WO2020135543A1 - 一种高精度的卫星定位方法、定位终端和定位系统 - Google Patents

一种高精度的卫星定位方法、定位终端和定位系统 Download PDF

Info

Publication number
WO2020135543A1
WO2020135543A1 PCT/CN2019/128501 CN2019128501W WO2020135543A1 WO 2020135543 A1 WO2020135543 A1 WO 2020135543A1 CN 2019128501 W CN2019128501 W CN 2019128501W WO 2020135543 A1 WO2020135543 A1 WO 2020135543A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
rtk
ordinary
detection value
positioning
Prior art date
Application number
PCT/CN2019/128501
Other languages
English (en)
French (fr)
Inventor
王萌
李辉
张毅
熊福祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19906137.5A priority Critical patent/EP3889648A4/en
Publication of WO2020135543A1 publication Critical patent/WO2020135543A1/zh
Priority to US17/358,246 priority patent/US11906638B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/426Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the technical field of satellite positioning in the field particularly relates to a high-precision satellite positioning method, positioning terminal and positioning system.
  • the current mainstream positioning technology is Real Time (Kinematics, RTK) positioning technology, which is a differential positioning technology, also known as carrier phase differential technology.
  • the positioning technology involves a reference station and a rover station. These two measuring stations respectively detect the satellites of the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the reference station sends the detected carrier phase detection value to the rover station.
  • the rover uses its detected carrier phase detection value and the received carrier phase detection value from the reference station to form a phase difference detection value, and uses the phase difference detection value to calculate the coordinates of the rover by solving the difference.
  • RTK positioning technology relies on the detection of satellite carrier signals.
  • the reference station can be set in the open place such as the top of the building, so it has better satellite detection conditions, but for the rover, due to the existence of tall buildings and trees, the rover is in the process of moving
  • the detection of the carrier signal is often unable to achieve a continuous and stable state, resulting in low accuracy of the carrier phase detection value detected by the rover, which in turn leads to low positioning accuracy for the rover.
  • the present application relates to a positioning method, which is used to improve positioning accuracy to a certain extent.
  • the present application also provides a positioning system corresponding to the positioning method, and a positioning terminal located in the positioning system.
  • the present application relates to a positioning method.
  • the method includes at least the following steps.
  • the positioning terminal detects the satellite navigation system to obtain the original detection message.
  • the positioning terminal includes N ordinary receivers and a real-time dynamic RTK receiver, N is an integer greater than or equal to 3, and the N ordinary receivers are located at N vertices of a regular N polygon,
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the general receiver has at least the ability to measure the pseudo-range between the general receiver and the satellite detected by the general receiver and located in the satellite navigation system.
  • the RTK receiver has at least the ability to execute RTK positioning algorithms.
  • the original detection message includes the original detection value of each ordinary receiver and the original detection value of the RTK receiver.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite of the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • the correction value calculation service station inputs the original detection value of the RTK receiver into the RTK error correction model, obtains the first type of correction value through calculation, and inputs the converted detection value of the RTK receiver into the multi-receiver constrained MRC error correction model, The second type of correction value is obtained through calculation.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each ordinary receiver and the RTK receiver.
  • the positioning terminal corrects the original detection value of the RTK receiver by using the first type of correction value to obtain the corrected detection value of the RTK receiver, and uses the third type of correction value for each original of the ordinary receiver
  • the detection value is corrected to obtain the correction detection value of each common receiver, and the correction detection value of each common receiver and the correction detection value of the RTK receiver are used to obtain the positioning of the RTK receiver through fusion calculation result.
  • the third-type correction value is obtained by calculation according to the positional relationship between each of the ordinary receiver and the RTK receiver and the second-type correction value.
  • the positioning of the RTK receiver requires the pseudo-ranges detected and acquired by the multiple satellites in the satellite navigation system of the multiple common receiver pairs, and the RTK receiver pairs The pseudorange or carrier wave obtained by multiple satellites in the satellite navigation system. Since the acquisition of the pseudo-range depends on the analog signal and the acquisition of the carrier depends on the digital signal, in this embodiment, at least the plurality of common receivers detect the analog signal. It should be known that, compared with digital signals, analog signals have better robustness and anti-interference during propagation.
  • the positioning terminal has N ordinary receivers, and the N ordinary receivers have a specific positional relationship between them (specifically, the N ordinary receivers At the N vertices of a regular N polygon). Since the setting of the N ordinary receivers can eliminate the error caused by the multipath effect to a certain extent, the positioning method provided in this embodiment can obtain a more accurate positioning result.
  • the signal transmitted by the satellite reaches the receiver through a straight path between the satellite and the receiver
  • the signal received by the receiver is the delay of the signal transmitted by the satellite.
  • a number of different signals will be generated due to the reflection of some objects.
  • the propagation direction, amplitude, polarization of the multiple different signals And the phase and the like are different from the signal propagating to the receiver through the straight path.
  • the multiple different signals reach the receiver, they overlap with the signal reaching the receiver through the straight path. This phenomenon is called multiple Path effect.
  • the RTK error correction model and the MRC error correction model are also established in advance in the correction value calculation service station.
  • the RTK error correction model can generate the first correction value for correcting the original detection value of the RTK receiver
  • the MRC error correction model can generate the second correction value
  • the first After the second correction value is converted into the third correction value it can be used to correct the original detection value of each of the ordinary receivers.
  • use the first correction value to correct the original detection value of the RTK receiver to obtain the corrected detection value of the RTK receiver
  • use the third correction value to the original detection value of each of the ordinary receivers The detection value is corrected to obtain the corrected detection value for each of the ordinary receivers.
  • the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver through fusion calculation, the positioning result of the RTK receiver is obtained.
  • the calculated correction value is used to calculate the positioning result of the RTK receiver , Can obtain higher accuracy positioning results.
  • the original detection value of the RTK receiver includes a carrier wave detected between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver, and the The original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each satellite of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the RTK receiver detects a carrier wave, and the carrier wave is a digital signal. Since digital signals have better noise immunity than analog signals, using carrier waves to calculate the positioning result of the RTK receiver will have a higher Accuracy.
  • the positioning terminal converts the original detection value of each ordinary receiver according to the positional relationship between each ordinary receiver and the RTK receiver Is the converted detection value of the RTK receiver, and sends the converted detection value of the RTK receiver to the correction value calculation service station.
  • the correction value calculation service station receives the converted detection value of the RTK receiver.
  • the execution subject that converts the original detection value of each of the ordinary receivers into the converted detection value of the RTK receiver is a positioning terminal.
  • the burden of the correction value calculation service station is more Light, it only needs to be calculated based on the received converted detection value of the RTK receiver.
  • the positioning terminal sends the original detection value of each of the ordinary receivers to the correction value calculation service station.
  • the correction value calculation service station receives the original detection value of each of the ordinary receivers, and according to the positional relationship between each of the ordinary receivers and the RTK receiver, each of the ordinary receivers The original detection value of is converted into the converted detection value of the RTK receiver.
  • the execution subject that converts the original detection value of each of the ordinary receivers into the converted detection value of the RTK receiver is a correction value calculation service station.
  • the positioning terminal only needs to It is sufficient to obtain the original detection information and send the original detection message to the correction value calculation service station. Therefore, the internal change of the positioning terminal is small, so the setting of the positioning terminal is relatively simple.
  • the correction value calculation service station is based on each The positional relationship between the ordinary receiver and the RTK receiver converts the second-type correction value into the third-type correction value, and sends the third-type correction value to the positioning terminal.
  • the positioning terminal receives the third type of correction value.
  • the correction value calculation service station not only obtains the second type correction value, but also converts the second type correction value into the third type correction value, and the positioning terminal receives the After the third type of correction value, it is only necessary to correct the original detection value of each of the ordinary receivers according to the third type of correction value. Therefore, in this embodiment, the positioning terminal performs fewer operations, and accordingly, the internal structure of the positioning terminal changes less.
  • the correction value calculation service station The second type of correction value is sent to the positioning terminal.
  • the positioning terminal receives the second type correction value, and converts the second type correction value into the third type according to the positional relationship between each of the ordinary receiver and the RTK receiver Corrected value.
  • the correction value calculation service station sends the correction value of the second type to the positioning terminal.
  • the positioning terminal After receiving the second-type correction value, the positioning terminal needs to first convert the second-type correction value to the third-type correction value, and then to each of the ordinary according to the third-type correction value The original detection value of the receiver can be corrected. Therefore, in this embodiment, since the correction value calculation service station does not need to perform the operation of converting the second type correction value into the third type correction value, the internal setting of the correction value calculation service station changes Smaller.
  • the positioning terminal sends the original detection value of the RTK receiver to the Said correction value calculation service station.
  • the correction value calculation service station receives the original detection value of the RTK receiver.
  • the correction value calculation service station sends the first type of correction value to The positioning terminal.
  • the positioning terminal receives the first-type correction value.
  • the step of fusion calculation specifically includes: the positioning terminal uses each The corrected detection value of the ordinary receiver is calculated based on the MRC positioning algorithm to obtain the solution position of each ordinary receiver. Then, the solution position of the geometric center of the regular N polygon is calculated according to the solution position of each of the ordinary receivers. Further, the positioning terminal uses the corrected detection value of the RTK receiver to calculate the solution position of the RTK receiver based on the RTK positioning algorithm. Finally, the positioning terminal performs fusion calculation on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver using a probability model to obtain the positioning result of the RTK receiver.
  • the positioning result of the RTK receiver is calculated based on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver. Since the RTK receiver is located at the geometric center of the regular N polygon, the fusion position of the geometric center of the regular N polygon and the solution position of the RTK receiver can be calculated more Accurate positioning results of the RTK receiver.
  • the carrier or pseudorange between the RTK receiver and each satellite detected by the RTK receiver is input to the neural network, and is obtained through training.
  • the RTK error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the first type of correction value obtained through the RTK error correction model is relatively accurate.
  • the MRC error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the second type of correction value obtained through the MRC error correction model is relatively accurate.
  • the present application provides a positioning system.
  • the system includes a positioning terminal and a correction value calculation service station.
  • the positioning terminal is used to detect the satellite navigation system and obtain the original detection message.
  • the positioning terminal includes N ordinary receivers and a real-time dynamic RTK receiver, N is an integer greater than or equal to 3, and the N ordinary receivers are located at N vertices of a regular N polygon,
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the general receiver has at least the ability to measure the pseudo-range between the general receiver and the satellite detected by the general receiver and located in the satellite navigation system.
  • the RTK receiver has at least the ability to execute RTK positioning algorithms.
  • the original detection message includes the original detection value of each ordinary receiver and the original detection value of the RTK receiver.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite of the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • the correction value calculation service station is used for inputting the original detection value of the RTK receiver into the RTK error correction model, obtaining the first type of correction value through calculation, and for inputting the converted detection value of the RTK receiver into the multi-receiver constraint
  • the MRC error correction model obtains the second type of correction value through calculation.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each ordinary receiver and the RTK receiver.
  • the positioning terminal is further used to correct the original detection value of the RTK receiver by using the first type of correction value to obtain the corrected detection value of the RTK receiver, and to use the third type of correction value for each of the ordinary.
  • the original detection value of the receiver is corrected to obtain the corrected detection value of each ordinary receiver.
  • the third-type correction value is obtained by calculation according to the positional relationship between each of the ordinary receiver and the RTK receiver and the second-type correction value.
  • the positioning terminal is also used to obtain the positioning result of the RTK receiver through fusion calculation using the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver.
  • the positioning terminal is further configured to, according to the positional relationship between each of the ordinary receivers and the RTK receiver, convert the original The detection value is converted into a converted detection value of the RTK receiver, and the converted detection value of the RTK receiver is sent to the correction value calculation service station.
  • the correction value calculation service station is also used to receive the converted detection value of the RTK receiver.
  • the positioning terminal is also used to convert the original detection value of each common receiver into the converted detection value of the RTK receiver. In this case, the burden of the correction value calculation service station is lighter.
  • the positioning terminal is further configured to send the original sounding value of each common receiver to the correction value calculation service station.
  • the correction value calculation service station is also used to convert the original detection value of each ordinary receiver into the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver Conversion detection value.
  • the correction value calculation service station is further used to convert the original detection value of each of the ordinary receivers into the converted detection value of the RTK receiver.
  • the positioning terminal only needs to obtain the original probe information and send the original probe message to the correction value calculation service station, so the internal variation of the positioning terminal is small, Therefore, the setting of the positioning terminal is relatively simple.
  • the correction value calculation service station is also used to Each positional relationship between the ordinary receiver and the RTK receiver converts the second type correction value into the third type correction value, and sends the third type correction value to the positioning terminal .
  • the positioning terminal is also used to receive the third type of correction value.
  • the correction value calculation service station is not only used to obtain the second type correction value, but also used to convert the second type correction value into the third type correction value, and the positioning terminal After receiving the third-type correction value, it is only necessary to correct the original detection value of each of the ordinary receivers according to the third-type correction value. Therefore, in this embodiment, the positioning terminal performs fewer operations, and accordingly, the internal structure of the positioning terminal changes less.
  • the correction value calculation service station is also used to The second type of correction value is sent to the positioning terminal.
  • the positioning terminal is also used to receive the second-type correction value and convert the second-type correction value into the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the third type of correction value is used to send the second type correction value to the positioning terminal after acquiring the second type correction value.
  • the positioning terminal is used to receive the second-type correction value, convert the second-type correction value into the third-type correction value, and to each of the ordinary receivers according to the third-type correction value
  • the original detection value is corrected. Therefore, in this embodiment, since the correction value calculation service station does not need to perform the operation of converting the second type correction value into the third type correction value, the internal setting of the correction value calculation service station changes Smaller.
  • the positioning terminal is configured to send the original detection value of the RTK receiver A service station is calculated for the correction value.
  • the correction value calculation service station is used to receive the original detection value of the RTK receiver.
  • the correction value calculation service station is configured to use the first type of correction value Sent to the positioning terminal.
  • the positioning terminal is used to receive the first-type correction value.
  • the positioning terminal is specifically configured to utilize the correction of each of the ordinary receivers
  • the detection value is calculated based on the MRC positioning algorithm to obtain the solution position of each ordinary receiver, and the solution position of the geometric center of the regular N polygon is calculated according to the solution position of each of the ordinary receivers.
  • the positioning terminal is also specifically used to calculate the solution position of the RTK receiver based on the RTK positioning algorithm using the corrected detection value of the RTK receiver.
  • the positioning terminal is further specifically configured to use a probability model to fuse the calculation position of the geometric center of the regular N polygon and the calculation position of the RTK receiver to obtain the positioning of the RTK receiver result.
  • the positioning result of the RTK receiver is calculated based on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver. Since the RTK receiver is located at the geometric center of the regular N polygon, the fusion position of the geometric center of the regular N polygon and the solution position of the RTK receiver can be calculated more Accurate positioning results of the RTK receiver.
  • the carrier or pseudorange between the RTK receiver and each satellite detected by the RTK receiver is input to the neural network, and is obtained through training.
  • the RTK error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the first type of correction value obtained through the RTK error correction model is relatively accurate.
  • a relatively accurate correction detection value of the RTK receiver can be obtained.
  • the corrected detection value of the RTK receiver is used to calculate the positioning result of the RTK receiver, a relatively accurate positioning result can be obtained.
  • the MRC error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the second type of correction value obtained through the MRC error correction model is relatively accurate.
  • the present application provides another positioning method, which includes the following steps.
  • the real-time dynamic RTK receiver detects the satellite navigation system and obtains the first detection signal. It should be noted that the RTK receiver has at least the ability to execute an RTK positioning algorithm, and the number of RTK receivers is one.
  • the original detection value of the RTK receiver includes a carrier or a pseudo-range between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • Each of the N ordinary receivers detects the satellite navigation system to obtain a second detection signal.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the ordinary receiver has at least the ability to measure the pseudorange between the ordinary receiver and a satellite detected by the ordinary receiver and located in a satellite navigation system.
  • the positioning result of the RTK receiver is obtained.
  • the pseudo-range acquired by the satellite navigation system of the multiple common receiver pairs and the RTK receiver pair are required
  • the satellite navigation system detects and acquires the pseudorange or carrier wave. Since the acquisition of the pseudo-range depends on the analog signal and the acquisition of the carrier depends on the digital signal, in this embodiment, at least the plurality of common receivers detect the analog signal. It should be known that, compared with digital signals, analog signals have better robustness and anti-interference during propagation.
  • the N general receivers have a specific positional relationship (specifically, the N general receivers are located at N vertices of a regular N polygon). Since the setting of the N ordinary receivers can eliminate the error caused by the multipath effect to a certain extent, the positioning method provided in this embodiment can obtain a more accurate positioning result.
  • the fusion step specifically includes the following content.
  • the solution position of each of the ordinary receivers is calculated.
  • the solution position of the geometric center of the regular N polygon is calculated from the solution position of each of the ordinary receivers.
  • the calculated position of the RTK receiver is calculated.
  • a probability model is used to perform fusion calculation on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver to obtain the positioning result of the RTK receiver.
  • the positioning result of the RTK receiver is calculated based on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver. Since the RTK receiver is located at the geometric center of the regular N polygon, the fusion position of the geometric center of the regular N polygon and the solution position of the RTK receiver can be calculated more Accurate positioning results of the RTK receiver.
  • the present application provides a positioning terminal.
  • the positioning terminal includes a real-time dynamic RTK receiver, N ordinary receivers and a processor.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the RTK receiver has at least the ability to execute an RTK positioning algorithm.
  • the ordinary receiver has at least the ability to measure the pseudorange between the ordinary receiver and a satellite detected by the ordinary receiver and located in a satellite navigation system.
  • the RTK receiver is used to detect the satellite navigation system and obtain the first detection signal.
  • the processor is used to parse the first detection signal to obtain the original detection value of the RTK receiver.
  • the original detection value of the RTK receiver includes a carrier or a pseudo-range between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • each of the N common receivers is used to detect the satellite navigation system and obtain a second detection signal.
  • the processor is used to parse the second detection signal to obtain the original detection value of each ordinary receiver.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the processor is also used to obtain the positioning result of the RTK receiver through fusion calculation using the original detection value of each ordinary receiver and the original detection value of the RTK receiver.
  • the positioning terminal described in this embodiment is used to perform the positioning method described in the third aspect, for the beneficial effects of this embodiment, refer to the beneficial effects described above for the positioning method described in the third aspect.
  • the processor is specifically used for:
  • the calculated position of the RTK receiver is calculated. as well as
  • a probabilistic model is used to perform fusion calculation on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver to obtain the positioning result of the RTK receiver.
  • the present application provides a positioning method.
  • the method includes the following steps.
  • the real-time dynamic RTK receiver detects the satellite navigation system and obtains the first detection signal.
  • the RTK receiver has at least the ability to execute an RTK positioning algorithm, and the number of RTK receivers is one.
  • the original detection value of the RTK receiver includes a carrier or a pseudorange between the RTK receiver and each of the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • Each of the N ordinary receivers detects the satellite navigation system to obtain a second detection signal. It is worth noting that N is an integer greater than or equal to 3, the N ordinary receivers are located at N vertices of a regular N polygon, and the RTK receiver is located at the geometric center of the regular N polygon, the ordinary The receiver has at least the ability to measure the pseudorange between the ordinary receiver and the satellite detected by the ordinary receiver and located in a satellite navigation system.
  • the positioning result of the RTK receiver is obtained.
  • the corrected detection value of the RTK receiver is obtained by correcting the original detection value of the RTK receiver using the first type of correction value, and the first type of correction value is calculated by the correction value The correction value generated by the service station for the original detection value of the RTK receiver.
  • the corrected detection value of each of the ordinary receivers is obtained by correcting the original detection value of each of the ordinary receivers using a third type of correction value.
  • the third type of correction value is obtained by converting the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the second type of correction value is a correction value generated by the correction value calculation service station for the converted detection value of the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each ordinary receiver and the RTK receiver.
  • the positioning terminal included in the positioning system described in the foregoing second aspect may execute the positioning method described in this embodiment.
  • the positioning of the RTK receiver requires the use of pseudoranges detected and acquired by multiple satellites in the satellite navigation system of the multiple common receiver pairs, and the RTK The receiver detects and acquires pseudoranges or carrier waves of multiple satellites in the satellite navigation system. Since the acquisition of the pseudo-range depends on the analog signal and the acquisition of the carrier depends on the digital signal, in this embodiment, at least the plurality of common receivers detect the analog signal. It should be known that, compared with digital signals, analog signals have better robustness and anti-interference during propagation.
  • the N general receivers have a specific positional relationship (specifically, the N general receivers are located at N vertices of a regular N polygon). Since the setting of the N common receivers can eliminate the error caused by the multipath effect to a certain extent, the positioning method provided in this embodiment can be used to obtain more accurate positioning results.
  • the positioning method further includes: sending the original detection value of the RTK receiver to the correction value calculation service station, and receiving the correction value calculation service station The first type of correction value returned for the original detection value of the RTK receiver. And, the original detection value of the RTK receiver is corrected by using the first-type correction value to obtain the corrected detection value of the RTK receiver.
  • the corrected detection value of the RTK receiver is closer to the true value, so the location of the RTK receiver calculated using the corrected detection value of the RTK receiver As a result, it is more accurate. That is, by using the positioning terminal described in this embodiment, a more accurate positioning result can be obtained.
  • the method further includes: sending the original detection value of each of the ordinary receivers to the correction value calculation service station.
  • the conversion detection value of the machine is executed by the correction value calculation service station. Therefore, the positioning method provided in this embodiment can reduce the complexity of positioning the RTK receiver.
  • the method further includes: according to the positional relationship between each of the ordinary receiver and the RTK receiver, for each Converting the original detection value of the ordinary receiver to obtain the converted detection value of the RTK receiver; and sending the converted detection value of the RTK receiver to the correction value calculation service station.
  • the positioning method further includes the following steps. Receiving the second type of correction value returned by the correction value calculation service station. According to the positional relationship between each of the ordinary receiver and the RTK receiver, the second-type correction value is converted into the third-type correction value. And using the third type of correction value to correct the original detection value of each of the ordinary receivers to obtain the corrected detection value of each of the ordinary receivers.
  • the positioning method further includes the following steps. Receiving the third type of correction value returned by the correction value calculation service station. The original detection value of each of the ordinary receivers is corrected by using the third type of correction value to obtain the corrected detection value of each of the ordinary receivers.
  • the received third type correction value can be used to correct the original detection value of each of the ordinary receivers, and the second type correction value is converted into all
  • the third type of correction value is executed by the correction value calculation service station. Therefore, the positioning method provided in this embodiment can reduce the complexity of positioning the RTK receiver.
  • the step of fusion calculation specifically includes the following steps. Using the original detection value of each of the ordinary receivers, based on the multi-receiver constrained MRC positioning algorithm, the solution position of each ordinary receiver is calculated. The solution position of the geometric center of the regular N polygon is calculated according to the solution position of each of the ordinary receivers. Using the original detection value of the RTK receiver, based on the RTK positioning algorithm, the solution position of the RTK receiver is calculated. And, a probability model is used to perform fusion calculation on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver to obtain the positioning result of the RTK receiver.
  • the positioning result of the RTK receiver is calculated based on the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver. Since the RTK receiver is located at the geometric center of the regular N polygon, the fusion position of the geometric center of the regular N polygon and the solution position of the RTK receiver can be calculated more Accurate positioning results of the RTK receiver.
  • the present application provides a positioning terminal.
  • the positioning terminal includes a real-time dynamic RTK receiver, N ordinary receivers, and a processor.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the RTK receiver has at least the ability to execute the RTK positioning algorithm.
  • the general receiver has at least the ability to measure the pseudo-range between the general receiver and the satellite detected by the general receiver and located in the satellite navigation system.
  • the RTK receiver is used to detect the satellite navigation system and acquire the first detection signal.
  • the processor is used to parse the first detection signal to obtain the original detection value of the RTK receiver.
  • the original detection value of the RTK receiver includes a carrier or a pseudo-range between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • Each of the N common receivers is used to detect the satellite navigation system and obtain a second detection signal.
  • the processor is used to parse the second detection signal to obtain the original detection value of each ordinary receiver. It is worth noting that the original detection value of the ordinary receiver includes the pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the processor is also used to obtain the positioning result of the RTK receiver through fusion calculation using the corrected detection value of each common receiver and the corrected detection value of the RTK receiver.
  • the corrected detection value of each of the ordinary receivers is obtained by correcting the original detection value of each of the common receivers using the third type of correction value.
  • the third type of correction value is obtained by converting the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the second type of correction value is a correction value generated by the correction value calculation service station for the conversion detection value of the RTK receiver.
  • the conversion detection value of the RTK receiver is based on each of the ordinary receiver and the RTK receiver.
  • the position relationship of is obtained by converting the original detection value of each of the ordinary receivers.
  • the corrected detection value of the RTK receiver is obtained by correcting the original detection value of the RTK receiver using the first-type correction value.
  • the first type of correction value is a correction value generated by the correction value calculation service station for the original detection value of the RTK receiver.
  • the positioning terminal provided in this embodiment can perform the positioning method described in the fifth aspect. Therefore, for the beneficial effects of the positioning terminal provided in this embodiment, refer to the beneficial effects of the positioning method described in the fifth aspect , No more details here.
  • the positioning terminal further includes a transceiver.
  • the transceiver is used to send the original detection value of the RTK receiver to the correction value calculation service station, and receive the first value returned by the correction value calculation service station for the original detection value of the RTK receiver A type of correction value.
  • the processor is further used to correct the original detection value of the RTK receiver by using the first-type correction value to obtain the corrected detection value of the RTK receiver.
  • the positioning terminal provided in this embodiment can execute the positioning method described in the first possible implementation manner of the fifth aspect. Therefore, for the beneficial effects of the positioning terminal provided in this embodiment, refer to the first possible implementation of the fifth aspect. The beneficial effects of the positioning method described in this manner will not be repeated here.
  • the transceiver is further configured to send the original detection value of each common receiver to the correction value calculation service station.
  • the positioning terminal provided in this embodiment can perform the positioning method described in the second possible implementation manner of the fifth aspect. Therefore, for the beneficial effects of the positioning terminal provided in this embodiment, refer to the second possible implementation of the fifth aspect. The beneficial effects of the positioning method described in this manner will not be repeated here.
  • the processor is further configured to convert each receiver according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • a raw detection value of the ordinary receiver is converted into a converted detection value of the RTK receiver.
  • the transceiver is also used to send the converted detection value of the RTK receiver to the correction value calculation service station.
  • the transceiver is further configured to receive the third type of correction returned by the correction value calculation service station value.
  • the processor is further used to correct the original detection value of each of the ordinary receivers by using the third type of correction value to obtain the corrected detection value of each of the ordinary receivers.
  • the positioning terminal provided in this embodiment can perform the positioning method described in the fifth possible implementation manner of the fifth aspect. Therefore, for the beneficial effects of the positioning terminal provided in this embodiment, refer to the fifth possible implementation of the fifth aspect. The beneficial effects of the positioning method described in this manner will not be repeated here.
  • the transceiver is further configured to receive the second type of correction returned by the correction value calculation service station value.
  • the processor is further configured to convert the second-type correction value to obtain the third-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the processor is further used to correct the original detection value of each of the ordinary receivers by using the third type of correction value to obtain the corrected detection value of each of the ordinary receivers.
  • the processor is specifically configured to use each of the ordinary receiving The original detection value of the machine, based on the multi-receiver constrained MRC positioning algorithm, calculates the solution position of each ordinary receiver, and calculates the geometric center of the regular N polygon according to the solution position of each ordinary receiver 'S solution location.
  • the processor is further specifically used to calculate the solution position of the RTK receiver based on the RTK positioning algorithm using the original detection value of the RTK receiver.
  • the processor is further specifically configured to use a probability model to fuse the calculation position of the geometric center of the regular N polygon with the calculation position of the RTK receiver to obtain the positioning of the RTK receiver result.
  • the positioning terminal provided in this embodiment can perform the positioning method described in the sixth possible implementation manner of the fifth aspect. Therefore, for the beneficial effects of the positioning terminal provided in this embodiment, refer to the sixth possible implementation of the fifth aspect. The beneficial effects of the positioning method described in this manner will not be repeated here.
  • the present application provides a positioning method.
  • the positioning method includes at least the following steps.
  • the original detection value of the real-time dynamic RTK receiver is input into the RTK error correction model, and the first type of correction value is obtained through calculation.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite in a plurality of satellites of a satellite navigation system detected by the RTK receiver.
  • the converted detection value of the RTK receiver is input into a multi-receiver constrained MRC error correction model, and a second type of correction value is obtained through calculation, so that the positioning terminal can compare the RTK receiver with the first type of correction value
  • the original detection value of is corrected to obtain the corrected detection value of the RTK receiver
  • the original detection value of each common receiver is corrected according to the third type of correction value to obtain the corrected detection value of each common receiver, and use
  • the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver are calculated by fusion to obtain the positioning result of the RTK receiver.
  • the third type of correction value is obtained by converting the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the correction value calculation service station included in the positioning system described in the foregoing second aspect may execute the positioning method described in this embodiment.
  • the RTK error correction model and the MRC error correction model need to be established in advance.
  • the RTK error correction model is used to generate the first correction value that corrects the original detection value of the RTK receiver
  • the MRC error correction model is used to generate the second correction value
  • the first After the second correction value is converted into the third correction value, it is used to correct the original detection value of each of the ordinary receivers.
  • the original detection value of the RTK receiver and the original detection value of each of the ordinary receivers are used for calculation after being corrected, because the corrected detection value is closer to the true Value, therefore when the RTK receiver is positioned using the positioning method provided in this embodiment, a higher-precision positioning result can be obtained.
  • the positioning method further includes: receiving the original detection value of the RTK receiver, and sending the first-type correction value to the positioning terminal.
  • the positioning method further includes: receiving the converted detection value of the RTK receiver.
  • the positioning method provided in this embodiment the conversion detection value of the RTK receiver is directly received, so there is no need to perform conversion detection of converting the original detection value of each ordinary receiver into the RTK receiver Value operations. Therefore, the positioning method provided in this embodiment is relatively simple to execute.
  • the positioning method further includes: receiving the original detection value of each of the ordinary receivers, and according to each of the ordinary receptions The positional relationship between the machine and the RTK receiver, converting the original detection value of each ordinary receiver into the converted detection value of the RTK receiver.
  • the original detection value of each of the ordinary receivers also needs to be converted into the converted detection value of the RTK receiver. Therefore, the positioning method provided in this embodiment is relatively powerful.
  • the positioning method further includes: sending the second-type correction value to the positioning terminal, so that The positioning terminal converts the second-type correction value into a third-type correction value according to each positional relationship between the ordinary receiver and the RTK receiver.
  • the positioning method provided in this embodiment after the second-type correction value is generated, the second-type correction value is directly sent to the positioning terminal, that is, there is no need to perform the second-type correction value Operation converted into the third type of correction value. Therefore, the positioning method provided in this embodiment is relatively simple to execute.
  • the positioning method further includes: according to the positional relationship between each of the ordinary receiver and the RTK receiver , Convert the second-type correction value into a third-type correction value, and send the third-type correction value to the positioning terminal.
  • the positioning method provided in this embodiment after generating the second-type correction value, the second-type correction value needs to be converted into the third-type correction value. Therefore, the positioning method provided in this embodiment The function is more powerful.
  • the RTK error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the first type of correction value obtained through the RTK error correction model is relatively accurate, and After the original detection value of the RTK receiver is corrected by using the first-type correction value, a relatively accurate correction detection value of the RTK receiver can be obtained. Further, when the corrected detection value of the RTK receiver is used to calculate the positioning result of the RTK receiver, a relatively accurate positioning result can be obtained.
  • the MRC error correction model is obtained by constructing a neural network in advance and then using big data training. Therefore, the second type of correction value obtained through the MRC error correction model is relatively accurate. In this way, after the second-type correction value is converted into the third-type correction value, and the original detection value of each of the ordinary receivers is corrected by using the third-type correction value, a relatively accurate The corrected detection value of the ordinary receiver. Further, when the correction detection value of each of the ordinary receivers is used to calculate the positioning result of the RTK receiver, a relatively accurate positioning result can be obtained.
  • the present application provides a correction value calculation service station (which may also be referred to simply as a service station).
  • the service station includes a processor and a memory, wherein the memory is used to store a real-time dynamic RTK error correction model and a multi-receiver constrained MRC error correction model.
  • the processor is used for:
  • the converted detection value of the RTK receiver is input into the MRC error correction model, and a second type of correction value is obtained by calculation, so that the positioning terminal corrects the original detection value of the RTK receiver according to the first type of correction value ,
  • a second type of correction value is obtained by calculation, so that the positioning terminal corrects the original detection value of the RTK receiver according to the first type of correction value .
  • the corrected detection value of the machine and the corrected detection value of the RTK receiver are calculated by fusion to obtain the positioning result of the RTK receiver.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite in a plurality of satellites of a satellite navigation system detected by the RTK receiver.
  • the third-type correction value is obtained by converting the second-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the server provided in this embodiment can execute the positioning method described in the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing description of the beneficial effects of the positioning method described in the seventh aspect.
  • the service station further includes a transceiver.
  • the transceiver is used to receive the original detection value of the RTK receiver and send the first-type correction value to the positioning terminal.
  • the transceiver is further configured to receive the converted detection value of the RTK receiver.
  • the server provided in this embodiment can execute the positioning method described in the second possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the previous second possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the transceiver is further configured to receive the original detection value of each of the ordinary receivers.
  • the processor is also used to convert the original detection value of each ordinary receiver into the converted detection of the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver value.
  • the server provided in this embodiment can perform the positioning method described in the third possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, reference may be made to the third possibility in the seventh aspect Description of the beneficial effects of the positioning method described in the embodiments.
  • the transceiver is further configured to send the second-type correction value to the positioning terminal, to Causing the positioning terminal to convert the second-type correction value into a third-type correction value according to each positional relationship between the ordinary receiver and the RTK receiver.
  • the server provided in this embodiment can perform the positioning method described in the fourth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing fourth possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the processor is further configured to determine the location of each of the ordinary receiver and the RTK receiver Relationship, the second type of correction value is converted into a third type of correction value.
  • the transceiver is also used to send the third type of correction value to the positioning terminal.
  • the server provided in this embodiment can execute the positioning method described in the fifth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the fifth possibility in the seventh aspect above. Description of the beneficial effects of the positioning method described in the embodiments.
  • the server provided in this embodiment can execute the positioning method described in the sixth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing sixth possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the server provided in this embodiment can execute the positioning method described in the seventh possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing seventh possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the present application provides another correction value calculation service station (may also be referred to as a "service station").
  • a storage unit is used to store a real-time dynamic RTK error correction model and a multi-receiver constrained MRC error correction model.
  • the first calculation unit is configured to input the original detection value of the RTK receiver into the RTK error correction model, and obtain the first type of correction value through calculation.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite in a plurality of satellites of a satellite navigation system detected by the RTK receiver.
  • a second calculation unit configured to input the converted detection value of the RTK receiver into the MRC error correction model, and obtain a second type of correction value through calculation, so that the positioning terminal can adjust the value according to the first type of correction value
  • the original detection value of the RTK receiver is corrected to obtain the corrected detection value of the RTK receiver
  • the original detection value of each common receiver is corrected according to the third type of correction value to obtain the corrected detection value of each common receiver
  • use the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver to obtain the positioning result of the RTK receiver through fusion calculation.
  • the third-type correction value is obtained by converting the second-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the server provided in this embodiment can execute the positioning method described in the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing description of the beneficial effects of the positioning method described in the seventh aspect.
  • the service station further includes a transceiver unit.
  • the transceiver unit is used to receive the original detection value of the RTK receiver and send the first-type correction value to the positioning terminal.
  • the transceiver unit is further configured to receive the converted detection value of the RTK receiver.
  • the server provided in this embodiment can execute the positioning method described in the second possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the previous second possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the correction value calculation service station further includes a first conversion unit.
  • the first conversion unit is used for receiving the original detection value of each of the ordinary receivers, and according to the positional relationship between each of the ordinary receivers and the RTK receiver, the original The detection value is converted into the converted detection value of the RTK receiver.
  • the server provided in this embodiment can execute the positioning method described in the third possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, reference may be made to the third possibility in the seventh aspect Description of the beneficial effects of the positioning method described in the embodiments.
  • the transceiver unit is further configured to send the second-type correction value to the positioning terminal, to Causing the positioning terminal to convert the second-type correction value into the third-type correction value according to each positional relationship between the ordinary receiver and the RTK receiver.
  • the server provided in this embodiment can perform the positioning method described in the fourth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing fourth possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the correction value calculation service station further includes a second conversion unit.
  • the second conversion unit is configured to convert the second-type correction value into a third-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the transceiver unit is also used to send the third type of correction value to the positioning terminal.
  • the server provided in this embodiment can execute the positioning method described in the fifth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the fifth possibility in the seventh aspect above. Description of the beneficial effects of the positioning method described in the embodiments.
  • the server provided in this embodiment can execute the positioning method described in the sixth possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the foregoing sixth possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • the server provided in this embodiment can execute the positioning method described in the seventh possible implementation manner of the seventh aspect. Therefore, for the beneficial effects of the server described in this embodiment, refer to the previous seventh possibility of the seventh aspect. Description of the beneficial effects of the positioning method described in the embodiments.
  • FIG. 1 is an application scenario diagram of a positioning method provided by this application.
  • FIG. 2 is a schematic structural diagram of a positioning terminal involved in a positioning method provided by this application.
  • FIG. 3 is a schematic diagram of the positioning method provided by the present application.
  • FIG. 4A is a schematic diagram of a positioning method according to an embodiment of the present application.
  • 4B is a schematic diagram of a positioning method according to another embodiment of the present application.
  • 4C is a schematic diagram of a positioning method according to still another embodiment of the present application.
  • 4D is a schematic diagram of a positioning method according to still another embodiment of the present application.
  • 5A is a probability distribution P1 of the position of the RTK receiver involved in the positioning method provided by the present application.
  • 5B is a probability distribution P2 of the position of the RTK receiver involved in the positioning method provided by the present application.
  • 5C is a probability distribution P3 of the position of the RTK receiver involved in the positioning method provided by the present application.
  • FIG. 6 is a schematic diagram of a positioning system provided by the present application.
  • FIG. 7 is a schematic flowchart of another positioning method provided by the present application.
  • FIG. 8 is a schematic diagram of a positioning terminal provided by this application.
  • FIG. 9 is a schematic flowchart of another positioning method provided by the present application.
  • FIG. 10 is a schematic diagram of a correction value calculation service station provided by the present application.
  • FIG. 11A is a schematic diagram of another correction value calculation service station provided by the present application.
  • 11B is a schematic diagram of another correction value calculation service station provided by the present application.
  • 11C is a schematic diagram of another correction value calculation service station provided by the present application.
  • FIG. 11D is a schematic diagram of yet another correction value calculation service station provided by the present application.
  • 12A is a schematic flowchart of another positioning method of the present application.
  • FIG. 12B is a more specific representation of the flowchart of the positioning method shown in FIG. 12A.
  • FIG. 13 is a schematic diagram of another positioning terminal provided by this application.
  • the reference station refers to the long-term continuous detection of satellite navigation signals, and the communication facility transmits the detection data to the ground fixed detection station in real time or regularly.
  • a rover is a detection station set up by a receiver that moves within a certain range of a reference station.
  • Multi-Receiver Constraints (MRC) technology refers to the technology of using multiple receivers for positioning. This technology uses the geometric constraints of the positions of multiple receivers to locate the positioning terminal.
  • Global Positioning System also known as global satellite positioning system, or satellite navigation system
  • GPS Global Positioning System
  • satellite navigation system is a mid-range circular orbit satellite navigation system developed and maintained by the US Department of Defense. It can provide accurate positioning, velocity measurement and high-precision standard time for most parts of the earth's surface (98%). In this application, the satellite navigation system will be mainly used for description.
  • Pseudorange refers to the approximate distance between the receiver and the satellite during satellite positioning. Assuming that the satellite's clock and the receiver's clock are kept strictly synchronized, the propagation time of the signal can be obtained based on the time when the satellite transmits the signal and the time when the receiver receives the signal, and then multiplying the propagation speed can obtain distance. However, there is inevitably a clock difference between the two clocks, and the signal is also affected by atmospheric refraction and other factors during the propagation process, so the distance directly measured by this method is not equal to the real distance from the satellite to the receiver, so this This distance is called a pseudorange.
  • the carrier wave is a radio wave of a specific frequency. It can broadcast the modulated pseudo code and data code in the form of a sine wave, so it can be regarded as the bottom layer of the GPS star signal.
  • Each satellite in GPS uses two different frequency carrier frequency bands: L1 carrier frequency band and L2 carrier frequency band. Among them, the L1 carrier frequency band is civilian, and the L2 carrier frequency band is military. The frequency f1 of the L1 carrier frequency band is 1575.42 MHz.
  • the solution position refers to the position determined by calculation.
  • the solution position of each ordinary receiver refers to Using the corrected detection value of each of the ordinary receivers, calculation is performed based on the MRC positioning algorithm to determine the position of each ordinary receiver.
  • the positioning technology provided by the present application is to make the solution position of the RTK receiver closer to the actual physical position of the RTK receiver relative to the prior art.
  • FIG. 1 shows an application scenario of the high-precision positioning method provided by the present application.
  • the positioning terminal is set on a car, or the positioning terminal is a vehicle-mounted device.
  • the positioning terminal When the positioning terminal is installed on a car, specifically, the positioning terminal may be installed on the roof of the vehicle, or may be installed in other places where positioning is needed.
  • the positioning terminal may specifically be a smart phone.
  • the application scenario may be an urban environment including tall buildings and big trees, and a car provided with a positioning terminal is driven on a highway.
  • FIG. 1 it is also easy to see that there is a communication connection between the positioning terminal and the service station.
  • there may be other relay network equipment such as a switch between the positioning terminal and the service station, that is, the communication between the positioning terminal and the service station follows existing communication protocols and communication methods.
  • the positioning terminal can detect multiple satellites (four are shown in FIG. 1) located in the GPS. It should be known that GPS is located above the atmosphere.
  • the positioning method provided by the present application includes the following steps.
  • Step A The positioning terminal detects the satellite navigation system to obtain the original detection message.
  • the positioning terminal includes multiple receivers, and the multiple receivers include N ordinary receivers and one RTK receiver, where N is an integer greater than or equal to 3.
  • the N ordinary receivers are located at N vertices of a regular N polygon (or rather, the geometric topology of the N ordinary receivers is a regular N polygon), and the RTK receiver is located at the geometric center of the regular N polygon.
  • the ordinary receiver has at least the ability to measure the pseudo-range between the ordinary receiver and the satellite. It should be known that the satellite is located in the satellite navigation system and is detected by the ordinary receiver.
  • the RTK receiver refers to a receiver having the ability to execute RTK algorithms.
  • the positioning terminal includes three ordinary receivers and one RTK receiver.
  • the three ordinary receivers are located at three vertices of a regular triangle, and the RTK receiver is located at the center of the regular triangle.
  • the original sounding message includes the number of multiple receivers located in the positioning terminal and the original sounding value of each receiver in the multiple receivers. If the receiver is an ordinary receiver, the original detection value of the receiver includes the pseudorange between the receiver and each of the satellites detected by the receiver. If the receiver is an RTK receiver, the original detection value of the receiver includes the carrier between the receiver and each of the satellites detected by the receiver. It should be known that both the multiple satellites detected by the ordinary receiver and the multiple satellites detected by the RTK receiver are located in the satellite navigation system. It is worth noting that, in general, the original detection value of the RTK receiver also includes the pseudorange between the RTK receiver and each of the satellites detected by the RTK receiver.
  • the positioning terminal cannot use the carrier to calculate the solved position of the RTK receiver, but the positioning terminal can also use the pseudorange to calculate the solved position of the RTK receiver, although the accuracy of the calculated position using the pseudorange is lower than the calculated position using the carrier.
  • the ordinary receiver calculates the pseudorange between the ordinary receiver and the satellite detected by the ordinary receiver through the ranging code.
  • the RTK receiver detects the pseudorange between the RTK receiver and the satellite detected by the RTK receiver through the carrier signal.
  • the positioning method further includes the positioning terminal
  • the original detection message is reported to the correction value calculation service station (step B1).
  • the positioning terminal reports the original detection message to the correction value calculation service station, which specifically means that the positioning terminal organizes the original detection message into a message and reports it to the correction value calculation service station for requesting correction news. Therefore, correspondingly, the correction value calculation service station will receive a message with a uniform format.
  • the header of the message may include at least a field for indicating the following information: the correction value is calculated as the number of the service station, and is located in the positioning terminal. The number of machines, the original detection value of the RTK receiver, and the original detection value of each of the ordinary receivers.
  • the header of the packet may also include fields for indicating messages such as message number, GNSS (Global Navigation, Satellite), and GNSS synchronization flag.
  • the message number is used to indicate which positioning terminal sends the number of correction message requests. According to the message number, on the one hand, the message between the positioning terminal and the correction value calculation service station can be synchronized, on the other hand, the correction value calculation service station can also determine the positioning terminal that sent the message according to the message number.
  • the GNSS epoch is used to indicate the position of the satellite detected by each receiver.
  • the GNSS synchronization flag is used to indicate whether multiple satellites detected by each receiver in multiple receivers are detected under the same GNSS epoch. Optionally, if the GNSS synchronization flag is equal to 1, it means that multiple satellites detected by each receiver in multiple receivers are detected under the same GNSS epoch.
  • step B3 occurs after step B1 and before step B4.
  • Step B2 includes step B2-1, step B2-2, and step B2-3 (that is, step B2-1 to step B2-3).
  • Step B4 includes step B4-1, step B4-2, step B4-3, and step B4-4 (that is, step B4-1 to step B4-4). It should be noted that the occurrence times of steps B2-1 to B2-3 are in order, and this point can also be reflected by the logical relationship of steps B2-1 to B2-3.
  • Step B2-1 to Step B2-3 occur in sequence according to the arrangement order of Step B2-1, Step B2-2 and Step B2-3.
  • the occurrence times of steps B4-1 to B4-5 are also in order, and this can also be reflected by the logical relationship of steps B4-1 to B4-5.
  • step B4-1 to step B4-5 occur sequentially in the order of step B4-1, step B4-2, step B4-3, step B4-4, and step B4-5.
  • step B2 and step B3 there is no specific order for the occurrence time of step B2 and step B3. Further, there is no specific order for the occurrence time of step B2 and step B4. They may occur in the order shown in FIG. 4A and FIG. 4B, that is, step B2 is performed before step B4, or step B4 may be performed before step B2, and more likely, the part included in step B2 Steps and some of the steps included in step B4 occur at the same time.
  • the other steps included in step B2 and the other steps included in step B4 are interspersed (that is, they do not occur at the same time and have a sequential order).
  • step B2-2 and step B4-4 occur simultaneously.
  • step B2-2 and step B4-3 occur simultaneously.
  • step B2 occurs after step B1 and before step C. It can also be determined that step B4 occurs after step B3 and before step C.
  • the positioning method further includes the following steps.
  • the positioning terminal reports the original detection value of the RTK receiver to the correction value calculation service station.
  • the positioning terminal converts the original detection value of each ordinary receiver into a converted detection value of the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver.
  • the positioning terminal reports the converted detection value of the RTK receiver to the correction value calculation service station.
  • the positioning terminal reports to the correction value calculation service station is the original detection value of the RTK receiver and the converted detection value of the RTK receiver. Similar to the previous embodiment, in this embodiment, the positioning terminal also organizes the original detection value of the RTK receiver and the converted detection value of the RTK receiver into a message, which is reported to the correction value calculation Service station, used to request correction messages. Correspondingly, the correction value calculation service station will also receive a message with a uniform format.
  • the packet header described in this embodiment includes The field of the converted detection value of the receiver is not the field of the original detection value of each of the ordinary receivers.
  • other fields included in the packet header described in the foregoing embodiment such as a field for indicating the number of the correction value calculation service station, a field for indicating the number of receivers included in the positioning terminal, and The fields indicating the original detection value of the RTK receiver can be included in the packet header described in this embodiment.
  • the original detection value of each ordinary receiver includes the pseudorange between the ordinary receiver and each satellite detected by the ordinary receiver.
  • the conversion detection value of the RTK receiver includes the pseudorange between the RTK receiver and each satellite detected by the corresponding ordinary receiver.
  • the original detection value of the ordinary receiver 1 includes the pseudo range between the ordinary receiver 1 and each of the N1 satellites detected by it, and the RTK receiver’s original detection value corresponding to the ordinary receiver 1’s original detection value
  • the converted detection value includes the pseudorange between each of the N1 satellites detected by the RTK receiver and the ordinary receiver 1.
  • the positioning terminal includes N ordinary receivers
  • ordinary receiver 1 detects N1 satellites
  • ordinary receiver 2 detects N2 satellites
  • ordinary receiver N detects Nn satellites
  • the conversion detection values of all RTK receivers sent by the positioning terminal to the correction value calculation service station should include N1+N2+...+Nn pseudoranges.
  • step B2 and step B4 in addition to step B1 and step B3.
  • the definition of step B2 can refer to the previous definition of step B2 in FIGS. 4A and 4B
  • the definition of step B4 can refer to the previous definition of FIGS. 4A and 4B.
  • the limitation of step B4 is not repeated here.
  • step B1 and step B3 need to be explained.
  • step B3 includes step B3-1 and step B3-2. It should be known that step B2 occurs after step B1 and before step C, and step B4 occurs after step B3 and between step C, which can be determined by the logical relationship between related steps.
  • step B3-1 is earlier than the occurrence time of step B3-2, which can also be determined by the logical relationship between these two steps.
  • the time at which Step B2 and Step B3 occur is not particularly limited.
  • the occurrence time of step 1 and step 3 is not particularly limited.
  • Step B1 and step B3-1 may occur at the same time or not at the same time.
  • the positioning terminal organizes the original detection value of the RTK receiver and the converted detection value of the RTK receiver into a message and reports it to the correction value calculation service station, then it should be known that the step B1 and step B3-2 occur at the same time, and both step B2 and step B4 are executed after receiving the message.
  • the execution subject is the correction value calculation service station, and in the second embodiment, the execution subject is the positioning terminal.
  • Step B2-1 The correction value calculation service station inputs the original detection value of the RTK receiver into the RTK error correction model, and obtains the first type of correction value through calculation.
  • Step B2-3. The positioning terminal corrects the original detection value of the RTK receiver by using the first-type correction value to obtain the corrected detection value of the RTK receiver.
  • step B2-1 the correction value calculation service station needs to receive the original detection value of the RTK receiver. Specifically, as shown in FIGS. 4A and 4B, after the positioning terminal reports the original probe message to the correction value calculation service station (step B1), since the original probe message includes the RTK receiver The original detection value of, so the correction value calculation service station can obtain the original detection value of the RTK receiver from the original detection message.
  • the correction value calculation The service station will obtain the original detection value of the RTK receiver.
  • the positioning method described in this embodiment further includes: the correction value calculation service station divides the first category The correction value is sent to the positioning terminal (step B2-2).
  • the number of correction values included in the first type of correction value is equal to the number of carrier waves or pseudoranges included in the original detection value of the RTK receiver (or the number of satellites detected by the RTK receiver).
  • the correction value included in the first type of correction value is one-to-one with the carrier or pseudo range included in the original detection value of the RTK receiver.
  • the RTK receiver detects M satellites
  • the original detection value of the RTK receiver includes the carrier or pseudorange between the RTK receiver and each of the M satellites. Therefore, the original detection of the RTK receiver
  • the value includes M carriers or pseudoranges.
  • the first type of correction value includes M correction values, and the M correction values are one-to-one with the M carrier waves or pseudoranges.
  • Step B4-1 The correction value calculation service station inputs the converted detection value of the RTK receiver into the MRC error correction model, and obtains the second type of correction value through calculation.
  • Step B4-4 The positioning terminal corrects the original detection value of each of the ordinary receivers using a third type of correction value to obtain the corrected detection value of each ordinary receiver.
  • the positioning method further includes:
  • Step B3 The correction value calculation service station converts the original detection value of each ordinary receiver into the converted detection of the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver value.
  • the positioning method further includes:
  • Step B3-1 The positioning terminal converts the original detection value of each ordinary receiver into the converted detection value of the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver .
  • Step B3-2 The positioning terminal reports the converted detection value of the RTK receiver to the correction value calculation service station.
  • the difference between the third embodiment and the fourth embodiment lies in whether the execution subject that converts the original detection value of each of the ordinary receivers into the converted detection value of the RTK receiver is the correction value calculation service station or all Describe the positioning terminal.
  • the execution subject is the correction value calculation service station.
  • the execution subject is the positioning terminal.
  • the positioning method further includes:
  • Step B4-2 The correction value calculation service station converts the second type correction value into the third type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • Step B4-3 The correction value calculation service station sends the third type of correction value to the positioning terminal.
  • the positioning method further includes:
  • Step B4-2 The correction value calculation service station sends the second type of correction value to the positioning terminal.
  • Step B4-3 The positioning terminal converts the second-type correction value into the third-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the difference between the fifth embodiment and the sixth embodiment is whether the execution subject that converts the second-type correction value into the third-type correction value is the correction value calculation service station or the positioning terminal.
  • the execution subject is the correction value calculation service station.
  • the execution subject is the positioning terminal.
  • the original detection value of ordinary receiver 1 refers to the pseudorange detected between ordinary receiver 1 and each of the N1 satellites. It can be seen that ordinary receiver 1 The original detection value of includes N1 pseudoranges detected by the ordinary receiver 1. Then, when the original detection value of the ordinary receiver 1 is converted into the converted detection value of the RTK receiver, N1 pseudoranges detected by the ordinary receiver 1 are converted into the converted detection value of the RTK receiver. It is worth noting that the conversion detection value of the RTK receiver corresponding to the original detection value of the ordinary receiver 1 includes N1 conversion values, and the N1 conversion values are the same as the N1 pseudoranges detected by the ordinary receiver 1 Right one.
  • the conversion detection value of the RTK receiver corresponding to the original detection value of the ordinary receiver 1 is obtained, and the conversion detection value of the RTK receiver corresponding to the original detection value of the ordinary receiver 1 is input to After the MRC error correction model, the corresponding second-type correction value will be obtained.
  • the corresponding second-type correction value also includes N1 correction values, and the N1 correction values are one-to-one with the aforementioned N1 conversion values. Then, according to the positional relationship between the ordinary receiver 1 and the RTK receiver (or the relationship between the coordinates of the ordinary receiver 1 and the coordinates of the RTK receiver), the corresponding second-type correction value is converted into a corresponding The third type of correction value.
  • the corresponding third-type correction value described here is the third-type correction value corresponding to the original detection value of the ordinary receiver 1. It is worth noting that the corresponding third type of correction value also includes N1 correction values, and these N1 correction values are one-to-one with the N1 pseudoranges detected by the ordinary receiver 1, and each correction value It is used by the positioning terminal to correct the corresponding one of the N1 pseudoranges detected by the ordinary receiver 1.
  • the aforementioned relevant regulations for the ordinary receiver 1 are followed. Specifically, in the case where the number of satellites detected by the ordinary receiver N1 is N1, the number of detection values included in the original detection value of the ordinary receiver 1 is N1, and the N1 detected values are detected by the ordinary receiver N1 The N1 satellites are one-to-one.
  • the conversion detection value of the RTK receiver corresponding to the original detection value of the ordinary receiver N1 also includes the number of conversion values as N1, and the N1 The conversion value is also one-to-one with the N1 pseudoranges.
  • the second type of correction value corresponding to the conversion detection value of the corresponding RTK receiver (also referred to as “corresponding second type of correction value”) includes the number of correction values also N1, and the corresponding The N1 correction values included in the second type of correction values are also one-to-one with the N1 conversion values.
  • the third type of correction value corresponding to the corresponding second type of correction value (also referred to as “corresponding third type of correction value”) includes the number of correction values also N1, and the corresponding The N1 correction values included in the third type of correction value are one-to-one with the N1 correction values included in the corresponding second type of correction value.
  • the N1 correction values included in the corresponding third type of correction value and the N1 detection values included in the original detection value of the ordinary receiver 1 are one-to-one, and each correction value It is used to correct the corresponding detection value to obtain the corrected detection value (also called "corrected detection value").
  • the detection value included in the original detection value of the ordinary receiver 1 may be a pseudo range, and correspondingly, each correction value included in the corresponding third type of correction value is used to correct the corresponding pseudo The distance is corrected to obtain the corrected pseudo-range.
  • the correction value calculation service station when the correction value calculation service station returns the first type correction value and the third type correction value to the positioning terminal, the first type correction value and all The third type of correction value is returned to the positioning terminal in the form of a message.
  • the correction value calculation service station when the correction value calculation service station returns the first-type correction value and the second-type correction value to the positioning terminal, it may also The correction value and the second type of correction value are returned to the positioning terminal in the form of a message.
  • the message may include at least a field representing the following information: the number of each receiver, the number of satellites detected by each receiver, and the original detection value for each receiver. Correction value for each detection value. It should be known that there is a correspondence between the receiver number, the satellite number, and the correction value of the detection value.
  • step B2-1 and step B2-3 are located in step B2, and step B4-1 and step B4-4 are located in step B4. It should be noted that the occurrence time of step B2-1 and step B2-3 has a sequence, in which step B2-1 is earlier than step B2-3, according to the logical relationship between these two steps Can be sure.
  • step B4-1 occurs earlier than step B4-4. But for step B2 and step B4, first of all, their groups contain multiple steps, and secondly, there is no specific time limit for their occurrence time. For example, step B2-1 may occur earlier than step B4-1, or may occur later than step B4-1.
  • the correction value calculation service station may be a reference station, a data server, a cloud server, or the like.
  • the correction value calculation service station is a reference station, and before performing the positioning method described in the present application, it is necessary to construct the RTK error correction model (or MRC) on the reference station in advance Error correction model). Since the reference station can only interact with positioning terminals located within the coverage area of the reference station, the RTK error correction model (or the MRC error correction model) constructed on the reference station is a small-range model.
  • the correction value calculation service station is a data server.
  • the data server has 3 to 5 reference stations within the coverage.
  • the wide-area RTK error calculation model is that the data server obtains the RTK error calculation model of each reference station located within the coverage of the data server, and calculates the RTK error model based on each reference station. owned.
  • the wide-area MRC error calculation model is obtained by the data server acquiring the MRC error calculation model of each reference station within the coverage of the data server, and according to the MRC error calculation model of each reference station .
  • the positioning terminal when the positioning terminal sends a message to the data server, and when the data server sends a message to the positioning terminal, it can pass through a data center, a switch, or other relay communication equipment. That is, when the positioning terminal and the data server perform message interaction, the existing communication network and communication method can be used.
  • the correction value calculation service station is a cloud server.
  • the cloud server covers a very wide range.
  • the unified RTK error calculation model is that the cloud server obtains the wide-area RTK error calculation model of each data server within the coverage of the cloud server, and calculates the wide-area RTK error calculation model according to each data server , Calculated.
  • the unified MRC error calculation model is that the cloud server obtains the wide-area MRC error calculation model of each data server within the coverage of the cloud server, and according to the wide-area MRC error calculation model of each data server, through Calculated. It should be known that when the positioning terminal and the cloud server exchange messages, the existing communication network and communication method can also be used.
  • Step C The positioning terminal uses the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver to obtain the positioning result of the RTK receiver through fusion calculation.
  • step B2-3 and step B4-4 or at the positioning terminal, the corrected detection value of the RTK receiver and the corrected detection of each of the ordinary receivers are obtained at the positioning terminal After the value, the positioning terminal will perform step C.
  • the solution position of the RTK receiver based on the RTK positioning algorithm (which may be referred to as the solution position of the RTK receiver for short) can be obtained.
  • the corrected detection value of each common receiver based on the MRC positioning algorithm
  • the solved position of each common receiver based on the MRC positioning algorithm (which may be simply referred to as the solved position of each common receiver).
  • the solution center of each regular receiver based on the MRC positioning algorithm to obtain the solution of the geometric center of the regular N polygon based on the MRC positioning algorithm position.
  • the RTK receiver is located at the geometric center of the regular N polygon, so the geometric center of the regular N polygon is based on the solution position of the MRC positioning algorithm, which is equivalent to obtaining The RTK receiver is based on the solved position of the MRC positioning algorithm.
  • the probability model is used to fuse the calculated position of the RTK receiver based on the RTK positioning algorithm and the calculated position of the RTK receiver based on the MRC positioning algorithm, thereby obtaining the high-precision positioning result of the RTK receiver.
  • the so-called fusion calculation using the probability model specifically includes the following two aspects.
  • the solution type fixed solution or floating point solution, etc.
  • horizontal geometric accuracy factor HorizontalDilution of Precision, HDOP
  • the number of satellites detected by the receiver constructs a probability distribution P1 of the position of the RTK receiver.
  • the actual geometric topology of the regular N polygon is compared with the geometric topology structure of the positive N deformation obtained by calculation, and the similarity of the regular N polygon is used to obtain the regular N polygon.
  • the probability distribution P2 of the position of the geometric center is used to obtain the regular N polygon.
  • the N ordinary receivers are located at the N vertices of the regular N polygon.
  • the positive N polygon here is determined based on the actual positions of the N ordinary receivers, so it can become Actual regular N polygon.
  • the resolved position of each ordinary receiver based on the MRC positioning algorithm can be obtained.
  • the N ordinary receivers determined by the calculation are located at the N vertices of the regular N polygon obtained by the calculation. Since the position of each ordinary receiver determined by calculation is different from the actual position of the corresponding ordinary receiver, the geometric topology of the regular N polygon obtained by calculation and the geometric topology of the actual regular N polygon are also There are differences (or different).
  • RTK receivers when detecting satellites, RTK receivers can determine the distribution of multiple detected satellites based on GNSS epochs. According to the distribution of the multiple satellites, the positioning terminal can calculate HDOP.
  • a joint probability distribution P3 is obtained.
  • the maximum solution in the joint probability distribution P3 is the positioning result determined by the RTK receiver based on the positioning method provided in this application (for example, the marked point A on the curve representing P3 in FIG. 5C is used to indicate that the RTK receives Machine based on the positioning result determined by the positioning method provided in this application).
  • the so-called "using the degree of similarity of regular N polygons” can use the coincident area of the actual regular N polygon and the calculated regular N polygon with the actual regular N polygon The ratio of the area (that is, using the area relationship). It is worth noting that the relationship between the side length of the actual positive N polygon and the side length of the calculated positive N polygon can also be used, or The relationship between the apex angle and the apex angle of the regular N polygon obtained by calculation, etc.
  • x is the original detection value of the RTK receiver
  • y is the second type of correction value
  • f(.) is the mapping function from x to y.
  • f(.) is to construct a neural network and input the pseudorange between each of the ordinary receivers and each satellite detected by the corresponding ordinary receiver into the neural network, through training owned.
  • the regression equation can be determined based on the following method.
  • the pseudorange between the ordinary receiver k and the detected satellite i can be obtained by the following pseudorange calculation equation (1).
  • the ordinary receiver k is any one of the N ordinary receivers described in this application
  • the satellite i is any one of the multiple satellites detected by the ordinary receiver k.
  • equation (2) is transformed into equation (3) as shown below:
  • the coordinates of the satellite i are (x i , y i , z i ), and the coordinates of the ordinary receiver K are (x k , y k , z k ).
  • equation (3) can be transformed into equation (4) as shown below:
  • the linear expression of equation (4) can be obtained.
  • the linear expression of equation (4) can be deformed or sorted to obtain a linear pseudorange
  • the regression equation that is, the regression equation used to construct the MRC error correction model).
  • a neural network is constructed, and the original detection value of each ordinary receiver is input to the neural network, and the parameter w of the pseudorange regression equation is calculated using a back propagation algorithm.
  • the parameter w is determined, the parameter w is substituted into the pseudorange regression equation, and then the aforementioned MRC error correction model can be obtained.
  • the original detection value of each ordinary receiver is input into the MRC error correction model, and the first type of correction value corresponding to the original detection value of the ordinary receiver can be obtained by solving.
  • the first type of correction value is the value of the parameter b of the pseudorange regression equation.
  • x is the original detection value of the RTK receiver
  • y is the first type of correction value
  • f(.) is the mapping function from x to y.
  • f(.) is to construct a neural network and input the carrier (or pseudorange) between the RTK receiver and each satellite detected by the RTK receiver into the neural network, through training owned.
  • a neural network is also constructed, and the original detection value of the RTK receiver is input to the neural network, and the parameter w of the carrier regression equation is calculated using a back propagation algorithm. After the parameter w is determined, the parameter w is substituted into the carrier regression equation, and then the RTK error correction model can be obtained. After that, the original detection value of the RTK receiver is input into the RTK error correction model, and the first type of correction value can be obtained by solving. It should be noted that the first type of correction value is the value of the parameter b of the carrier regression equation.
  • the original detection value of the RTK receiver includes a carrier.
  • the original detection value of the RTK receiver includes a pseudorange.
  • the pseudo-range regression equation determined above can be used to construct the neural network and input the original detection value of the RTK receiver to the neural network, and use the back propagation algorithm to calculate the pseudo-range regression equation.
  • Parameter w After the parameter w is determined, the parameter w is substituted into the pseudorange regression equation, and then the RTK error correction model can be obtained. After that, the original detection value of the RTK receiver is input into the RTK error correction model, and the first type of correction value can be obtained by solving.
  • the first type of correction value is the value of the parameter b of the carrier regression equation.
  • the present application provides a positioning system 60.
  • the positioning system 60 includes a positioning terminal 61 and a correction value calculation service station 62.
  • the positioning terminal 61 is used to perform the operations performed by the positioning terminal in the method embodiments described in the first part.
  • the correction value calculation service station 62 is used to perform the operations performed by the correction value calculation service station in the method embodiments described in the first section. Since in the first part, the operation performed by the positioning terminal and the operation performed by the correction value calculation service station have been described in detail and fully, so in the positioning system 60, the positioning terminal 61 and the correction value calculation service station For the operations used by 62, please refer to the relevant description in the first part. In order to save space, the repeated part will not be repeated here.
  • FIG. 7 it is a flowchart of a positioning method provided by the present application.
  • the positioning method is executed by the positioning terminal.
  • the positioning method includes the following steps.
  • the RTK receiver detects the satellite navigation system and obtains the first detection signal.
  • the RTK receiver has at least the ability to execute an RTK positioning algorithm, and the number of RTK receivers is one.
  • the original detection value of the RTK receiver includes a carrier wave detected between the RTK receiver and each of a plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • the original detection value of the RTK receiver includes each of the satellites located in the satellite navigation system detected by the RTK receiver and the RTK receiver Pseudorange between.
  • Each of the N common receivers detects the satellite navigation system to obtain a second detection signal.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon
  • the ordinary The receiver has at least the ability to measure the pseudorange between the ordinary receiver and the satellite detected by the ordinary receiver and located in a satellite navigation system.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each satellite in a plurality of satellites of a satellite navigation system detected by the ordinary receiver.
  • the corrected detection value of the RTK receiver is obtained by correcting the original detection value of the RTK receiver using the first type of correction value, and the first type of correction value is calculated by the correction value The correction value generated by the service station for the original detection value of the RTK receiver.
  • the corrected detection value of each of the ordinary receivers is obtained by correcting the original detection value of each of the ordinary receivers using a third type of correction value.
  • the third type of correction value is obtained by converting the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the second type of correction value is a correction value generated by the correction value calculation service station for the converted detection value of the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each ordinary receiver and the RTK receiver.
  • the positioning method provided in the third part may also include operations performed by the positioning terminal in various embodiments of the first part, and therefore, the relevant description in the first part can be combined to understand The positioning method performed by the positioning terminal described in the third section. In order to save space, the repeated part will not be repeated here.
  • FIG. 8 it is a schematic structural diagram of a positioning terminal 80 provided by the present application.
  • the positioning terminal 80 includes a processor 81, one K receiver 82, and N ordinary receivers 83. It is worth noting that the positioning terminal described in this section is used to perform the positioning method described in the third section.
  • the RTK receiver 82 is used to detect the satellite navigation system and obtain the first detection signal.
  • the processor 81 is used to parse the first detection signal to obtain the original detection value of the RTK receiver 82.
  • the original detection value of the RTK receiver 82 includes the carrier (or pseudorange) detected between the RTK receiver 82 and the RTK receiver 82 and located among each of the satellites of the satellite navigation system.
  • Each of the N ordinary receivers 83 is used to detect the satellite navigation system and obtain a second detection signal.
  • the processor 81 is used to parse the second detection signal to obtain the original detection value of each ordinary receiver 83.
  • the original detection value of the ordinary receiver 83 includes the pseudo-range between the ordinary receiver 83 and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver 83.
  • the processor 81 is also used to obtain the positioning result of the RTK receiver 82 through fusion calculation using the corrected detection value of each ordinary receiver 83 and the corrected detection value of the RTK receiver 82.
  • the corrected detection value of each common receiver 83 is obtained by correcting the original detection value of each common receiver 83 using the third type of correction value.
  • the third-type correction value is obtained by converting the second-type correction value according to the positional relationship between each ordinary receiver 83 and the RTK receiver 82.
  • the second type of correction value is the correction value generated by the correction value calculation service station for the conversion detection value of the RTK receiver 82.
  • the conversion detection value of the RTK receiver 82 is based on the position of each ordinary receiver 83 and the RTK receiver 82 The relationship is obtained by converting the original detection value of each ordinary receiver 83.
  • the corrected detection value of the RTK receiver 82 is obtained by correcting the original detection value of the RTK receiver 82 using the first-type correction value.
  • the first type of correction value is a correction value generated by the correction value calculation service station for the original detection value of the RTK receiver 82.
  • the positioning terminal 80 further includes a transceiver 85.
  • the transceiver 85 is used to send the original detection value of the RTK receiver 82 to the correction value calculation service station, and receive all the values returned by the correction value calculation service station for the original detection value of the RTK receiver 82. Describe the first type of correction value.
  • the processor 81 is used to correct the original detection value of the RTK receiver 82 by using the first-type correction value to obtain the corrected detection value of the RTK receiver 82.
  • the transceiver 85 is used to send the original detection value of each ordinary receiver 83 to the correction value calculation service station.
  • the processor 81 is used to convert the original detection value of each ordinary receiver 83 to the converted detection of the RTK receiver 82 according to the positional relationship between each ordinary receiver 83 and the RTK receiver 82 value. Then, the transceiver 85 is also used to send the converted detection value of the RTK receiver 82 to the correction value calculation service station.
  • the transceiver 85 is further configured to receive the third type of correction value returned by the correction value calculation service station.
  • the processor 81 is further used to correct the original detection value of each ordinary receiver 83 by using the third-type correction value to obtain the corrected detection value of each ordinary receiver 83.
  • the transceiver 85 is further configured to receive the second type of correction value returned by the correction value calculation service station.
  • the processor 81 is further configured to convert the second-type correction value to obtain the third-type correction value according to the positional relationship between each ordinary receiver 83 and the RTK receiver 82.
  • the processor 81 is further used to correct the original detection value of each common receiver 83 by using the third-type correction value to obtain the corrected detection value of each common receiver 83.
  • the processor 81 is further used to correct the original detection value of each ordinary receiver 83 by using the third-type correction value to obtain the corrected detection value of each ordinary receiver 83.
  • the processor 81 is specifically used to calculate the solution position of each ordinary receiver 83 based on the multi-receiver constrained MRC positioning algorithm using the original detection value of each ordinary receiver 83, and according to each ordinary The solution position of the receiver 83 calculates the solution position of the geometric center of the regular N polygon.
  • the processor 81 is also specifically used to calculate the solution position of the RTK receiver 82 based on the RTK positioning algorithm using the original detection value of the RTK receiver 82.
  • the processor 81 is further specifically configured to use the probability model to fuse and calculate the solution position of the geometric center of the regular N polygon and the solution position of the RTK receiver 82 to obtain the positioning result of the RTK receiver 82.
  • the positioning terminal 80 may further include a data interface 84.
  • the processor 81 parses out the original detection value of the RTK receiver 82
  • the original interface of the RTK receiver 82 may also be The detection value is reported to the correction value calculation service station.
  • information can be sent to other communication devices (such as correction value calculation service stations) through the data interface 84, or received from other communication devices (such as correction value calculation service stations) through the data interface 84. information.
  • the positioning terminals provided in the fourth part reference may be made to the positioning terminals described in the embodiments of the first part. Furthermore, the positioning terminal provided in the fourth part is used to perform the positioning method described in the third part, therefore, the positioning terminal described in the fourth part can be understood in conjunction with the relevant descriptions of the first part and the third part. In order to save space, the repeated part will not be repeated here.
  • FIG. 9 it is a flowchart of another positioning method provided by the present application.
  • This positioning method is executed by the correction value calculation service station.
  • the positioning method includes the following steps.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier wave or a pseudorange between the RTK receiver and each satellite in a plurality of satellites of a satellite navigation system detected by the RTK receiver.
  • the converted detection value of the RTK receiver is input into a multi-receiver constrained MRC error correction model, and a second type of correction value is obtained through calculation, so that the positioning terminal can compare the RTK with the first type of correction value.
  • the original detection value of the receiver is corrected to obtain the corrected detection value of the RTK receiver, and the original detection value of each common receiver is corrected according to the third type of correction value to obtain the corrected detection value of each common receiver, And using the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver, through fusion calculation, the positioning result of the RTK receiver is obtained.
  • the third type of correction value is obtained by converting the second type of correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the positioning method provided in the fifth part may also include operations performed by the correction value calculation service station in the various embodiments of the first part. Therefore, the relevant description in the first part may be combined To understand the positioning method performed by the correction value calculation service station described in Section 5. Therefore, for other embodiments of this positioning method provided by the present application, reference may be made to the relevant definitions in the first part, which will not be repeated here.
  • FIG. 10 it is a schematic structural diagram of a correction value calculation service station 100 provided by the present application.
  • the correction value calculation service station 100 includes a processor 101 and a memory 102.
  • the memory 102 is used to store the RTK error correction model and the MRC error correction model. It should be understood that what is actually stored in the memory 102 is a code, and a part of the code includes an RTK error correction model, and another part is used to describe the MRC error correction model. It is worth noting that the correction value calculation service station described in this section is used to perform the positioning method described in Section 5.
  • the processor 101 is used to input the original detection value of the RTK receiver into the RTK error correction model, and the first type of correction value is obtained through calculation. And, the processor 101 is further configured to input the converted detection value of the RTK receiver into the MRC error correction model, and obtain a second type of correction value through calculation, so that the positioning terminal performs a correction on the RTK according to the first type of correction value.
  • the original detection value of the receiver is corrected to obtain the corrected detection value of the RTK receiver, and the original detection value of each common receiver is corrected according to the third type of correction value to obtain the corrected detection value of each common receiver, And using the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver, through fusion calculation, the positioning result of the RTK receiver is obtained.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier (or pseudorange) between the RTK receiver and each of the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • the third-type correction value is obtained by converting the second-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the correction value calculation service station 100 may further include a transceiver 103.
  • the transceiver 103 is used to send information to other communication devices and receive information from other communication devices. Specifically, the transceiver 103 is used to receive the original detection value of the RTK receiver, and also used to send the first-type correction value to the positioning terminal.
  • the transceiver 103 is further used to receive the converted detection value of the RTK receiver.
  • the transceiver 103 is also used to receive the original detection value of each of the ordinary receivers.
  • the processor 101 is also used to convert the original detection value of each ordinary receiver into the RTK receiver's original detection value according to the positional relationship between each ordinary receiver and the RTK receiver. Conversion detection value.
  • the transceiver 103 is further configured to send the second-type correction value to the positioning terminal, so that the positioning terminal is based on each of the ordinary receiver and the RTK receiver The positional relationship of the second type into the third type of correction value.
  • the processor 101 is further configured to convert the second-type correction value into a third-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the transceiver 103 is also used to send the third type of correction value to the positioning terminal.
  • the correction value calculation service station 100 may further include a data interface 104. It should be noted that the transceiver 103 passes through the data interface 104 when receiving information from the positioning terminal and sending information to the positioning terminal. Specifically, in the correction value calculation service station 100 provided by the present application, after the processor 101 calculates the first type correction value, the transceiver 103 may send the first type correction value to the data interface 103 to The positioning terminal.
  • correction value calculation service station provided in this section may be the same as the correction value calculation service station described in the various embodiments of the first section, in addition to those described in the above embodiments. Furthermore, since the correction value calculation service station provided in Part 6 can be used to perform the positioning method described in Part 5, you can combine the descriptions in Part 1 and Part 5 to understand the correction value in Part 6 Computing service station. In order to save space, the repeated part will not be repeated here.
  • FIG. 11A it is a schematic structural diagram of another correction value calculation service station 110 provided by the present application.
  • the correction value calculation service station 110 may be used to perform the positioning method described in the fifth section.
  • the correction value calculation service station 110 includes a storage unit 111, a first calculation unit 112, and a second calculation unit 113.
  • the storage unit 111 is used to store the RTK error correction model and the MRC error correction model.
  • the first calculation unit 112 is used to input the original detection value of the RTK receiver into the RTK error correction model, and obtain the first type of correction value through calculation.
  • the RTK receiver is located in the positioning terminal and has at least the ability to execute the RTK positioning algorithm.
  • the original detection value of the RTK receiver includes a carrier (or pseudorange) between the RTK receiver and each of the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • the second calculation unit 113 is configured to input the converted detection value of the RTK receiver into the MRC error correction model, and obtain a second type of correction value through calculation, so that the positioning terminal can correct the
  • the original detection value of the RTK receiver is corrected to obtain the corrected detection value of the RTK receiver, and the original detection value of each common receiver is corrected according to the third type of correction value to obtain the corrected detection value of each common receiver
  • use the corrected detection value of each of the ordinary receivers and the corrected detection value of the RTK receiver to obtain the positioning result of the RTK receiver through fusion calculation.
  • the third-type correction value is obtained by converting the second-type correction value according to the positional relationship between each of the ordinary receiver and the RTK receiver.
  • the converted detection value of the RTK receiver is obtained by converting the original detection value of each ordinary receiver according to the positional relationship between each of the ordinary receivers and the RTK receiver in N ordinary receivers .
  • the N ordinary receivers are located in the positioning terminal, and have at least the ability to measure the pseudorange between the ordinary receiver and the satellites detected by the ordinary receiver and located in the satellite navigation system.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each of the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the correction value calculation service station 110 further includes a transceiver unit 114.
  • the transceiver unit 116 is configured to receive the original detection value of the RTK receiver and send the first-type correction value to the positioning terminal.
  • the transceiver unit 114 is further configured to receive the converted detection value of the RTK receiver. After calculating the second-type correction value, the transceiver unit 114 is further configured to receive the second-type correction value and send the second-type correction value to the positioning terminal.
  • the correction value calculation service station 110 further includes a first conversion unit 115.
  • the transceiver unit 114 is used to receive the original detection value of each of the ordinary receivers.
  • the first conversion unit 115 is used to convert the original detection value of each ordinary receiver into the conversion detection of the RTK receiver according to the positional relationship between each ordinary receiver and the RTK receiver value.
  • the transceiver unit 114 is further configured to send the second-type correction value to the positioning terminal.
  • the correction value calculation service station 110 further includes a second conversion unit 116.
  • the embodiment corresponding to FIG. 11C is different from the embodiment corresponding to FIG. 11B in that, after the second type of correction value is calculated, the second conversion unit 116 is used to receive each of the ordinary receiver and the RTK. The positional relationship of the machine, converting the second-type correction value into a third-type correction value.
  • the transceiver unit 114 is used to send the third type of correction value to the positioning terminal.
  • the correction value calculation service station 110 further includes a second conversion unit 116.
  • the embodiment corresponding to FIG. 11D is different from the embodiment corresponding to FIG. 11A in that after the second type of correction value is calculated, the second conversion unit 116 is used to receive the RTK according to each of the ordinary receiver and the RTK. The positional relationship of the machine, converting the second-type correction value into a third-type correction value.
  • the transceiver unit 114 is used to send the third type of correction value to the positioning terminal.
  • correction value calculation service station provided in this section can refer to the relevant limitation on the correction value calculation service station in the first part. In order to save space, the repeated part will not be repeated here.
  • FIG. 12A it is a flowchart of another positioning method provided by the present application. Specifically, the positioning method includes the following steps.
  • the RTK receiver detects the satellite navigation system and obtains the first detection signal.
  • the RTK receiver has at least the ability to execute an RTK positioning algorithm, and the number of RTK receivers is one.
  • the original detection value of the RTK receiver includes a carrier (or pseudorange) detected between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • Each of the N common receivers detects the satellite navigation system to obtain a second detection signal.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the ordinary receiver has at least the ability to measure the pseudorange between the ordinary receiver and a satellite detected by the ordinary receiver and located in a satellite navigation system.
  • step S35 is different from step S15, so here step S35 is mainly explained.
  • step S35 specifically includes the following steps S351-354.
  • the positioning method described in this section is different from the positioning methods described in the first section and the third section above: the first point is that in this section (or this positioning method), calculate each The resolution position of the ordinary receiver is based on the original detection value of each of the ordinary receivers, rather than the third type of correction value corresponding to the original detection value of each of the ordinary receivers.
  • the basis for calculating the solution position of the RTK receiver is also the original detection value of the RTK receiver, not the modified detection value of the RTK receiver. Therefore, it can be understood that this positioning method calculates the positioning result of the RTK receiver based on the original detection value, that is, whether it is an ordinary receiver or an RTK receiver, it is the original detection value, not the modified detection value. That is, this positioning method does not require the RTK error correction model and the MRC error correction model.
  • FIG. 13 it is a schematic structural diagram of a positioning terminal 130 provided by the present application.
  • the positioning terminal 130 includes a processor 131, one RTK receiver 132, and N ordinary receivers 133.
  • the mark 133 refers to an ordinary receiver. That is, the mark of each ordinary receiver is 133. It is worth noting that the positioning terminal described in this section is used to perform the positioning method described in Section 8.
  • N is an integer greater than or equal to 3
  • the N ordinary receivers are located at N vertices of a regular N polygon
  • the RTK receiver is located at the geometric center of the regular N polygon.
  • the RTK receiver has at least the ability to perform RTK positioning algorithms.
  • the ordinary receiver has at least the ability to measure the pseudorange between the ordinary receiver and a satellite detected by the ordinary receiver and located in a satellite navigation system.
  • the RTK receiver 132 is used to detect the satellite navigation system and obtain the first detection signal.
  • the processor 131 is configured to parse the first detection signal to obtain the original detection value of the RTK receiver.
  • the original detection value of the RTK receiver includes a carrier (or pseudorange) detected between the RTK receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the RTK receiver.
  • Each of the N ordinary receivers 133 is used for detecting the satellite navigation system and acquiring a second detection signal.
  • the processor 131 is configured to parse the second detection signal to obtain the original detection value of each ordinary receiver.
  • the original detection value of the ordinary receiver includes a pseudorange between the ordinary receiver and each satellite in the plurality of satellites of the satellite navigation system detected by the ordinary receiver.
  • the processor 131 is specifically used to use the original detection value of each of the ordinary receivers to calculate the solution position of each of the ordinary receivers based on the multi-receiver constrained MRC positioning algorithm, and according to each A solution position of the ordinary receiver calculates the solution position of the geometric center of the regular N polygon.
  • the processor 131 is further specifically configured to calculate the solution position of the RTK receiver based on the RTK positioning algorithm using the original detection value of the RTK receiver.
  • the processor 131 is further specifically configured to use a probability model to fuse the calculation position of the geometric center of the regular N polygon and the calculation position of the RTK receiver to obtain the positioning result of the RTK receiver .
  • the positioning terminal provided in this section can be used to perform the positioning method described in Part 8, you can refer to the related description in Part 8 to deepen your understanding of the positioning terminal provided in this section. Further, the positioning terminal provided in this section has many similarities with the positioning terminal involved in the first section, so please also refer to the relevant description in the first section to better understand the positioning terminal defined in this section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Navigation (AREA)

Abstract

可应用于智能汽车技术领域的一种高精度的定位方法以及相应的定位系统和定位终端,定位方法采用了实时动态RTK定位技术和多接收机约束MRC定位技术来确定待定位目标的位置。定位方法中可利用大数据技术预先构建RTK误差修正模型和MRC误差修正模型,其中,RTK误差修正模型用于提供针对基于RTK定位技术获取的原始探测值的修正值,MRC误差修正模型用于提供针对基于MRC定位技术获取的原始探测值的修正值。然后,利用修正值计算待定位目标的位置。

Description

一种高精度的卫星定位方法、定位终端和定位系统
相关申请的交叉引用
本申请要求在2018年12月27日提交中国国家知识产权局、申请号为201811610889.X、申请名称为“一种高精度的卫星定位方法、定位终端和定位系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本领域卫星定位技术领域,尤其涉及一种高精度的卫星定位方法、定位终端以及定位系统。
背景技术
目前主流的定位技术是实时动态(Real Time Kinematics,RTK)定位技术,这是一种差分定位技术,又被称为载波相位差分技术。该定位技术涉及基准站和流动站,这两个测量站分别对全球定位系统(Global Positioning System,GPS)的卫星进行探测,其中,基准站将其探测到的载波相位探测值发送给流动站,流动站利用其探测到的载波相位探测值以及接收的来自基准站的载波相位探测值组成相位差分探测值,并利用该相位差分探测值,通过求差解算出该流动站的坐标。
RTK定位技术依赖于对卫星的载波信号的探测。在城市环境中,基准站可以设置在建筑物的顶部等开阔的地方,从而具有较好的卫星探测条件,但对于流动站来说,由于高楼和树木的存在,所以流动站在移动的过程中对载波信号的探测往往无法达到连续稳定的状态,从而导致流动站探测到的载波相位探测值精度不高,进而导致对该流动站的定位精度不高。
申请内容
本申请涉及一种定位方法,该定位方法用于在一定程度上,提高定位精度。并且,本申请还提供了与该定位方法相对应的定位系统、位于该定位系统内的定位终端。
第一方面,本申请涉及一种定位方法,该方法至少包括如下步骤。
定位终端对卫星导航系统进行探测,获取原始探测消息。
需要说明的是,所述定位终端包括N个普通接收机和1个实时动态RTK接收机,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。所述RTK接收机至少具有执行RTK定位算法的能力。所述原始探测消息包括每一普通接收机的原始探测值和RTK接收机的原始探测值。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
所述修正值计算服务站将所述RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值,将RTK接收机的转化探测值输入多接收机约束MRC误差修 正模型,通过计算得到第二类修正值。
值得注意的是,所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。
所述定位终端利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,利用第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系和所述第二类修正值,通过计算得到的。
在本实施例中,对RTK接收机进行定位,需要用到所述多个普通接收机对的所述卫星导航系统内的多个卫星进行探测获取的伪距,以及所述RTK接收机对所述卫星导航系统内的多个卫星进行探测获取的伪距或载波。由于获取伪距依赖的是模拟信号,获取载波依赖的是数字信号,所以在本实施例中,至少所述多个普通接收机探测的是模拟信号。应当知道的是,相对于数字信号来说,模拟信号在传播的过程中具有较好的鲁棒性和抗干扰性。因此,在本实施例中,由于所述多个普通接收机的原始探测值的鲁棒性和抗干扰性较好,所以所述多个普通接收机的原始探测值的误差较小,进而使得采用本实施例提供的定位方法,能够获取较为准确的定位结果。
进一步地,在本实施例提供的定位方法中,所述定位终端具有N个普通接收机,且所述N个普通接收机之间具有特定为位置关系(具体为,所述N个普通接收机位于正N边形的N个顶点)。由于,该N个普通接收机的设置可以在一定程度上消除由于多路径效应引起的误差,所以,采用本实施例提供的定位方法,能够获得更准确的定位结果。
需要解释的是,如果卫星发射的信号通过该卫星和接收机之间的直线路径到达该接收机,则该接收机接收到的信号为该卫星发射信号的延迟。但是,实际上,该卫星发射的信号在传播到该接收机的过程中,会由于受一些物体的反射而产生了多个不同的信号,该多个不同的信号的传播方向、振幅、极化以及相位等均不同于通过该直线路径传播到该接收机的信号,该多个不同的信号到达该接收机后,与通过该直线路径到达该接收机的信号产生叠加,这种现象称为多路径效应。
再者,在本实施例中,还在所述修正值计算服务站预先建立了RTK误差修正模型和MRC误差修正模型。其中,所述RTK误差修正模型能够生成用于对所述RTK接收机的原始探测值进行修正的所述第一修正值,所述MRC误差修正模型能够生成所述第二修正值,所述第二修正值被转化为所述第三修正值之后,能够用于对每一所述普通接收机的原始探测值进行修正。然后,利用所述第一修正值对所述RTK接收机的原始探测值进行修正得到所述RTK接收机的修正探测值,以及利用所述第三修正值对每一所述普通接收机的原始探测值进行修正得到每一所述普通接收机的修正探测值。最后,利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到所述RTK接收机的定位结果。
由于在本实施例中,所述接收机的原始探测值和每一所述普通接收机的原始探测值均是被修正过的,因此利用修正后的修正值计算所述RTK接收机的定位结果,能够获得精度更高的定位结果。
可选的,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探 测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的载波,且所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
在本实施例中,RTK接收机探测到的是载波,载波是数字信号,由于数字信号具有比模拟信号更好的抗噪能力,因此采用载波计算RTK接收机的定位结果,会有更高的准确度。
结合第一方面,在第一种可能的实施方式下,所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值,并将所述RTK接收机的转化探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站接收所述RTK接收机的转化探测值。在本实施例中,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值的执行主体是定位终端,在此情况下,修正值计算服务站的负担就较轻,只需要依据接收的所述RTK接收机的转化探测值进行计算即可。
结合第一方面,在第二种可能的实施方式下,所述定位终端将每一所述普通接收机的原始探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站接收每一所述普通接收机的原始探测值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。在本实施例中,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值的执行主体是修正值计算服务站,在此情况下,所述定位终端只需要获取所述原始探测信息,并将所述原始探测消息发送给所述修正值计算服务站就可以了,因此该定位终端的内部变动较小,所以该定位终端的设置较为简单。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第三种可能的实施方式下,所述修正值计算服务站依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值,并将所述第三类修正值发送给所述定位终端。对应的,所述定位终端接收所述第三类修正值。在本实施例中,所述修正值计算服务站不仅获取所述第二类修正值,还将所述第二类修正值转化为所述第三类修正值,而该定位终端在接收所述第三类修正值之后,只需要依据该第三类修正值对每一所述普通接收机的原始探测值进行修正即可。因此在本实施例中,所述定位终端执行的操作较少,相应的,该定位终端的内部结构变动也较小。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第四种可能的实施方式下,所述修正值计算服务站将所述第二类修正值发送给所述定位终端。对应的,所述定位终端接收所述第二类修正值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。在本实施例中,所述修正值计算服务站获取所述第二类修正值之后,就将所述第二类修正值发送给所述定位终端。所述定位终端在接收到所述第二类修正值之后,需要先将所述第二类修正值转化为所述第三类修正值,再依据该第三类修正值对每一所述普通接收机的原始探测值进行修正即可。因此在本实施例中,由于所述修正值计算服务站不需要执行将所述第二类修正值转化为所述第三类修正值的操作,所以所述修正值计算服务站的内部设置变动较小。
结合第一方面或第一方面的第一至第四种任一种可能的实施方式,在第五种可能的实施方式下,所述定位终端将所述RTK接收机的原始探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站接收所述RTK接收机的原始探测值。
结合第一方面或第一方面的第一至第五种任一种可能的实施方式,在第六种可能的实施方式下,所述修正值计算服务站将所述第一类修正值发送给所述定位终端。对应的,所述定位终端接收所述第一类修正值。
结合第一方面或第一方面的第一至第六种任一种可能的实施方式,在第七种可能的实施方式下,所述融合计算的步骤,具体包括:所述定位终端利用每一所述普通接收机的修正探测值,基于MRC定位算法,计算得到每一普通接收机的解算位置。然后,根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。进一步地,所述定位终端利用所述RTK接收机的修正探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。最后,所述定位终端利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例是依据所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置计算所述RTK接收机的定位结果的。由于所述RTK接收机位于所述正N边形的几何中心,所以通过将所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,能够得到更加准确的所述RTK接收机的定位结果。
结合第一方面或第一方面的第一至第七种任一种可能的实施方式,在第八种可能的实施方式下,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。在本实施例中,所述RTK误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述RTK误差修正模型获取的所述第一类修正值是比较准确的。随后,利用该第一类修正值对所述RTK接收机的原始探测值进行修正之后,能够得到比较准确的所述RTK接收机的修正探测值。自然,使用所述RTK接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
结合第一方面或第一方面的第一至第七种任一种可能的实施方式,在第九种可能的实施方式下,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。在本实施例中,所述MRC误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述MRC误差修正模型获取的所述第二类修正值是比较准确的。这样,在将该第二类修正值转化为该第三类修正值,以及利用该第三类修正值对每一所述普通接收机的原始探测值进行修正之后,能够得到比较准确的每一所述普通接收机的修正探测值。进一步地,使用每一所述普通接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
第二方面,本申请提供了一种定位系统。该系统包括定位终端和修正值计算服务站。
定位终端用于对卫星导航系统进行探测,获取原始探测消息。
需要说明的是,所述定位终端包括N个普通接收机和1个实时动态RTK接收机,N 为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。所述RTK接收机至少具有执行RTK定位算法的能力。所述原始探测消息包括每一普通接收机的原始探测值和RTK接收机的原始探测值。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
所述修正值计算服务站用于将所述RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值,以及用于将RTK接收机的转化探测值输入多接收机约束MRC误差修正模型,通过计算得到第二类修正值。
值得注意的是,所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。
所述定位终端还用于利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及利用第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值。
需要说明的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系和所述第二类修正值,通过计算得到的。
所述定位终端还用于利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,由于本实施例提供的定位系统可以用于执行前述第一方面所述的定位方法,因此本实施例的有益效果可以参见前述对第一方面所述的定位方法的有益效果的描述,此处不再赘述。
结合第二方面,在第一种可能的实施方式下,所述定位终端还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值,并将所述RTK接收机的转化探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站还用于接收所述RTK接收机的转化探测值。在本实施例中,所述定位终端还用于将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。在此情况下,修正值计算服务站的负担就较轻。
结合第二方面,在第二种可能的实施方式下,所述定位终端还用于将每一所述普通接收机的原始探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。在本实施例中,所述修正值计算服务站还用于将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。在此情况下,所述定位终端只需要用于获取所述原始探测信息,并将所述原始探测消息发送给所述修正值计算服务站就可以了,因此该定位终端的内部变动较小,所以该定位终端的设置较为简单。
结合第二方面、第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式,在第三种可能的实施方式下,所述修正值计算服务站还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值,并将所 述第三类修正值发送给所述定位终端。相应的,所述定位终端还用于接收所述第三类修正值。在本实施例中,所述修正值计算服务站不仅用于获取所述第二类修正值,还用于将所述第二类修正值转化为所述第三类修正值,而该定位终端在接收所述第三类修正值之后,只需要依据该第三类修正值对每一所述普通接收机的原始探测值进行修正即可。因此在本实施例中,所述定位终端执行的操作较少,相应的,该定位终端的内部结构变动也较小。
结合第二方面、第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式,在第四种可能的实施方式下,所述修正值计算服务站还用于将所述第二类修正值发送给所述定位终端。对应的,所述定位终端还用于接收所述第二类修正值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。在本实施例中,所述修正值计算服务站用于在获取所述第二类修正值之后,就将所述第二类修正值发送给所述定位终端。所述定位终端用于接收到所述第二类修正值,将所述第二类修正值转化为所述第三类修正值,以及依据该第三类修正值对每一所述普通接收机的原始探测值进行修正。因此在本实施例中,由于所述修正值计算服务站不需要执行将所述第二类修正值转化为所述第三类修正值的操作,所以所述修正值计算服务站的内部设置变动较小。结合第二方面或第二方面的第一至第四种任一种可能的实施方式,在第五种可能的实施方式下,所述定位终端用于将所述RTK接收机的原始探测值发送给所述修正值计算服务站。对应的,所述修正值计算服务站用于接收所述RTK接收机的原始探测值。
结合第二方面或第二方面的第一至第五种任一种可能的实施方式,在第六种可能的实施方式下,所述修正值计算服务站用于将所述第一类修正值发送给所述定位终端。对应的,所述定位终端用于接收所述第一类修正值。
结合第二方面或第二方面的第一至第六种任一种可能的实施方式,在第七种可能的实施方式下,所述定位终端具体用于利用每一所述普通接收机的修正探测值,基于MRC定位算法,计算得到每一普通接收机的解算位置,并根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。
所述定位终端还具体用于利用所述RTK接收机的修正探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。
进一步地,所述定位终端还具体用于利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例是依据所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置计算所述RTK接收机的定位结果的。由于所述RTK接收机位于所述正N边形的几何中心,所以通过将所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,能够得到更加准确的所述RTK接收机的定位结果。
结合第二方面或第二方面的第一至第七种任一种可能的实施方式,在第八种可能的实施方式下,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。在本实施例中,所述RTK误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述RTK误差修正模型获取的所述第一类修正值是比较准确的。随后,利用该第一类修正值对所述RTK接收机的原始探测值进行修正之后,能够得到比较准确的所述RTK接收机的修正探测值。自然,使用所述 RTK接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
结合第二方面或第二方面的第一至第七种任一种可能的实施方式,在第九种可能的实施方式下,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。在本实施例中,所述MRC误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述MRC误差修正模型获取的所述第二类修正值是比较准确的。这样,在将该第二类修正值转化为该第三类修正值,以及利用该第三类修正值对每一所述普通接收机的原始探测值进行修正之后,能够得到比较准确的每一所述普通接收机的修正探测值。进一步地,使用每一所述普通接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
第三方面,本申请提供了另一种定位方法,该方法包括如下步骤。
实时动态RTK接收机对卫星导航系统进行探测,获取第一探测信号。需要说明的是,所述RTK接收机至少具有执行RTK定位算法的能力,且所述RTK接收机的数量为1。
对所述第一探测信号进行解析,获取RTK接收机的原始探测值。其中,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距。
N个普通接收机中每一普通接收机对所述卫星导航系统进行探测,获取第二探测信号。其中,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,且所述RTK接收机位于所述正N边形的几何中心。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
对所述第二探测信号进行解析,获取每一普通接收机的原始探测值。
利用所述RTK接收机的原始探测值和每一所述普通接收机的原始探测值,通过融合计算,得到所述RTK接收机的定位结果。
由上可知,在本实施例中,在对RTK接收机进行定位时,需要用到所述多个普通接收机对的所述卫星导航系统进行探测获取的伪距,以及所述RTK接收机对所述卫星导航系统进行探测获取的伪距或载波。由于获取伪距依赖的是模拟信号,获取载波依赖的是数字信号,所以在本实施例中,至少所述多个普通接收机探测的是模拟信号。应当知道的是,相对于数字信号来说,模拟信号在传播的过程中具有较好的鲁棒性和抗干扰性。因此,在本实施例中,由于所述多个普通接收机的原始探测值的鲁棒性和抗干扰性较好,所以所述多个普通接收机的原始探测值的误差较小,进而使得采用本实施例提供的定位方法,能够获取较为准确的定位结果。
进一步地,在本实施例提供的定位方法中,所述N个普通接收机之间具有特定为位置关系(具体为,所述N个普通接收机位于正N边形的N个顶点)。由于,该N个普通接收机的设置可以在一定程度上消除由于多路径效应引起的误差,所以,采用本实施例提供的定位方法,能够获得更准确的定位结果。
结合第三方面,在第一种可能的实施方式中,所述融合步骤,具体包括如下内容。利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置。根据每一所述普通接收机的解算位置计算所述正N边形的几 何中心的解算位置。利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。以及,利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例是依据所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置计算所述RTK接收机的定位结果的。由于所述RTK接收机位于所述正N边形的几何中心,所以通过将所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,能够得到更加准确的所述RTK接收机的定位结果。
第四方面,本申请提供了一种定位终端。该定位终端包括1个实时动态RTK接收机、N个普通接收机和处理器。
其中,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。
值得注意的是,在本实施例中,所述RTK接收机至少具有执行RTK定位算法的能力。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
具体的,在该定位终端中,所述RTK接收机用于对所述卫星导航系统进行探测,获取第一探测信号。所述处理器用于解析所述第一探测信号获取RTK接收机的原始探测值。其中,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距。
进一步地,所述N个普通接收机中的每一普通接收机用于对所述卫星导航系统进行探测,获取第二探测信号。所述处理器用于解析所述第二探测信号获取每一普通接收机的原始探测值。其中,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
所述处理器还用于利用每一所述普通接收机的原始探测值和所述RTK接收机的原始探测值,通过融合计算,得到所述RTK接收机的定位结果。
由于本实施例所述的定位终端用于执行第三方面所述的定位方法,因此本实施例的有益效果可以参见前面针对第三方面所述的定位方法所描述的有益效果。
结合第四方面,在第一种可能的实现方式中,
所述处理器具体用于:
利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置,并根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。
利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。以及
利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例的有益效果可以参见前面针对第三方面的第一种可能的实施方式所述的定位方法所描述的有益效果。
第五方面,本申请提供了一种定位方法,该方法包括如下步骤。
实时动态RTK接收机对卫星导航系统进行探测,获取第一探测信号。
对所述第一探测信号进行解析,获取RTK接收机的原始探测值。
需要说明的是,所述RTK接收机至少具有执行RTK定位算法的能力,且所述RTK接收机的数量为1。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距。
N个普通接收机中每一普通接收机对所述卫星导航系统进行探测,获取第二探测信号。值得注意的是,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心,所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
对所述第二探测信号进行解析,获取每一普通接收机的原始探测值。
利用每一普通接收机的修正探测值和RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,所述RTK接收机的修正探测值是利用第一类修正值对所述RTK接收机的原始探测值进行修正得到的,而所述第一类修正值是所述修正值计算服务站针对所述RTK接收机的原始探测值生成的修正值。
进一步地,每一所述普通接收机的修正探测值是利用第三类修正值对每一所述普通接收机的原始探测值进行修正得到的。所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,对第二类修正值进行转化得到的。所述第二类修正值是是修正值计算服务站针对RTK接收机的转化探测值生成的修正值。所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。
需要说明的是,前述第二方面所述的定位系统中包括的定位终端可以执行本实施例所述的定位方法。在本实施例提供的定位方法中,对RTK接收机进行定位,需要用到所述多个普通接收机对的所述卫星导航系统内的多个卫星进行探测获取的伪距,以及所述RTK接收机对所述卫星导航系统内的多个卫星进行探测获取的伪距或载波。由于获取伪距依赖的是模拟信号,获取载波依赖的是数字信号,所以在本实施例中,至少所述多个普通接收机探测的是模拟信号。应当知道的是,相对于数字信号来说,模拟信号在传播的过程中具有较好的鲁棒性和抗干扰性。因此,在本实施例中,由于所述多个普通接收机的原始探测值的鲁棒性和抗干扰性较好,所以所述多个普通接收机的原始探测值的误差较小,进而使得采用本实施例的定位方法,能够获取较为准确的定位结果。
进一步地,在本实施例提供的定位方法中,所述N个普通接收机之间具有特定为位置关系(具体为,所述N个普通接收机位于正N边形的N个顶点)。由于该N个普通接收机的设置可以在一定程度上消除由于多路径效应引起的误差,所以采用本实施例提供的定位方法,能够获得更准确的定位结果。
结合第五方面,在第一种可能的实施方式下,该定位方法还包括:将所述RTK接收机的原始探测值发送给所述修正值计算服务站,并接收所述修正值计算服务站针对所述RTK接收机的原始探测值返回的所述第一类修正值。以及,利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到所述RTK接收机的修正探测值。
相对于所述RTK接收机的原始探测值来说,所述RTK接收机的修正探测值更加接近于真实值,因此使用所述RTK接收机的修正探测值计算得到的所述RTK接收机的定位结果,更加准确。也即采用本实施例所述的定位终端,能够获得更加准确的定位结果。
结合第五方面的第一种可能的实施方式,在第二种可能的实施方式下,该方法还包括:将每一所述普通接收机的原始探测值发送给所述修正值计算服务站。在本实施例中,只需要将每一所述普通接收机的原始探测值发送给所述修正值计算服务站,将每一所述普通接收机的原始探测值进行转化得到的所述RTK接收机的转化探测值是由所述修正值计算服务站执行的。因此,采用本实施例提供的定位方法,能够降低对所述RTK接收机进行定位的复杂度。
结合第五方面的第一种可能的实施方式,在第三种可能的实施方式下,该方法还包括:依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到所述RTK接收机的转化探测值;并将所述RTK接收机的转化探测值发送给所述修正值计算服务站。
结合第五方面的第二种或第三种可能的实施方式,在第四种可能的实施方式下,该定位方法还包括如下步骤。接收所述修正值计算服务站返回的所述第二类修正值。依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。以及利用所述第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一所述普通接收机的修正探测值。
结合第五方面的第二种或第三种可能的实施方式,在第五种可能的实施方式下,该定位方法还包括如下步骤。接收所述修正值计算服务站返回的所述第三类修正值。利用所述第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一所述普通接收机的修正探测值。在本实施例中,由于接收的是直接是能够用于对每一所述普通接收机的原始探测值进行修正的所述第三类修正值,且将所述第二类修正值转化为所述第三类修正值是由所述修正值计算服务站执行的。因此,采用本实施例提供的定位方法,能够降低对所述RTK接收机进行定位的复杂度。
结合第五方面或第五方面的第一至第五种可能的实施方式中任一种实施方式,在第六种可能的实施方式下,所述融合计算的步骤具体包括如下步骤。利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一普通接收机的解算位置。根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到所述RTK接收机的解算位置。以及,利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例是依据所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置计算所述RTK接收机的定位结果的。由于所述RTK接收机位于所述正N边形的几何中心,所以通过将所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,能够得到更加准确的所述RTK接收机的定位结果。
第六方面,本申请提供了一种定位终端,该定位终端1个实时动态RTK接收机、N个普通接收机和处理器。其中,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。需要解释的是,所述RTK接收机至少具有执行RTK定位算法的能力。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。
具体的,所述RTK接收机用于对所述卫星导航系统进行探测,获取第一探测信号。
所述处理器用于解析所述第一探测信号获取RTK接收机的原始探测值。其中,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距。
所述N个普通接收机中的每一普通接收机用于对所述卫星导航系统进行探测,获取第二探测信号。
所述处理器用于解析所述第二探测信号获取每一普通接收机的原始探测值。值得注意的是,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
所述处理器还用于利用每一普通接收机的修正探测值和RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,每一所述普通接收机的修正探测值是利用第三类修正值对每一所述普通接收机的原始探测值进行修正得到的。所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,对第二类修正值进行转化得到的。所述第二类修正值是修正值计算服务站针对RTK接收机的转化探测值生成的修正值,所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。
另外,所述RTK接收机的修正探测值是利用第一类修正值对所述RTK接收机的原始探测值进行修正得到的。所述第一类修正值是所述修正值计算服务站针对所述RTK接收机的原始探测值生成的修正值。
需要解释的是,本实施例提供的定位终端能够执行第五方面所述的定位方法,因此,本实施例提供的定位终端的有益效果可以参见第五方面所述的定位方法所具有的有益效果,此处不再赘述。
结合第六方面,在第一种可能的实施方式中,该定位终端还包括收发器。其中,该收发器用于将所述RTK接收机的原始探测值发送给所述修正值计算服务站,并接收所述修正值计算服务站针对所述RTK接收机的原始探测值返回的所述第一类修正值。相应的,所述处理器还用于利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到所述RTK接收机的修正探测值。本实施例提供的定位终端能够执行第五方面的第一种可能的实施方式所述的定位方法,因此,本实施例提供的定位终端的有益效果可以参见第五方面的第一种可能的实施方式所述的定位方法所具有的有益效果,此处不再赘述。
结合第六方面的第一种可能的实施方式,在第二种可能的实施方式下,所述收发器还用于将每一所述普通接收机的原始探测值发送给所述修正值计算服务站。本实施例提供的定位终端能够执行第五方面的第二种可能的实施方式所述的定位方法,因此,本实施例提供的定位终端的有益效果可以参见第五方面的第二种可能的实施方式所述的定位方法所具有的有益效果,此处不再赘述。
结合第六方面的第一种可能的实施方式,在第三种可能的实施方式下,所述处理器还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。相应的,所述收发器还用于将所述RTK接收机的转化探测值发送给所述修正值计算服务站。
结合第六方面的第二种或第三种可能的实施方式,在第四种可能的实施方式下,所述收发器还用于接收所述修正值计算服务站返回的所述第三类修正值。相应的,所述处理器 还用于利用所述第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一所述普通接收机的修正探测值。本实施例提供的定位终端能够执行第五方面的第五种可能的实施方式所述的定位方法,因此,本实施例提供的定位终端的有益效果可以参见第五方面的第五种可能的实施方式所述的定位方法所具有的有益效果,此处不再赘述。
结合第六方面的第二种或第三种可能的实施方式,在第五种可能的实施方式下,所述收发器还用于接收所述修正值计算服务站返回的所述第二类修正值。相应的,所述处理器还用于依据每一所述普通接收机与所述RTK接收机的位置关系,对所述第二类修正值进行转化得到所述第三类修正值。以及,所述处理器还用于利用所述第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一所述普通接收机的修正探测值。
结合第六方面或第六方面的第一至第五种可能的实施方式中任一种实施方式,在第六种可能的实施方式下,所述处理器具体用于利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一普通接收机的解算位置,并根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。所述处理器还具体用于利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到所述RTK接收机的解算位置。进一步地,所述处理器还具体用于利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
本实施例提供的定位终端能够执行第五方面的第六种可能的实施方式所述的定位方法,因此,本实施例提供的定位终端的有益效果可以参见第五方面的第六种可能的实施方式所述的定位方法所具有的有益效果,此处不再赘述。
第七方面,本申请提供一种定位方法,该定位方法至少包括如下步骤。
将实时动态RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值。
需要解释的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
将所述RTK接收机的转化探测值输入多接收机约束MRC误差修正模型,通过计算得到第二类修正值,以使所述定位终端能够根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
值得注意的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
需要说明的是,前述第二方面所述的定位系统中包括的修正值计算服务站可以执行本实施例所述的定位方法。在本实施例提供的定位方法中,需要预先建立RTK误差修正模型和MRC误差修正模型。其中,所述RTK误差修正模型用于生成对所述RTK接收机的原始探测值进行修正的所述第一修正值,所述MRC误差修正模型用于生成所述第二修正值,所述第二修正值被转化为所述第三修正值之后,用于对每一所述普通接收机的原始探测值进行修正。因此在本实施例中,所述RTK接收机的原始探测值以及每一所述普通接收机的原始探测值,均是被修正后才被用于计算的,由于修正后的探测值更加接近真实值,因此采用本实施例提供的定位方法对所述RTK接收机进行定位时,能够得到精度更高的定位结果。
结合第七方面,在第一种可能的实施方式下,该定位方法还包括:接收所述RTK接收机的原始探测值,以及,将所述第一类修正值发送给所述定位终端。
结合第七方面的第一种可能的实施方式,在第二种可能的实施方式下,该定位方法还包括:接收所述RTK接收机的转化探测值。
在本实施例提供的定位方法中,所述RTK接收机的转化探测值是直接接收的,所以不需要执行将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值的操作。因此,本实施例提供的定位方法执行起来比较简单。
结合第七方面的第一种可能的实施方式,在第三种可能的实施方式下,该定位方法还包括:接收每一所述普通接收机的原始探测值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
在本实施例提供的定位方法中,还需要将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值,因此,本实施例提供的定位方法功能比较强大。
结合第七方面的第二种或第三种可能的实施方式,在第四种可能的实施方式下,该定位方法还包括:将所述第二类修正值发送给所述定位终端,以使所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。
在本实施例提供的定位方法中,在生成所述第二类修正值之后,直接将所述第二类修正值发送给所述定位终端,也即不需要执行将所述第二类修正值转化为所述第三类修正值的操作。因此,本实施例提供的定位方法执行起来比较简单。
结合第七方面的第二种或第三种可能的实施方式,在第五种可能的实施方式下,该定位方法还包括:依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值,并将所述第三类修正值发送给所述定位终端。
在本实施例提供的定位方法中,在生成所述第二类修正值之后,还需要将所述第二类修正值转化为所述第三类修正值,因此,本实施例提供的定位方法功能比较强大。
结合第七方面或第七方面的第一至第五种可能的实施方式中任一种实施方式,在第六种可能的实施方式中,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。
在本实施例中,所述RTK误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述RTK误差修正模型获取的所述第一类修正值是比较准确的, 进而,利用该第一类修正值对所述RTK接收机的原始探测值进行修正之后,能够得到比较准确的所述RTK接收机的修正探测值。进一步地,使用所述RTK接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
结合第七方面或第七方面的第一至第五种可能的实施方式中任一种实施方式,在第七种可能的实施方式中,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
在本实施例中,所述MRC误差修正模型是通过预先构建神经网络,然后利用大数据训练得到的,因此通过所述MRC误差修正模型获取的所述第二类修正值是比较准确的。这样,在将该第二类修正值转化为该第三类修正值,以及利用该第三类修正值对每一所述普通接收机的原始探测值进行修正之后,能够得到比较准确的每一所述普通接收机的修正探测值。进一步地,使用每一所述普通接收机的修正探测值计算所述RTK接收机的定位结果时,能够获取比较准确的定位结果。
第八方面,本申请提供了一种修正值计算服务站(也可以简称为服务站)。该服务站包括处理器和存储器,其中,所述存储器用于存储实时动态RTK误差修正模型和多接收机约束MRC误差修正模型。
具体的,所述处理器用于:
将RTK接收机的原始探测值输入所述RTK误差修正模型,通过计算得到第一类修正值,以及,
将RTK接收机的转化探测值输入所述MRC误差修正模型,通过计算得到第二类修正值,以便所述定位终端根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
进一步地,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。
所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
本实施例提供的服务器可以执行第七方面所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面所述的定位方法的有益效果的描述。
结合第八方面,在第一种可能的实施方式中,该服务站还包括收发器。所述收发器用 于接收所述RTK接收机的原始探测值,并将所述第一类修正值发送给所述定位终端。
结合第八方面的第一种可能的实施方式,在第二种可能的实施方式中,所述收发器还用于接收所述RTK接收机的转化探测值。
本实施例提供的服务器可以执行第七方面的第二种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第二种可能的实施方式所述的定位方法的有益效果的描述。
结合第八方面的第一种可能的实施方式,在第三种可能的实施方式中,所述收发器还用于接收每一所述普通接收机的原始探测值。相应的,所述处理器还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
本实施例提供的服务器可以执行第七方面的第三种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第三种可能的实施方式所述的定位方法的有益效果的描述。
结合第八方面的第二种或第三种可能的实施方式,在第四种可能的实施方式中,所述收发器还用于将所述第二类修正值发送给所述定位终端,以使所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。
本实施例提供的服务器可以执行第七方面的第四种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第四种可能的实施方式所述的定位方法的有益效果的描述。
结合第八方面的第二种或第三种可能的实施方式,在第五种可能的实施方式中,所述处理器还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。相应的,所述收发器还用于将所述第三类修正值发送给所述定位终端。
本实施例提供的服务器可以执行第七方面的第五种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第五种可能的实施方式所述的定位方法的有益效果的描述。
结合第八方面或第八方面的第一种至第五种可能的实施方式中任一种可能的实施方式,在第六种可能的实施方式中,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。
本实施例提供的服务器可以执行第七方面的第六种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第六种可能的实施方式所述的定位方法的有益效果的描述。
结合第八方面或第八方面的第一种至第五种可能的实施方式中任一种可能的实施方式,在第七种可能的实施方式中,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
本实施例提供的服务器可以执行第七方面的第七种可能的实施方式所述的定位方法, 因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第七种可能的实施方式所述的定位方法的有益效果的描述。
第九方面,本申请提供了另一种修正值计算服务站(也可以称为“服务站”)。在该修正值计算服务站中,存储单元,用于存储实时动态RTK误差修正模型和多接收机约束MRC误差修正模型。
第一计算单元,用于将RTK接收机的原始探测值输入所述RTK误差修正模型,通过计算得到第一类修正值。
值得注意的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
第二计算单元,用于将所述RTK接收机的转化探测值输入所述MRC误差修正模型,通过计算得到第二类修正值,以便所述定位终端根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要解释的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。
所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
本实施例提供的服务器可以执行第七方面所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面所述的定位方法的有益效果的描述。
结合第九方面,在第一种可能的实施方式中,该服务站还包括收发单元。所述收发单元用于接收所述RTK接收机的原始探测值,以及将所述第一类修正值发送给所述定位终端。
结合第九方面的第一种可能的实施方式,在第二种可能的实施方式中,所述收发单元还用于接收所述RTK接收机的转化探测值。
本实施例提供的服务器可以执行第七方面的第二种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第二种可能的实施方式所述的定位方法的有益效果的描述。
结合第九方面的第一种可能的实施方式,在第三种可能的实施方式中,所述修正值计算服务站还包括第一转化单元。所述第一转化单元用于接收每一所述普通接收机的原始探测值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
本实施例提供的服务器可以执行第七方面的第三种可能的实施方式所述的定位方法, 因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第三种可能的实施方式所述的定位方法的有益效果的描述。
结合第九方面的第二种或第三种可能的实施方式,在第四种可能的实施方式中,所述收发单元还用于将所述第二类修正值发送给所述定位终端,以使所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。
本实施例提供的服务器可以执行第七方面的第四种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第四种可能的实施方式所述的定位方法的有益效果的描述。
结合第九方面的第二种或第三种可能的实施方式,在第五种可能的实施方式中,所述修正值计算服务站还包括第二转化单元。所述第二转化单元用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。相应的,所述收发单元还用于所述第三类修正值发送给所述定位终端。
本实施例提供的服务器可以执行第七方面的第五种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第五种可能的实施方式所述的定位方法的有益效果的描述。
结合第九方面或第九方面的第一至第五种可能的实施方式中任一种可能的实施方式,在第六种可能的实施方式中,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。
本实施例提供的服务器可以执行第七方面的第六种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第六种可能的实施方式所述的定位方法的有益效果的描述。
结合第九方面或第九方面的第一至第五种可能的实施方式中任一种可能的实施方式,在第七种可能的实施方式中,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
本实施例提供的服务器可以执行第七方面的第七种可能的实施方式所述的定位方法,因此,本实施例所述的服务器的有益效果可以参见前面对第七方面的第七种可能的实施方式所述的定位方法的有益效果的描述。
附图说明
图1是本申请提供的定位方法的应用场景图。
图2是本申请提供的定位方法涉及的定位终端的结构示意图。
图3是本申请提供的定位方法的示意图。
图4A是本申请的一个实施例涉及的一种定位方法的示意图。
图4B是本申请的另一个实施例涉及的一种定位方法的示意图。
图4C是本申请的再一个实施例涉及的一种定位方法的示意图。
图4D是本申请的又一个实施例涉及的一种定位方法的示意图。
图5A是本申请提供的定位方法涉及的RTK接收机的位置的概率分布P1。
图5B是本申请提供的定位方法涉及的RTK接收机的位置的概率分布P2。
图5C是本申请提供的定位方法涉及的RTK接收机的位置的概率分布P3。
图6是本申请提供的定位系统的示意图。
图7是本申请提供的另一种定位方法的流程示意图。
图8是本申请提供的一种定位终端的示意图。
图9是本申请提供的再一种定位方法的流程示意图。
图10是本申请提供的一种修正值计算服务站的示意图。
图11A是本申请提供的另一种修正值计算服务站的示意图。
图11B是本申请提供的又一种修正值计算服务站的示意图。
图11C是本申请提供的又一种修正值计算服务站的示意图。
图11D是本申请提供的又一种修正值计算服务站的示意图。
图12A是本申请的又一种定位方法的流程示意图。
图12B是图12A所示一种定位方法的流程示意图的更具体的表现形式。
图13是本申请提供的另一种定位终端的示意图。
具体实施方式
在对本申请所述的技术方案进行描述之前,本申请人首先对本申请涉及的且在前文中没有被解释的技术名词进行解释。
基准站是指对卫星导航信号进行长期连续探测,并由通信设施将探测数据实时或定时传送至数据中心的地面固定探测站。
流动站是在基准站的一定范围内移动作业的接收机所设立的探测站。
多接收机约束(Multi Receivers Constraints,MRC)技术,是指利用多台接收机进行定位的技术,该技术是利用多台接收机的位置的几何约束对定位终端进行定位的。
全球定位系统(Global Positioning System,GPS),又称为全球卫星定位系统,或卫星导航系统,是美国国防部研制和维护的中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的标准时间。在本申请中,将主要使用卫星导航系统进行描述。
伪距是指在卫星定位过程中,接收机到卫星之间的大概距离。假设卫星的时钟和接收机的时钟严格保持同步,根据卫星发射信号的时间与接收机接收到信号的时间就可以得到信号的传播时间,再乘以传播速度就可以得到卫星与接收机之间的距离。然而两个时钟不可避免存在钟差,且信号在传播过程中还要受到大气折射等因素的影响,所以通过这种方法直接测得的距离并不等于卫星到接收机的真正距离,于是把这种距离称之为伪距。
载波是一种特定频率的无线电波,它能将经过调制的伪码和数据码以正弦波的形式播发出去,所以可把它视为GPS星信号的最底层。GPS中的每颗卫星使用两种不同频率的载波频段:L1载波频段和L2载波频段。其中,L1载波频段是民用的,L2载波频段是军用的。L1载波频段的频率f1为1575.42MHz。
解算位置是指通过计算确定的位置。例如在“所述定位终端利用每一所述普通接收机的修正探测值,基于MRC定位算法,计算得到每一普通接收机的解算位置”中,每一普通接收机的解算位置是指利用每一所述普通接收机的修正探测值,基于MRC定位算法进行计 算,确定出的每一普通接收机的位置。通常,接收机的解算位置与该接收机的实际物理位置之间存在差异。本申请提供的定位技术就是为了使得RTK接收机的解算位置相对于现有技术而言,更加接近该RTK接收机的实际物理位置。
接下来,将对本申请涉及的定位方法、定位系统、定位终端以及修正值计算服务站进行描述。
第一部分
请参见附图1,它示出了本申请提供的高精度定位方法的应用场景。如图1所示,该定位终端被设置在汽车上,或者说该定位终端为一种车载设备。在该定位终端被设置在汽车上时,具体的,该定位终端可以被装在车顶,也可以被装在其他需要定位的地方。可选的,该定位终端具体可以为智能手机。该应用场景可以是包括高楼和大树的城市环境,设置有定位终端的汽车行驶在公路上。结合附图1,还容易看出,该定位终端与服务站之间具有通信连接。自然,该定位终端和服务站之间还可以具有交换机等其他中继网络设备,也即,该定位终端和该服务站之间的通信遵循现有的通信协议和通信方式。
进一步地,如图1所示,该定位终端能够探测到位于GPS内的多个卫星(图1中示出的是4个)。应当知道的是,GPS位于大气层之上。
需要说明的是,如图3所示,本申请提供的定位方法包括如下步骤。
步骤A、定位终端对卫星导航系统进行探测,得到原始探测消息。
如图2所示,为本申请涉及的所述定位终端的结构示意图。所述定位终端包括多个接收机,该多个接收机包括N个普通接收机和1个RTK接收机,其中,N为大于或等于3的整数。该N个普通接收机位于正N边形的N个顶点(或者说,该N个普通接收机的几何拓扑结构为正N边形),该RTK接收机位于该正N边形的几何中心。所述普通接收机至少具备测量所述普通接收机与卫星之间的伪距的能力。应当知道的是,所述卫星位于所述卫星导航系统内且被所述普通接收机探测到。所述RTK接收机是指具有执行RTK算法的能力的接收机。
可选的,该定位终端可以如图2所示的,包括三个普通接收机和一个RTK接收机。这三个普通接收机分别位于正三角形的三个顶点,且该RTK接收机位于所述正三角形的中心。
值得注意的是,该原始探测消息包括位于该定位终端内的多个接收机的数量和该多个接收机中每一接收机的原始探测值。如果该接收机为普通接收机,则该接收机的原始探测值包括该接收机与该接收机探测到的多个卫星中的每一卫星之间的伪距。如果该接收机为RTK接收机,则该接收机的原始探测值包括该接收机与该接收机探测到的多个卫星中的每一卫星之间的载波。应当知道的是,无论是普通接收机探测到的多个卫星还是RTK接收机探测到的多个卫星,均是位于卫星导航系统内的。值得注意的是,通常,RTK接收机的原始探测值还包括该RTK接收机与该RTK接收机探测到的多个卫星中的每一卫星之间的伪距。因为在有的情况下,载波不能被探测到,所以定位终端就不能够利用载波计算该RTK接收机的解算位置,但是该定位终端还可以利用伪距计算该RTK接收机的解算位置,尽管利用伪距计算的解算位置的精度要低于利用载波计算的解算位置。
普通接收机通过测距码计算该普通接收机和该普通接收机探测到的卫星之间的伪距。RTK接收机通过载波信号探测该RTK接收机和该RTK接收机探测到的卫星之间的伪距。
作为本申请的第一个实施例,如图4A和4B所示,在步骤A之后(或者说在所述定位终端获取所述原始探测消息之后),该定位方法还包括所述定位终端将所述原始探测消息上报给修正值计算服务站(步骤B1)。所述定位终端将所述原始探测消息上报给所述修正值 计算服务站,具体是指,该定位终端将该原始探测消息整理成报文,上报至该修正值计算服务站,用来请求修正消息。因此,相应的,该修正值计算服务站将收到格式统一的报文。
需要说明的是,该报文的头部(下面将被简称为“报文头”)至少可以包括用于表示如下信息的字段:该修正值计算服务站的编号,位于该定位终端内的接收机的数量,所述RTK接收机的原始探测值,每一所述普通接收机的原始探测值。
另外,该报文头还可以包括用于表示消息编号、GNSS(Global Navigation Satellite System,全球卫星导航系统)历元和GNSS同步标示位等消息的字段。该消息编号用于表示是哪一个定位终端发送的第几个修正消息请求。根据该消息编号,一方面能够使该定位终端与该修正值计算服务站之间的消息同步,另一方面该修正值计算服务站还能够根据该消息编号确定发送该报文的定位终端。该GNSS历元用于表示每一接收机探测到的卫星的位置。该GNSS同步标示位用于表示多个接收机中每一接收机探测到的多个卫星是否都是在同一GNSS历元下探测到的。可选的,如果该GNSS同步标示位等于1,则表示多个接收机中每一接收机探测到的多个卫星都是在同一GNSS历元下探测到的。
如图4A和4B所示,它们均还包括步骤B2、B3和步骤B4。根据步骤之间的逻辑关系,容易判断出,步骤B3发生在步骤B1之后以及步骤B4之前。步骤B2包括步骤B2-1、步骤B2-2和步骤B2-3(也即步骤B2-1至步骤B2-3)。步骤B4包括步骤B4-1、步骤B4-2、步骤B4-3和步骤B4-4(也即步骤B4-1至步骤B4-4)。需要说明的是,步骤B2-1至步骤B2-3的发生时间是有先后顺序的,这一点还可以通过步骤B2-1至步骤B2-3的逻辑关系体现出来。具体的,步骤B2-1至步骤B2-3是按照步骤B2-1、步骤B2-2和步骤B2-3的排列顺序依次发生的。类似地,步骤B4-1至步骤B4-5的发生时间也是有先后顺序的,这一点也可以通过步骤B4-1至步骤B4-5的逻辑关系体现出来。具体的,步骤B4-1至步骤B4-5是按照步骤B4-1、步骤B4-2、步骤B4-3、步骤B4-4和步骤B4-5的排列顺序依次发生的。
值得关注的是,步骤B2和步骤B3的发生时间没有特定顺序。进一步地,步骤B2和步骤B4的发生时间没有特定顺序。它们有可能是按照图4A和图4B所示的顺序发生的,也即先执行步骤B2再执行步骤B4,也有可能是先执行步骤B4再执行步骤B2,更加可能的是,步骤B2包括的部分步骤和步骤B4包括的部分步骤是同时发生的,步骤B2包括的其他步骤和步骤B4包括的其他步骤是穿插着发生的(也即不是同时发生的且发生时间有先后顺序)。
可选的,在图4A对应的实施例中,步骤B2-2和步骤B4-4同时发生。
可选的,在图4B对应的实施例中,步骤B2-2和步骤B4-3同时发生。
结合图4A和图4B中各个步骤的内容,应当知道的是,步骤B2是发生在步骤B1之后,以及步骤C之前的。还能够确定的是,步骤B4是发生在步骤B3之后,以及步骤C之前的。
作为本申请的第二个实施例,如图4C和4D所示,在步骤A之后(或者说在所述定位终端获取所述原始探测消息之后),该定位方法还包括下述步骤。
B1:所述定位终端将所述RTK接收机的原始探测值上报给所述修正值计算服务站。
B3-1:所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为RTK接收机的转化探测值。
B3-2:所述定位终端将所述RTK接收机的转化探测值上报给所述修正值计算服务站。
容易知道,在本实施例中,所述定位终端上报给所述修正值计算服务站的是所述RTK接收机的原始探测值和所述RTK接收机的转化探测值。与前述实施例类似的是,在本实施例中,所述定位终端也是将所述RTK接收机的原始探测值和所述RTK接收机的转化探测值 整理成报文,上报至该修正值计算服务站,用来请求修正消息。相应的,该修正值计算服务站也将收到格式统一的报文。
值得注意的是,本实施例所述的报文头与前述实施例所述的报文头的不同之处在于,在本实施例中,所述报文头包括的是用于表示所述RTK接收机的转化探测值的字段,而不是每一所述普通接收机的原始探测值的字段。除此之外,前述实施例所述的报文头包括的其他字段,比如用于表示该修正值计算服务站的编号的字段、用于表示该定位终端包括的接收机的数量的字段以及用于表示所述RTK接收机的原始探测值的字段等,均可以包括在本实施例所述的报文头中。
已知的,每一普通接收机的原始探测值包括该普通接收机与该普通接收机探测的每一颗卫星之间的伪距。需要解释的是,RTK接收机的转化探测值包括RTK接收机与对应普通接收机探测到的每一颗卫星之间的伪距。例如,普通接收机1的原始探测值包括普通接收机1与其探测到的N1颗卫星中每一颗卫星之间的伪距,则与普通接收机1的原始探测值相对应的RTK接收机的转化探测值包括RTK接收机与普通接收机1探测到的N1颗卫星中每一颗卫星之间的伪距。因此,在所述定位终端包括N个普通接收机的情况下,如果普通接收机1探测到N1颗卫星,普通接收机2探测到N2颗卫星,……,普通接收机N探测到Nn颗卫星,则该定位终端发送给该修正值计算服务站的所有RTK接收机的转化探测值应当包括N1+N2+…+Nn个伪距。
如图4C和4D所示,它们除了包括步骤B1和步骤B3,还包括步骤B2和步骤B4。但是,在图4C和图4D对应的实施例中,对步骤B2的限定可以参见前面对图4A和4B中的步骤B2的限定,对步骤B4的限定可以参见前面对图4A和4B中的步骤B4的限定,此处不再赘述。此处需要对步骤B1和步骤B3进行解释。如图4C和4D所示,步骤B3包括步骤B3-1和步骤B3-2。应当知道的是,步骤B2发生在步骤B1之后以及步骤C之前,且步骤B4发生在步骤B3之后以及步骤C之间,这些通过相关步骤之间的逻辑关系能够确定。进一步地,步骤B3-1的发生时间早于步骤B3-2的发生时间,这一点通过这两个步骤之间的逻辑关系也能够确定。但是,步骤B2和步骤B3发生时间没有特别的限定。进一步地,步骤1和步骤3发生时间没有特别的限定。步骤B1与步骤B3-1可以同时发生,也可以不同时发生。但是如果所述定位终端是将所述RTK接收机的原始探测值和所述RTK接收机的转化探测值整理成报文,统一上报至该修正值计算服务站的,则应当知道的是,步骤B1和步骤B3-2是同时发生的,且步骤B2和步骤B4均是在接收到所述报文之后被执行的。
通过比较本申请的第一个实施例和第二个实施例,容易知道,它们的差别在于将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值的执行主体不同。在第一个实施例中,该执行主体为所述修正值计算服务站,而在第二个实施例中,该执行主体为所述定位终端。
步骤B2-1、所述修正值计算服务站将所述RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值。
步骤B2-3、所述定位终端利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值。
需要说明的是,在步骤B2-1之前,所述修正值计算服务站需要接收所述RTK接收机的原始探测值。具体的,可以如图4A和4B所示,在所述定位终端将所述原始探测消息上报给所述修正值计算服务站(步骤B1)后,由于所述原始探测消息包括所述RTK接收机的原始 探测值,所以所述修正值计算服务站可以将从所述原始探测消息中获取所述RTK接收机的原始探测值。
可选的,还可以如图4C和图4D所示,在所述定位终端将所述RTK接收机的原始探测值上报给所述修正值计算服务站(步骤B1)后,所述修正值计算服务站将获取所述RTK接收机的原始探测值。
值得注意的是,如图4A至4D所示,在步骤B2-1之后以及步骤B2-3之前,本实施例所述的定位方法还包括:所述修正值计算服务站将所述第一类修正值发送给所述定位终端(步骤B2-2)。
需要说明的是,该第一类修正值中包括的修正值的数量与RTK接收机的原始探测值中包括的载波或伪距的数量(或RTK接收机探测到的卫星的数量)是相等的,且该第一类修正值中包括的修正值与RTK接收机的原始探测值中包括的载波或伪距是一对一的。假设RTK接收机探测到M颗卫星,则RTK接收机的原始探测值中包括RTK接收机与该M颗卫星中每一颗卫星之间的载波或伪距,因此,该RTK接收机的原始探测值中包括M个载波或伪距。相应的,该第一类修正值中包括M个修正值,且该M个修正值与该M个载波或伪距是一对一的。
步骤B4-1、所述修正值计算服务站将所述RTK接收机的转化探测值输入MRC误差修正模型,通过计算得到第二类修正值。
步骤B4-4、所述定位终端利用第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值。
作为本申请的第三个实施例,如图4A和图4B所示,在步骤B4-1之前,所述定位定法还包括:
步骤B3、所述修正值计算服务站依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
作为本申请的第四个实施例,如图4A和图4B所示,在步骤B4-1之前,所述定位方法还包括:
步骤B3-1、所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
步骤B3-2、所述定位终端将所述RTK接收机的转化探测值上报给所述修正值计算服务站。
第三个实施例和第四个实施例的差别在于将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值的执行主体是所述修正值计算服务站还是所述定位终端。在第三个实施例中,执行主体是所述修正值计算服务站。在第四个实施例中,执行主体是所述定位终端。
作为本申请的第五个实施例,如图4A和图4C所示,在步骤B4-1之后以及步骤B4-4之前,所述定位方法还包括:
步骤B4-2、所述修正值计算服务站依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。
步骤B4-3、所述修正值计算服务站将所述第三类修正值发送给所述定位终端。
作为本申请的第六个实施例,如图4B和图4D所示,在步骤B4-1之后以及步骤B4-4之前,所述定位方法还包括:
步骤B4-2、所述修正值计算服务站将所述第二类修正值发送给所述定位终端。
步骤B4-3、所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。
第五个实施例和第六个实施例的差别在于将所述第二类修正值转化为所述第三类修正值的执行主体是所述修正值计算服务站还是所述定位终端。在第五个实施例中,执行主体是所述修正值计算服务站。在第六个实施例中,执行主体是所述定位终端。
值得注意的是,在本申请中,在将与每一所述普通接收机的原始探测值相对应的所述RTK接收机的转化探测值输入至所述MRC误差修正模型进行计算后,能够得到与每一所述RTK接收机的转化探测值对应的第二类修正值。
假设普通接收机1探测到了N1个卫星,则普通接收机1的原始探测值是指普通接收机1探测到的其与N1个卫星中每一卫星之间的伪距,可知,普通接收机1的原始探测值包括普通接收机1探测到的N1个伪距。则在将普通接收机1的原始探测值转化为RTK接收机的转化探测值时,是将普通接收机1探测到的N1个伪距转化为所述RTK接收机的转化探测值。值得注意的是,与普通接收机1的原始探测值对应的所述RTK接收机的转化探测值包括N1个转化值,这N1个转化值与普通接收机1探测到的N1个伪距是一对一的。
进一步地,在得到与普通接收机1的原始探测值对应的所述RTK接收机的转化探测值,并将与普通接收机1的原始探测值对应的所述RTK接收机的转化探测值输入至所述MRC误差修正模型之后,将会得到对应的第二类修正值。需要解释的是,该对应的第二类修正值也包括N1个修正值,且这N1个修正值与前述的N1个转化值是一对一的。之后,依据普通接收机1与所述RTK接收机的位置关系(或普通接收机1的坐标与所述RTK接收机的坐标之间的关系),将该对应的第二类修正值转化为对应的第三类修正值。应当知道的是,此处所述对应的第三类修正值是与普通接收机1的原始探测值对应的第三类修正值。值得注意的是,所述对应的第三类修正值也包括N1个修正值,且这N1个修正值与普通接收机1探测到的N1个伪距是一对一的,且每一修正值被所述定位终端用来修正普通接收机1探测到的N1个伪距中对应的那个伪距。
需要解释的是,对于所述定位终端包括的N个普通接收机中的每一普通接收机来说,均遵循前述针对普通接收机1的相关规定。具体的,在普通接收机N1探测到的卫星的数量为N1的情况下,普通接收机1的原始探测值包括的探测值的数量为N1,且该N1个探测值与普通接收机N1探测到的N1个卫星是一对一的。与普通接收机N1的原始探测值相对应的RTK接收机的转化探测值(又被简称为“对应的RTK接收机的转化探测值”)包括的转化值的数量也为N1,且该N1个转化值与该N1个伪距也是一对一的。与所述对应的RTK接收机的转化探测值相对应的第二类修正值(又被简称为“对应的第二类修正值”)包括的修正值的数量也为N1,且所述对应的第二类修正值包括的N1个修正值与该N1个转化值也是一对一的。进一步地,与所述对应的第二类修正值相对应的第三类修正值(又被简称为“对应的第三类修正值”)包括的修正值的数量也为N1,且所述对应的第三类修正值包括的N1个修正值与所述对应的第二类修正值包括的N1个修正值是一对一的。结合上述解释,容易知道的是,所述对应的第三类修正值包括的N1个修正值与普通接收机1的原始探测值包括的N1个探测值是一对一的,且每一修正值用于对对应的探测值进行修正,得到修正后的探测值(也被称为“修正探测值”)。
结合之前的描述,可以知道,普通接收机1的原始探测值包括的探测值可以是伪距, 则相应的,所述对应的第三类修正值包括的每一个修正值用于对对应的伪距进行修正,得到修正后的伪距。
如图4A和4C所示,该修正值计算服务站在将所述第一类修正值和所述第三类修正值返回给所述定位终端时,可以将所述第一类修正值和所述第三类修正值以报文的形式返回给所述定位终端。类似地,如图4B和4D所示,该修正值计算服务站在将所述第一类修正值和所述第二类修正值返回给所述定位终端时,也可以将所述第一类修正值和所述第二类修正值以报文的形式返回给所述定位终端。需要说说明的是,该报文可以至少包括用于表示如下信息的字段:每一接收机的编号,每一接收机探测到的卫星的编号,针对每一接收机的原始探测值中包括的每一探测值的修正值。应当知道的是,接收机的编号、卫星的编号以及探测值的修正值之间具有对应关系。
如图3所示,步骤B2-1和步骤B2-3位于步骤B2内,且步骤B4-1和步骤B4-4位于步骤B4内。需要说明的是,步骤B2-1和步骤B2-3的发生时间有先后顺序,其中,步骤B2-1比步骤B2-3的发生时间早,这一点根据这两个步骤之间的逻辑关系也能确定出来。
类似的,步骤B4-1比步骤B4-4的发生时间早。但是对于步骤B2和步骤B4来说,首先它们各组包含多个步骤,其次,它们的发生时间没有特定的时间限制。比如,步骤B2-1可以比步骤B4-1的发生时间早,也可以比步骤B4-1的发生时间晚。
在本申请中,该修正值计算服务站可以为基准站、数据服务器或云端服务器等。
作为本申请的第七个实施例,该修正值计算服务站为基准站,则在执行本申请所述的定位方法之前,需要预先在所述基准站上构建所述RTK误差修正模型(或MRC误差修正模型)。由于该基准站仅能和位于该基准站覆盖区域内的定位终端进行交互,因此在该基准站上构建的所述RTK误差修正模型(或所述MRC误差修正模型)为小范围模型。
作为本申请的第八个实施例,该修正值计算服务站为数据服务器。通常,数据服务器为覆盖的范围内具有3至5个基准站。值得注意的是,所述广域RTK误差计算模型是数据服务器获取位于该数据服务器覆盖范围内的每一基准站的RTK误差计算模型,并根据该每一基准站的RTK误差计算模型,通过计算得到的。类似的,所述广域MRC误差计算模型是数据服务器获取位于该数据服务器覆盖范围内的每一基准站的MRC误差计算模型,并根据该每一基准站的MRC误差计算模型,通过计算得到的。
应当知道的是,该定位终端向该数据服务器发送消息时,以及该数据服务器向该定位终端下发消息时,均可以经过数据中心、交换机或其他中继通信设备。也即,该定位终端和该数据服务器在进行消息交互时,可以沿用现有的通信网络以及通信方式。
作为本申请的第九个实施例,该修正值计算服务站为云端服务器。其中,该云端服务器覆盖的范围非常广。值得注意的是,所述统一RTK误差计算模型是云端服务器获取位于该云端服务器覆盖范围内的每一数据服务器的广域RTK误差计算模型,并根据该每一数据服务器的广域RTK误差计算模型,通过计算得到的。类似的,所述统一MRC误差计算模型是云端服务器获取位于该云端服务器覆盖范围内的每一数据服务器的广域MRC误差计算模型,并根据该每一数据服务器的广域MRC误差计算模型,通过计算得到的。应当知道的是,该定位终端和该云端服务器在进行消息交互时,也可以沿用现有的通信网络以及通信方式。
步骤C、所述定位终端利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
如图4A至图4D所示,在步骤B2-3和步骤B4-4之后,或者说,在所述定位终端得到所述RTK接收机的修正探测值和每一所述普通接收机的修正探测值之后,所述定位终端将执行步骤C。
需要说明的是,利用RTK接收机的修正探测值,基于RTK定位算法,能够得到该RTK接收机基于RTK定位算法的解算位置(可以简称为该RTK接收机的解算位置)。
相应的,利用每一普通接收机的修正探测值,基于MRC定位算法,能够得到每一普通接收机基于MRC定位算法的解算位置(可以简称为每一普通接收机的解算位置)。在得到每一普通接收机基于MRC定位算法的解算位置之后,还需要根据每一普通接收机基于MRC定位算法的解算位置,得到该正N边形的几何中心基于MRC定位算法的解算位置。值得注意的是,由于在本申请中,所述RTK接收机位于该正N边形的几何中心,因此得到该正N边形的几何中心基于MRC定位算法的解算位置,就相当于是得到了该RTK接收机基于MRC定位算法的解算位置。
然后,再利用概率模型对该RTK接收机基于RTK定位算法的解算位置和该RTK接收机基于MRC定位算法的解算位置进行融合计算,从而得到该RTK接收机的高精度定位结果。
需要说明的是,所谓的利用概率模型进行融合计算,具体包括如下两个方面。一方面,如图5A所示,利用RTK接收机基于RTK定位算法的解算位置的解类型(固定解或浮点解等)、水平几何精度因子(Horizontal Dilution of Precision,HDOP)以及所述RTK接收机探测到的卫星数,构建所述RTK接收机的位置的概率分布P1。另一当面,如图5B所示,将该正N边形的实际几何拓扑与通过计算得到的正N变形的几何拓扑结构进行比较,利用正N边形的相似程度,得到该正N边形的几何中心的位置的概率分布P2。
已经知道的是,所述N个普通接收机位于该正N边形的N个顶点,此处所述的正N边形是基于所述N个普通接收机的实际位置确定的,因此可以成为实际的正N边形。还已经知道的是,利用每一普通接收机的修正探测值,基于MRC定位算法,能够得到每一普通接收机基于MRC定位算法的解算位置。需要说明的是,通过该计算确定的N个普通接收机位于所述通过计算得到的正N边形的N个顶点。因为通过计算确定的每一普通接收机的位置与对应普通接收机的实际位置存在差异,所以所述通过计算得到的正N边形的几何拓扑与所述实际的正N边形的几何拓扑也存在差异(或者说,是不同的)。
需要解释的是,RTK接收机在探测卫星时,根据GNSS历元,能够确定被探测到的多颗卫星的分布情况。根据该多颗卫星的分布情况,该定位终端能够计算得到HDOP。
如图5C所示,利用P1和P2,得到联合概率分布P3。其中,该联合概率分布P3中的最大解即为该RTK接收机基于本申请提供的定位方法确定的定位结果(例如图5C中代表P3的曲线上的标注点A,即用于表示该RTK接收机基于本申请提供的定位方法确定的定位结果)。
值得注意的是,所谓“利用正N边形的相似程度”,可以利用所述实际的正N边形与所述通过计算得到的正N边形的重合面积与所述实际的正N边形的面积的比值(也即利用面积关系)。值得注意的是,还可以利用所述实际的正N边形的边长与所述通过计算得到的正N边形的边长之间的关系,或者,利用所述实际的正N边形的顶角与所述通过计算得到的正N边形的顶角之间的关系等。
应当知道的是,在执行前述高精度定位方法之前,还需要利用大数据技术预先在所述修正值计算服务站内分别构建所述RTK误差修正模型和所述MRC误差修正模型。其中,这两种误差修正模型均是采用回归方程构建的(或者说是利用回归技术构建的)。
具体的,所述MRC误差修正模型是利用回归方程为y=f(x)构建的。其中,x是所述RTK接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数。具体的,f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
可选的,f(x)具体为wx+b,也即该回归方程为y=wx+b。其中,该回归方程可以基于下述方法确定。
值得注意的是,普通接收机k与其探测到的卫星i之间的伪距可以通过下述伪距计算方程(1)获得。其中,普通接收机k为本申请所述的N个普通接收机中的任意一个接收机,卫星i为该普通接收机k探测到的多个卫星中的任意一颗卫星。
Figure PCTCN2019128501-appb-000001
Figure PCTCN2019128501-appb-000002
代表卫星i与接收机K的实际距离,
Figure PCTCN2019128501-appb-000003
代表卫星i与接收机K的伪距,
Figure PCTCN2019128501-appb-000004
代表卫星i与接收机K之间的轨道误差,c表示真空光速,dt i表示卫星i的钟差,dT k表示接收机k的钟差,
Figure PCTCN2019128501-appb-000005
表示电离层对从卫星i传播到接收机k的电磁波的干扰,导致的测距码从卫星i传播到接收机k发生的延迟,
Figure PCTCN2019128501-appb-000006
表示对流层对从卫星i传播到接收机k的电磁波的干扰,导致的测距码从卫星i传播到接收机k发生的延迟,
Figure PCTCN2019128501-appb-000007
表示测距码从卫星i传播到接收机k时由于多路径效应导致的误差,ε P表示接收机K的探测噪声。
Figure PCTCN2019128501-appb-000008
将方程(2)代入方程(1),则方程(1)变形为如下所示的方程(3):
Figure PCTCN2019128501-appb-000009
其中,卫星i的坐标为(x i,y i,z i),普通接收机K的坐标为(x k,y k,z k)。
则方程(3)可以变形为如下所示的方程(4):
Figure PCTCN2019128501-appb-000010
Figure PCTCN2019128501-appb-000011
进行线性化处理,能够得到方程(4)的线性表达形式,依据前述回归方程y=wx+b的形式,对该线性表达形式的方程(4)进行变形或整理,就能够得到线性的伪距回归方程(也即构建所述MRC误差修正模型所利用的回归方程)。
在得到该伪距回归方程后,通过构建神经网络,并向该神经网络输入每一个普通接收机的原始探测值,利用反向传播算法计算该伪距回归方程的参数w。在该参数w确定之后,将该参数w代入该伪距回归方程,则就能够得到前述MRC误差修正模型。之后,向该MRC误差修正模型中输入每一普通接收机的原始探测值,通过求解就能得到对应普通接收机的原始探测值的第一类修正值。需要说明的是,该第一类修正值即为该伪距回归方程的参数b的值。
类似的,所述RTK误差修正模型也是利用回归方程y=f(x)构建的。不同之处在于,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数。具体的,f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波(或伪距),通过训练得到的。
可选的,f(x)可以为wx+b,也即该回归方程为y=wx+b。需要说明的是,可以根据前述依据伪距计算方程获得伪距回归方程的方法,依据载波计算方程获得载波回归方程。应当知道的是,该载波回归方程即为构建所述RTK误差修正模型所需的y=wx+b类型的回归方程。
在得到载波回归方程之后,也通过构建神经网络,并向该神经网络输入所述RTK接收机的原始探测值,利用反向传播算法计算该载波回归方程的参数w。在该参数w确定之后,将该参数w代入该载波回归方程,则就能够得到所述RTK误差修正模型。之后,向该RTK误差修正模型中输入所述RTK接收机的原始探测值,通过求解就能得到所述第一类修正值。需要说明的是,该第一类修正值即为该载波回归方程的参数b的值。
根据前文描述,已经知道的是,所述RTK接收机的原始探测值包括载波。但是在载波探测不到的情况下,所述RTK接收机的原始探测值包括伪距。在这种情况下,则可以利用前述确定的伪距回归方程,通过构建神经网络,并向该神经网络输入所述RTK接收机的原始探测值,利用反向传播算法计算该伪距回归方程的参数w。在该参数w确定之后,将该参数w代入该伪距回归方程,则就能够得到所述RTK误差修正模型。之后,向该RTK误差修正模型中输入所述RTK接收机的原始探测值,通过求解就能得到所述第一类修正值。需要说明的是,该第一类修正值即为该载波回归方程的参数b的值。
第二部分
如图6所示,本申请提供了一种定位系统60,定位系统60包括定位终端61和修正值计算服务站62。需要说明的是,定位终端61用于执行在第一部分描述的各个方法实施例中所述定位终端所执行的操作。对应的,修正值计算服务站62用于执行在第一部分描述的各个方法实施例中所述修正值计算服务站所执行的操作。由于在第一部分,关于所述定位终端所执行的操作以及所述修正值计算服务站所执行的操作已经有详细且充分的描述,因此在定位系统60中,定位终端61以及修正值计算服务站62所用于执行的操作参见第一部分的相关描述即可。为了节省篇幅,重复部分此处不再赘述。
第三部分
如图7所示,为本申请提供的一种定位方法的流程图。该定位方法是由定位终端执行的。作为本申请的一个实施例,该定位方法包括如下步骤。
S11、RTK接收机对卫星导航系统进行探测,获取第一探测信号。
S12、对所述第一探测信号进行解析,获取RTK接收机的原始探测值。
需要说明的是,所述RTK接收机至少具有执行RTK定位算法的能力,且所述RTK接收机的数量为1。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波。
在所述RTK接收机探测不到载波时,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的伪距。
S13、N个普通接收机中每一普通接收机对所述卫星导航系统进行探测,获取第二探测信号。
值得注意的是,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心,所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
S14、对所述第二探测信号进行解析,获取每一普通接收机的原始探测值。
所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于卫星导航系统的多个卫星中每一卫星之间的伪距。
S15、利用每一普通接收机的修正探测值和RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,所述RTK接收机的修正探测值是利用第一类修正值对所述RTK接收机的原始探测值进行修正得到的,而所述第一类修正值是所述修正值计算服务站针对所述RTK接收机的原始探测值生成的修正值。
进一步地,每一所述普通接收机的修正探测值是利用第三类修正值对每一所述普通接收机的原始探测值进行修正得到的。所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,对第二类修正值进行转化得到的。所述第二类修正值是是修正值计算服务站针对RTK接收机的转化探测值生成的修正值。所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。
应当知道的是,除了前述步骤之外,第三部分提供的定位方法还可以包括所述定位终端在第一部分的各个实施例中所执行的操作,因此,可以结合第一部分的相关描述,来了解第三部分所述的由定位终端执行的定位方法。为了节省篇幅,重复部分此处不再赘述。
第四部分
如图8所示,为本申请提供的一种定位终端80的结构示意图。定位终端80包括处理器81、1个K接收机82和N个普通接收机83。值得注意的是,本部分所述的定位终端用于执行第三部分所述的定位方法。
具体的,RTK接收机82用于对卫星导航系统进行探测,获取第一探测信号。
处理器81用于解析所述第一探测信号获取RTK接收机82的原始探测值。
其中,RTK接收机82的原始探测值包括RTK接收机82与RTK接收机82探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波(或伪距)。
N个普通接收机中的每一普通接收机83用于对所述卫星导航系统进行探测,获取第二探测信号。
处理器81用于解析所述第二探测信号获取每一普通接收机83的原始探测值。
值得注意的是,普通接收机83的原始探测值包括普通接收机83与普通接收机83探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
处理器81还用于利用每一普通接收机83的修正探测值和RTK接收机82的修正探测值,通过融合计算,得到RTK接收机82的定位结果。
需要说明的是,每一普通接收机83的修正探测值是利用第三类修正值对每一普通接收机83的原始探测值进行修正得到的。所述第三类修正值是依据每一普通接收机83与RTK接收机82的位置关系,对第二类修正值进行转化得到的。所述第二类修正值是修正值计算服务站针对RTK接收机82的转化探测值生成的修正值,RTK接收机82的转化探测值是依据每一普通接收机83与RTK接收机82的位置关系,对每一普通接收机83的原始探测值进行转化得到的。
另外,RTK接收机82的修正探测值是利用第一类修正值对所述RTK接收机82的原始探测值进行修正得到的。所述第一类修正值是所述修正值计算服务站针对所述RTK接收机82的原始探测值生成的修正值。
如图8所示,定位终端80还包括收发器85。值得注意的是,收发器85用于将RTK接收机82的原始探测值发送给所述修正值计算服务站,并接收所述修正值计算服务站针对RTK接收机82的原始探测值返回的所述第一类修正值。相应的,处理器81用于利用所述第一类修正值对RTK接收机82的原始探测值进行修正,得到RTK接收机82的修正探测值。
作为本申请的一个实施例,收发器85用于将每一普通接收机83的原始探测值发送给所述修正值计算服务站。
作为本申请的另一个实施例,处理器81用于依据每一普通接收机83与RTK接收机82的位置关系,将每一普通接收机83的原始探测值转化为RTK接收机82的转化探测值。然后,收发器85还用于将RTK接收机82的转化探测值发送给所述修正值计算服务站。
作为本申请的再一个实施例,收发器85还用于接收所述修正值计算服务站返回的所述第三类修正值。相应的,所述处理器81还用于利用所述第三类修正值对每一普通接收机83的原始探测值进行修正,得到每一普通接收机83的修正探测值。
作为本申请的再一个实施例,收发器85还用于接收所述修正值计算服务站返回的所述第二类修正值。相应的,处理器81还用于依据每一普通接收机83与RTK接收机82的位置关系,对所述第二类修正值进行转化得到所述第三类修正值。以及,处理器81还用于利用所述第三类修正值对每一普通接收机83的原始探测值进行修正,得到每一普通接收机83的修正探测值。进一步地,处理器81还用于利用所述第三类修正值对每一普通接收机83的原始探测值进行修正,得到每一普通接收机83的修正探测值。
在本申请中,处理器81具体用于利用每一普通接收机83的原始探测值,基于多接收机约束MRC定位算法,计算得到每一普通接收机83的解算位置,并根据每一普通接收机83的解算位置计算所述正N边形的几何中心的解算位置。处理器81还具体用于利用RTK接收机82的原始探测值,基于RTK定位算法,计算得到RTK接收机82的解算位置。进一步地,处理器81还具体用于利用概率模型对所述正N边形的几何中心的解算位置和RTK接收机82的解算位置进行融合计算,得到RTK接收机82的定位结果。
值得注意的是,如图8所示,定位终端80还可以包括数据接口84,在处理器81解析出RTK接收机82的原始探测值之后,还可以通过数据接口84将RTK接收机82的原始探测值上报给所述修正值计算服务站。在本申请提供的定位终端80中,可以通过数据接口84向其他通信设备(比如修正值计算服务站)发送信息,也可以通过数据接口84接收来自其他通信设备(比如修正值计算服务站)的信息。
应当知道的是,第四部分提供的各种定位终端可以参见第一部分的各个实施例中所述的定位终端。再者,第四部分提供的定位终端用于执行第三部分所述的定位方法,因此,可以结合第一部分以及第三部分的相关描述,来了解第四部分所述的定位终端。为了节省篇幅,重复部分此处不再赘述。
第五部分
如图9所示,为本申请提供的另一种定位方法的流程图。该定位方法是由修正值计算服务站执行的。作为本申请的一个实施例,该定位方法包括如下步骤。
S21、将实时动态RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值。
需要解释的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波或伪距。
S22、将所述RTK接收机的转化探测值输入多接收机约束MRC误差修正模型,通过计算得到第二类修正值,以使所述定位终端能够根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普 通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
值得注意的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
需要说明的是,除了前述步骤之外,第五部分提供的定位方法还可以包括所述修正值计算服务站在第一部分的各个实施例中所执行的操作,因此,可以结合第一部分的相关描述,来了解第五部分所述的由修正值计算服务站执行的定位方法。因此,关于本申请提供的这一定位方法的其他实施例,可以参见第一部分的相关限定,此处不再赘述。
第六部分
如图10所示,为本申请提供的一种修正值计算服务站100的结构示意图。修正值计算服务站100包括处理器101和存储器102。存储器102用于存储RTK误差修正模型和MRC误差修正模型。应当知道的是,存储器102内实际存储的是代码,该代码的一部分包括用于描述RTK误差修正模型,另一部分用于描述MRC误差修正模型。值得注意的是,本部分描述的修正值计算服务站用于执行第五部分所述的定位方法。
具体的,在本实施例中,处理器101用于将RTK接收机的原始探测值输入所述RTK误差修正模型,通过计算得到第一类修正值。以及,处理器101还用于将RTK接收机的转化探测值输入所述MRC误差修正模型,通过计算得到第二类修正值,以便所述定位终端根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
需要说明的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波(或伪距)。
进一步地,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。
所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于 所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
进一步地,如图10所示,修正值计算服务站100还可以包括收发器103。收发器103用于向其他通信设备发送信息,以及接收来自其他通信设备的信息。具体的,收发器103用于接收所述RTK接收机的原始探测值,以及还用于将所述第一类修正值发送给所述定位终端。
作为本申请的一个实施例,收发器103还用于接收所述RTK接收机的转化探测值。
作为本申请的另一个实施例,收发器103还用于接收每一所述普通接收机的原始探测值。在这种情况下,处理器101还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
作为本申请的再一个实施例,收发器103还用于将所述第二类修正值发送给所述定位终端,以使所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。
作为本申请的再一个实施例,处理器101还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。相应的,收发器103还用于将所述第三类修正值发送给所述定位终端。
值得注意的是,如图10所示,修正值计算服务站100还可以包括数据接口104。需要说明的是,收发器103接收来自定位终端的信息以及向定位终端发送信息的时候,均是经过数据接口104的。具体的,在本申请提供的修正值计算服务站100中,在处理器101计算得到所述第一类修正值之后,收发器103可以通过数据接口103将所述第一类修正值下发给所述定位终端。
应当知道的是,本部分提供的修正值计算服务站除了可以如上述实施例所述之外,还可以如第一部分的各个实施例中所述的修正值计算服务站一样。再者,由于第六部分提供的修正值计算服务站可用于执行第五部分所述的定位方法,因此,可以结合第一部分以及第五部分的相关描述,来了解第六部分所述的修正值计算服务站。为了节省篇幅,重复部分此处不再赘述。
第七部分
如图11A所示,为本申请提供的另一种修正值计算服务站110的结构示意图。修正值计算服务站110可以用于执行第五部分所述的定位方法。具体的,修正值计算服务站110包括存储单元111、第一计算单元112和第二计算单元113。
存储单元111用于存储RTK误差修正模型和MRC误差修正模型。
第一计算单元112用于将RTK接收机的原始探测值输入所述RTK误差修正模型,通过计算得到第一类修正值。
需要说明的是,RTK接收机位于定位终端内,且至少具有执行RTK定位算法的能力。所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于卫星导航系统的多个卫星中的每一卫星之间的载波(或伪距)。
第二计算单元113用于将所述RTK接收机的转化探测值输入所述MRC误差修正模型,通过计算得到第二类修正值,以便所述定位终端根据所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及,根据第三类修正值对每一普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并且利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接 收机的定位结果。
需要解释的是,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系,通过对所述第二类修正值进行转化得到的。
所述RTK接收机的转化探测值是依据N个普通接收机中每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的。所述N个普通接收机位于所述定位终端内,且至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力。其中,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
如图11A所示,修正值计算服务站110还包括收发单元114。具体的,收发单元116用于接收所述RTK接收机的原始探测值,以及将所述第一类修正值发送给所述定位终端。
作为本申请的一个实施例,请参见附图11A,收发单元114还用于接收所述RTK接收机的转化探测值。在计算得到所述第二类修正值之后,收发单元114还用于接收所述第二类修正值,并将所述第二类修正值发送给所述定位终端。
作为本申请的另一个实施例,如图11B所示,相对于图11A对应的实施例而言,在本实施例中,修正值计算服务站110还包括第一转化单元115。在本实施例中,收发单元114用于接收每一所述普通接收机的原始探测值。相应的,第一转化单元115用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
应当知道的是,在计算得到所述第二类修正值之后,收发单元114还用于将所述第二类修正值发送给所述定位终端。
作为本申请的再一个实施例,如图11C所示,相对于图11B对应的实施例而言,在本实施例中,修正值计算服务站110还包括第二转化单元116。图11C对应的实施例不同于图11B对应的实施例之处在于,在计算得到所述第二类修正值之后,第二转化单元116用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。相应的,收发单元114用于将所述第三类修正值发送给所述定位终端。
作为本申请的再一个实施例,如图11D所示,相对于图11A对应的实施例而言,在本实施例中,修正值计算服务站110还包括第二转化单元116。图11D对应的实施例不同于图11A对应的实施例之处在于,在计算得到所述第二类修正值之后,第二转化单元116用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为第三类修正值。相应的,收发单元114用于将所述第三类修正值发送给所述定位终端。
对于RTK误差修正模型以及MRC误差修正模型的构建,前文已经有描述,此处不再重复描述。
另外,本部分提供的修正值计算服务站可以参见第一部分中关于修正值计算服务站的相关限定,为了节省篇幅,重复部分此处不再赘述。
第八部分
如图12A所示,为本申请提供的另一种定位方法的流程图。具体的,该定位方法包括如下步骤。
S31、RTK接收机对卫星导航系统进行探测,获取第一探测信号。
需要说明的是,所述RTK接收机至少具有执行RTK定位算法的能力,且所述RTK接收机的数量为1。
S32、对所述第一探测信号进行解析,获取RTK接收机的原始探测值。
其中,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波(或伪距)。
S33、N个普通接收机中每一普通接收机对所述卫星导航系统进行探测,获取第二探测信号。
N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,且所述RTK接收机位于所述正N边形的几何中心。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
S34、对所述第二探测信号进行解析,获取每一普通接收机的原始探测值。
S35、利用所述RTK接收机的原始探测值和每一所述普通接收机的原始探测值,通过融合计算,得到所述RTK接收机的定位结果。
本部分提供的定位方法与第三部分所述的定位方法的不同之处在于,步骤S35不同于步骤S15,因此此处重点对步骤S35进行解释。
其中,如图12B所示,步骤S35又具体包括如下步骤S351-354.
S351、利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置。
S352、根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。
S353、利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。
S354、利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
需要说明的是,本部分所述的定位方法不同于前述第一部分以及第三部分所述的定位方法的地方在于:第一点,在本部分(或本定位方法)中,计算每一所述普通接收机的解算位置依据的是每一所述普通接收机的原始探测值,而非对应于每一所述普通接收机的原始探测值的第三类修正值。第二点,计算RTK接收机的解算位置依据是也是所述RTK接收机的原始探测值,而非所述RTK接收机的修正探测值。因此能够明白,本定位方法计算RTK接收机的定位结果依据的均是原始探测值,也即无论是普通接收机还是RTK接收机,均是原始探测值,而非修正探测值。也即,本定位方法不需要用到RTK误差修正模型和MRC误差修正模型。
除此之外,本定位方法的其他部分,比如利用概率模型进行融合计算的方法,可以参见第一部分的相关说明。
第九部分
如图13所示,为本申请提供的一种定位终端130的结构示意图。定位终端130包括处理器131、1个RTK接收机132和N个普通接收机133。其中,标记133指代的是普通接收机。也即每一普通接收机的标记均为133。值得注意的是,本部分所述的定位终端用于执行第八部分所述的定位方法。
如前所述,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心。所述RTK接收机至少具有执行RTK定位算 法的能力。所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力。
其中,RTK接收机132用于对所述卫星导航系统进行探测,获取第一探测信号。
处理器131用于解析所述第一探测信号获取RTK接收机的原始探测值。
其中,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波(或伪距)。
N个普通接收机中的每一普通接收机133用于对所述卫星导航系统进行探测,获取第二探测信号。
处理器131用于解析所述第二探测信号获取每一普通接收机的原始探测值。
其中,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距。
值得注意的是,处理器131具体用于利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置,并根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置。并且,处理器131还具体用于利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置。进一步地,处理器131还具体用于利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
由于本部分提供的定位终端可以用于执行第八部分所述的定位方法,因此可以参见第八部分的相关描述来加深对本部分提供的定位终端的理解。进一步地,本部分提供的定位终端和第一部分中涉及的定位终端有很多相同的地方,因此还请参见第一部分的相关描述,以便更加了解本部分所限定的定位终端。
应当知道的是,前述实施例仅为本发明的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。再者,上述多个实施例之间可以相互参见。

Claims (20)

  1. 一种定位系统,其特征在于,包括:
    定位终端用于对卫星导航系统进行探测,获取原始探测消息;所述定位终端包括N个普通接收机和1个实时动态RTK接收机,所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力,所述RTK接收机至少具有执行RTK定位算法的能力,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心,所述原始探测消息包括每一普通接收机的原始探测值和RTK接收机的原始探测值,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的载波或伪距;
    所述修正值计算服务站用于将所述RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值,以及将RTK接收机的转化探测值输入多接收机约束MRC误差修正模型,通过计算得到第二类修正值,所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的;
    所述定位终端还用于利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,以及利用第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,所述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系和所述第二类修正值,通过计算得到的;
    所述定位终端还用于利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果。
  2. 根据权利要求1所述的定位系统,其特征在于,
    所述定位终端还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值,并将所述RTK接收机的转化探测值发送给所述修正值计算服务站;
    所述修正值计算服务站还用于接收所述RTK接收机的转化探测值。
  3. 根据权利要求1所述的定位系统,其特征在于,
    所述定位终端还用于将每一所述普通接收机的原始探测值发送给所述修正值计算服务站;
    所述修正值计算服务站还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
  4. 根据权利要求1至3任一项所述的定位系统,其特征在于,
    所述修正值计算服务站还用于依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值,并将所述第三类修正值发送给所述定位终端;
    所述定位终端还用于接收所述第三类修正值。
  5. 根据权利要求1至3任一项所述的定位系统,其特征在于,
    所述修正值计算服务站还用于将所述第二类修正值发送给所述定位终端;
    所述定位终端还用于接收所述第二类修正值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。
  6. 根据权利要求1至5任一项所述的定位系统,其特征在于,
    所述定位终端具体用于:
    利用每一所述普通接收机的修正探测值,基于MRC定位算法,计算得到每一普通接收机的解算位置;
    根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置,
    利用所述RTK接收机的修正探测值,基于RTK定位算法,计算得到RTK接收机的解算位置,以及
    利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
  7. 根据权利要求1至6任一项所述的定位系统,其特征在于,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。
  8. 根据权利要求1至6任一项所述的定位系统,其特征在于,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
  9. 一种定位方法,其特征在于,包括:
    定位终端对卫星导航系统进行探测,获取原始探测消息;所述定位终端包括N个普通接收机和1个实时动态RTK接收机,所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于所述卫星导航系统的卫星之间的伪距的能力,所述RTK接收机至少具有执行RTK定位算法的能力,N为大于或等于3的整数,且所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心,所述原始探测消息包括每一普通接收机的原始探测值和RTK接收机的原始探测值,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的载波或伪距;
    所述修正值计算服务站将所述RTK接收机的原始探测值输入RTK误差修正模型,通过计算得到第一类修正值,将RTK接收机的转化探测值输入多接收机约束MRC误差修正模型,通过计算得到第二类修正值,所述RTK接收机的转化探测值是依据每一所述普通接收机与所述RTK接收机的位置关系,对每一所述普通接收机的原始探测值进行转化得到的;
    所述定位终端利用所述第一类修正值对所述RTK接收机的原始探测值进行修正,得到RTK接收机的修正探测值,利用第三类修正值对每一所述普通接收机的原始探测值进行修正,得到每一普通接收机的修正探测值,并利用每一所述普通接收机的修正探测值和所述RTK接收机的修正探测值,通过融合计算,得到RTK接收机的定位结果;其中,所 述第三类修正值是依据每一所述普通接收机与所述RTK接收机的位置关系和所述第二类修正值,通过计算得到的。
  10. 根据权利要求9所述的定位方法,其特征在于,
    所述定位终端依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值,并将所述RTK接收机的转化探测值发送给所述修正值计算服务站;
    所述修正值计算服务站接收所述RTK接收机的转化探测值。
  11. 根据权利要求9所述的定位方法,其特征在于,
    所述定位终端将每一所述普通接收机的原始探测值发送给所述修正值计算服务站;
    所述修正值计算服务站接收每一所述普通接收机的原始探测值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将每一所述普通接收机的原始探测值转化为所述RTK接收机的转化探测值。
  12. 根据权利要求9至11任一项所述的定位方法,其特征在于,
    所述修正值计算服务站依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值,并将所述第三类修正值发送给所述定位终端;
    所述定位终端接收所述第三类修正值。
  13. 根据权利要求9至11任一项所述的定位方法,其特征在于,
    所述修正值计算服务站将所述第二类修正值发送给所述定位终端;
    所述定位终端接收所述第二类修正值,并依据每一所述普通接收机与所述RTK接收机的位置关系,将所述第二类修正值转化为所述第三类修正值。
  14. 根据权利要求9至13任一项所述的定位方法,其特征在于,所述融合计算步骤,具体包括:
    所述定位终端利用每一所述普通接收机的修正探测值,基于MRC定位算法,计算得到每一普通接收机的解算位置;
    根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置;
    所述定位终端利用所述RTK接收机的修正探测值,基于RTK定位算法,计算得到RTK接收机的解算位置,以及
    所述定位终端利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
  15. 根据权利要求9至14任一项所述的定位方法,其特征在于,所述RTK误差修正模型是利用回归方程y=f(x)构建的,x是所述RTK接收机的原始探测值,y是所述第一类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入所述RTK接收机与所述RTK接收机探测到的每一卫星之间的载波或伪距,通过训练得到的。
  16. 根据权利要求9至14任一项所述的定位方法,其特征在于,所述MRC误差修正模型是利用回归方程y=f(x)构建的,x是每一所述普通接收机的原始探测值,y是所述第二类修正值,f(.)是x到y的影射函数,且f(.)是通过构建神经网络,并向所述神经网络中输入每一所述普通接收机与对应的所述普通接收机探测到的每一卫星之间的伪距,通过训练得到的。
  17. 一种定位终端,其特征在于,包括1个实时动态RTK接收机、N个普通接收机和处理器,所述RTK接收机至少具有执行RTK定位算法的能力,所述普通接收机至少具有测量 所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心;
    所述RTK接收机用于对所述卫星导航系统进行探测,获取第一探测信号;
    所述处理器用于解析所述第一探测信号获取RTK接收机的原始探测值,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距;
    所述N个普通接收机中的每一普通接收机用于对所述卫星导航系统进行探测,获取第二探测信号;
    所述处理器用于解析所述第二探测信号获取每一普通接收机的原始探测值,所述普通接收机的原始探测值包括所述普通接收机与所述普通接收机探测到的位于所述卫星导航系统的多个卫星中的每一卫星之间的伪距;
    所述处理器还用于利用每一所述普通接收机的原始探测值和所述RTK接收机的原始探测值,通过融合计算,得到所述RTK接收机的定位结果。
  18. 根据权利要求17所述的定位终端,其特征在于,
    所述处理器具体用于:
    利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置,
    根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置,
    利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置,以及
    利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
  19. 一种定位方法,其特征在于,包括:
    实时动态RTK接收机对卫星导航系统进行探测,获取第一探测信号,所述RTK接收机至少具有执行RTK定位算法的能力,且所述RTK接收机的数量为1;
    对所述第一探测信号进行解析,获取RTK接收机的原始探测值,所述RTK接收机的原始探测值包括所述RTK接收机与所述RTK接收机探测到的位于所述卫星导航系统的多个卫星中每一卫星之间的载波或伪距;
    N个普通接收机中每一普通接收机对所述卫星导航系统进行探测,获取第二探测信号,N为大于或等于3的整数,所述N个普通接收机位于正N边形的N个顶点,所述RTK接收机位于所述正N边形的几何中心,所述普通接收机至少具有测量所述普通接收机与所述普通接收机探测到的且位于卫星导航系统的卫星之间的伪距的能力;
    对所述第二探测信号进行解析,获取每一普通接收机的原始探测值;
    利用所述RTK接收机的原始探测值和每一所述普通接收机的原始探测值,通过融合计算,得到所述RTK接收机的定位结果。
  20. 根据权利要求19所述的定位方法,其特征在于,所述融合步骤,具体包括:利用每一所述普通接收机的原始探测值,基于多接收机约束MRC定位算法,计算得到每一所述普通接收机的解算位置,
    根据每一所述普通接收机的解算位置计算所述正N边形的几何中心的解算位置,
    利用所述RTK接收机的原始探测值,基于RTK定位算法,计算得到RTK接收机的解算位置,以及
    利用概率模型对所述正N边形的几何中心的解算位置和所述RTK接收机的解算位置进行融合计算,得到所述RTK接收机的定位结果。
PCT/CN2019/128501 2018-12-27 2019-12-26 一种高精度的卫星定位方法、定位终端和定位系统 WO2020135543A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19906137.5A EP3889648A4 (en) 2018-12-27 2019-12-26 HIGH-PRECISION SATELLITE LOCATION PROCESS, TERMINAL AND ASSOCIATED LOCATION SYSTEM
US17/358,246 US11906638B2 (en) 2018-12-27 2021-06-25 High-accuracy satellite positioning method, positioning terminal, and positioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811610889.XA CN109581442B (zh) 2018-12-27 2018-12-27 一种高精度的卫星定位方法、定位终端和定位系统
CN201811610889.X 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/358,246 Continuation US11906638B2 (en) 2018-12-27 2021-06-25 High-accuracy satellite positioning method, positioning terminal, and positioning system

Publications (1)

Publication Number Publication Date
WO2020135543A1 true WO2020135543A1 (zh) 2020-07-02

Family

ID=65932064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128501 WO2020135543A1 (zh) 2018-12-27 2019-12-26 一种高精度的卫星定位方法、定位终端和定位系统

Country Status (4)

Country Link
US (1) US11906638B2 (zh)
EP (1) EP3889648A4 (zh)
CN (1) CN109581442B (zh)
WO (1) WO2020135543A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581442B (zh) * 2018-12-27 2021-05-11 华为技术有限公司 一种高精度的卫星定位方法、定位终端和定位系统
CN111123320B (zh) * 2019-12-31 2022-05-27 泰斗微电子科技有限公司 一种卫星定位装置、卫星信号接收机及终端设备
CN112799112B (zh) * 2021-04-06 2021-07-09 湖南中车时代通信信号有限公司 一种基于卫星的差分定位系统和方法
CN116050483B (zh) * 2023-01-10 2024-02-13 辽宁工程技术大学 一种ssa-bp神经网络与灰色模型卫星钟差预报方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398478A (zh) * 2007-09-28 2009-04-01 展讯通信(上海)有限公司 差分gps定位方法与系统
US8271194B2 (en) * 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8694250B2 (en) * 2008-01-09 2014-04-08 Trimble Navigation Limited Processing multi-GNSS data from mixed-type receivers
CN106802426A (zh) * 2017-01-19 2017-06-06 湖南北云科技有限公司 一种协作rtk定位方法及系统
CN107534842A (zh) * 2014-12-19 2018-01-02 阿旺蒂克斯公司 通过位置已知的同步接收器来确定位置未知的发送器的位置的方法
CN108020854A (zh) * 2017-10-26 2018-05-11 广州中南民航空管技术装备工程有限公司 一种场面目标态势显示方法及系统
CN109581442A (zh) * 2018-12-27 2019-04-05 华为技术有限公司 一种高精度的卫星定位方法、定位终端和定位系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227496B2 (en) * 2005-05-26 2007-06-05 Trimble Navigation Limited GPS rover station having position dithering for controlling accuracy of secure positions
US8120527B2 (en) * 2008-01-30 2012-02-21 Javad Gnss, Inc. Satellite differential positioning receiver using multiple base-rover antennas
US20120086598A1 (en) * 2010-10-08 2012-04-12 Canadian Space Agency Apparatus and methods for driftless attitude determination and reliable localization of vehicles
US9116228B2 (en) * 2012-08-09 2015-08-25 Novatel Inc. Low latency centralized RTK system
NL2009695C2 (en) * 2012-10-25 2014-05-06 Fugro N V Ppp-rtk method and system for gnss signal based position determination.
US10690777B2 (en) * 2014-07-31 2020-06-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-antenna-GNSS receiver-system to raise the probability of line of sight
CN105589087B (zh) 2016-01-29 2017-06-23 申研 一种高精度实时卫星定位装置及其方法
CN106501826B (zh) 2016-09-14 2017-08-25 申研 一种高精度实时卫星定位方法
US11112507B2 (en) * 2016-10-27 2021-09-07 United States Of America As Represented By The Administrator Of Nasa Location correction through differential networks system
CN110361692B (zh) * 2018-03-26 2021-10-22 上海华为技术有限公司 一种融合定位方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271194B2 (en) * 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
CN101398478A (zh) * 2007-09-28 2009-04-01 展讯通信(上海)有限公司 差分gps定位方法与系统
US8694250B2 (en) * 2008-01-09 2014-04-08 Trimble Navigation Limited Processing multi-GNSS data from mixed-type receivers
CN107534842A (zh) * 2014-12-19 2018-01-02 阿旺蒂克斯公司 通过位置已知的同步接收器来确定位置未知的发送器的位置的方法
CN106802426A (zh) * 2017-01-19 2017-06-06 湖南北云科技有限公司 一种协作rtk定位方法及系统
CN108020854A (zh) * 2017-10-26 2018-05-11 广州中南民航空管技术装备工程有限公司 一种场面目标态势显示方法及系统
CN109581442A (zh) * 2018-12-27 2019-04-05 华为技术有限公司 一种高精度的卫星定位方法、定位终端和定位系统

Also Published As

Publication number Publication date
EP3889648A1 (en) 2021-10-06
CN109581442A (zh) 2019-04-05
US20210318451A1 (en) 2021-10-14
CN109581442B (zh) 2021-05-11
EP3889648A4 (en) 2022-06-15
US11906638B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020135543A1 (zh) 一种高精度的卫星定位方法、定位终端和定位系统
US9557419B2 (en) Methods for generating accuracy information on an ionosphere model for satellite navigation applications
RU2479855C2 (ru) Зависящее от расстояния уменьшение ошибки при определении местоположения в режиме кинематики реального времени
CA3036928A1 (en) Localization and tracking using location, signal strength, and pseudorange data
JP2008527364A (ja) 位置決定方法及び装置
US20210325548A1 (en) Matching for gnss signals
CN110673170A (zh) 一种动态单点定位精度的测试方法及终端
US20200081135A1 (en) Positioning method and positioning terminal
CN113848569B (zh) 虚拟基准站的定位校验方法、存储介质和电子设备
Gu et al. GNSS positioning in deep urban city with 3D map and double reflection
Martin GNSS precise point positioning: The enhancement with GLONASS
CN116755126B (zh) 一种基于三维模型映射匹配的北斗实时精准定位方法
Choy et al. An evaluation of various ionospheric error mitigation methods used in single frequency PPP
KR100305714B1 (ko) 지역적 전리층 지연 모델의 모델링방법 및 이를 이용한 보정위성 항법 시스템의 위치 보정방법
WO2023236643A1 (zh) 定位方法、装置、设备及存储介质
Tarig Positioning with wide-area GNSS networks: Concept and application
CN114966690B (zh) 一种gnss-r sar双星融合成像方法及系统
CN107272024B (zh) 一种飞行器在高动态环境下的基准站布设方法
CN116931007B (zh) 电离层延迟处理方法、装置、设备及存储介质
CN110531395B (zh) 用于无人车定位的方法、装置和设备
CN113296136B (zh) 多目标形变监测方法、装置和接收机
US20230393287A1 (en) Methods and systems for excess path length corrections for gnss receivers
US20230003901A1 (en) User-aided signal line-of-sight (los) machine learning classifier
Niehoefer et al. Cloud-aided sdr solution for lane-specific vehicle positioning via local interference compensation
JP2022015431A (ja) 衛星測位システム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019906137

Country of ref document: EP

Effective date: 20210701