WO2020135073A1 - 热管理装置、电池包及新能源汽车 - Google Patents

热管理装置、电池包及新能源汽车 Download PDF

Info

Publication number
WO2020135073A1
WO2020135073A1 PCT/CN2019/124865 CN2019124865W WO2020135073A1 WO 2020135073 A1 WO2020135073 A1 WO 2020135073A1 CN 2019124865 W CN2019124865 W CN 2019124865W WO 2020135073 A1 WO2020135073 A1 WO 2020135073A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
thermal management
cells
management device
explosion
Prior art date
Application number
PCT/CN2019/124865
Other languages
English (en)
French (fr)
Inventor
吴兴远
李兴星
郑敏捷
杨海奇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020135073A1 publication Critical patent/WO2020135073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a thermal management device, a battery pack and a new energy vehicle.
  • the thermal runaway of the battery pack is an important indicator for evaluating the safety of the battery system.
  • the commonly used method for suppressing the thermal runaway spread of the battery is to add a heat insulating material between the cells, and use the thermal insulating material to slow the time when the thermal runaway spreads to the adjacent cells.
  • the purpose of the present application is to provide a thermal management device, a battery pack and a new energy vehicle to alleviate the technical problem that the thermal runaway of the battery pack in the prior art cannot be prevented from spreading to adjacent cells.
  • the battery pack has a plurality of cells stacked together in a box, including:
  • thermo management circuit the thermal management circuit is attached to each of the battery cells, and at least partially covers the explosion-proof valve of each of the battery cells;
  • Heat exchange parts which are in communication with the thermal management circuit
  • a power part connected between the heat management circuit and the heat exchange part
  • the heat management circuit is provided with a heat exchange medium with a fire extinguishing function, and any of the battery cells can break the heat management circuit when the heat is out of control, so as to place the heat exchange medium along the explosion-proof opening of the battery core Inflow.
  • thermal management loop includes:
  • a circulation pipeline assembly the circulation pipeline assembly is attached to each of the battery cells, and at least partially covers a part of the explosion-proof valve of each of the battery cells, and the heat exchange is provided in the circulation pipeline assembly medium;
  • the liquid storage tank is configured to store the heat exchange medium
  • the liquid storage tank, the power member and the heat exchange member communicate with each other.
  • the circulation pipeline assembly includes:
  • a heat exchange component is attached to each of the cells, covering a part of the explosion-proof valve of each cell, and the heat exchange component is provided with a liquid inlet and a liquid outlet;
  • a thermally conductive connection member, and the heat exchange assembly is connected to each of the battery cells through the thermally conductive connection member.
  • heat exchange components include:
  • the first diversion tube is provided with the liquid inlet and the liquid outlet;
  • a plurality of heat exchange plates are connected to each of the electric cells through the thermally conductive connecting member, and the heat exchange plates are provided as a cavity structure for containing the heat exchange medium;
  • a plurality of the heat exchange plates communicate between the first deflector tube and the second deflector tube, and the plurality of heat exchange plates respectively cover part of the explosion-proof valves of each cell, When any of the cells is out of control, the heat exchange plate can be damaged to flow the heat exchange medium along the explosion-proof opening of the cell.
  • a plurality of the heat exchange plates are spaced apart from each other and are connected in series and connected between the first flow guide tube and the second flow guide tube.
  • a plurality of partitions are provided in the cavity structure of the heat exchange plate, and the partition divides the cavity structure of the heat exchange plate into a plurality of flow channels.
  • the heat exchange plate is made of aluminum alloy material or magnesium alloy material.
  • thermally conductive connection piece is a thermally conductive rubber plate.
  • an exhaust hole corresponding to the explosion-proof valve of the electric core is provided on the thermal conductive rubber plate.
  • the present application provides a thermal management device, which is applied to a battery pack.
  • the battery pack has a plurality of cells in the box.
  • the thermal management device includes a thermal management circuit attached to each cell, and a heat exchange connected to the thermal management circuit. Components and power components connected between the thermal management circuit and the heat exchange component, wherein the thermal management circuit at least partially covers the explosion-proof valve at the top of each cell, and the thermal management circuit is provided with a heat exchange medium with fire extinguishing function, When any cell is out of control, it can destroy the thermal management circuit to flow the heat exchange medium along the explosion-proof opening of the cell.
  • the thermal management circuit when the battery pack is working, when the temperature of the battery cells of the battery pack is higher than the set threshold, the thermal management circuit performs effective cooling treatment on each battery cell under the action of the heat exchange parts and the power parts; similarly, the battery When the temperature of the battery cell is lower than the set threshold, the thermal management circuit will effectively heat each cell under the action of the heat exchange part and the power part, so as to ensure that the cell works at a normal temperature and ensure the vehicle Drive normally.
  • the batteries of the battery pack are thermally out of control, the thermally out of control batteries generate a large amount of high-temperature and high-pressure gas and break through the explosion-proof valve.
  • the high-temperature gas at the place where the thermal runaway occurs can cover the explosion-proof valve at that place
  • the pipeline of the thermal management circuit is damaged, and the heat exchange medium in the thermal management circuit destroyed by the high-temperature gas flows into the interior of the battery where the thermal runaway occurs due to gravity due to the gravity. Due to the heat exchange provided in the thermal management circuit
  • the medium has the function of extinguishing the fire. Therefore, the heat exchange medium flowing into the thermal runaway can effectively suppress the spread of the fire and prevent the adjacent cells from being affected.
  • This design structure uses the thermal management circuit to effectively cool the cells Or the thermal management function of heating.
  • the thermal management device When the battery thermal runaway occurs, the high-temperature gas generated by the thermal runaway battery can destroy the thermal management circuit, so that the heat exchange medium with a fire extinguishing function inside the thermal management circuit flows into the interior of the thermal runaway battery.
  • the thermal management device In order to eliminate the fire and prevent the adjacent cells from being affected, the thermal management device has the characteristics of thermal management and suppression of thermal runaway.
  • the present application also provides a battery pack including the thermal management device described above.
  • the battery pack has the same advantages as the thermal management device described above, and will not be repeated here.
  • the present application also provides a new energy vehicle including the above-mentioned thermal battery pack.
  • This new energy vehicle has the same advantages as the battery pack described above, and will not be repeated here.
  • FIG. 1 is a schematic structural view of a thermal management device provided on an embodiment of the present application installed on a battery pack;
  • FIG. 2 is an exploded view between the heat exchange plate assembly and the battery pack in FIG. 1;
  • FIG. 3 is a schematic structural view of the heat exchange plate assembly of FIG. 1 installed on a battery pack;
  • FIG. 4 is a perspective view of the heat exchange plate assembly in FIG. 1;
  • FIG. 5 is a perspective view of the heat exchange plate assembly provided on the battery pack according to an embodiment of the present application.
  • FIG. 6 is an enlarged view at A in FIG. 5.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • installation should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • the battery pack includes a battery box and a plurality of battery cells 1 housed in the battery box, the plurality of battery cells 1 are stacked together, wherein each battery cell 1 includes a top cover, a positive electrode, and a negative electrode, the top cover There are a positive pole and a negative pole (the positive and negative poles are not distinguished in the figure) and an explosion-proof valve between the positive and negative poles.
  • the positive and negative poles are connected to the positive and negative electrodes of the cell 1 through the conductive connector (Not shown) for electrical connection.
  • the battery box is configured in a cubic shape to form a space (or cavity) for accommodating each battery cell 1. When the battery pack is short-circuited, overcharged, etc., the heat generated by the battery core 1 far exceeds the normal value, and thermal runaway occurs.
  • the thermal management device includes a thermal management circuit 2 attached to each cell 1, and a heat exchange member communicating with the thermal management circuit 2 4 and the power part 3 connected between the thermal management circuit 2 and the heat exchange part 4, wherein the thermal management circuit 2 at least partially covers the explosion-proof valve on the top of each cell 1, and the thermal management circuit 2 is provided with a fire extinguishing valve
  • the functional heat exchange medium can destroy the thermal management circuit 2 when any cell 1 is out of control, so that the heat exchange medium flows into the explosion-proof opening of the cell 1.
  • the thermal management circuit 2 when the battery pack is working, when the temperature of the battery cell 1 of the battery pack is higher than the set threshold, the thermal management circuit 2 performs effective cooling treatment on each battery cell 1 under the action of the heat exchange element 4 and the power element 3 ; Similarly, when the temperature of the battery cell 1 is lower than the set threshold, the thermal management circuit 2 performs effective heating treatment on each cell 1 under the action of the heat exchange element 4 and the power element 3, so as to protect the electricity
  • the core 1 operates at a normal temperature to ensure that the vehicle runs normally. Among them, when the battery cell 1 thermal runaway occurs, the thermal runaway cell 1 generates a large amount of high-temperature and high-pressure gas and breaks through the explosion-proof valve.
  • the high-temperature gas at the place where the thermal runaway occurs can cover the explosion-proof place
  • the pipeline of the thermal management circuit 2 on the valve is damaged, and the heat exchange medium in the thermal management circuit 2 destroyed by the high-temperature gas flows into the interior of the battery 1 where thermal runaway occurs due to gravity due to the gravity.
  • the heat exchange medium in the circuit 2 has the function of extinguishing fire. Therefore, the heat exchange medium flowing into the thermal runaway can effectively suppress the spread of fire and prevent the adjacent cells 1 from being affected.
  • This design structure uses the thermal management circuit 2
  • the thermal management function of the battery 1 can be effectively cooled or heated.
  • the thermal management device has the characteristics of thermal management and suppression of thermal runaway spread.
  • the performance of the heat exchange medium is selected to have the properties of flame retardancy, temperature reduction, etc. At the same time, it can also perform heat exchange of the battery 1, such as halogenated hydrocarbons, phosphate esters or hydrofluoroether and other heat exchange media, in this embodiment
  • the heat exchange medium is a fluorinated liquid
  • the boiling point of the fluorinated liquid is between 60 ⁇ 120 °C, when the fluorinated liquid enters the interior of the battery core 1 along the explosion-proof port
  • the fluorinated liquid can reduce the temperature of the battery core 1 by boiling heat exchange, reducing the influence of the battery core 1 on the adjacent battery core 1, and the large amount of gas generated by the fluorinated liquid boiling phase transition process will reduce the exhaust gas of the battery core 1
  • the temperature improves the safety of the battery pack; in addition, the gas generated after the fluorinated liquid phase changes can also effectively isolate the air, further improving the effect of preventing the spread of the fire after the thermal runaway
  • the heat exchange element 4 can be a heat exchanger
  • the power element 3 can be a circulating water pump
  • the connection method of the heat exchange element 4 and the circulating water pump and the thermal management circuit 2 belongs to the prior art, as long as it can be replaced
  • the heat transfer and circulation of the heat medium is sufficient, and is not specifically limited here.
  • the heat exchange element 4 is electrically connected with a temperature sensor and a controller, and the temperature sensor is used to detect the temperature change of the battery cell 1 in the battery pack and communicate with the controller
  • a signal is sent to the controller.
  • the controller receives the signal and controls the heat exchanger to cool, so that the heat exchange medium cools the battery 1; when the temperature of the battery 1 is lower than the predetermined
  • a signal is sent to the controller.
  • the controller receives the signal and controls the heat exchanger to heat, so that the heat exchange medium heats the battery core 1.
  • the circuit connection method between the temperature sensor and the controller and the heat exchange element 4 belongs to the prior art, and is not specifically limited here.
  • the circulation pipeline assembly 21 can directly store the heat exchange medium, in order to improve the heat exchange effect, and at the same time, ensure that sufficient heat exchange medium can flow into the corresponding battery core 1 when the battery core 1 is out of control
  • the thermal management circuit 2 includes a circulation line assembly 21 attached to each cell 1 and a liquid storage tank 22 configured to store a heat exchange medium, wherein the circulation line assembly 21 is at least partially A part of the explosion-proof valve covering each battery core 1 is provided with a heat exchange medium in the circulation line assembly 21. Further, the liquid storage tank 22, the power member 3 and the heat exchange member 4 communicate with each other.
  • the circulation pipeline assembly 21 includes a heat conducting connector 212 and a heat exchange assembly 211 attached to each cell 1.
  • the heat exchange assembly 211 is connected to When each battery cell 1 is connected, the heat exchange assembly 211 can completely cover the entire explosion-proof valve. In this embodiment, in order not to hinder the smoothness of gas discharge at the explosion-proof valve, the safety of the battery pack is improved.
  • the heat exchange assembly 211 covers a part of the explosion-proof valve of each cell 1, and the heat exchange assembly 211 is provided with a liquid inlet 2111a and a liquid outlet 2111b.
  • the heat exchange component 211 can be attached to the battery core 1 by bolting or clamping, etc., to ensure the convenience of connection, and at the same time, the heat exchange component 211 and the battery core 1 can also be stably connected.
  • the heat exchange The component 211 is connected to each battery cell 1 through a thermally conductive connector 212, and the heat exchange component 211 performs thermal management on each battery cell 1 through the thermally conductive connector 212.
  • connection relationship between the liquid storage tank 22, the power part 3 and the heat exchange part 4 belongs to the prior art, as long as the heat exchange medium in the circulation pipeline assembly 21 can be normally circulated and flowed, it will not be done here Specific restrictions.
  • the heat exchange body of the heat exchange assembly 211 can be tubular.
  • the heat exchange assembly 211 includes multiple exchange
  • the heat plate 2113 and the heat exchange plate 2113 can increase the contact area between the heat exchange medium and the electric core 1, thereby improving the heat exchange efficiency.
  • a plurality of heat exchange plates 2113 are connected to each of the electric cores 1 through the thermally conductive connection 212.
  • the heat exchange plate 2113 is destroyed by the high-temperature gas released by the battery core 1 in the shortest time.
  • the material of the heat exchange plate 2113 is made of a material with a lower melting point.
  • the heat exchange plate 2113 may be made of aluminum alloy material or magnesium alloy material. In order to reduce the cost, in this embodiment, preferably, the heat exchange plate 2113 is made of aluminum alloy material.
  • the thermally conductive connecting member 212 may be thermally conductive adhesive, and the heat exchange component 211 is adhered to the surface of the battery core 1 through the thermally conductive adhesive. It is bonded to the battery core 1.
  • the thermally conductive connecting member 212 may be a thermally conductive adhesive plate.
  • the heat conductive rubber plate can be directly bonded between the heat exchange plate 2113 and the battery core 1. In order to prevent the heat conductive rubber plate from covering the explosion-proof valve, the gas at the explosion-proof valve cannot be smoothly discharged.
  • the exhaust hole 2121 corresponding to the explosion-proof valve of the core 1 is not smaller than the size of the explosion-proof valve.
  • the exhaust hole 2121 is the same size as the explosion-proof valve.
  • the heat exchange assembly 211 further includes a first guide tube 2111 and a second guide tube 2112, wherein the first guide tube 2111 is provided with a liquid inlet 2111a and a liquid outlet 2111b, and a plurality of heat exchange plates 2113 communicate with the liquid storage tank 22 through the first guide tube 2111 and the second guide tube 2112 Among them, a plurality of heat exchange plates 2113 can be connected in parallel between the first guide tube 2111 and the second guide tube 2112, in this embodiment, in order to reduce the heat exchange plate 2113 plate and liquid storage The amount of heat exchange medium in the tank 22 is also convenient for designing the communication mode between the heat exchange plates 2113.
  • a plurality of heat exchange plates 2113 are spaced apart from each other and connected in series to the first guide tube 2111 and the second guide Between the flow tubes 2112, and a plurality of heat exchange plates 2113 respectively cover part of the explosion-proof valves of each cell 1.
  • the placement direction of the heat exchange plates 2113 may be set at an angle to the stacking direction of the cells 1, as shown in FIG. 2, in this embodiment, to facilitate the installation of the heat exchange plates 2113, each heat exchange plate 2113 is along the cell 1
  • the stacking direction is set, where the heat exchange plate 2113 can be two, three, four, five, etc., while ensuring the thermal management of the battery pack, it can also reduce costs.
  • the heat exchange plate 2113 is two .
  • the explosion-proof valve of the electric core 1 is provided in the middle of the top cover.
  • the hot plates 2113 are oppositely arranged on both sides of the centerline of the explosion-proof valve, and respectively cover both ends of the explosion-proof valve.
  • the cavity structure in the heat exchange plate 2113 can be a whole, that is, there is only one flow path for each heat exchange plate 2113, where, in order to further improve the thermal management
  • the cavity structure of the heat exchange plate 2113 is provided with a plurality of baffles 2113a, and the baffle 2113a divides the cavity structure of the heat exchange plate 2113 into a plurality of flow channels, multiple The separators 2113a are arranged at equal intervals along the stacking direction of the vertical cells 1.
  • a battery pack is also provided.
  • the battery pack includes the thermal management device described in any one of the above embodiments.
  • the battery pack has the same advantages as the thermal management device described above, and will not be repeated here.
  • the present application also provides a new energy vehicle including the above-mentioned thermal battery pack.
  • the new energy vehicle has the same advantages as the above battery pack, and will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种热管理装置、电池包及新能源汽车,该热管理装置包括热管理回路,热管理回路与每个电芯贴合,并至少部分覆盖每个电芯的防爆阀;换热件,与热管理回路连通;动力件,连接在热管理回路与换热件之间;其中,热管理回路内设有具有灭火功能的换热介质,任意电芯热失控时能够破坏热管理回路,以将换热介质沿电芯的防爆口处流入。

Description

热管理装置、电池包及新能源汽车
本申请要求于2018年12月28日提交中国专利局、申请号为201822236759.6、发明名称为“热管理装置及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种热管理装置、电池包及新能源汽车。
背景技术
近年来,新能源汽车的出现对于社会发展和环境保护均起到了巨大的推动作用,动力电池作为一种可充电的电池包是新能源汽车的动力来源,在新能源汽车领域中被广泛应用。其中,电池包热失控蔓延情况是评价电池系统是否安全的重要指标。目前常用的抑制电池热失控蔓延的方法是在电芯间添加隔热材料,通过隔热材料以减缓热失控蔓延至相邻电芯的时间。
现有技术中的方式虽然能够在一定程度上减缓热失控的蔓延时间,但是,这种方法因为重量能量密度及空间能量密度要求的限制,因此,不能完全阻止电池热失控蔓延,仅仅是延长了热失控蔓延至相邻电芯的时间,依然存在很大的安全隐患。
申请内容
本申请的目的在于提供一种热管理装置、电池包及新能源汽车,以缓解现有技术中的电池包发生热失控时,无法防止热失控蔓延至相邻电芯的技术问题。
本申请提供了一种热管理装置,应用于电池包,所述电池包的箱体内具有多个堆叠在一起的电芯,包括:
热管理回路,所述热管理回路与每个所述电芯贴合,并至少部分覆盖每个所述电芯的防爆阀;
换热件,与所述热管理回路连通;
动力件,连接在所述热管理回路与所述换热件之间;
其中,所述热管理回路内设有具有灭火功能的换热介质,任意所述电芯热失控时能够破坏所述热管理回路,以将所述换热介质沿所述电芯的防爆口处流入。
进一步的,所述热管理回路包括:
循环管路组件,所述循环管路组件与每个所述电芯贴合,并至少部分覆盖每个所述电芯的部分防爆阀,且所述循环管路组件内设有所述换热介质;
储液箱,设置成存储所述换热介质;
所述储液箱、所述动力件和所述换热件彼此连通。
进一步的,所述循环管路组件包括:
换热组件,所述换热组件与每个所述电芯贴合,覆盖每个所述电芯的部分防爆阀,且所述换热组件设有进液口与出液口;
导热连接件,所述换热组件通过所述导热连接件与每个所述电芯连接。
进一步的,换热组件包括:
第一导流管,设有所述进液口与所述出液口;
第二导流管;
多个换热板,通过所述导热连接件与每个所述电芯连接,所述换热板设置成用于容纳所述换热介质的空腔结构;
其中,多个所述换热板连通在所述第一导流管与所述第二导流管之间,且多个所述换热板分别覆盖每个所述电芯的部分防爆阀,任意所述电芯热失控时能够破坏所述换热板,以将所述换热介质沿所述电芯的防爆口处流入。
进一步的,多个所述换热板彼此间隔设置并串接连通在所述第一导流管与所述第二导流管之间。
进一步的,所述换热板的空腔结构内设有多个隔板,所述隔板将所述换热板的空腔结构分隔成多条流道。
进一步的,所述换热板为铝合金材料或者镁合金材料制成。
进一步的,所述导热连接件为导热胶板。
进一步的,所述导热胶板上设有与所述电芯的防爆阀对应的排气孔。
本申请的有益效果为:
本申请提供一种热管理装置,应用于电池包,电池包的箱体内具有多个电芯,该热管理装置包括与每个电芯贴合的热管理回路、与热管理回路连通的换热件和连接在热管理回路与换热件之间的动力件,其中,热管理回路至少部分覆盖每个电芯顶部的防爆阀,并且,热管理回路内设有具有灭火功能的换热介质,任意电芯热失控时能够破坏热管理回路,以将换热介质沿电芯的防爆口处流入。具体的,电池包工作时,当电池包的电芯温度高于设定的阈值时,热管理回路在换热件与动力件的作用下对各个电芯进行有效的冷却处理;同样的,电池包的电芯温度低于设定的阈值时,热管理回路在换热件与动力件的作用下对各个电芯进行有效的加热处理,进而以保障电芯在正常的温度下工作,确保车辆正常行驶。其中,当电池包的电芯发生热失控时,发生热失控的电芯产生大量的高温高压气体并穿破防爆阀,对应地,发生热失控处的高温气体能够将覆盖在该处防爆阀上的热管理回路的管道破坏,被高温气体破坏后的热管理回路内的换热介质在重力的作用下从防爆口处流入发生热失控电芯的内部,由于设置在热管理回路内的换热介质具有灭火的功能,因此,流入热失控内的换热介质能够有效的抑制火势蔓延,进而防止相邻的电芯受到影响,这种设计结构,利用热管理回路能够对电芯进行有效的冷却或者加热的热管理作用,当电芯发生热失控时,热失控电芯产生的高温气体能够破坏热管理回路,以使得热管理回路内部具有灭火功能的换热介质流入发生热失控电芯的内部,进而消除火势并防止相邻的电芯受到影响,该热管理装置具有热管理作用与抑制热失控蔓延的特点。
本申请还提供一种电池包,该电池包包括上述所述的热管理装置。
本申请的有益效果为:
该电池包具有上述热管理装置相同的优势,在此不再赘述。
本申请还提供一种新能源汽车,该新能源汽车包括上述所述的热电池包。
本申请的有益效果为:
该新能源汽车具有上述电池包相同的优势,在此不再赘述。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的热管理装置安装在电池包上的结构示意图;
图2为图1中的换热板组件与电池包上之间爆炸图;
图3为图1中的换热板组件安装在电池包上的结构示意图;
图4为图1中的换热板组件的透视图;
图5为本申请实施例提供的换热板组件安装在电池包上的透视图;
图6为图5中A处的放大图。
图标:
1-电芯;
2-热管理回路;
21-循环管路组件;
211-换热组件;
2111-第一导流管;
2111a-进液口;
2111b-出液口;
2112-第二导流管;
2113-换热板;
2113a-隔板;
212-导热连接件;
2121-排气孔;
22-储液箱;
3-动力件;
4-换热件。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
具体的,电池包包括电池箱和容置于电池箱内的多个电芯1,多个电芯1堆叠在一起,其中,每个电芯1包括顶盖、正电极和负电极,顶盖上设有正极柱、负极柱(图示正负极柱未作区分)和位于正、负极柱之间的防爆阀,正、负极柱分别通过导电连接体与电芯1的正、负电极(未图示)进行电连接。其中,电池箱被构造为立方体形状,以形成用于容纳每个电芯1的空间(或空腔)。当电池包发生短路、过充等情况时,电芯1产生的热量远远超过正常值,进而发生热失控。
如图1、图3、图5和图6所示,在本实施例中,该热管理装置包括与每个电芯1贴合的热管理回路2、与热管理回路2连通的换热件4和连接在热管理回路2与换热件4之间的动力件3,其中,热管理回路2至少部分覆盖每个电芯1顶部的防爆阀,并且,热管理回路2内设有具有灭火 功能的换热介质,任意电芯1热失控时能够破坏热管理回路2,以将换热介质沿电芯1的防爆口处流入。具体的,电池包工作时,当电池包的电芯1温度高于设定的阈值时,热管理回路2在换热件4与动力件3的作用下对各个电芯1进行有效的冷却处理;同样的,电池包的电芯1温度低于设定的阈值时,热管理回路2在换热件4与动力件3的作用下对各个电芯1进行有效的加热处理,进而以保障电芯1在正常的温度下工作,确保车辆正常行驶。其中,当电池包的电芯1发生热失控时,发生热失控的电芯1产生大量的高温高压气体并穿破防爆阀,对应地,发生热失控处的高温气体能够将覆盖在该处防爆阀上的热管理回路2的管道破坏,被高温气体破坏后的热管理回路2内的换热介质在重力的作用下从防爆口处流入发生热失控电芯1的内部,由于设置在热管理回路2内的换热介质具有灭火的功能,因此,流入热失控内的换热介质能够有效的抑制火势蔓延,进而防止相邻的电芯1受到影响,这种设计结构,利用热管理回路2能够对电芯1进行有效的冷却或者加热的热管理作用,当电芯1发生热失控时,热失控电芯1产生的高温气体能够破坏热管理回路2,以使得热管理回路2内部具有灭火功能的换热介质流入发生热失控电芯1的内部,进而消除火势并防止相邻的电芯1受到影响,该热管理装置具有热管理作用与抑制热失控蔓延的特点。
换热介质的性能选取具有阻燃、降温等性质,同时,还能够进行电芯1的热交换的物质,例如,卤代烃、磷酸酯或氢氟醚等换热介质,在本实施例中,为能够快速消除火势,以提高安全性,优选地,换热介质为氟化液,氟化液的沸点介于60~120℃之间,当氟化液沿着防爆口进入电芯1内部时,氟化液能够通过沸腾换热给电芯1降温,减小电芯1对相邻电芯1的影响,同时氟化液沸腾相变过程产生的大量气体会降低电芯1排气的温度,提高了电池包的安全性;除此之外,氟化液相变后产生的气体还能够有效的隔绝空气,进一步提高阻止电芯1热失控后火势蔓延的效果。
其中,在本实施例中,换热件4可以为换热器,动力件3可以为循环水泵,换热件4和循环水泵与热管理回路2的连接方式属于现有技术,只要能够实现换热介质的换热与循环即可,在此不做具体限定。
在本实施例中,为能够实现换热件4的自动化工作,换热件4电连接 有温度传感器和控制器,温度传感器用于检测电池包内电芯1的温度变化并与控制器通信连接,当电芯1的温度高于预定温度时向控制器发送信号,控制器接收该信号并控换热器制冷,以使得换热介质对电芯1冷却;当电芯1的温度低于预定温度时向控制器发送信号,控制器接收该信号并控换热器加热,以使得换热介质对电芯1加热。其中,温度传感器和控制器与换热件4的电路连接方式属于现有技术,在此不做具体限定。
如图1所示,其中,循环管路组件21可以直接储存换热介质,为能够提高换热效果,同时,保障电芯1热失控时能够有足够的换热介质流入相应的电芯1内,在本实施例中,具体的,热管理回路2包括与每个电芯1贴合循环管路组件21和设置成存储换热介质的储液箱22,其中,循环管路组件21至少部分覆盖每个电芯1的部分防爆阀,且循环管路组件21内设有换热介质,进一步的,储液箱22、动力件3和换热件4彼此连通。
如图2、图3和图5所示,进一步的,循环管路组件21包括导热连接件212和与每个电芯1贴合的换热组件211,换热组件211通过导热连接件212与每个电芯1连接,换热组件211可以完全覆盖整个防爆阀,在本实施例中,为能够不阻碍防爆阀处气体排出的流畅性,提高电池包的安全性,具体的,换热组件211覆盖每个电芯1的部分防爆阀,并且换热组件211设有进液口2111a与出液口2111b。其中,换热组件211可以通过螺栓固定或者卡接等方式与电芯1贴合,为能够保障连接的便捷性,同时也能够实现换热组件211与电芯1稳定连接,优选地,换热组件211通过导热连接件212与每个电芯1连接,换热组件211通过导热连接件212对每个电芯1进行热管理。
在本实施例中,储液箱22、动力件3和换热件4的连通关系属于现有技术,只要能够实现循环管路组件21内的换热介质正常循环流动即可,在此不做具体限定。
如图2、图3、图4和图5所示,换热组件211的换热主体可以管状,为能够提高换热面积,在本实施例中,具体的,换热组件211包括多个换热板2113,换热板2113能够提高换热介质与电芯1的接触面积,进而提高换热效率,其中,多个换热板2113通过导热连接件212与每个电芯1连接。
其中,当电芯1发生热失控时,为能够使得换热板2113在最短的时间内被电芯1释放出的高温气体破坏,换热板2113的材料为熔点较低的材料制成,具体的,换热板2113可以为铝合金材料或者镁合金材料制成,为能够降低成本,在本实施例中,优选地,换热板2113为铝合金材料制成。
如图2所示,导热连接件212可以为导热胶,换热组件211通过导热胶粘接在电芯1表面,在本实施例中,为保障传热面积,同时,也便于换热组件211与电芯1粘接,优选地,导热连接件212可以为导热胶板。其中,导热胶板可以直接粘接在换热板2113与电芯1之间,为能够避免导热胶板封盖防爆阀,导致防爆阀处的气体无法顺畅排出,导热胶板上设有与电芯1的防爆阀对应的排气孔2121,排气孔2121不小于防爆阀的大小,优选地,排气孔2121与防爆阀大小相同。
如图2、图3、和图4所示,进一步的,为能够同时实现多个换热板2113之间的热管理,换热组件211还包括第一导流管2111和第二导流管2112,其中,第一导流管2111设有进液口2111a与出液口2111b,多个换热板2113通过第一导流管2111与第二导流管2112实现与储液箱22的连通,其中,多个换热板2113之间可以以并联的方式连接第一导流管2111与第二导流管2112之间,在本实施例中,为能够降低换热板2113板及储液箱22中换热介质的用量,同时,便于设计换热板2113之间的连通方式,优选地,多个换热板2113彼此间隔设置并串接连通在第一导流管2111与第二导流管2112之间,且多个换热板2113分别覆盖每个电芯1部分防爆阀。
换热板2113放置方向可以与电芯1的堆叠方向呈夹角设置,如图2所示,在本实施例中,为便于换热板2113的安装,每个换热板2113沿电芯1的堆叠方向设置,其中,换热板2113可以为两个、三个、四个、五个等多个,在能够保障电池包热管理的同时,还能够降低成本,换热板2113为两个。进一步的,为能够使得两个换热板2113内的换热介质均能够流入发生热失控的电芯1内,以提高安全性,电芯1的防爆阀设置在顶盖的中部,两个换热板2113相对设置在防爆阀中心线的两侧,并分别覆盖防爆阀的两端。
如图4、图5和图6所示,换热板2113内的空腔结构可以为一个整体,即只存在每个换热板2113只存在一条流道,其中,为能够进一步提高该热管理装置的换热效果,在本实施例中,换热板2113的空腔结构内设有多个隔板2113a,隔板2113a将换热板2113的空腔结构分隔成多条流道,多个隔板2113a沿着垂直电芯1的堆叠方向等间距排布。
在本实施例中还提供一种电池包,该电池包包括上述任意一实施例中所述的热管理装置。
其中,在本实施例中,该电池包具有上述热管理装置相同的优势,在此不再赘述。
本申请还提供一种新能源汽车,该新能源汽车包括上述所述的热电池包。
其中,在本实施例中,该新能源汽车具有上述电池包相同的优势,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种热管理装置,应用于电池包,所述电池包的箱体内具有多个电芯(1),其特征在于,包括:
    热管理回路(2),所述热管理回路(2)与每个所述电芯(1)贴合,并至少部分覆盖每个所述电芯(1)的防爆阀;
    换热件(4),与所述热管理回路(2)连通;
    动力件(3),连接在所述热管理回路(2)与所述换热件(4)之间;
    其中,所述热管理回路(2)内设有具有灭火功能的换热介质,任意所述电芯(1)热失控时能够破坏所述热管理回路(2),以将所述换热介质沿所述电芯(1)的防爆口处流入。
  2. 根据权利要求1所述的热管理装置,其特征在于,所述热管理回路(2)包括:
    循环管路组件(21),所述循环管路组件(21)与每个所述电芯(1)贴合,并至少部分覆盖每个所述电芯(1)的部分防爆阀,且所述循环管路组件(21)内设有所述换热介质;
    储液箱(22),设置成存储所述换热介质;
    所述储液箱(22)、所述动力件(3)和所述换热件(4)彼此连通。
  3. 根据权利要求2所述的热管理装置,其特征在于,所述循环管路组件(21)包括:
    换热组件(211),所述换热组件(211)与每个所述电芯(1)贴合,覆盖每个所述电芯(1)的部分防爆阀,且所述换热组件(211)设有进液口(2111a)与出液口(2111b);
    导热连接件(212),所述换热组件(211)通过所述导热连接件(212)与每个所述电芯(1)连接。
  4. 根据权利要求3所述的热管理装置,其特征在于,换热组件(211)包括:
    第一导流管(2111),设有所述进液口(2111a)与所述出液口(2111b);
    第二导流管(2112);
    多个换热板(2113),通过所述导热连接件(212)与每个所述电芯(1)连接,所述换热板(2113)设置成用于容纳所述换热介质的空腔结构;
    其中,多个所述换热板(2113)连通在所述第一导流管(2111)与所述第二导流管(2112)之间,且多个所述换热板(2113)分别覆盖每个所述电芯(1)的部分防爆阀,任意所述电芯(1)热失控时能够破坏所述换热板(2113),以将所述换热介质沿所述电芯(1)的防爆口处流入。
  5. 根据权利要求4所述的热管理装置,其特征在于,多个所述换热板(2113)彼此间隔设置并串接连通在所述第一导流管(2111)与所述第二导流管(2112)之间。
  6. 根据权利要求4所述的热管理装置,其特征在于,所述换热板(2113)的空腔结构内设有多个隔板(2113a),所述隔板(2113a)将所述换热板(2113)的空腔结构分隔成多条流道。
  7. 根据权利要求4所述的热管理装置,其特征在于,所述换热板(2113)为铝合金材料或者镁合金材料制成。
  8. 根据权利要求3-7任一项所述的热管理装置,其特征在于,所述导热连接件(212)为导热胶板。
  9. 根据权利要求8所述的热管理装置,其特征在于,所述导热胶板上设有与所述电芯(1)的防爆阀对应的排气孔(2121)。
  10. 一种电池包,其特征在于,包括权利要求1-9任一项所述的热管理装置。
  11. 一种新能源汽车,其特征在于,包括权利要求10所述的电池包。
PCT/CN2019/124865 2018-12-28 2019-12-12 热管理装置、电池包及新能源汽车 WO2020135073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201822236759.6U CN209071461U (zh) 2018-12-28 2018-12-28 热管理装置及电池包
CN201822236759.6 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020135073A1 true WO2020135073A1 (zh) 2020-07-02

Family

ID=67102423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124865 WO2020135073A1 (zh) 2018-12-28 2019-12-12 热管理装置、电池包及新能源汽车

Country Status (4)

Country Link
US (1) US11133543B2 (zh)
EP (1) EP3675218A1 (zh)
CN (1) CN209071461U (zh)
WO (1) WO2020135073A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
EP4053972A4 (en) * 2019-10-31 2023-06-21 Panasonic Intellectual Property Management Co., Ltd. POWER STORAGE MODULE
US20210154501A1 (en) * 2019-11-22 2021-05-27 The Boeing Company Fire suppression for additively manufactured article
CN211376746U (zh) * 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置
WO2021213645A1 (en) * 2020-04-22 2021-10-28 Volvo Truck Corporation An electric energy storage system for a vehicle
CN111682142A (zh) * 2020-06-30 2020-09-18 上海豫源电力科技有限公司 一种带有消防灭火功能的电池包及其控制方法
JP7422790B2 (ja) 2020-07-10 2024-01-26 寧徳時代新能源科技股▲分▼有限公司 電池のケース、電池、電力消費装置、電池製造方法及び装置
CN114175376B (zh) * 2020-07-10 2023-12-15 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
CN114175363B (zh) 2020-07-10 2024-02-20 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
KR20220016502A (ko) 2020-07-10 2022-02-09 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리, 전기사용장치, 배터리의 제조방법 및 장치
CN114175378B (zh) 2020-07-10 2023-12-19 宁德时代新能源科技股份有限公司 电池、用电装置、制备电池的方法和装置
CN113937384B (zh) * 2020-07-14 2023-07-07 北京好风光储能技术有限公司 一种储能电池系统
EP4064422A4 (en) * 2020-09-30 2023-10-25 Contemporary Amperex Technology Co., Limited BATTERY, DEVICE AND METHOD FOR MANUFACTURING BATTERY AND MANUFACTURING APPARATUS
WO2022067809A1 (zh) * 2020-09-30 2022-04-07 宁德时代新能源科技股份有限公司 电池、装置、电池的制备方法以及制备装置
CN112018302B (zh) * 2020-10-19 2021-05-04 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
JP7350211B2 (ja) * 2020-10-19 2023-09-25 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池、電力消費装置、電池の製造方法及びその装置
JP7457872B2 (ja) 2020-10-19 2024-03-28 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池、電気装置、電池の製造方法および装置
WO2022082398A1 (zh) * 2020-10-19 2022-04-28 江苏时代新能源科技有限公司 电池、用电装置、制造电池的方法及装置
CN115764148A (zh) * 2020-10-19 2023-03-07 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112490578B (zh) * 2020-11-11 2021-11-23 华南理工大学 一种动力电池模组
CN112490529B (zh) * 2020-11-13 2023-02-24 重庆金康动力新能源有限公司 冷却管、冷却系统、电池包及汽车
EP4064421A4 (en) 2020-11-17 2023-09-13 Contemporary Amperex Technology Co., Limited BATTERY, DEVICE USING BATTERY, AND METHOD AND DEVICE FOR PREPARING BATTERY
CN112531231B (zh) * 2020-12-01 2022-04-01 清华大学 被动式安全管理电池包
CN112604206B (zh) * 2020-12-04 2022-04-26 重庆金康动力新能源有限公司 电池包的灭火系统及控制方法
CN112704832A (zh) * 2020-12-29 2021-04-27 长城汽车股份有限公司 电池箱体和电池包
CN112652858B (zh) * 2021-01-18 2022-06-10 中国第一汽车股份有限公司 一种延缓热失控的电池模组、电池总成及电动车
KR20220136992A (ko) * 2021-03-31 2022-10-11 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리의 박스 본체, 배터리, 전기 장치, 박스 본체 제조 방법 및 장치
WO2023004774A1 (zh) 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 一种电池组、电池包和用电装置
CN113594581B (zh) * 2021-08-03 2023-06-30 广州小鹏汽车科技有限公司 电池包及电动汽车
CN115911743B (zh) * 2021-08-18 2023-12-15 宁德时代新能源科技股份有限公司 电池以及用电装置
CN113745695B (zh) * 2021-08-27 2023-10-27 中国第一汽车股份有限公司 一种灭火管总成、电池热管理装置、电池系统及电动车辆
EP4175017A3 (en) * 2021-10-05 2023-11-01 Samsung SDI Co., Ltd. Cell cooling cover for a battery module
JP2024507420A (ja) * 2022-01-12 2024-02-20 寧徳時代新能源科技股▲分▼有限公司 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
WO2023240407A1 (zh) * 2022-06-13 2023-12-21 宁德时代新能源科技股份有限公司 热管理部件、热管理系统、电池及用电装置
CN114597544A (zh) * 2022-03-16 2022-06-07 中创新航科技股份有限公司 电池包
CN114927810B (zh) * 2022-04-11 2024-04-09 中国第一汽车股份有限公司 一种多功能电池盖板、盖板厚度确定方法及动力电池系统
CN115882149B (zh) * 2023-02-22 2023-05-23 深圳市柯讯科技有限公司 一种基于防火防爆的电池组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841072A (zh) * 2010-02-09 2010-09-22 北汽福田汽车股份有限公司 蓄电池的液冷系统以及蓄电池的液冷方法
US20120244393A1 (en) * 2011-03-23 2012-09-27 Joe Stanek Variable Insulating Battery Pack System and Method
CN103779632A (zh) * 2014-01-22 2014-05-07 浙江吉利控股集团有限公司 具有灭火功能的电池冷却系统
CN207977389U (zh) * 2018-01-29 2018-10-16 浙江美都海创锂电科技有限公司 一种安全防爆方形电池模块
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407533B1 (en) * 2000-10-31 2002-06-18 Alcatel Usa Sourcing, Lp Battery temperature stabilization system and method
US9093726B2 (en) 2009-09-12 2015-07-28 Tesla Motors, Inc. Active thermal runaway mitigation system for use within a battery pack
US10522845B2 (en) * 2011-09-28 2019-12-31 Tesla, Inc. Battery centric thermal management system utilizing a heat exchanger blending valve
US10427491B2 (en) * 2011-09-28 2019-10-01 Tesla, Inc. Thermal management system with heat exchanger blending valve
CN103779629A (zh) 2014-01-22 2014-05-07 浙江吉利控股集团有限公司 具有灭火功能的电池冷却系统
US10431860B2 (en) * 2015-02-23 2019-10-01 Ford Global Technologies, Llc Cold plate assembly for electrified vehicle batteries
EP3333932B1 (en) 2016-12-06 2019-02-13 Samsung SDI Co., Ltd. Battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841072A (zh) * 2010-02-09 2010-09-22 北汽福田汽车股份有限公司 蓄电池的液冷系统以及蓄电池的液冷方法
US20120244393A1 (en) * 2011-03-23 2012-09-27 Joe Stanek Variable Insulating Battery Pack System and Method
CN103779632A (zh) * 2014-01-22 2014-05-07 浙江吉利控股集团有限公司 具有灭火功能的电池冷却系统
CN207977389U (zh) * 2018-01-29 2018-10-16 浙江美都海创锂电科技有限公司 一种安全防爆方形电池模块
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包

Also Published As

Publication number Publication date
US11133543B2 (en) 2021-09-28
CN209071461U (zh) 2019-07-05
EP3675218A1 (en) 2020-07-01
US20200212526A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020135073A1 (zh) 热管理装置、电池包及新能源汽车
US9774065B2 (en) Liquid-cooled battery pack system
WO2022037143A1 (zh) 一种电池以及用电设备
CN112018303B (zh) 电池、用电装置、制备电池的方法和装置
CN112018300B (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
CN216903105U (zh) 一种方形壳体和方形电池
JP7457872B2 (ja) 電池、電気装置、電池の製造方法および装置
WO2023125086A1 (zh) 电池模组、电池包和储能系统
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
CN214227005U (zh) 工业车用锂电池
CN219873733U (zh) 电池及用电设备
WO2022082393A1 (zh) 用于电池的箱体、电池、用电装置、制备电池的方法和设备
US20230238610A1 (en) Case of battery, battery, power consumption device, and method and device for manufacturing battery
CN218957851U (zh) 一种电池壳体及大容量电池
WO2023036248A1 (zh) 一种用于大型储能系统的电池罐及泄爆方法
WO2022082390A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
CN216903127U (zh) 单体电池、电池包及用电设备
WO2023125085A1 (zh) 电池模组、电池包和储能系统
WO2022082388A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023050078A1 (zh) 电池、用电装置、制备电池的方法和装置
CN114556679A (zh) 电池组和包括该电池组的设备
EP4071911B1 (en) Battery, power consuming device and method for producing battery
WO2024077605A1 (zh) 电池和用电装置
CN219246779U (zh) 一种电池模组和电池包
WO2024139200A1 (zh) 一种保温电池包及热管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904647

Country of ref document: EP

Kind code of ref document: A1