WO2020136901A1 - Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device - Google Patents

Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2020136901A1
WO2020136901A1 PCT/JP2018/048581 JP2018048581W WO2020136901A1 WO 2020136901 A1 WO2020136901 A1 WO 2020136901A1 JP 2018048581 W JP2018048581 W JP 2018048581W WO 2020136901 A1 WO2020136901 A1 WO 2020136901A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
sensitive adhesive
dicing
photo
pressure
Prior art date
Application number
PCT/JP2018/048581
Other languages
French (fr)
Japanese (ja)
Inventor
美千子 彼谷
義信 尾崎
大久保 恵介
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020217021116A priority Critical patent/KR102699401B1/en
Priority to JP2020562295A priority patent/JP7099547B2/en
Priority to PCT/JP2018/048581 priority patent/WO2020136901A1/en
Priority to CN201880100421.8A priority patent/CN113228237A/en
Priority to SG11202106221PA priority patent/SG11202106221PA/en
Priority to TW108147291A priority patent/TWI816004B/en
Publication of WO2020136901A1 publication Critical patent/WO2020136901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a photocurable pressure sensitive adhesive evaluation method, a dicing/die bonding integrated film and its manufacturing method, and a semiconductor device manufacturing method.
  • a dicing process for separating a semiconductor wafer into individual semiconductor chips and a die bonding process for adhering the separated semiconductor chips to a lead frame, a package substrate, etc. are usually provided.
  • a dicing/die-bonding integrated film which is a combination of a die-bonding film having an adhesive layer used for adhesion, is mainly used.
  • the dicing/die-bonding integrated film used for manufacturing a thin semiconductor chip is required to have a high success rate of pickup and a short peeling time in the pickup, and form a photocurable pressure-sensitive adhesive layer.
  • the selection of photo-curable adhesive is important.
  • JP-A-2003-338467 JP, 2004-017639 A JP, 2006-089521, A JP, 2006-266798, A JP, 2014-055250, A JP, 2014-181258, A JP, 2005-028146, A
  • the present invention has been made in view of such circumstances, and its main object is to provide a new evaluation method for a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film.
  • Factors that influence the releasability between the adherend and the adhesive include the adhesive strength of the adhesive (bulk property of the adhesive), the interaction at the interface between the adherend and the adhesive (surface property of the adhesive), etc. Can be mentioned. It is generally known that the bulk property contributes to the peeling property more than the surface property, and the peeling property tends to be controlled by adjusting the bulk property.
  • the inventors of the present invention have made diligent studies and found that when the adherend and the pressure-sensitive adhesive were peeled off, a specific stringing phenomenon was observed more than when no stringing phenomenon was observed. In this case, it was found that the peeling progress was accelerated by the propagation of the breaking impact of the stringer, and the peeling speed was improved, and the present invention was completed.
  • One aspect of the present invention provides a method for evaluating a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film.
  • This photocurable pressure-sensitive adhesive evaluation method is a substrate layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and an adhesive layer are prepared in this order to prepare a dicing/die-bonding integrated film, Irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet rays under the following irradiation conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and under the following peeling conditions, a cured product of the adhesive layer and the photocurable pressure-sensitive adhesive layer: The first step of measuring the peeling force when the film is peeled off, and the dicing/die bonding in which the base material layer, the photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and the adhesive layer are laminated in this order.
  • Prepare a body film treat the photocurable pressure-sensitive adhesive layer under the following heating and cooling conditions, and irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet rays under the following irradiation conditions to obtain a cured product of the photocurable pressure-sensitive adhesive layer.
  • the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled under the following peeling conditions, and the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is scanned with a scanning probe microscope.
  • the second step of measuring the number and width of traces of thread-plucking marks on the surface, and the quality of the photo-curable adhesive is determined based on the peeling force and the number and width of traces of plucking marks.
  • a third step Irradiation conditions
  • Irradiation intensity 70 mW/cm 2
  • Integrated light intensity 150 mJ/cm 2
  • Temperature 25 ⁇ 5°C
  • Humidity 55 ⁇ 10% Peeling angle: 30° Peeling speed: 600 mm/min (heating and cooling conditions)
  • Cooling treatment Air cooling to 25 ⁇ 5°C for 30 minutes
  • Such a photo-curable pressure-sensitive adhesive evaluation method is to check in advance whether the photo-curable pressure-sensitive adhesive to be used as the photo-curable pressure-sensitive adhesive layer of the dicing/die-bonding integrated film has excellent pickup property. Useful for forecasting.
  • the third step is a step of judging the quality of the photocurable pressure-sensitive adhesive based on whether or not the peeling force and the number and width of traces of the string-plucking traces satisfy the following conditions (a) and (b). Good.
  • the median width of the thread-plucking marks is 120 to 200 nm.
  • the photocurable pressure-sensitive adhesive contains a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a crosslinking agent having two or more functional groups capable of reacting with the reactive functional group.
  • the (meth)acrylic copolymer may further contain a methacrylic acid monomer unit.
  • the adhesive layer may contain an epoxy resin, an epoxy resin curing agent, and a (meth)acrylic copolymer having an epoxy group.
  • the present invention on the substrate layer, a step of forming a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive determined to be good in the above-mentioned photo-curable pressure-sensitive adhesive evaluation method, And a step of forming an adhesive layer on the photocurable pressure-sensitive adhesive layer, to provide a method for producing a dicing/die-bonding integrated film.
  • the present invention provides a step of attaching an adhesive layer of a dicing/die-bonding integrated film obtained by the above-described manufacturing method to a semiconductor wafer, the semiconductor wafer, the adhesive layer, and the photocurable pressure-sensitive adhesive layer. Dicing into individual pieces, irradiating the photo-curable pressure-sensitive adhesive layer with ultraviolet rays to form a cured product of the photo-curable pressure-sensitive adhesive layer, and adhering from the cured product of the photo-curable pressure-sensitive adhesive layer.
  • a method for manufacturing a semiconductor device which comprises a step of picking up a semiconductor element to which an agent layer is attached and a step of adhering the semiconductor element to a support substrate for mounting the semiconductor element via an adhesive layer.
  • the thickness of the semiconductor wafer may be 35 ⁇ m or less.
  • the dicing may be an application of stealth dicing.
  • the present invention comprises a substrate layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive determined to be good in the above-mentioned photo-curable pressure-sensitive adhesive evaluation method, and an adhesive layer.
  • a dicing/die bonding integrated film provided in this order is provided.
  • a new evaluation method for a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film there is provided a dicing/die bonding integrated film and a method for producing the same, which is based on such a method for evaluating a photocurable pressure-sensitive adhesive. Further, according to the present invention, there is provided a method of manufacturing a semiconductor device using such a dicing/die bonding integrated film.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an integrated dicing/die bonding film.
  • FIG. 2 is a diagram showing an example of a shape image profile and a phase image profile of a surface of a cured product of a photocurable pressure-sensitive adhesive layer, FIG. 2( a) is a shape image profile, and FIG. 2( b) is , A phase image profile.
  • FIG. 3 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer, FIG. 3( a) is a shape image profile, and FIG. 3( b) is FIG. 3) is a cross-sectional profile of the line drawing mark X taken along line iii-ii.
  • FIG. 4 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer
  • FIG. 4( a) is a shape image profile
  • FIG. 4( b) is FIG. 4( a ).
  • 4) is a cross-sectional profile of the line drawing mark Y taken along line iv-iv.
  • FIG. 5 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 5A, 5B, 5C, 5D, and 5E show each step. It is a schematic cross section which shows.
  • FIG. 6 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 6F, 6G, 6H, and 6I are schematic cross-sectional views showing each step. It is a figure.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of a semiconductor device.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • (meth)acrylate means acrylate or corresponding methacrylate.
  • the “threading” is a modified form of the pressure-sensitive adhesive between the adherend and the pressure-sensitive adhesive, and when the pressure-sensitive adhesive is separated from the pressure-sensitive adhesive, It means a large deformation like a thread without being broken between and.
  • “Threading mark” means that the adhesive is broken and partially contracted after the stringing occurs, that the adhesive is largely deformed and then partially contracted, or that the adhesive is irreversibly stretched or largely deformed. It means what is observed as a mark (projection) on the surface of the pressure-sensitive adhesive by being peeled off from the adherend and then partially contracted.
  • the method for evaluating a photocurable pressure-sensitive adhesive used in the dicing/die-bonding integrated film is a base layer, a photocurable pressure-sensitive adhesive layer made of a photocurable pressure-sensitive adhesive, and an adhesive layer in this order.
  • Prepare a laminated dicing/die-bonding integrated film irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet light under specific irradiation conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and perform specific peeling.
  • an adhesive layer are laminated in this order to prepare a dicing/die-bonding integrated film, treat the photocurable pressure-sensitive adhesive layer under specific heating and cooling conditions, and subject the photocurable pressure-sensitive adhesive layer to specific irradiation.
  • UV light is irradiated under the conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are separated under specific peeling conditions, and the adhesive layer is separated.
  • a photocurable pressure-sensitive adhesive that is cured by irradiation with ultraviolet rays can be an evaluation target.
  • a photocurable pressure-sensitive adhesive to be evaluated a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and two or more functional groups capable of reacting with the reactive functional group are provided.
  • a photocurable pressure-sensitive adhesive containing a crosslinking agent will be described.
  • the (meth)acrylic copolymer having a reactive functional group is, for example, one or more types of (meth)acrylate monomer (a1) or (meth)acrylic acid, and one type having a reactive functional group. Alternatively, it can be obtained by copolymerizing two or more kinds of polymerizable compounds (a2).
  • Examples of the (meth)acrylate monomer (a1) include linear or branched alkyl (meth)acrylate, alicyclic (meth)acrylate, aromatic (meth)acrylate, alkoxyalkyl (meth)acrylate, and alkoxy (poly). It may be at least one selected from the group consisting of alkylene glycol (meth)acrylate, alkoxyalkoxyalkyl (meth)acrylate, and dialkylaminoalkyl (meth)acrylate.
  • linear or branched alkyl (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t- Examples thereof include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, and tridecyl (meth)acrylate.
  • alicyclic (meth)acrylate examples include cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
  • aromatic (meth)acrylates examples include phenoxyethyl (meth)acrylate.
  • alkoxyalkyl (meth)acrylates examples include ethoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate.
  • alkoxy(poly)alkylene glycol(meth)acrylate examples include methoxydiethylene glycol(meth)acrylate, ethoxydiethylene glycol(meth)acrylate, methoxytriethylene glycol(meth)acrylate, butoxytriethylene glycol(meth)acrylate, methoxydipropylene. Examples thereof include glycol (meth)acrylate.
  • alkoxyalkoxyalkyl (meth)acrylates examples include 2-methoxyethoxyethyl (meth)acrylate and 2-ethoxyethoxyethyl (meth)acrylate.
  • dialkylaminoalkyl (meth)acrylate examples include N,N-dimethylaminoethyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate.
  • the polymerizable compound (a2) may have at least one reactive functional group selected from the group consisting of a hydroxy group and an epoxy group. Since the hydroxy group and the epoxy group have good reactivity with the compound (b) having an isocyanate group or the like, they can be preferably used.
  • the polymerizable compound (a2) preferably has a hydroxy group.
  • Examples of the polymerizable compound (a2) having a hydroxy group as a reactive functional group include hydroxyalkyl such as 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. (Meth)acrylate etc. are mentioned.
  • Examples of the polymerizable compound (a2) having an epoxy group as a reactive functional group include (meth)acrylate having an epoxy group such as glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate. ..
  • the (meth)acrylic copolymer may contain (meth)acrylic acid as a monomer unit. Further, in addition to the (meth)acrylate monomer (a1) and the polymerizable compound (a2), another polymerizable compound may be contained as a monomer unit. Examples of other polymerizable compounds include aromatic vinyl compounds such as styrene and vinyltoluene.
  • the (meth)acrylic copolymer having a reactive functional group may further have a chain-polymerizable functional group. That is, it may have a main chain made of a (meth)acrylic copolymer having a reactive functional group and a side chain containing a polymerizable double bond and bonded to the main chain.
  • the side chain containing the polymerizable double bond may be a (meth)acryloyl group, but is not limited thereto.
  • a (meth)acrylic copolymer having a chain-polymerizable functional group has a functional group that reacts with a reactive functional group of a (meth)acrylic copolymer having a reactive functional group and a chain-polymerizable functional group. It can be obtained by reacting one or more compounds (b) with each other to introduce a chain-polymerizable functional group into the side chain of the (meth)acrylic copolymer.
  • Examples of the functional group that reacts with a reactive functional group include an isocyanate group and the like.
  • compound (b) having an isocyanate group examples include 2-methacryloxyethyl isocyanate (for example, Showa Denko KK, trade name “Karenzu MOI”).
  • the content of the compound (b) may be 0.3 to 1.5 mmol/g based on the (meth)acrylic copolymer having a reactive functional group.
  • the acid value of the (meth)acrylic copolymer having a reactive functional group may be, for example, 0 to 150 mgKOH/g.
  • the hydroxyl value of the (meth)acrylic copolymer having a reactive functional group may be, for example, 0 to 150 mgKOH/g.
  • the acid value and the hydroxyl value are measured according to JIS K0070.
  • the weight average molecular weight (Mw) of the (meth)acrylic copolymer having a reactive functional group may be 100,000 to 1,000,000, 200,000 to 800,000, or 300,000 to 700,000.
  • the weight average molecular weight is a polystyrene conversion value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).
  • the photopolymerization initiator is not particularly limited as long as it initiates polymerization by irradiation with ultraviolet rays, and examples thereof include a photoradical polymerization initiator.
  • the photoradical polymerization initiator include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; ⁇ -hydroxyketones such as 1-hydroxycyclohexylphenyl ketone; 2-benzyl-2- ⁇ -aminoketones such as dimethylamino-1-(4-morpholinophenyl)-butan-1-one; oximes such as 1-[4-(phenylthio)phenyl]-1,2-octadione-2-(benzoyl)oxime Ester; phosphine oxide such as bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide; 2,4,5-triarylimidazole diamine such as 2-(o-chloroph
  • the content of the photopolymerization initiator may be 0.1 to 10 parts by mass or 0.5 to 5 parts by mass with respect to 100 parts by mass of the (meth)acrylic copolymer.
  • the cross-linking agent is not particularly limited as long as it is a compound having two or more functional groups capable of reacting with the reactive functional group (epoxy group, hydroxy group, etc.) of the (meth)acrylic copolymer having a reactive functional group.
  • the bond formed by the reaction between the cross-linking agent and the (meth)acrylic copolymer having a reactive functional group include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond, and a urea bond. ..
  • cross-linking agent examples include compounds having two or more isocyanate groups in one molecule. When such a compound is used, it easily reacts with the reactive functional group of the (meth)acrylic copolymer, so that the tackiness and stringiness tend to be easily controlled.
  • Examples of the compound having two or more isocyanate groups in one molecule include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, lysine isocyanate, etc. And the isocyanate compound of.
  • Specific examples of the compound having two or more isocyanate groups in one molecule include polyfunctional isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “Coronate L”).
  • the cross-linking agent may be a reaction product of the above-mentioned isocyanate compound and a polyhydric alcohol having two or more hydroxy groups in one molecule (isocyanate group-containing oligomer).
  • examples of the polyhydric alcohol having two or more hydroxy groups in one molecule include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, and 1 , 10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, 1,3-cyclohexanediol and the like.
  • the crosslinking agent is a reaction product (isocyanate group-containing oligomer) of a polyfunctional isocyanate having two or more isocyanate groups in one molecule and a polyhydric alcohol having three or more hydroxy groups in one molecule. May be.
  • isocyanate group-containing oligomer As a crosslinking agent, the photocurable pressure-sensitive adhesive layer 20 tends to form a denser crosslinked structure.
  • the content of the cross-linking agent may be, for example, 3 to 50 mass% with respect to the total mass of the (meth)acrylic copolymer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an integrated dicing/die bonding film.
  • the dicing/die-bonding integrated film 1 includes a base material layer 10, a photo-curable pressure-sensitive adhesive layer 20 made of a photo-curable pressure-sensitive adhesive, and an adhesive layer 30 laminated in this order.
  • the base material layer 10 may be a known polymer sheet or film, and is not particularly limited as long as it is made of a material that can be expanded in the die bonding step.
  • a material include crystalline polypropylene, amorphous polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, low-density linear polyethylene, polybutene, polymethylpentene, and other polyolefins; Ethylene-vinyl acetate copolymer; ionomer resin; ethylene-(meth)acrylic acid copolymer; ethylene-(meth)acrylic acid ester (random, alternating) copolymer; ethylene-propylene copolymer; ethylene-butene copolymer Polymers; ethylene-hexene copolymers; polyurethanes; polyesters such as polyethylene terephthalate and polyethylene na
  • the base material layer 10 is made of polyethylene, polypropylene, polyethylene-polypropylene random copolymer, and polyethylene-from the viewpoint of properties such as Young's modulus, stress relaxation property, melting point, price, recycling of waste materials after use, and the like. It may have a surface containing at least one material selected from polypropylene block copolymers as a main component, and the surface is in contact with the photocurable pressure-sensitive adhesive layer 20.
  • the base material layer 10 may be a single layer or a multilayer including two or more layers made of different materials.
  • the base material layer 10 may be subjected to surface roughening treatment such as corona discharge treatment or mat treatment, if necessary, from the viewpoint of controlling the adhesion with the photo-curable pressure-sensitive adhesive layer 20 described later.
  • the thickness of the base material layer 10 may be 70 to 120 ⁇ m or 80 to 100 ⁇ m. When the thickness of the base material layer 10 is 70 ⁇ m or more, damage due to expansion tends to be more suppressed. When the thickness of the base material layer 10 is 120 ⁇ m or less, the stress in the pickup easily reaches the adhesive layer, and the pickup property tends to be more excellent.
  • the photocurable pressure-sensitive adhesive layer 20 is a layer made of the above-mentioned photocurable pressure-sensitive adhesive.
  • the photocurable pressure-sensitive adhesive layer 20 is formed on the base material layer 10.
  • a varnish for forming a photocurable pressure sensitive adhesive layer is prepared, and the varnish is applied to the base material layer 10 to obtain the varnish.
  • the photo-curable pressure-sensitive adhesive layer 20 by removing the volatile components of the varnish, and coating the varnish on a release-treated film to remove the volatile components of the varnish to remove the volatile component of the photo-curable pressure-sensitive adhesive layer. 20 is formed, and the obtained photocurable pressure-sensitive adhesive layer 20 is transferred to the base material layer 10.
  • the varnish for forming a photocurable pressure-sensitive adhesive layer comprises a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a crosslinking agent having two or more functional groups capable of reacting with the reactive functional group and an organic solvent.
  • a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a cross-linking agent having two or more functional groups capable of reacting with the reactive functional group can be used. May be volatilized by.
  • organic solvents examples include aromatic hydrocarbons such as toluene and xylene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, ethylene glycol and propylene glycol; acetone, methyl ethyl ketone and methyl.
  • Ketones such as isobutyl ketone and cyclohexanone; esters such as methyl acetate, ethyl acetate and ⁇ -butyrolactone; carbonic acid esters such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Polyhydric alcohol alkyl ethers such as propylene glycol dimethyl ether; polyhydric alcohol alkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl Examples include amides such as 2-pyrrolidone. These may be used alone or in combination of two or more.
  • the solid content concentration of the varnish may be 10 to 60% by weight, based on the total weight of the varnish.
  • the thickness of the photocurable pressure-sensitive adhesive layer 20 may be, for example, 1 to 200 ⁇ m, 3 to 50 ⁇ m, or 5 to 30 ⁇ m.
  • the adhesive layer 30 is a layer made of an adhesive.
  • the adhesive is not particularly limited as long as it is an adhesive used in the field of die bonding film.
  • an adhesive containing an epoxy resin, an epoxy resin curing agent, and a (meth)acrylic copolymer having an epoxy group will be described.
  • the adhesive layer 30 made of such an adhesive it is possible to provide excellent adhesiveness between the chips and the substrate and between the chips, and to impart electrode embedding properties, wire embedding properties, and the like. In addition, it becomes possible to bond at low temperature in the die bonding process.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin.
  • Dicyclopentadiene skeleton-containing epoxy resin Dicyclopentadiene skeleton-containing epoxy resin, stilbene type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenylaralkyl type epoxy resin, Examples thereof include naphthalene type epoxy resins, polyfunctional phenols, and diglycidyl ether compounds of polycyclic aromatics such as anthracene. These may be used alone or in combination of two or more.
  • the epoxy resin curing agent may be, for example, a phenolic resin.
  • the phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in the molecule.
  • examples of the phenolic resin include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and formaldehyde.
  • a novolak type phenolic resin obtained by condensation or co-condensation with a compound having an aldehyde group such as, for example, allylated bisphenol A, allylated bisphenol F, allylated naphthalene diol, phenol novolac, phenols and the like, and Examples thereof include phenol aralkyl resin and naphthol aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. These may be used alone or in combination of two or more.
  • the (meth)acrylic copolymer having an epoxy group may be a copolymer prepared by adjusting glycidyl (meth)acrylate as a raw material in an amount of 0.5 to 6% by mass based on the resulting copolymer. .. When the amount is 0.5% by mass or more, high adhesive strength tends to be easily obtained, and when the amount is 6% by mass or less, gelation tends to be suppressed.
  • the balance of glycidyl (meth)acrylate may be a mixture of alkyl (meth)acrylate having an alkyl group having 1 to 8 carbon atoms such as methyl (meth)acrylate and styrene and acrylonitrile.
  • the alkyl (meth)acrylate may include ethyl (meth)acrylate and/or butyl (meth)acrylate.
  • the mixing ratio of each component can be adjusted in consideration of the Tg (glass transition point) of the obtained (meth)acrylic copolymer having an epoxy group.
  • Tg glass transition point
  • the upper limit of Tg of the (meth)acrylic copolymer having an epoxy group may be, for example, 30°C.
  • the weight average molecular weight of the (meth)acrylic copolymer having an epoxy group may be 100,000 or more, and may be 300,000 to 3,000,000 or 500,000 to 2,000,000. When the weight average molecular weight is 3,000,000 or less, deterioration of the filling property between the semiconductor chip and the supporting substrate tends to be controlled.
  • the weight average molecular weight is a polystyrene conversion value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).
  • the adhesive may further contain a curing accelerator such as a tertiary amine, imidazoles, or quaternary ammonium salts, if necessary.
  • a curing accelerator such as a tertiary amine, imidazoles, or quaternary ammonium salts, if necessary.
  • the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used alone or in combination of two or more.
  • the adhesive may further contain an inorganic filler, if necessary.
  • an inorganic filler for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride, crystalline Examples thereof include silica and amorphous silica. These may be used alone or in combination of two or more.
  • the adhesive layer 30 is formed on the photocurable pressure-sensitive adhesive layer 20.
  • an adhesive layer-forming varnish is prepared, and the varnish is applied on a release-treated film to form an adhesive.
  • a method of forming the layer 30 and transferring the obtained adhesive layer 30 to the photocurable pressure-sensitive adhesive layer 20 can be mentioned.
  • the adhesive layer-forming varnish contains an epoxy resin, an epoxy resin curing agent, a (meth)acrylic copolymer having an epoxy group, and an organic solvent.
  • the organic solvent may be the same as the organic solvent used in the varnish for forming a photocurable pressure-sensitive adhesive layer.
  • the thickness of the adhesive layer 30 may be, for example, 1 to 300 ⁇ m, 5 to 150 ⁇ m, or 10 to 100 ⁇ m.
  • the stringing can occur due to the interaction at the interface between the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer. Therefore, one of the influencing factors of the stringing phenomenon is the type and content of the crosslinking agent. For example, when the content of the cross-linking agent is decreased, the number of traces of the thread-plucking marks tends to increase and the width of the traces of the thread-plucking marks tends to increase. Therefore, by adjusting the type and content of the cross-linking agent, it is possible to control the number and width of the line-plucking marks.
  • the coating conditions can be mentioned.
  • the coating conditions such as the coating speed, the coating temperature, and the air volume
  • the number and width of the line-plucking traces can be controlled.
  • a dicing/die-bonding integrated film for evaluation in which a base material layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive to be evaluated, and an adhesive layer are laminated in this order is prepared. ..
  • the types of the base material layer, the photo-curable pressure-sensitive adhesive layer, and the adhesive layer are not particularly limited, and an arbitrarily selected dicing/die-bonding integrated film should be used.
  • the thickness of the photo-curable pressure-sensitive adhesive composed of the photo-curable pressure-sensitive adhesive that is the object of evaluation can be set to 10 ⁇ m, for example.
  • the thickness of the adhesive layer may be 10 ⁇ m, for example.
  • the photocurable adhesive layer is irradiated with ultraviolet rays under the following irradiation conditions to form a cured product of the photocurable adhesive layer.
  • the ultraviolet light source can be appropriately selected depending on the type of photopolymerization initiator used.
  • the light source of ultraviolet light is not particularly limited, but may be one kind selected from the group consisting of a low pressure mercury lamp, a far ultraviolet lamp, an excimer ultraviolet lamp, a high pressure mercury lamp, and a metal halide lamp. Of these, the ultraviolet light source is preferably a high pressure mercury lamp having a central wavelength of 365 nm. Further, in the irradiation of ultraviolet rays, a cold mirror or the like may be used together in order to reduce the influence of heat emitted from the light source.
  • the irradiation temperature under UV irradiation conditions may be 60°C or lower or 40°C or lower.
  • a dicing/die-bonding integrated film for evaluation in which a base material layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive to be evaluated, and an adhesive layer are laminated in this order is prepared. ..
  • the evaluation dicing/die-bonding integrated film in the second step may be the same as the evaluation dicing/die-bonding integrated film in the first step, but the peeling force in the first step is measured. Use what is not.
  • the photo-curable pressure-sensitive adhesive layer of the dicing/die-bonding integrated film for evaluation is treated under the following heating and cooling conditions. If the photocurable pressure-sensitive adhesive layer is not treated under heating and cooling conditions, the adhesiveness between the photocurable pressure-sensitive adhesive layer and the adhesive layer may be insufficient, and the cured product of the adhesive layer and the photocurable pressure-sensitive adhesive layer When the and are peeled off, the stringing marks tend to be difficult to be observed.
  • the heating/cooling conditions described below assume a wafer laminating process for a semiconductor device, and tend to cause stringing marks to be more easily observed.
  • the heat treatment under heating and cooling conditions is preferably performed from the side of the base material layer using a heater or the like.
  • the base material layer a material that does not cause deformation such as wrinkles and sagging by heat treatment (65° C., 15 minutes).
  • heat treatment it is preferable that the evaluation dicing/die bonding integrated film is heated while being suppressed by a cloth or the like that can withstand heating so as not to bend.
  • the surface pressure at this time may be about 0.1 g/cm 2 . If the surface pressure is too high, the photocurable pressure-sensitive adhesive layer and the adhesive layer may adhere to each other more than necessary, and excessive stringing marks may be formed. In order to prevent curing of the photocurable pressure-sensitive adhesive layer, it is preferable to perform the treatment while shielding light.
  • the photocurable pressure-sensitive adhesive layer is irradiated with ultraviolet rays under the same irradiation conditions as in the first step to form a cured product of the photocurable pressure-sensitive adhesive layer, and the adhesive layer is formed in the same manner as in the first step.
  • the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled off by pulling under the peeling condition of.
  • the base material layer including the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is collected as a measurement sample.
  • the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is collected so as not to be contaminated.
  • the base material layer provided with the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled is cut into a size of 5 mm ⁇ 5 mm to obtain a measurement sample.
  • the probe of the scanning probe microscope is preferably provided with a cantilever having a low spring constant, which is optimal for measuring the surface of the cured product of the photocurable adhesive layer after the adhesive layer is peeled off. .. Further, it is preferable that the observation with the scanning probe microscope is performed in the dynamic force mode (DFM).
  • DFM dynamic force mode
  • the stringing marks are observed as marks (protrusions) on the surface of the cured product of the photocurable pressure-sensitive adhesive layer, and data of the phase image of the surface of the cured product of the photocurable pressure-sensitive adhesive layer are acquired, In the phase image, a portion where the hardness is obviously different from the surrounding can be used as the string-plucking mark.
  • the number of traces of the stringing mark is the number of places where the hardness is clearly different from the surroundings in the phase image.
  • the width of the stringing trace can be obtained as follows. First, using a scanning probe microscope, the shape image profile and the phase image profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer including the portion where the hardness is apparently different from the surroundings are acquired.
  • FIG. 2 is a diagram showing an example of a shape image profile and a phase image profile of a surface of a cured product of a photocurable pressure-sensitive adhesive layer
  • FIG. 2( a) is a shape image profile
  • FIG. 2( b) is , A phase image profile.
  • FIG. 2( a) is a shape image profile
  • FIG. 2( b) is , A phase image profile.
  • the stringing trace is observed as a graph in which the raised portion is convex upward and is shown in the lightest color (for example, white in the case of a monochrome image).
  • the phase difference being smaller than the surroundings means that the phase difference is harder than the surroundings.
  • the thread-plucking traces are observed as locations where the phase difference from the surroundings is 50% or less than the surroundings because the photo-curable adhesive layer is stretched to the limit, and the most It is shown in a dark color (for example, black in the case of a monochrome image). In this way, the stringing marks can be observed not only from the shape image profile but also from the phase image profile.
  • FIG. 3 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer
  • FIG. 3( a) is a shape image profile
  • FIG. 3( b) is FIG. 3) is a cross-sectional profile of the line drawing mark X taken along line iii-iii.
  • FIG. 3B is a cross-sectional profile in the case where there is substantially no difference in the height of both ends of the observed thread-plucking trace (for example, 1 nm or less).
  • the width Wx between both ends (minimum value) of the thread pulling trace X can be set as the width of the thread pulling trace X.
  • FIG. 4 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer
  • FIG. 4A is a shape image profile
  • FIG. 4B is FIG. It is the iv-iv line cross-sectional profile of the stringing trace Y in (a).
  • the end (minimum value) whose height is closer to the apex of the thread pulling trace Y can be set as the reference height Hy
  • the width Wy at the reference height Hy can be set as the trace width of the thread pulling trace Y.
  • ⁇ Third step> the quality of the photocurable pressure-sensitive adhesive is judged based on the peeling force and the number and width of traces of the string-plucking traces.
  • the criteria of the peeling force, the number of traces of the line-plucking traces, and the width of the traces, which are the evaluation criteria, can be appropriately set according to the thickness of the semiconductor wafer and the like.
  • the third step is a step of judging the quality of the photocurable pressure-sensitive adhesive based on whether or not the peeling force and the number and width of traces of the string-plucking traces satisfy the following conditions (a) and (b).
  • Good A dicing/die-bonding integrated film including a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive that satisfies the following conditions (a) and (b) is a semiconductor wafer having a relatively small thickness (for example, 35 ⁇ m or less). Can be suitably used for the dicing process applied to (for example, stealth dicing).
  • the peeling force under the condition (a) may be 0.65 N/25 mm or less or 0.63 N/25 mm or less.
  • the lower limit of the peeling force under the condition (a) is not particularly limited, but may be 0.10 N/25 mm or more.
  • the presence of a specific region on the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled off tends to improve the stress propagation property and improve the peeling speed.
  • the number of traces of the stringing present in the specific region may be 15 or more or 20 or more, and 70 or less, 60 or less, or 50 or less.
  • the peeling speed is contributed by both the existence of the specific region and the width of the string piercing marks existing in the specific region.
  • the number of traces of the string-plucking traces is 15 or more in the specific region, the stress propagation property is high and the peeling speed tends to be promoted.
  • the specific region if the number of traces of the string-plucking traces is 70 or less, it tends to be possible to prevent the peeling force from increasing excessively.
  • the scratch marks existing in these specific areas Calculate the median of the scar width.
  • the median means a value located at the center when a finite number of data are arranged in ascending order, and when the data is an even number, it means an average value of values close to the center.
  • the trace width of the 8th string-pulling trace when the trace widths of the string-pulling traces are arranged in ascending order is the median value
  • the number of traces of the string-pulling trace is 16
  • the average value of the trace widths of the eighth and the ninth pulling marks when the trace widths of the pulling marks are arranged in ascending order is the median value.
  • the median width of the thread-plucking marks existing in the specific region may be 130 nm or more or 150 nm or more, and 190 nm or less or 180 nm or less.
  • the median value of the widths of the string-pulling marks existing in the specific region is 120 nm or more, the breaking impact of the string-pulling is easily propagated, and the peeling speed tends to be improved.
  • the median value of the widths of the thread-plucking marks existing in the specific region is 200 nm or less, the thread-pulling is likely to break and the peeling speed tends to be improved.
  • a method for producing a dicing/die-bonding integrated film is a photocurable adhesive comprising a photocurable adhesive determined to be good by the above-mentioned photocurable adhesive evaluation method on a base material layer. And a step of forming an adhesive layer on the photo-curable pressure-sensitive adhesive layer.
  • the base material layer and the adhesive layer may be the same as those exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive.
  • the method for forming the photocurable pressure-sensitive adhesive layer and the method for forming the adhesive layer may be the same as the method exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive.
  • the dicing/die-bonding integrated film is a substrate layer, and a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive that is determined to be good by the above-described photo-curable pressure-sensitive adhesive evaluation method, An adhesive layer is provided in this order.
  • the base material layer and the adhesive layer may be the same as those exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive.
  • FIG. 5 and 6 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device.
  • the semiconductor device manufacturing method according to the present embodiment includes a step (wafer laminating step) of attaching the adhesive layer 30 of the dicing/die-bonding integrated film 1 obtained by the above-described manufacturing method to the semiconductor wafer W2, and a semiconductor wafer W2.
  • a step of dicing the adhesive layer 30 and the photocurable pressure-sensitive adhesive layer 20 into pieces (dicing step), a step of irradiating the photocurable pressure-sensitive adhesive layer 20 with ultraviolet rays (ultraviolet ray irradiation step), and a substrate
  • a step of picking up a semiconductor element (semiconductor element 50 with an adhesive layer) to which the adhesive layer 30a is attached from the layer 10 (pickup step), and mounting the semiconductor element 50 with an adhesive layer on the semiconductor element via the adhesive layer 30a.
  • a step of adhering to the supporting substrate 60 (semiconductor element adhering step).
  • the dicing in the dicing process is not particularly limited, and examples thereof include blade dicing, laser dicing, stealth dicing and the like.
  • the dicing may be stealth dicing.
  • stealth dicing is mainly used as the dicing will be described in detail.
  • the method for manufacturing a semiconductor device may include a modified layer forming step before the wafer laminating step.
  • a semiconductor wafer W1 having a thickness H1 is prepared.
  • the thickness H1 of the semiconductor wafer W1 forming the modified layer may exceed 35 ⁇ m.
  • the protective film 2 is attached to one main surface of the semiconductor wafer W1 (see FIG. 5A).
  • the surface to which the protective film 2 is attached is preferably the circuit surface of the semiconductor wafer W1.
  • the protective film 2 may be a back grinding tape used for back surface grinding (back grinding) of a semiconductor wafer.
  • the modified layer 4 is formed by irradiating the inside of the semiconductor wafer W1 with a laser beam (see FIG. 5B), and the side of the semiconductor wafer W1 opposite to the side to which the protective film 2 is attached (back side).
  • the semiconductor wafer W2 having the modified layer 4 is manufactured by performing back grinding (back surface grinding) and polishing (polishing) on the above (see FIG. 5C).
  • the thickness H2 of the obtained semiconductor wafer W2 may be 35 ⁇ m or less.
  • the adhesive layer 30 of the dicing/die bonding integrated film 1 is placed in a predetermined device. Then, the dicing/die bonding integrated film 1 is attached to the main surface Ws of the semiconductor wafer W2 via the adhesive layer 30 (see FIG. 5D), and the protective film 2 of the semiconductor wafer W2 is peeled off ( See FIG. 5(e).
  • the photocurable adhesive layer 20 is cured by irradiating the photocurable adhesive layer 20 with ultraviolet rays to form a cured product of the photocurable adhesive layer (see FIG. 6G). Thereby, the adhesive force between the photocurable pressure-sensitive adhesive layer 20 and the adhesive layer 30 can be reduced.
  • ultraviolet rays it is preferable to use ultraviolet rays having a wavelength of 200 to 400 nm.
  • the ultraviolet irradiation conditions are preferably adjusted so that the illuminance is 30 to 240 mW/cm 2 and the irradiation amount is 200 to 500 mJ/cm 2 .
  • the base material layer 10 is expanded to separate the diced semiconductor elements 50 with an adhesive layer from each other, while sucking the semiconductor element 50 with an adhesive layer pushed up by the needle 42 from the base material layer 10 side. It is sucked by the collet 44 and picked up from the cured product 20ac of the photocurable pressure-sensitive adhesive layer (see FIG. 6(h)).
  • the semiconductor element 50 with the adhesive layer has the semiconductor element Wa and the adhesive layer 30a.
  • the semiconductor element Wa is obtained by dividing the semiconductor wafer W2 by dicing
  • the adhesive layer 30a is obtained by dividing the adhesive layer 30 by dicing.
  • the cured product 20ac of the photocurable adhesive layer is obtained by dividing the cured product of the photocurable adhesive layer by dicing.
  • the cured product 20ac of the photocurable pressure-sensitive adhesive layer may remain on the base material layer 10 when the semiconductor element 50 with the adhesive layer is picked up. In the pickup process, it is not always necessary to expand, but the expandability can be further improved by expanding.
  • the amount of thrust by the needle 42 can be set appropriately. Further, for example, two-stage or three-stage pickup may be performed from the viewpoint of ensuring a sufficient pickup property even for an extremely thin wafer.
  • the semiconductor element 50 with the adhesive layer may be picked up by a method other than the method using the suction collet 44.
  • the semiconductor element 50 with an adhesive layer is bonded to the semiconductor element mounting support substrate 60 via the adhesive layer 30a by thermocompression bonding (see FIG. 6(i)). ..
  • a plurality of adhesive layer-equipped semiconductor elements 50 may be bonded to the semiconductor element mounting support substrate 60.
  • FIG. 7 is a sectional view schematically showing an embodiment of a semiconductor device.
  • the semiconductor device 100 shown in FIG. 7 includes the above steps, the step of electrically connecting the semiconductor element Wa and the semiconductor element mounting support substrate 60 by wire bonds 70, and the step of electrically connecting the semiconductor element Wa and the semiconductor element mounting support substrate 60 on the surface 60 a of the semiconductor element mounting support substrate 60. And a step of resin-sealing the semiconductor element Wa using the resin sealing material 80.
  • Solder balls 90 may be formed on the surface of the semiconductor element mounting support substrate 60 opposite to the surface 60a for electrical connection with an external substrate (motherboard).
  • the acid value and hydroxyl value of the (meth)acrylic copolymer in the (meth)acrylic copolymer solutions A to E were measured according to JIS K0070. The results are shown in Table 1. Further, the obtained acrylic resin was vacuum dried at 60° C. overnight, and the obtained solid content was subjected to elemental analysis by a fully automatic elemental analyzer varioEL manufactured by Elemental Co., Ltd. The content of methacryloxyethyl isocyanate was calculated. The results are shown in Table 1. Further, using SD-8022/DP-8020/RI-8020 manufactured by Tosoh Corporation as a GPC device, Gelpack GL-A150-S/GL-A160-S manufactured by Hitachi Chemical Co., Ltd. as a column, and tetrahydrofuran as an eluent, The weight average molecular weight (Mw) in terms of polystyrene was measured. The results are shown in Table 1.
  • ⁇ Production Example 1 Preparation of dicing/die bonding integrated film A> (Production of dicing film) 100 parts by mass of the (meth)acrylic copolymer solution A prepared above as a (meth)acrylic copolymer having a reactive functional group as a solid content, 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals) as a photopolymerization initiator 0.5 g by weight of Irgacure 184) manufactured by Co., Ltd., and 2 parts by weight of a polyfunctional isocyanate (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd., solid content: 75%) as a cross-linking agent were mixed.
  • a polyfunctional isocyanate trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd., solid content: 75%
  • Ethyl acetate was added to this mixture so that the total solid content was 25% by mass, and the mixture was uniformly stirred for 10 minutes to obtain a varnish for forming a photocurable pressure-sensitive adhesive layer.
  • the thickness of the photocurable pressure-sensitive adhesive layer after drying was applied to a polyethylene terephthalate (PET) film having a width of 350 mm, a length of 400 mm, and a thickness of 38 ⁇ m, the one side of which was subjected to mold release treatment. Of 10 ⁇ m was applied while adjusting the gap, and the varnish for forming a photocurable pressure-sensitive adhesive layer was heated and dried at 80 to 100° C. for 3 minutes.
  • PET polyethylene terephthalate
  • a polyolefin film (base material layer, thickness: 90 ⁇ m) that has been subjected to a corona discharge treatment on one side is bonded, cured at 40° C. for 72 hours, and subjected to a crosslinking treatment to form a base material layer.
  • the dicing film provided with the photocurable adhesive layer was obtained.
  • the cross-linking treatment was performed while confirming the progress of curing by using FT-IR spectrum.
  • NUCA-189 manufactured by Nippon Unicar Co., Ltd., trade name, ⁇ - 1.7 parts by mass of mercaptopropyltrimethoxysilane
  • NUCA-1160 manufactured by Nippon Unicar Co., Ltd., trade name, ⁇ -ureidopropyltriethoxysilane
  • Aerosil R972 as a filler (silica surface is dimethyldi).
  • HTR-860P-3 manufactured by Nagase Chemtex Co., Ltd., trade name, acrylic rubber containing a weight-average molecular weight of 800,000, glycidyl acrylate or 3% by mass of glycidyl methacrylate
  • Curezol 2PZ-CN manufactured by Shikoku Kasei Co., Ltd., trade name, 1-cyanoethyl-2-phenylimidazole
  • the obtained varnish for forming an adhesive layer is applied on a polyethylene terephthalate (PET) film which has been subjected to a release treatment so as to have a set thickness, and is heated and dried at 140° C. for 5 minutes to have a B stage state of 10 ⁇ m in thickness.
  • PET polyethylene terephthalate
  • the adhesive layer was formed, and a die bonding film including the adhesive layer was produced.
  • the die bonding film produced above was cut into a size that was easy to handle together with the PET film.
  • the PET film was peeled off and the photocurable pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive layer of the cut die bonding film immediately before bonding.
  • the bonding was performed in a clean room (23° C., 50% humidity-free room) using a laminating machine without heating the roll (that is, 23° C.).
  • the dicing/die-bonding integrated film A was obtained by storing the film in a refrigerator at 4° C. for 1 day.
  • ⁇ Production Example 7 Production of dicing/die-bonding integrated film G> Dicing/die-bonding integrated film in the same manner as in Production Example 1 except that the (meth)acrylic copolymer solution was changed from A to D and the content of the crosslinking agent was changed from 8 parts by mass to 6 parts by mass. Got G.
  • ⁇ Manufacturing Example 12 Preparation of dicing/die-bonding integrated film L>
  • the PET film of the dicing film was peeled off in a clean room (temperature 23°C, humidity 50% in a dust-free room), and the photocurable pressure-sensitive adhesive layer was exposed to air and left for 1 day or more.
  • a dicing/die-bonding integrated film L was obtained in the same manner as in Production Example 1 except that the above was attached to the adhesive layer of the die-bonding film.
  • the dicing/die-bonding integrated films A to M are each cut into a width of 30 mm and a length of 200 mm, the PET film on the adhesive layer side of the die bonding film is peeled off, and a supporting film (EC tape manufactured by Oji Tuck Co., Ltd.) is used as an adhesive. It stuck on the layer side using a roller and cut out to width 25 mm and length 170 mm.
  • a supporting film EC tape manufactured by Oji Tuck Co., Ltd.
  • the dicing/die-bonding integrated film was the same as the one used in the measurement of the peeling force, and the one in which the peeling force was not measured was used.
  • the dicing/die bonding integrated films A to M were cut into a width of 30 mm and a length of 50 mm or more.
  • a heater was brought into contact with the base material layer (polyolefin film) of the dicing/die-bonding integrated film to heat the photocurable pressure-sensitive adhesive layer at 65° C. for 15 minutes, and then air-cooled to 25 ⁇ 5° C.
  • the PET film on the adhesive layer side of the die bonding film was peeled off, a supporting film (EC tape manufactured by Oji Tuck Co., Ltd.) was attached, and the width was cut to 25 mm. Then, from the base material layer (polyolefin film) side of the dicing die-bonding integrated film with a supporting film after heating and cooling, an ultraviolet irradiation device (GS Yuasa Co., Ltd., UV SYSTEM, central wavelength 365 nm ultraviolet light) is used. , irradiation temperature 40 ° C.
  • the support film is pulled, the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled off, and the base material layer comprising the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is recovered, A measurement sample was obtained by cutting into a size of 5 mm ⁇ 5 mm.
  • the dynamic force mode (DFM) is observed, and at the same time, the data of the phase image is acquired, and in the phase image, the part where the hardness is obviously different from the surroundings is threaded. It was a tow mark. In the observation of the measurement sample, it was confirmed whether or not there was a 25 ⁇ m ⁇ 25 ⁇ m region (specific region) in which the number of traces of the string-plucking marks was 15 or more on the surface to be observed.
  • the width of the thread-plucking marks existing in the specific area The median value of was calculated.
  • the trace width of the stringing trace was determined as follows. First, using a scanning probe microscope, the shape image profile and the phase image profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer including the portion where the hardness is clearly different from the surroundings in the phase image were acquired.
  • the width of each thread pulling trace is The maximum cross-sectional profile of the cross-sectional line was output, and the trace width of the string-plucking trace was determined based on the above criteria.
  • the thread-plucking marks are shown in the lightest color (for example, white in the case of a black-and-white image), but the number of places where the hardness is obviously different from the surroundings in the phase image is the shape image. The number was the same as the number of places indicated by the lightest color in the profile. The results are shown in Tables 2, 3, and 4.
  • ⁇ Preparation of evaluation sample> (Formation of modified layer) A back grinding tape was attached to one surface of a semiconductor wafer (silicon wafer (thickness 750 ⁇ m, outer diameter 12 inches)) to obtain a semiconductor wafer with a back grinding tape. The surface of the semiconductor wafer opposite to the side to which the back grinding tape was attached was irradiated with laser light to form a modified layer inside the semiconductor wafer.
  • the laser irradiation conditions are as follows.
  • Laser oscillator model Semiconductor laser pumped Q-switch solid-state laser Wavelength: 1342 nm Oscillation form: pulse Frequency: 90 kHz Output: 1.7W Moving speed of semiconductor wafer mounting table: 700 mm/sec
  • the PET film of the dicing/die bonding integrated film was peeled off from the surface of the semiconductor wafer opposite to the side to which the back grinding tape was stuck, and the adhesive layer was stuck.
  • the dicing/die-bonding integrated film-equipped semiconductor wafer having the modified layer was fixed to an expanding device.
  • the dicing film was expanded under the following conditions to separate the semiconductor wafer, the adhesive layer, and the photocurable pressure-sensitive adhesive layer into individual pieces.
  • Cool expanding conditions Temperature: -15°C, Height: 9 mm, Cooling time: 90 seconds, Speed: 300 mm/second, Standby time: 0 seconds
  • Heat shrink condition Temperature: 220°C, height: 7 mm, holding time: 15 seconds, speed: 30 mm/sec, heater speed: 7°C/sec
  • UV irradiation The center wavelength of 365nm ultraviolet irradiation with a light-curable pressure-sensitive adhesive layer of the singulated semiconductor wafer irradiation intensity 70 mW / cm 2 and cumulative light quantity 150 mJ / cm 2, to form a cured product of the photocurable pressure-sensitive adhesive layer As a result, a sample for evaluation of pickup property described later was obtained.
  • a die bonder DB-830P manufactured by Fasford Technology Co., Ltd. (former Hitachi High-Technologies Corporation) was used to perform a pick-up test with 9 pins.
  • the pick-up collet was a RUBBER TIP 13-087E-33 (micro).
  • the push-up pin was EJECTOR NEEDLE SEN2-83-05 (manufactured by Micromechanics company, product name, diameter: 0.7 mm, tip shape: diameter 350 ⁇ m)
  • the semi-circle was used.
  • the thrust pins were arranged at equal intervals from the center of the pin.
  • the high-speed camera MEMRECM GX-1Plus manufactured by NAC Image Technology Co., Ltd., trade name
  • the time until complete peeling was evaluated as the peeling time.
  • Pickup was performed by pushing up to 300 ⁇ m at 1 mm/sec.
  • the frame rate was 1000 frames/second.
  • the peeling time of 60 msec or less was evaluated as "A”
  • the peeling time of more than 60 msec and less than 90 msec was evaluated as "B”
  • the peel time of more than 90 msec was evaluated as "C”.
  • the results are shown in Tables 2, 3, and 4.
  • the dicing/die-bonding integrated films A to E of Production Examples 1 to 5 have a peeling force of 0.70 N/25 mm or less, and the adhesive layer peels off.
  • the surface of the cured product of the photocurable pressure-sensitive adhesive layer after being treated has a region of 25 ⁇ m ⁇ 25 ⁇ m in which the number of traces of the thread-plucking marks is 15 or more, and the median value of the width of the traces of the thread-plucking marks in the area is 120 to It was 200 nm, and both the condition (a) and the condition (b) were satisfied. It was found that the dicing/die-bonding integrated films A to E of Production Examples 1 to 5 were excellent in evaluation of pickup property.
  • SYMBOLS 1 Dicing/die-bonding integrated film, 2... Protective film, 4... Modification layer, 10... Base material layer, 20... Photocurable adhesive layer, 20ac... Cured product of photocurable adhesive layer, 30, 30a... Adhesive layer, 42... Needle, 44... Suction collet, 50... Adhesive layer-equipped semiconductor element, 60... Support substrate for mounting semiconductor element, 70... Wire bond, 80... Resin encapsulant, 90... Solder ball, W1, W2... Semiconductor wafer, H1... Thickness of semiconductor wafer W1, H2... Thickness of semiconductor wafer W2, 100... Semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

Disclosed is a method for evaluating a photocurable adhesive used for a dicing/die attach film. Additionally disclosed are: a dicing/die attach film based on such a method for evaluating a photocurable adhesive; and a method for manufacturing the film. Further disclosed is a method for manufacturing a semiconductor device using such a dicing/die attach film.

Description

光硬化性粘着剤の評価方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置の製造方法Evaluation method of photocurable pressure-sensitive adhesive, dicing/die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
 本発明は、光硬化性粘着剤の評価方法、ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに半導体装置の製造方法に関する。 The present invention relates to a photocurable pressure sensitive adhesive evaluation method, a dicing/die bonding integrated film and its manufacturing method, and a semiconductor device manufacturing method.
 半導体チップの製造においては、半導体ウエハを個々の半導体チップに個片化するダイシング工程、及び個片化した半導体チップをリードフレーム、パッケージ基板等に接着するダイボンディング工程が通常備えられている。このような半導体チップの製造においては、ダイシング工程における半導体ウエハの固定に用いられる光硬化性粘着剤からなる光硬化性粘着剤層を備えるダイシングフィルムと、半導体チップとリードフレーム、パッケージ基板等との接着に用いられる接着剤層を備えるダイボンディングフィルムとを組み合わせたダイシング・ダイボンディング一体型フィルムが主に用いられている。 In the manufacture of semiconductor chips, a dicing process for separating a semiconductor wafer into individual semiconductor chips and a die bonding process for adhering the separated semiconductor chips to a lead frame, a package substrate, etc. are usually provided. In the production of such a semiconductor chip, a dicing film including a photo-curable adhesive layer made of a photo-curable adhesive used for fixing a semiconductor wafer in a dicing process, a semiconductor chip, a lead frame, a package substrate, etc. A dicing/die-bonding integrated film, which is a combination of a die-bonding film having an adhesive layer used for adhesion, is mainly used.
 近年、薄型半導体ウエハを個片化して半導体チップを製造する方法の一例として、半導体ウエハを完全に切断せずに、切断予定ライン上の半導体ウエハ内部にレーザ光を照射して改質層を形成し、ダイシングフィルムを拡張させることによって半導体ウエハを割断する、いわゆるステルスダイシングが提案されている(例えば、特許文献1)。ステルスダイシングによって個片化された半導体チップは、その後のピックアップ工程での破損防止の観点から、ダイボンディングフィルムとダイシングフィルムとをより小さな力で剥離させることが求められる。しかし、小さな力で剥離させようとすると剥離時間が長くなってしまい、生産性が悪化する傾向ある。そのため、薄型半導体チップの製造に用いられるダイシング・ダイボンディング一体型フィルムには、ピックアップの成功率を高くできること及びピックアップにおける剥離時間を短くできることが求められており、光硬化性粘着剤層を構成する光硬化性粘着剤の選定が重要となっている。 In recent years, as an example of a method of manufacturing a semiconductor chip by dividing a thin semiconductor wafer into individual pieces, a semiconductor layer is not completely cut, but a laser beam is irradiated to the inside of the semiconductor wafer on a cutting line to form a modified layer. However, so-called stealth dicing, which cuts the semiconductor wafer by expanding the dicing film, has been proposed (for example, Patent Document 1). The semiconductor chip that has been diced by stealth dicing is required to separate the die bonding film and the dicing film with a smaller force from the viewpoint of preventing damage in the subsequent pickup step. However, if the peeling is attempted with a small force, the peeling time becomes long and the productivity tends to deteriorate. Therefore, the dicing/die-bonding integrated film used for manufacturing a thin semiconductor chip is required to have a high success rate of pickup and a short peeling time in the pickup, and form a photocurable pressure-sensitive adhesive layer. The selection of photo-curable adhesive is important.
特開2003-338467号公報JP-A-2003-338467 特開2004-017639号公報JP, 2004-017639, A 特開2006-089521号公報JP, 2006-089521, A 特開2006-266798号公報JP, 2006-266798, A 特開2014-055250号公報JP, 2014-055250, A 特開2014-181258号公報JP, 2014-181258, A 特開2015-028146号公報JP, 2005-028146, A
 しかしながら、半導体チップの製造において、ダイシング・ダイボンディング一体型フィルムの光硬化性粘着剤層として使用予定の光硬化性粘着剤が優れたピックアップ性を有するものであるかを事前に予測することは難しく、実際に使用してみなければ分からないことが多い。 However, in the production of semiconductor chips, it is difficult to predict in advance whether the photo-curable pressure-sensitive adhesive to be used as the photo-curable pressure-sensitive adhesive layer of the dicing/die-bonding integrated film has excellent pickup properties. , I often do not know unless I actually use it.
 本発明は、このような事情に鑑みてなされたものであり、ダイシング・ダイボンディング一体型フィルムに用いられる光硬化性粘着剤の新規な評価方法を提供することを主な目的とする。 The present invention has been made in view of such circumstances, and its main object is to provide a new evaluation method for a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film.
 被着体と粘着剤との剥離性の影響因子としては、粘着剤の粘着力(粘着剤のバルク特性)、被着体と粘着剤との界面における相互作用(粘着剤の表面特性)等が挙げられる。一般的に、バルク特性の方が表面特性よりも剥離性への寄与が大きいことが知られており、バルク特性を調整することによって剥離性は制御される傾向にある。しかし、薄型半導体チップのピックアップ性に関しては、表面特性の影響も無視できず、例えば、被着体と粘着剤との間における粘着剤の変形形態、例えば、被着体と粘着剤とを剥離させたときに、状況によって粘着剤が被着体との間で破断されずに糸、場合によっては壁のように大変形する糸曳きも剥離性に大きな影響を与えると考えられる。従来の産業分野では、糸曳き現象の発生は、粘着剤の好ましくない現象として捉えられており、糸曳きの発生を低減すること又は抑制することによって、剥離性の向上が達成されていた(例えば、上記特許文献2~7等参照)。このような状況下において、本発明者らが鋭意検討したところ、被着体と粘着剤とを剥離させたときに、糸曳き現象が観測されなかった場合よりも特定の糸曳き現象が観測された場合の方が、糸曳きの破断衝撃の伝播によって剥離進展が速くなって、剥離速度が向上することを見出し、本発明を完成するに至った。 Factors that influence the releasability between the adherend and the adhesive include the adhesive strength of the adhesive (bulk property of the adhesive), the interaction at the interface between the adherend and the adhesive (surface property of the adhesive), etc. Can be mentioned. It is generally known that the bulk property contributes to the peeling property more than the surface property, and the peeling property tends to be controlled by adjusting the bulk property. However, regarding the pickup property of the thin semiconductor chip, the influence of the surface characteristics cannot be ignored, and for example, a modified form of the adhesive between the adherend and the adhesive, for example, peeling the adherend and the adhesive It is considered that, depending on the situation, the thread, which in some cases causes the adhesive to not be broken between the adherend and the adherend, is largely deformed like a wall, has a great influence on the releasability. In the conventional industrial field, the occurrence of the stringing phenomenon is regarded as an unfavorable phenomenon of the pressure-sensitive adhesive, and by reducing or suppressing the occurrence of the stringing, an improvement in peelability has been achieved (for example, , The above-mentioned Patent Documents 2 to 7). Under such circumstances, the inventors of the present invention have made diligent studies and found that when the adherend and the pressure-sensitive adhesive were peeled off, a specific stringing phenomenon was observed more than when no stringing phenomenon was observed. In this case, it was found that the peeling progress was accelerated by the propagation of the breaking impact of the stringer, and the peeling speed was improved, and the present invention was completed.
 本発明の一側面は、ダイシング・ダイボンディング一体型フィルムに用いられる光硬化性粘着剤の評価方法を提供する。この光硬化性粘着剤の評価方法は、基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、光硬化性粘着剤層に対して下記照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成し、下記剥離条件で接着剤層と光硬化性粘着剤層の硬化物とを剥離させたときの剥離力を測定する第1の工程と、基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、光硬化性粘着剤層を下記加熱冷却条件で処理し、光硬化性粘着剤層に対して下記照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成し、下記剥離条件で接着剤層と光硬化性粘着剤層の硬化物とを剥離させ、接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面を走査型プローブ顕微鏡で観察し、表面における糸曳き痕の痕数及び痕幅を計測する第2の工程と、剥離力並びに糸曳き痕の痕数及び痕幅に基づいて、光硬化性粘着剤の良否を判定する第3の工程とを備える。
(照射条件)
 照射強度:70mW/cm
 積算光量:150mJ/cm
(剥離条件)
 温度:25±5℃
 湿度:55±10%
 剥離角度:30°
 剥離速度:600mm/分
(加熱冷却条件)
 加熱処理:65℃、15分間
 冷却処理:25±5℃まで30分間空冷静置
One aspect of the present invention provides a method for evaluating a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film. This photocurable pressure-sensitive adhesive evaluation method is a substrate layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and an adhesive layer are prepared in this order to prepare a dicing/die-bonding integrated film, Irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet rays under the following irradiation conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and under the following peeling conditions, a cured product of the adhesive layer and the photocurable pressure-sensitive adhesive layer: The first step of measuring the peeling force when the film is peeled off, and the dicing/die bonding in which the base material layer, the photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and the adhesive layer are laminated in this order. Prepare a body film, treat the photocurable pressure-sensitive adhesive layer under the following heating and cooling conditions, and irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet rays under the following irradiation conditions to obtain a cured product of the photocurable pressure-sensitive adhesive layer. The adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled under the following peeling conditions, and the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is scanned with a scanning probe microscope. The second step of measuring the number and width of traces of thread-plucking marks on the surface, and the quality of the photo-curable adhesive is determined based on the peeling force and the number and width of traces of plucking marks. And a third step.
(Irradiation conditions)
Irradiation intensity: 70 mW/cm 2
Integrated light intensity: 150 mJ/cm 2
(Peeling conditions)
Temperature: 25±5℃
Humidity: 55±10%
Peeling angle: 30°
Peeling speed: 600 mm/min (heating and cooling conditions)
Heat treatment: 65°C, 15 minutes Cooling treatment: Air cooling to 25±5°C for 30 minutes
 このような光硬化性粘着剤の評価方法は、ダイシング・ダイボンディング一体型フィルムの光硬化性粘着剤層として使用予定の光硬化性粘着剤が優れたピックアップ性を有するものであるかを事前に予測するのに有用である。 Such a photo-curable pressure-sensitive adhesive evaluation method is to check in advance whether the photo-curable pressure-sensitive adhesive to be used as the photo-curable pressure-sensitive adhesive layer of the dicing/die-bonding integrated film has excellent pickup property. Useful for forecasting.
 第3の工程は、剥離力並びに糸曳き痕の痕数及び痕幅が下記条件(a)及び下記条件(b)を満たすか否かによって光硬化性粘着剤の良否を判定する工程であってよい。
 条件(a):剥離力が0.70N/25mm以下である。
 条件(b):接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に、糸曳き痕の痕数が15以上である25μm×25μmの領域が存在し、領域内における糸曳き痕の痕幅の中央値が120~200nmである。
The third step is a step of judging the quality of the photocurable pressure-sensitive adhesive based on whether or not the peeling force and the number and width of traces of the string-plucking traces satisfy the following conditions (a) and (b). Good.
Condition (a): The peeling force is 0.70 N/25 mm or less.
Condition (b): The surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled off has a region of 25 μm×25 μm in which the number of traces of the string-plucking marks is 15 or more, and within the region. The median width of the thread-plucking marks is 120 to 200 nm.
 光硬化性粘着剤は、反応性官能基を有する(メタ)アクリル共重合体と、光重合開始剤と、反応性官能基と反応可能な官能基を2以上有する架橋剤とを含有していてもよい。(メタ)アクリル共重合体は、メタクリル酸単量体単位をさらに含んでいてもよい。 The photocurable pressure-sensitive adhesive contains a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a crosslinking agent having two or more functional groups capable of reacting with the reactive functional group. Good. The (meth)acrylic copolymer may further contain a methacrylic acid monomer unit.
 接着剤層は、エポキシ樹脂と、エポキシ樹脂硬化剤と、エポキシ基を有する(メタ)アクリル共重合体とを含有していてもよい。 The adhesive layer may contain an epoxy resin, an epoxy resin curing agent, and a (meth)acrylic copolymer having an epoxy group.
 別の側面において、本発明は、基材層上に、上述の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層を形成する工程と、光硬化性粘着剤層上に接着剤層を形成する工程とを備える、ダイシング・ダイボンディング一体型フィルムの製造方法を提供する。 In another aspect, the present invention, on the substrate layer, a step of forming a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive determined to be good in the above-mentioned photo-curable pressure-sensitive adhesive evaluation method, And a step of forming an adhesive layer on the photocurable pressure-sensitive adhesive layer, to provide a method for producing a dicing/die-bonding integrated film.
 別の側面において、本発明は、上述の製造方法によって得られるダイシング・ダイボンディング一体型フィルムの接着剤層を半導体ウエハに貼り付ける工程と、半導体ウエハ、接着剤層、及び光硬化性粘着剤層をダイシングによって個片化する工程と、光硬化性粘着剤層に対して紫外線を照射し、光硬化性粘着剤層の硬化物を形成する工程と、光硬化性粘着剤層の硬化物から接着剤層が付着した半導体素子をピックアップする工程と、接着剤層を介して、半導体素子を半導体素子搭載用の支持基板に接着する工程とを備える、半導体装置の製造方法を提供する。 In another aspect, the present invention provides a step of attaching an adhesive layer of a dicing/die-bonding integrated film obtained by the above-described manufacturing method to a semiconductor wafer, the semiconductor wafer, the adhesive layer, and the photocurable pressure-sensitive adhesive layer. Dicing into individual pieces, irradiating the photo-curable pressure-sensitive adhesive layer with ultraviolet rays to form a cured product of the photo-curable pressure-sensitive adhesive layer, and adhering from the cured product of the photo-curable pressure-sensitive adhesive layer. Provided is a method for manufacturing a semiconductor device, which comprises a step of picking up a semiconductor element to which an agent layer is attached and a step of adhering the semiconductor element to a support substrate for mounting the semiconductor element via an adhesive layer.
 半導体ウエハの厚みは、35μm以下であってよい。ダイシングは、ステルスダイシングを適用したものであってよい。 The thickness of the semiconductor wafer may be 35 μm or less. The dicing may be an application of stealth dicing.
 別の側面において、本発明は、基材層と、上述の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層と、接着剤層とをこの順に備える、ダイシング・ダイボンディング一体型フィルムを提供する。 In another aspect, the present invention comprises a substrate layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive determined to be good in the above-mentioned photo-curable pressure-sensitive adhesive evaluation method, and an adhesive layer. A dicing/die bonding integrated film provided in this order is provided.
 本発明によれば、ダイシング・ダイボンディング一体型フィルムに用いられる光硬化性粘着剤の新規な評価方法が提供される。また、本発明によれば、このような光硬化性粘着剤の評価方法に基づく、ダイシング・ダイボンディング一体型フィルム及びその製造方法が提供される。さらに、本発明によれば、このようなダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法が提供される。 According to the present invention, there is provided a new evaluation method for a photocurable pressure-sensitive adhesive used in a dicing/die-bonding integrated film. Further, according to the present invention, there is provided a dicing/die bonding integrated film and a method for producing the same, which is based on such a method for evaluating a photocurable pressure-sensitive adhesive. Further, according to the present invention, there is provided a method of manufacturing a semiconductor device using such a dicing/die bonding integrated film.
図1は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an integrated dicing/die bonding film. 図2は、光硬化性粘着剤層の硬化物の表面の形状像プロファイル及び位相像プロファイルの一例を示す図であり、図2(a)は、形状像プロファイルであり、図2(b)は、位相像プロファイルである。FIG. 2 is a diagram showing an example of a shape image profile and a phase image profile of a surface of a cured product of a photocurable pressure-sensitive adhesive layer, FIG. 2( a) is a shape image profile, and FIG. 2( b) is , A phase image profile. 図3は、光硬化性粘着剤層の硬化物の表面の断面プロファイルの一例を示す図であり、図3(a)は、形状像プロファイルであり、図3(b)は、図3(a)における糸曳き痕Xのiii-iii線の断面プロファイルである。FIG. 3 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer, FIG. 3( a) is a shape image profile, and FIG. 3( b) is FIG. 3) is a cross-sectional profile of the line drawing mark X taken along line iii-iii. 図4は、光硬化性粘着剤層の硬化物の表面の断面プロファイルの一例を示す図であり、図4(a)は、形状像プロファイルであり、図4(b)は、図4(a)における糸曳き痕Yのiv-iv線の断面プロファイルである。FIG. 4 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer, FIG. 4( a) is a shape image profile, and FIG. 4( b) is FIG. 4( a ). 4) is a cross-sectional profile of the line drawing mark Y taken along line iv-iv. 図5は、半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図5(a)、(b)、(c)、(d)、及び(e)は、各工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 5A, 5B, 5C, 5D, and 5E show each step. It is a schematic cross section which shows. 図6は、半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図6(f)、(g)、(h)、及び(i)は、各工程を示す模式断面図である。FIG. 6 is a schematic cross-sectional view for explaining one embodiment of a method for manufacturing a semiconductor device, and FIGS. 6F, 6G, 6H, and 6I are schematic cross-sectional views showing each step. It is a figure. 図7は、半導体装置の一実施形態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing an embodiment of a semiconductor device.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 An embodiment of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including steps and the like) are not essential unless otherwise specified. The sizes of the constituent elements in each figure are conceptual, and the relative size relationships between the constituent elements are not limited to those shown in each figure.
 本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and ranges thereof in the present specification, and does not limit the present invention. In the present specification, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。 In the present specification, (meth)acrylate means acrylate or corresponding methacrylate. The same applies to other similar expressions such as a (meth)acryloyl group and a (meth)acrylic copolymer.
 本明細書において、「糸曳き」とは、被着体と粘着剤との間における粘着剤の変形形態であり、被着体と粘着剤とを剥離させたときに、粘着剤が被着体との間で破断されずに糸のように大変形することを意味する。「糸曳き痕」は、糸曳きが発生した後に粘着剤が破断されて部分的に収縮すること、大変形した後に部分的に収縮すること、又は粘着剤が不可逆な程延伸された若しくは大変形された後に被着体から剥離して部分的に収縮することによって、粘着剤の表面において痕(突起)として観測されるものを意味する。 In the present specification, the “threading” is a modified form of the pressure-sensitive adhesive between the adherend and the pressure-sensitive adhesive, and when the pressure-sensitive adhesive is separated from the pressure-sensitive adhesive, It means a large deformation like a thread without being broken between and. "Threading mark" means that the adhesive is broken and partially contracted after the stringing occurs, that the adhesive is largely deformed and then partially contracted, or that the adhesive is irreversibly stretched or largely deformed. It means what is observed as a mark (projection) on the surface of the pressure-sensitive adhesive by being peeled off from the adherend and then partially contracted.
[光硬化性粘着剤の評価方法]
 一実施形態に係るダイシング・ダイボンディング一体型フィルムに用いられる光硬化性粘着剤の評価方法は、基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、光硬化性粘着剤層に対して特定の照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成し、特定の剥離条件で接着剤層と光硬化性粘着剤層の硬化物とを剥離させたときの剥離力を測定する第1の工程と、基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、光硬化性粘着剤層を特定の加熱冷却条件で処理し、光硬化性粘着剤層に対して特定の照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成し、特定の剥離条件で接着剤層と光硬化性粘着剤層の硬化物とを剥離させ、接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面を走査型プローブ顕微鏡で観察し、表面における糸曳き痕の痕数及び痕幅を計測する第2の工程と、剥離力並びに糸曳き痕の痕数及び痕幅に基づいて、光硬化性粘着剤の良否を判定する第3の工程とを備える。
[Evaluation method of photocurable adhesive]
The method for evaluating a photocurable pressure-sensitive adhesive used in the dicing/die-bonding integrated film according to one embodiment is a base layer, a photocurable pressure-sensitive adhesive layer made of a photocurable pressure-sensitive adhesive, and an adhesive layer in this order. Prepare a laminated dicing/die-bonding integrated film, irradiate the photocurable pressure-sensitive adhesive layer with ultraviolet light under specific irradiation conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and perform specific peeling. A first step of measuring the peeling force when the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled under the conditions, and a photocurable pressure-sensitive adhesive layer comprising a base material layer and a photocurable pressure-sensitive adhesive. , And an adhesive layer are laminated in this order to prepare a dicing/die-bonding integrated film, treat the photocurable pressure-sensitive adhesive layer under specific heating and cooling conditions, and subject the photocurable pressure-sensitive adhesive layer to specific irradiation. UV light is irradiated under the conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are separated under specific peeling conditions, and the adhesive layer is separated. After observing the surface of the cured product of the photocurable pressure-sensitive adhesive layer after scanning with a scanning probe microscope, the second step of measuring the number and the width of traces of the thread-plucking marks on the surface, the peeling force and the thread-plucking marks And a third step of judging the quality of the photocurable pressure-sensitive adhesive based on the number of traces and the width of the trace.
 以下では、まず、評価対象である光硬化性粘着剤、並びに光硬化性粘着剤からなる光硬化性粘着剤層を備えるダイシング・ダイボンディング一体型フィルム及びその製造方法を説明し、次いで、糸曳き現象の影響因子を考察し、最後に各工程について説明する。 In the following, first, a photo-curable pressure-sensitive adhesive to be evaluated, and a dicing/die-bonding integrated film including a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive and a method for producing the same will be described, and then a stringing Factors influencing the phenomenon will be considered, and finally each step will be described.
<光硬化性粘着剤>
 本実施形態に係る光硬化性粘着剤の評価方法では、紫外線の照射によって硬化する光硬化性粘着剤が評価対象となり得る。以下、評価対象となる光硬化性粘着剤の一例として、反応性官能基を有する(メタ)アクリル共重合体と、光重合開始剤と、反応性官能基と反応可能な官能基を2以上有する架橋剤とを含有する光硬化性粘着剤を説明する。
<Photocurable adhesive>
In the photocurable pressure-sensitive adhesive evaluation method according to the present embodiment, a photocurable pressure-sensitive adhesive that is cured by irradiation with ultraviolet rays can be an evaluation target. Hereinafter, as an example of a photocurable pressure-sensitive adhesive to be evaluated, a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and two or more functional groups capable of reacting with the reactive functional group are provided. A photocurable pressure-sensitive adhesive containing a crosslinking agent will be described.
(反応性官能基を有する(メタ)アクリル共重合体)
 反応性官能基を有する(メタ)アクリル共重合体は、例えば、1種又は2種以上の(メタ)アクリレート単量体(a1)又は(メタ)アクリル酸と、反応性官能基を有する1種又は2種以上の重合性化合物(a2)とを共重合することによって得ることができる。
(A (meth)acrylic copolymer having a reactive functional group)
The (meth)acrylic copolymer having a reactive functional group is, for example, one or more types of (meth)acrylate monomer (a1) or (meth)acrylic acid, and one type having a reactive functional group. Alternatively, it can be obtained by copolymerizing two or more kinds of polymerizable compounds (a2).
 (メタ)アクリレート単量体(a1)は、例えば、直鎖又は分岐アルキル(メタ)アクリレート、脂環式(メタ)アクリレート、芳香族(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、アルコキシ(ポリ)アルキレングリコール(メタ)アクリレート、アルコキシアルコキシアルキル(メタ)アクリレート、及びジアルキルアミノアルキル(メタ)アクリレートからなる群より選ばれる少なくとも1種であってもよい。 Examples of the (meth)acrylate monomer (a1) include linear or branched alkyl (meth)acrylate, alicyclic (meth)acrylate, aromatic (meth)acrylate, alkoxyalkyl (meth)acrylate, and alkoxy (poly). It may be at least one selected from the group consisting of alkylene glycol (meth)acrylate, alkoxyalkoxyalkyl (meth)acrylate, and dialkylaminoalkyl (meth)acrylate.
 直鎖又は分岐アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート等が挙げられる。 Examples of the linear or branched alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t- Examples thereof include butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, and tridecyl (meth)acrylate.
 脂環式(メタ)アクリレートとしては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。 Examples of the alicyclic (meth)acrylate include cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
 芳香族(メタ)アクリレートとしては、例えば、フェノキシエチル(メタ)アクリレート等が挙げられる。 Examples of aromatic (meth)acrylates include phenoxyethyl (meth)acrylate.
 アルコキシアルキル(メタ)アクリレートとしては、例えばエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等が挙げられる。 Examples of alkoxyalkyl (meth)acrylates include ethoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate.
 アルコキシ(ポリ)アルキレングリコール(メタ)アクリレートとしては、例えば、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of the alkoxy(poly)alkylene glycol(meth)acrylate include methoxydiethylene glycol(meth)acrylate, ethoxydiethylene glycol(meth)acrylate, methoxytriethylene glycol(meth)acrylate, butoxytriethylene glycol(meth)acrylate, methoxydipropylene. Examples thereof include glycol (meth)acrylate.
 アルコキシアルコキシアルキル(メタ)アクリレートとしては、例えば、2-メトキシエトキシエチル(メタ)アクリレート、2-エトキシエトキシエチル(メタ)アクリレート等が挙げられる。 Examples of alkoxyalkoxyalkyl (meth)acrylates include 2-methoxyethoxyethyl (meth)acrylate and 2-ethoxyethoxyethyl (meth)acrylate.
 ジアルキルアミノアルキル(メタ)アクリレートとしては、例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等が挙げられる。 Examples of the dialkylaminoalkyl (meth)acrylate include N,N-dimethylaminoethyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate.
 重合性化合物(a2)は、ヒドロキシ基及びエポキシ基からなる群より選ばれる少なくとも1種の反応性官能基を有していてよい。ヒドロキシ基及びエポキシ基は、イソシアネート基等を有する化合物(b)との反応性が良好であるため、好適に用いることができる。重合性化合物(a2)は、ヒドロキシ基を有することが好ましい。 The polymerizable compound (a2) may have at least one reactive functional group selected from the group consisting of a hydroxy group and an epoxy group. Since the hydroxy group and the epoxy group have good reactivity with the compound (b) having an isocyanate group or the like, they can be preferably used. The polymerizable compound (a2) preferably has a hydroxy group.
 反応性官能基としてヒドロキシ基を有する重合性化合物(a2)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートなどが挙げられる。 Examples of the polymerizable compound (a2) having a hydroxy group as a reactive functional group include hydroxyalkyl such as 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. (Meth)acrylate etc. are mentioned.
 反応性官能基としてエポキシ基を有する重合性化合物(a2)としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレートなどが挙げられる。 Examples of the polymerizable compound (a2) having an epoxy group as a reactive functional group include (meth)acrylate having an epoxy group such as glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate. ..
 (メタ)アクリル共重合体は、(メタ)アクリル酸を単量体単位として含んでいてもよい。また、(メタ)アクリレート単量体(a1)及び重合性化合物(a2)に加えて、他の重合性化合物を単量体単位として含んでいてもよい。他の重合性化合物としては、例えば、スチレン、ビニルトルエン等の芳香族ビニル化合物などが挙げられる。 The (meth)acrylic copolymer may contain (meth)acrylic acid as a monomer unit. Further, in addition to the (meth)acrylate monomer (a1) and the polymerizable compound (a2), another polymerizable compound may be contained as a monomer unit. Examples of other polymerizable compounds include aromatic vinyl compounds such as styrene and vinyltoluene.
 反応性官能基を有する(メタ)アクリル共重合体は、連鎖重合可能な官能基をさらに有していてもよい。すなわち、反応性官能基を有する(メタ)アクリル共重合体からなる主鎖と、主鎖に結合し、重合性二重結合を含む側鎖とを有するものであってもよい。重合性二重結合を含む側鎖は、(メタ)アクリルロイル基であってよいが、これに限られない。連鎖重合可能な官能基を有する(メタ)アクリル共重合体は、反応性官能基を有する(メタ)アクリル共重合体の反応性官能基と反応する官能基と連鎖重合可能な官能基とを有する1種又は2種以上の化合物(b)とを反応させて(メタ)アクリル共重合体の側鎖に連鎖重合可能な官能基を導入することによって得ることができる。 The (meth)acrylic copolymer having a reactive functional group may further have a chain-polymerizable functional group. That is, it may have a main chain made of a (meth)acrylic copolymer having a reactive functional group and a side chain containing a polymerizable double bond and bonded to the main chain. The side chain containing the polymerizable double bond may be a (meth)acryloyl group, but is not limited thereto. A (meth)acrylic copolymer having a chain-polymerizable functional group has a functional group that reacts with a reactive functional group of a (meth)acrylic copolymer having a reactive functional group and a chain-polymerizable functional group. It can be obtained by reacting one or more compounds (b) with each other to introduce a chain-polymerizable functional group into the side chain of the (meth)acrylic copolymer.
 反応性官能基(エポキシ基、ヒドロキシ基等)と反応する官能基としては、例えば、イソシアネート基等が挙げられる。 Examples of the functional group that reacts with a reactive functional group (epoxy group, hydroxy group, etc.) include an isocyanate group and the like.
 イソシアネート基を有する化合物(b)の具体例としては、2-メタクリロキシエチルイソシアネート(例えば、昭和電工株式会社製、商品名「カレンズMOI」)が挙げられる。 Specific examples of the compound (b) having an isocyanate group include 2-methacryloxyethyl isocyanate (for example, Showa Denko KK, trade name “Karenzu MOI”).
 化合物(b)の含有量は、反応性官能基を有する(メタ)アクリル共重合体に対して、0.3~1.5mmol/gであってよい。 The content of the compound (b) may be 0.3 to 1.5 mmol/g based on the (meth)acrylic copolymer having a reactive functional group.
 反応性官能基を有する(メタ)アクリル共重合体の酸価は、例えば、0~150mgKOH/gであってよい。反応性官能基を有する(メタ)アクリル共重合体の水酸基価は、例えば、0~150mgKOH/gであってよい。酸価及び水酸基価は、JIS K0070に準じて測定されるものである。 The acid value of the (meth)acrylic copolymer having a reactive functional group may be, for example, 0 to 150 mgKOH/g. The hydroxyl value of the (meth)acrylic copolymer having a reactive functional group may be, for example, 0 to 150 mgKOH/g. The acid value and the hydroxyl value are measured according to JIS K0070.
 反応性官能基を有する(メタ)アクリル共重合体の重量平均分子量(Mw)は、10万~100万、20万~80万、又は30万~70万であってよい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight average molecular weight (Mw) of the (meth)acrylic copolymer having a reactive functional group may be 100,000 to 1,000,000, 200,000 to 800,000, or 300,000 to 700,000. The weight average molecular weight is a polystyrene conversion value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).
(光重合開始剤)
 光重合開始剤としては、紫外線の照射によって重合を開始させるものであれば特に制限されず、例えば、光ラジカル重合開始剤等が挙げられる。光ラジカル重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のα-アミノケトン;1-[4-(フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド等のホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン等のベンゾフェノン化合物;2-エチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル等のベンゾインエーテル;ベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン等のアクリジン化合物:N-フェニルグリシン、クマリンなどが挙げられる。これらは1種を単独で用いてもよく、適切な増感剤と組み合わせて用いてもよい。
(Photopolymerization initiator)
The photopolymerization initiator is not particularly limited as long as it initiates polymerization by irradiation with ultraviolet rays, and examples thereof include a photoradical polymerization initiator. Examples of the photoradical polymerization initiator include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; α-hydroxyketones such as 1-hydroxycyclohexylphenyl ketone; 2-benzyl-2- Α-aminoketones such as dimethylamino-1-(4-morpholinophenyl)-butan-1-one; oximes such as 1-[4-(phenylthio)phenyl]-1,2-octadione-2-(benzoyl)oxime Ester; phosphine oxide such as bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide; 2,4,5-triarylimidazole diamine such as 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer Benzene compounds such as benzophenone, N,N,N′,N′-tetramethyl-4,4′-diaminobenzophenone; quinone compounds such as 2-ethylanthraquinone; benzoin ethers such as benzoin methyl ether; benzoin Benzoin compounds; benzyl compounds such as benzyl dimethyl ketal; acridine compounds such as 9-phenylacridine: N-phenylglycine, coumarin and the like. These may be used alone or in combination with a suitable sensitizer.
 光重合開始剤の含有量は、(メタ)アクリル共重合体100質量部に対して、0.1~10質量部又は0.5~5質量部であってよい。 The content of the photopolymerization initiator may be 0.1 to 10 parts by mass or 0.5 to 5 parts by mass with respect to 100 parts by mass of the (meth)acrylic copolymer.
(架橋剤)
 架橋剤は、反応性官能基を有する(メタ)アクリル共重合体の反応性官能基(エポキシ基、ヒドロキシ基等)と反応可能な官能基を2以上有する化合物であれば特に制限されない。架橋剤と反応性官能基を有する(メタ)アクリル共重合体との反応によって形成される結合としては、例えば、エステル結合、エーテル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合等が挙げられる。
(Crosslinking agent)
The cross-linking agent is not particularly limited as long as it is a compound having two or more functional groups capable of reacting with the reactive functional group (epoxy group, hydroxy group, etc.) of the (meth)acrylic copolymer having a reactive functional group. Examples of the bond formed by the reaction between the cross-linking agent and the (meth)acrylic copolymer having a reactive functional group include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond, and a urea bond. ..
 架橋剤としては、例えば、一分子中に2以上のイソシアネート基を有する化合物が挙げられる。このような化合物を用いると、上記(メタ)アクリル共重合体が有する反応性官能基と容易に反応するため、粘着性及び糸曳きの制御がし易い傾向にある。 Examples of the cross-linking agent include compounds having two or more isocyanate groups in one molecule. When such a compound is used, it easily reacts with the reactive functional group of the (meth)acrylic copolymer, so that the tackiness and stringiness tend to be easily controlled.
 一分子中に2以上のイソシアネート基を有する化合物としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、リジンイソシアネート等のイソシアネート化合物などが挙げられる。 Examples of the compound having two or more isocyanate groups in one molecule include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, lysine isocyanate, etc. And the isocyanate compound of.
 一分子中に2以上のイソシアネート基を有する化合物の具体例としては、多官能イソシアネート(日本ポリウレタン工業株式会社製、商品名「コロネートL」)が挙げられる。 Specific examples of the compound having two or more isocyanate groups in one molecule include polyfunctional isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “Coronate L”).
 架橋剤は、上述のイソシアネート化合物と、一分子中に2以上のヒドロキシ基を有する多価アルコールの反応物(イソシアナート基含有オリゴマー)であってもよい。一分子中に2以上のヒドロキシ基を有する多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール等が挙げられる。 The cross-linking agent may be a reaction product of the above-mentioned isocyanate compound and a polyhydric alcohol having two or more hydroxy groups in one molecule (isocyanate group-containing oligomer). Examples of the polyhydric alcohol having two or more hydroxy groups in one molecule include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, and 1 , 10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, 1,3-cyclohexanediol and the like.
 これらの中でも、架橋剤は、一分子中に2以上のイソシアネート基を有する多官能イソシアネートと、一分子中に3以上のヒドロキシ基を有する多価アルコールの反応物(イソシアナート基含有オリゴマー)であってもよい。このようなイソシアネート基含有オリゴマーを架橋剤として用いることで、光硬化性粘着剤層20がより緻密な架橋構造を形成する傾向にある。 Among these, the crosslinking agent is a reaction product (isocyanate group-containing oligomer) of a polyfunctional isocyanate having two or more isocyanate groups in one molecule and a polyhydric alcohol having three or more hydroxy groups in one molecule. May be. By using such an isocyanate group-containing oligomer as a crosslinking agent, the photocurable pressure-sensitive adhesive layer 20 tends to form a denser crosslinked structure.
 架橋剤の含有量は、例えば、(メタ)アクリル共重合体全質量に対して、3~50質量%であってよい。 The content of the cross-linking agent may be, for example, 3 to 50 mass% with respect to the total mass of the (meth)acrylic copolymer.
<ダイシング・ダイボンディング一体型フィルム及びその製造方法>
 図1は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。ダイシング・ダイボンディング一体型フィルム1は、基材層10、光硬化性粘着剤からなる光硬化性粘着剤層20、及び接着剤層30がこの順に積層されている。
<Film with integrated dicing and die bonding and its manufacturing method>
FIG. 1 is a schematic cross-sectional view showing an embodiment of an integrated dicing/die bonding film. The dicing/die-bonding integrated film 1 includes a base material layer 10, a photo-curable pressure-sensitive adhesive layer 20 made of a photo-curable pressure-sensitive adhesive, and an adhesive layer 30 laminated in this order.
(基材層)
 基材層10は、既知のポリマーシート又はフィルムを用いることができ、ダイボンディング工程においてエキスパンドすることが可能な材料で構成されているのであれば、特に制限されない。このような材料としては、例えば、結晶性ポリプロピレン、非晶性ポリプロピレン、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、低密度直鎖ポリエチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン;エチレン-酢酸ビニル共重合体;アイオノマー樹脂;エチレン-(メタ)アクリル酸共重合体;エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体;エチレン-プロピレン共重合体;エチレン-ブテン共重合体;エチレン-ヘキセン共重合体;ポリウレタン;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ポリイミド;ポリエーテルエーテルケトン;ポリイミド;ポリエーテルイミド;ポリアミド;全芳香族ポリアミド;ポリフェニルスルフイド;アラミド(紙);ガラス;ガラスクロス;フッ素樹脂;ポリ塩化ビニル;ポリ塩化ビニリデン;セルロース系樹脂;シリコーン樹脂などが挙げられる。これらの材料は、可塑剤、シリカ、アンチブロッキング材、スリップ剤、帯電防止剤等と混合した材料であってもよい。
(Base material layer)
The base material layer 10 may be a known polymer sheet or film, and is not particularly limited as long as it is made of a material that can be expanded in the die bonding step. Examples of such a material include crystalline polypropylene, amorphous polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, low-density linear polyethylene, polybutene, polymethylpentene, and other polyolefins; Ethylene-vinyl acetate copolymer; ionomer resin; ethylene-(meth)acrylic acid copolymer; ethylene-(meth)acrylic acid ester (random, alternating) copolymer; ethylene-propylene copolymer; ethylene-butene copolymer Polymers; ethylene-hexene copolymers; polyurethanes; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; polyimides; polyether ether ketones; polyimides; polyether imides; polyamides; wholly aromatic polyamides; polyphenyl sulfides; aramids (Paper); glass; glass cloth; fluororesin; polyvinyl chloride; polyvinylidene chloride; cellulosic resin; silicone resin and the like. These materials may be materials mixed with a plasticizer, silica, an anti-blocking material, a slip agent, an antistatic agent, or the like.
 これらの中でも、基材層10は、ヤング率、応力緩和性、融点等の特性、価格面、使用後の廃材リサイクルなどの観点から、ポリエチレン、ポリプロピレン、ポリエチレン-ポリプロピレンランダム共重合体、及びポリエチレン-ポリプロピレンブロック共重合体から選ばれる少なくとも1種の材料を主成分とする表面を有し、当該表面が光硬化性粘着剤層20と接しているものであってよい。基材層10は、単層であっても、異なる材料からなる2層以上の多層であってもよい。基材層10は、後述の光硬化性粘着剤層20との密着性を制御する観点から、必要に応じて、コロナ放電処理、マット処理等の表面粗化処理が施されていてもよい。 Among these, the base material layer 10 is made of polyethylene, polypropylene, polyethylene-polypropylene random copolymer, and polyethylene-from the viewpoint of properties such as Young's modulus, stress relaxation property, melting point, price, recycling of waste materials after use, and the like. It may have a surface containing at least one material selected from polypropylene block copolymers as a main component, and the surface is in contact with the photocurable pressure-sensitive adhesive layer 20. The base material layer 10 may be a single layer or a multilayer including two or more layers made of different materials. The base material layer 10 may be subjected to surface roughening treatment such as corona discharge treatment or mat treatment, if necessary, from the viewpoint of controlling the adhesion with the photo-curable pressure-sensitive adhesive layer 20 described later.
 基材層10の厚みは、70~120μm又は80~100μmであってよい。基材層10の厚みが70μm以上であると、エキスパンドよる破損をより抑制できる傾向にある。基材層10の厚みが120μm以下であると、ピックアップにおける応力が接着剤層まで到達し易くなり、ピックアップ性により優れる傾向にある。 The thickness of the base material layer 10 may be 70 to 120 μm or 80 to 100 μm. When the thickness of the base material layer 10 is 70 μm or more, damage due to expansion tends to be more suppressed. When the thickness of the base material layer 10 is 120 μm or less, the stress in the pickup easily reaches the adhesive layer, and the pickup property tends to be more excellent.
(光硬化性粘着剤層)
 光硬化性粘着剤層20は、上述の光硬化性粘着剤からなる層である。光硬化性粘着剤層20は、基材層10上に形成されている。基材層10上に光硬化性粘着剤層20を形成する方法としては、例えば、光硬化性粘着剤層形成用ワニスを調製し、当該ワニスを基材層10に塗工して、当該ワニスの揮発成分を除去し、光硬化性粘着剤層20を形成する方法、当該ワニスを離型処理されたフィルム上に塗工し、当該ワニスの揮発成分を除去して、光硬化性粘着剤層20を形成し、得られた光硬化性粘着剤層20を基材層10に転写する方法が挙げられる。
(Photocurable adhesive layer)
The photocurable pressure-sensitive adhesive layer 20 is a layer made of the above-mentioned photocurable pressure-sensitive adhesive. The photocurable pressure-sensitive adhesive layer 20 is formed on the base material layer 10. As a method of forming the photocurable pressure-sensitive adhesive layer 20 on the base material layer 10, for example, a varnish for forming a photocurable pressure sensitive adhesive layer is prepared, and the varnish is applied to the base material layer 10 to obtain the varnish. Of the photo-curable pressure-sensitive adhesive layer 20 by removing the volatile components of the varnish, and coating the varnish on a release-treated film to remove the volatile components of the varnish to remove the volatile component of the photo-curable pressure-sensitive adhesive layer. 20 is formed, and the obtained photocurable pressure-sensitive adhesive layer 20 is transferred to the base material layer 10.
 光硬化性粘着剤層形成用ワニスは、反応性官能基を有する(メタ)アクリル共重合体、光重合開始剤、及び反応性官能基と反応可能な官能基を2以上有する架橋剤と有機溶剤とを含有する。有機溶剤は、反応性官能基を有する(メタ)アクリル共重合体、光重合開始剤、及び反応性官能基と反応可能な官能基を2以上有する架橋剤を用化し得るものであって、加熱によって揮発するものであってよい。このような有機溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;メタノール、エタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;酢酸メチル、酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。ワニスの固形分濃度は、ワニス全質量を基準として、10~60質量%であってよい。 The varnish for forming a photocurable pressure-sensitive adhesive layer comprises a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a crosslinking agent having two or more functional groups capable of reacting with the reactive functional group and an organic solvent. Contains and. As the organic solvent, a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a cross-linking agent having two or more functional groups capable of reacting with the reactive functional group can be used. May be volatilized by. Examples of such organic solvents include aromatic hydrocarbons such as toluene and xylene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, ethylene glycol and propylene glycol; acetone, methyl ethyl ketone and methyl. Ketones such as isobutyl ketone and cyclohexanone; esters such as methyl acetate, ethyl acetate and γ-butyrolactone; carbonic acid esters such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Polyhydric alcohol alkyl ethers such as propylene glycol dimethyl ether; polyhydric alcohol alkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl Examples include amides such as 2-pyrrolidone. These may be used alone or in combination of two or more. The solid content concentration of the varnish may be 10 to 60% by weight, based on the total weight of the varnish.
 光硬化性粘着剤層20の厚みは、例えば、1~200μm、3~50μm、又は5~30μmであってよい。 The thickness of the photocurable pressure-sensitive adhesive layer 20 may be, for example, 1 to 200 μm, 3 to 50 μm, or 5 to 30 μm.
(接着剤層)
 接着剤層30は、接着剤からなる層である。接着剤は、ダイボンディングフィルムの分野で使用される接着剤であれば特に制限されない。以下、接着剤の一例として、エポキシ樹脂と、エポキシ樹脂硬化剤と、エポキシ基を有する(メタ)アクリル共重合体とを含有する接着剤を説明する。このような接着剤からなる接着剤層30によれば、チップと基板との間、チップとチップとの間の接着性に優れ、電極埋め込み性、ワイヤー埋め込み性等を付与することが可能であり、かつダイボンディング工程において、低温で接着することが可能となる。
(Adhesive layer)
The adhesive layer 30 is a layer made of an adhesive. The adhesive is not particularly limited as long as it is an adhesive used in the field of die bonding film. Hereinafter, as an example of the adhesive, an adhesive containing an epoxy resin, an epoxy resin curing agent, and a (meth)acrylic copolymer having an epoxy group will be described. According to the adhesive layer 30 made of such an adhesive, it is possible to provide excellent adhesiveness between the chips and the substrate and between the chips, and to impart electrode embedding properties, wire embedding properties, and the like. In addition, it becomes possible to bond at low temperature in the die bonding process.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin. , Dicyclopentadiene skeleton-containing epoxy resin, stilbene type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenylaralkyl type epoxy resin, Examples thereof include naphthalene type epoxy resins, polyfunctional phenols, and diglycidyl ether compounds of polycyclic aromatics such as anthracene. These may be used alone or in combination of two or more.
 エポキシ樹脂硬化剤は、例えば、フェノール樹脂であってよい。フェノール樹脂は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。フェノール樹脂はとしては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The epoxy resin curing agent may be, for example, a phenolic resin. The phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in the molecule. Examples of the phenolic resin include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene, and formaldehyde. A novolak type phenolic resin obtained by condensation or co-condensation with a compound having an aldehyde group such as, for example, allylated bisphenol A, allylated bisphenol F, allylated naphthalene diol, phenol novolac, phenols and the like, and Examples thereof include phenol aralkyl resin and naphthol aralkyl resin synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. These may be used alone or in combination of two or more.
 エポキシ基を有する(メタ)アクリル共重合体は、原料としてグリシジル(メタ)アクリレートを、得られる共重合体に対し0.5~6質量%となる量に調整された共重合体であってよい。当該量が0.5質量%以上であると、高い接着力が得られ易くなる傾向にあり、当該量が6質量%以下であると、ゲル化を抑制できる傾向にある。グリシジル(メタ)アクリレートの残部はメチル(メタ)アクリレート等の炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート、及びスチレン、アクリロニトリル等の混合物であってよい。アルキル(メタ)アクリレートは、エチル(メタ)アクリレート及び/又はブチル(メタ)アクリレートを含んでいてよい。各成分の混合比率は、得られるエポキシ基を有する(メタ)アクリル共重合体のTg(ガラス転移点)を考慮して調整することができる。Tgが-10℃以上であると、Bステージ状態での接着剤層30のタック性が良好になる傾向にあり、取り扱い性に優れる傾向にある。エポキシ基を有する(メタ)アクリル共重合体のTgの上限値は、例えば、30℃であってよい。 The (meth)acrylic copolymer having an epoxy group may be a copolymer prepared by adjusting glycidyl (meth)acrylate as a raw material in an amount of 0.5 to 6% by mass based on the resulting copolymer. .. When the amount is 0.5% by mass or more, high adhesive strength tends to be easily obtained, and when the amount is 6% by mass or less, gelation tends to be suppressed. The balance of glycidyl (meth)acrylate may be a mixture of alkyl (meth)acrylate having an alkyl group having 1 to 8 carbon atoms such as methyl (meth)acrylate and styrene and acrylonitrile. The alkyl (meth)acrylate may include ethyl (meth)acrylate and/or butyl (meth)acrylate. The mixing ratio of each component can be adjusted in consideration of the Tg (glass transition point) of the obtained (meth)acrylic copolymer having an epoxy group. When Tg is −10° C. or higher, the tackiness of the adhesive layer 30 in the B stage state tends to be good, and the handleability tends to be excellent. The upper limit of Tg of the (meth)acrylic copolymer having an epoxy group may be, for example, 30°C.
 エポキシ基を有する(メタ)アクリル共重合体の重量平均分子量は10万以上であってよく、30万~300万又は50万~200万であってよい。重量平均分子量が300万以下であると、半導体チップと支持基板との間の充填性の低下を制御できる傾向にある。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight average molecular weight of the (meth)acrylic copolymer having an epoxy group may be 100,000 or more, and may be 300,000 to 3,000,000 or 500,000 to 2,000,000. When the weight average molecular weight is 3,000,000 or less, deterioration of the filling property between the semiconductor chip and the supporting substrate tends to be controlled. The weight average molecular weight is a polystyrene conversion value using a calibration curve based on standard polystyrene by gel permeation chromatography (GPC).
 接着剤は、必要に応じて、第三級アミン、イミダゾール類、第四級アンモニウム塩類等の硬化促進剤をさらに含有していてもよい。硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The adhesive may further contain a curing accelerator such as a tertiary amine, imidazoles, or quaternary ammonium salts, if necessary. Examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used alone or in combination of two or more.
 接着剤は、必要に応じて、無機フィラーをさらに含有してもよい。無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶質シリカ、非晶質シリカ等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The adhesive may further contain an inorganic filler, if necessary. As the inorganic filler, for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride, crystalline Examples thereof include silica and amorphous silica. These may be used alone or in combination of two or more.
 接着剤層30は、光硬化性粘着剤層20上に形成される。光硬化性粘着剤層20上に接着剤層30を形成する方法としては、例えば、接着剤層形成用ワニスを調製し、当該ワニスを離型処理されたフィルム上に塗工して、接着剤層30を形成し、得られた接着剤層30を光硬化性粘着剤層20に転写する方法が挙げられる。接着剤層形成用ワニスは、エポキシ樹脂、エポキシ樹脂硬化剤、及びエポキシ基を有する(メタ)アクリル共重合体と、有機溶剤とを含有する。有機溶剤は、光硬化性粘着剤層形成用ワニスで使用される有機溶剤で例示したものと同様であってよい。 The adhesive layer 30 is formed on the photocurable pressure-sensitive adhesive layer 20. As a method of forming the adhesive layer 30 on the photocurable pressure-sensitive adhesive layer 20, for example, an adhesive layer-forming varnish is prepared, and the varnish is applied on a release-treated film to form an adhesive. A method of forming the layer 30 and transferring the obtained adhesive layer 30 to the photocurable pressure-sensitive adhesive layer 20 can be mentioned. The adhesive layer-forming varnish contains an epoxy resin, an epoxy resin curing agent, a (meth)acrylic copolymer having an epoxy group, and an organic solvent. The organic solvent may be the same as the organic solvent used in the varnish for forming a photocurable pressure-sensitive adhesive layer.
 接着剤層30の厚みは、例えば、1~300μm、5~150μm、又は10~100μmであってよい。 The thickness of the adhesive layer 30 may be, for example, 1 to 300 μm, 5 to 150 μm, or 10 to 100 μm.
[糸曳きの影響因子]
 糸曳きは、接着剤層と光硬化性粘着剤層の硬化物との界面での相互作用で発生し得る。そのため、糸曳き現象の影響因子の1つとしては、架橋剤の種類及び含有量が挙げられる。例えば、架橋剤の含有量を減少させると、糸曳き痕の痕数は増加し、糸曳き痕の痕幅も大きくなる傾向にある。したがって、架橋剤の種類及び含有量を調整することによって、糸曳き痕数及び痕幅を制御し得る。また、光硬化性粘着剤の組成以外の糸曳き現象の影響因子としては、塗工条件が挙げられる。塗工速度、塗工温度、風量等の塗工条件を変更させることによって、糸曳き痕数及び痕幅を制御し得る。さらに、糸曳き現象の影響因子としては、ダイシング・ダイボンディング一体型フィルムの作製時の接着剤層と光硬化性粘着剤層とを貼り合わせるときの条件、接着剤層及び光硬化性粘着剤層の表面物性(表面粗さ、表面自由エネルギー等)、反応性官能基を有する(メタ)アクリル共重合体の分子量、極性及びガラス転移点等が挙げられる。
[Influence factors of stringing]
The stringing can occur due to the interaction at the interface between the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer. Therefore, one of the influencing factors of the stringing phenomenon is the type and content of the crosslinking agent. For example, when the content of the cross-linking agent is decreased, the number of traces of the thread-plucking marks tends to increase and the width of the traces of the thread-plucking marks tends to increase. Therefore, by adjusting the type and content of the cross-linking agent, it is possible to control the number and width of the line-plucking marks. In addition, as the influencing factor of the stringing phenomenon other than the composition of the photocurable pressure-sensitive adhesive, the coating conditions can be mentioned. By changing the coating conditions such as the coating speed, the coating temperature, and the air volume, the number and width of the line-plucking traces can be controlled. Further, as factors influencing the stringing phenomenon, conditions for bonding the adhesive layer and the photo-curable pressure-sensitive adhesive layer during the production of the dicing/die-bonding integrated film, the adhesive layer and the photo-curable pressure-sensitive adhesive layer And the surface physical properties (surface roughness, surface free energy, etc.), molecular weight of the (meth)acrylic copolymer having a reactive functional group, polarity, glass transition point, and the like.
<第1の工程>
 本工程では、まず、基材層、評価対象である光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層された評価用ダイシング・ダイボンディング一体型フィルムを準備する。
<First step>
In this step, first, a dicing/die-bonding integrated film for evaluation in which a base material layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive to be evaluated, and an adhesive layer are laminated in this order is prepared. ..
 評価用ダイシング・ダイボンディング一体型フィルムにおいて、基材層、光硬化性粘着剤層、及び接着剤層の種類等は特に制限されず、任意に選択されるダイシング・ダイボンディング一体型フィルムを用いることができる。評価対象である光硬化性粘着剤からなる光硬化性粘着剤の厚みは、例えば、10μmとすることができる。接着剤層の厚みは、例えば、10μmとすることができる。 In the dicing/die-bonding integrated film for evaluation, the types of the base material layer, the photo-curable pressure-sensitive adhesive layer, and the adhesive layer are not particularly limited, and an arbitrarily selected dicing/die-bonding integrated film should be used. You can The thickness of the photo-curable pressure-sensitive adhesive composed of the photo-curable pressure-sensitive adhesive that is the object of evaluation can be set to 10 μm, for example. The thickness of the adhesive layer may be 10 μm, for example.
 次いで、光硬化性粘着剤層に対して下記照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成する。紫外線の光源は、使用する光重合開始剤の種類によって適宜最適なものを選択することができる。紫外線の光源は、特に制限されないが、低圧水銀ランプ、遠紫外線ランプ、エキシマ紫外線ランプ、高圧水銀ランプ、及びメタルハライドランプからなる群より選ばれる1種であってよい。これらのうち、紫外線の光源は、中心波長365nmである高圧水銀ランプであることが好ましい。また、紫外線の照射においては、光源から発する熱の影響を低減させるために、コールドミラー等を併用してもよい。 Next, the photocurable adhesive layer is irradiated with ultraviolet rays under the following irradiation conditions to form a cured product of the photocurable adhesive layer. The ultraviolet light source can be appropriately selected depending on the type of photopolymerization initiator used. The light source of ultraviolet light is not particularly limited, but may be one kind selected from the group consisting of a low pressure mercury lamp, a far ultraviolet lamp, an excimer ultraviolet lamp, a high pressure mercury lamp, and a metal halide lamp. Of these, the ultraviolet light source is preferably a high pressure mercury lamp having a central wavelength of 365 nm. Further, in the irradiation of ultraviolet rays, a cold mirror or the like may be used together in order to reduce the influence of heat emitted from the light source.
(照射条件)
 照射強度:70mW/cm
 積算光量:150mJ/cm
(Irradiation conditions)
Irradiation intensity: 70 mW/cm 2
Integrated light intensity: 150 mJ/cm 2
 紫外線の照射条件における照射温度は、60℃以下又は40℃以下であってよい。 The irradiation temperature under UV irradiation conditions may be 60°C or lower or 40°C or lower.
 最後に、下記剥離条件で接着剤層と光硬化性粘着剤層の硬化物とを剥離させたときの剥離力(低角ピール強度)を測定する。接着剤層と光硬化性粘着剤層の硬化物とを剥離させる場合、剥離角度を調整することが可能なピール強度測定装置を用いて、接着剤層に粘着テープ、支持テープ等を貼り付けてこれらのテープを引っ張ることによって行うことが好ましい。 Finally, measure the peeling force (low-angle peel strength) when peeling the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer under the following peeling conditions. When peeling the adhesive layer and the cured product of the photo-curable pressure-sensitive adhesive layer, use a peel strength measuring device capable of adjusting the peeling angle, and attach an adhesive tape, a supporting tape, etc. to the adhesive layer. Preference is given to pulling on these tapes.
(剥離条件)
 温度:25±5℃
 湿度:55±10%
 剥離角度:30°
 剥離速度:600mm/分
(Peeling conditions)
Temperature: 25±5℃
Humidity: 55±10%
Peeling angle: 30°
Peeling speed: 600 mm/min
 なお、剥離角度は低角にするほど、剥離力における基材層の影響を排除できる傾向にあるが、15°未満では測定が困難となる。そのため、30°が低角ピール強度の試験条件として好適である。 Note that the lower the peeling angle, the more likely the influence of the base layer on the peeling force will be eliminated, but if it is less than 15°, measurement will be difficult. Therefore, 30° is suitable as a test condition for low-angle peel strength.
<第2の工程>
 本工程では、まず、基材層、評価対象である光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層された評価用ダイシング・ダイボンディング一体型フィルムを準備する。第2の工程の評価用ダイシング・ダイボンディング一体型フィルムは、第1の工程の評価用ダイシング・ダイボンディング一体型フィルムと同じものであってよいが、第1の工程の剥離力の測定を行っていないものを用いる。
<Second step>
In this step, first, a dicing/die-bonding integrated film for evaluation in which a base material layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive to be evaluated, and an adhesive layer are laminated in this order is prepared. .. The evaluation dicing/die-bonding integrated film in the second step may be the same as the evaluation dicing/die-bonding integrated film in the first step, but the peeling force in the first step is measured. Use what is not.
 次いで、評価用ダイシング・ダイボンディング一体型フィルムの光硬化性粘着剤層を下記加熱冷却条件で処理する。光硬化性粘着剤層を加熱冷却条件で処理しない場合、光硬化性粘着剤層と接着剤層との密着性が充分でない可能性があり、接着剤層と光硬化性粘着剤層の硬化物とを剥離させたとき、糸曳き痕が観察され難い傾向にある。下記加熱冷却条件は、半導体装置のウエハラミネート工程を想定するものであり、糸曳き痕がより観察され易くなる傾向にある。加熱冷却条件における加熱処理は、ヒーター等を用いて基材層側から行うことが好ましい。なお、基材層は、加熱処理(65℃、15分間)でしわ、たるみ等の変形が起こらないものを用いることが好ましい。加熱処理には、評価用ダイシング・ダイボンディング一体型フィルムが湾曲しないように、加熱に耐えられる布等で抑えながら加熱することが好ましい。このときの面圧は0.1g/cm程度であってよい。面圧が高すぎると、光硬化性粘着剤層と接着剤層とが必要以上に密着し、糸曳き痕が過剰に形成されるおそれがある。光硬化性粘着剤層の硬化を防ぐため、遮光しながら行うことが好ましい。 Next, the photo-curable pressure-sensitive adhesive layer of the dicing/die-bonding integrated film for evaluation is treated under the following heating and cooling conditions. If the photocurable pressure-sensitive adhesive layer is not treated under heating and cooling conditions, the adhesiveness between the photocurable pressure-sensitive adhesive layer and the adhesive layer may be insufficient, and the cured product of the adhesive layer and the photocurable pressure-sensitive adhesive layer When the and are peeled off, the stringing marks tend to be difficult to be observed. The heating/cooling conditions described below assume a wafer laminating process for a semiconductor device, and tend to cause stringing marks to be more easily observed. The heat treatment under heating and cooling conditions is preferably performed from the side of the base material layer using a heater or the like. In addition, it is preferable to use, as the base material layer, a material that does not cause deformation such as wrinkles and sagging by heat treatment (65° C., 15 minutes). In the heat treatment, it is preferable that the evaluation dicing/die bonding integrated film is heated while being suppressed by a cloth or the like that can withstand heating so as not to bend. The surface pressure at this time may be about 0.1 g/cm 2 . If the surface pressure is too high, the photocurable pressure-sensitive adhesive layer and the adhesive layer may adhere to each other more than necessary, and excessive stringing marks may be formed. In order to prevent curing of the photocurable pressure-sensitive adhesive layer, it is preferable to perform the treatment while shielding light.
(加熱冷却条件)
 加熱処理:65℃、15分間
 冷却処理:25±5℃まで空冷
(Heating/cooling conditions)
Heat treatment: 65°C, 15 minutes Cooling treatment: Air cooling to 25±5°C
 次いで、光硬化性粘着剤層に対して第1工程との同様の照射条件で紫外線を照射して、光硬化性粘着剤層の硬化物を形成し、接着剤層を第1工程との同様の剥離条件で引っ張り、接着剤層と光硬化性粘着剤層の硬化物とを剥離させる。接着剤層が剥離された後の光硬化性粘着剤層の硬化物を備える基材層を計測サンプルとして回収する。このとき、接着剤層が剥離された後の光硬化性粘着剤層の硬化物が汚染されないように回収する。また、接着剤層が剥離された後の光硬化性粘着剤層の硬化物を備える基材層を5mm×5mmのサイズに切り分けて計測サンプルとすることが好ましい。 Then, the photocurable pressure-sensitive adhesive layer is irradiated with ultraviolet rays under the same irradiation conditions as in the first step to form a cured product of the photocurable pressure-sensitive adhesive layer, and the adhesive layer is formed in the same manner as in the first step. The adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled off by pulling under the peeling condition of. The base material layer including the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is collected as a measurement sample. At this time, the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is collected so as not to be contaminated. In addition, it is preferable that the base material layer provided with the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled is cut into a size of 5 mm×5 mm to obtain a measurement sample.
 最後に、接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面を走査型プローブ顕微鏡で観察し、当該表面における糸曳き痕の痕数及び痕幅を計測する。計測サンプルの走査型プローブ顕微鏡への固定には、静電気の影響を避ける観点から、走査型電子顕微鏡観察等で使用される一般的なカーボン両面テープを用いることが好ましい。また、静電気の影響を避ける観点から、走査型プローブ顕微鏡による観察は、半日(12時間)以上固定した状態で静置して除電してから、又はイオナイザー等を用いて適切に静電気を除去してから行うことが好ましい。 Finally, observe the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled off with a scanning probe microscope, and measure the number and trace width of thread-plucking traces on the surface. In order to fix the measurement sample to the scanning probe microscope, it is preferable to use a general carbon double-sided tape used in observation with a scanning electron microscope or the like from the viewpoint of avoiding the influence of static electricity. In addition, from the viewpoint of avoiding the influence of static electricity, when observing with a scanning probe microscope, static electricity should be removed by statically leaving it stationary for more than half a day (12 hours) or using an ionizer. Is preferable.
 走査型プローブ顕微鏡の探針には、接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面を計測するのに最適なバネ定数の低いカンチレバーが設置されていることが好ましい。また、走査型プローブ顕微鏡による観察は、ダイナミックフォースモード(DFM)で行うことが好ましい。 The probe of the scanning probe microscope is preferably provided with a cantilever having a low spring constant, which is optimal for measuring the surface of the cured product of the photocurable adhesive layer after the adhesive layer is peeled off. .. Further, it is preferable that the observation with the scanning probe microscope is performed in the dynamic force mode (DFM).
 糸曳き痕は、光硬化性粘着剤層の硬化物の表面において痕(突起)として観測されるものであり、光硬化性粘着剤層の硬化物の表面の位相像のデータを取得し、その位相像において硬さが明らかに周囲と異なっている箇所を糸曳き痕とすることができる。糸曳き痕の痕数は、位相像において硬さが明らかに周囲と異なっている箇所の数である。 The stringing marks are observed as marks (protrusions) on the surface of the cured product of the photocurable pressure-sensitive adhesive layer, and data of the phase image of the surface of the cured product of the photocurable pressure-sensitive adhesive layer are acquired, In the phase image, a portion where the hardness is obviously different from the surrounding can be used as the string-plucking mark. The number of traces of the stringing mark is the number of places where the hardness is clearly different from the surroundings in the phase image.
 糸曳き痕の痕幅は、以下のようにして求めることができる。まず、走査型プローブ顕微鏡を用いて、位相像において硬さが明らかに周囲と異なっている箇所を含む光硬化性粘着剤層の硬化物の表面の形状像プロファイル及び位相像プロファイルを取得する。図2は、光硬化性粘着剤層の硬化物の表面の形状像プロファイル及び位相像プロファイルの一例を示す図であり、図2(a)は、形状像プロファイルであり、図2(b)は、位相像プロファイルである。図2(a)の形状像プロファイルにおいて、糸曳き痕は、隆起している箇所が上に凸のグラフとして観測され、最も淡い色(白黒画像の場合、例えば、白色)で示される。一方、位相像プロファイルにおいて、位相差が周囲よりも小さいことは、周囲よりも硬いことを意味する。図2(b)の位相像プロファイルにおいて、糸曳き痕は、光硬化粘着剤層が極限まで延伸されることから、周囲との位相差が周囲よりも50%以下である箇所として観測され、最も濃い色(白黒画像の場合、例えば、黒色)で示される。このように、糸曳き痕は、形状像プロファイルのみでなく、位相像プロファイルからも観測することができる。次いで、取得した図2(a)の形状像プロファイルから、市販の画像処理ソフト(走査型プローブ顕微鏡付属の画像処理ソフト等)を用いて、測定対象となる糸曳き痕全てに対して、各糸曳き痕の痕幅が最大となるような断面線の断面プロファイルをそれぞれ出力する。図3は、光硬化性粘着剤層の硬化物の表面の断面プロファイルの一例を示す図であり、図3(a)は、形状像プロファイルであり、図3(b)は、図3(a)における糸曳き痕Xのiii-iii線の断面プロファイルである。図3(b)は、観測される糸曳き痕の両端の高さに実質的に差異がない(例えば、1nm以下)場合の断面プロファイルである。このような断面プロファイルでは、糸曳き痕Xの両端(極小値)同士の幅Wxを糸曳き痕Xの痕幅とすることができる。一方、図4は、光硬化性粘着剤層の硬化物の表面の断面プロファイルの一例を示す図であり、図4(a)は、形状像プロファイルであり、図4(b)は、図4(a)における糸曳き痕Yのiv-iv線の断面プロファイルである。図4(b)は、観測される糸曳き痕の両端の高さに差異がある(例えば、1nmを超える)場合の断面プロファイルである。この場合、糸曳き痕Yの頂点から高さが近い方の端(極小値)を基準高さHyとし、当該基準高さHyにおける幅Wyを糸曳き痕Yの痕幅とすることができる。 The width of the stringing trace can be obtained as follows. First, using a scanning probe microscope, the shape image profile and the phase image profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer including the portion where the hardness is apparently different from the surroundings are acquired. FIG. 2 is a diagram showing an example of a shape image profile and a phase image profile of a surface of a cured product of a photocurable pressure-sensitive adhesive layer, FIG. 2( a) is a shape image profile, and FIG. 2( b) is , A phase image profile. In the shape image profile of FIG. 2A, the stringing trace is observed as a graph in which the raised portion is convex upward and is shown in the lightest color (for example, white in the case of a monochrome image). On the other hand, in the phase image profile, the phase difference being smaller than the surroundings means that the phase difference is harder than the surroundings. In the phase image profile of FIG. 2( b ), the thread-plucking traces are observed as locations where the phase difference from the surroundings is 50% or less than the surroundings because the photo-curable adhesive layer is stretched to the limit, and the most It is shown in a dark color (for example, black in the case of a monochrome image). In this way, the stringing marks can be observed not only from the shape image profile but also from the phase image profile. Then, using the commercially available image processing software (image processing software attached to the scanning probe microscope, etc.) from the acquired shape image profile of FIG. The cross-sectional profile of the cross-sectional line that maximizes the width of the traces is output. FIG. 3 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer, FIG. 3( a) is a shape image profile, and FIG. 3( b) is FIG. 3) is a cross-sectional profile of the line drawing mark X taken along line iii-iii. FIG. 3B is a cross-sectional profile in the case where there is substantially no difference in the height of both ends of the observed thread-plucking trace (for example, 1 nm or less). In such a cross-sectional profile, the width Wx between both ends (minimum value) of the thread pulling trace X can be set as the width of the thread pulling trace X. On the other hand, FIG. 4 is a diagram showing an example of a cross-sectional profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer, FIG. 4A is a shape image profile, and FIG. 4B is FIG. It is the iv-iv line cross-sectional profile of the stringing trace Y in (a). FIG. 4B is a cross-sectional profile in the case where there are differences in the heights of both ends of the observed thread-plucking mark (for example, exceeding 1 nm). In this case, the end (minimum value) whose height is closer to the apex of the thread pulling trace Y can be set as the reference height Hy, and the width Wy at the reference height Hy can be set as the trace width of the thread pulling trace Y.
<第3の工程>
 本工程では、剥離力並びに糸曳き痕の痕数及び痕幅に基づいて、光硬化性粘着剤の良否を判定する。評価基準である剥離力並びに糸曳き痕の痕数及び痕幅の基準は、半導体ウエハの厚み等に合わせて適宜設定することができる。
<Third step>
In this step, the quality of the photocurable pressure-sensitive adhesive is judged based on the peeling force and the number and width of traces of the string-plucking traces. The criteria of the peeling force, the number of traces of the line-plucking traces, and the width of the traces, which are the evaluation criteria, can be appropriately set according to the thickness of the semiconductor wafer and the like.
 第3の工程は、剥離力並びに糸曳き痕の痕数及び痕幅が下記条件(a)及び下記条件(b)を満たすか否かによって光硬化性粘着剤の良否を判定する工程であってよい。下記条件(a)及び下記条件(b)を満たす光硬化性粘着剤からなる光硬化性粘着剤層を備えるダイシング・ダイボンディング一体型フィルムは、厚みが比較的薄い(例えば、35μm以下)半導体ウエハに適用されるダイシングプロセス(例えば、ステルスダイシング等)に好適に用いることができる。 The third step is a step of judging the quality of the photocurable pressure-sensitive adhesive based on whether or not the peeling force and the number and width of traces of the string-plucking traces satisfy the following conditions (a) and (b). Good. A dicing/die-bonding integrated film including a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive that satisfies the following conditions (a) and (b) is a semiconductor wafer having a relatively small thickness (for example, 35 μm or less). Can be suitably used for the dicing process applied to (for example, stealth dicing).
 条件(a):剥離力が0.70N/25mm以下である。
 条件(b):接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に糸曳き痕の痕数が15以上である25μm×25μmの領域(場合により「特定領域」という場合がある。)が存在し、領域内における糸曳き痕の痕幅の中央値が120~200nmである。
Condition (a): The peeling force is 0.70 N/25 mm or less.
Condition (b): a region of 25 μm×25 μm in which the number of traces of the string-plucking marks is 15 or more on the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off (sometimes referred to as “specific region”). In some cases, and the median value of the trace widths of the string-plucking traces in the region is 120 to 200 nm.
 条件(a)を満たす光硬化性粘着剤をダイシング・ダイボンディング一体型フィルムに適用すると、ピックアップの成功率がより向上する傾向にある。条件(a)における剥離力は、0.65N/25mm以下又は0.63N/25mm以下であってもよい。条件(a)の剥離力の下限値は、特に制限されないが、0.10N/25mm以上であってよい。 Applying a photo-curable adhesive that satisfies the condition (a) to the dicing/die-bonding integrated film tends to further improve the pick-up success rate. The peeling force under the condition (a) may be 0.65 N/25 mm or less or 0.63 N/25 mm or less. The lower limit of the peeling force under the condition (a) is not particularly limited, but may be 0.10 N/25 mm or more.
 条件(b)を満たす光硬化性粘着剤をダイシング・ダイボンディング一体型フィルムに適用すると、ピックアップの剥離時間がより短くなる傾向にある。 When a photo-curable pressure-sensitive adhesive satisfying the condition (b) is applied to the dicing/die bonding integrated film, the peeling time of the pickup tends to be shorter.
 接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に特定領域が存在することによって、応力伝搬性が良好となり、剥離速度が向上する傾向にある。特定領域内に存在する糸曳き痕の痕数は、15以上又は20以上であってよく、70以下、60以下、又は50以下であってよい。剥離速度は、特定領域の存在とその特定領域に存在する糸曳痕の痕幅の双方が寄与している。特定領域において、糸曳き痕の痕数が15以上であると、応力伝搬性が高く、剥離速度が促進される傾向にある。特定領域において、糸曳き痕の痕数が70以下であると、剥離力が増大し過ぎることを抑制することができる傾向にある。 The presence of a specific region on the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled off tends to improve the stress propagation property and improve the peeling speed. The number of traces of the stringing present in the specific region may be 15 or more or 20 or more, and 70 or less, 60 or less, or 50 or less. The peeling speed is contributed by both the existence of the specific region and the width of the string piercing marks existing in the specific region. When the number of traces of the string-plucking traces is 15 or more in the specific region, the stress propagation property is high and the peeling speed tends to be promoted. In the specific region, if the number of traces of the string-plucking traces is 70 or less, it tends to be possible to prevent the peeling force from increasing excessively.
 接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に糸曳き痕の痕数15以上である特定領域が存在する場合において、これらの特定領域に存在する糸曳き痕の痕幅の中央値を算出する。ここで中央値は、有限個のデータを小さい順に並べたときの中央に位置する値を意味し、データが偶数個である場合は、中央に近い値の平均値を意味する。例えば、糸曳き痕の痕数が15である場合、糸曳き痕の痕幅を小さい順に並べたときの8番目の糸曳き痕の痕幅が中央値であり、糸曳き痕の痕数が16である場合、糸曳き痕の痕幅を小さい順に並べたときの8番目の糸曳き痕の痕幅と9番目の糸曳き痕の痕幅との平均値が中央値である。特定領域に存在する糸曳き痕の痕幅の中央値は、130nm以上又は150nm以上であってもよく、190nm以下又は180nm以下であってもよい。特定領域に存在する糸曳き痕の痕幅の中央値が120nm以上であると、糸曳きの破断衝撃が伝播され易くなって剥離速度が向上する傾向にある。特定領域に存在する糸曳き痕の痕幅の中央値が200nm以下であると、糸曳の破断が起こり易くなって剥離速度が向上する傾向にある。 When there are specific areas with 15 or more scratch marks on the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer has been peeled off, the scratch marks existing in these specific areas Calculate the median of the scar width. Here, the median means a value located at the center when a finite number of data are arranged in ascending order, and when the data is an even number, it means an average value of values close to the center. For example, when the number of traces of the thread-plucking traces is 15, the trace width of the 8th string-pulling trace when the trace widths of the string-pulling traces are arranged in ascending order is the median value, and the number of traces of the string-pulling trace is 16 In the case of, the average value of the trace widths of the eighth and the ninth pulling marks when the trace widths of the pulling marks are arranged in ascending order is the median value. The median width of the thread-plucking marks existing in the specific region may be 130 nm or more or 150 nm or more, and 190 nm or less or 180 nm or less. When the median value of the widths of the string-pulling marks existing in the specific region is 120 nm or more, the breaking impact of the string-pulling is easily propagated, and the peeling speed tends to be improved. When the median value of the widths of the thread-plucking marks existing in the specific region is 200 nm or less, the thread-pulling is likely to break and the peeling speed tends to be improved.
[ダイシング・ダイボンディング一体型フィルムの製造方法]
 一実施形態に係るダイシング・ダイボンディング一体型フィルムの製造方法は、基材層上に、上述の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層を形成する工程と、光硬化性粘着剤層上に接着剤層を形成する工程とを備える。基材層及び接着剤層は、上述の光硬化性粘着剤の評価方法で例示したものと同様のものであってよい。光硬化性粘着剤層の形成方法及び接着剤層の形成方法も、上述の光硬化性粘着剤の評価方法で例示した方法と同様であってよい。
[Method for manufacturing integrated dicing/die bonding film]
A method for producing a dicing/die-bonding integrated film according to one embodiment is a photocurable adhesive comprising a photocurable adhesive determined to be good by the above-mentioned photocurable adhesive evaluation method on a base material layer. And a step of forming an adhesive layer on the photo-curable pressure-sensitive adhesive layer. The base material layer and the adhesive layer may be the same as those exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive. The method for forming the photocurable pressure-sensitive adhesive layer and the method for forming the adhesive layer may be the same as the method exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive.
[ダイシング・ダイボンディング一体型フィルム]
 一実施形態に係るダイシング・ダイボンディング一体型フィルムは、基材層と、上述の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層と、接着剤層とをこの順に備える。基材層及び接着剤層は、上述の光硬化性粘着剤の評価方法で例示したものと同様のものであってよい。
[Film with integrated dicing and die bonding]
The dicing/die-bonding integrated film according to one embodiment is a substrate layer, and a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive that is determined to be good by the above-described photo-curable pressure-sensitive adhesive evaluation method, An adhesive layer is provided in this order. The base material layer and the adhesive layer may be the same as those exemplified in the above-mentioned evaluation method for the photocurable pressure-sensitive adhesive.
[半導体装置(半導体パッケージ)の製造方法]
 図5及び図6は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。本実施形態に係る半導体装置の製造方法は、上述の製造方法によって得られるダイシング・ダイボンディング一体型フィルム1の接着剤層30を半導体ウエハW2に貼り付ける工程(ウエハラミネート工程)と、半導体ウエハW2、接着剤層30、及び光硬化性粘着剤層20を個片化する工程(ダイシング工程)と、光硬化性粘着剤層20に対して紫外線を照射する工程(紫外線照射工程)と、基材層10から接着剤層30aが付着した半導体素子(接着剤層付き半導体素子50)をピックアップする工程(ピックアップ工程)と、接着剤層30aを介して、接着剤層付き半導体素子50を半導体素子搭載用支持基板60に接着する工程(半導体素子接着工程)とを備える。
[Method of manufacturing semiconductor device (semiconductor package)]
5 and 6 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device. The semiconductor device manufacturing method according to the present embodiment includes a step (wafer laminating step) of attaching the adhesive layer 30 of the dicing/die-bonding integrated film 1 obtained by the above-described manufacturing method to the semiconductor wafer W2, and a semiconductor wafer W2. A step of dicing the adhesive layer 30 and the photocurable pressure-sensitive adhesive layer 20 into pieces (dicing step), a step of irradiating the photocurable pressure-sensitive adhesive layer 20 with ultraviolet rays (ultraviolet ray irradiation step), and a substrate A step of picking up a semiconductor element (semiconductor element 50 with an adhesive layer) to which the adhesive layer 30a is attached from the layer 10 (pickup step), and mounting the semiconductor element 50 with an adhesive layer on the semiconductor element via the adhesive layer 30a. And a step of adhering to the supporting substrate 60 (semiconductor element adhering step).
 ダイシング工程におけるダイシングは、特に制限されず、例えば、ブレードダイシング、レーザダイシング、ステルスダイシング等が挙げられる。半導体ウエハW2の厚みを35μm以下とする場合、ダイシングはステルスダイシングを適用したものであってよい。以下では、ダイシングとして主にステルスダイシングを用いた態様について詳細に説明する。 The dicing in the dicing process is not particularly limited, and examples thereof include blade dicing, laser dicing, stealth dicing and the like. When the thickness of the semiconductor wafer W2 is 35 μm or less, the dicing may be stealth dicing. Hereinafter, a mode in which stealth dicing is mainly used as the dicing will be described in detail.
<改質層形成工程>
 ダイシングがステルスダイシングを適用したものである場合、半導体装置の製造方法は、ウエハラミネート工程の前に改質層形成工程を備えていてよい。
<Reforming layer forming step>
When the dicing is the application of stealth dicing, the method for manufacturing a semiconductor device may include a modified layer forming step before the wafer laminating step.
 まず、厚みH1の半導体ウエハW1を用意する。改質層を形成する半導体ウエハW1の厚みH1は、35μmを超えていてよい。続いて、半導体ウエハW1の一方の主面上に保護フィルム2を貼り付ける(図5(a)参照)。保護フィルム2が貼り付けられる面は、半導体ウエハW1の回路面であることが好ましい。保護フィルム2は、半導体ウエハの裏面研削(バックグラインド)に使用されるバックグラインドテープであってよい。続いて、半導体ウエハW1内部にレーザ光を照射して改質層4を形成し(図5(b)参照)、半導体ウエハW1の保護フィルム2が張り付けられた面とは反対側(裏面側)に対してバックグラインディング(裏面研削)及びポリッシング(研磨)を行うことによって、改質層4を有する半導体ウエハW2を作製する(図5(c)参照)。得られる半導体ウエハW2の厚みH2は、35μm以下であってよい。 First, a semiconductor wafer W1 having a thickness H1 is prepared. The thickness H1 of the semiconductor wafer W1 forming the modified layer may exceed 35 μm. Then, the protective film 2 is attached to one main surface of the semiconductor wafer W1 (see FIG. 5A). The surface to which the protective film 2 is attached is preferably the circuit surface of the semiconductor wafer W1. The protective film 2 may be a back grinding tape used for back surface grinding (back grinding) of a semiconductor wafer. Subsequently, the modified layer 4 is formed by irradiating the inside of the semiconductor wafer W1 with a laser beam (see FIG. 5B), and the side of the semiconductor wafer W1 opposite to the side to which the protective film 2 is attached (back side). The semiconductor wafer W2 having the modified layer 4 is manufactured by performing back grinding (back surface grinding) and polishing (polishing) on the above (see FIG. 5C). The thickness H2 of the obtained semiconductor wafer W2 may be 35 μm or less.
<ウエハラミネート工程>
 次いで、ダイシング・ダイボンディング一体型フィルム1の接着剤層30を所定の装置に配置する。続いて、半導体ウエハW2の主面Wsに、接着剤層30を介してダイシング・ダイボンディング一体型フィルム1を貼り付け(図5(d)参照)、半導体ウエハW2の保護フィルム2を剥離する(図5(e)参照)。
<Wafer laminating process>
Next, the adhesive layer 30 of the dicing/die bonding integrated film 1 is placed in a predetermined device. Then, the dicing/die bonding integrated film 1 is attached to the main surface Ws of the semiconductor wafer W2 via the adhesive layer 30 (see FIG. 5D), and the protective film 2 of the semiconductor wafer W2 is peeled off ( See FIG. 5(e).
<ダイシング工程>
 次に、少なくとも半導体ウエハW2及び接着剤層30をダイシングによって個片化する(図6(f)参照)。ダイシングがステルスダイシングを適用したものである場合、ク-ルエキスパンド及びヒートシュリンクを行うことによって個片化することができる。
<Dicing process>
Next, at least the semiconductor wafer W2 and the adhesive layer 30 are diced into individual pieces (see FIG. 6F). When dicing is the application of stealth dicing, it can be singulated by performing cool expansion and heat shrink.
<紫外線照射工程>
 次に、光硬化性粘着剤層20に紫外線を照射することによって光硬化性粘着剤層20を硬化させ、光硬化性粘着剤層の硬化物を形成する(図6(g)参照)。これによって、光硬化性粘着剤層20と接着剤層30との間の粘着力を低下させることができる。紫外線照射においては、波長200~400nmの紫外線を用いることが好ましい。紫外線照射条件は、照度:30~240mW/cmで照射量200~500mJ/cmとなるように調整することが好ましい。
<Ultraviolet irradiation process>
Next, the photocurable adhesive layer 20 is cured by irradiating the photocurable adhesive layer 20 with ultraviolet rays to form a cured product of the photocurable adhesive layer (see FIG. 6G). Thereby, the adhesive force between the photocurable pressure-sensitive adhesive layer 20 and the adhesive layer 30 can be reduced. In the irradiation of ultraviolet rays, it is preferable to use ultraviolet rays having a wavelength of 200 to 400 nm. The ultraviolet irradiation conditions are preferably adjusted so that the illuminance is 30 to 240 mW/cm 2 and the irradiation amount is 200 to 500 mJ/cm 2 .
<ピックアップ工程>
 次に、基材層10をエキスパンドすることによって、ダイシングされた接着剤層付き半導体素子50を互いに離間させつつ、基材層10側からニードル42で突き上げられた接着剤層付き半導体素子50を吸引コレット44で吸引して、光硬化性粘着剤層の硬化物20acからピックアップする(図6(h)参照)。なお、接着剤層付き半導体素子50は、半導体素子Waと接着剤層30aとを有する。半導体素子Waは半導体ウエハW2がダイシングによって分割されたものであり、接着剤層30aは接着剤層30がダイシングによって分割されたものである。光硬化性粘着剤層の硬化物20acは光硬化性粘着剤層の硬化物がダイシングによって分割されたものである。光硬化性粘着剤層の硬化物20acは接着剤層付き半導体素子50をピックアップする際に基材層10上に残存し得る。ピックアップ工程では、必ずしもエキスパンドする必要はないが、エキスパンドすることによってピックアップ性をより向上させることができる。
<Pickup process>
Next, the base material layer 10 is expanded to separate the diced semiconductor elements 50 with an adhesive layer from each other, while sucking the semiconductor element 50 with an adhesive layer pushed up by the needle 42 from the base material layer 10 side. It is sucked by the collet 44 and picked up from the cured product 20ac of the photocurable pressure-sensitive adhesive layer (see FIG. 6(h)). The semiconductor element 50 with the adhesive layer has the semiconductor element Wa and the adhesive layer 30a. The semiconductor element Wa is obtained by dividing the semiconductor wafer W2 by dicing, and the adhesive layer 30a is obtained by dividing the adhesive layer 30 by dicing. The cured product 20ac of the photocurable adhesive layer is obtained by dividing the cured product of the photocurable adhesive layer by dicing. The cured product 20ac of the photocurable pressure-sensitive adhesive layer may remain on the base material layer 10 when the semiconductor element 50 with the adhesive layer is picked up. In the pickup process, it is not always necessary to expand, but the expandability can be further improved by expanding.
 ニードル42による突き上げ量は、適宜設定することができる。さらに、極薄ウエハに対しても充分なピックアップ性を確保する観点から、例えば、2段又は3段のピックアップを行ってもよい。また、吸引コレット44を用いる方法以外の方法で接着剤層付き半導体素子50のピックアップを行ってもよい。 The amount of thrust by the needle 42 can be set appropriately. Further, for example, two-stage or three-stage pickup may be performed from the viewpoint of ensuring a sufficient pickup property even for an extremely thin wafer. The semiconductor element 50 with the adhesive layer may be picked up by a method other than the method using the suction collet 44.
<半導体素子接着工程>
 接着剤層付き半導体素子50をピックアップした後、接着剤層付き半導体素子50を、熱圧着によって、接着剤層30aを介して半導体素子搭載用支持基板60に接着する(図6(i)参照)。半導体素子搭載用支持基板60には、複数の接着剤層付き半導体素子50を接着してもよい。
<Semiconductor element bonding process>
After picking up the semiconductor element 50 with an adhesive layer, the semiconductor element 50 with an adhesive layer is bonded to the semiconductor element mounting support substrate 60 via the adhesive layer 30a by thermocompression bonding (see FIG. 6(i)). .. A plurality of adhesive layer-equipped semiconductor elements 50 may be bonded to the semiconductor element mounting support substrate 60.
 図7は、半導体装置の一実施形態を模式的に示す断面図である。図7に示す半導体装置100は、上記工程と、半導体素子Waと半導体素子搭載用支持基板60とをワイヤーボンド70によって電気的に接続する工程と、半導体素子搭載用支持基板60の表面60a上に、樹脂封止材80を用いて半導体素子Waを樹脂封止する工程とをさらに備える製造方法によって製造することができる。半導体素子搭載用支持基板60の表面60aと反対側の面に、外部基板(マザーボード)との電気的な接続用として、はんだボール90が形成されていてもよい。 FIG. 7 is a sectional view schematically showing an embodiment of a semiconductor device. The semiconductor device 100 shown in FIG. 7 includes the above steps, the step of electrically connecting the semiconductor element Wa and the semiconductor element mounting support substrate 60 by wire bonds 70, and the step of electrically connecting the semiconductor element Wa and the semiconductor element mounting support substrate 60 on the surface 60 a of the semiconductor element mounting support substrate 60. And a step of resin-sealing the semiconductor element Wa using the resin sealing material 80. Solder balls 90 may be formed on the surface of the semiconductor element mounting support substrate 60 opposite to the surface 60a for electrical connection with an external substrate (motherboard).
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に記載がない限り、化合物は市販の試薬を使用した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise stated, commercially available reagents were used as the compounds.
[ダイシング・ダイボンディング一体型フィルムの準備]
((メタ)アクリル共重合体溶液A~Eの調製)
 スリーワンモータ、撹拌翼、及び窒素導入管が備え付けられた容量2000mLのオートクレーブに、2-エチルヘキシルアクリレート(2EHA)、2-ヒドロキシエチルアクリレート(HEA)、及びメタクリル酸(MAA)を表1に示す割合(単位:質量部)で加え、さらに酢酸エチル127質量部及びアゾビスイソブチロニトリル0.04質量部を加えた。これを均一になるまで撹拌し、流量500ml/minで60分間バブリングを実施し、系中の溶存酸素を脱気した。次いで、1時間かけて78℃まで昇温し、78~83℃で維持したまま6時間重合させた。その後、スリーワンモータ、撹拌翼、及び窒素導入管が備え付けられた容量2000mLの加圧釜に反応溶液を移し、120℃、0.28MPa条件で4.5時間加温した後、室温(25℃、以下同様)まで冷却した。次に、酢酸エチルを98質量部さらに加えて希釈した。これに重合禁止剤としてヒドロキノン・モノメチルエーテルを0.05質量部及びウレタン化触媒としてジオクチルスズジラウレート0.02質量部を添加し、連鎖重合可能な官能基を有する化合物として2-メタクリロキシエチルイソシアネート(昭和電工株式会社製、商品名「カレンズMOI」)10質量部を加えて、70℃で6時間反応させ、室温まで冷却した。その後、不揮発分(固形分)含有量が35質量%となるように酢酸エチルを加えて、反応性官能基としてヒドロキシ基を有する(メタ)アクリル共重合体溶液A~Eを得た。
[Preparation of integrated film for dicing and die bonding]
(Preparation of (meth)acrylic copolymer solutions A to E)
A 2-mL hexyl acrylate (2EHA), 2-hydroxyethyl acrylate (HEA), and methacrylic acid (MAA) were added to an autoclave with a capacity of 2000 mL equipped with a three-one motor, a stirring blade, and a nitrogen introducing tube in the proportions shown in Table 1 ( (Unit: parts by mass), 127 parts by mass of ethyl acetate and 0.04 parts by mass of azobisisobutyronitrile were further added. This was stirred until it became uniform, and bubbling was carried out at a flow rate of 500 ml/min for 60 minutes to degas the dissolved oxygen in the system. Next, the temperature was raised to 78° C. over 1 hour, and polymerization was performed for 6 hours while maintaining the temperature at 78 to 83° C. After that, the reaction solution was transferred to a pressure vessel having a capacity of 2000 mL equipped with a three-one motor, a stirring blade, and a nitrogen introduction tube, and heated at 120° C. and 0.28 MPa for 4.5 hours, and then at room temperature (25° C. or below. The same). Next, 98 parts by mass of ethyl acetate was further added for dilution. To this, 0.05 parts by mass of hydroquinone monomethyl ether as a polymerization inhibitor and 0.02 parts by mass of dioctyltin dilaurate as a urethanization catalyst were added, and 2-methacryloxyethyl isocyanate (as a compound having a chain-polymerizable functional group) ( 10 parts by mass of trade name "Karenzu MOI" manufactured by Showa Denko KK was added, and the mixture was reacted at 70°C for 6 hours and cooled to room temperature. Then, ethyl acetate was added so that the nonvolatile content (solid content) was 35% by mass, to obtain (meth)acrylic copolymer solutions A to E having a hydroxy group as a reactive functional group.
 (メタ)アクリル共重合体溶液A~Eにおける(メタ)アクリル共重合体の酸価及び水酸基価を、JIS K0070に従って測定した。結果を表1に示す。また、得られたアクリル樹脂を60℃で一晩真空乾燥し、得られた固形分をエレメンタール社製全自動元素分析装置varioELにて元素分析を実施し、窒素含有量から導入された2-メタクリロキシエチルイソシアネートの含有量を算出した。結果を表1に示す。さらに、GPC装置として東ソー株式会社製SD-8022/DP-8020/RI-8020、カラムとして日立化成株式会社製Gelpack GL-A150-S/GL-A160-S、及び溶離液としてテトラヒドロフランを用いて、ポリスチレン換算の重量平均分子量(Mw)を測定した。結果を表1に示す。 The acid value and hydroxyl value of the (meth)acrylic copolymer in the (meth)acrylic copolymer solutions A to E were measured according to JIS K0070. The results are shown in Table 1. Further, the obtained acrylic resin was vacuum dried at 60° C. overnight, and the obtained solid content was subjected to elemental analysis by a fully automatic elemental analyzer varioEL manufactured by Elemental Co., Ltd. The content of methacryloxyethyl isocyanate was calculated. The results are shown in Table 1. Further, using SD-8022/DP-8020/RI-8020 manufactured by Tosoh Corporation as a GPC device, Gelpack GL-A150-S/GL-A160-S manufactured by Hitachi Chemical Co., Ltd. as a column, and tetrahydrofuran as an eluent, The weight average molecular weight (Mw) in terms of polystyrene was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<製造例1:ダイシング・ダイボンディング一体型フィルムAの作製>
(ダイシングフィルムの作製)
 反応性官能基を有する(メタ)アクリル共重合体として上記で調製した(メタ)アクリル共重合体溶液Aを固形分として100質量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティケミカルズ株式会社製、イルガキュア184)0.5質量部、及び架橋剤として多官能イソシアネート(日本ポリウレタン工業株式会社製、商品名「コロネートL」、固形分75%)2質量部を混合した。この混合物に対して、固形分の総含有量が25質量%となるように酢酸エチルを加え、10分間均一に撹拌して、光硬化性粘着剤層形成用ワニスを得た。得られた光硬化性粘着剤層形成用ワニスを、片面が離型処理された幅350mm、長さ400mm、厚み38μmのポリエチレンテレフタレート(PET)フィルム上に乾燥後の光硬化性粘着剤層の厚みが10μmとなるように、ギャップを調整しながら塗工し、80~100℃で光硬化性粘着剤層形成用ワニスを3分間加熱乾燥した。その後、片面にコロナ放電処理が施されたポリオレフィン製フィルム(基材層、厚み:90μm)を貼り合わせ、40℃、72時間の条件で養生を行い、架橋処理を行うことによって、基材層と光硬化性粘着剤層とを備えるダイシングフィルムを得た。なお、架橋処理は、FT-IRスペクトルを用いて、養生の進行を確認しながら行った。
<Production Example 1: Preparation of dicing/die bonding integrated film A>
(Production of dicing film)
100 parts by mass of the (meth)acrylic copolymer solution A prepared above as a (meth)acrylic copolymer having a reactive functional group as a solid content, 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals) as a photopolymerization initiator 0.5 g by weight of Irgacure 184) manufactured by Co., Ltd., and 2 parts by weight of a polyfunctional isocyanate (trade name “Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd., solid content: 75%) as a cross-linking agent were mixed. Ethyl acetate was added to this mixture so that the total solid content was 25% by mass, and the mixture was uniformly stirred for 10 minutes to obtain a varnish for forming a photocurable pressure-sensitive adhesive layer. The thickness of the photocurable pressure-sensitive adhesive layer after drying was applied to a polyethylene terephthalate (PET) film having a width of 350 mm, a length of 400 mm, and a thickness of 38 μm, the one side of which was subjected to mold release treatment. Of 10 μm was applied while adjusting the gap, and the varnish for forming a photocurable pressure-sensitive adhesive layer was heated and dried at 80 to 100° C. for 3 minutes. After that, a polyolefin film (base material layer, thickness: 90 μm) that has been subjected to a corona discharge treatment on one side is bonded, cured at 40° C. for 72 hours, and subjected to a crosslinking treatment to form a base material layer. The dicing film provided with the photocurable adhesive layer was obtained. The cross-linking treatment was performed while confirming the progress of curing by using FT-IR spectrum.
(ダイボンディングフィルムの作製)
 エポキシ樹脂としてYDCN-703(東都化成株式会社製、商品名、クレゾールノボラック型エポキシ樹脂、エポキシ当量210、分子量1200、軟化点80℃)55質量部、フェノール樹脂としてミレックスXLC-LL(三井化学株式会社製、商品名、水酸基当量175、吸水率1.8%、350℃における加熱質量減少率4%)45質量部、シランカップリング剤としてNUCA-189(日本ユニカー株式会社製、商品名、γ-メルカプトプロピルトリメトキシシラン)1.7質量部及びNUCA-1160(日本ユニカー株式会社製、商品名、γ-ウレイドプロピルトリエトキシシラン)3.2質量部、並びにフィラーとしてアエロジルR972(シリカ表面をジメチルジクロロシランで被覆し、400℃の反応器中で加水分解して、メチル基等の有機基によって表面修飾されたシリカフィラー、日本アエロジル株式会社製、商品名、平均粒径0.016μm)32質量部に、シクロヘキサノンを加えて撹拌混合し、さらにビーズミルを用いて90分混錬した。得られた混合物に対して、アクリルゴムとしてHTR-860P-3(ナガセケムテックス株式会社製、商品名、重量平均分子量80万、グリシジルアクリレート又はグリシジルメタクリレート3質量%を含むアクリルゴム)280質量部及び硬化促進剤としてキュアゾール2PZ-CN(四国化成工業株式会社製、商品名、1-シアノエチル-2-フェニルイミダゾール)0.5質量部加えて撹拌混合し、真空脱気することによって、接着剤層形成用ワニスを得た。得られた接着剤層形成用ワニスを設定の厚みとなるように離型処理されたポリエチレンテレフタレート(PET)フィルム上に塗布し、140℃で5分間加熱乾燥して、厚みが10μmのBステージ状態の接着剤層を形成し、接着剤層を備えるダイボンディングフィルムを作製した。
(Production of die bonding film)
55 parts by mass of YDCN-703 (trade name, cresol novolac type epoxy resin, epoxy equivalent 210, molecular weight 1200, softening point 80° C.) as an epoxy resin, Milex XLC-LL (Mitsui Chemicals, Inc.) as a phenol resin Manufactured by trade name, hydroxyl equivalent 175, water absorption rate 1.8%, heating mass reduction rate at 350° C. 4%) 45 parts by mass, NUCA-189 (manufactured by Nippon Unicar Co., Ltd., trade name, γ- 1.7 parts by mass of mercaptopropyltrimethoxysilane) and 3.2 parts by mass of NUCA-1160 (manufactured by Nippon Unicar Co., Ltd., trade name, γ-ureidopropyltriethoxysilane), and Aerosil R972 as a filler (silica surface is dimethyldi). 32 parts by mass of silica filler coated with chlorosilane, hydrolyzed in a reactor at 400° C., and surface-modified with an organic group such as a methyl group, manufactured by Nippon Aerosil Co., Ltd., trade name, average particle size 0.016 μm) Cyclohexanone was added to and mixed with stirring, and further kneaded for 90 minutes using a bead mill. 280 parts by mass of HTR-860P-3 (manufactured by Nagase Chemtex Co., Ltd., trade name, acrylic rubber containing a weight-average molecular weight of 800,000, glycidyl acrylate or 3% by mass of glycidyl methacrylate) as an acrylic rubber based on the resulting mixture; Add 0.5 parts by mass of Curezol 2PZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name, 1-cyanoethyl-2-phenylimidazole) as a curing accelerator, stir and mix, and vacuum degas to form an adhesive layer. I got a varnish for. The obtained varnish for forming an adhesive layer is applied on a polyethylene terephthalate (PET) film which has been subjected to a release treatment so as to have a set thickness, and is heated and dried at 140° C. for 5 minutes to have a B stage state of 10 μm in thickness. The adhesive layer was formed, and a die bonding film including the adhesive layer was produced.
(ダイシング・ダイボンディング一体型フィルムの作製)
 上記で作製したダイボンディングフィルムをPETフィルムごと取り扱いし易いサイズにカットした。カットしたダイボンディングフィルムの接着剤層に、貼り付ける直前にPETフィルムを剥がしてダイシングフィルムの光硬化性粘着剤層を貼り合わせた。貼り合わせは、クリーンルーム(温度23℃、湿度50%の無塵室内)でラミネートマシンを用い、ロールを加温しない(すなわち、温度23℃)で行った。その後、接着剤層と光硬化性粘着剤層との密着性を一定に保つ観点から、4℃の冷蔵庫で1日保管することによってダイシング・ダイボンディング一体型フィルムAを得た。
(Production of dicing/die bonding integrated film)
The die bonding film produced above was cut into a size that was easy to handle together with the PET film. The PET film was peeled off and the photocurable pressure-sensitive adhesive layer of the dicing film was bonded to the adhesive layer of the cut die bonding film immediately before bonding. The bonding was performed in a clean room (23° C., 50% humidity-free room) using a laminating machine without heating the roll (that is, 23° C.). Then, from the viewpoint of keeping the adhesiveness between the adhesive layer and the photocurable pressure-sensitive adhesive layer constant, the dicing/die-bonding integrated film A was obtained by storing the film in a refrigerator at 4° C. for 1 day.
<製造例2:ダイシング・ダイボンディング一体型フィルムBの作製>
 架橋剤の含有量を8質量部から10質量部に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムBを得た。
<Production Example 2: Preparation of dicing/die-bonding integrated film B>
A dicing/die-bonding integrated film B was obtained in the same manner as in Production Example 1 except that the content of the crosslinking agent was changed from 8 parts by mass to 10 parts by mass.
<製造例3:ダイシング・ダイボンディング一体型フィルムCの作製>
 (メタ)アクリル共重合体溶液をAからBに変更し、架橋剤の含有量を8質量部から6質量部に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムCを得た。
<Manufacturing Example 3: Preparation of dicing/die bonding integrated film C>
A dicing/die-bonding integrated film in the same manner as in Production Example 1 except that the (meth)acrylic copolymer solution was changed from A to B and the content of the crosslinking agent was changed from 8 parts by mass to 6 parts by mass. I got C.
<製造例4:ダイシング・ダイボンディング一体型フィルムDの作製>
 光硬化性粘着剤層形成用ワニスの塗工速度を製造例1の塗工速度に対して0.8倍に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムDを得た。
<Production Example 4: Preparation of dicing/die-bonding integrated film D>
Dicing/die-bonding integrated film D was produced in the same manner as in Production Example 1, except that the coating speed of the varnish for forming a photocurable pressure-sensitive adhesive layer was changed to 0.8 times the coating speed in Production Example 1. Got
<製造例5:ダイシング・ダイボンディング一体型フィルムEの作製>
 光硬化性粘着剤層形成用ワニスの塗工速度を製造例1の塗工速度に対して1.2倍に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムEを得た。
<Production Example 5: Production of dicing/die-bonding integrated film E>
Dicing/die-bonding integrated film E was produced in the same manner as in Production Example 1 except that the coating speed of the varnish for forming a photocurable pressure-sensitive adhesive layer was changed to 1.2 times the coating speed in Production Example 1. Got
<製造例6:ダイシング・ダイボンディング一体型フィルムFの作製>
 (メタ)アクリル共重合体溶液をAからCに変更し、架橋剤の含有量を8質量部から6質量部に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムFを得た。
<Production Example 6: Preparation of dicing/die-bonding integrated film F>
Dicing/die-bonding integrated film in the same manner as in Production Example 1 except that the (meth)acrylic copolymer solution was changed from A to C and the content of the crosslinking agent was changed from 8 parts by mass to 6 parts by mass. I got F.
<製造例7:ダイシング・ダイボンディング一体型フィルムGの作製>
 (メタ)アクリル共重合体溶液をAからDに変更し、架橋剤の含有量を8質量部から6質量部に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムGを得た。
<Production Example 7: Production of dicing/die-bonding integrated film G>
Dicing/die-bonding integrated film in the same manner as in Production Example 1 except that the (meth)acrylic copolymer solution was changed from A to D and the content of the crosslinking agent was changed from 8 parts by mass to 6 parts by mass. Got G.
<製造例8:ダイシング・ダイボンディング一体型フィルムHの作製>
 架橋剤の含有量を8質量部から6質量部に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムHを得た。
<Production Example 8: Production of dicing/die-bonding integrated film H>
A dicing/die-bonding integrated film H was obtained in the same manner as in Production Example 1 except that the content of the crosslinking agent was changed from 8 parts by mass to 6 parts by mass.
<製造例9:ダイシング・ダイボンディング一体型フィルムIの作製>
 (メタ)アクリル共重合体溶液Aから(メタ)アクリル共重合体溶液Eに変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムIを得た。
<Production Example 9: Production of dicing/die-bonding integrated film I>
A dicing/die-bonding integrated film I was obtained in the same manner as in Production Example 1 except that the (meth)acrylic copolymer solution A was changed to the (meth)acrylic copolymer solution E.
<製造例10:ダイシング・ダイボンディング一体型フィルムJの作製>
 光硬化性粘着剤層形成用ワニスの塗工速度を製造例1の塗工速度に対して1.5倍に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムJを得た。
<Production Example 10: Production of dicing/die-bonding integrated film J>
Dicing/die-bonding integrated film J in the same manner as in Production Example 1 except that the coating speed of the varnish for forming a photocurable pressure-sensitive adhesive layer was changed to 1.5 times the coating speed in Production Example 1. Got
<製造例11:ダイシング・ダイボンディング一体型フィルムKの作製>
 光硬化性粘着剤層形成用ワニスの塗工速度を製造例1の塗工速度に対して0.6倍に変更した以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムKを得た。
<Production Example 11: Production of film K integrated with dicing and die bonding>
Dicing/die-bonding integrated film K was produced in the same manner as in Production Example 1, except that the coating speed of the varnish for forming a photocurable pressure-sensitive adhesive layer was changed to 0.6 times the coating speed in Production Example 1. Got
<製造例12:ダイシング・ダイボンディング一体型フィルムLの作製>
 ダイシング・ダイボンディング一体型フィルムの作製において、クリーンルーム(温度23℃、湿度50%の無塵室内)で、ダイシングフィルムのPETフィルムを剥がし、光硬化性粘着剤層を空気暴露させて1日以上放置したものをダイボンディングフィルムの接着剤層に貼り付けた以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムLを得た。
<Manufacturing Example 12: Preparation of dicing/die-bonding integrated film L>
In the production of the dicing/die-bonding integrated film, the PET film of the dicing film was peeled off in a clean room (temperature 23°C, humidity 50% in a dust-free room), and the photocurable pressure-sensitive adhesive layer was exposed to air and left for 1 day or more. A dicing/die-bonding integrated film L was obtained in the same manner as in Production Example 1 except that the above was attached to the adhesive layer of the die-bonding film.
<製造例13:ダイシング・ダイボンディング一体型フィルムMの作製>
 ダイシング・ダイボンディング一体型フィルムの作製において、ラミネートマシンのロールを50℃に加温しながら、ダイボンディングフィルムの接着剤層とダイシングフィルムの光硬化性粘着剤層とを貼り付けた以外は、製造例1と同様にして、ダイシング・ダイボンディング一体型フィルムMを得た。
<Production Example 13: Production of film M integrated with dicing and die bonding>
Manufacturing of the dicing/die bonding integrated film, except that the adhesive layer of the die bonding film and the photo-curable pressure-sensitive adhesive layer of the dicing film were attached while the roll of the laminating machine was heated to 50°C. A film M integrated with dicing and die bonding was obtained in the same manner as in Example 1.
[剥離力の測定]
<測定サンプルの作製>
 ダイシング・ダイボンディング一体型フィルムA~Mをそれぞれ幅30mm、長さ200mmに切り分け、ダイボンディングフィルムの接着剤層側のPETフィルムを剥がし、支持フィルム(王子タック株式会社製、ECテープ)を接着剤層側にローラーを用いて貼り付け、幅25mm、長さ170mmに切り出した。次に、切り出した粘着フィルム付きダイシング・ダイボンディング一体型フィルムの基材層(ポリオレフィン製フィルム)側から、紫外線照射装置(株式会社GSユアサ製、UV SYSTEM、中心波長365nmの紫外線)を用いて、照射温度40℃以下、照射強度70mW/cm、及び積算光量150mJ/cmで照射し、光硬化性粘着剤層の硬化物を形成することによって測定サンプルを得た。
[Measurement of peeling force]
<Preparation of measurement sample>
The dicing/die-bonding integrated films A to M are each cut into a width of 30 mm and a length of 200 mm, the PET film on the adhesive layer side of the die bonding film is peeled off, and a supporting film (EC tape manufactured by Oji Tuck Co., Ltd.) is used as an adhesive. It stuck on the layer side using a roller and cut out to width 25 mm and length 170 mm. Next, from the substrate layer (polyolefin film) side of the cut dicing/die bonding integrated film with adhesive film, using an ultraviolet irradiation device (GS Yuasa Co., Ltd., UV SYSTEM, central wavelength 365 nm ultraviolet light), Irradiation was performed at an irradiation temperature of 40° C. or less, an irradiation intensity of 70 mW/cm 2 , and an integrated light amount of 150 mJ/cm 2 , and a cured sample of the photocurable pressure-sensitive adhesive layer was formed to obtain a measurement sample.
<剥離力の測定>
 上記で作製した測定サンプルを角度自在タイプの粘着・被膜剥離解析装置VPA-2S(協和界面科学株式会社製)を用い、温度25±5℃、湿度55±10%、剥離角度30°、及び剥離速度600mm/分で支持フィルムを引っ張り、接着剤層と光硬化性粘着剤層の硬化物とを剥離させたときの剥離力(低角(30°)ピール強度)を測定した。同様の測定を3回行い、その平均値を低角ピール強度とした。結果を表2、表3、及び表4に示す。また、条件(a)(剥離力が0.70N/25mm以下である)の充足性についても表2、表3、及び表4に示す。
<Measurement of peeling force>
The measurement sample prepared above was subjected to an angle-free type adhesion/coating peeling analyzer VPA-2S (manufactured by Kyowa Interface Science Co., Ltd.) at a temperature of 25±5° C., a humidity of 55±10%, a peeling angle of 30°, and peeling. The peeling force (low-angle (30°) peel strength) when peeling the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer by pulling the support film at a speed of 600 mm/min was measured. The same measurement was performed 3 times, and the average value was taken as the low-angle peel strength. The results are shown in Tables 2, 3, and 4. Tables 2, 3, and 4 also show the sufficiency of the condition (a) (the peeling force is 0.70 N/25 mm or less).
[糸曳き痕の痕数及び痕幅の計測]
<測定サンプルの作製>
 ダイシング・ダイボンディング一体型フィルムは、上記剥離力の測定で用いたものと同じものであって、上記剥離力の測定を行っていないものを用いた。ダイシング・ダイボンディング一体型フィルムA~Mをそれぞれ幅30mm、長さ50mm以上に切り分けた。次に、ダイシング・ダイボンディング一体型フィルムの基材層(ポリオレフィン製フィルム)にヒーターを接して、光硬化性粘着剤層を65℃、15分間加熱し、その後、25±5℃まで空冷した。空冷後、ダイボンディングフィルムの接着剤層側のPETフィルムを剥がし、支持フィルム(王子タック株式会社製、ECテープ)を貼り合わせて、幅が25mmになるように切りそろえた。次いで、加熱冷却後の支持フィルム付きダイシング・ダイボンディング一体型フィルムの基材層(ポリオレフィン製フィルム)側から、紫外線照射装置(株式会社GSユアサ製、UV SYSTEM、中心波長365nmの紫外線)を用いて、照射温度40℃以下、照射強度70mW/cm、及び積算光量150mJ/cmで照射し、光硬化性粘着剤層の硬化物を形成した。次いで、角度自在タイプの粘着・被膜剥離解析装置VPA-2S(協和界面科学株式会社製)を用い、温度25±5℃、湿度55±10%、剥離角度30°、及び剥離速度600mm/分で支持フィルムを引っ張り、接着剤層と光硬化性粘着剤層の硬化物とを剥離させ、接着剤層が剥離された後の光硬化性粘着剤層の硬化物を備える基材層を回収し、5mm×5mmのサイズに切り分けることによって、計測サンプルを得た。
[Measurement of the number of traces and width of the traces]
<Preparation of measurement sample>
The dicing/die-bonding integrated film was the same as the one used in the measurement of the peeling force, and the one in which the peeling force was not measured was used. The dicing/die bonding integrated films A to M were cut into a width of 30 mm and a length of 50 mm or more. Next, a heater was brought into contact with the base material layer (polyolefin film) of the dicing/die-bonding integrated film to heat the photocurable pressure-sensitive adhesive layer at 65° C. for 15 minutes, and then air-cooled to 25±5° C. After air cooling, the PET film on the adhesive layer side of the die bonding film was peeled off, a supporting film (EC tape manufactured by Oji Tuck Co., Ltd.) was attached, and the width was cut to 25 mm. Then, from the base material layer (polyolefin film) side of the dicing die-bonding integrated film with a supporting film after heating and cooling, an ultraviolet irradiation device (GS Yuasa Co., Ltd., UV SYSTEM, central wavelength 365 nm ultraviolet light) is used. , irradiation temperature 40 ° C. or less, was irradiated at an irradiation intensity of 70 mW / cm 2, and the accumulated light quantity 150 mJ / cm 2, to form a cured product of the photocurable pressure-sensitive adhesive layer. Then, using an angle-free type adhesion/coating peeling analysis device VPA-2S (manufactured by Kyowa Interface Science Co., Ltd.), temperature 25±5° C., humidity 55±10%, peeling angle 30°, and peeling speed 600 mm/min. The support film is pulled, the adhesive layer and the cured product of the photocurable pressure-sensitive adhesive layer are peeled off, and the base material layer comprising the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is recovered, A measurement sample was obtained by cutting into a size of 5 mm×5 mm.
<糸曳き痕の痕数及び痕幅の計測>
 上記で作製した計測サンプルを板状のステージに固定した。計測サンプルの固定には、カーボン両面テープを用いた。走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、商品名「SPA400」)を用いて、接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面を観察し、画像解析ソフト(「SPA400」に付属)を用いて解析した。走査型プローブ顕微鏡の探針には、バネ定数の低いカンチレバー(オリンパス株式会社製、商品名「OMCL-AC240TS」)を設置して行った。光硬化性粘着剤層の硬化物の観察においては、ダイナミックフォースモード(DFM)で観察し、同時に位相像のデータを取得し、その位相像において明らかに硬さが周囲と異なっている箇所を糸曳き痕とした。計測サンプルの観察においては、観察の対象である表面に糸曳き痕の痕数が15以上である25μm×25μmの領域(特定領域)が存在するか否かを確認した。接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に糸曳き痕の痕数が15以上である特定領域が存在した場合、特定領域に存在する糸曳き痕の痕幅の中央値を算出した。糸曳き痕の痕幅は、以下のようにして求めた。まず、走査型プローブ顕微鏡を用いて、位相像において硬さが明らかに周囲と異なっている箇所を含む光硬化性粘着剤層の硬化物の表面の形状像プロファイル及び位相像プロファイルを取得した。次いで、取得した形状像プロファイルから、市販の画像処理ソフト(走査型プローブ顕微鏡付属の画像処理ソフト等)を用いて、測定対象となる糸曳き痕全てに対して、各糸曳き痕の痕幅が最大となるような断面線の断面プロファイルをそれぞれ出力し、上述の基準に基づき、糸曳き痕の痕幅を求めた。なお、形状像プロファイルにおいて、糸曳き痕は、最も淡い色(白黒画像の場合、例えば、白色)で示されるが、位相像において硬さが明らかに周囲と異なっている箇所の個数は、形状像プロファイルにおいて最も淡い色で示される箇所の個数と同数であった。結果を表2、表3、及び表4に示す。また、条件(b)(接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に糸曳き痕の痕数が15以上である25μm×25μmの領域が存在し、領域内における糸曳き痕の痕幅の中央値が120~200nmである)の充足性についても表2、表3、及び表4に示す。
<Measurement of the number and width of the traces of the stringing traces>
The measurement sample produced above was fixed to a plate-shaped stage. A carbon double-sided tape was used to fix the measurement sample. Using a scanning probe microscope (trade name "SPA400" manufactured by SII Nano Technology Co., Ltd.), the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off is observed, and image analysis is performed. It analyzed using software (attached to "SPA400"). A cantilever having a low spring constant (manufactured by Olympus Co., Ltd., trade name “OMCL-AC240TS”) was installed on the probe of the scanning probe microscope. When observing the cured product of the photo-curable pressure-sensitive adhesive layer, the dynamic force mode (DFM) is observed, and at the same time, the data of the phase image is acquired, and in the phase image, the part where the hardness is obviously different from the surroundings is threaded. It was a tow mark. In the observation of the measurement sample, it was confirmed whether or not there was a 25 μm×25 μm region (specific region) in which the number of traces of the string-plucking marks was 15 or more on the surface to be observed. When there is a specific area with 15 or more thread-plucking marks on the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off, the width of the thread-plucking marks existing in the specific area The median value of was calculated. The trace width of the stringing trace was determined as follows. First, using a scanning probe microscope, the shape image profile and the phase image profile of the surface of the cured product of the photocurable pressure-sensitive adhesive layer including the portion where the hardness is clearly different from the surroundings in the phase image were acquired. Then, using the commercially available image processing software (such as the image processing software attached to the scanning probe microscope) from the acquired shape image profile, the width of each thread pulling trace is The maximum cross-sectional profile of the cross-sectional line was output, and the trace width of the string-plucking trace was determined based on the above criteria. In the shape image profile, the thread-plucking marks are shown in the lightest color (for example, white in the case of a black-and-white image), but the number of places where the hardness is obviously different from the surroundings in the phase image is the shape image. The number was the same as the number of places indicated by the lightest color in the profile. The results are shown in Tables 2, 3, and 4. Further, under the condition (b) (the surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off, there is a region of 25 μm×25 μm in which the number of traces of the string-plucking marks is 15 or more, and The median width of the thread-plucking traces is 120 to 200 nm) in Table 2, Table 3 and Table 4.
[ダイシング工程におけるピックアップ性の評価]
 得られた製造例1~13のダイシング・ダイボンディング一体型フィルムA~Mについて、ダイシング工程の所定の条件におけるピックアップの成功率及びピックアップにかかる剥離時間を評価した。
[Evaluation of pickup property in dicing process]
For the obtained dicing/die-bonding integrated films A to M of Production Examples 1 to 13, the success rate of pickup and the peeling time required for pickup under predetermined conditions in the dicing process were evaluated.
<評価サンプルの作製>
(改質層形成)
 半導体ウエハ(シリコンウエハ(厚み750μm、外径12インチ))の片面に、バックグラインドテープを貼り付け、バックグラインドテープ付き半導体ウエハを得た。半導体ウエハのバックグラインドテープが貼り付けられた側とは反対側の面に対してレーザ光を照射して半導体ウエハ内部に改質層を形成した。レーザの照射条件は以下のとおりである。
<Preparation of evaluation sample>
(Formation of modified layer)
A back grinding tape was attached to one surface of a semiconductor wafer (silicon wafer (thickness 750 μm, outer diameter 12 inches)) to obtain a semiconductor wafer with a back grinding tape. The surface of the semiconductor wafer opposite to the side to which the back grinding tape was attached was irradiated with laser light to form a modified layer inside the semiconductor wafer. The laser irradiation conditions are as follows.
 レーザ発振器型式:半導体レーザ励起Qスイッチ固体レーザ
 波長:1342nm
 発振形式:パルス
 周波数:90kHz
 出力:1.7W
 半導体ウエハの載置台の移動速度:700mm/秒
Laser oscillator model: Semiconductor laser pumped Q-switch solid-state laser Wavelength: 1342 nm
Oscillation form: pulse Frequency: 90 kHz
Output: 1.7W
Moving speed of semiconductor wafer mounting table: 700 mm/sec
 次いで、半導体ウエハのバックグラインドテープが貼り付けられた側とは反対側の面に対して、バックグラインディング及びポリッシングを行うことによって、厚みが30μmである半導体ウエハを得た。 Next, back grinding and polishing were performed on the surface of the semiconductor wafer opposite to the side on which the back grinding tape was attached, to obtain a semiconductor wafer having a thickness of 30 μm.
(ウエハラミネート)
 半導体ウエハのバックグラインドテープが貼り付けられた側とは反対側の面に、ダイシング・ダイボンディング一体型フィルムのPETフィルムを剥がし、接着剤層を貼り付けた。
(Wafer laminating)
The PET film of the dicing/die bonding integrated film was peeled off from the surface of the semiconductor wafer opposite to the side to which the back grinding tape was stuck, and the adhesive layer was stuck.
(ダイシング)
 次いで、改質層を有するダイシング・ダイボンディング一体型フィルム付き半導体ウエハをエキスパンド装置に固定した。次いで、ダイシングフィルムを下記条件でエキスパンドし、半導体ウエハ、接着剤層、及び光硬化性粘着剤層を個片化した。
(Dicing)
Next, the dicing/die-bonding integrated film-equipped semiconductor wafer having the modified layer was fixed to an expanding device. Next, the dicing film was expanded under the following conditions to separate the semiconductor wafer, the adhesive layer, and the photocurable pressure-sensitive adhesive layer into individual pieces.
 装置:株式会社ディスコ製、商品名「DDS2300 Fully Automatic Die Separator」
 クールエキスパンド条件:
 温度:-15℃、高さ:9mm、冷却時間:90秒、速度:300mm/秒、待機時間:0秒
 ヒートシュリンク条件:
 温度:220℃、高さ:7mm、保持時間:15秒、速度:30mm/秒、ヒーター速度:7℃/秒
Device: Product name “DDS2300 Fully Automatic Die Separator” manufactured by Disco Corporation
Cool expanding conditions:
Temperature: -15°C, Height: 9 mm, Cooling time: 90 seconds, Speed: 300 mm/second, Standby time: 0 seconds Heat shrink condition:
Temperature: 220°C, height: 7 mm, holding time: 15 seconds, speed: 30 mm/sec, heater speed: 7°C/sec
(紫外線照射)
 個片化された半導体ウエハの光硬化性粘着剤層を照射強度70mW/cm及び積算光量150mJ/cmで中心波長365nmの紫外線を照射し、光硬化性粘着剤層の硬化物を形成することによって後述のピックアップ性の評価サンプルを得た。
(UV irradiation)
The center wavelength of 365nm ultraviolet irradiation with a light-curable pressure-sensitive adhesive layer of the singulated semiconductor wafer irradiation intensity 70 mW / cm 2 and cumulative light quantity 150 mJ / cm 2, to form a cured product of the photocurable pressure-sensitive adhesive layer As a result, a sample for evaluation of pickup property described later was obtained.
<ピックアップ性の評価>
 ダイボンダDB-830P(ファスフォードテクノロジ株式会社製(旧株式会社日立ハイテクノロジーズ製)を用いて、ピン本数9本でピックアップ試験を行った。ピックアップ用コレットには、RUBBER TIP 13-087E-33(マイクロメカニクス社製、商品名、サイズ:10×10mm)を用いた。突上げピンには、EJECTOR NEEDLE SEN2-83-05(マイクロメカニクス社製、商品名、直径:0.7mm、先端形状:直径350μmの半円)を用いた。突上げピンは、ピン中心から等間隔に9本を配置した。
<Evaluation of pickup property>
A die bonder DB-830P (manufactured by Fasford Technology Co., Ltd. (former Hitachi High-Technologies Corporation) was used to perform a pick-up test with 9 pins. The pick-up collet was a RUBBER TIP 13-087E-33 (micro). A mechanics company, product name, size: 10×10 mm) was used.The push-up pin was EJECTOR NEEDLE SEN2-83-05 (manufactured by Micromechanics company, product name, diameter: 0.7 mm, tip shape: diameter 350 μm) The semi-circle was used.) The thrust pins were arranged at equal intervals from the center of the pin.
(ピックアップの成功率)
 上記ピックアップ試験において、ピックアップの成功率が95~100%であったものを「A」、95%未満であったものを「B」と評価した。結果を表2、表3、及び表4に示す。
(Success rate of pickup)
In the above-mentioned pickup test, a pickup success rate of 95 to 100% was evaluated as "A", and a pickup success rate of less than 95% was evaluated as "B". The results are shown in Tables 2, 3, and 4.
(ピックアップの剥離時間)
 高速度カメラMEMRECM GX-1Plus(株式会社ナックイメージテクノロジー製、商品名)を用いて、上記ピックアップ試験を撮影し、コレットがチップに接触してから、接着剤層と光硬化性粘着剤層とが完全に剥離されるまでの時間を剥離時間として評価した。ピックアップは1mm/秒で300μmまで突き上げることによって行った。フレームレートは1000フレーム/秒とした。剥離時間が60m秒以下であったものを「A」、60m秒を超え90m秒未満であったものを「B」、90m秒を超えたものを「C」と評価した。結果を表2、表3、及び表4に示す。
(Peeling time of pickup)
The high-speed camera MEMRECM GX-1Plus (manufactured by NAC Image Technology Co., Ltd., trade name) was used to photograph the above pickup test, and after the collet was in contact with the chip, the adhesive layer and the photocurable adhesive layer were separated. The time until complete peeling was evaluated as the peeling time. Pickup was performed by pushing up to 300 μm at 1 mm/sec. The frame rate was 1000 frames/second. The peeling time of 60 msec or less was evaluated as "A", the peeling time of more than 60 msec and less than 90 msec was evaluated as "B", and the peel time of more than 90 msec was evaluated as "C". The results are shown in Tables 2, 3, and 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2、表3、及び表4に示すように、製造例1~5のダイシング・ダイボンディング一体型フィルムA~Eは、剥離力が0.70N/25mm以下であり、かつ接着剤層が剥離された後の光硬化性粘着剤層の硬化物の表面に糸曳き痕の痕数15以上となる25μm×25μmの領域が存在し、領域内における糸曳き痕の痕幅の中央値が120~200nmであり、条件(a)及び条件(b)の両方を満たしていた。これらの製造例1~5のダイシング・ダイボンディング一体型フィルムA~Eは、ピックアップ性の評価において優れていることが判明した。これに対して、条件(a)若しくは条件(b)のいずれか一方を充足しない、又は条件(a)及び条件(b)の両方を充足しない製造例6~13のダイシング・ダイボンディング一体型フィルムF~Mは、ピックアップ性の評価において不充分であることが判明した。 As shown in Tables 2, 3, and 4, the dicing/die-bonding integrated films A to E of Production Examples 1 to 5 have a peeling force of 0.70 N/25 mm or less, and the adhesive layer peels off. The surface of the cured product of the photocurable pressure-sensitive adhesive layer after being treated has a region of 25 μm×25 μm in which the number of traces of the thread-plucking marks is 15 or more, and the median value of the width of the traces of the thread-plucking marks in the area is 120 to It was 200 nm, and both the condition (a) and the condition (b) were satisfied. It was found that the dicing/die-bonding integrated films A to E of Production Examples 1 to 5 were excellent in evaluation of pickup property. On the other hand, the dicing/die-bonding integrated film of Production Examples 6 to 13 that does not satisfy either the condition (a) or the condition (b), or does not satisfy both the condition (a) and the condition (b). It was found that F to M were insufficient in the evaluation of the pickup property.
 1…ダイシング・ダイボンディング一体型フィルム、2…保護フィルム、4…改質層、10…基材層、20…光硬化性粘着剤層、20ac…光硬化性粘着剤層の硬化物、30、30a…接着剤層、42…ニードル、44…吸引コレット、50…接着剤層付き半導体素子、60…半導体素子搭載用支持基板、70…ワイヤーボンド、80…樹脂封止材、90…はんだボール、W1、W2…半導体ウエハ、H1…半導体ウエハW1の厚み、H2…半導体ウエハW2の厚み、100…半導体装置。 DESCRIPTION OF SYMBOLS 1... Dicing/die-bonding integrated film, 2... Protective film, 4... Modification layer, 10... Base material layer, 20... Photocurable adhesive layer, 20ac... Cured product of photocurable adhesive layer, 30, 30a... Adhesive layer, 42... Needle, 44... Suction collet, 50... Adhesive layer-equipped semiconductor element, 60... Support substrate for mounting semiconductor element, 70... Wire bond, 80... Resin encapsulant, 90... Solder ball, W1, W2... Semiconductor wafer, H1... Thickness of semiconductor wafer W1, H2... Thickness of semiconductor wafer W2, 100... Semiconductor device.

Claims (10)

  1.  ダイシング・ダイボンディング一体型フィルムに用いられる光硬化性粘着剤の評価方法であって、
     基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、前記光硬化性粘着剤層に対して下記照射条件で紫外線を照射して、前記光硬化性粘着剤層の硬化物を形成し、下記剥離条件で前記接着剤層と前記光硬化性粘着剤層の硬化物とを剥離させたときの剥離力を測定する第1の工程と、
     基材層、光硬化性粘着剤からなる光硬化性粘着剤層、及び接着剤層がこの順に積層されたダイシング・ダイボンディング一体型フィルムを準備し、前記光硬化性粘着剤層を下記加熱冷却条件で処理し、前記光硬化性粘着剤層に対して下記照射条件で紫外線を照射して、前記光硬化性粘着剤層の硬化物を形成し、下記剥離条件で前記接着剤層と前記光硬化性粘着剤層の硬化物とを剥離させ、前記接着剤層が剥離された後の前記光硬化性粘着剤層の硬化物の表面を走査型プローブ顕微鏡で観察し、前記表面における糸曳き痕の痕数及び痕幅を計測する第2の工程と、
     前記剥離力並びに前記糸曳き痕の痕数及び痕幅に基づいて、前記光硬化性粘着剤の良否を判定する第3の工程と、
    を備える、光硬化性粘着剤の評価方法。
    (照射条件)
     照射強度:70mW/cm
     積算光量:150mJ/cm
    (剥離条件)
     温度:25±5℃
     湿度:55±10%
     剥離角度:30°
     剥離速度:600mm/分
    (加熱冷却条件)
     加熱処理:65℃、15分間
     冷却処理:25±5℃まで30分間空冷静置
    A method for evaluating a photocurable pressure-sensitive adhesive used for a dicing/die-bonding integrated film,
    A substrate layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and a dicing/die-bonding integrated film in which an adhesive layer is laminated in this order are prepared. Irradiation with ultraviolet rays under irradiation conditions to form a cured product of the photo-curable pressure-sensitive adhesive layer, and peeling when the adhesive layer and the cured product of the photo-curable pressure-sensitive adhesive layer are peeled off under the following peeling conditions. The first step of measuring the force,
    Prepare a dicing/die-bonding integrated film in which a base material layer, a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive, and an adhesive layer are laminated in this order, and the photo-curable pressure-sensitive adhesive layer is heated and cooled as follows. Treated under the conditions, irradiating the photocurable pressure-sensitive adhesive layer with ultraviolet rays under the following irradiation conditions to form a cured product of the photocurable pressure-sensitive adhesive layer, and the adhesive layer and the light under the following peeling conditions. The cured product of the curable pressure-sensitive adhesive layer is peeled off, and the surface of the cured product of the photo-curable pressure-sensitive adhesive layer after the adhesive layer is peeled off is observed with a scanning probe microscope, and the thread-plucking marks on the surface are observed. A second step of measuring the number of traces and the width of the traces,
    A third step of judging whether the photocurable pressure-sensitive adhesive is good or bad based on the peeling force and the number and width of the traces of the stringing trace,
    A method for evaluating a photocurable pressure-sensitive adhesive, comprising:
    (Irradiation conditions)
    Irradiation intensity: 70 mW/cm 2
    Integrated light intensity: 150 mJ/cm 2
    (Peeling conditions)
    Temperature: 25±5℃
    Humidity: 55±10%
    Peeling angle: 30°
    Peeling speed: 600 mm/min (heating and cooling conditions)
    Heat treatment: 65°C, 15 minutes Cooling treatment: Air cooling to 25±5°C for 30 minutes
  2.  前記第3の工程は、前記剥離力並びに前記糸曳き痕の痕数及び痕幅が下記条件(a)及び下記条件(b)を満たすか否かによって前記光硬化性粘着剤の良否を判定する工程である、請求項1に記載の光硬化性粘着剤の評価方法。
     条件(a):前記剥離力が0.70N/25mm以下である。
     条件(b):前記接着剤層が剥離された後の前記光硬化性粘着剤層の硬化物の表面に、糸曳き痕の痕数が15以上である25μm×25μmの領域が存在し、前記領域内における前記糸曳き痕の痕幅の中央値が120~200nmである。
    In the third step, the quality of the photocurable pressure-sensitive adhesive is determined by whether or not the peeling force and the number and width of traces of the stringing traces satisfy the following conditions (a) and (b). The method for evaluating a photocurable pressure-sensitive adhesive according to claim 1, which is a step.
    Condition (a): The peeling force is 0.70 N/25 mm or less.
    Condition (b): The surface of the cured product of the photocurable pressure-sensitive adhesive layer after the adhesive layer is peeled off has a region of 25 μm×25 μm in which the number of traces of the string-plucking marks is 15 or more, and The median value of the trace widths of the stringing traces in the region is 120 to 200 nm.
  3.  前記光硬化性粘着剤が、反応性官能基を有する(メタ)アクリル共重合体と、光重合開始剤と、前記反応性官能基と反応可能な官能基を2以上有する架橋剤とを含有する、請求項1又は2に記載の光硬化性粘着剤の評価方法。 The photocurable pressure-sensitive adhesive contains a (meth)acrylic copolymer having a reactive functional group, a photopolymerization initiator, and a crosslinking agent having two or more functional groups capable of reacting with the reactive functional group. The method for evaluating a photocurable pressure-sensitive adhesive according to claim 1 or 2.
  4.  前記(メタ)アクリル共重合体が、(メタ)アクリル酸を単量体単位として含む、請求項3に記載の光硬化性粘着剤の評価方法。 The method for evaluating a photocurable pressure-sensitive adhesive according to claim 3, wherein the (meth)acrylic copolymer contains (meth)acrylic acid as a monomer unit.
  5.  前記接着剤層が、エポキシ樹脂と、エポキシ樹脂硬化剤と、エポキシ基を有する(メタ)アクリル共重合体とを含有する、請求項1~4のいずれか一項に記載の光硬化性粘着剤の評価方法。 5. The photocurable pressure-sensitive adhesive according to claim 1, wherein the adhesive layer contains an epoxy resin, an epoxy resin curing agent, and an epoxy group-containing (meth)acrylic copolymer. Evaluation method.
  6.  基材層上に、請求項1~5のいずれか一項に記載の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層を形成する工程と、
     前記光硬化性粘着剤層上に接着剤層を形成する工程と、
    を備える、ダイシング・ダイボンディング一体型フィルムの製造方法。
    A step of forming a photo-curable pressure-sensitive adhesive layer made of a photo-curable pressure-sensitive adhesive which is judged to be good by the photo-curable pressure-sensitive adhesive evaluation method according to claim 1 on the base material layer. When,
    A step of forming an adhesive layer on the photocurable pressure-sensitive adhesive layer,
    A method of manufacturing a dicing/die-bonding integrated film, comprising:
  7.  請求項6に記載の製造方法によって得られるダイシング・ダイボンディング一体型フィルムの前記接着剤層を半導体ウエハに貼り付ける工程と、
     前記半導体ウエハ、前記接着剤層、及び前記光硬化性粘着剤層をダイシングによって個片化する工程と、
     前記光硬化性粘着剤層に対して紫外線を照射し、前記光硬化性粘着剤層の硬化物を形成する工程と、
     前記光硬化性粘着剤層の硬化物から前記接着剤層が付着した半導体素子をピックアップする工程と、
     前記接着剤層を介して、前記半導体素子を半導体素子搭載用の支持基板に接着する工程と、
    を備える、半導体装置の製造方法。
    Bonding the adhesive layer of the dicing/die bonding integrated film obtained by the manufacturing method according to claim 6 to a semiconductor wafer;
    A step of dicing the semiconductor wafer, the adhesive layer, and the photocurable pressure-sensitive adhesive layer into individual pieces,
    Irradiating the photo-curable pressure-sensitive adhesive layer with ultraviolet rays to form a cured product of the photo-curable pressure-sensitive adhesive layer,
    A step of picking up the semiconductor element to which the adhesive layer is attached from a cured product of the photocurable pressure-sensitive adhesive layer;
    A step of adhering the semiconductor element to a semiconductor element mounting support substrate through the adhesive layer;
    A method for manufacturing a semiconductor device, comprising:
  8.  前記半導体ウエハの厚みが、35μm以下である、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the semiconductor wafer has a thickness of 35 μm or less.
  9.  前記ダイシングが、ステルスダイシングを適用したものである、請求項7又は8に記載の製造方法。 The manufacturing method according to claim 7 or 8, wherein the dicing is applied with stealth dicing.
  10.  基材層と、請求項1~5のいずれか一項に記載の光硬化性粘着剤の評価方法で良と判定された光硬化性粘着剤からなる光硬化性粘着剤層と、接着剤層とをこの順に備える、ダイシング・ダイボンディング一体型フィルム。 A base material layer, a photo-curable pressure-sensitive adhesive layer comprising a photo-curable pressure-sensitive adhesive determined to be good by the method for evaluating a photo-curable pressure-sensitive adhesive according to any one of claims 1 to 5, and an adhesive layer A film with integrated dicing and die bonding, which includes and in this order.
PCT/JP2018/048581 2018-12-28 2018-12-28 Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device WO2020136901A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217021116A KR102699401B1 (en) 2018-12-28 Evaluation method of photocurable adhesive, dicing/die bonding integrated film and its manufacturing method, and manufacturing method of semiconductor device
JP2020562295A JP7099547B2 (en) 2018-12-28 2018-12-28 Evaluation method of photocurable adhesive, dicing / die bonding integrated film and its manufacturing method, and manufacturing method of semiconductor device
PCT/JP2018/048581 WO2020136901A1 (en) 2018-12-28 2018-12-28 Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device
CN201880100421.8A CN113228237A (en) 2018-12-28 2018-12-28 Method for evaluating photocurable pressure-sensitive adhesive, dicing die-bonding integrated film and method for producing same, and method for producing semiconductor device
SG11202106221PA SG11202106221PA (en) 2018-12-28 2018-12-28 Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device
TW108147291A TWI816004B (en) 2018-12-28 2019-12-24 Evaluation method of photocurable adhesive, dicing-die bonding integrated film and manufacturing method thereof, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048581 WO2020136901A1 (en) 2018-12-28 2018-12-28 Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2020136901A1 true WO2020136901A1 (en) 2020-07-02

Family

ID=71126262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048581 WO2020136901A1 (en) 2018-12-28 2018-12-28 Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device

Country Status (5)

Country Link
JP (1) JP7099547B2 (en)
CN (1) CN113228237A (en)
SG (1) SG11202106221PA (en)
TW (1) TWI816004B (en)
WO (1) WO2020136901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255322A1 (en) * 2021-06-02 2022-12-08 昭和電工マテリアルズ株式会社 Method for producing semiconductor device, and dicing-die bonding integrated film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430515B2 (en) * 2019-11-06 2024-02-13 株式会社ディスコ Wafer processing method
CN113725161A (en) * 2021-09-02 2021-11-30 东莞记忆存储科技有限公司 Processing technique method of 3D wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286458A (en) * 2002-03-28 2003-10-10 Dainippon Ink & Chem Inc Adhesive sheet and its evaluation method
JP2004277530A (en) * 2003-03-14 2004-10-07 Lintec Corp Pressure-sensitive adhesive sheet and method for manufacturing pressure-sensitive adhesive sheet
JP2005241274A (en) * 2004-02-24 2005-09-08 Dainippon Ink & Chem Inc Evaluation method of processing aptitude of pressure sensitive adhesive sheet, and manufacturing method of pressure sensitive adhesive label
JP2011515839A (en) * 2008-03-14 2011-05-19 チェイル インダストリーズ インコーポレイテッド Composite function tape for semiconductor package and method of manufacturing semiconductor device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154704A (en) * 2013-02-08 2014-08-25 Hitachi Chemical Co Ltd Dicing/die bonding integrated tape
JP6542504B2 (en) * 2013-02-20 2019-07-10 日東電工株式会社 Film adhesive, dicing tape with film adhesive, method of manufacturing semiconductor device, and semiconductor device
JP6312498B2 (en) * 2014-03-31 2018-04-18 日東電工株式会社 Dicing film, dicing die-bonding film, and semiconductor device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286458A (en) * 2002-03-28 2003-10-10 Dainippon Ink & Chem Inc Adhesive sheet and its evaluation method
JP2004277530A (en) * 2003-03-14 2004-10-07 Lintec Corp Pressure-sensitive adhesive sheet and method for manufacturing pressure-sensitive adhesive sheet
JP2005241274A (en) * 2004-02-24 2005-09-08 Dainippon Ink & Chem Inc Evaluation method of processing aptitude of pressure sensitive adhesive sheet, and manufacturing method of pressure sensitive adhesive label
JP2011515839A (en) * 2008-03-14 2011-05-19 チェイル インダストリーズ インコーポレイテッド Composite function tape for semiconductor package and method of manufacturing semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255322A1 (en) * 2021-06-02 2022-12-08 昭和電工マテリアルズ株式会社 Method for producing semiconductor device, and dicing-die bonding integrated film

Also Published As

Publication number Publication date
JPWO2020136901A1 (en) 2021-11-25
KR20210107031A (en) 2021-08-31
JP7099547B2 (en) 2022-07-12
CN113228237A (en) 2021-08-06
TWI816004B (en) 2023-09-21
SG11202106221PA (en) 2021-07-29
TW202035604A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5294358B2 (en) Wafer processing tape and semiconductor device manufacturing method using the same
JP5556070B2 (en) Manufacturing method of semiconductor device using adhesive sheet integrated with dicing tape
JP5731080B2 (en) Adhesive tape and wafer processing tape
JP5786505B2 (en) Dicing and die bonding integrated tape
JP7409029B2 (en) Method for manufacturing semiconductor devices, integrated dicing/die bonding film, and method for manufacturing the same
WO2020136901A1 (en) Method for evaluating photocurable adhesive, dicing/die attach film, method for manufacturing same, and method for manufacturing semiconductor device
JP7059553B2 (en) Adhesive tape for stealth dicing, dicing die bonding integrated tape, and method for manufacturing semiconductor devices
JP6007576B2 (en) Manufacturing method of semiconductor device
JP6265296B2 (en) Dicing tape, dicing die bonding integrated tape, and method for manufacturing semiconductor device using dicing die bonding integrated tape
JP6264917B2 (en) Dicing tape
TWI778263B (en) Slicing and sticking monolithic film, method for manufacturing the same, and method for manufacturing a semiconductor device
JP7463968B2 (en) Method for evaluating photocurable adhesive, integrated dicing/die bonding film and method for manufacturing same, and method for manufacturing semiconductor device
JP6187715B2 (en) Dicing tape
KR102699401B1 (en) Evaluation method of photocurable adhesive, dicing/die bonding integrated film and its manufacturing method, and manufacturing method of semiconductor device
JP6860122B1 (en) Evaluation method of pick-up property, dicing / die bonding integrated film, evaluation method and sorting method of dicing / die bonding integrated film, and manufacturing method of semiconductor device
JP6835296B1 (en) Evaluation method of pick-up property, dicing / die bonding integrated film, evaluation method and sorting method of dicing / die bonding integrated film, and manufacturing method of semiconductor device
JP2019218428A (en) Dicing and die bonding integrated film and adhesive film using the same
JP7409030B2 (en) Dicing/die bonding integrated film and its manufacturing method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021116

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18944418

Country of ref document: EP

Kind code of ref document: A1