c of the flow path switching device 2 via the pipe 8a.
  • the heat source side heat exchanger 6 is connected to the second inflow/outflow port 2d of the flow path switching device 2 via the pipe 8d.
  • the expansion valve 7 is arranged between the use side heat exchanger 5 and the heat source side heat exchanger 6.
  • the expansion valve 7 is connected to the use side heat exchanger 5 via a pipe 8b and to the heat source side heat exchanger 6 via a pipe 8c.
  • a second annular flow path 8 is formed which passes through the vessel 6 in order and returns to the second inflow/outflow port 2d of the flow path switching device 2.
  • the flow direction of the refrigerant in the second annular flow passage 8 is changed by the flow passage switching device 2. The operation of the flow path switching device 2 will be described in detail later.
  • the user-side heat exchanger 5 is a heat exchanger that is installed in a compartment that is the target of air conditioning and that cools or heats the air in the compartment.
  • the utilization side heat exchanger 5 also includes a fan (not shown).
  • the heat-source-side heat exchanger 6 is a heat exchanger that is installed outside the compartment that is the target of air conditioning and releases the heat carried by the refrigerant to the atmosphere or releases the heat carried by the atmosphere to the refrigerant. ..
  • the heat source side heat exchanger 6 also includes a fan (not shown).
  • the expansion valve 7 is a device that decompresses and expands the liquefied refrigerant discharged from the heat exchanger 5 on the use side or the heat exchanger 6 on the heat source side to evaporate a part thereof.
  • the refrigeration cycle device 1 includes a control device 9.
  • the control device 9 is a computer that controls the entire refrigeration cycle device 1.
  • the flow path switching device 2, the compressor 3, the use side heat exchanger 5, the heat source side heat exchanger 6 and the expansion valve 7 are controlled by the control device 9.
  • FIG. 2 is an explanatory diagram showing the configuration of the flow path switching device 2 included in the refrigeration cycle device 1.
  • the flow path switching device 2 includes a first communication flow path 21 that connects between the inflow port 2a and the first outflow/inflow port 2c, the first inflow/outflow port 2c, and the outflow port. 2b, a third communication channel 23 that communicates between the outflow port 2b and the second inflow/outflow port 2d, and a second inflow/outflow port 2d.
  • a fourth communication flow path 24 is provided that communicates with the inflow port 2a.
  • the first to fourth communication flow paths 21 to 24 are respectively provided with the first to fourth electromagnetic opening/closing valves SV1 to SV4.
  • the first to fourth electromagnetic on-off valves SV1 to SV4 are two-way valves that are controlled by the controller 9 to open and close each of the first to fourth communication flow paths 21 to 24.
  • IN indicates the inlets of the first to fourth electromagnetic on-off valves SV1 to SV4
  • OUT indicates the outlets of the first to fourth electromagnetic on-off valves SV1 to SV4.
  • FIGS. 3A and 3B are diagrams showing the configuration and operation of the first to fourth electromagnetic on-off valves SV1 to SV4.
  • FIG. 3A is a sectional view of the first to fourth electromagnetic on-off valves SV1 to SV4 in the valve closed state
  • FIG. 3B is a sectional view of the first to fourth electromagnetic on-off valves SV1 to SV4 in the valve open state.
  • the first to fourth electromagnetic on-off valves SV1 to SV4 include a casing 31, and the casing 31 has an inflow port IN and an outflow port OUT.
  • a valve element 32 and a spring 33 are arranged inside the casing 31.
  • the spring 33 is an elastic member that biases the valve element 32 in a direction toward the valve seat 34.
  • valve element 32 In the state shown in FIG. 3A, the valve element 32 is pushed by the spring 33 and is in contact with the valve seat 34. Therefore, the flow path from the casing 31 to the outlet OUT is closed, so that the refrigerant flowing into the casing 31 through the inlet IN does not flow to the outlet OUT. Further, in the state shown in FIG. 3A, the fluid pressure of the refrigerant inside the casing 31 acts in a direction in which the valve body 32 is brought into contact with the valve seat 34.
  • a rod 35 made of a magnetic material is fixed to the back side of the valve body 32, that is, the surface opposite to the surface of the valve body 32 in contact with the valve seat 34.
  • a solenoid coil 36 is fixed to the casing 31. The rod 35 is inserted through the center of the solenoid coil 36. Therefore, when the solenoid coil 36 is energized under the control of the controller 9, the rod 35 is attracted to the solenoid coil 36 and moves upward in FIG. 3B, as shown in FIG. 3B. As a result, the valve element 32 separates from the valve seat 34. As a result, the refrigerant that has flowed into the casing 31 through the inflow port IN flows out through the outflow port OUT.
  • the inflow port 2a of the flow path switching device 2 is connected to the discharge port of the compressor 3, and the outflow port 2b is connected to the inflow port of the compressor 3. Therefore, when the compressor 3 is operating, that is, when the refrigeration cycle apparatus 1 is operating, the fluid pressure of the refrigerant in the inflow port 2a of the flow path switching device 2 is higher than the fluid pressure of the refrigerant in the outflow port 2b. , Always higher.
  • the inflow port IN is located near the inflow port 2a
  • the outflow port OUT is located near the outflow port 2b.
  • the fluid pressure of the refrigerant acting on the valve element 32 when the first to fourth electromagnetic on-off valves SV1 to SV4 are closed acts in the direction of pressing the valve element 32 against the valve seat 34. That is, the fluid pressure of the refrigerant acting on the valve element 32 acts in the direction of maintaining the valve closed state.
  • the first to fourth electromagnetic on-off valves SV1 to SV4 since the closed state of the first to fourth electromagnetic on-off valves SV1 to SV4 is maintained by the fluid pressure of the refrigerant, the first to fourth electromagnetic on-off valves SV1 to SV4 may be opened accidentally. Suppressed.
  • the flow path switching device 2 is controlled by the control device 9, and the first to fourth electromagnetic on-off valves SV1 to SV4 are controlled and opened/closed by the control device 9. Further, the control device 9 can set the open/closed states of the first to fourth electromagnetic on-off valves SV1 to SV4 to the states corresponding to the cooling operation mode, the heating operation mode, the pressure equalizing mode, the oil return mode and the stop mode. .. The above mode change is performed by a manual operation on the control device 9.
  • the refrigerant discharged from the compressor 3 flows into the heat source side heat exchanger 6 by sequentially tracing the pipeline 4b, the flow path switching device 2 and the pipeline 8d.
  • the refrigerant flows from the heat-source-side heat exchanger 6 into the utilization-side heat exchanger 5 by sequentially tracing the pipe line 8c, the expansion valve 7, and the pipe line 8b.
  • the refrigerant flowing into the utilization side heat exchanger 5 flows into the flow path switching device 2 through the pipe 8a.
  • the refrigerant flowing into the flow path switching device 2 flows back to the compressor 3 through the pipe line 4a.
  • the refrigerant circulates in the second annular flow passage 8 counterclockwise, that is, in the direction indicated by the arrow in FIG.
  • the heat source side heat exchanger 6 functions as a condenser. Moreover, the utilization side heat exchanger 5 functions as an evaporator. Therefore, in the heat source side heat exchanger 6, the heat carried by the refrigerant is released to the atmosphere. In the usage-side heat exchanger 5, the heat carried by the air in the compartment in which the usage-side heat exchanger 5 is arranged is absorbed by the refrigerant. As a result, the air in the compartment where the utilization side heat exchanger 5 is arranged is cooled.
  • Heating operation mode When operating the refrigeration cycle apparatus 1 in the heating operation mode, that is, when causing the refrigeration cycle apparatus 1 to function as a heater, the first electromagnetic on-off valve SV1 and the third electromagnetic on-off valve SV3 are opened and the second electromagnetic on-off valve SV3 is opened. The electromagnetic on-off valve SV2 and the fourth electromagnetic on-off valve SV4 are closed. Then, as shown in FIG. 5, in the flow path switching device 2, a flow path through which the refrigerant flows is formed between the inflow port 2a and the first outflow/outflow port 2c. Further, a flow path through which the refrigerant flows is formed between the outflow port 2b and the second inflow/outflow port 2d.
  • the refrigerant discharged from the compressor 3 flows into the usage-side heat exchanger 5 by sequentially tracing the pipeline 4b, the flow path switching device 2, and the pipeline 8a.
  • the refrigerant flows from the utilization-side heat exchanger 5 into the heat source-side heat exchanger 6 by sequentially tracing the pipeline 8b, the expansion valve 7, and the pipeline 8c.
  • the refrigerant flowing into the heat source side heat exchanger 6 flows into the flow path switching device 2 through the pipe 8d.
  • the refrigerant flowing into the flow path switching device 2 flows back to the compressor 3 through the pipe line 4a.
  • the refrigerant circulates in the second annular flow path 8 in the clockwise direction, that is, in the direction indicated by the arrow in FIG.
  • the refrigerant circulates in the second annular passage 8 in the clockwise direction, so that the use-side heat exchanger 5 functions as a condenser. Further, the heat source side heat exchanger 6 functions as an evaporator. Therefore, in the usage-side heat exchanger 5, the heat carried by the refrigerant is released to the air in the compartment in which the usage-side heat exchanger 5 is arranged. In the heat source side heat exchanger 6, the heat carried in the atmosphere is absorbed by the refrigerant. As a result, the air in the compartment where the utilization side heat exchanger 5 is arranged is heated.
  • all of the first to fourth electromagnetic on-off valves SV1 to SV4 are opened under the control of the control device 9.
  • the pressures of the refrigerant in the first annular flow path 4 and the second annular flow path 8 become equal.
  • the control device 9 controls the first electromagnetic on-off valve SV1 to be closed and the second to fourth electromagnetic on-off valves SV2 to SV4 to be opened.
  • the oil return mode is selected with the compressor 3 stopped, the lubricating oil that has flowed out into the first annular flow path 4 and the second annular flow path 8 is returned to the compressor 3.
  • the stop mode can be selected.
  • the stop mode is controlled by the control device 9 to close all of the first to fourth electromagnetic on-off valves SV1 to SV4.
  • the compressor 3 is isolated from the second annular flow path 8. That is, the flow of the refrigerant between the compressor 3 and the second annular flow path 8 is blocked.
  • the refrigerant does not flow into the compressor 3, the refrigerant does not stay in the compressor 3. Therefore, the occurrence of refrigerant stagnation in the compressor 3 is prevented.
  • the flow path switching device 2 is not limited to one in which the first to fourth electromagnetic on-off valves SV1 to SV4 are arranged in each of the first to fourth communication flow paths 21 to 24.
  • a plurality of first to fourth electromagnetic opening/closing valves SV1 to SV4 may be arranged in parallel in each of the first to fourth connecting flow paths 21 to 24. For example, as shown in FIG.
  • two first electromagnetic on-off valves SV1a and SV1b are provided in the first communication passage 21, and two second electromagnetic on-off valves SV2a are provided in the second communication passage 22.
  • SV2b, two third solenoid on-off valves SV3a, SV3b are arranged in the third communication passage 23, and two fourth solenoid on-off valves SV4a, SV4b are arranged in the fourth communication passage 24. May be.
  • a plurality of first to fourth electromagnetic on-off valves SV1 to SV4 are arranged in parallel in each of the first to fourth communication channels 21 to 24, the first to fourth communication channels 21 to Since the flow path resistance in 24 is reduced, the efficiency of the refrigeration cycle apparatus 1 is improved.
  • the refrigeration cycle apparatus 1 may include a sensor that determines the direction in which the refrigerant flows in the second annular flow path 8.
  • a pipe between the inflow port 2a and the compressor 3, that is, a pipe 4a is provided with a pressure sensor P1, and a pipe between the first inflow/outflow port 2c and the use side heat exchanger 5 is provided.
  • the pressure sensor P2 is provided in the passage, that is, the pipe 8a
  • the pressure sensor P3 is provided in the pipe between the outflow port 2b and the compressor 3, that is, the pipe 4a
  • the second inflow/outflow port 2d and the heat source side heat exchanger 6 are provided.
  • the pressure sensor P4 may be provided in each of the pipelines, that is, the pipeline 8d.
  • the pressure sensors P1, P2, P3 and P4 are sensors that detect the magnitude of the pressure of the refrigerant flowing in each pipe.
  • the sensor that determines the direction in which the refrigerant flows in the second annular flow path 8 is not limited to the set of the four pressure sensors P1 to P4 shown in FIG. As shown in FIG. 8, the refrigeration cycle apparatus 1 may include two pressure sensors P2 and P4.
  • the refrigerant is the second annular flow path 8 in FIG. It can be judged that the inside is circulating counterclockwise. That is, it can be determined that the refrigeration cycle device 1 is operated in the cooling operation cycle.
  • the sensors that determine the flow direction of the refrigerant in the second annular flow path 8 are not limited to the pressure sensors P1 to P4.
  • a temperature sensor T1 is provided in a pipe line between the first inflow/outflow port 2c and the use side heat exchanger 5, that is, a pipe line 8a, and a second inflow/outflow port 2d and a heat source side heat exchanger.
  • the temperature sensor T2 may be provided in each of the pipe lines between the six pipes, that is, the pipe line 8d.
  • the temperature sensors T1 and T2 are sensors that measure the temperature of the refrigerant flowing through the respective pipelines.
  • the refrigerant flows through the second annular flow path 8 in FIG. It can be judged that it circulates counterclockwise. That is, it can be determined that the refrigeration cycle device 1 is operated in the cooling operation cycle.
  • the refrigerant is the second annular flow path 8 in FIG. It can be judged that the inside is circulating clockwise. That is, it can be determined that the refrigeration cycle device 1 is operated in the heating operation cycle.
  • the sensors that determine the direction in which the refrigerant flows in the second annular flow path 8 are not limited to the pressure sensors P1 to P4 or the temperature sensors T1 and T2. Instead of these, flow velocity sensors F1 and F2 that directly measure the flow velocity and flow direction of the refrigerant flowing in the second annular flow path 8 may be provided. That is, as shown in FIG. 10, a flow velocity sensor F1 is provided in the conduit between the first inflow/outflow port 2c and the use side heat exchanger 5, that is, the pipe 8a, and the second inflow/outflow port 2d and the heat source side heat.
  • the flow rate sensor F2 may be provided in each of the conduits between the exchangers 6, that is, the conduits 8d.
  • the refrigeration cycle apparatus 1 includes both the flow velocity sensor F1 and the flow velocity sensor F2 has been shown, but either one of the flow velocity sensors F1 and F2 may be omitted. If the refrigeration cycle apparatus 1 is equipped with either one of the flow velocity sensors F1 and F2, the direction in which the refrigerant flows in the second annular flow path 8 can be determined.
  • the first to fourth electromagnetic on-off valves SV1 to SV4 are used instead of the conventional four-way valve. Is equipped with.
  • the first to fourth solenoid on-off valves SV1 to SV4 are two-way valves and have a simpler structure than a four-way valve, so that the pressure resistance can be easily enhanced. Therefore, even when using a refrigerant that circulates at a high pressure, it becomes easy to configure the flow path switching device 2 to be small and lightweight. As a result, it is easy to reduce the size and weight of the refrigeration cycle apparatus 1.
  • first to fourth electromagnetic on-off valves SV1 to SV4 that form the flow path switching device 2 can be opened and closed independently of each other, in the flow path switching device 2, in addition to the heating operation mode and the cooling operation mode, It is possible to select a stop mode, a transformation mode, or an oil return mode. Therefore, the occurrence of refrigerant stagnation or poor lubrication in the compressor 3 is suppressed.
  • the refrigeration cycle apparatus 1 includes the second annular flow path 8 including the pressure sensors P1 to P4, the temperature sensors T1 and T2, or the flow velocity sensors F1 and F2, and the second annular flow path.
  • the direction in which the refrigerant flows in the passage 8 can be confirmed. Therefore, control is easy.
  • the technical scope of the present invention is not limited to refrigeration cycle devices that use carbon dioxide as a refrigerant.
  • the air conditioner for a vehicle is illustrated, but the use of the refrigeration cycle device according to the present invention is not limited to the air conditioner for a vehicle.
  • the present invention can be suitably used as a refrigeration cycle device.
  • 1 refrigeration cycle device 2 flow path switching device, 2a inflow port, 2b outflow port, 2c first inflow/outflow port, 2d second inflow/outflow port, 3 compressor, 4 first annular flow path, 4a, 4b Pipe lines, 5 heat exchangers on the use side, 6 heat exchangers on the heat source side, 7 expansion valves, 8 second annular flow passages, 8a, 8b, 8c, 8d pipe passages, 9 control devices, 21 first communication flow passages , 22 second communication channel, 23 third communication channel, 24 fourth communication channel, 31 casing, 32 valve body, 33 spring, 34 valve seat, 35 rod, 36 solenoid coil, SV1, SV1a, SV1b first solenoid on-off valve, SV2, SV2a, SV2b second solenoid on-off valve, SV3, SV3a, SV3b third solenoid on-off valve, SV4, SV4a, SV4b fourth solenoid on-off valve, IN inlet port, OUT outlet Port,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷凍サイクル装置が備える流路切換装置(2)は、流入ポート(2a)と第1の流出入ポート(2c)との間を連絡する第1の連絡流路(21)と、第1の流出入ポート(2c)と流出ポート(2b)との間を連絡する第2の連絡流路(22)と、流出ポート(2b)と第2の流出入ポート(2d)との間を連絡する第3の連絡流路(23)と、第2の流出入ポート(2d)と流入ポート(2a)との間を連絡する第4の連絡流路(24)と、第1~4の連絡流路(21~24)のそれぞれに配置されて、第1~4の連絡流路(21~24)のそれぞれを開閉する第1~4の電磁開閉弁(SV1~SV4)とを備える。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関する。
 冷凍サイクル装置は、気体の冷媒を圧縮して昇温させる圧縮機と、昇圧及び昇温された気体の冷媒を放熱凝縮して液化させる凝縮器と、液化された冷媒を減圧膨張させて、その一部を蒸発させる膨張弁と、残りの液体の冷媒を蒸発気化させて、周りから熱を奪い取る蒸発器とを備えている。また、蒸発器において気化された冷媒は圧縮機に還流される。このように、冷凍サイクル装置においては、冷媒が、圧縮機と凝縮器と膨張弁と蒸発器との間を循環する。また、冷媒は、凝縮器を通過する間に、凝縮器の外部環境に熱を放出する。冷媒は、蒸発器を通過する間に、蒸発器の外部環境から熱を吸収する。凝縮器と蒸発器は、いずれも、冷媒と外部環境の間で熱の収受を行う熱交換器であって、基本的な機械的構成が共通する。
 冷凍サイクル装置は、冷蔵庫又は冷凍庫の熱源として使用されるが、空気調和装置の熱源としても使用される。冷蔵庫等の熱源として使用される冷凍サイクル装置においては、蒸発器は常に冷蔵庫等の庫内に配置され、凝縮器は常に庫外に配置される。
 空気調和装置を冷房機として使用する場合は、室内に配置される熱交換器を蒸発器として機能させ、また室外に配置される熱交換器を凝縮器として機能させる必要がある。空気調和装置を暖房機として使用する場合は、室内に配置される熱交換器を凝縮器として機能させ、また室外に配置される熱交換器を蒸発器として機能させる必要がある。そのため、空気調和装置の熱源として使用される冷凍サイクル装置においては、冷房運転時と暖房運転時とで冷媒の流れる方向を変更する流路切換装置を備える必要がある。なお、空気調和装置の熱源として使用される冷凍サイクル装置において、室内に配置される熱交換器は利用側熱交換器と呼ばれ、室外に配置される熱交換器は熱源側熱交換器と呼ばれる。
 従来、空気調和装置の熱源として使用される冷凍サイクル装置においては、四方弁が流路切換装置として多用されている。例えば、特許文献1には、流路切換装置として四方弁を備える車両用空調装置が示されている。
 四方弁の具体的な構成は特許文献2に示されている。特許文献2に記載の四方弁は、第1~4のポートが開口する弁ハウジングと、弁ハウジングの内部に配置されて、第1~4のポートが配置された平面に垂直な軸周りに回転する弁体を備えている。この四方弁においては、弁体を軸周りに回転させることによって、第1のポートと第2のポートとが連通接続されると共に第3のポートと第4のポートとが連通接続する状態と、第1のポートと第4のポートとが連通接続されると共に第2のポートと第3のポートとが連通接続する状態とを切り換えることができる。
特開2002-316531号公報 特開2002-22041号公報
 従来、車両用の空気調和装置においては、R407Cと呼ばれるフロン系の冷媒が多用されていた。しかしながら、R407CはGWP(Global Warming Potential:地球温暖化係数)が大きいので、地球温暖化防止の観点から低GWPへの置き換えが求められている。そこで、車両用の空気調和装置用の代替冷媒として、不燃性と低GWP性を兼ね備える二酸化炭素が有望視されている。車両用の空気調和装置の冷媒として二酸化炭素を使用することは、特許文献1にも記載されている。
 二酸化炭素は、冷凍サイクル装置の冷媒として使用する場合の設計圧力は14.0Mpaであって、R407Cの設計圧力2.94Mpaに比べて、相当に大きい。そのため、二酸化炭素を冷媒として使用する場合は、冷凍サイクル装置の耐圧性能を高める必要がある。当然、流路切換装置の耐圧性能を高める必要がある。
 しかしながら、四方弁は構造が複雑なので、流路切換装置として使用される四方弁の耐圧性能を高めようとすると、四方弁の外形寸法と質量が増大するという問題がある。その結果、冷凍サイクル装置全体の外形寸法と質量が増大する。特に、車両用の空気調和装置は小型化と軽量化の要求が厳しいので、流路切換装置を小型化軽量化することが強く求められている。
 また、四方弁によっては、冷凍サイクル装置の停止時における圧縮機への冷媒の流入を遮断できないので、圧縮機内に冷媒が滞留する冷媒寝込みと呼ばれる現象が発生する。冷媒寝込みが発生すると、圧縮機内の潤滑油に冷媒が溶け込んで潤滑油の粘度が低下し、その結果、潤滑不良を引き起こす。また、冷媒寝込みが発生した後で、圧縮機を再起動させると、潤滑油に溶け込んでいた冷媒が一気にガス化し、潤滑油が泡立った状態となって充分な給油ができなくなる虞もある。
 本発明は、上記の問題に鑑みてなされたものであり、高圧の冷媒を使用することができる冷凍サイクル装置であって、小型化軽量化が可能で、冷媒寝込みの抑制が可能な冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、冷媒が流入する流入ポートと、冷媒が流出する流出ポートと、冷媒が流入又は流出する第1及び第2の流出入ポートと、流入ポートと第1の流出入ポートとの間を連絡する第1の連絡流路と、第1の流出入ポートと流出ポートとの間を連絡する第2の連絡流路と、流出ポートと第2の流出入ポートとの間を連絡する第3の連絡流路と、第2の流出入ポートと流入ポートとの間を連絡する第4の連絡流路と、第1~4の連絡流路のそれぞれに配置されて、第1~4の連絡流路のそれぞれを開閉する第1~4の二方弁と、を備える流路切換装置と、流路切換装置の流出ポートと流入ポートとの間に配置される圧縮機と、流路切換装置の第1の流出入ポートに接続される利用側熱交換器と、流路切換装置の第2の流出入ポートに接続される熱源側熱交換器と、利用側熱交換器と熱源側熱交換器との間に配置される膨張弁と、流路切換装置の流出ポートを出発して、圧縮機を通って、流路切換装置の流入ポートに帰還する第1の環状流路と、流路切換装置の第1の流出入ポートを出発して、利用側熱交換器、膨張弁、熱源側熱交換器を、順に通って、流路切換装置の第2の流出入ポートに帰還する第2の環状流路と、を備える。
 本発明に係る冷凍サイクル装置においては、従来の四方弁に代えて4個の二方弁で流路切換装置を構成している。二方弁は四方弁に比べて構造が簡単なので、比較的容易に耐圧性能を高めることができる。そのため、耐圧性能を高めた場合の外形寸法と質量の増加が小さい。また、第1~4の連絡流路を同時に閉鎖できるので、冷凍サイクル装置の停止時において、圧縮機を第2の環状流路から隔離して、冷媒寝込みを防止することができる。
本発明の第1の実施の形態に係る冷凍サイクル装置の構成を示す説明図 図1に記載の冷凍サイクル装置が備える流路切換装置の構成を示す説明図 図2に記載の流路切換装置が備える電磁開閉弁の構成と作用を示す図であって、閉弁状態にある電磁開閉弁の断面図 図2に記載の流路切換装置が備える電磁開閉弁の構成と作用を示す図であって、開弁状態にある電磁開閉弁の断面図 図1に記載の冷凍サイクル装置を冷房モードで運転する場合における、当該冷凍サイクル装置の作用を示す説明図 図1に記載の冷凍サイクル装置を暖房モードで運転する場合における、当該冷凍サイクル装置の作用を示す説明図 第2の実施の形態に係る冷凍サイクル装置が備える流路切換装置の構成を示す説明図 第1の変形例に係る冷凍サイクル装置の構成を示す説明図 第2の変形例に係る冷凍サイクル装置の構成を示す説明図 第3の変形例に係る冷凍サイクル装置の構成を示す説明図 第4の変形例に係る冷凍サイクル装置の構成を示す説明図
 以下、本発明の実施形態に係る冷凍サイクル装置の構成と作用を、図面を参照しながら詳細に説明する。なお、各図面においては、同一または同等の部分に同一の符号を付している。
(第1の実施の形態)
 図1は、本発明の第1の実施形態に係る冷凍サイクル装置1の構成を示す説明図である。冷凍サイクル装置1は、図示しない車両に搭載されて、当該車両の車室内の空気の温度調整、つまり、車室の冷暖房を行う装置である。また、冷凍サイクル装置1は、二酸化炭素を冷媒として使用する。
 図1に示すように、冷凍サイクル装置1は、冷媒が流れる方向を変更する流路切換装置2を備えている。流路切換装置2は、冷媒が流入する流入ポート2aと、冷媒が流出する流出ポート2bと、冷媒が流入又は流出する第1及び第2の流出入ポート2c,2dとを備えている。流路切換装置2の詳細な構成については、後述する。
 流路切換装置2の流入ポート2aと流出ポート2bの間には、圧縮機3が配置されている。流出ポート2bと圧縮機3の間には管路4aが配置されている。そのため、流出ポート2bから流出した冷媒は、管路4aを通って圧縮機3の内部に流入する。また、圧縮機3と流入ポート2aの間には管路4bが配置されている。そのため、圧縮機3の内部で圧縮されて、高温高圧になった冷媒は、管路4bを通って、流入ポート2aに流入する。このように、冷媒は流路切換装置2と圧縮機3の間を循環する。また、管路4aと管路4bによれば、流路切換装置2の流出ポート2bを出発して、圧縮機3を通って、流路切換装置2の流入ポート2aに帰還する第1の環状流路4が形成される。
 また、図1に示すように、冷凍サイクル装置1は、利用側熱交換器5と熱源側熱交換器6と膨張弁7を備えている。利用側熱交換器5は管路8aを介して流路切換装置2の第1の流出入ポート2cに接続されている。熱源側熱交換器6は管路8dを介して流路切換装置2の第2の流出入ポート2dに接続されている。膨張弁7は、利用側熱交換器5と熱源側熱交換器6の間に配置されている。膨張弁7は、管路8bを介して利用側熱交換器5に、管路8cを介して熱源側熱交換器6に、それぞれ接続されている。このように、管路8a,8b,8c,8dによれば、流路切換装置2の第1の流出入ポート2cを出発して、利用側熱交換器5、膨張弁7、熱源側熱交換器6を、順に通って、流路切換装置2の第2の流出入ポート2dに帰還する第2の環状流路8が形成される。なお、第2の環状流路8において冷媒が流れる方向は、流路切換装置2によって変更される。流路切換装置2のかかる作用については、後で詳述する。
 利用側熱交換器5は、空気調整の対象である区画に設置されて、当該区画内の空気を冷却又は加温する熱交換器である。また、利用側熱交換器5は、図示しないファンを備えている。熱源側熱交換器6は、空気調整の対象である区画の外部に設置されて、冷媒に担持される熱を大気に放出、あるいは大気に担持される熱を冷媒に放出させる熱交換器である。熱源側熱交換器6も、図示しないファンを備えている。
 膨張弁7は、利用側熱交換器5あるいは熱源側熱交換器6から吐出される液化された冷媒を減圧膨張させて、その一部を蒸発させる装置である。
 また、図1に示すように、冷凍サイクル装置1は、制御装置9を備えている。制御装置9は、冷凍サイクル装置1の全体を制御するコンピュータである。流路切換装置2、圧縮機3、利用側熱交換器5、熱源側熱交換器6及び膨張弁7は、制御装置9によって制御される。
 図2は、冷凍サイクル装置1が備える流路切換装置2の構成を示す説明図である。図2に示すように、流路切換装置2は、流入ポート2aと第1の流出入ポート2cとの間を連絡する第1の連絡流路21と、第1の流出入ポート2cと流出ポート2bとの間を連絡する第2の連絡流路22と、流出ポート2bと第2の流出入ポート2dとの間を連絡する第3の連絡流路23と、第2の流出入ポート2dと流入ポート2aとの間を連絡する第4の連絡流路24とを備えている。また、第1~4の連絡流路21~24は、それぞれ第1~4の電磁開閉弁SV1~SV4を備えている。第1~4の電磁開閉弁SV1~SV4は制御装置9によって制御されて、第1~4の連絡流路21~24のそれぞれを開閉する二方弁である。なお、図2において、INは第1~4の電磁開閉弁SV1~SV4の流入口を、OUTは第1~4の電磁開閉弁SV1~SV4の流出口を、それぞれ示している。後述するように、第1~4の電磁開閉弁SV1~SV4が開弁されている場合、冷媒は流入口INから流出口OUTに向かって流れる。
 図3Aと図3Bは、第1~4の電磁開閉弁SV1~SV4の構成と作用を示す図である。図3Aは閉弁状態にある第1~4の電磁開閉弁SV1~SV4の断面図であり、図3Bは開弁状態にある第1~4の電磁開閉弁SV1~SV4の断面図である。図3Aと図3Bに示すように、第1~4の電磁開閉弁SV1~SV4は、ケーシング31を備えていて、ケーシング31には流入口INと流出口OUTが形成されている。ケーシング31の内部には、弁体32とばね33が配置されている。ばね33は弁体32を弁座34に向かう方向に付勢する弾性部材である。
 図3Aに示す状態において、弁体32は、ばね33に押されて弁座34に当接している。そのため、ケーシング31から流出口OUTに向かう流路が閉塞されるので、流入口INを通ってケーシング31の内部に流入した冷媒は流出口OUTに流れない。また、図3Aに示す状態において、ケーシング31の内部にある冷媒の流体圧は、弁体32を弁座34に当接させる方向に作用する。
 図3Aと図3Bに示すように、弁体32の裏側、つまり弁体32の弁座34と当接する面の反対側の面には磁性材料で構成されたロッド35が固定されている。また、ケーシング31にはソレノイドコイル36が固定されている。そして、ソレノイドコイル36の中心にはロッド35が挿通されている。そのため、制御装置9によって制御されて、ソレノイドコイル36に通電されると、図3Bに示すように、ロッド35はソレノイドコイル36に引き寄せられて、図3Bにおいて上方に移動する。その結果、弁体32は弁座34から離れる。その結果、流入口INを通ってケーシング31の内部に流入した冷媒は流出口OUTを通って流出する。
 図1に示すように、流路切換装置2の流入ポート2aは圧縮機3の吐出口に接続され、流出ポート2bは圧縮機3の流入口に接続されている。そのため、圧縮機3が動作している場合、つまり冷凍サイクル装置1が動作している場合、流路切換装置2の流入ポート2aにおける冷媒の流体圧は、流出ポート2bにおける冷媒の流体圧よりも、常に高くなる。また、図2に示すように、第1~4の電磁開閉弁SV1~SV4において、流入口INは流入ポート2aに近い側に、流出口OUTは流出ポート2bに近い側に、それぞれ位置している。そのため、第1~4の電磁開閉弁SV1~SV4が閉弁されている場合に弁体32に作用する冷媒の流体圧は、弁体32を弁座34に押し付ける方向に作用する。つまり、弁体32に作用する冷媒の流体圧は閉弁状態を維持する方向に作用する。このように、第1~4の電磁開閉弁SV1~SV4の閉弁状態は冷媒の流体圧によって維持されるので、第1~4の電磁開閉弁SV1~SV4が不用意に開弁することが抑制される。
 前述したように、流路切換装置2は制御装置9によって制御され、第1~4の電磁開閉弁SV1~SV4は制御装置9によって制御されて開閉される。また、制御装置9は、第1~4の電磁開閉弁SV1~SV4の開閉状態を、冷房運転モード、暖房運転モード、均圧モード、返油モード及び停止モードに対応した状態にすることができる。なお、上記モードの変更は、制御装置9に対する手動操作によってなされる。
(冷房運転モード)
 冷凍サイクル装置1を冷房運転モードで動作させる時、すなわち、冷凍サイクル装置1を冷房機として機能させる時は、第2の電磁開閉弁SV2と第4の電磁開閉弁SV4を開弁させ、第1の電磁開閉弁SV1と第3の電磁開閉弁SV3を閉弁させる。そうすると、図4に示すように、流路切換装置2において、流入ポート2aと第2の流出入ポート2dの間に冷媒が流れる流路が形成される。また流出ポート2bと第1の流出入ポート2cの間に冷媒が流れる流路が形成される。そのため、圧縮機3から吐出される冷媒は管路4b、流路切換装置2、管路8dを順に辿って、熱源側熱交換器6に流入する。その後、冷媒は、熱源側熱交換器6から、管路8c、膨張弁7及び管路8bを順に辿って、利用側熱交換器5に流入する。利用側熱交換器5に流入した冷媒は管路8aを通って流路切換装置2に流入する。流路切換装置2に流入した冷媒は管路4aを通って、圧縮機3に還流する。このように、冷媒は第2の環状流路8を反時計回りに、つまり、図4において矢印で示す方向に循環する。
 前述したように、冷房モードにおいては、冷媒が第2の環状流路8を反時計回りに循環するので、熱源側熱交換器6は凝縮器として機能する。また、利用側熱交換器5は蒸発器として機能する。そのため、熱源側熱交換器6においては冷媒に担持された熱が大気に放出される。利用側熱交換器5においては、利用側熱交換器5が配置された区画内の空気に担持されていた熱が冷媒に吸収される。その結果、利用側熱交換器5が配置された区画内の空気が冷却される。
(暖房運転モード)
 冷凍サイクル装置1を暖房運転モードで動作させる時、すなわち、冷凍サイクル装置1を暖房機として機能させる時は、第1の電磁開閉弁SV1と第3の電磁開閉弁SV3を開弁させ、第2の電磁開閉弁SV2と第4の電磁開閉弁SV4を閉弁させる。そうすると、図5に示すように、流路切換装置2において、流入ポート2aと第1の流出入ポート2cの間に冷媒が流れる流路が形成される。また流出ポート2bと第2の流出入ポート2dの間に冷媒が流れる流路が形成される。そのため、圧縮機3から吐出される冷媒は管路4b、流路切換装置2、管路8aを順に辿って、利用側熱交換器5に流入する。その後、冷媒は、利用側熱交換器5から、管路8b、膨張弁7及び管路8cを順に辿って、熱源側熱交換器6に流入する。熱源側熱交換器6に流入した冷媒は管路8dを通って流路切換装置2に流入する。流路切換装置2に流入した冷媒は管路4aを通って、圧縮機3に還流する。このように、冷媒は第2の環状流路8を時計回りに、つまり、図5において矢印で示す方向に循環する。
 前述したように、暖房運転モードにおいては、冷媒が第2の環状流路8を時計回りに循環するので、利用側熱交換器5は凝縮器として機能する。また、熱源側熱交換器6は蒸発器として機能する。そのため、利用側熱交換器5においては冷媒に担持された熱が、利用側熱交換器5が配置された区画内の空気に放出される。熱源側熱交換器6においては、大気に担持されていた熱が冷媒に吸収される。その結果、利用側熱交換器5が配置された区画内の空気が加温される。
(均圧モード)
 冷房運転モードにおいては、熱源側熱交換器6内の冷媒は利用側熱交換器5の冷媒に比べて、高圧の状態にある。一方、暖房運転モードにおいては、熱源側熱交換器6内の冷媒は利用側熱交換器5の冷媒に比べて、低圧の状態にある。そのため、冷房運転モードから直接、暖房運転モードに、あるいは、暖房運転モードから直接、冷房運転モードに切り換えると、高圧の冷媒が圧縮機3に流入するので、圧縮機3に過大な負荷が加わる。このような現象を回避するために、冷凍サイクル装置1においては、以下に説明する均圧モードを経て、冷房運転モードと暖房運転モードを相互に切り換える。
 均圧モードにおいては、制御装置9に制御されて、第1~4の電磁開閉弁SV1~SV4の全てが開弁される。第1~4の電磁開閉弁SV1~SV4の全てが開弁されると、第1の環状流路4及び第2の環状流路8内の冷媒の圧力が均等になる。その後、冷房運転モードあるいは暖房運転モードを選択して、第1~4の電磁開閉弁SV1~SV4のそれぞれを、開弁あるいは閉弁して、その後に圧縮機3を動作させると、圧縮機3に高圧の冷媒が流入することがない。そのため、圧縮機3に過大な負荷が加わることがない。
(返油モード)
 冷凍サイクル装置1を運転すると、圧縮機3の潤滑油の一部が冷媒に混じって、第1の環状流路4及び第2の環状流路8内に流出する。その結果、圧縮機3において潤滑不良が生じることがある。このような現象を回避するために、冷凍サイクル装置1においては、必要に応じて、以下に説明する返油モードを選択して、第1の環状流路4及び第2の環状流路8内に流出した潤滑油を、圧縮機3に還流させることができる。
 返油モードにおいては、制御装置9に制御されて、第1の電磁開閉弁SV1が閉弁され、第2~4の電磁開閉弁SV2~SV4が開弁される。圧縮機3を停止させた状態において、返油モードを選択すると、第1の環状流路4及び第2の環状流路8内に流出した潤滑油が圧縮機3に還流される。
(停止モード)
 冷凍サイクル装置1が停止した状態においては、停止モードを選択することができる。停止モードが選択されると、制御装置9に制御されて、第1~4の電磁開閉弁SV1~SV4の全てが閉弁される。第1~4の電磁開閉弁SV1~SV4の全てが閉弁されると、圧縮機3が第2の環状流路8から隔離される。つまり、圧縮機3と第2の環状流路8の間の冷媒の流通が遮断される。その結果、圧縮機3に冷媒が流入しないので、圧縮機3内に冷媒が滞留しない。そのため、圧縮機3内での冷媒寝込みの発生が防止される。
(第2の実施の形態)
 上記の第1の実施の形態においては、流路切換装置2の第1~4の連絡流路21~24のそれぞれに、第1~4の電磁開閉弁SV1~SV4を1台ずつ配置する例を示した。しかしながら、流路切換装置2は、第1~4の連絡流路21~24のそれぞれに、第1~4の電磁開閉弁SV1~SV4が1台ずつ配置されたものには限定されない。流路切換装置2は、第1~4の連絡流路21~24のそれぞれに、複数台の第1~4の電磁開閉弁SV1~SV4を並列に配置しても良い。例えば、図6に示すように、第1の連絡流路21に2台の第1の電磁開閉弁SV1a,SV1bを、第2の連絡流路22に2台の第2の電磁開閉弁SV2a,SV2bを、第3の連絡流路23に2台の第3の電磁開閉弁SV3a,SV3bを、第4の連絡流路24に2台の第4の電磁開閉弁SV4a,SV4bを、それぞれ配置しても良い。このように、第1~4の連絡流路21~24のそれぞれに、複数台の第1~4の電磁開閉弁SV1~SV4を並列に配置すれば、第1~4の連絡流路21~24における流路抵抗が小さくなるので、冷凍サイクル装置1の効率が改善される。
(第1の変形例)
 第1及び第2の実施の形態に係る冷凍サイクル装置1に、第2の環状流路8内において冷媒が流れる方向を判別するセンサを備えても良い。例えば、図7に示すように、流入ポート2aと圧縮機3の間の管路、つまり管路4aに圧力センサP1を、第1の流出入ポート2cと利用側熱交換器5の間の管路、つまり管路8aに圧力センサP2を、流出ポート2bと圧縮機3の間の管路、つまり管路4aに圧力センサP3を、第2の流出入ポート2dと熱源側熱交換器6の間の管路、つまり管路8dに圧力センサP4を、それぞれ備えても良い。なお、圧力センサP1,P2,P3,P4は各管路内を流れる冷媒の圧力の大きさを検知するセンサである。 
 図7に記載の冷凍サイクル装置1において、圧力センサP1~P4で計測される圧力の値p1~p4が、p1≧p4>p2≧p3の関係にあれば、図7において、冷媒が第2の環状流路8内を反時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、冷房運転サイクルで運転されていると判断できる。
 また、図7に記載の冷凍サイクル装置1において、圧力センサP1~P4で計測される圧力の値p1~p4が、p1≧p2>p4≧p3の関係にあれば、図7において、冷媒が第2の環状流路8内を時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、暖房運転サイクルで運転されていると判断できる。
(第2の変形例)
 第2の環状流路8内において冷媒が流れる方向を判別するセンサは、図7に示した4台の圧力センサP1~P4の組には限定されない。図8に示すように、冷凍サイクル装置1に2台の圧力センサP2,P4を備えても良い。
 図8に記載の冷凍サイクル装置1において、圧力センサP2,P4で計測される圧力の値p2,p4が、p4>p2の関係にあれば、図8において、冷媒が第2の環状流路8内を反時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、冷房運転サイクルで運転されていると判断できる。
 また、図8に記載の冷凍サイクル装置1において、圧力センサP2,P4で計測される圧力の値p2,p4が、p2>p4の関係にあれば、図8において、冷媒が第2の環状流路8内を時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、暖房運転サイクルで運転されていると判断できる。
(第3の変形例)
 第2の環状流路8内において冷媒が流れる方向を判別するセンサは、圧力センサP1~P4には限定されない。図9に示すように、第1の流出入ポート2cと利用側熱交換器5の間の管路、つまり管路8aに温度センサT1を、第2の流出入ポート2dと熱源側熱交換器6の間の管路、つまり管路8dに温度センサT2を、それぞれ備えても良い。なお、温度センサT1,T2は各管路内を流れる冷媒の温度を計測するセンサである。 
 図9に記載の冷凍サイクル装置1において、温度センサT1,T2で計測される温度t1,t2が、t2>t1の関係にあれば、図9において、冷媒が第2の環状流路8内を反時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、冷房運転サイクルで運転されていると判断できる。
 また、図9に記載の冷凍サイクル装置1において、温度センサT1,T2で計測される温度t1,t2が、t1>t2の関係にあれば、図9において、冷媒が第2の環状流路8内を時計周りに循環していると判断できる。つまり、冷凍サイクル装置1が、暖房運転サイクルで運転されていると判断できる。
(第4の変形例)
 第2の環状流路8内において冷媒が流れる方向を判別するセンサは、圧力センサP1~P4あるいは温度センサT1,T2には限定されない。これらに代えて、第2の環状流路8内を流れる冷媒の流速及び流向を直接測定する流速センサF1,F2を備えても良い。すなわち、図10に示すように、第1の流出入ポート2cと利用側熱交換器5の間の管路、つまり管路8aに流速センサF1を、第2の流出入ポート2dと熱源側熱交換器6の間の管路、つまり管路8dに流速センサF2を、それぞれ備えても良い。
 なお、上記においては、冷凍サイクル装置1に流速センサF1と流速センサF2の両方を備える例を示したが、流速センサF1,F2の何れか一方を省いてもよい。冷凍サイクル装置1に、流速センサF1,F2の何れか一方を備えていれば、第2の環状流路8内において冷媒が流れる方向を判別することができる。
 以上説明したように、上記の第1及び第2の実施の形態に係る冷凍サイクル装置1は、流路切換装置2において、従来の四方弁に代えて第1~4の電磁開閉弁SV1~SV4を備えている。第1~4の電磁開閉弁SV1~SV4は二方弁であって、四方弁に比べて構造が簡単なので、耐圧性能の強化が容易である。そのため、高圧力で循環される冷媒を使用する場合であっても、流路切換装置2を小型及び軽量に構成することが容易になる。その結果、冷凍サイクル装置1の小型化及び軽量化が容易になる。
 また、流路切換装置2を構成する第1~4の電磁開閉弁SV1~SV4は、互いに独立して開閉させることができるので、流路切換装置2において、暖房運転モードと冷房運転モードに加えて、停止モード、変圧モード、返油モードを選択することができる。そのため、圧縮機3における、冷媒寝込みあるいは潤滑不良の発生が抑制される。
 また、上記の各変形例に係る冷凍サイクル装置1は、第2の環状流路8に、圧力センサP1~P4、温度センサT1,T2 あるいは流速センサF1,F2を備えて、第2の環状流路8内において冷媒が流れる方向を確認することができる。そのため、制御が容易である。
 なお、本発明の技術的範囲は、上記の実施の形態によっては限定されない。本発明は特許請求の範囲に示された技術的思想の限りにおいて、自由に、応用、変形、あるいは改良して実施することができる。
 特に、本発明の技術的範囲は、二酸化炭素を冷媒として使用する冷凍サイクル装置には限定されない。
 また、背景技術の説明において、車両用の空気調和装置を例示したが、本発明に係る冷凍サイクル装置の用途は、車両用の空気調和装置には限定されない。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2018年12月25日に出願された日本国特許出願2018-240670号に基づく。本明細書中に日本国特許出願2018-240670号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、冷凍サイクル装置として好適に利用することができる。
1 冷凍サイクル装置、2 流路切換装置、2a 流入ポート、2b 流出ポート、2c 第1の流出入ポート、2d 第2の流出入ポート、3 圧縮機、4 第1の環状流路、4a,4b 管路、5 利用側熱交換器、6 熱源側熱交換器、7 膨張弁、8 第2の環状流路、8a,8b,8c,8d 管路、9 制御装置、21 第1の連絡流路、22 第2の連絡流路、23 第3の連絡流路、24 第4の連絡流路、31 ケーシング、32 弁体、33 ばね、34 弁座、35 ロッド、36 ソレノイドコイル、SV1,SV1a,SV1b 第1の電磁開閉弁、SV2,SV2a,SV2b 第2の電磁開閉弁、SV3,SV3a,SV3b 第3の電磁開閉弁、SV4,SV4a,SV4b 第4の電磁開閉弁、IN 入口ポート、OUT 出口ポート、P1,P2,P3,P4 圧力センサ、T1,T2 温度センサ、F1,F2 流速センサ

Claims (7)

  1.  冷媒が流入する流入ポートと、
     前記冷媒が流出する流出ポートと、
     前記冷媒が流入又は流出する第1及び第2の流出入ポートと、
     前記流入ポートと前記第1の流出入ポートとの間を連絡する第1の連絡流路と、
     前記第1の流出入ポートと前記流出ポートとの間を連絡する第2の連絡流路と、
     前記流出ポートと前記第2の流出入ポートとの間を連絡する第3の連絡流路と、
     前記第2の流出入ポートと前記流入ポートとの間を連絡する第4の連絡流路と、
     前記第1~4の連絡流路のそれぞれに配置されて、前記第1~4の連絡流路のそれぞれを開閉する第1~4の二方弁と、
     を備える流路切換装置と、
     前記流路切換装置の前記流出ポートと前記流入ポートとの間に配置される圧縮機と、
     前記流路切換装置の前記第1の流出入ポートに接続される利用側熱交換器と、
     前記流路切換装置の前記第2の流出入ポートに接続される熱源側熱交換器と、
     前記利用側熱交換器と前記熱源側熱交換器との間に配置される膨張弁と、
     前記流路切換装置の前記流出ポートを出発して、前記圧縮機を通って、前記流路切換装置の前記流入ポートに帰還する第1の環状流路と、
     前記流路切換装置の前記第1の流出入ポートを出発して、前記利用側熱交換器、前記膨張弁、前記熱源側熱交換器を、順に通って、前記流路切換装置の前記第2の流出入ポートに帰還する第2の環状流路と、を備える、
     冷凍サイクル装置。
  2.  前記第1~4の連絡流路のそれぞれにおいて、複数台の前記第1~4の二方弁が並列に配置されている、
     請求項1に記載の冷凍サイクル装置。
  3.  前記流路切換装置に接続される管路に、前記第2の環状流路内において冷媒が流れる方向を判別するセンサを備える、
     請求項1に記載の冷凍サイクル装置。
  4.  前記センサは、
     前記流入ポートと前記圧縮機の間の管路、前記第1の流出入ポートと前記利用側熱交換器の間の管路、前記第2の流出入ポートと前記熱源側熱交換器の間の管路、前記流出ポートと前記圧縮機の間の管路、のそれぞれに配置されて、
     各前記管路内を流れる冷媒の圧力の大きさを検知する圧力センサである、
     請求項3に記載の冷凍サイクル装置。
  5.  前記センサは、
     前記第1の流出入ポートと前記利用側熱交換器の間の管路、及び前記第2の流出入ポートと前記熱源側熱交換器の間の管路、のそれぞれに配置されて、
     各前記管路内を流れる冷媒の圧力の大きさを検知する圧力センサである、
     請求項3に記載の冷凍サイクル装置。
  6.  前記センサは、
     前記第1の流出入ポートと前記利用側熱交換器の間の管路、及び前記第2の流出入ポートと前記熱源側熱交換器の間の管路、のそれぞれに配置されて、
     各前記管路内を流れる冷媒の温度の高低を検知する温度センサである、
     請求項3に記載の冷凍サイクル装置。
  7.  前記センサは、
     前記第1の流出入ポートと前記利用側熱交換器の間の管路、又は前記第2の流出入ポートと前記熱源側熱交換器の間の管路に配置されて、
     各前記管路内において前記冷媒が流れる方向を検知する流速センサである、
     請求項3に記載の冷凍サイクル装置。
PCT/JP2019/020680 2018-12-25 2019-05-24 冷凍サイクル装置 WO2020136938A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19906431.2A EP3904787A4 (en) 2018-12-25 2019-05-24 REFRIGERATION CIRCUIT DEVICE
JP2020562313A JP6984046B2 (ja) 2018-12-25 2019-05-24 冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-240670 2018-12-25
JP2018240670 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020136938A1 true WO2020136938A1 (ja) 2020-07-02

Family

ID=71126997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020680 WO2020136938A1 (ja) 2018-12-25 2019-05-24 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3904787A4 (ja)
JP (1) JP6984046B2 (ja)
WO (1) WO2020136938A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481639B2 (ja) 2022-06-24 2024-05-13 ダイキン工業株式会社 熱源ユニット、および冷凍装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650642A (ja) * 1992-07-29 1994-02-25 Daikin Ind Ltd 空気調和装置
JP2002022041A (ja) 2000-07-11 2002-01-23 Saginomiya Seisakusho Inc 四方弁
JP2002316531A (ja) 2001-02-13 2002-10-29 Sanyo Electric Co Ltd 車両用空調装置
JP2005016890A (ja) * 2003-06-27 2005-01-20 Daikin Ind Ltd 冷凍装置
JP2008249268A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2011080654A (ja) * 2009-10-06 2011-04-21 Fuji Koki Corp ヒートポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650642A (ja) * 1992-07-29 1994-02-25 Daikin Ind Ltd 空気調和装置
JP2002022041A (ja) 2000-07-11 2002-01-23 Saginomiya Seisakusho Inc 四方弁
JP2002316531A (ja) 2001-02-13 2002-10-29 Sanyo Electric Co Ltd 車両用空調装置
JP2005016890A (ja) * 2003-06-27 2005-01-20 Daikin Ind Ltd 冷凍装置
JP2008249268A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2011080654A (ja) * 2009-10-06 2011-04-21 Fuji Koki Corp ヒートポンプ装置

Also Published As

Publication number Publication date
EP3904787A1 (en) 2021-11-03
JP6984046B2 (ja) 2021-12-17
JPWO2020136938A1 (ja) 2021-09-09
EP3904787A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP5188571B2 (ja) 空気調和装置
JP4254863B2 (ja) 空気調和装置
CN111417826B (zh) 调温系统
WO2011141959A1 (ja) 切換装置及び空気調和装置
JP4553761B2 (ja) 空気調和装置
WO2010119555A1 (ja) 熱媒体変換機及び空気調和装置
JPWO2017145219A1 (ja) 冷凍サイクル装置
JP2008096093A (ja) 冷凍装置
JPWO2006057141A1 (ja) 空気調和装置
CN103733005B (zh) 空调装置
CN109804209A (zh) 空调装置
US9581359B2 (en) Regenerative air-conditioning apparatus
EP3441696B1 (en) Refrigeration cycle device
WO2013146415A1 (ja) ヒートポンプ式加熱装置
WO2020136938A1 (ja) 冷凍サイクル装置
JP6111663B2 (ja) 空気調和装置
CN105953337B (zh) 冰蓄热空调机组及其控制方法
JP2015218954A (ja) 冷凍サイクル装置
JP5208030B2 (ja) 空気調和装置
JP2010230288A (ja) 分岐ユニット
JP6791235B2 (ja) 冷凍装置
WO2016189666A1 (ja) 空気調和装置
JP2016166714A (ja) 熱生成ユニット
JP2009139037A (ja) 冷媒回路
CN115230428A (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019906431

Country of ref document: EP

Effective date: 20210726