WO2020135516A1 - 立式洗衣机 - Google Patents

立式洗衣机 Download PDF

Info

Publication number
WO2020135516A1
WO2020135516A1 PCT/CN2019/128354 CN2019128354W WO2020135516A1 WO 2020135516 A1 WO2020135516 A1 WO 2020135516A1 CN 2019128354 W CN2019128354 W CN 2019128354W WO 2020135516 A1 WO2020135516 A1 WO 2020135516A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
rotation speed
motor
washing machine
elimination control
Prior art date
Application number
PCT/CN2019/128354
Other languages
English (en)
French (fr)
Inventor
永井孝之
川口智也
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201980081169.5A priority Critical patent/CN113286921B/zh
Publication of WO2020135516A1 publication Critical patent/WO2020135516A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/04Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/12Rotary receptacles, e.g. drums adapted for rotation or oscillation about a vertical axis

Definitions

  • the present invention relates to a vertical washing machine that performs, for example, a washing process, a rinsing process, and a dehydration process.
  • the balancing device has a ring-shaped balancing shell, and a liquid (aqueous solution) is enclosed in the balancing shell. Therefore, after starting the dehydration process, the imbalance can be eliminated by the liquid moving to a position that cancels out the imbalance.
  • Patent Document 1 Japanese Patent Application Publication No. 2018-82916
  • an object of the present invention is to provide a vertical washing machine that can increase the capacity of the laundry that can be stored in the drum without increasing the size of the drum that houses the laundry.
  • the vertical washing machine of the present invention includes: an outer tub, which is arranged inside the cabinet; a drum, which is rotatably arranged around the rotation axis; and a ring-shaped container, which is arranged in the drum, and accommodates Rolling body; motor, which rotates the drum; and a control unit, which controls the motor, and the control unit controls the motor to perform the following imbalance elimination control before starting the dehydration process: the rotation speed of the drum After reaching the target rotation speed exceeding the resonance rotation speed at which the lateral resonance of the drum is generated, the rotational driving of the drum is stopped.
  • the resonance rotation speed at which lateral resonance of the drum is generated refers to the resonance rotation speed at which resonance of the drum is generated in a direction perpendicular to the rotation axis of the drum.
  • the annular container contains liquid.
  • the vertical washing machine of the present invention includes an ambient temperature detection unit that detects ambient temperature, and in the unbalance elimination control, after stopping the rotational driving of the drum, the control unit is based on a predetermined motor deceleration force To control the motor to reduce the rotation speed of the drum, and the predetermined motor deceleration force when the rotation speed of the drum is reduced in the unbalance elimination control can be based on the detection by the ambient temperature detection unit Ambient temperature varies.
  • the vertical washing machine of the present invention includes a load amount detection unit that detects a load amount corresponding to the amount of laundry located in the drum, and in the imbalance elimination control, stops the drum After the rotational drive, the control unit controls the motor to reduce the rotation speed of the drum according to a prescribed motor deceleration force, and decelerates the prescribed motor when reducing the rotation speed of the drum in the unbalance elimination control
  • the force can vary depending on the load detected by the load detection unit.
  • the vertical washing machine of the present invention includes an ambient temperature detection unit that detects ambient temperature, and the number of times of the unbalance elimination control can be changed according to the ambient temperature detected by the ambient temperature detection unit.
  • the vertical washing machine of the present invention includes a vibration detection unit that detects the vibration of the outer tub, and the unbalance elimination control continues according to the vibration of the outer tub detected by the vibration detection unit. Size to determine.
  • the ring-shaped container accommodating the rolling elements is arranged on the drum, and before the dehydration process is started, the imbalance elimination control is performed by increasing the rotation speed of the drum to a resonance rotation speed exceeding the lateral resonance that causes the drum After the target rotation speed, the rotary drive of the drum is stopped. Therefore, the rolling element accommodated in the ring-shaped container can eliminate the unbalance of the drum by moving toward the side opposite to the eccentric position where the laundry in the drum is biased by the centrifugal force during the unbalance elimination control. Compared with the liquid of the conventional liquid balancer, the specific gravity of the rolling bodies contained in the ring-shaped container is larger, so that the ring-shaped container can be miniaturized.
  • the dehydration process can be started in a state where the unbalance of the drum is eliminated.
  • the liquid is contained in the ring-shaped container, and the liquid moves toward the side opposite to the eccentric position where the laundry in the drum is biased. Therefore, the imbalance of the drum can be eliminated in a short time.
  • the viscosity of the liquid contained in the annular container decreases as the ambient temperature becomes higher, and increases as the ambient temperature becomes lower.
  • the unbalance elimination control when the motor deceleration force becomes larger, the amount of the rolling body that moves when the motor accelerates due to the inertial force generated by deceleration becomes larger. Therefore, in order to minimize the amount of rolling element homing when the motor decelerates, increase the motor deceleration force when the ambient temperature where the liquid viscosity becomes high is low, and conversely, decrease when the ambient temperature where the liquid viscosity becomes low is high.
  • the motor deceleration force thereby suppressing the amount of homing, improves the ability to eliminate unbalance.
  • the laundry is stored in the drum, and the smaller the load amount corresponding to the amount of the laundry in the drum, the smaller the motor deceleration force in the unbalance elimination control. Therefore, the motor deceleration force in the unbalance elimination control can be appropriately determined according to the load amount.
  • the viscosity of the liquid contained in the annular container decreases as the ambient temperature becomes higher, and increases as the ambient temperature becomes lower. Therefore, when the imbalance elimination control is performed, the moving amount of the rolling element in the annular container changes according to the viscosity of the liquid. Therefore, even if the surrounding temperature is higher, the number of times of unbalance elimination control is less, and the unbalance of the drum can be eliminated. Therefore, the number of unbalance elimination control can be appropriately determined according to the surrounding temperature.
  • FIG. 1 is a schematic cross-sectional view of a vertical washing machine 100 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the ball balancer 30 of the vertical washing machine 100 of FIG. 1.
  • FIG. 3 is a control block diagram of the vertical washing machine 100 of FIG. 1.
  • FIG. 4 is a diagram showing changes in the drum rotation speed after the unbalance elimination control performed before the start of the spin-drying process and the drum rotation speed in the spin-drying process.
  • FIG. 5 is a diagram showing operations of the plurality of rolling elements 32 in the ring-shaped container 31 of the ball balancer 30 after unbalance elimination control is performed.
  • FIG. 6 is a flowchart showing a method of determining the number of times of unbalance elimination control based on the ambient temperature of the vertical washing machine 100.
  • FIG. 7 is a flowchart showing a method of determining the motor deceleration force in the unbalance elimination control based on the ambient temperature of the vertical washing machine 100.
  • FIG. 8 is a flowchart showing a method of determining the motor deceleration force in the unbalance elimination control based on the load amount of the vertical washing machine 100.
  • FIG. 9 is a diagram showing correspondence between the motor deceleration force in the unbalance elimination control and the ambient temperature and load of the vertical washing machine 100.
  • FIG. 10 is a flowchart showing a method of determining whether to continue the imbalance elimination control according to the magnitude of the vibration of the outer tub 2.
  • FIG. 11 is a flowchart showing the washing operation of the vertical washing machine 100.
  • 13 is a flowchart showing the flow of the spin-drying process in the washing operation of the vertical washing machine 100.
  • FIG. 14 is a flowchart showing a flow of unbalance elimination control of a vertical washing machine according to a modification of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a vertical washing machine 100 according to an embodiment of the present invention.
  • the vertical washing machine 100 (hereinafter sometimes referred to as washing machine 100) has a cabinet 1 as a main body of the washing machine, and inside the cabinet 1, a cylindrical tub 2 with a bottom and a bottom is suspended and supported by a plurality of hanging rods (not shown) . Inside the outer tub 2, the drum 3 having many water holes around it is rotatably supported centering on a support shaft 4 fixed to its bottom wall. A stirring wing 5 is provided at the bottom of the drum 3, and the stirring wing 5 is free to rotate around the inner shaft 6 inserted into the support shaft 4 as a center.
  • the rotational driving force of the motor 7 mounted on the lower surface of the outer tub 2 is transmitted via a transmission mechanism including a small pulley 9 fixed to the motor shaft 8, a V drive belt 10, a large pulley 11, and the like, and includes a clutch mechanism 12 and a torque motor 13
  • the power switching mechanism 14 is transmitted to the support shaft 4 and the inner shaft 6.
  • the clutch mechanism 12 releases the connection between the large pulley 11 and the support shaft 4 according to the operation of the torque motor 13, and rotates the stirring blade 5 in one or two directions via the inner shaft 6.
  • the clutch mechanism 12 connects the large pulley 11 to the support shaft 4 to rotate the drum 3 and the stirring blade 5 in one direction.
  • a water supply pipe 15 connected to an external faucet is arranged behind the upper portion of the cabinet 1, and when the water supply valve 16 is opened, water introduced through the water supply pipe 15 flows into the water injection port 17 provided with the detergent container, and is poured into the outer tub 2.
  • a drain port 18 is provided at the bottom of the outer tub 2, and a drain pipe 19 connected to the drain port 18 is opened and closed by a drain valve 20.
  • the opening and closing action of the drain valve 20 is linked to the action of the clutch mechanism 12.
  • the drain valve 20 is closed.
  • the drain valve 20 opens.
  • a lid 22 that can be opened and closed freely is provided in the inlet 21 of the laundry opened on the upper surface of the cabinet 1.
  • a safety device 24 is provided in front of the upper part in the cabinet 1.
  • the safety device 24 is a cover opening and closing detection device that detects the opening and closing of the cover body 22 shown in FIG. 2 and a cover lock device for locking the cover body 22 to prevent it from being opened when the cover body 22 is closed. ⁇ The device.
  • the cabinet 1 is provided with an ambient temperature detection sensor 61 that detects the ambient temperature of the washing machine 100 and a vibration detection sensor 62 that detects the vibration of the tub 2.
  • the vibration detection sensor 62 is arranged below the outer tub 2 in the cabinet 1, and can detect that the vibration of the outer tub 2 is above a threshold.
  • a ball balancer 30 is provided near the opening 3 a formed at the upper end of the drum 3.
  • the ball balancer 30 has a ring-shaped container 31, and a plurality of rolling bodies 32 and a liquid 33 are accommodated as a moving body inside the ring-shaped container 31.
  • the ring-shaped container 31 is provided inside the opening 3 a of the drum 3 so that its rotation axis coincides with the rotation axis of the drum 3.
  • the rolling element 32 is a metal ball, and the liquid 33 is, for example, silicone oil (made by Shin-Etsu Chemical Co., Ltd.: Shin-Etsu Silicone KF-96-350CS). As long as the rolling element 32 has a rotating shape, it is not limited to an approximately spherical sphere.
  • the liquid 33 oil such as silicone oil can be used, but the type of liquid is not limited.
  • FIG. 2(a) is a plan view of the ball balancer 30, and FIG. 2(b) is a cross-sectional view taken along line A-A of FIG. 2(a).
  • the annular container 31 has an annular shape and has an outer peripheral surface 31a and an inner peripheral surface 31b.
  • the rolling element 32 and the liquid 33 are accommodated so as to be able to move throughout the entire circumference of the annular container 31.
  • the diameter of the rolling element 32 is slightly smaller than the distance between the outer circumferential surface 31a and the inner circumferential surface 31b of the annular container 31. Therefore, although FIG. 2(b) shows a state where the rolling element 32 is in contact with the outer circumferential surface 31a of the annular container 31, a gap D (e.g., is formed between the rolling element 32 and the inner circumferential surface 31b of the annular container 31 1mm).
  • the height dimension of the ring-shaped container 31 (the dimension of the space that houses the plurality of rolling elements 32 and the liquid 33) is smaller than the height dimension of the ring-shaped container that houses the liquid in the conventional liquid balancer.
  • FIG. 3 is a control block diagram of the washing machine 100 of this embodiment.
  • the control unit 50 of the washing machine 100 is composed of, for example, a microcomputer, and includes a CPU, a ROM that stores a program that controls the operation of the washing machine 100, and a RAM that temporarily stores data used to execute the above program. The operation of the washing machine 100 is controlled by the control unit 50.
  • the control unit 50 controls the motor 7 to perform various operations of the washing process, the rinsing process, and the spin-drying process, but before starting the spin-drying process, controls the motor 7 to perform the following imbalance elimination control: After the rotation speed of the drum 3 is increased to reach a target rotation speed exceeding the resonance rotation speed at which the lateral resonance of the drum 3 is generated, the rotational driving of the drum 3 is stopped. In this embodiment, the control unit 50 performs unbalance elimination control a predetermined number of times before starting the dehydration process. The predetermined number of times is, for example, three times.
  • the resonance rotation speed at which the lateral resonance of the drum 3 occurs is the resonance rotation speed at which resonance of the drum 3 is generated in a direction perpendicular to the rotation axis of the drum 3, and is, for example, 70 rpm to 90 rpm. Therefore, the target rotation speed exceeding the resonance rotation speed is, for example, a rotation speed of 100 rpm to 150 rpm.
  • FIG. 4 is a diagram showing the change in the drum rotation speed after the unbalance elimination control performed before the start of the spin-drying process and the change in the drum rotation speed in the spin-drying process.
  • FIG. 4 shows a case where unbalance elimination control is performed three times before starting the dehydration process.
  • FIG. 5 is a diagram showing operations of the plurality of rolling elements 32 in the ring-shaped container 31 of the ball balancer 30 after unbalance elimination control is performed.
  • FIG. 5(a) shows that at time 0, when the drum 3 is stopped, the laundry in the drum 3 is biased toward the left part of the bottom of the drum 3, and the plurality of rolling bodies 32 are biased by the laundry The state around the eccentric position. Therefore, the drum 3 is in an unbalanced state.
  • the control unit 50 starts controlling the motor 7 so that the drum rotation speed increases toward the target rotation speed, that is, 100 rpm.
  • the target rotation speed that is, the rotation speed of 100 rpm is a rotation speed exceeding the resonance rotation speed at which the lateral resonance of the drum 3 occurs.
  • the rotation speed acceleration when the rotation speed of the drum 3 is 0 rpm to 100 rpm is 80 rpm/s.
  • the rotation speed acceleration when the drum rotation speed rises to the target rotation speed is 40 rpm/s or more. The larger the rotation speed acceleration of the drum in the unbalance elimination control, the larger the amount of movement of the rolling element 32.
  • the plurality of rolling elements 32 use centrifugal force to face the rotation direction side of the drum 3 along the outer periphery of the ring-shaped container 31 as shown in FIG. 5(b). mobile. That is, as the rotation speed of the drum 3 increases, the plurality of rolling elements 32 in the ring-shaped container 31 move toward the opposite side of the eccentric position where the laundry in the drum 3 is biased.
  • the control unit 50 controls the motor 7 to stop the rotational driving of the drum 3.
  • the drum rotation speed rises to 120 rpm due to inertial force, but after that, the control section 50 controls the motor 7 to reduce the drum rotation speed with a predetermined predetermined motor deceleration force .
  • the drum rotation speed is controlled to be reduced to a rotation speed lower than the resonance rotation speed at which the lateral resonance of the drum 3 occurs.
  • the control unit 50 starts to control the motor 7 again so that the rotation speed of the drum increases toward the target rotation speed, i.e., 100 rpm.
  • the control unit 50 controls the motor 7 to stop the rotational driving of the drum 3. After that, the control unit 50 controls the motor 7 so that the drum rotation speed is reduced by a predetermined motor deceleration force.
  • the second unbalance elimination control ends.
  • the control unit 50 starts to control the motor 7 again to increase the drum speed to the target speed of 100 rpm.
  • the control unit 50 controls the motor 7 to The rotation drive of the drum 3 is stopped.
  • the control unit 50 controls the motor 7 so that the drum rotation speed is reduced by a predetermined motor deceleration force.
  • the third unbalance elimination control ends.
  • the plurality of rolling elements 32 are oriented toward the eccentric position where the laundry in the drum 3 is biased The opposite side moves, but does not move to a position completely opposite to the eccentric position.
  • the plurality of rolling elements 32 move to be completely opposite to the eccentric position Set location.
  • the control unit 50 starts the dehydration process in a state where the balance of the drum 3 is optimized by performing three unbalance elimination control.
  • an unbalanced rinse is performed.
  • the so-called unbalanced rinsing means that when unbalance is eliminated by performing three unbalance elimination control, in order to understand the laundry in the drum 3, a predetermined amount of water is supplied into the drum 3 and the stirring blade 5 is rotated. Operation.
  • control unit 50 displays an error on a display unit (not shown).
  • the prescribed number of rinses is, for example, two.
  • the control unit 50 includes a load amount detection unit 51, a frequency determination unit 52, a motor deceleration force determination unit 53, a continuation determination unit 54, and a motor control unit 55.
  • the control unit 50 is connected to the ambient temperature detection sensor 61, the vibration detection sensor 62 and the motor 7.
  • the load amount detection unit 51 detects the load amount corresponding to the amount of laundry in the drum 3.
  • the load amount is expressed as a ratio to the rated capacity of the washing machine 100.
  • the motor 7 is turned on for a short time to rotate the stirring blade 5 and then, when the motor 7 is turned off, the stirring blade 5 rotates due to inertia.
  • the load amount detection unit 51 counts the pulse signal synchronized with the rotation of the motor 7 during the inertial rotation period, and detects the load amount based on the count value. It should be noted that the greater the load, the greater the resistance to the rotation of the stirring blade 5, so the duration of inertial rotation becomes shorter.
  • the number of times determination unit 52 determines the number of times (a predetermined number of times) of unbalance elimination control performed before starting the dehydration process. In the present embodiment, the number of times determination unit 52 determines the number of times of unbalance elimination control based on the ambient temperature (air temperature) of the washing machine 100.
  • FIG. 6 is a flowchart showing a method of determining the number of times of unbalance elimination control based on the ambient temperature of the washing machine 100.
  • step S1 the control unit 50 determines whether the ambient temperature detected by the ambient temperature detection sensor 61 is in the range of 5°C to 10°C. When the control unit 50 determines that the ambient temperature is within the range of 5°C to 10°C, the process proceeds to step S2, and the number of unbalance elimination control is determined to be five.
  • step S1 determines whether the ambient temperature detected by the ambient temperature detection sensor is within the range of 10°C to 20°C Within range.
  • step S3 determines whether the ambient temperature detected by the ambient temperature detection sensor is within the range of 10°C to 20°C Within range.
  • step S4 the number of unbalance elimination control is determined to be four.
  • step S3 When the control unit 50 determines that the ambient temperature is not within the range of 10°C to 20°C in step S3, the process proceeds to step S5, and the number of unbalance elimination control is determined to be three.
  • the number of times determination unit 52 determines the number of times of unbalance elimination control based on the ambient temperature of the washing machine 100, and the viscosity of the liquid 33 of the ball balancer 30 decreases as the ambient temperature becomes higher and decreases as the ambient temperature becomes lower Get bigger. Therefore, when unbalance elimination control is performed, the amount of movement of the rolling element 32 in the annular container 31 changes according to the viscosity of the liquid 33. Therefore, even if the surrounding temperature is higher, the number of times of unbalance elimination control is less, and the unbalance of the drum 3 can be eliminated. Therefore, the number of times determination unit 52 determines the number of times of unbalance elimination control as the surrounding temperature becomes higher as a smaller value, and as the surrounding temperature becomes lower as a larger value.
  • the motor deceleration force determination unit 53 determines the motor deceleration force in the unbalance elimination control.
  • the motor deceleration force in the unbalance elimination control corresponds to the deceleration acceleration that decelerates the drive shaft of the motor 7 when the drum rotation speed is reduced in the unbalance elimination control.
  • the motor deceleration force determination unit 53 determines the motor deceleration force in the unbalance elimination control based on the ambient temperature of the washing machine 100 and the load amount corresponding to the amount of laundry in the drum 3.
  • FIG. 7 is a flowchart showing a method of determining the motor deceleration force in the unbalance elimination control based on the ambient temperature of the washing machine 100.
  • step S101 the control unit 50 determines whether the ambient temperature detected by the ambient temperature detection sensor 61 is within the range of 5°C to 15°C.
  • the process proceeds to step S102, and the motor deceleration force in the unbalance elimination control is determined as the first value.
  • step S101 determines whether the ambient temperature detected by the ambient temperature detection sensor 61 is within the range of 15°C to 30°C In the range.
  • step S104 determines that the ambient temperature is within the range of 15°C to 30°C
  • the process proceeds to step S104, and the motor deceleration force in the unbalance elimination control is determined as the second value.
  • step S103 the process proceeds to step S105, and the motor deceleration force in the unbalance elimination control is determined to be the third value.
  • the motor deceleration force determination unit 53 determines the motor deceleration force in the unbalance elimination control based on the ambient temperature of the washing machine 100, and the viscosity of the liquid 33 of the ball balancer 30 becomes smaller as the ambient temperature becomes higher, as the The surrounding temperature becomes lower and larger.
  • the unbalance elimination control when the motor deceleration force becomes larger, the inertial force generated by the deceleration of the rolling element 32 that moves when the motor accelerates increases the amount of homing.
  • FIG. 8 is a flowchart showing a method of determining the motor deceleration force in the unbalance elimination control based on the load of the washing machine 100.
  • step S201 the control unit 50 determines whether the load amount detected by the load amount detection unit 51 is within a rated range of 0% to 30%.
  • the process proceeds to step S202 to determine the motor deceleration force in the unbalance elimination control as the fourth value.
  • step S201 when the control unit 50 determines that the load is not within the rated range of 0% to 30%, the process proceeds to step S203, and the control unit 50 determines whether the load detected by the load detection unit 51 is within the rated 30 % To 70%.
  • step S204 the control unit 50 determines the motor deceleration force in the unbalance elimination control to the fifth value.
  • step S203 When the control unit 50 determines in step S203 that the load amount is not within the rated range of 30% to 70%, the process proceeds to step S205 to determine the motor deceleration force in the unbalance elimination control to the sixth value.
  • the motor deceleration force determination unit 52 determines the motor deceleration force in the unbalance elimination control based on the load amount corresponding to the amount of laundry in the drum 3, and the smaller the amount of laundry in the drum 3, the smaller Smaller decelerates the motor when the drum speed decreases. Therefore, the motor deceleration force determination unit 52 determines the motor deceleration force in the unbalance elimination control as a value that becomes larger as the load amount becomes larger, and as a value that becomes smaller as the load amount becomes smaller.
  • FIG. 9 shows the motor deceleration force and the washing machine 100 in the unbalance elimination control. Correspondence between ambient temperature and load. As described above, the motor deceleration force in the unbalance elimination control is determined to be a small value as the surrounding temperature becomes higher. Therefore, in FIG.
  • the motor deceleration force in the unbalance elimination control is determined to be a larger value as the load amount corresponding to the amount of laundry in the drum 3 becomes larger. Therefore, in FIG. 9, the motor deceleration force a 11 ⁇ motor Deceleration force a 21 ⁇ motor deceleration force a 31 , motor deceleration force a 12 ⁇ motor deceleration force a 22 ⁇ motor deceleration force a 32 , motor deceleration force a 13 ⁇ motor deceleration force a 23 ⁇ motor deceleration force a 33 .
  • the continuation determination unit 54 determines whether to continue the imbalance elimination control. In the present embodiment, the continuation determination unit 54 determines whether to continue the imbalance elimination control based on the magnitude of the vibration of the outer tub 2 detected by the vibration detection sensor 62. Specifically, when the imbalance elimination control is being performed, when the vibration of the outer tub 2 detected by the vibration detection sensor 62 is greater than the threshold value, the continuation determination unit 54 determines that the imbalance elimination control is to be continued and the vibration detection When the magnitude of the vibration of the outer tub 2 detected by the sensor 62 is within the threshold, it is determined that the imbalance elimination control is ended.
  • FIG. 10 is a flowchart showing a method of determining whether to continue the imbalance elimination control according to the magnitude of the vibration of the outer tub 2.
  • step S301 the control unit 50 determines whether the vibration of the outer tub 2 is within the threshold.
  • control unit 50 determines that the vibration of the outer tub 2 is within the threshold, the process proceeds to step S302, and it is determined to end the imbalance elimination control.
  • step S301 When the control unit 50 determines that the vibration of the outer tub 2 is not within the threshold in step S301, the process proceeds to step S303, and the control unit 50 determines to continue the imbalance elimination control.
  • the vertical washing machine 100 of the present embodiment includes a vibration detection sensor 62 as a vibration detection unit that detects the vibration of the outer tub 2, and determines the imbalance elimination control based on the magnitude of the vibration of the outer tub 2 detected by the vibration detection sensor 62.
  • the imbalance elimination control is ended.
  • the vibration of the outer tub 2 is large In the case of, since the unbalance of the drum 3 is large, the unbalance elimination control is continued. Therefore, it is possible to appropriately determine whether to continue the imbalance elimination control according to the magnitude of the vibration of the outer tub 2.
  • step S401 when the user puts the laundry in the drum 3, makes appropriate settings, and then presses the start key, the control unit 50 executes the load amount detection process.
  • the control unit 50 determines the washing water level determined in multiple stages based on the load amount.
  • step S402 the washing water level is determined and a substantial washing process is performed.
  • the control unit 50 opens the water supply valve 16 to supply water to the drum 3 to a prescribed water level, and rotates the stirring blade 5 unidirectionally or bidirectionally at a prescribed speed. To perform a washing operation.
  • the control unit 50 drives the torque motor 13 to open the drain valve 20 and discharge the water in the drum 3.
  • step S403 the control unit 50 executes unbalance elimination control.
  • the flow of the imbalance elimination control will be described in detail later.
  • step S404 the control unit 50 performs intermediate dehydration by rotating the drum 3 at high speed.
  • the detergent water that has penetrated into the laundry is scattered and removed.
  • step S405 the control section 50 executes dehydration rinsing as the first rinsing.
  • the dehydration rinse is the following rinse: spraying water on the laundry from the water inlet 17 while rotating the drum 3, thereby absorbing the clean water with the laundry and squeezing out the detergent water that has penetrated into the laundry .
  • step S406 the control unit 50 executes unbalance elimination control.
  • the flow of the imbalance elimination control will be described in detail later.
  • step S407 after the laundry is sufficiently hydrated, as in step S404, the control unit 50 performs intermediate dehydration to disperse the water that has penetrated into the laundry.
  • step S408 further, as the second rinsing, the control unit 50 supplies a predetermined amount of water into the drum 3, and performs the water storage rinsing by rotating the stirring blade 5 as in the washing process of step S402.
  • the control unit 50 opens the drain valve 20 to discharge the water in the drum 3.
  • step S409 the control unit 50 executes unbalance elimination control.
  • the flow of the imbalance elimination control will be described in detail later.
  • step S410 the control unit 50 performs the final dehydration by rotating the drum 3 at a high speed as in the intermediate dehydration.
  • step S501 the control unit 50 determines the number of unbalance elimination control based on the flow shown in FIG. 6.
  • step S502 the control unit 50 determines the motor deceleration force in the unbalance elimination control as shown in FIG. 9 based on the flow shown in FIGS. 7 and 8.
  • step S503 the control unit 50 starts unbalance elimination control. Therefore, the control unit 50 starts to control the motor 7 to increase the drum rotation speed toward the target rotation speed, and accelerate the drum rotation speed.
  • step S504 the control unit 50 detects the vibration of the outer tub 2 via the vibration detection sensor 62.
  • the controller 50 continuously detects the vibration of the tub 2 while the drum rotation speed is increasing.
  • step S505 the control unit 50 determines whether the drum rotation speed has reached the target rotation speed. When the control unit 50 determines that the drum rotation speed has not reached the target rotation speed, the process proceeds to step S503, and the control unit 50 continues to control the motor 7 to increase the rotation speed of the drum 3 toward the target rotation speed.
  • step S505 When the control unit 50 determines that the drum rotational speed has reached the target rotational speed in step S505, the process proceeds to step S506, and after stopping the rotational driving of the drum 3, the control unit 50 starts controlling the motor 7 to decrease the drum rotational speed.
  • step S507 the control unit 50 determines whether to continue the imbalance elimination control based on the flow shown in FIG.
  • the flowchart shown in FIG. 10 returns to the flow of FIG. 11 when the control unit 50 determines to end the imbalance elimination control, and the control unit 50 executes the intermediate dehydration process or the final dehydration process.
  • step S508 the control unit 50 determines whether the imbalance elimination control is completed a predetermined number of times.
  • step S508 When the control unit 50 determines in step S508 that the unbalance elimination control has not been completed a predetermined number of times, it proceeds to step S503 and executes the unbalance elimination control again.
  • step S508 when the control unit 50 determines that the imbalance elimination control has been completed a predetermined number of times, the process proceeds to step S509, and the control unit 50 executes the unbalanced rinse. Then, it proceeds to step S510.
  • step S510 the control unit 50 determines whether unbalanced rinsing for a predetermined number of rinsing times has been completed.
  • the process proceeds to step S501 and the unbalance elimination control is executed again.
  • step S510 when the control unit 50 determines that the unbalanced rinsing for a predetermined number of rinsing times is completed, the process proceeds to step S511, and the control unit 50 displays an error on a display unit (not shown).
  • step S601 the control unit 50 increases the drum rotation speed to the first rotation speed (for example, 50 rpm).
  • the first rotation speed is set to a rotation speed of 100 rpm or less, the drum rotation speed is increased to the first rotation speed, and the drum 3 is rotated, thereby arranging the plurality of rolling elements 32 to be biased against the laundry in the drum 3
  • the eccentric position is completely opposite to the final best position, after which the dehydration is started.
  • step S602 the control unit 50 determines whether the drum rotation speed has operated for the first predetermined time in the state of the first rotation speed. When the control unit 50 determines that the first rotation speed has not been operated for the first predetermined time, the drum rotation speed continues to the first rotation speed.
  • step S602 when the control unit 50 determines that the first rotation speed has been operated for the first predetermined time, the process proceeds to step S603, and the control unit 50 increases the drum rotation speed to the second rotation speed (for example, 170 rpm).
  • step S604 the control unit 50 determines whether the drum rotation speed has been operated for the second predetermined time in the state of the second rotation speed. When the control unit 50 determines that the second rotation speed has not been operated for the second predetermined time, the drum rotation speed continues to the second rotation speed.
  • step S604 when the control unit 50 determines that the second rotation speed has been operated for the second predetermined time, the process proceeds to step S605, and the control unit 50 increases the drum rotation speed to the third rotation speed (for example, 350 rpm).
  • step S606 the control unit 50 determines whether the rotation speed of the drum has operated for the third predetermined time in the state of the third rotation speed. When the control unit 50 determines that the third rotation speed has not been operated for the third predetermined time, the drum rotation speed continues to the third rotation speed.
  • step S606 When the control unit 50 determines to operate at the third rotation speed for the third predetermined time in step S606, the process proceeds to step S607, and the control unit 50 increases the drum rotation speed to the fourth rotation speed (for example, 800 rpm).
  • the fourth rotation speed for example, 800 rpm
  • step S608 the control unit 50 determines whether the rotation speed of the drum has operated for the fourth predetermined time in the state of the fourth rotation speed. When the control unit 50 determines that the fourth rotation speed has not been operated for the fourth predetermined time, the drum rotation speed continues to the fourth rotation speed.
  • step S608 when the control unit 50 determines that the operation has been performed at the fourth rotation speed for the fourth predetermined time, the spin cycle is ended.
  • the acceleration of the rotational speed of the drum is 40 rpm/s
  • the acceleration of the rotational speed of the drum is 80 rpm/s
  • the rotational speed of the drum 3 is 170 rpm to 350 rpm
  • the drum speed acceleration is 10rpm/s.
  • the vertical washing machine 100 of the present embodiment includes: an outer tub 2 arranged inside the cabinet 1; a drum 3 arranged inside the outer tub 2 so as to be rotatable about a rotation axis; and a ring-shaped container 31 arranged on the drum 3 , Containing a plurality of rolling bodies 32 and liquid 33; a motor 7, which rotates the drum 3; and a motor control unit 55 as a control unit, which controls the motor 7 to control the motor 7 before starting the dehydration process to perform the following imbalance elimination control : After the rotational speed of the drum 3 is increased to reach a target rotational speed exceeding the resonance rotational speed at which the lateral resonance of the drum 3 is generated, the rotational driving of the drum 3 is stopped.
  • the ring-shaped container 31 accommodating a plurality of rolling elements 32 is disposed on the drum 3, and before the spin-drying process is started, the imbalance elimination control is performed by increasing the rotation speed of the drum 3 After reaching the target rotational speed exceeding the resonance rotational speed at which the lateral resonance of the drum 3 is generated, the rotational driving of the drum 3 is stopped. Therefore, the plurality of rolling elements 32 housed in the ring-shaped container 31 move toward the opposite side of the eccentric position where the laundry in the drum 3 is biased by the centrifugal force when performing the imbalance elimination control, thereby eliminating the imbalance of the drum 3 .
  • the specific gravity of the rolling bodies 32 housed in the ring-shaped container 31 is larger than the liquid of the conventional liquid balancer, so the ring-shaped container 31 can be miniaturized. Therefore, it is possible to increase the volume of laundry that can be stored in the drum 3 without increasing the size of the drum 3. In addition, by performing unbalance elimination control before starting the dehydration process, the dehydration process can be started in a state where the unbalance of the drum 3 is eliminated.
  • the annular container 31 contains liquid.
  • the liquid is accommodated in the annular container 31, and the liquid moves toward the side opposite to the eccentric position where the laundry in the drum 3 is biased, so that the liquid can be moved in a short time Eliminate the unbalance of the drum 3.
  • the vertical washing machine 100 of the present embodiment includes an ambient temperature detection sensor 61 as an ambient temperature detection unit that detects ambient temperature.
  • the motor control unit 55 as a control unit stops the rotation of the drum 3 in the imbalance elimination control according to
  • the motor deceleration force is regulated to control the motor 7 to reduce the rotation speed of the drum 3, and the predetermined motor deceleration force when the rotation speed of the drum 3 is reduced in the unbalance elimination control can be based on the ambient temperature detected by the ambient temperature detection sensor 61 Variety.
  • the viscosity of the liquid 33 contained in the annular container 31 decreases as the surrounding temperature becomes higher, and increases as the surrounding temperature becomes lower.
  • the amount of the rolling body that moves when the motor accelerates due to the inertial force generated by deceleration becomes larger. Therefore, in order to minimize the amount of rolling element homing when the motor decelerates, increase the motor deceleration force when the ambient temperature where the liquid viscosity becomes high is low, and conversely, decrease when the ambient temperature where the liquid viscosity becomes low is high
  • the motor deceleration force thereby suppressing the amount of homing, improves the ability to eliminate unbalance.
  • the vertical washing machine 100 of the present embodiment includes a load amount detection unit 51 as a load amount detection unit that detects a load amount corresponding to the amount of laundry in the drum 3, and stops the rotation drive of the drum 3 in the unbalance elimination control
  • the motor control unit 55 as a control unit controls the motor 7 according to the prescribed motor deceleration force to reduce the number of revolutions of the drum 3, and the motor deceleration force when reducing the rotation speed of the drum 3 in the unbalance elimination control can be based on
  • the load amount detected by the load amount detection unit 51 varies.
  • the laundry is stored in the drum 3, but even if the amount of laundry in the drum 3 is smaller, the motor deceleration force in the imbalance elimination control is smaller, and the drum can be eliminated 3 imbalance. Therefore, the motor deceleration force in the unbalance elimination control can be appropriately determined according to the load amount.
  • the vertical washing machine 100 of the present embodiment includes an ambient temperature detection sensor 61 as an ambient temperature detection unit that detects ambient temperature, and the number of times of unbalance elimination control can be changed according to the ambient temperature detected by the ambient temperature detection sensor 61.
  • the viscosity of the liquid 33 contained in the annular container 31 decreases as the surrounding temperature becomes higher, and increases as the surrounding temperature becomes lower. Therefore, when the imbalance elimination control is performed, the moving amount of the rolling element 32 in the annular container 31 changes according to the viscosity of the liquid 33. Therefore, even if the surrounding temperature is higher, the number of times of unbalance elimination control is less, and the unbalance of the drum 3 can be eliminated. Therefore, the number of unbalance elimination control can be appropriately determined according to the surrounding temperature.
  • the washing machine 100 includes the vibration detection sensor 62, and the continuation determination unit 54 determines whether to continue the imbalance elimination control based on the magnitude of the vibration of the tub 2 detected by the vibration detection sensor 62, but it is not limited thereto.
  • FIG. 14 is a flowchart showing a flow of unbalance elimination control of a vertical washing machine according to a modification of the present invention. Therefore, as shown in FIG. 14, in the case where the washing machine in the modification of the present invention does not include the vibration detection sensor 62, the unbalance elimination control may be ended after the number of times determined by the rotation determination unit 53 is performed.
  • FIG. 14 shows the flow of unbalance elimination control of a vertical washing machine according to a modification of the present invention, but the contents of steps S701 to S706 in the flowchart of FIG. 14 and steps S501 to step in the flowchart of FIG. 12
  • the contents of S503, Step S505, Step S506, and Step S508 are the same, and detailed description is omitted.
  • the motor deceleration force in the unbalance elimination control is determined according to the ambient temperature and the load of the washing machine 100, but it is not limited to this. Therefore, the motor deceleration force in the unbalance elimination control can be determined based only on the ambient temperature of the washing machine 100. In addition, the motor deceleration force in the unbalance elimination control may be determined based only on the load amount.
  • unbalance elimination control is performed in a state where the plurality of rolling elements 32 are located around the eccentric position where the laundry in the drum 3 is biased while the drum 3 is stopped, but it may be possible In the state where the drum 3 is stopped, unbalance elimination control is performed in a state where the eccentric positions where the plurality of rolling bodies 32 are biased with respect to the laundry in the drum 3 are located at arbitrary positions.
  • the unbalance elimination control is performed three times before the dehydration process is started, and the target rotation speed in the three unbalance elimination control is the same, but the number of unbalance elimination control performed before the dehydration process is not limited to this.
  • the target rotation speed may be changed every time the unbalance elimination control is performed.
  • the target rotation speed in the first unbalance elimination control may be set to 100 rpm
  • the target rotation speed in the second unbalance elimination control may be set to 120 rpm
  • the target rotation speed in the third unbalance elimination control may be set to 150 rpm. Each time the imbalance elimination control is performed, the target speed is increased.
  • the larger the target rotation speed in the unbalance elimination control the greater the amount of movement of the rolling elements 32 in the annular container 31 when the unbalance elimination control is performed. Therefore, it is easy to eliminate the unbalance of the drum 3.
  • the rotation speed of the drum 3 increases, the energy of the outer tub 2 also rises, so the impact when the outer tub 2 collides with the frame increases. Therefore, it is difficult to increase the target rotation speed in the unbalance elimination control from the beginning.
  • the unbalance of the drum 3 becomes smaller each time the unbalance elimination control is performed, so that the target rotation speed in the unbalance elimination control to be performed later can be increased. Therefore, when the unbalance elimination control is performed multiple times, the imbalance of the drum 3 can be effectively eliminated by making the target rotation speed in the unbalance elimination control performed later be larger than the target rotation speed in the unbalance elimination control performed previously.
  • the ring-shaped container 31 of the ball balancer 30 accommodates a plurality of rolling bodies 32 and a liquid 33 as a moving body, or only a plurality of rolling bodies 32 as a moving body.
  • the rolling element 32 may be coated with rubber or the like, and the rolling element 32 may be moved by the resistance generated by the frictional force between the inner circumferential surface of the annular container 31 and the rolling element 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

一种立式洗衣机,其能不使滚筒大型化地增大滚筒内可收容的洗涤物的容量。该立式洗衣机具备:外桶,配置于箱体的内部;滚筒,以能绕旋转轴进行旋转的方式配置于外桶内;环状容器,配置于滚筒,收容滚动体;马达,对滚筒进行旋转驱动;以及马达控制部,控制马达,马达控制部在开始脱水过程之前控制马达以进行如下的不平衡消除控制:将滚筒的转速上升至达到超过产生滚筒的横向共振的共振转速的目标转速之后,使滚筒的旋转驱动停止。

Description

立式洗衣机 技术领域
本发明涉及例如进行清洗过程、漂洗过程以及脱水过程的立式洗衣机。
背景技术
立式洗衣机中,在开始脱水过程后,在洗涤物于滚筒内偏心而滚筒不平衡的情况下,有时滚筒会振动而无法启动脱水。因此,有些立式洗衣机会在滚筒(旋转筒)中设置用于抵消不平衡的平衡装置(参照专利文献1)。
平衡装置具有圆环形的平衡壳,平衡壳的内部封入有液体(水溶液)。因此,在开始脱水过程后,通过液体移动至抵消不平衡的位置,能消除不平衡。
由于平衡装置中被封入平衡壳内的液体的比重较小,因此为了抑制滚筒的振动,需要增大被封入平衡壳内的液体的容量。因此,当增大设置于滚筒的平衡壳的内部空间时,滚筒内可收容的洗涤物的容量会变少。
现有技术文献
专利文献
专利文献1:日本特开2018-82916号公报
发明内容
发明所要解决的问题
因此,本发明的目的在于提供一种立式洗衣机,其能不使收容洗涤物的滚筒大型化地增大滚筒内可收容的洗涤物的容量。
用于解决问题的方案
即,本发明的立式洗衣机具备:外桶,配置于箱体的内部;滚筒,以能绕旋转轴进行旋转的方式配置于所述外桶内;环状容器,配置于所述滚筒,收容 滚动体;马达,对所述滚筒进行旋转驱动;以及控制单元,控制所述马达,所述控制单元在开始脱水过程之前控制所述马达以进行如下的不平衡消除控制:将所述滚筒的转速上升至达到超过产生所述滚筒的横向共振的共振转速的目标转速之后,使所述滚筒的旋转驱动停止。本发明中,产生滚筒的横向共振的共振转速是指,在与滚筒的旋转轴垂直的方向上产生滚筒的共振时的共振转速。
优选的是,本发明的立式洗衣机中,所述环状容器中收容有液体。
优选的是,本发明的立式洗衣机中,具备检测周围温度的周围温度检测单元,在所述不平衡消除控制中,在停止所述滚筒的旋转驱动之后,所述控制单元根据规定马达减速力来控制所述马达以使所述滚筒的转速减小,并且,在所述不平衡消除控制中减小所述滚筒的转速时的规定马达减速力能根据由所述周围温度检测单元检测出的周围温度而变化。
优选的是,本发明的立式洗衣机中,具备检测与位于所述滚筒内的洗涤物的量对应的负荷量的负荷量检测单元,在所述不平衡消除控制中,在停止所述滚筒的旋转驱动之后,所述控制单元根据规定马达减速力来控制所述马达以使所述滚筒的转速减小,并且,在所述不平衡消除控制中减小所述滚筒的转速时的规定马达减速力能根据由所述负荷量检测单元检测出的负荷量而变化。
优选的是,本发明的立式洗衣机中,具备检测周围温度的周围温度检测单元,所述不平衡消除控制的次数能根据由所述周围温度检测单元检测出的周围温度而变化。
优选的是,本发明的立式洗衣机中,具备检测所述外桶的振动的振动检测单元,所述不平衡消除控制的继续根据由所述振动检测单元检测出的所述外桶的振动的大小来确定。
发明效果
本发明的立式洗衣机中,收容滚动体的环状容器配置于滚筒,在开始脱水过程之前,进行如下的不平衡消除控制:在将滚筒的转速上升至达到超过产生滚筒的横向共振的共振转速的目标转速之后,使滚筒的旋转驱动停止。因此,收容在环状容器内的滚动体借助进行不平衡消除控制时的离心力,能通过朝向滚筒内的洗涤物所偏倚的偏心位置的相反侧移动来消除滚筒的不平衡。与现有 的液体平衡器的液体相比,收容在环状容器内的滚动体的比重更大,因此能使环状容器小型化。因此,能不使滚筒大型化地增大滚筒内可收容的洗涤物的容量。此外,在开始脱水过程之前,能通过进行不平衡消除控制,在消除了滚筒的不平衡的状态下开始脱水过程。
本发明的立式洗衣机中,液体收容在环状容器内,液体朝向滚筒内的洗涤物所偏倚的偏心位置的相反侧移动的速度快,因此,能在短时间内消除滚筒的不平衡。
本发明的立式洗衣机中,收容于环状容器的液体的粘度随着周围温度变高而减小,随着周围温度变低而增大。在不平衡消除控制中,当马达减速力变大时,马达加速时移动的滚动体由于减速所产生的惯性力而归位的量变大。因此,为了在马达减速时尽量减小滚动体归位的量,在液体粘度变高的周围温度低时,增大马达减速力,相反地,在液体粘度变低的周围温度高时,减小马达减速力,由此抑制归位的量,提高不平衡消除能力。
本发明的立式洗衣机中,滚筒内收容有洗涤物,而与位于滚筒内的洗涤物的量对应的负荷量越少,不平衡消除控制中的马达减速力越小。因此,能根据负荷量适当地确定不平衡消除控制中的马达减速力。
本发明的立式洗衣机中,收容于环状容器的液体的粘度随着周围温度变高而减小,随着周围温度变低而增大。因此,进行不平衡消除控制时的环状容器内的滚动体的移动量根据液体的粘度而变化。因此,即使周围温度越高,不平衡消除控制的次数越少,也能消除滚筒的不平衡。因此,能根据周围温度适当地确定不平衡消除控制的次数。
本发明的立式洗衣机中,在外桶的振动小的情况下,滚筒的不平衡较小,因此结束不平衡消除控制,与此相对,在外桶的振动大的情况下,滚筒的不平衡较大,因此继续不平衡消除控制。因此,能根据外桶的振动的大小来适当地确定是否继续不平衡消除控制。
附图说明
图1是本发明的实施方式的立式洗衣机100的示意性剖视图。
图2是图1的立式洗衣机100的滚珠平衡器30的俯视图。
图3是图1的立式洗衣机100的控制框图。
图4是表示在开始脱水过程之前进行的不平衡消除控制进行之后的滚筒转速和脱水过程中的滚筒转速的变化的图。
图5是表示进行不平衡消除控制后的滚珠平衡器30的环状容器31内的多个滚动体32的动作的图。
图6是表示根据立式洗衣机100的周围温度来确定不平衡消除控制的次数的方法的流程图。
图7是表示根据立式洗衣机100的周围温度来确定不平衡消除控制中的马达减速力的方法的流程图。
图8是表示根据立式洗衣机100的负荷量来确定不平衡消除控制中的马达减速力的方法的流程图。
图9是表示不平衡消除控制中的马达减速力与立式洗衣机100的周围温度和负荷量的对应的图。
图10是表示根据外桶2的振动的大小来确定是否继续不平衡消除控制的方法的流程图。
图11是表示立式洗衣机100的洗涤动作的流程图。
图12是表示不平衡消除控制的流程的流程图。
图13是表示立式洗衣机100的洗涤动作中的脱水过程的流程的流程图。
图14是表示本发明的变形例的立式洗衣机的不平衡消除控制的流程的流程图。
附图标记说明
1:箱体;2:外桶;3:滚筒;7:马达;31:环状容器;32:滚动体;33:液体;51:负荷量检测部;55:马达控制部;61:周围温度检测传感器;62:振动检测传感器;100:立式洗衣机。
具体实施方式
以下,参照附图,对本发明的实施方式的立式洗衣机100进行说明。图1是本发明的实施方式的立式洗衣机100的示意性剖视图。
立式洗衣机100(以下,有时称为洗衣机100)具有作为洗衣机主体的箱体1,在箱体1的内部,有底圆筒形状的外桶2由未图示的多根吊棒悬吊支承。在外桶2的内部,周围具有许多通水孔的滚筒3以固定于其底壁的支承轴4为中心被自由旋转地轴支承。在滚筒3的底部设有搅拌翼5,搅拌翼5以嵌插至支承轴4的内轴6为中心自由旋转。
装配于外桶2的下表面的马达7的旋转驱动力经由包括固定于马达轴8的小带轮9、V传动带10、大带轮11等的传递机构以及包括离合器机构12和转矩马达13的动力切换机构14传递给支承轴4和内轴6。
主要在洗涤运转、漂洗运转时,离合器机构12根据转矩马达13的动作解除大带轮11与支承轴4的连接,经由内轴6使搅拌翼5单向或双向旋转。另一方面,在脱水运转时,离合器机构12将大带轮11与支承轴4连接,使滚筒3与搅拌翼5一体地单向旋转。
在箱体1的上部后方配设有与外部的水龙头连接的供水管15,当供水阀16打开时,通过供水管15导入的水流入具备洗涤剂容器的注水口17,注入外桶2内。另一方面,在外桶2的底部设有排水口18,与排水口18连接的排水管19由排水阀20来开闭。
排水阀20的开闭动作与离合器机构12的动作联动,当搅拌翼5与滚筒3分离而处于可单独旋转的状态时,排水阀20关闭,当搅拌翼5与滚筒3处于一体旋转的状态时,排水阀20打开。
在箱体1的上表面开口的洗涤物的投入口21,设有自由开闭的盖体22。在箱体1内的上部前方设有安全装置24。安全装置24是将对图2所示的盖体22的开闭进行检测的盖开闭检测装置和用于在盖体22关闭的状态下为了禁止其打开而上锁的盖锁定装置一体化而成的装置。
箱体1中配置有检测洗衣机100的周围温度的周围温度检测传感器61和检测外桶2的振动的振动检测传感器62。振动检测传感器62配置于箱体1内的外 桶2的下方,能检测出外桶2的振动为阈值以上的情况。
在形成于滚筒3的上端的开口部3a附近,设有滚珠平衡器30。滚珠平衡器30具有环状容器31,环状容器31的内部收容有多个滚动体32和液体33作为移动体。环状容器31以其旋转轴与滚筒3的旋转轴一致的方式设置于滚筒3的开口部3a内部。
滚动体32为金属制的滚珠,液体33为例如硅油(信越化学工业株式会社制:信越有机硅KF-96-350CS)。滚动体32只要是转动的形状,就不局限于近似球状的球体。液体33能使用硅油等油类,但液体的种类不受限制。
图2的(a)是滚珠平衡器30的俯视图,图2的(b)是图2的(a)的A-A线的剖视图。环状容器31呈圆环状,具有外周面31a和内周面31b。滚动体32和液体33被收容为能在环状容器31的内部遍及整周地移动。
滚动体32的直径稍小于环状容器31的外周面31a与内周面31b的距离。因此,虽然图2的(b)表示滚动体32与环状容器31的外周面31a接触的状态,但是在滚动体32与环状容器31的内周面31b之间,形成有间隙D(例如1mm)。
环状容器31的高度尺寸(收容多个滚动体32和液体33的空间的尺寸)比现有的液体平衡器中收容液体的环状容器的高度尺寸小。
图3是本实施方式的洗衣机100的控制框图。如图3所示,洗衣机100的控制部50例如由微型计算机等构成,具备:CPU、储存有控制洗衣机100的动作的程序的ROM以及临时存储有执行上述程序时所用的数据等的RAM。洗衣机100的运转动作由该控制部50控制。
在本实施方式的立式洗衣机100中,控制部50控制马达7以进行清洗过程、漂洗过程以及脱水过程的各个运转,但是在开始脱水过程之前,控制马达7以进行如下的不平衡消除控制:在将滚筒3的转速上升至达到超过产生滚筒3的横向共振的共振转速的目标转速之后,使滚筒3的旋转驱动停止。本实施方式中,控制部50在开始脱水过程之前,进行规定次数的不平衡消除控制。规定次数为例如3次。
产生滚筒3的横向共振的共振转速是在与滚筒3的旋转轴垂直的方向上产生滚筒3的共振时的共振转速,为例如70rpm~90rpm。因此,超过该共振转速 的目标转速为例如100rpm~150rpm的转速。
图4是表示在开始脱水过程之前进行的不平衡消除控制被执行后的滚筒转速的变化和脱水过程中的滚筒转速的变化的图。图4是表示在开始脱水工程之前,进行三次不平衡消除控制的情况。图5是表示进行不平衡消除控制后的滚珠平衡器30的环状容器31内的多个滚动体32的动作的图。
本实施方式中,对如下情况进行说明:在滚筒3停止的状态下,在如图5所示滚筒3内的洗涤物向滚筒3的底部的左侧部分偏倚且偏心位置位于滚筒3的左侧部分的状态下,进行不平衡消除控制。
图5的(a)表示在时刻0,在滚筒3停止的状态下,位于滚筒3内的洗涤物呈向滚筒3的底部的左侧部分偏倚的状态,多个滚动体32位于洗涤物所偏倚的偏心位置的周边的状态。因此,滚筒3为不平衡状态。
在时刻0,控制部50开始控制马达7以使滚筒转速向目标转速即100rpm上升。目标转速即100rpm的转速是超过产生滚筒3的横向共振的共振转速的转速。需要说明的是,滚筒3的转速为0rpm~100rpm时的转速加速度为80rpm/s。本实施方式中,在不平衡消除控制中,滚筒转速上升至目标转速时的转速加速度为40rpm/s以上。不平衡消除控制中的滚筒转速加速度大的一方则滚动体32的移动量大。
于是,随着滚筒3的转速的上升,在环状容器31内,多个滚动体32借助离心力,如图5的(b)所示,沿环状容器31的外周面向滚筒3的旋转方向侧移动。即,随着滚筒3的转速的上升,环状容器31内的多个滚动体32朝向滚筒3内的洗涤物所偏倚的偏心位置的相反侧移动。
在时刻t1,当滚筒转速达到目标转速即100rpm时,控制部50控制马达7以使滚筒3的旋转驱动停止。如图4所示,使滚筒3的旋转驱动停止之后,由于惯性力,滚筒转速上升至120rpm,但在此之后,控制部50控制马达7以使滚筒转速以预先确定的规定马达减速力减小。在时刻t3,当滚筒转速减小至0时,第一次不平衡消除控制结束。本实施方式中,在不平衡消除控制中,控制滚筒转速使其减小到小于产生滚筒3的横向共振的共振转速的转速。
在时刻t2,当滚筒转速减小至0时,控制部50再次开始控制马达7以使滚 筒转速向目标转速即100rpm上升。在时刻t3,当滚筒转速达到目标转速即100rpm时,控制部50控制马达7以使滚筒3的旋转驱动停止。之后,控制部50控制马达7以使滚筒转速以预先确定的规定马达减速力减小。在时刻t4,当滚筒转速减小至0时,第二次不平衡消除控制结束。
之后,与上述相同,在时刻t4,控制部50再次开始控制马达7以使滚筒转速向目标转速即100rpm上升,在时刻t5,当滚筒转速达到目标转速即100rpm时,控制部50控制马达7以使滚筒3的旋转驱动停止。之后,控制部50控制马达7以使滚筒转速以预先确定的规定马达减速力减小。在时刻t6,当滚筒转速减小至0时,第三次不平衡消除控制结束。
如上所述,在第一次不平衡消除控制结束时,如图5的(b)所示,在环状容器31内,多个滚动体32朝向滚筒3内的洗涤物所偏倚的偏心位置的相反侧移动,但没有移动到与偏心位置完全对置的位置。之后,当第二次不平衡消除控制、第三次不平衡消除控制结束时,在环状容器31内,如图5的(c)所示,多个滚动体32移动到与偏心位置完全对置的位置。
本实施方式中,控制部50通过进行三次不平衡消除控制,在使滚筒3的平衡最佳化的状态下开始脱水过程。需要说明的是,在控制部50无法通过进行三次不平衡消除控制来使滚筒3的平衡最佳化的情况下,进行不平衡漂洗。所谓不平衡漂洗是指在通过进行三次不平衡消除控制而没有消除不平衡的情况下,为了解开滚筒3内的洗涤物,通过向滚筒3内供给规定量的水并旋转搅拌翼5而进行的运转。需要说明的是,在即使进行规定漂洗次数的不平衡漂洗,规定次数的不平衡消除控制也没有结束的情况下,控制部50对未图示的显示部进行错误显示。规定漂洗次数为例如两次。
控制部50具有负荷量检测部51、次数确定部52、马达减速力确定部53、继续确定部54、以及马达控制部55。控制部50中连接有周围温度检测传感器61、振动检测传感器62以及马达7。
负荷量检测部51检测与滚筒3内的洗涤物的量对应的负荷量。本实施方式中,负荷量表示为相对于洗衣机100的额定容量的比率。洗衣机100中,在开始洗涤动作后,使马达7短时间接通而对搅拌翼5进行旋转驱动,之后,当使马达7断开时,搅拌翼5因惯性而旋转。负荷量检测部51在该惯性旋转期间内 对与马达7的旋转同步的脉冲信号进行计数,根据该计数值检测负荷量。需要说明的是,由于负荷量越大则对搅拌翼5的旋转的阻力就越大,因此惯性旋转的持续时间变短。
次数确定部52确定在开始脱水过程之前进行的不平衡消除控制的次数(规定次数)。本实施方式中,次数确定部52根据洗衣机100的周围温度(气温)来确定不平衡消除控制的次数。
图6是表示根据洗衣机100的周围温度来确定不平衡消除控制的次数的方法的流程图。
<步骤S1、S2>
步骤S1中,控制部50判定由周围温度检测传感器61检测出的周围温度是否处于5℃~10℃的范围内。在控制部50判定周围温度处于5℃~10℃的范围内时,进入步骤S2,将不平衡消除控制的次数确定为五次。
<步骤S3、S4>
在步骤S1中控制部50判定周围温度不处于5℃~10℃的范围内的情况下,进入步骤S3,控制部50判定由周围温度检测传感器检测出的周围温度是否处于10℃~20℃的范围内。在控制部50判定周围温度处于10℃~20℃的范围内时,进入步骤S4,将不平衡消除控制的次数确定为四次。
<步骤S5>
在步骤S3中控制部50判定周围温度不处于10℃~20℃的范围内的情况下,进入步骤S5,将不平衡消除控制的次数确定为三次。
如上所述,次数确定部52根据洗衣机100的周围温度来确定不平衡消除控制的次数,而滚珠平衡器30的液体33的粘度随着周围温度变高而变小,随着周围温度变低而变大。因此,在进行不平衡消除控制时,环状容器31内的滚动体32的移动量根据液体33的粘度而变化。因此,即使周围温度越高,不平衡消除控制的次数越少,也能消除滚筒3的不平衡。因此,次数确定部52将不平衡消除控制的次数随着周围温度变高而确定为较小的值,并且随着周围温度变低而确定为较大的值。
马达减速力确定部53确定不平衡消除控制中的马达减速力。不平衡消除控制中的马达减速力与不平衡消除控制中减小滚筒转速时使马达7的驱动轴减速的减速加速度对应。具体而言,马达减速力确定部53根据洗衣机100的周围温度和与滚筒3内的洗涤物的量对应的负荷量来确定不平衡消除控制中的马达减速力。
图7是表示根据洗衣机100的周围温度来确定不平衡消除控制中的马达减速力的方法的流程图。
<步骤S101、S102>
步骤S101中,控制部50判定由周围温度检测传感器61检测出的周围温度是否处于5℃~15℃的范围内。在控制部50判定周围温度处于5℃~15℃的范围内时,进入步骤S102,将不平衡消除控制中的马达减速力确定为第一值。
<步骤S103、S104>
在步骤S101中控制部50判定周围温度不处于5℃~15℃的范围内的情况下,进入步骤S103,控制部50判定由周围温度检测传感器61检测出的周围温度是否处于15℃~30℃的范围内。在控制部50判定周围温度处于15℃~30℃的范围内时,进入步骤S104,将不平衡消除控制中的马达减速力确定为第二值。
<步骤S105>
在步骤S103中控制部50判定周围温度不处于15℃~30℃的范围内的情况下,进入步骤S105,将不平衡消除控制中的马达减速力确定为第三值。
如上所述,马达减速力确定部53根据洗衣机100的周围温度来确定不平衡消除控制中的马达减速力,而滚珠平衡器30的液体33的粘度随着周围温度变高而变小,随着周围温度变低而变大。在不平衡消除控制中,当马达减速力变大时,马达加速时移动的滚动体32由于减速所产生的惯性力,归位的量变大。因此,为了在马达减速时尽量减小滚动体32归位的量,在液体粘度变高的周围温度低时,增大马达减速力,相反地,在液体粘度变低的周围温度高时,减小马达减速力,由此抑制归位的量,提高不平衡消除能力。
图8是表示根据洗衣机100的负荷量来确定不平衡消除控制中的马达减速力的方法的流程图。
<步骤S201、S202>
步骤S201中,控制部50判定由负荷量检测部51检测出的负荷量是否处于额定的0%~30%的范围内。在控制部50判定负荷量处于额定的0%~30%的范围内时,进入步骤S202,将不平衡消除控制中的马达减速力确定为第四值。
<步骤S203、S204>
在步骤S201中控制部50判定负荷量不处于额定的0%~30%的范围内的情况下,进入步骤S203,控制部50判定由负荷量检测部51检测出的负荷量是否处于额定的30%~70%的范围内。在控制部50判定负荷量处于额定的30%~70%的范围内时,进入步骤S204,控制部50将不平衡消除控制中的马达减速力确定为第五值。
<步骤S205>
在步骤S203中控制部50判定负荷量不处于额定的30%~70%的范围内的情况下,进入步骤S205,将不平衡消除控制中的马达减速力确定为第六值。
如上所述,马达减速力确定部52根据与滚筒3内的洗涤物的量对应的负荷量来确定不平衡消除控制中的马达减速力,滚筒3内的洗涤物的量越少,则越减小使滚筒转速减小时的马达减速。因此,马达减速力确定部52将不平衡消除控制中的马达减速力确定为随着负荷量变大而变大的值,并且确定为随着负荷量变小而变小的值。
上述的图7和图8的流程图中,对将不平衡消除控制中的马达减速力确定为第一~第六值进行了说明,图9表示不平衡消除控制中的马达减速力与洗衣机100的周围温度和负荷量的对应。如上所述,不平衡消除控制中的马达减速力随着周围温度变高而被确定为较小的值,因此,在图9中,马达减速力a 11>马达减速力a 12>马达减速力a 13,马达减速力a 21>马达减速力a 22>马达减速力a 23,马达减速力a 31>马达减速力a 32>马达减速力a 33
此外,不平衡消除控制中的马达减速力随着与滚筒3内的洗涤物的量对应的负荷量变大而被确定为较大的值,因此,在图9中,马达减速力a 11<马达减速力a 21<马达减速力a 31,马达减速力a 12<马达减速力a 22<马达减速力a 32,马达减速力a 13<马达减速力a 23<马达减速力a 33
继续确定部54确定是否继续不平衡消除控制。本实施方式中,继续确定部54根据由振动检测传感器62检测出的外桶2的振动的大小来确定是否继续不平衡消除控制。具体而言,继续确定部54在进行着不平衡消除控制的情况下,在由振动检测传感器62检测出的外桶2的振动大于阈值的情况下,确定继续不平衡消除控制,在由振动检测传感器62检测出的外桶2的振动的大小为阈值以内的情况下,确定结束不平衡消除控制。
图10是表示根据外桶2的振动的大小来确定是否继续不平衡消除控制的方法的流程图。
<步骤S301>
步骤S301中,控制部50判定外桶2的振动是否为阈值以内。
<步骤S302>
在控制部50判定外桶2的振动为阈值以内的情况下,进入步骤S302,确定结束不平衡消除控制。
<步骤S303>
在步骤S301中控制部50判定外桶2的振动不为阈值以内的情况下,进入步骤S303,控制部50确定继续不平衡消除控制。
本实施方式的立式洗衣机100中,具备作为检测外桶2的振动的振动检测单元的振动检测传感器62,根据由振动检测传感器62检测出的外桶2的振动的大小来确定不平衡消除控制的继续。
由此,本实施方式的立式洗衣机100中,在外桶2的振动小的情况下,由于滚筒3的不平衡较小,因此结束不平衡消除控制,与此相对,在外桶2的振动较大的情况下,由于滚筒3的不平衡较大,因此继续不平衡消除控制。因此,能根据外桶2的振动的大小来适当地确定是否继续不平衡消除控制。
基于图11,对洗衣机100的洗涤动作进行说明。
<步骤S401>
步骤S401中,当使用者将洗涤物投入滚筒3内,进行适当的设定后按下开始键时,控制部50执行负荷量检测处理。控制部50根据该负荷量来确定被定 为多个阶段的洗涤水位。
<步骤S402>
步骤S402中,确定洗涤水位并进行实质的洗涤过程,为了开始清洗过程,控制部50打开供水阀16向滚筒3内供水至规定水位,使搅拌翼5以规定速度单向或双向旋转,由此来执行洗涤运转。当清洗过程结束时,控制部50驱动转矩马达13来打开排水阀20,将滚筒3内的水排出。
<步骤S403>
步骤S403中,控制部50执行不平衡消除控制。对于不平衡消除控制的流程,后面会详细说明。
<步骤S404>
然后,步骤S404中,控制部50通过使滚筒3高速旋转来执行中间脱水。通过该中间脱水,渗入洗涤物的洗涤剂水飞散而被去除。
<步骤S405>
步骤S405中,控制部50执行脱水漂洗作为第一次漂洗。脱水漂洗是如下的漂洗:一边使滚筒3旋转一边从注水口17将水喷淋状地喷洒在洗涤物上,由此使洗涤物吸收干净的水并取而代之将渗入洗涤物的洗涤剂水挤出。
<步骤S406>
步骤S406中,控制部50执行不平衡消除控制。对于不平衡消除控制的流程,后面进行详细说明。
<步骤S407>
然后,步骤S407中,使洗涤物充分含水之后,与步骤S404一样,控制部50执行中间脱水,使渗入洗涤物的水飞散。
<步骤S408>
步骤S408中,进一步地,作为第二次漂洗,控制部50向滚筒3内供给规定量的水,与步骤S402的清洗过程时一样,通过旋转搅拌翼5来执行蓄水漂洗。当蓄水漂洗结束时,控制部50打开排水阀20而将滚筒3内的水排出。
<步骤S409>
步骤S409中,控制部50执行不平衡消除控制。对于不平衡消除控制的流程,后面进行详细说明。
<步骤S410>
然后,步骤S410中,与中间脱水一样,控制部50通过使滚筒3高速旋转来执行最终脱水。
需要说明的是,上述动作是最标准的动作,根据运转模式或使用者的各种设定,可以适当地变更各个过程的内容,例如进行蓄水漂洗来代替脱水漂洗过程,进行注水漂洗来代替蓄水漂洗等。
基于图12对上述不平衡消除控制的顺序进行说明。
<步骤S501>
步骤S501中,控制部50基于图6所示的流程,确定不平衡消除控制的次数。
<步骤S502>
步骤S502中,控制部50基于图7和图8所示的流程,如图9所示,确定不平衡消除控制中的马达减速力。
<步骤S503>
步骤S503中,控制部50开始不平衡消除控制。因此,控制部50开始控制马达7以使滚筒转速向目标转速上升,使滚筒转速加速。
<步骤S504>
步骤S504中,控制部50通过振动检测传感器62检测外桶2的振动。控制部50在滚筒转速上升期间持续检测外桶2的振动。
<步骤S505>
步骤S505中,控制部50判定滚筒转速是否达到了目标转速。在控制部50判定滚筒转速未达到目标转速的情况下,进入步骤S503,控制部50继续控制马达7以使滚筒3的转速向目标转速上升。
<步骤S506>
在步骤S505中控制部50判定滚筒转速达到了目标转速的情况下,进入步骤S506,在停止滚筒3的旋转驱动之后,控制部50开始控制马达7以使滚筒转速减小。
<步骤S507>
步骤S507中,控制部50基于图10所示的流程,确定是否继续不平衡消除控制。图10所示的流程图,在控制部50确定要结束不平衡消除控制的情况下,返回图11的流程,控制部50执行中间脱水过程或最终脱水过程。
<步骤S508>
图10所示的流程中,在控制部50确定要继续不平衡消除控制的情况下,进入步骤S508,控制部50判定不平衡消除控制是否完成了规定次数。
在步骤S508中控制部50判定不平衡消除控制没有完成规定次数的情况下,进入步骤S503,再次执行不平衡消除控制。
<步骤S509>
在步骤S508中控制部50判定不平衡消除控制完成了规定次数的情况下,进入步骤S509,控制部50执行不平衡漂洗。之后,进入步骤S510。
<步骤S510>
步骤S510中,控制部50判定是否完成了规定漂洗次数的不平衡漂洗。在步骤S510中控制部50判定没有完成规定漂洗次数的不平衡漂洗的情况下,进入步骤S501,再次执行不平衡消除控制。
<步骤S511>
在步骤S510中控制部50判定完成了规定漂洗次数的不平衡漂洗的情况下,进入步骤S511,控制部50在未图示的显示部进行错误显示。
基于图13对洗衣机100的洗涤动作中的脱水过程的动作进行说明。
<步骤S601>
步骤S601中,控制部50使滚筒转速上升至第一转速(例如50rpm)。本实 施方式中,第一转速被设定为100rpm以下的转速,使滚筒转速上升至第一转速而使滚筒3旋转,由此使多个滚动体32配置于与滚筒3内的洗涤物所偏倚的偏心位置完全对置的最终最佳位置,之后启动脱水。
<步骤S602>
步骤S602中,控制部50判定滚筒转速是否在第一转速的状态下运转了第一规定时间。在控制部50判定没有以第一转速运转第一规定时间的情况下,滚筒转速继续第一转速的状态。
<步骤S603>
在步骤S602中控制部50判定以第一转速运转了第一规定时间的情况下,进入步骤S603,控制部50使滚筒转速上升至第二转速(例如170rpm)。
<步骤S604>
步骤S604中,控制部50判定滚筒转速是否在第二转速的状态下运转了第二规定时间。在控制部50判定没有以第二转速运转第二规定时间的情况下,滚筒转速继续第二转速的状态。
<步骤S605>
在步骤S604中控制部50判定以第二转速运转了第二规定时间的情况下,进入步骤S605,控制部50使滚筒转速上升至第三转速(例如350rpm)。
<步骤S606>
步骤S606中,控制部50判定滚筒转速是否在第三转速的状态下运转了第三规定时间。在控制部50判定没有以第三转速运转第三规定时间的情况下,滚筒转速继续第三转速的状态。
<步骤S607>
在步骤S606中控制部50判定以第三转速运转第三规定时间的情况下,进入步骤S607,控制部50使滚筒转速上升至第四转速(例如800rpm)。
<步骤S608>
步骤S608中,控制部50判定滚筒转速是否在第四转速的状态下运转了第 四规定时间。在控制部50判定没有以第四转速运转第四规定时间的情况下,滚筒转速继续第四转速的状态。
在步骤S608中控制部50判定以第四转速运转了第四规定时间的情况下,结束脱水过程。
需要说明的是,滚筒3的转速为0rpm~50rpm时的滚筒转速加速度为40rpm/s,滚筒3的转速为50rpm~170rpm时的滚筒转速加速度为80rpm/s,滚筒3的转速为170rpm~350rpm时的滚筒转速加速度为10rpm/s。
本实施方式的立式洗衣机100具备:外桶2、配置于箱体1的内部;滚筒3,以能绕旋转轴进行旋转的方式配置于外桶2内;环状容器31,配置于滚筒3,收容多个滚动体32和液体33;马达7,对滚筒3进行旋转驱动;以及作为控制单元的马达控制部55,控制马达7在开始脱水工程之前控制马达7以进行如下的不平衡消除控制:将滚筒3的转速上升至达到超过产生滚筒3的横向共振的共振转速的目标转速之后,使滚筒3的旋转驱动停止。
由此,本实施方式的立式洗衣机100中,收容多个滚动体32的环状容器31配置于滚筒3,在开始脱水过程之前,进行如下的不平衡消除控制:在将滚筒3的转速上升至达到超过产生滚筒3的横向共振的共振转速的目标转速之后,使滚筒3的旋转驱动停止。因此,收容在环状容器31内的多个滚动体32借助进行不平衡消除控制时的离心力,朝向滚筒3内的洗涤物所偏倚的偏心位置的相反侧移动,由此消除滚筒3的不平衡。收容在环状容器31内的滚动体32的比重比现有的液体平衡器的液体大,因此能使环状容器31小型化。因此,能不使滚筒3大型化地增大滚筒3内可收容的洗涤物的容量。此外,通过在开始脱水过程之前进行不平衡消除控制,能在消除了滚筒3的不平衡的状态下开始脱水过程。
本实施方式的立式洗衣机100中,环状容器31中收容有液体。由此,本实施方式的立式洗衣机100中,液体收容在环状容器31内,液体朝向滚筒3内的洗涤物所偏倚的偏心位置的相反侧移动的速度快,因此,能在短时间内消除滚筒3的不平衡。
本实施方式的立式洗衣机100具备作为检测周围温度的周围温度检测单元 的周围温度检测传感器61,作为控制单元的马达控制部55在不平衡消除控制中,在停止滚筒3的旋转驱动之后,根据规定马达减速力来控制马达7以减小滚筒3的转速,并且,在不平衡消除控制中减小滚筒3的转速时的规定马达减速力能根据由周围温度检测传感器61检测出的周围温度而变化。
由此,本实施方式的立式洗衣机100中,收容于环状容器31的液体33的粘度随着周围温度变高而减小,随着周围温度变低而增大。在不平衡消除控制中,当马达减速力变大时,马达加速时移动的滚动体由于减速所产生的惯性力而归位的量变大。因此,为了在马达减速时尽量减小滚动体归位的量,在液体粘度变高的周围温度低时,增大马达减速力,相反地,在液体粘度变低的周围温度高时,减小马达减速力,由此抑制归位的量,提高不平衡消除能力。
本实施方式的立式洗衣机100具备作为检测与滚筒3内的洗涤物的量对应的负荷量的负荷量检测单元的负荷量检测部51,在不平衡消除控制中,在停止滚筒3的旋转驱动之后,作为控制单元的马达控制部55根据规定马达减速力来控制马达7以减小滚筒3的转数,并且,在不平衡消除控制中减小滚筒3的转速时的马达减速力能根据由负荷量检测部51检测出的负荷量而变化。
由此,本实施方式的立式洗衣机100中,滚筒3内收容有洗涤物,但即使滚筒3内的洗涤物的量越少,不平衡消除控制中的马达减速力越小,也能消除滚筒3的不平衡。因此,能根据负荷量来适当地确定不平衡消除控制中的马达减速力。
本实施方式的立式洗衣机100具备作为检测周围温度的周围温度检测单元的周围温度检测传感器61,不平衡消除控制的次数能根据由周围温度检测传感器61检测出的周围温度而变化。
由此,本实施方式的立式洗衣机100中,收容于环状容器31的液体33的粘度随着周围温度变高而减小,随着周围温度变低而增大。因此,进行不平衡消除控制时的环状容器31内的滚动体32的移动量随着液体33的粘度而变化。因此,即使周围温度越高,不平衡消除控制的次数越少,也能消除滚筒3的不平衡。因此,能根据周围温度来适当地确定不平衡消除控制的次数。
以上,对本发明的实施方式进行了说明,但是各个部分的具体结构不仅局 限于上述的实施方式。
例如,上述实施方式中,洗衣机100具备振动检测传感器62,继续确定部54根据由振动检测传感器62检测出的外桶2的振动的大小来确定是否继续不平衡消除控制,但不局限于此。
图14是表示本发明的变形例的立式洗衣机的不平衡消除控制的流程的流程图。因此,如图14所示,在本发明的变形例的洗衣机不具备振动检测传感器62的情况下,不平衡消除控制可以在进行了由旋转确定部53确定的次数之后结束。
图14中示出了本发明的变形例的立式洗衣机的不平衡消除控制的流程,但图14的流程图中的步骤S701~步骤S706的内容与图12的流程图中的步骤S501~步骤S503、步骤S505、步骤S506、步骤S508的内容一样,省略详细说明。
上述实施方式中,不平衡消除控制中的马达减速力根据洗衣机100的周围温度和负荷量来确定,但不局限于此。因此,不平衡消除控制中的马达减速力可以仅根据洗衣机100的周边温度来确定。此外,不平衡消除控制中的马达减速力也可以仅根据负荷量来确定。
上述实施方式中,对在滚筒3停止的状态下,在多个滚动体32位于滚筒3内的洗涤物所偏倚的偏心位置周边的状态下进行不平衡消除控制的情况进行了说明,但是也可以在滚筒3停止的状态下,在多个滚动体32相对于滚筒3内的洗涤物所偏倚的偏心位置位于任意位置的状态下进行不平衡消除控制。
上述实施方式中,在开始脱水过程之前,进行三次不平衡消除控制,三次不平衡消除控制中的目标转速相同,但在开始脱水过程之前进行的不平衡消除控制的次数不局限于此。此外,可以在进行多次不平衡消除控制的情况下,每次不平衡消除控制都改变目标转速。例如,可以将第一次不平衡消除控制中的目标转速设为100rpm,将第二次不平衡消除控制中的目标转速设为120rpm,将第三次不平衡消除控制中的目标转速设为150rpm,每次进行不平衡消除控制时都增大目标转速。
由此,不平衡消除控制中的目标转速越大,进行不平衡消除控制时的环状容器31内的滚动体32的移动量越大,因此,容易消除滚筒3的不平衡。但是, 由于随着滚筒3的转速的上升,外桶2所具有的能量也会上升,因此,外桶2与框架碰撞时的冲击会变大。因此,难以一开始就增大不平衡消除控制中的目标转速。在进行多次不平衡消除控制的情况下,由于每次进行不平衡消除控制时滚筒3的不平衡都变小,因此能将后面进行的不平衡消除控制中的目标转速增大。因此,在进行多次不平衡消除控制的情况下,能通过使后面进行的不平衡消除控制中的目标转速大于前面进行的不平衡消除控制中的目标转速,有效地消除滚筒3的不平衡。
上述实施方式中,滚珠平衡器30的环状容器31中收容有多个滚动体32和液体33作为移动体,也可以只收容多个滚动体32作为移动体。这种情况下,可以将滚动体32用橡胶等涂覆,通过环状容器31的内周面与滚动体32的摩擦力所产生的阻力,使滚动体32移动。

Claims (6)

  1. 一种立式洗衣机,其特征在于,具备:
    外桶,配置于箱体的内部;
    滚筒,以能绕旋转轴进行旋转的方式配置于所述外桶内;
    环状容器,配置于所述滚筒,收容滚动体;
    马达,对所述滚筒进行旋转驱动;以及
    控制单元,控制所述马达,
    所述控制单元在开始脱水过程之前控制所述马达以进行如下的不平衡消除控制:将所述滚筒的转速上升至达到超过产生所述滚筒的横向共振的共振转速的目标转速之后,使所述滚筒的旋转驱动停止。
  2. 根据权利要求1所述的立式洗衣机,其特征在于,
    所述环状容器中收容有液体。
  3. 根据权利要求2所述的立式洗衣机,其特征在于,
    具备检测周围温度的周围温度检测单元,
    在所述不平衡消除控制中,在停止所述滚筒的旋转驱动之后,所述控制单元根据规定马达减速力来控制所述马达以减小所述滚筒的转速,并且,
    在所述不平衡消除控制中减小所述滚筒的转速时的规定马达减速力能根据由所述周围温度检测单元检测出的周围温度而变化。
  4. 根据权利要求1~3中任意一项所述的立式洗衣机,其特征在于,
    具备检测与所述滚筒内的洗涤物的量对应的负荷量的负荷量检测单元,
    在所述不平衡消除控制中,在停止所述滚筒的旋转驱动之后,所述控制单元根据规定马达减速力来控制所述马达以减小所述滚筒的转速,并且,
    在所述不平衡消除控制中减小所述滚筒的转速时的规定马达减速力能根据由所述负荷量检测单元检测出的负荷量而变化。
  5. 根据权利要求2~4中任意一项所述的立式洗衣机,其特征在于,
    具备检测周围温度的周围温度检测单元,
    所述不平衡消除控制的次数能根据由所述周围温度检测单元检测出的周围温度而变化。
  6. 根据权利要求1~5中任意一项所述的立式洗衣机,其特征在于,
    具备检测所述外桶的振动的振动检测单元,
    所述不平衡消除控制的继续根据由所述振动检测单元检测出的所述外桶的振动的大小来确定。
PCT/CN2019/128354 2018-12-26 2019-12-25 立式洗衣机 WO2020135516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081169.5A CN113286921B (zh) 2018-12-26 2019-12-25 立式洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242978A JP2020103419A (ja) 2018-12-26 2018-12-26 縦型洗濯機
JP2018-242978 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020135516A1 true WO2020135516A1 (zh) 2020-07-02

Family

ID=71128738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128354 WO2020135516A1 (zh) 2018-12-26 2019-12-25 立式洗衣机

Country Status (3)

Country Link
JP (1) JP2020103419A (zh)
CN (1) CN113286921B (zh)
WO (1) WO2020135516A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666021A (zh) * 2008-09-05 2010-03-10 日立空调·家用电器株式会社 滚筒式洗衣机
CN101701407A (zh) * 2009-10-30 2010-05-05 南京乐金熊猫电器有限公司 一种滚筒洗衣机的脱水方法
CN101962901A (zh) * 2009-07-22 2011-02-02 海尔集团公司 滚筒式洗衣机的平衡环装置
CN103243515A (zh) * 2012-02-01 2013-08-14 Lg电子株式会社 洗衣机的控制方法
WO2018199581A1 (ko) * 2017-04-24 2018-11-01 엘지전자 주식회사 세탁물 처리기기

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0161900B1 (ko) * 1994-12-26 1998-12-15 구자홍 드럼 세탁기의 탈수 방법
JP2011200273A (ja) * 2010-03-24 2011-10-13 Panasonic Corp 洗濯機
JP2013059440A (ja) * 2011-09-13 2013-04-04 Panasonic Corp ドラム式洗濯機
JP2013081543A (ja) * 2011-10-06 2013-05-09 Samsung Yokohama Research Institute Co Ltd 縦型洗濯機
KR102328248B1 (ko) * 2014-02-21 2021-11-19 삼성전자주식회사 볼 밸런서를 구비한 세탁기 및 그 진동 제어방법
US10066333B2 (en) * 2014-02-21 2018-09-04 Samsung Electronics Co., Ltd. Washing machine with ball balancer and method of controlling vibration reduction thereof
JP6507367B2 (ja) * 2015-04-09 2019-05-08 パナソニックIpマネジメント株式会社 ドラム式洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666021A (zh) * 2008-09-05 2010-03-10 日立空调·家用电器株式会社 滚筒式洗衣机
CN101962901A (zh) * 2009-07-22 2011-02-02 海尔集团公司 滚筒式洗衣机的平衡环装置
CN101701407A (zh) * 2009-10-30 2010-05-05 南京乐金熊猫电器有限公司 一种滚筒洗衣机的脱水方法
CN103243515A (zh) * 2012-02-01 2013-08-14 Lg电子株式会社 洗衣机的控制方法
WO2018199581A1 (ko) * 2017-04-24 2018-11-01 엘지전자 주식회사 세탁물 처리기기

Also Published As

Publication number Publication date
CN113286921A (zh) 2021-08-20
CN113286921B (zh) 2023-04-18
JP2020103419A (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
KR101287536B1 (ko) 세탁기 및 그 제어방법
KR102201739B1 (ko) 의류처리장치
JP6941967B2 (ja) 洗濯機
US10066333B2 (en) Washing machine with ball balancer and method of controlling vibration reduction thereof
EP2377984B1 (en) Balancer and drum washing machine having the same
US9809916B2 (en) Washing machine with balancer and control method thereof
US20150013077A1 (en) Washing machine with balancer and control method thereof
US9994987B2 (en) Washing machine and control method thereof
JP2010207316A (ja) 洗濯機
US11111619B2 (en) Washing machine appliances and methods for operation
US11208748B2 (en) Method of controlling washing machine
KR20150105841A (ko) 세탁기 및 세탁기의 제어방법
JPH05293289A (ja) ドラム式洗濯機
JP2006311886A (ja) 洗濯機
JP2008229154A (ja) 洗濯機
WO2020135516A1 (zh) 立式洗衣机
WO2020135515A1 (zh) 立式洗衣机
KR20080041466A (ko) 드럼세탁기
US20170298553A1 (en) Washing Machine Appliance Out-of-Balance Detection
WO2019120138A1 (zh) 洗衣机
JP3754377B2 (ja) ドラム式洗濯機およびドラム式洗濯機における脱水時の振動低減方法
JP2021010452A (ja) 縦型洗濯機
KR20170022753A (ko) 세탁기
KR102639687B1 (ko) 세탁기 및 그 제어 방법
WO2020233653A1 (zh) 滚筒洗衣机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905353

Country of ref document: EP

Kind code of ref document: A1