WO2020134940A1 - 电致发光器件的制备方法和制作设备 - Google Patents

电致发光器件的制备方法和制作设备 Download PDF

Info

Publication number
WO2020134940A1
WO2020134940A1 PCT/CN2019/123237 CN2019123237W WO2020134940A1 WO 2020134940 A1 WO2020134940 A1 WO 2020134940A1 CN 2019123237 W CN2019123237 W CN 2019123237W WO 2020134940 A1 WO2020134940 A1 WO 2020134940A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional film
layer
film layer
solvent
electrode layer
Prior art date
Application number
PCT/CN2019/123237
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020134940A1 publication Critical patent/WO2020134940A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, and in particular, to a preparation method and manufacturing equipment of an electroluminescent device.
  • An electroluminescent device is a type of electronic device that converts electrical energy into light energy. Its typical structure is usually a transparent anode, a light emitting layer, and a cathode that are sequentially arranged on a substrate. However, the luminous efficiency of such a structure is usually low, and the turn-on voltage is high. In order to solve these problems, various other functional film layers are usually added between the electrode and the light-emitting layer, such as an electrode surface modification layer, a carrier injection layer, a carrier transport layer, a barrier layer, and a buffer layer.
  • the present application provides a method for manufacturing a low-cost electroluminescent device and manufacturing equipment.
  • the present application provides a method for preparing an electroluminescent device, including the steps of:
  • the functional film layer is attached to the surface of the electrode layer.
  • This application also discloses another method for preparing an electroluminescent device, including the steps of:
  • the attached functional film layer is blown dry using a nitrogen gas flow.
  • This application also discloses an electroluminescent device manufacturing equipment, including:
  • the substrate preparation device is configured to form an electrode layer on the substrate surface of the substrate;
  • the functional film preparation device is configured to form a functional film layer on the support layer of the functional film;
  • a support layer peeling device configured to remove the support layer by placing the substrate and the functional film in a solvent
  • the functional film layer attaching device is configured to attach the functional film layer to the surface of the electrode layer.
  • this application first deposits the electrode on the substrate, and then puts it into the bottom of the container containing the solvent, and puts the prepared functional film with a double-layer structure into the solvent After the support layer in the functional film is completely dissolved, it is only necessary to bond the functional film to the electrode layer that has been deposited on the substrate in a solvent environment, avoiding the high cost of using a dry deposition film, At the same time, it will not cause damage to the environment, and can control the type of solvent used, which will bring cost reduction to the manufacturer during production, and is more conducive to the risk control in actual production.
  • FIG. 1 is a flowchart of a method for manufacturing an electroluminescent device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a functional film of a double-layer thin film according to an embodiment of the present application
  • FIG. 3 is a flowchart of another method for manufacturing an electroluminescent device according to an embodiment of the present application.
  • FIG. 4 is a flow chart of a method for preparing an electroluminescent device using gravity potential energy to transfer a solvent according to an embodiment of the present application
  • FIG. 5 is a flow chart of a method for preparing an electroluminescent device using external pressure to transfer a solvent according to an embodiment of the present application
  • FIG. 6 is a flow chart of a method for manufacturing an electroluminescent device using a substrate to support an independent functional film layer according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of an electrode layer deposited on a substrate according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a functional film after a support layer is dissolved in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a functional film layer and an electrode layer in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a gravity potential energy drainage method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a gravity potential energy after the solvent is discharged from the embodiment of the present application.
  • FIG. 12 is a schematic diagram of an applied pressure drainage method according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an applied pressure after the solvent is discharged according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an electrode layer before being actively attached to a functional film layer according to an embodiment of the present application
  • 15 is a schematic diagram of an electrode layer after being actively attached to a functional film layer according to an embodiment of the present application.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more.
  • the term “including” and any variations thereof are intended to cover non-exclusive inclusions.
  • the terms “installation”, “connected”, “connected” should be understood in a broad sense, for example, it can be a fixed connection, it can be Disassembly connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection, it can be Disassembly connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • an embodiment of the present application discloses a method for manufacturing an electroluminescent device, including steps:
  • an electrode layer 120 is formed on the surface of the substrate 110 of the substrate (as shown in FIG. 7);
  • step S1 and step S2 There is no sequence between step S1 and step S2, and they are all preparations in the preparation process before the functional film layer 210 is attached to the surface of the electrode layer 120.
  • step S3 the support layer 220 is placed opposite to the electrode layer 120.
  • the functional film layer 210 is formed on the support layer 220, related patterns will be formed on the functional film layer 210. This required pattern is made toward the direction of the support layer 220. Therefore, in order to prevent the functional film layer 210 and the electrode layer 120 The direction of the pattern after bonding is wrong.
  • the supporting layer 220 is placed opposite to the electrode layer 120, so that after the supporting layer 220 is dissolved in the solvent 400, the functional film layer 210 is in the direction of the desired pattern It floats on the liquid surface of the solvent 400 until the bonding with the electrode layer 120 is completed.
  • the solvent 400 is deionized water 410; the deionized water 410 is prepared by using an ion exchange resin by a reverse osmosis method.
  • the solvent 400 used in this solution is deionized water 410, because the deionized water 410 is environmentally friendly and has a strong ability to dissolve general alcohols.
  • the deionized water 410 in this solution is prepared by using ion exchange resin by reverse osmosis.
  • the method produces less deionized water 410 during the process of pollution, and the preparation degree of automation is high, the cost It is relatively low, and the raw material of deionized water 410 is raw water, which has a wide range of sources and low cost.
  • the thickness T 1 of the support layer 220 is smaller than the thickness T 2 of the functional film layer 210.
  • the supporting layer 220 is to facilitate the production of the functional film layer 210, the supporting layer 220 needs to be dissolved and removed during the preparation process of bonding the functional film layer 210 and the electrode layer 120, therefore, this solution makes the thickness T of the supporting layer 220 1 is smaller than the thickness T 2 of the functional film layer 210, so that when preparing the double-layer functional film 200, the time spent preparing the support layer 220 is relatively short, and the time for the thinner support layer 220 to dissolve is also shorter, improving The rate of the entire preparation process.
  • the material of the support layer 220 is polyvinyl alcohol. Considering that the support layer 220 needs to be fixed when not put in the solvent 400, so as not to affect the preparation and movement of the functional film layer 210 due to looseness, etc., then the material of the support layer 220 needs to have a certain viscosity, so this solution
  • the material of the support layer 220 is made of polyvinyl alcohol, because polyvinyl alcohol has good viscosity and good water solubility, meets the preparation requirements of the support layer 220, and has low cost and convenient preparation.
  • the method further includes using an inert gas flow to dry the attached functional film layer 210.
  • the functional film layer 210 is further immersed in the solvent 400.
  • the solvent 400 is usually an organic solvent 400.
  • an inert gas flow is used after the step of attaching the functional film layer 210
  • the attached functional film layer 210 is blown dry, because the inert gas is chemically stable, is not prone to chemical reaction, and does not affect the functional film layer 210.
  • the inert gas is nitrogen.
  • Nitrogen is chemically stable, easy to prepare, and has a wide range of sources. Therefore, this solution uses a nitrogen gas flow to dry the attached functional film layer 210, which has low cost and no pollution to the environment.
  • the projection of the functional film layer 210 in the direction of the support layer 220 does not exceed the range of the support layer 220.
  • the functional film layer 210 belongs to the actual required structural layer of this solution, and the supporting layer 220 is just for the convenience of making the functional film layer 210.
  • the supporting layer 220 is equivalent to the functional film layer 210
  • the scheme provides that the projection of the functional film layer 210 in the direction of the support layer 220 does not exceed the support layer 220 In this way, the contact surface between the support layer 220 and the functional film layer 210 is larger than the surface of the functional film layer 210, thereby reducing the difficulty of manufacturing the functional film layer 210.
  • the support layer 220 supports the entire functional film layer 210, which can separate the functional film layer 210 from the support layer 220. It is uniform and stable, which provides a good foundation for the functional film layer 210 to be attached to the surface of the electrode layer 120.
  • the support layer 220 completely matches the functional film layer 210, which can improve the material utilization rate of the support layer 220 and reduce the manufacturing cost.
  • an embodiment of the present application also discloses a method for preparing an electroluminescent device, including the steps of:
  • the method of transferring the solvent 400 by the action of external pressure only needs to prepare an empty container 300 and establish a flow guide structure 310 between it and the container 300 containing the solvent 400, and then use a pressure pump or other machine to add the solvent 400 to the liquid level. Pressure, the solvent 400 will enter the empty container 300 under the effect of pressure, so that the functional film layer 210 gradually approaches the electrode layer 120 as the liquid level of the solvent 400 drops, and finally the two are bonded together.
  • This method is convenient to operate. The degree of control is high and the cost is low. Because the operation is controllable, the bonding accuracy of the functional film layer 210 and the electrode layer 120 is high; after the functional film layer 210 is attached to the electrode layer 120, the functional film layer 210 is still dipped There is a solvent 400.
  • the solvent 400 is usually an organic solvent 400, so to prevent the drying process The oxidation reaction occurs and affects the functional film layer 210. Therefore, in this solution, after the step of attaching the functional film layer 210, the attached functional film layer 210 is blown dry using a nitrogen gas flow, because the chemical nature of nitrogen is stable and not easy to occur The chemical reaction will not affect the functional film layer 210.
  • the step S14 includes the steps of:
  • the functional film layer 210 is independent of the solvent 400, and floats on the liquid surface of the solvent 400. Because the functional film layer 210 is to be attached to the electrode layer 120 at the bottom of the solvent 400, then The distance between the two needs to be shortened.
  • the method of transferring the solvent 400 by using the potential energy of gravity only needs to prepare an empty container 300 and place it under the container 300 containing the solvent 400 to establish In the diversion structure 310, the solvent 400 will automatically flow into the empty container 300 under the action of gravity, so that the functional film layer 210 gradually approaches the electrode layer 120 as the liquid level of the solvent 400 drops, and finally bonds the two together.
  • the method has low cost, convenient operation, and high controllability. Because the operation is controllable, the bonding accuracy of the functional film layer 210 and the electrode layer 120 is high.
  • the step S14 includes the steps of:
  • the functional film layer 210 is independent of the solvent 400, and floats on the liquid surface of the solvent 400. Because the functional film layer 210 is to be attached to the electrode layer 120 at the bottom of the solvent 400, then The distance between the two needs to be shortened.
  • the method of transferring the solvent 400 by using an external pressure only needs to prepare an empty container 300 and establish a flow guiding structure 310 between it and the container 300 containing the solvent 400, and then Using a pressure pump or other equipment to pressurize the liquid surface of the solvent 400, the solvent 400 will enter the empty container 300 under the pressure, so that the functional film layer 210 gradually approaches the electrode layer 120 as the liquid surface of the solvent 400 drops, and finally Bonding the two, the method is convenient to operate, has a high degree of control, and has low cost. Because the operation is controllable, the bonding accuracy of the functional film layer 210 and the electrode layer 120 is high.
  • the step S14 includes the steps of:
  • the substrate 100 is used to receive the independent functional film layer 210, and the electrode layer 120 is bonded to the functional film layer 210 (as shown in FIGS. 14 and 15).
  • the functional film layer 210 is independent of the solvent 400, and floats on the liquid surface of the solvent 400. Because the functional film layer 210 is to be attached to the electrode layer 120 at the bottom of the solvent 400, then The distance between the two needs to be shortened because the functional film layer 210 is thin and it is inconvenient to directly operate it, and the structure of the prepared substrate 100 containing the electrode layer 120 is relatively strong and it is convenient to operate it.
  • the solution is to move the prepared substrate 100 containing the electrode layer 120 at the bottom of the solvent 400 to the direction of the functional film layer 210, and then finally bond the two. This method is convenient to operate, has a high degree of control, and has low cost, because the operation can be Therefore, the bonding accuracy of the functional film layer 210 and the electrode layer 120 is high.
  • steps S141, S142, and S143 can be implemented at the same time, so that the functional film layer 210 can be quickly attached to the surface of the electrode layer 120 to improve the working rate.
  • an embodiment of the present application also discloses an electroluminescent device manufacturing apparatus, including a substrate preparation device that forms an electrode layer 120 on the surface of a substrate 110, and a functional film layer 210 formed on a support layer 220 A functional film preparation device, a support layer peeling device that places the substrate 100 and the functional film 200 in a solvent 400 to remove the support layer 220, and a functional film layer attachment device that attaches the functional film layer 210 to the surface of the electrode layer 120.
  • the substrate 100 preparation device includes a washer and a baker.
  • the washer includes an ultrasonic cleaner.
  • the baker includes an oven.
  • the electrode layer 120 attached to the substrate 110 is firstly ultrasonically cleaned and placed in an oven after cleaning.
  • the substrate 100; the preparation device of the functional film 200 includes a coating sprayer, and the coating sprayer includes a sizing machine, and the support layer 220 and the functional film layer 210 are sequentially obtained by the spin coating operation of the sizing machine;
  • the support layer 220 peeling device includes the container 300 and Solvent 400, the solvent 400 includes deionized water 410, the support layer 220 is dissolved in the deionized water 410 to achieve the peeling of the support layer 220;
  • the device for attaching the functional film layer 210 includes a pressure device 500, a container 300, a flow guide structure 310, a microscope
  • the operating system and the tool for moving the substrate use the pressure device 500 or gravitational potential energy to extract the solvent 400 in the container 300 through the

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种电致发光器件的制备方法和制作设备,所述制备方法包括:在基板的衬底(110)表面形成电极层(120);在功能膜的支撑层(220)上形成功能膜层(210);将基板(100)和功能膜(200)放置在溶剂(400)中去除支撑层(220);将功能膜层(210)贴附到电极层(120)表面。

Description

电致发光器件的制备方法和制作设备
本申请要求于2018年12月24日提交中国专利局,申请号为CN201811579684.X,申请名称为“一种电致发光器件的制备方法和制作设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种电致发光器件的制备方法和制作设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
电致发光器件是将电能转化为光能的一类电子器件,其典型结构通常是衬底上依次设置透明阳极、发光层和阴极。但这样的结构发光效率通常较低,且开启电压又较高。为了解决这些难题,通常会在电极和发光层之间加入其它各种功能膜层,比如电极表面修饰层、载流子注入层、载流子传输层、阻挡层以及缓冲层等。
在制作各功能膜层时材料利用率低,导致成本居高不下。
发明内容
鉴于上述缺陷,本申请提供了一种成本低的电致发光器件的制备方法和制作设备。
为实现上述目的,本申请提供了一种电致发光器件的制备方法,包括步骤:
在基板的衬底表面形成电极层;
在功能膜的支撑层上形成功能膜层;
将基板和功能膜放置在溶剂中去除支撑层;以及
将功能膜层贴附到电极层表面。
本申请还公开了另一种电致发光器件的制备方法,包括步骤:
在基板的衬底表面形成电极层;
在功能膜的支撑层上形成功能膜层;
将基板和功能膜放置在溶剂中去除支撑层;
利用外加压力的作用将溶剂转移,使所述功能膜层与所述电极层贴合;以及
利用氮气气流将所述贴附后的功能膜层吹干。
本申请还公开了一种电致发光器件的制作设备,包括:
基板制备装置,被配置为在基板的衬底表面形成电极层;
功能膜制备装置,被配置为在功能膜的支撑层上形成功能膜层;
支撑层剥离装置,被配置为将基板和功能膜放置在溶剂中去除支撑层;以及
功能膜层贴附装置,被配置为将功能膜层贴附到电极层表面。
相对于功能膜的干法制备的方案来说,本申请先将电极沉积到衬底上,然后放入装有溶剂的容器内的底部,将制备完成的具有双层结构的功能膜放入溶剂中,待功能膜中的支撑层完全溶解后,只需要在溶剂环境中,将功能膜与已沉积到衬底上的电极层贴合即可,避开了利用干法沉积薄膜的高成本,同时不会对环境造成损害,而且可以控制所用的溶剂的种类,在生产中也会给制造商带来成本的降低,且更有利于实际生产中的危险管控。
附图说明
所包括的附图用来提供对本申请实施例的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例的其中一种电致发光器件的制备方法的流程图;
图2是本申请实施例一种双层薄膜的功能膜的示意图;
图3是本申请实施例的另一种电致发光器件的制备方法的流程图;
图4是本申请实施例一种采用重力势能将溶剂转移的电致发光器件的制备方法的流程图;
图5是本申请实施例一种采用外加压力将溶剂转移的电致发光器件的制备方法的流程图;
图6是本申请实施例一种利用基板去承接独立的功能膜层的电致发光器件的制备方法的流程图;
图7是本申请实施例一种电极层沉积到衬底上的示意图;
图8是本申请实施例一种支撑层溶解后的功能膜的示意图;
图9是本申请实施例一种功能膜层与电极层贴合的示意图;
图10是本申请实施例一种重力势能排水法的示意图;
图11是本申请实施例一种重力势能排出溶剂后的示意图;
图12是本申请实施例一种外加压力排水法的示意图;
图13是本申请实施例一种外加压力排出溶剂后的示意图;
图14是本申请实施例一种使电极层主动贴合功能膜层前的示意图;
图15是本申请实施例一种使电极层主动贴合功能膜层后的示意图。
具体实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,应当理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,应作说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
在图中,结构相似的是以相同标号表示。
下面参考附图和可选的实施例对本申请作进一步说明。
参考图1,本申请实施例公开了一种电致发光器件的制备方法,包括步骤:
S1、在基板的衬底110表面形成电极层120(如图7所示);
S2、在功能膜的支撑层220上形成功能膜层210(如图2所示);
S3、将基板100和功能膜200放置在溶剂400中去除支撑层220(如图8、图10、图12以及图14所示);
S4、将功能膜层210贴附到电极层120表面(如图9、图11、图13以及图15所示)。
先将电极层120沉积到衬底110上,然后放入装有溶剂400的容器300内的底部,将制备完成的具有双层结构的功能膜200放入溶剂400中,待功能膜200中的支撑层220完全溶解后,只需要在溶剂400环境中,将功能膜200与已沉积到衬底110上的电极层120贴合即可,避开了利用干法沉积薄膜的高成本,还不会对环境造成损害,而且可以控制所用的溶剂400的种类,在生产中也会给制造商带来成本的降低,且更有利于实际生产中的危险管控。
其中,步骤S1和步骤S2之间没有先后顺序,均是在将功能膜层210贴附到电极层120表面之前的制备过程中的准备工作。
其中,在步骤S3中,支撑层220与电极层120相对放置。在支撑层220上制作功能膜层210时,会在功能膜层210上制作相关图案,这个所需的图案是朝向支撑层220的方向制作的,所以,为防止功能膜层210与电极层120贴合后图案方向错误,本方案在去除支撑层220的步骤中,使支撑层220与电极层120相对放置,这样支撑层220溶解于溶剂400后,功能膜层210是以所需图案的方向漂浮于溶剂400液面,直至与电极层120完成贴合。
其中,溶剂400为去离子水410;去离子水410利用离子交换树脂采用反渗透的方法制取。考虑到生产过程中要环保,那么溶剂400本身应选用环保材料制成,因此,本方案采用的溶剂400为去离子水410,因为去离子水410对环境友好,溶解一般醇类的能力强,并且溶解后仍无污染;同时本方案中的去离子水410利用离子交换树脂采用反渗透的方法制取,此方法生产去离子水410的过程中产生的污染小,且制备自动化程度高,成本相对较低,而且去离子水410的原料为原水,来源广泛,成本低。
进一步的,参考图2,支撑层220的厚度T 1小于功能膜层210的厚度T 2。考虑到支撑层220是为了方便制作功能膜层210,在将功能膜层210与电极层120贴合制备过程中,支撑层220需要被溶解除掉,因此,本方案使支撑层220的厚度T 1小于功能膜层210的厚度T 2,这样在制备双层的功能膜200时,花在制备支撑层220的时间相对较短,而且较薄的支撑层220溶解的时间也较短,提高了整个制备过程的速率。
具体的,支撑层220的材料为聚乙烯醇。考虑到支撑层220在未放入溶剂400中时需要保证固定的状态,以免因松散等影响功能膜层210的制备和移动,那么就需要支撑层220的材料具有一定的粘性,因此,本方案的支撑层220材料利用聚乙烯醇制成,因为聚乙烯醇具有较好的粘性,同时水溶性好,满足支撑层220的制备要求,并且成本低,制备方便。
在一个实施例中,在步骤S4后还包括利用惰性气体气流将贴附后的功能膜层210吹干。
在功能膜层210贴附到电极层120上后,功能膜层210还浸有溶剂400,为加快整个制备并完成,需要快速将贴附后的功能膜层210吹干,考虑到功能膜层210上具有功能图案,溶剂400通常为有机溶剂400,那么为防止吹干过程出现氧化反应而对功能膜层210产生影响,因此,本方案在贴附功能膜层210的步骤后利用惰性气体气流将贴附后的功能膜层210 吹干,因为惰性气体化学性质稳定,不易发生化学反应,不会对功能膜层210造成影响。
具体的,惰性气体为氮气。氮气化学性质稳定,且制备方便,来源广泛,因此,本方案利用氮气气流将贴附后的功能膜层210吹干,成本低,且对环境无污染。
在一个实施例中,参考图2,功能膜层210向支撑层220的方向的投影不超过支撑层220范围。对于整个双层的功能膜200来说,功能膜层210属于本方案的实际需要结构层,而支撑层220只是为了方便制作功能膜层210,因此,支撑层220对于功能膜层210来说相当于起一个基础板的作用,那么为降低将功能膜层210制作到支撑层220上的这一过程难度,本方案规定,使功能膜层210向支撑层220的方向的投影不超过支撑层220范围,这样支撑层220与功能膜层210接触面大于功能膜层210的面,从而降低功能膜层210的制作难度。
其中,当功能膜层210向支撑层220的方向的投影小于支撑层220范围时,支撑层220对整个功能膜层210都起到支撑作用,可以使功能膜层210与支撑层220分离后更均匀、稳定,为功能膜层210贴附到电极层120表面提供了良好的基础。当功能膜层210向支撑层220的方向的投影等于支撑层220范围时,支撑层220与功能膜层210完全匹配,这样可以提高支撑层220的材料利用率,降低制备成本。
参考图3,本申请实施例还公开了一种电致发光器件的制备方法,包括步骤:
S11、在基板的衬底110表面形成电极层120(如图7所示);
S12、在功能膜的支撑层220上形成功能膜层210(如图2所示);
S13、将基板100和功能膜200放置在溶剂400中去除支撑层220(如图8、图10、图12以及图14所示);
S14、使功能膜层与电极层贴合(如图9、图11、图13以及图15所示);
S15、利用氮气气流将贴附后的功能膜层吹干。
先将电极沉积到衬底110上,然后放入装有溶剂400的容器300内的底部,将制备完成的具有双层结构的功能膜200放入溶剂400中,待功能膜200中的支撑层220完全溶解后,只需要在溶剂400环境中,将功能膜200与已沉积到衬底110上的电极层120贴合即可,避开了利用干法沉积薄膜的高成本,还不会对环境造成损害,而且可以控制所用的溶剂400的种类,在生产中也会给制造商带来成本的降低,且更有利于实际生产中的危险管控;支撑层220溶解于溶剂400内后,功能膜层210独立于溶剂400中,并且漂浮在溶剂400液面上;因为要使功能膜层210与位于溶剂400底部的电极层120贴合,那么就需要缩短两者的间距,本方案通过利用外加压力的作用将溶剂400转移的方法,只需要准备一个空的容器300并将其与装有溶剂400的容器300之间建立导流结构310,然后利用压力泵等机器对溶剂400液面加压,溶剂400会在压强的作用下入空容器300内,这样功能膜层210随着溶剂400的液面下降而逐渐与电极层120靠近,并最终将两者贴合,该方法操作方便,可控程度高,并且 成本低,因为操作可控,所以将功能膜层210与电极层120的贴合精度高;在功能膜层210贴附到电极层120上后,功能膜层210还浸有溶剂400,为加快整个制备并完成,需要快速将贴附后的功能膜层210吹干,考虑到功能膜层210上具有功能图案,溶剂400通常为有机溶剂400,那么为防止吹干过程出现氧化反应而对功能膜层210产生影响,因此,本方案在贴附功能膜层210的步骤后利用氮气气流将贴附后的功能膜层210吹干,因为氮气的化学性质稳定,不易发生化学反应,不会对功能膜层210造成影响。
在一个实施例中,参考图4,所述步骤S14包括步骤:
S141、利用重力势能的作用将溶剂400转移的方法,使功能膜层210随着溶剂400的液面下降而逐渐与电极层120贴合(如图10和图11所示)。
支撑层220溶解于溶剂400内后,功能膜层210独立于溶剂400中,并且漂浮在溶剂400液面上,因为要使功能膜层210与位于溶剂400底部的电极层120贴合,那么就需要缩短两者的间距,本方案通过利用重力势能的作用将溶剂400转移的方法,只需要准备一个空的容器300并将其置于装有溶剂400的容器300下方,建立容器300之间的导流结构310,溶剂400会在重力的作用下自动流入空容器300内,这样功能膜层210随着溶剂400的液面下降而逐渐与电极层120靠近,并最终将两者贴合,该方法成本低,操作方便,并且可控程度高,因为操作可控,所以将功能膜层210与电极层120的贴合精度高。
在一个实施例中,参考图5,所述步骤S14包括步骤:
S142、利用外加压力的作用将溶剂400转移的方法,使功能膜层210随着溶剂400的液面下降而逐渐与电极层120贴合(如图12和图13所示)。
支撑层220溶解于溶剂400内后,功能膜层210独立于溶剂400中,并且漂浮在溶剂400液面上,因为要使功能膜层210与位于溶剂400底部的电极层120贴合,那么就需要缩短两者的间距,本方案通过利用外加压力的作用将溶剂400转移的方法,只需要准备一个空的容器300并将其与装有溶剂400的容器300之间建立导流结构310,然后利用压力泵等机器对溶剂400液面加压,溶剂400会在压强的作用下入空容器300内,这样功能膜层210随着溶剂400的液面下降而逐渐与电极层120靠近,并最终将两者贴合,该方法操作方便,可控程度高,并且成本低,因为操作可控,所以将功能膜层210与电极层120的贴合精度高。
在一个实施例中,参考图6,所述步骤S14包括步骤:
S143、利用基板100去承接独立的功能膜层210,使电极层120与功能膜层210贴合(如图14和图15所示)。
支撑层220溶解于溶剂400内后,功能膜层210独立于溶剂400中,并且漂浮在溶剂400液面上,因为要使功能膜层210与位于溶剂400底部的电极层120贴合,那么就需要缩短两者的间距,因为功能膜层210较薄,不方便直接对其进行操作,而已经制备好的含有电 极层120的基板100的结构较结实,对其进行操作较为方便,因此,本方案通过将溶剂400底部的已经制备好的含有电极层120的基板100去向功能膜层210方向移动,然后最终将两者贴合,该方法操作方便,可控程度高,成本低,因为操作可控,所以将功能膜层210与电极层120的贴合精度高。
当然,步骤S141、S142以及S143中的至少两个可以同时实施,这样可以快速将功能膜层210贴附到电极层120表面,提高工作速率。
参考图7至图12,本申请实施例还公开了一种电致发光器件的制作设备,包括在衬底110表面形成电极层120的基板制备装置,在支撑层220上形成功能膜层210的功能膜制备装置,将基板100和功能膜200放置在溶剂400中去除支撑层220的支撑层剥离装置,以及将功能膜层210贴附到电极层120表面功能膜层贴附装置。
其中,基板100制备装置包括清洗器和烘烤器,清洗器包括超声波清洗器,烘烤器包括烘箱,先将贴附在衬底110上的电极层120进行超声波清洗,清洗后放入烘箱得到基板100;功能膜200制备装置包括涂喷机,涂喷机包括匀胶机,将支撑层220与功能膜层210通过匀胶机的旋涂动作依次得到;支撑层220剥离装置包括容器300和溶剂400,溶剂400包括去离子水410,支撑层220溶于去离子水410从而实现支撑层220的剥离;功能膜层210贴附装置包括压力器500、容器300、导流结构310、显微操作系统和用于移动基板的工具,利用压力器500或重力势能将容器300内的溶剂400通过导流结构310导出,然后在利用显微操作系统使功能膜层210与电极层120贴附。
需要说明的是,本申请中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。
以上内容是结合具体的可选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (17)

  1. 一种电致发光器件的制备方法,包括步骤:
    在基板的衬底表面形成电极层;
    在功能膜的支撑层上形成功能膜层;
    将基板和功能膜放置在溶剂中去除支撑层;以及
    将功能膜层贴附到电极层表面。
  2. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用重力势能的作用将所述溶剂转移,使所述功能膜层与所述电极层贴合。
  3. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用外加压力的作用将溶剂转移,使所述功能膜层与所述电极层贴合。
  4. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    移动所述基板与所述功能膜层对位,使所述电极层与所述功能膜层贴合。
  5. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用重力势能和外加压力的作用将溶剂转移,使所述功能膜层与所述电极层贴合。
  6. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用重力势能的作用将溶剂转移,同时移动所述基板与所述功能膜层对位,使所述电极层与所述功能膜层贴合。
  7. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用外加压力的作用将溶剂转移,同时移动所述基板与所述功能膜层对位,使所述电极层与所述功能膜层贴合。
  8. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述将功能膜层贴附到电极层表面包括步骤:
    利用重力势能和外加压力的作用将溶剂转移,同时移动所述基板与所述功能膜层对位,使所述电极层与所述功能膜层贴合。
  9. 如权利要求1所述的一种电致发光器件的制备方法,其中,在所述将基板和功能膜 放置在溶剂中去除支撑层中,所述支撑层与所述电极层相对放置。
  10. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述功能膜层的厚度大于所述支撑层的厚度。
  11. 如权利要求1所述的一种电致发光器件的制备方法,其中,在所述将功能膜层贴附到电极层表面后还包括步骤:
    利用惰性气体气流将所述贴附后的功能膜层吹干。
  12. 如权利要求11所述的一种电致发光器件的制备方法,其中,所述惰性气体为氮气。
  13. 如权利要求1所述的一种电致发光器件的制备方法,其中,所述功能膜层向所述支撑层的方向的投影不超过所述支撑层范围。
  14. 如权利要求13所述的一种电致发光器件的制备方法,其中,所述功能膜层向所述支撑层的方向的投影小于所述支撑层范围。
  15. 如权利要求13所述的一种电致发光器件的制备方法,其中,所述功能膜层向所述支撑层的方向的投影等于所述支撑层范围。
  16. 一种电致发光器件的制备方法,包括步骤:
    在基板的衬底表面形成电极层;
    在功能膜的支撑层上形成功能膜层;
    将基板和功能膜放置在溶剂中去除支撑层;
    利用外加压力的作用将溶剂转移,使所述功能膜层与所述电极层贴合;以及
    利用氮气气流将所述贴附后的功能膜层吹干。
  17. 一种电致发光器件的制作设备,包括:
    基板制备装置,被配置为在基板的衬底表面形成电极层;
    功能膜制备装置,被配置为在功能膜的支撑层上形成功能膜层;
    支撑层剥离装置,被配置为将基板和功能膜放置在溶剂中去除支撑层;以及
    功能膜层贴附装置,被配置为将功能膜层贴附到电极层表面。
PCT/CN2019/123237 2018-12-24 2019-12-05 电致发光器件的制备方法和制作设备 WO2020134940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811579684.X 2018-12-24
CN201811579684.XA CN109742263B (zh) 2018-12-24 2018-12-24 一种电致发光器件的制备方法和制作设备

Publications (1)

Publication Number Publication Date
WO2020134940A1 true WO2020134940A1 (zh) 2020-07-02

Family

ID=66361091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123237 WO2020134940A1 (zh) 2018-12-24 2019-12-05 电致发光器件的制备方法和制作设备

Country Status (2)

Country Link
CN (1) CN109742263B (zh)
WO (1) WO2020134940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742263B (zh) * 2018-12-24 2020-11-24 惠科股份有限公司 一种电致发光器件的制备方法和制作设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304832A (zh) * 2015-11-02 2016-02-03 深圳市华星光电技术有限公司 电致发光器件的制备方法
CN106098940A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 无损剥离柔性基板的方法
CN109742263A (zh) * 2018-12-24 2019-05-10 惠科股份有限公司 一种电致发光器件的制备方法和制作设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020300B2 (en) * 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
KR102469186B1 (ko) * 2015-04-30 2022-11-21 삼성디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치의 제조 방법
CN108417710A (zh) * 2018-04-17 2018-08-17 中国科学院宁波材料技术与工程研究所 一种柔性器件的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304832A (zh) * 2015-11-02 2016-02-03 深圳市华星光电技术有限公司 电致发光器件的制备方法
CN106098940A (zh) * 2016-08-26 2016-11-09 武汉华星光电技术有限公司 无损剥离柔性基板的方法
CN109742263A (zh) * 2018-12-24 2019-05-10 惠科股份有限公司 一种电致发光器件的制备方法和制作设备

Also Published As

Publication number Publication date
CN109742263B (zh) 2020-11-24
CN109742263A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2020125201A1 (zh) 一种温控粘附式Micro-LED巨量转移方法
CN106981570A (zh) 一种钙钛矿薄膜的快速制备方法及其应用
CN209232754U (zh) 微发光器件的转移装置及设备
CN107316826B (zh) 湿法蚀刻设备
CN104538496B (zh) 一种高效硅异质结太阳能电池电镀电极制备方法
WO2020134940A1 (zh) 电致发光器件的制备方法和制作设备
CN112951486B (zh) 嵌入式聚合物/金属网格柔性透明电极及制备方法和应用
WO2011137690A1 (zh) 平移式基板清洗装置
CN109712928B (zh) 适用微型器件的高精度转印设备及系统
CN108806885B (zh) 柔性基底-go-金属纳米线复合透明导电薄膜及其制备方法
CN100495640C (zh) 自限定边界的薄膜图形制备方法
CN103700784A (zh) 一种图形化电极的制备方法
CN105304832B (zh) 电致发光器件的制备方法
JP2012223677A (ja) 基板塗布方法及び基板塗布装置並びに同方法を用いた有機エレクトロルミネッセント素子の製造方法
CN106784409B (zh) 像素限定层及其制备方法、oled基板及其制备方法
CN104375382A (zh) 一种柔性导电膜图形化制造方法
CN107689427B (zh) Oled器件及其制作方法
CN112018272A (zh) 一种硅基oled的晶圆贴合封装方法
CN105070685A (zh) 梯形像素Bank结构和OLED器件的制备方法
CN104393193A (zh) 一种oled器件及其制备方法、oled显示装置
CN114804088A (zh) 一种适用于电镜成像的氧化石墨烯制备方法
CN109461844B (zh) 柔性基板的制造方法
CN102509695A (zh) 制作图案化氧化物导电层的方法及蚀刻机台
CN207481220U (zh) 一种全自动光电器件打印装置
CN103172271B (zh) 一种涂布方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-11-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19904640

Country of ref document: EP

Kind code of ref document: A1