WO2020133878A1 - 一种精确标定机器人末端与视觉系统的方法 - Google Patents

一种精确标定机器人末端与视觉系统的方法 Download PDF

Info

Publication number
WO2020133878A1
WO2020133878A1 PCT/CN2019/086705 CN2019086705W WO2020133878A1 WO 2020133878 A1 WO2020133878 A1 WO 2020133878A1 CN 2019086705 W CN2019086705 W CN 2019086705W WO 2020133878 A1 WO2020133878 A1 WO 2020133878A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
reference point
coordinate system
coordinates
robot
Prior art date
Application number
PCT/CN2019/086705
Other languages
English (en)
French (fr)
Inventor
鞠青辰
宋方方
王杰高
Original Assignee
南京埃斯顿机器人工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿机器人工程有限公司 filed Critical 南京埃斯顿机器人工程有限公司
Publication of WO2020133878A1 publication Critical patent/WO2020133878A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the invention relates to a method for accurately calibrating the end of a robot and a vision system.
  • Laser sensor is a sensor that uses laser technology for measurement. As a new type of measuring instrument, it can achieve contactless long-distance measurement. It has the advantages of fast speed, high accuracy, large range, and strong anti-interference ability.
  • Laser sensors are divided into spot lasers and line lasers. Due to their measuring principle, spot lasers can only obtain the distance information of the measured location. One-dimensional information is difficult to deal with complex calculations and has great limitations.
  • the calibration method under the spot laser can not realize the conversion of three-dimensional coordinates, and can not achieve accurate calibration. Therefore, finding a calibration method that can obtain the positional relationship between the laser vision and the robot is a technical problem that needs to be solved.
  • the technical problem solved by this patent is that the point laser can only obtain the distance information of the measured place due to its measurement principle.
  • One-dimensional information is difficult to deal with complex calculations, which is very limited.
  • the calibration method under the point laser cannot achieve three-dimensional coordinates. Conversion, technical problems that can not achieve accurate calibration.
  • This patent proposes a calibration method that can obtain the positional relationship between the laser vision and the robot.
  • a method for accurately calibrating the robot end and the vision system includes the following steps:
  • step b Select two reference points at the welds of the two metal plates in step a, defined as A1 and A2 respectively;
  • step c Adjust the posture of the industrial robot in step a so that the end of the robot is perpendicular to the surface of the metal plate;
  • step d Adjust the position of the industrial robot in step d, so that the laser of the laser is irradiated on the reference point A1 and the reference point A2 respectively, and record the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser, which is recorded as with
  • step e Transform the posture of the industrial robot in step e, so that the laser of the laser is irradiated on the reference point A1 and the reference point A2 respectively, and record the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser, which is recorded as with
  • step f Transform the posture of the industrial robot in step f so that the laser light of the laser is sequentially irradiated on the reference point A1 and the reference point A2, and the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser are recorded as with
  • step e According to the calibration process of step e, step f and step j:
  • B1 Denoted as B1
  • B2 Recorded as B3, (9)(10)(11) can be organized as follows:
  • the laser in the laser is a line laser.
  • line laser it has more measurement information, can obtain the three-dimensional coordinate information of the measured place, and can be used for the calculation of coordinate conversion.
  • the calibration method in the present invention calculates the relative relationship between the laser vision coordinate system and the robot coordinate system by acquiring the position information of the laser vision coordinate system and the robot coordinate system, so as to realize the measurement object in the laser vision
  • the conversion of coordinates to robot coordinates improves the overall operating efficiency of the system and has a good application effect.
  • the calibration method in the present invention does not have high requirements on the calibration board and is easy to implement.
  • the use of 2 sets of calibration points can ensure the calibration accuracy.
  • the calculation method is simple and easy to implement.
  • FIG. 1 is a schematic diagram of the end of an industrial robot touching a reference point to obtain the coordinates of the reference point in a base coordinate system.
  • FIG. 2 is a schematic diagram of laser irradiating a reference point to obtain the coordinates of the reference point in the laser coordinate system.
  • a method for accurately calibrating the robot end and the vision system includes the following steps:
  • step b Select two reference points at the welds of the two metal plates in step a, defined as A1 and A2; as shown in Figure 1.
  • step c Adjust the posture of the industrial robot in step a so that the end of the robot is perpendicular to the surface of the metal plate.
  • step d Adjust the position of the industrial robot in step d, so that the laser of the laser is irradiated on the reference point A1 and the reference point A2 respectively, and record the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser, which is recorded as with
  • step e Transform the posture of the industrial robot in step e, so that the laser of the laser is irradiated on the reference point A1 and the reference point A2 respectively, and record the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser, which is recorded as with
  • step f Transform the posture of the industrial robot in step f so that the laser of the laser is irradiated on the reference point A1 and the reference point A2 respectively, and record the coordinates of the reference point A1 and the reference point A2 under the laser coordinate system in the laser, which is recorded as with
  • step e According to the calibration process of step e, step f and step j:
  • B1 Denoted as B1
  • B2 Recorded as B3, (9)(10)(11) can be organized as follows:
  • the reference point 1 is tested, and the following data can be obtained:
  • the formula (1) (2) (3) can be obtained by formula (4) (5) (6), as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种精确标定机器人末端与视觉系统的方法;a、选取两个参考点,b、获取两个参考点在基坐标系下的坐标;c、调整步骤d中工业机器人的位置,记录两个参考点在激光器内的激光坐标系下的坐标;记录两个参考点在基坐标系下的坐标;e、变换工业机器人姿态,记录两个参考点在激光器内的激光坐标系下的坐标;记录两个参考点在基坐标系下的坐标;f、变换工业机器人姿态,记录两个参考点在激光器内的激光坐标系下的坐标;记录两个参考点在基坐标系下的坐标。本方法得出激光视觉坐标系和机器人坐标系的相对关系,实现被测量物体在激光视觉的坐标到机器人的坐标的转换,提高系统的整体作业效率

Description

一种精确标定机器人末端与视觉系统的方法 技术领域
本发明涉及一种精确标定机器人末端与视觉系统的方法。
背景技术
激光传感器是一种利用激光技术进行测量的传感器,作为一种新型的测量仪器,它能实现无接触远距离测量,具有速度快、精度高、量程大、抗干扰能力强的优点。
激光传感器又分为点激光和线激光,而点激光因其测量原理只能获取被测量处的距离信息,一维信息难以应对复杂的计算,局限性很大。在点激光下的标定方法不能实现三维坐标的转换,不能实现精确的标定。因此,找到一种能获取激光视觉和机器人之间的位置关系的标定方法是需要解决的技术问题。
发明内容
本专利解决的技术问题是,点激光因其测量原理只能获取被测量处的距离信息,一维信息难以应对复杂的计算,局限性很大,在点激光下的标定方法不能实现三维坐标的转换,不能实现精确的标定的技术问题。
本专利提出一种能获取激光视觉和机器人之间的位置关系的标定方法。
为解决上述技术问题,本发明采用的技术方案是:
一种精确标定机器人末端与视觉系统的方法,包括如下步骤:
a、准备工作,在工业机器人安装焊枪和激光器;准备两块金属板,将两块金属板上下叠放设置,并采用焊枪焊接;
b、在步骤a中的两块金属板的焊缝处选取两个参考点,分别定义为A1和A2;
c、将步骤a中的工业机器人调整姿态,使机器人末端垂直于金属板表面向下;
d、将步骤c中的机器人末端分别依次运动到参考点A1和参考点A2,获取参考点A1和参考点A2在基坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000001
Figure PCTCN2019086705-appb-000002
根据激光坐标系和机器人坐标系之间的关系可得,如下公式:
Figure PCTCN2019086705-appb-000003
Figure PCTCN2019086705-appb-000004
其中,
Figure PCTCN2019086705-appb-000005
Figure PCTCN2019086705-appb-000006
为参考点A1和参考点A2在基坐标系下的坐标,
Figure PCTCN2019086705-appb-000007
Figure PCTCN2019086705-appb-000008
为机器人末端在基坐标系下进行欧拉变换所得到的矩阵,
Figure PCTCN2019086705-appb-000009
为机器人末端与激光器内激光坐标系之间的变换矩阵即需要求解的对象,
Figure PCTCN2019086705-appb-000010
Figure PCTCN2019086705-appb-000011
为参考点A1和参考点A2在激光器内激光坐标系下的坐标;
e、调整步骤d中工业机器人的位置,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000012
Figure PCTCN2019086705-appb-000013
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000014
Figure PCTCN2019086705-appb-000015
对坐标
Figure PCTCN2019086705-appb-000016
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000017
Figure PCTCN2019086705-appb-000018
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000019
Figure PCTCN2019086705-appb-000020
Figure PCTCN2019086705-appb-000021
代入公式(1),得
Figure PCTCN2019086705-appb-000022
Figure PCTCN2019086705-appb-000023
Figure PCTCN2019086705-appb-000024
代入公式(2),得
Figure PCTCN2019086705-appb-000025
f、变换步骤e中工业机器人姿态,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000026
Figure PCTCN2019086705-appb-000027
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000028
Figure PCTCN2019086705-appb-000029
对坐标
Figure PCTCN2019086705-appb-000030
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000031
Figure PCTCN2019086705-appb-000032
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000033
Figure PCTCN2019086705-appb-000034
Figure PCTCN2019086705-appb-000035
代入公式(1),得
Figure PCTCN2019086705-appb-000036
Figure PCTCN2019086705-appb-000037
Figure PCTCN2019086705-appb-000038
代入公式(2),得
Figure PCTCN2019086705-appb-000039
j、变换步骤f中工业机器人姿态,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000040
Figure PCTCN2019086705-appb-000041
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000042
Figure PCTCN2019086705-appb-000043
对坐标
Figure PCTCN2019086705-appb-000044
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000045
Figure PCTCN2019086705-appb-000046
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000047
Figure PCTCN2019086705-appb-000048
Figure PCTCN2019086705-appb-000049
代入公式(1),得
Figure PCTCN2019086705-appb-000050
Figure PCTCN2019086705-appb-000051
Figure PCTCN2019086705-appb-000052
代入公式(2),得
Figure PCTCN2019086705-appb-000053
h、根据步骤e、步骤f和步骤j的标定过程可得到:
Figure PCTCN2019086705-appb-000054
Figure PCTCN2019086705-appb-000055
Figure PCTCN2019086705-appb-000056
Figure PCTCN2019086705-appb-000057
Figure PCTCN2019086705-appb-000058
Figure PCTCN2019086705-appb-000059
由于参考点A1和A2的运算方法一致,这里只列出参考点A1的运算方法,将式(3)(5)(7)整理如下:
Figure PCTCN2019086705-appb-000060
Figure PCTCN2019086705-appb-000061
Figure PCTCN2019086705-appb-000062
其中
Figure PCTCN2019086705-appb-000063
记为B1,
Figure PCTCN2019086705-appb-000064
记为B2,
Figure PCTCN2019086705-appb-000065
记为B3,(9)(10)(11)可整理如下:
Figure PCTCN2019086705-appb-000066
Figure PCTCN2019086705-appb-000067
Figure PCTCN2019086705-appb-000068
将式(12)(13)(14)联立并运算得出
Figure PCTCN2019086705-appb-000069
对本发明技术方案的优选,激光器中的激光为线激光。采用线激光,其测量信息比较多,能获取被测量处的三维坐标信息,能够用于坐标转换的计算。
本发明的有益效果是:
1、本发明中的标定方法通过获取被测量处在激光视觉坐标系和机器人坐标系下的位置信息,计算得出激光视觉坐标系和机器人坐标系的相对关系,实现被测量物体在激光视觉的坐标到机器人的坐标的转换,提高系统的整体作业效率,具有良好的应用效果。
2、本发明中的标定方法对标定板要求不高,容易实现,采用2组标定点更能保证标定精度。在计算激光视觉坐标系和机器人坐标系的相对关系的转换矩阵中,计算方法简单,易于实现。
附图说明
图1是工业机器人的机器人末端触碰参考点以获取参考点在基坐标系下的坐标的示意图。
图2是激光照射参考点以获取参考点在激光坐标系下的坐标的示意图。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
为使本发明的内容更加明显易懂,以下结合附图1-2和具体实施方式做进一步的描述。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
一种精确标定机器人末端与视觉系统的方法,包括如下步骤:
a、准备工作,在工业机器人安装焊枪和激光器;准备两块金属板,将两块金属板上下叠放设置,并采用焊枪焊接。如图1所示。
b、在步骤a中的两块金属板的焊缝处选取两个参考点,分别定义为A1和A2;如图1所示。
c、将步骤a中的工业机器人调整姿态,使机器人末端垂直于金属板表面向下。
d、将步骤c中的机器人末端分别依次运动到参考点A1和参考点A2,获取参考点A1和参考点A2在基坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000070
Figure PCTCN2019086705-appb-000071
根据激光坐标系和机器人坐标系之间的关系可得,如下公式:
Figure PCTCN2019086705-appb-000072
Figure PCTCN2019086705-appb-000073
其中,
Figure PCTCN2019086705-appb-000074
Figure PCTCN2019086705-appb-000075
为参考点A1和参考点A2在基坐标系下的坐标,
Figure PCTCN2019086705-appb-000076
Figure PCTCN2019086705-appb-000077
为机器人末端在基坐标系下进行欧拉变换所得到的矩阵,
Figure PCTCN2019086705-appb-000078
为机器人末端与激光器内激光坐标系之间的变换矩阵即需要求解的对象,
Figure PCTCN2019086705-appb-000079
Figure PCTCN2019086705-appb-000080
为参考点A1和参 考点A2在激光器内激光坐标系下的坐标;如图2所示。
e、调整步骤d中工业机器人的位置,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000081
Figure PCTCN2019086705-appb-000082
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000083
Figure PCTCN2019086705-appb-000084
对坐标
Figure PCTCN2019086705-appb-000085
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000086
Figure PCTCN2019086705-appb-000087
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000088
Figure PCTCN2019086705-appb-000089
Figure PCTCN2019086705-appb-000090
代入公式(1),得
Figure PCTCN2019086705-appb-000091
Figure PCTCN2019086705-appb-000092
Figure PCTCN2019086705-appb-000093
代入公式(2),得
Figure PCTCN2019086705-appb-000094
f、变换步骤e中工业机器人姿态,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000095
Figure PCTCN2019086705-appb-000096
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000097
Figure PCTCN2019086705-appb-000098
对坐标
Figure PCTCN2019086705-appb-000099
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000100
Figure PCTCN2019086705-appb-000101
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000102
Figure PCTCN2019086705-appb-000103
Figure PCTCN2019086705-appb-000104
代入公式(1),得
Figure PCTCN2019086705-appb-000105
Figure PCTCN2019086705-appb-000106
Figure PCTCN2019086705-appb-000107
代入公式(2),得
Figure PCTCN2019086705-appb-000108
j、变换步骤f中工业机器人姿态,使激光器的激光分别依次照射在参考点A1 和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
Figure PCTCN2019086705-appb-000109
Figure PCTCN2019086705-appb-000110
同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
Figure PCTCN2019086705-appb-000111
Figure PCTCN2019086705-appb-000112
对坐标
Figure PCTCN2019086705-appb-000113
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000114
Figure PCTCN2019086705-appb-000115
进行欧拉变换,后坐标记为
Figure PCTCN2019086705-appb-000116
Figure PCTCN2019086705-appb-000117
Figure PCTCN2019086705-appb-000118
代入公式(1),得
Figure PCTCN2019086705-appb-000119
Figure PCTCN2019086705-appb-000120
Figure PCTCN2019086705-appb-000121
代入公式(2),得
Figure PCTCN2019086705-appb-000122
h、根据步骤e、步骤f和步骤j的标定过程可得到:
Figure PCTCN2019086705-appb-000123
Figure PCTCN2019086705-appb-000124
Figure PCTCN2019086705-appb-000125
Figure PCTCN2019086705-appb-000126
Figure PCTCN2019086705-appb-000127
Figure PCTCN2019086705-appb-000128
由于参考点A1和A2的运算方法一致,这里只列出参考点A1的运算方法,将式(3)(5)(7)整理如下:
Figure PCTCN2019086705-appb-000129
Figure PCTCN2019086705-appb-000130
Figure PCTCN2019086705-appb-000131
其中
Figure PCTCN2019086705-appb-000132
记为B1,
Figure PCTCN2019086705-appb-000133
记为B2,
Figure PCTCN2019086705-appb-000134
记为B3,(9)(10)(11)可整理如下:
Figure PCTCN2019086705-appb-000135
Figure PCTCN2019086705-appb-000136
Figure PCTCN2019086705-appb-000137
将式(12)(13)(14)联立并运算得出
Figure PCTCN2019086705-appb-000138
实施例:
根据精确标定机器人末端与视觉系统的方法对参考点1做实验,可得以下数据:
Figure PCTCN2019086705-appb-000139
Figure PCTCN2019086705-appb-000140
Figure PCTCN2019086705-appb-000141
Figure PCTCN2019086705-appb-000142
Figure PCTCN2019086705-appb-000143
Figure PCTCN2019086705-appb-000144
Figure PCTCN2019086705-appb-000145
Figure PCTCN2019086705-appb-000146
Figure PCTCN2019086705-appb-000147
Figure PCTCN2019086705-appb-000148
Figure PCTCN2019086705-appb-000149
Figure PCTCN2019086705-appb-000150
Figure PCTCN2019086705-appb-000151
Figure PCTCN2019086705-appb-000152
Figure PCTCN2019086705-appb-000153
Figure PCTCN2019086705-appb-000154
Figure PCTCN2019086705-appb-000155
Figure PCTCN2019086705-appb-000156
Figure PCTCN2019086705-appb-000157
Figure PCTCN2019086705-appb-000158
设需要求解的矩阵
Figure PCTCN2019086705-appb-000159
Figure PCTCN2019086705-appb-000160
将上述的
Figure PCTCN2019086705-appb-000161
Figure PCTCN2019086705-appb-000162
Figure PCTCN2019086705-appb-000163
Figure PCTCN2019086705-appb-000164
Figure PCTCN2019086705-appb-000165
Figure PCTCN2019086705-appb-000166
和求解的矩阵
Figure PCTCN2019086705-appb-000167
Figure PCTCN2019086705-appb-000168
同时带入公式(3)
Figure PCTCN2019086705-appb-000169
中,得式(1);
Figure PCTCN2019086705-appb-000170
将上述的
Figure PCTCN2019086705-appb-000171
Figure PCTCN2019086705-appb-000172
Figure PCTCN2019086705-appb-000173
Figure PCTCN2019086705-appb-000174
Figure PCTCN2019086705-appb-000175
Figure PCTCN2019086705-appb-000176
和求解的矩阵
Figure PCTCN2019086705-appb-000177
Figure PCTCN2019086705-appb-000178
同时带入公式(5)
Figure PCTCN2019086705-appb-000179
中,得式(2);
Figure PCTCN2019086705-appb-000180
将上述的
Figure PCTCN2019086705-appb-000181
Figure PCTCN2019086705-appb-000182
Figure PCTCN2019086705-appb-000183
Figure PCTCN2019086705-appb-000184
Figure PCTCN2019086705-appb-000185
Figure PCTCN2019086705-appb-000186
和求解的矩阵
Figure PCTCN2019086705-appb-000187
Figure PCTCN2019086705-appb-000188
同时带入公式(7)
Figure PCTCN2019086705-appb-000189
中,得式(2);
Figure PCTCN2019086705-appb-000190
对式(1)(2)(3)式整理可得式(4)(5)(6),如下所示:
Figure PCTCN2019086705-appb-000191
Figure PCTCN2019086705-appb-000192
Figure PCTCN2019086705-appb-000193
对(4)(5)(6)式进行整理可得式(7)(8)(9):
Figure PCTCN2019086705-appb-000194
Figure PCTCN2019086705-appb-000195
Figure PCTCN2019086705-appb-000196
将式(7)(8)(9)联立可得:
Figure PCTCN2019086705-appb-000197
根据变换矩阵的特性,将式(10)的其余位补上,得到4*4矩阵:
Figure PCTCN2019086705-appb-000198
根据变换矩阵正交的特性,并将其单位化,可得:
Figure PCTCN2019086705-appb-000199
即变换矩阵
Figure PCTCN2019086705-appb-000200
Figure PCTCN2019086705-appb-000201
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (2)

  1. 一种精确标定机器人末端与视觉系统的方法,其特征在于,包括如下步骤:
    a、准备工作,在工业机器人安装焊枪和激光器;准备两块金属板,将两块金属板上下叠放设置,并采用焊枪焊接;
    b、在步骤a中的两块金属板的焊缝处选取两个参考点,分别定义为A1和A2;
    c、将步骤a中的工业机器人调整姿态,使机器人末端垂直于金属板表面向下;
    d、将步骤c中的机器人末端分别依次运动到参考点A1和参考点A2,获取参考点A1和参考点A2在基坐标系下的坐标,记为
    Figure PCTCN2019086705-appb-100001
    Figure PCTCN2019086705-appb-100002
    根据激光坐标系和机器人坐标系之间的关系可得,如下公式:
    Figure PCTCN2019086705-appb-100003
    Figure PCTCN2019086705-appb-100004
    其中,
    Figure PCTCN2019086705-appb-100005
    Figure PCTCN2019086705-appb-100006
    为参考点A1和参考点A2在基坐标系下的坐标,
    Figure PCTCN2019086705-appb-100007
    Figure PCTCN2019086705-appb-100008
    为机器人末端在基坐标系下进行欧拉变换所得到的矩阵,
    Figure PCTCN2019086705-appb-100009
    为机器人末端与激光器内激光坐标系之间的变换矩阵即需要求解的对象,
    Figure PCTCN2019086705-appb-100010
    Figure PCTCN2019086705-appb-100011
    为参考点A1和参考点A2在激光器内激光坐标系下的坐标;
    e、调整步骤d中工业机器人的位置,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
    Figure PCTCN2019086705-appb-100012
    Figure PCTCN2019086705-appb-100013
    同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
    Figure PCTCN2019086705-appb-100014
    Figure PCTCN2019086705-appb-100015
    对坐标
    Figure PCTCN2019086705-appb-100016
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100017
    Figure PCTCN2019086705-appb-100018
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100019
    Figure PCTCN2019086705-appb-100020
    Figure PCTCN2019086705-appb-100021
    代入公式(1),得
    Figure PCTCN2019086705-appb-100022
    Figure PCTCN2019086705-appb-100023
    Figure PCTCN2019086705-appb-100024
    代入公式(2),得
    Figure PCTCN2019086705-appb-100025
    f、变换步骤e中工业机器人姿态,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
    Figure PCTCN2019086705-appb-100026
    Figure PCTCN2019086705-appb-100027
    同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
    Figure PCTCN2019086705-appb-100028
    Figure PCTCN2019086705-appb-100029
    对坐标
    Figure PCTCN2019086705-appb-100030
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100031
    Figure PCTCN2019086705-appb-100032
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100033
    Figure PCTCN2019086705-appb-100034
    Figure PCTCN2019086705-appb-100035
    代入公式(1),得
    Figure PCTCN2019086705-appb-100036
    Figure PCTCN2019086705-appb-100037
    Figure PCTCN2019086705-appb-100038
    代入公式(2),得
    Figure PCTCN2019086705-appb-100039
    j、变换步骤f中工业机器人姿态,使激光器的激光分别依次照射在参考点A1和参考点A2上,分别记录参考点A1和参考点A2在激光器内的激光坐标系下的坐标,记为
    Figure PCTCN2019086705-appb-100040
    Figure PCTCN2019086705-appb-100041
    同时记录下在激光器的激光次照射在参考点A1时机器人末端在基坐标系下的坐标和在激光器的激光次照射在参考点A2时机器人末端在基坐标系下的坐标,分别记为
    Figure PCTCN2019086705-appb-100042
    Figure PCTCN2019086705-appb-100043
    对坐标
    Figure PCTCN2019086705-appb-100044
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100045
    Figure PCTCN2019086705-appb-100046
    进行欧拉变换,后坐标记为
    Figure PCTCN2019086705-appb-100047
    Figure PCTCN2019086705-appb-100048
    Figure PCTCN2019086705-appb-100049
    代入公式(1),得
    Figure PCTCN2019086705-appb-100050
    Figure PCTCN2019086705-appb-100051
    Figure PCTCN2019086705-appb-100052
    代入公式(2),得
    Figure PCTCN2019086705-appb-100053
    h、根据步骤e、步骤f和步骤j的标定过程可得到:
    Figure PCTCN2019086705-appb-100054
    Figure PCTCN2019086705-appb-100055
    Figure PCTCN2019086705-appb-100056
    Figure PCTCN2019086705-appb-100057
    Figure PCTCN2019086705-appb-100058
    Figure PCTCN2019086705-appb-100059
    由于参考点A1和A2的运算方法一致,这里只列出参考点A1的运算方法,将式(3)(5)(7)整理如下:
    Figure PCTCN2019086705-appb-100060
    Figure PCTCN2019086705-appb-100061
    Figure PCTCN2019086705-appb-100062
    其中
    Figure PCTCN2019086705-appb-100063
    记为B1,
    Figure PCTCN2019086705-appb-100064
    记为B2,
    Figure PCTCN2019086705-appb-100065
    记为B3,(9)(10)(11)可整理如下:
    Figure PCTCN2019086705-appb-100066
    Figure PCTCN2019086705-appb-100067
    Figure PCTCN2019086705-appb-100068
    将式(12)(13)(14)联立并运算得出
    Figure PCTCN2019086705-appb-100069
  2. 根据权利要求1所述的精确标定机器人末端与视觉系统的方法,其特征在于,激光器中的激光为线激光。
PCT/CN2019/086705 2018-12-26 2019-05-13 一种精确标定机器人末端与视觉系统的方法 WO2020133878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811601806.0 2018-12-26
CN201811601806.0A CN109719722B (zh) 2018-12-26 2018-12-26 一种精确标定机器人末端与视觉系统的方法

Publications (1)

Publication Number Publication Date
WO2020133878A1 true WO2020133878A1 (zh) 2020-07-02

Family

ID=66297180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086705 WO2020133878A1 (zh) 2018-12-26 2019-05-13 一种精确标定机器人末端与视觉系统的方法

Country Status (2)

Country Link
CN (1) CN109719722B (zh)
WO (1) WO2020133878A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719722B (zh) * 2018-12-26 2021-07-23 南京埃斯顿机器人工程有限公司 一种精确标定机器人末端与视觉系统的方法
CN110500999A (zh) * 2019-08-09 2019-11-26 唐山英莱科技有限公司 一种基于视觉装置的相对位置测量方法
CN110666798B (zh) * 2019-10-11 2021-03-02 华中科技大学 一种基于透视变换模型的机器人视觉标定方法
CN111590588A (zh) * 2020-06-03 2020-08-28 南京埃斯顿机器人工程有限公司 一种焊接机器人的非接触式工具坐标系标定方法
CN113334383B (zh) * 2021-06-22 2022-05-31 华中科技大学 一种基于线激光测量仪的机器人末端工具偏置标定方法
CN117781869A (zh) * 2023-12-25 2024-03-29 智云流形科技(江阴)有限公司 标定方法、装置、设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509576B2 (en) * 2000-09-29 2003-01-21 Hyundai Motor Company Method for compensating position of robot using laser measuring instrument
EP1274546B1 (en) * 2000-04-10 2007-06-20 Abb Ab Pathcorrection for an industrial robot
WO2016122416A1 (en) * 2015-01-30 2016-08-04 Agency for Science,Technology and Research Mobile manipulator and method of controlling the mobile manipulator for tracking a surface
US20160361818A1 (en) * 2015-06-11 2016-12-15 Janome Sewing Machine Co., Ltd. Robot
CN106238969A (zh) * 2016-02-23 2016-12-21 南京中建化工设备制造有限公司 基于结构光视觉的非标件自动化焊接加工系统
KR20170133039A (ko) * 2016-05-25 2017-12-05 대우조선해양 주식회사 다관절 용접로봇의 자동 마스터링장치 및 그 방법
CN108527360A (zh) * 2018-02-07 2018-09-14 唐山英莱科技有限公司 一种位置标定系统及方法
CN108717715A (zh) * 2018-06-11 2018-10-30 华南理工大学 一种用于弧焊机器人的线结构光视觉系统自动标定方法
CN109719722A (zh) * 2018-12-26 2019-05-07 南京埃斯顿机器人工程有限公司 一种精确标定机器人末端与视觉系统的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549228B2 (ja) * 1993-05-14 2004-08-04 株式会社神戸製鋼所 高配向性ダイヤモンド放熱基板
JP2002042130A (ja) * 2000-07-21 2002-02-08 Mitsui Chemicals Inc 三次元オブジェクトの解析方法及びシステム
CN105014679A (zh) * 2015-08-03 2015-11-04 华中科技大学无锡研究院 一种基于扫描仪的机器人手眼标定方法
CN105241478B (zh) * 2015-10-13 2018-02-16 中国船舶重工集团公司第七一七研究所 一种单轴调制激光陀螺惯性导航系统多坐标系标定方法
CN106113035B (zh) * 2016-06-16 2018-04-24 华中科技大学 一种六自由度工业机器人末端工具坐标系标定装置及方法
CN108731591B (zh) * 2018-04-24 2020-04-21 佛山智能装备技术研究院 一种基于平面约束的机器人工具坐标系标定方法
CN108994827A (zh) * 2018-05-04 2018-12-14 武汉理工大学 一种机器人测量-加工系统扫描仪坐标系自动标定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1274546B1 (en) * 2000-04-10 2007-06-20 Abb Ab Pathcorrection for an industrial robot
US6509576B2 (en) * 2000-09-29 2003-01-21 Hyundai Motor Company Method for compensating position of robot using laser measuring instrument
WO2016122416A1 (en) * 2015-01-30 2016-08-04 Agency for Science,Technology and Research Mobile manipulator and method of controlling the mobile manipulator for tracking a surface
US20160361818A1 (en) * 2015-06-11 2016-12-15 Janome Sewing Machine Co., Ltd. Robot
CN106238969A (zh) * 2016-02-23 2016-12-21 南京中建化工设备制造有限公司 基于结构光视觉的非标件自动化焊接加工系统
KR20170133039A (ko) * 2016-05-25 2017-12-05 대우조선해양 주식회사 다관절 용접로봇의 자동 마스터링장치 및 그 방법
CN108527360A (zh) * 2018-02-07 2018-09-14 唐山英莱科技有限公司 一种位置标定系统及方法
CN108717715A (zh) * 2018-06-11 2018-10-30 华南理工大学 一种用于弧焊机器人的线结构光视觉系统自动标定方法
CN109719722A (zh) * 2018-12-26 2019-05-07 南京埃斯顿机器人工程有限公司 一种精确标定机器人末端与视觉系统的方法

Also Published As

Publication number Publication date
CN109719722B (zh) 2021-07-23
CN109719722A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020133878A1 (zh) 一种精确标定机器人末端与视觉系统的方法
CN102825602B (zh) 一种基于psd的工业机器人自标定方法及装置
CN107042528B (zh) 一种工业机器人的运动学标定系统及方法
CN110666798B (zh) 一种基于透视变换模型的机器人视觉标定方法
WO2020238346A1 (zh) 一种用于机器人钻孔中优化钻头位姿的方法
CN106624262A (zh) 一种智能焊接圆管相贯线的方法及设备
CN105157725A (zh) 一种二维激光视觉传感器和机器人的手眼标定方法
CN104384765A (zh) 基于三维模型与机器视觉的自动焊接方法及焊接装置
CN108972543B (zh) 自动高精度非接触式机器人tcp标定方法
CN105303560A (zh) 机器人激光扫描式焊缝跟踪系统标定方法
CN106875439B (zh) 基于三维点云模型的单晶硅棒外形尺寸测量方法
CN111421226B (zh) 一种基于激光切管设备的管材识别方法及装置
CN105364349A (zh) 一种焊接机器人焊缝轨迹检测的方法
CN112958960B (zh) 一种基于光学靶标的机器人手眼标定装置
CN110076495A (zh) 一种使用激光传感器的机器人寻位的方法
CN112629499A (zh) 基于线扫描仪的手眼标定重复定位精度测量方法及装置
CN110428471B (zh) 一种针对光学自由曲面子孔径偏折测量的精确自定位方法
CN110260817A (zh) 基于虚拟标志点的复杂曲面偏折测量自定位方法
CN110405731A (zh) 一种快速双机械臂基坐标系标定方法
KR101622659B1 (ko) 로봇과 레이저 비전 시스템 간의 캘리브레이션 방법
CN114049324B (zh) 超视场尺度下的关联基准远心测量快速标定方法
CN108592838A (zh) 工具坐标系的标定方法、装置以及计算机存储介质
JP3641818B2 (ja) トータルステーションによる測定方法
CN110706292B (zh) 一种基于机器视觉的二维工作台误差自标定方法
JP2002310641A (ja) 三次元形状計測機の座標系のキャリブレーション方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903704

Country of ref document: EP

Kind code of ref document: A1