WO2020135028A1 - 电池箱及车辆 - Google Patents

电池箱及车辆 Download PDF

Info

Publication number
WO2020135028A1
WO2020135028A1 PCT/CN2019/124357 CN2019124357W WO2020135028A1 WO 2020135028 A1 WO2020135028 A1 WO 2020135028A1 CN 2019124357 W CN2019124357 W CN 2019124357W WO 2020135028 A1 WO2020135028 A1 WO 2020135028A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
insulating film
opening
casing
structural adhesive
Prior art date
Application number
PCT/CN2019/124357
Other languages
English (en)
French (fr)
Inventor
陈天明
陈智明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020135028A1 publication Critical patent/WO2020135028A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery box and a vehicle.
  • the bottom of the battery is directly fixed on the lower box body in a glued way inside many battery boxes. Since the lower case and the battery case are usually made of metal (such as aluminum), in order to insulate the battery case, an insulating film is generally wrapped around the case.
  • the insulating film is usually made of polymer materials such as PET and PC and the surface energy of these polymer materials is relatively low, when the structural film is directly used to bond the insulating film outside the lower case and the battery case, the bonding effect is not it is good. Because the effect of bonding the aluminum plate with structural adhesive is better than that of the insulating film, in order to improve the bonding effect, the insulating film is usually completely removed at the bottom of the battery, thereby bonding the entire bottom of the battery case to the lower case through the structural adhesive body. Although this arrangement ensures the bonding strength of the battery box, during the long-term use of the battery box, safety problems often occur due to insufficient insulation strength of the battery.
  • the object of the present application is to provide a battery box and a vehicle, which, while ensuring the bonding strength of the battery box, increase the insulation strength of the battery box, thereby effectively ensuring the safety of the battery box performance.
  • the present application provides a battery box, which includes a box body, a plurality of batteries, an insulating film, and a structural adhesive.
  • a plurality of batteries are arranged in the longitudinal direction and housed in the box, and each battery has a case.
  • the insulating film is covered and fixed outside the case of each battery, and the insulating film is provided with an opening to expose the corresponding portion of the case to the insulating film.
  • the structural glue is arranged between the battery and the box body, and is used for fixing each battery to the box body.
  • the area of the opening is A 1
  • the total area of the shell surface corresponding to the opening is A
  • the thickness of the structural adhesive is L 1
  • the volume resistivity is ⁇ 1
  • the thickness of the insulating film is L 2
  • the volume resistivity is ⁇ 2
  • a 1 , A, L 1 , ⁇ 1 , L 2 and ⁇ 2 satisfy the following relationship:
  • a 1 and A satisfy: A 1 /A>50%.
  • the insulating film is made of polypropylene, polycarbonate, or polyester resin, and the volume resistivity of the insulating film is 0.1 ⁇ 10 14 ⁇ cm ⁇ 2 ⁇ 2 ⁇ 10 14 ⁇ cm.
  • the material of the structural adhesive is one-component polyurethane or two-component polyurethane.
  • the material of the structural adhesive is one-component epoxy resin or two-component epoxy resin.
  • the casing of each battery has a bottom surface, and the opening is located below the bottom surface of the casing in the up-down direction and exposes part of the bottom surface of the casing to the insulating film.
  • the casing of each battery has a side surface, and the opening is laterally outside the side surface of the casing and exposes part of the side surface of the casing to the insulating film.
  • the present application provides a vehicle including the battery box described in the first aspect.
  • the insulating film is provided with an opening, and a part of the structural adhesive bonds the battery case to the box body at the opening, and a part of the insulating film adheres the insulating film to the box body outside the opening, thereby ensuring the connection between the battery and the box body Bonding strength.
  • the opening area A 1 of the insulating film meets the above relationship with A, L 1 , ⁇ 1 , L 2 and ⁇ 2 , the covering area of the insulating film on the battery meets the requirements of the dielectric strength (ie, inside the battery box No insulation failure will occur), thereby effectively ensuring the safety performance of the battery box.
  • FIG. 1 is a schematic structural diagram of a battery box of the present application.
  • FIG. 2 is a schematic view of the opening of the insulating film in FIG. 1 and the position of the battery.
  • FIG. 3 is a modification of FIG. 2.
  • the battery box includes a box body 1, a plurality of batteries 2, an insulating film 3 and a structural adhesive 4.
  • the plurality of batteries 2 are arranged in the longitudinal direction Y and stored in the case 1.
  • Each battery 2 has a housing 21, and the housing 21 has two side surfaces in the lateral direction X, two large surfaces in the longitudinal direction Y, and a bottom surface in the up-down direction Z.
  • the housing 21 may be made of metal material (such as aluminum or steel).
  • the side of the insulating film 3 facing the battery 2 is provided with an adhesive glue, so that the insulating film 3 is coated and adhered outside the case 21 of the battery 2.
  • the insulating film 3 is provided with an opening 31 so that the corresponding portion of the housing 2 is exposed to the insulating film 3.
  • the opening 31 may be provided through a portion of the bottom surface of the casing 21 of the battery 2 covered by the insulating film 3 in the vertical direction Z (that is, the opening 31 is located below the bottom surface of the casing 21), so that a portion of the bottom surface of the casing 21 is exposed to Insulation film 3 (as shown in Figure 2).
  • the opening 31 may also be provided through the portion of the side of the case 21 of the battery 2 that covers the battery 2 along the lateral direction X (that is, the opening 31 is located outside the side of the case 21), so that part of the side of the case 21 is exposed
  • the insulating film 3 (as shown in Figure 3).
  • the structural adhesive 4 is provided between the battery 2 and the case 1 for fixing each battery 2 to the case 1.
  • a portion of the structural glue 4 is located between the insulating film 3 and the case 1, and a portion is located between the casing 21 of the battery 2 and the case 1 (that is, the structural glue 4 is filled in In the opening 31).
  • part of the structural adhesive 4 may also be squeezed between two adjacent batteries 2.
  • the casing 21 of the battery 2 is bonded to the box body 1 by the structural glue 4 and the insulating film 3 is also bonded to the box body 1 by the structural glue 4, thereby fixing each battery 2 in the box body 1 .
  • the area of the opening 31 of the insulating film 3 is A 1
  • the total area of the surface of the case 21 corresponding to the opening 31 is A
  • the thickness of the structural adhesive 4 is L 1
  • the volume resistivity is ⁇ 1
  • the thickness of the insulating film 3 is L 2
  • the volume resistivity is ⁇ 2
  • a 1 , A, L 1 , ⁇ 1 , L 2 and ⁇ 2 satisfy the following relationship:
  • the insulating film 3 is provided with an opening 31, and a part of the structural adhesive 4 adheres the casing 21 of the battery 2 to the case 1 at the opening 31, a part of the adhesive film 3 is adhered to the case 1 outside the opening 31, by This ensures the bonding strength between the battery 2 and the case 1.
  • the coating area of the insulating film 3 on the battery 2 meets the requirements of the dielectric strength ( That is, there will be no insulation failure inside the battery box), thereby effectively ensuring the safety performance of the battery box.
  • the adhesion strength of the case 21 of the battery 2 to the case 1 through the structural glue 4 is related to the amount of the structural glue 4, and the amount of the structural glue 4 is related to the area A 1 of the opening 31 on the insulating film 3, In order to ensure the adhesive strength requirements of the battery box, preferably, between A 1 and A: A 1 /A>50%.
  • the insulation film 3 Due to the high volume resistivity of polymer materials such as polypropylene (Polypropylene, PP for short), polycarbonate (Polycarbonate, PC for short), and polyester resin (Polyethylene terephthalate, PET for short) (approximately 10 14 ⁇ cm ), the insulation performance is good, so the insulation film 3 can be made of one of the above polymer materials, at this time the volume resistivity of the insulation film 3 is 0.1 ⁇ 10 14 ⁇ cm ⁇ 2 ⁇ 2 ⁇ 10 14 ⁇ cm .
  • L 1 is too large, the insulation strength of the battery case will be weakened to some extent. Therefore, in order to ensure both the adhesive strength and the dielectric strength of the battery case, preferably, 0 ⁇ L 1 ⁇ 2 mm.
  • the thickness L 2 is too large, which will increase the assembly size of the battery 2 and is not conducive to improving the energy density of the battery box; if the thickness L 2 is too small, it cannot Ensure the bonding strength of the battery box. Therefore, preferably, 0 ⁇ L 2 ⁇ 0.15 mm.
  • the material of the structural adhesive 4 may be one-component polyurethane or two-component polyurethane.
  • the volume resistivity of polyurethane in the initial state is 10 10 ⁇ cm, and during use, the volume resistivity will increase with time (specifically as shown in Table S-1 below, the unit is ⁇ cm), Until it reaches a fully cured state (at this time the volume resistivity is 10 12 ⁇ cm).
  • the structural adhesive 4 made of one-component polyurethane it can achieve the bonding strength by means of moisture curing or heating curing.
  • the bonding strength can be achieved through chemical bonds and intermolecular forces, and the bonding principle of the two-component polyurethane is specifically described as follows.
  • Two-component polyurethanes include components containing -NCO groups (such as isocyanates or polyisocyanates) and polyol components containing -OH groups, which are combined with catalysts to form two-component polyurethanes.
  • -NCO groups such as isocyanates or polyisocyanates
  • polyol components containing -OH groups which are combined with catalysts to form two-component polyurethanes.
  • the way of curing the two-component polyurethane is as follows:
  • the intermolecular force of the two-component polyurethane refers to the formation of hydrogen bonds between the -NH- groups, -OH groups and the substrate (including the casing 21 of the battery 2 and the insulating film 3) after curing and the intermolecular Van der Waals forces.
  • the chemical bond refers to the covalent bond formed by OCN—R—NCO that has not been cured into the cross-linked network, trace water and metal oxide on the surface of the substrate.
  • the intermolecular force of the two-component polyurethane plays a major role, and the chemical bond plays an auxiliary role.
  • the material of the structural adhesive 4 may be a one-component epoxy resin or a two-component epoxy resin .
  • the volume resistivity of the epoxy resin in the initial state is 10 8 ⁇ cm, and during use, the volume resistivity will increase with time (specifically as shown in Table S-2 below, the unit is ⁇ cm ) Until it reaches a fully cured state (at this time the volume resistivity is 10 13 ⁇ cm).
  • the structural adhesive 4 made of one-component epoxy resin it can achieve the bonding strength by means of moisture curing or heating curing.
  • the bonding strength can be achieved through chemical bonds and intermolecular forces, and the bonding principle of the two-component epoxy resin is specifically described as follows.
  • the two-component epoxy resin includes a component containing an epoxy group and a component containing an OH group and an NH group, and the two are combined with a catalyst to form a two-component epoxy resin.
  • the two-component epoxy resin is cured as follows:
  • the two-component epoxy resin includes components containing epoxy groups and components containing -OH groups and -NH 2 groups, and both of them are combined with a catalyst to form a two-component epoxy resin. Among them, the two-component epoxy resin is cured as follows:
  • the intermolecular force of two-component epoxy resin refers to: the formation of hydrogen bonds between the epoxy group, -OH group, -NH 2 group, -O-ether group and the substrate, and the van der Waals force between the molecules .
  • the chemical bond refers to the covalent bond formed by the component containing the -NH 2 group and the trace water on the surface of the substrate and the metal oxide, and the component containing the epoxy group oxidizes with the metal on the surface of the substrate during the ring opening process Covalent bond formed by substances and trace water.
  • epoxy resin molecules can be an addition reaction during the cross-linking process, they will not generate water and will not have volatile products. Their overall curing shrinkage is low, the body strength is high, and large Bonding strength.
  • the insulation strength of the battery box can be directly obtained through the relationship (1), so that there is no need to use an insulation withstand voltage tester to measure, which can greatly reduce the cost, Increase productivity.

Abstract

一种电池箱及车辆,电池箱包括箱体(1)、多个电池(2)、绝缘膜(3)以及结构胶(4)。绝缘膜(3)包覆电池(2)的壳体(21)外部,且绝缘膜(3)设置有开口(31)以使壳体(21)的对应部分露出于绝缘膜(3)。结构胶(4)设置于电池(2)与箱体(1)之间。开口(31)的面积为A 1、与开口(31)对应的壳体(21)表面的总面积为A,结构胶(4)的厚度为L 1、体积电阻率为ρ 1,绝缘膜(3)的厚度为L 2、体积电阻率为ρ 2,且A 1、A、L 1、ρ 1、L 2以及ρ 2之间满足式(I)。由于绝缘膜(3)设置有开口(31),且结构胶(4)的一部分在开口(31)处将电池(2)的壳体(21)粘接于箱体(1)、一部分在开口(31)外侧将绝缘膜(3)粘接于箱体(1),由此保证了电池(2)与箱体(1)之间的粘接强度。同时,由于绝缘膜(3)的开口(31)面积A 1与A、L 1、ρ 1、L 2以及ρ 2之间满足上述关系,从而使得绝缘膜(3)在电池(2)上的包覆面积满足绝缘强度需求,由此有效地保证了电池箱的安全性能。

Description

电池箱及车辆 技术领域
本申请涉及电池技术领域,尤其涉及一种电池箱及车辆。
背景技术
目前,在许多电池箱内部采用胶粘的方式将电池底部直接固定在下箱体上。由于下箱体与电池的壳体通常采用金属(如铝)制成,为了对电池的壳体进行绝缘处理,一般在壳体四周包裹绝缘膜。
由于绝缘膜通常采用PET、PC等高分子材料制成且这些高分子材料的表面能比较低,当采用结构胶直接粘接下箱体与电池壳体外部的绝缘膜时,则粘接效果不好。由于结构胶粘接铝板的效果要优于绝缘膜,因而为了提高粘接效果,通常会在电池的底部将绝缘膜完全去掉,由此通过结构胶将电池的整个壳体底部粘接于下箱体。这种设置方式,虽然保证了电池箱的粘接强度,但是电池箱在长期使用过程中,经常会出现由于电池的绝缘强度不足而导致的安全问题。
发明内容
鉴于背景技术中存在的问题,本申请的目的在于提供一种电池箱及车辆,其在保证电池箱的粘接强度的同时,提高了电池箱的绝缘强度,进而有效地保证了电池箱的安全性能。
为了实现上述目的,在第一方面,本申请提供了一种电池箱,其包括箱体、多个电池、绝缘膜以及结构胶。多个电池沿纵向排列并收容于箱体,各电池具有壳体。绝缘膜包覆并固定在各电池的壳体外部,且绝缘膜设置有开口以使壳体的对应部分露出于绝缘膜。结构胶设置于电池与箱体之间,用于将各电池固定于箱体。其中,开口的面积为A 1、与开口对应的壳体表面的总面积为A,结构胶的厚度为L 1、体积电阻率为ρ 1,绝缘膜的厚度为L 2、体积电阻率为ρ 2,且A 1、A、L 1、ρ 1、L 2以及ρ 2之间满足如下关系:
Figure PCTCN2019124357-appb-000001
在一实施例中,
Figure PCTCN2019124357-appb-000002
在一实施例中,A 1与A之间满足:A 1/A>50%。
在一实施例中,A 1/A≤70%。
在一实施例中,绝缘膜由聚丙烯、聚碳酸酯或涤纶树脂制成,绝缘膜的体积电阻率0.1×10 14Ω·cm≤ρ 2≤2×10 14Ω·cm。
在一实施例中,0<L 1≤2mm。
在一实施例中,0<L 2≤0.15mm。
在一实施例中,结构胶的材质为单组分聚氨酯或双组分聚氨酯。
在一实施例中,结构胶的材质为单组分环氧树脂或双组分环氧树脂。
在一实施例中,各电池的壳体具有底面,开口沿上下方向位于壳体底面下方并使壳体的部分底面露出于绝缘膜。
在一实施例中,各电池的壳体具有侧面,开口沿横向位于壳体侧面外侧并使壳体的部分侧面露出于绝缘膜。
在第二方面,本申请提供了一种车辆,其包括第一方面所述的电池箱。
本申请的有益效果如下:
由于绝缘膜设置有开口,且结构胶的一部分在开口处将电池的壳体粘接于箱体、一部分在开口外侧将绝缘膜粘接于箱体,由此保证了电池与箱体之间的粘接强度。同时,由于绝缘膜的开口面积A 1与A、L 1、ρ 1、L 2以及ρ 2之间满足上述关系,从而使得绝缘膜在电池上的包覆面积满足绝缘强度需求(即电池箱内部不会出现绝缘失效),由此有效地保证了电池箱的安全性能。
附图说明
图1是本申请的电池箱的结构示意图。
图2是图1中的绝缘膜的开口与电池的位置示意图。
图3是图2的变形例。
其中,附图标记说明如下:
1箱体                       4结构胶
2电池                       X横向
21壳体                      Y纵向
3绝缘膜                     Z上下方向
31开口
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“多个”是指两个或两个以上;对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。下面结合附图对本申请做进一步的详细描述。
参照图1,根据本申请的电池箱包括箱体1、多个电池2、绝缘膜3以及结构胶4。
多个电池2沿纵向Y排列并收容于箱体1中。各电池2具有壳体21,且壳体21在横向X上具有两个侧面,在纵向Y上具有两个大面以及在上下方向Z具有一个底面。壳体21可采用金属材料(如铝或钢)制成。
绝缘膜3的面向电池2的一侧设置有粘接胶,以使绝缘膜3包覆并粘接在电池2的壳体21外部。绝缘膜3设置有开口31,以使壳体2的对应部分露出于绝缘膜3。具体地,开口31可沿上下方向Z贯通设置在绝缘膜3包覆电池2的壳体21底面的部分上(即开口31位于壳体21底面下方),以使壳体21的部分底面露出于绝缘膜3(如图2所示)。可选择地,开口31也可沿横向X贯通设置在绝缘膜3包覆电池2的壳体21侧面的部分上(即开口31位于壳体21侧面外侧),以使壳体21的部分侧面露出于绝缘膜3(如图 3所示)。
结构胶4设置于电池2与箱体1之间,用于将各电池2固定于箱体1。当所述多个电池2置于箱体1后,结构胶4一部分位于绝缘膜3与箱体1之间、一部分位于电池2的壳体21与箱体1之间(即结构胶4填充入开口31中)。当然,相邻两个电池2之间也可能会被挤入部分结构胶4。
在电池箱组装后,电池2的壳体21通过结构胶4粘接于箱体1,绝缘膜3也通过结构胶4粘接于箱体1,由此使得各电池2固定于箱体1中。
在本申请的电池箱中,绝缘膜3的开口31的面积为A 1、与开口31对应的壳体21表面的总面积为A,结构胶4的厚度为L 1、体积电阻率为ρ 1,绝缘膜3的厚度为L 2、体积电阻率为ρ 2,且A 1、A、L 1、ρ 1、L 2以及ρ 2之间满足如下关系:
Figure PCTCN2019124357-appb-000003
由于绝缘膜3设置有开口31,且结构胶4的一部分在开口31处将电池2的壳体21粘接于箱体1、一部分在开口31外侧将绝缘膜3粘接于箱体1,由此保证了电池2与箱体1之间的粘接强度。同时,由于绝缘膜3的开口31面积A 1与A、L 1、ρ 1、L 2以及ρ 2之间满足上述关系,从而使得绝缘膜3在电池2上的包覆面积满足绝缘强度需求(即电池箱内部不会出现绝缘失效),由此有效地保证了电池箱的安全性能。
对于关系式(1),令
Figure PCTCN2019124357-appb-000004
即F≥10MΩ。需要说明的是,F的值越大,则电池箱的绝缘强度越大,为了满足更高的绝缘强度需求,可通过关系式(1)合理地设置A 1、A、L 1、ρ 1、L 2以及ρ 2的大小,以增大F的值,进而达到进一步提高电池箱安全性能的目的,同时还能极大地降低设计成本、提高了生产效率。具体地,F≥150MΩ,即
Figure PCTCN2019124357-appb-000005
由于电池2的壳体21通过结构胶4粘接于箱体1的粘接强度与结构胶4的量有关,而结构胶4的量与绝缘膜3上的开口31的面积A 1有关,因而为了保证电池箱的粘接强度需求,优选地,A 1与A之间需满足:A 1/A>50%。
同时,由于电池2自身的结构(即电池2底部的四个角位存在倒圆角),当绝缘膜3上的开口31的面积A 1过大时,则会增大相邻两个电池2底部的倒圆角之间的绝缘失效风险。因此,为了降低电池2的绝缘失效风险,优选地,A 1与A之间需满足:A 1/A≤70%。
由于聚丙烯(Polypropylene,简称为PP)、聚碳酸酯(Polycarbonate,简称为PC)以及涤纶树脂(Polyethylene terephthalate,简称为PET)等高分子材料的体积电阻率较大(近似为10 14Ω·cm),绝缘性能好,因而绝缘膜3可采用上述高分子材料中的一种制成,此时绝缘膜3的体积电阻率0.1×10 14Ω·cm≤ρ 2≤2×10 14Ω·cm。
需要说明的是,结构胶4的厚度L 1越大,其对电池箱的粘接强度越有利,但是当L 1过大时,则在一定程度上会削弱电池箱的绝缘强度。因此,为了同时保证电池箱的粘接强度和绝缘强度,优选地,0<L 1≤2mm。
由于绝缘膜3包覆在电池2的壳体21外部,其厚度L 2过大,则会增大电池2的装配尺寸,不利于提高电池箱的能量密度;其厚度L 2过小,则不能保证电池箱的粘接强度。因此,优选地,0<L 2≤0.15mm。
为了保证结构胶4与电池2的壳体21以及绝缘膜3之间的粘接强度,在一实施例中,结构胶4的材质可为单组分聚氨酯或双组分聚氨酯。其中,聚氨酯在初始状态下的体积电阻率为10 10Ω·cm,且在使用过程中,体积电阻率会随着时间的增加而上升(具体如下表S-1,单位为Ω·cm),直至到达完全固化状态(此时体积电阻率为10 12Ω·cm)。
表S-1
  30min 1h 6h 1day 5day 7day
1 4.31361E+10 8.11E+11 1.37028E+12 2.11023E+12 7.3858E+12 1.91839E+12
2 4.54362E+10 5.07E+11 8.57464E+11 1.32049E+12 4.62173E+12 1.20045E+12
3 2.04057E+10 4.88E+11 8.24205E+11 1.26928E+12 4.44246E+12 1.15389E+12
4 7.670895E+10 8.90E+11 1.50425E+12 2.31655E+12 8.10791E+12 2.10595E+12
5 5.24595E+10 4.37E+11 7.3877E+11 1.13771E+12 3.98197E+12 1.03428E+12
对于由单组分聚氨酯制成的结构胶4,其可通过湿气固化或加热固化等方式实现粘接强度。对于双组分聚氨酯制成的结构胶4,其可通过化学键和分子间作用力实现粘接强度,且双组分聚氨酯的粘接原理具体说明如下。
双组份聚氨酯包括含有-NCO基团的组分(如分异氰酸酯或多异氰酸酯)以及含有-OH基团的多元醇组分,二者配合催化剂组成双组份聚氨酯。其中,双组分聚氨酯实现固化的方式如下:
OCN-R-NCO+HO-R′-OH→OCN-R-NH-COOR′-OH
双组分聚氨酯的分子间作用力是指:固化后的-NH-基团、-OH基团与基材(包括电池2的壳体21以及绝缘膜3)之间形成氢键以及分子间的范德华力。化学键是指:未固化到交联网络中的OCN—R—NCO与基材表面的微量水以及金属氧化物形成的共价键。并且,在实现结构胶4的粘接强度上,双组分聚氨酯的分子间作用力占主要作用、化学键占辅助作用。
此外,需要说明的是,在双组分聚氨酯配比时,需注意以下两点:(1)由于-NCO会在和水反应生产脲基时消耗掉一部分,因而-NCO的含量需高于-OH;(2)虽然-NCO的含量越高,形成金属间共价物越多,则结合强度越好,但是当-NCO的含量过高时,则可能导致胶体过于硬化而变脆,甚至出现不固化的状态。因而,在双组分聚氨酯配比时,-NCO与-OH之间的摩尔比需保持在一定的比例内。
为了保证结构胶4与电池2的壳体21以及绝缘膜3之间的粘接强度,在另一实施例中,结构胶4的材质可为单组分环氧树脂或双组分环氧树脂。其中,环氧树脂在初始状态下的体积电阻率为10 8Ω·cm,且在使用过程中,体积电阻率会随着时间的增加而上升(具体如下表S-2,单位为Ω·cm),直至到达完全固化状态(此时体积电阻率为10 13Ω·cm)。
表S-2
Figure PCTCN2019124357-appb-000006
Figure PCTCN2019124357-appb-000007
对于由单组分环氧树脂制成的结构胶4,其可通过湿气固化或加热固化等方式实现粘接强度。对于双组分环氧树脂制成的结构胶4,其可通过化学键和分子间作用力实现粘接强度,且双组分环氧树脂的粘接原理具体说明如下。
双组份环氧树脂包括含有环氧基团的组分以及含有OH基团、NH基团的组分,二者配合催化剂组成双组份环氧树脂。其中,双组分环氧树脂实现固化的方式如下:
双组份环氧树脂包括含有环氧基团的组分以及含有-OH基团、-NH 2基团的组分,二者配合催化剂组成双组份环氧树脂。其中,双组分环氧树脂实现固化的方式如下:
Figure PCTCN2019124357-appb-000008
双组分环氧树脂的分子间作用力是指:环氧基团、-OH基团、-NH 2基团、-O-醚基团与基材之间形成氢键以及分子间的范德华力。化学键是指:含有-NH 2基团的组分与基材表面的微量水以及金属氧化物形成的共价键、含有环氧基团的组分在开环过程中与基材表面的金属氧化物以及微量水形成的共价键。
需要说明的是,由于环氧树脂的分子在交联的过程中可以是加成反应,不会生成水且不会有挥发的产物,其整体固化收缩率低,本体强度高,可以实现大的粘接强度。
在本申请中,在一测试例中,采用四种结构胶4(编号为1、2、3、4,其中1-4号结构胶均采用环氧树脂制成,且1号为环氧树脂处于30min时的状态、2号为环氧树脂处于1h时的状态、3号为环氧树脂处于1day时的状态、4号为环氧树脂处于5day时的状态)分别与五种绝缘膜3的开口31大小组成20组测试组(L 1=0.5mm,L 2=0.11mm),并采用公式(1)计算出了每组 测试组对应的F值,具体测试结果如下表S-3。
表S-3
Figure PCTCN2019124357-appb-000009
Figure PCTCN2019124357-appb-000010
根据表S-3可知,对于由1号结构胶和2号结构胶组成的测试组,通过公式(1)计算出的F值均小于10MΩ,其绝缘测试均发生了失效;对于由3号结构胶和4号结构胶组成的测试组,通过公式(1)计算出的F值均大于10MΩ,其均通过了绝缘测试。
在本申请中,在另一测试例中,采用四种结构胶4(编号为5、6、7、8,其中5-8号结构胶均采用聚氨酯制成,且5号为聚氨酯处于30min时的状态、6号为聚氨酯处于1h时的状态、7号为聚氨酯处于1day时的状态、8号为聚氨酯处于5day时的状态)分别与五种绝缘膜3的开口31大小组成20组测试组(L 1=0.5mm,L 2=0.11mm),并采用公式(1)计算出了每组测试组对应的F值,具体测试结果如下表S-4。
S-4
Figure PCTCN2019124357-appb-000011
Figure PCTCN2019124357-appb-000012
根据表S-4可知,对于由5号结构胶和6号结构胶组成的测试组,通过公式(1)计算出的F值均小于10MΩ,其绝缘测试均发生了失效;对于由7号结构胶和8号结构胶组成的测试组,通过公式(1)计算出的F值均大于10MΩ,其均通过了绝缘测试。
因此,由上述测试例可知,在电池箱的后续结构设计中,可直接通过关系式(1)获得电池箱的绝缘强度,从而无需采用绝缘耐压测试仪进行测量,从而可极大地减少成本,提高生产效率。

Claims (12)

  1. 一种电池箱,包括:
    箱体(1);
    多个电池(2),沿纵向(Y)排列并收容于箱体(1),各电池(2)具有壳体(21);
    绝缘膜(3),包覆并固定在各电池(2)的壳体(21)外部,且绝缘膜(3)设置有开口(31)以使壳体(2)的对应部分露出于绝缘膜(3);以及
    结构胶(4),设置于电池(2)与箱体(1)之间,用于将各电池(2)固定于箱体(1);
    其中,开口(31)的面积为A 1、与开口(31)对应的壳体(21)表面的总面积为A,结构胶(4)的厚度为L 1、体积电阻率为ρ 1,绝缘膜(3)的厚度为L 2、体积电阻率为ρ 2,且A 1、A、L 1、ρ 1、L 2以及ρ 2之间满足如下关系:
    Figure PCTCN2019124357-appb-100001
  2. 根据权利要求1所述的电池箱,其特征在于,
    Figure PCTCN2019124357-appb-100002
  3. 根据权利要求1所述的电池箱,其特征在于,A 1与A之间满足:A 1/A>50%。
  4. 根据权利要求1所述的电池箱,其特征在于,A 1/A≤70%。
  5. 根据权利要求1所述的电池箱,其特征在于,
    绝缘膜(3)由聚丙烯、聚碳酸酯或涤纶树脂制成;
    绝缘膜(3)的体积电阻率0.1×10 14Ω·cm≤ρ 2≤2×10 14Ω·cm。
  6. 根据权利要求1所述的电池箱,其特征在于,0<L 1≤2mm。
  7. 根据权利要求1所述的电池箱,其特征在于,0<L 2≤0.15mm。
  8. 根据权利要求1所述的电池箱,其特征在于,结构胶(4)的材质为单组分聚氨酯或双组分聚氨酯。
  9. 根据权利要求1所述的电池箱,其特征在于,结构胶(4)的材质为单组分环氧树脂或双组分环氧树脂。
  10. 根据权利要求1所述的电池箱,其特征在于,
    各电池(2)的壳体(21)具有底面;
    开口(31)沿上下方向(Z)位于壳体(21)底面下方并使壳体(21)的部分底面露出于绝缘膜(3)。
  11. 根据权利要求1所述的电池箱,其特征在于,
    各电池(2)的壳体(21)具有侧面;
    开口(31)沿横向(X)位于壳体(21)侧面外侧并使壳体(21)的部分侧面露出于绝缘膜(3)。
  12. 一种车辆,其特征在于,包括权利要求1-11任一项所述的电池箱。
PCT/CN2019/124357 2018-12-29 2019-12-10 电池箱及车辆 WO2020135028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811630123.8A CN111384314B (zh) 2018-12-29 2018-12-29 电池箱
CN201811630123.8 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135028A1 true WO2020135028A1 (zh) 2020-07-02

Family

ID=68501349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124357 WO2020135028A1 (zh) 2018-12-29 2019-12-10 电池箱及车辆

Country Status (5)

Country Link
US (1) US11283130B2 (zh)
EP (1) EP3675217A1 (zh)
JP (1) JP6892908B2 (zh)
CN (1) CN111384314B (zh)
WO (1) WO2020135028A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114937837B (zh) * 2022-07-20 2023-03-14 中创新航科技股份有限公司 电池、电池包、绝缘结构加工系统及加工方法
CN116666823A (zh) * 2023-06-26 2023-08-29 欣旺达动力科技股份有限公司 电池包及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090014353A1 (en) * 2007-07-09 2009-01-15 Lewis Jr John Calvin Battery box in a box packaging
CN204271146U (zh) * 2014-12-22 2015-04-15 深圳市诺贝诺胶接技术有限公司 一种电动汽车动力电池模组
CN105762316A (zh) * 2016-05-20 2016-07-13 宁德时代新能源科技股份有限公司 一种电池箱
CN106463667A (zh) * 2014-05-06 2017-02-22 罗伯特·博世有限公司 通过在设备中完全地压力注塑包封/浇注容器而绝缘相邻的锂离子蓄电池
CN108832053A (zh) * 2018-07-25 2018-11-16 东莞塔菲尔新能源科技有限公司 一种电池模组

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187031A (en) * 1991-08-07 1993-02-16 Globe-Union Inc. Anti-vibration plaque for a battery
JP4254998B2 (ja) * 2002-12-11 2009-04-15 日立マクセル株式会社 回路一体型電池
CN1745438A (zh) * 2003-01-04 2006-03-08 3M创新有限公司 交通工具用电池组隔热体
US8216502B2 (en) 2008-12-02 2012-07-10 Tesla Motors, Inc. Method for the external application of battery pack encapsulant
JP5852092B2 (ja) * 2011-02-28 2016-02-03 三洋電機株式会社 電池モジュールおよび電池モジュールの製造方法
JP2013125617A (ja) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd 電源装置及びこれを備える車両並びに蓄電装置
DE102013204670B3 (de) * 2013-03-18 2014-05-15 Magna Steyr Battery Systems Gmbh & Co Og Batteriesystem mit einer Klebstoffraupe und Verfahren zur Herstellung eines Batteriesystems
US10347894B2 (en) * 2017-01-20 2019-07-09 Tesla, Inc. Energy storage system
DE102014211821A1 (de) 2014-06-20 2015-12-24 Robert Bosch Gmbh Batteriezelle, Batteriemodul diese enthaltend und Verfahren zu deren Herstellung
JP6260830B2 (ja) * 2014-10-28 2018-01-17 豊田合成株式会社 電池の接着固定構造
US10403869B2 (en) * 2015-04-13 2019-09-03 Cps Technology Holdings, Llc Adhesive tape for positioning battery cells in a battery module
JP6753045B2 (ja) * 2015-09-18 2020-09-09 株式会社Gsユアサ 蓄電装置
CN106992320A (zh) * 2016-01-20 2017-07-28 松下能源(无锡)有限公司 非水电解液电池
CN205900600U (zh) * 2016-07-19 2017-01-18 成都硅宝科技股份有限公司 一种安全电池组
CN206322806U (zh) * 2017-01-04 2017-07-11 东莞塔菲尔新能源科技有限公司 动力电池壳体包膜结构
US10601090B2 (en) * 2017-04-28 2020-03-24 Nio Usa, Inc. Using a spacer to block path of thermally conductive structural adhesive in lithium ion cells
CN207134401U (zh) * 2017-08-25 2018-03-23 宁德时代新能源科技股份有限公司 电池模组及电池包
CN208111531U (zh) * 2018-04-17 2018-11-16 宁波吉利汽车研究开发有限公司 一种电池箱下托盘
CN208622878U (zh) 2018-08-31 2019-03-19 宁德时代新能源科技股份有限公司 二次电池和电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090014353A1 (en) * 2007-07-09 2009-01-15 Lewis Jr John Calvin Battery box in a box packaging
CN106463667A (zh) * 2014-05-06 2017-02-22 罗伯特·博世有限公司 通过在设备中完全地压力注塑包封/浇注容器而绝缘相邻的锂离子蓄电池
CN204271146U (zh) * 2014-12-22 2015-04-15 深圳市诺贝诺胶接技术有限公司 一种电动汽车动力电池模组
CN105762316A (zh) * 2016-05-20 2016-07-13 宁德时代新能源科技股份有限公司 一种电池箱
CN108832053A (zh) * 2018-07-25 2018-11-16 东莞塔菲尔新能源科技有限公司 一种电池模组

Also Published As

Publication number Publication date
US20200212392A1 (en) 2020-07-02
CN111384314B (zh) 2021-01-19
JP2020109743A (ja) 2020-07-16
CN111384314A (zh) 2020-07-07
JP6892908B2 (ja) 2021-06-23
EP3675217A1 (en) 2020-07-01
US11283130B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020135028A1 (zh) 电池箱及车辆
JP6590290B2 (ja) バッテリパック
CN102703010B (zh) 一种锂电池软包装用环氧粘合剂和锂电池软包装材料
TWI769986B (zh) 包裝材、外殼及蓄電裝置
WO2020135031A1 (zh) 电池箱及车辆
CN207010610U (zh) 用于高尔夫球车上的柔性太阳能电池板
CN113224446A (zh) 电池模组及电池包
JP7231105B1 (ja) 蓄電デバイス包装材用接着剤、蓄電デバイス包装材、蓄電デバイス用容器及び蓄電デバイス
CN208674227U (zh) 电池箱、电池包及车辆
CN211428245U (zh) 电池包
CN113054316A (zh) 电池结构、电子设备及电池结构的制备方法
CN206353804U (zh) 电池安装结构和移动终端
CN217009327U (zh) 一种补锂过程中的导热膜结构
CN220201835U (zh) 一种抗溢胶的动力电池绝缘胶膜
CN219314866U (zh) 一种绝缘型太阳能电池板背膜
CN220492158U (zh) 一种不易翘边的电池
CN216015518U (zh) 耐电解液腐蚀的铝塑膜
CN215855880U (zh) 一种电池背胶粘贴结构
EP3916889A1 (en) Packaging structure and battery cell
CN115136402B (zh) 电池组及应用所述电池组的用电装置
CN218482822U (zh) 光伏组件边框和光伏组件
CN217103676U (zh) 电池标贴
CN213199074U (zh) 高效抗静电离型膜
CN212967870U (zh) 一种电池箱体及电池
CN217202590U (zh) 一种高导热纳米铜箔胶带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906256

Country of ref document: EP

Kind code of ref document: A1