WO2020133875A1 - 一种低惯量内置Flat型永磁伺服电机 - Google Patents

一种低惯量内置Flat型永磁伺服电机 Download PDF

Info

Publication number
WO2020133875A1
WO2020133875A1 PCT/CN2019/086698 CN2019086698W WO2020133875A1 WO 2020133875 A1 WO2020133875 A1 WO 2020133875A1 CN 2019086698 W CN2019086698 W CN 2019086698W WO 2020133875 A1 WO2020133875 A1 WO 2020133875A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
planes
motor
low
Prior art date
Application number
PCT/CN2019/086698
Other languages
English (en)
French (fr)
Inventor
王东
钱巍
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2020133875A1 publication Critical patent/WO2020133875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to a low-inertia built-in Flat-type permanent magnet servo motor, in particular to a low-inertia built-in Flat-type permanent magnet servo motor with a rotor-side permanent magnet surface having multiple folding surfaces.
  • This type of motor not only has a relatively small air gap, but also has a reluctance torque, which has a higher torque density and a constant power speed range.
  • the two-pole permanent magnets adjacent to the Flat-type rotor side provide magnetic flux per pole in series, and the rotor-side pole arc coefficient is high.
  • the permanent magnet on the rotor side of the motor has a rectangular cross-section in two-dimensional space (a rectangular parallelepiped in three-dimensional space). Its magnetic circuit is a tandem structure with two magnetic poles. The magnetomotive force of a pair of poles is provided in series by permanent magnets. The magnetic flux of each pole is provided by the area of the permanent magnet of one pole. The air gap magnetic density is relatively low.
  • the rotor core of the motor may not use magnetic isolation measures or the shaft does not need to use non-magnetic materials .
  • the motor of this topology structure not only has small magnetic leakage coefficient, low manufacturing cost of the rotating shaft, easy to control the polar arc coefficient, but also has high mechanical strength of the rotor punching plate, and the rotor core is not easily deformed after the permanent magnet is installed.
  • the current mainstream design scheme on the rotor side is still the SPM scheme.
  • the stator side uses a 12-slot modular fractional slot concentrated winding design scheme
  • the rotor side uses 5 pairs of flat-type permanent magnet rotors, and the permanent magnets are rectangular in the two-dimensional cross-section of the rotor.
  • the air gap between the stator and the rotor of this product is relatively small, the axial length of the motor is relatively small, and by outputting the reluctance torque of the motor, the overload capacity of the motor is further improved.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and proposes a built-in flat-type permanent magnet servo motor with low inertia.
  • the rotor-side permanent magnet surface is a folded surface, and the cross section is a pentagon or a polygon with more than five sides. It can solve the defects of weak overload capacity and low torque density existing in the existing low inertia Flat IPM motor.
  • the low-inertia built-in Flat-type permanent magnet servo motor of the present invention includes a motor rotor.
  • the rotor core of the motor rotor is provided with a number of slots uniformly along the circumferential direction of the rotor core cross section, and each rotor slot is provided with a rotor-side permanent magnet.
  • the rotor-side permanent magnet is a polygonal prism composed of a bottom surface, two side surfaces, two end surfaces, and a surface.
  • the surface of the rotor-side permanent magnet is a curved surface composed of two or more planes, and all the folded edges of the curved surface and the common side of the surface and the two side surfaces are the transverse section of the permanent magnet on the rotor side ( The section perpendicular to the side) is co-circular and concentric with the rotor core surface.
  • the two sides are of equal height.
  • the surface of the rotor-side permanent magnet is a curved surface composed of two planes, and the widths of the two planes (the length of the plane on the rotor-side permanent magnet cross-section) are equal.
  • the plane width refers to the length of the plane on the rotor-side permanent magnet cross section.
  • the permanent magnet has a pentagonal cross section.
  • the surface of the permanent magnet on the rotor side is a curved surface composed of three planes, and two planes near the side have the same width.
  • the permanent magnet has a hexagonal cross section.
  • the surface of the rotor-side permanent magnet is a curved surface composed of four planes, wherein two planes near the side have the same width, and two middle planes have the same width.
  • the permanent magnet has a heptagonal cross section.
  • the surface of the rotor-side permanent magnet is a tortuous surface composed of five planes, two planes close to the side have the same width, and two planes adjacent to the middle plane have the same width.
  • the permanent magnet has an octagonal cross section.
  • the low-inertia built-in Flat-type permanent magnet servo motor of the present invention adopts a multi-planar intersecting and co-circular toric surface on the rotor side permanent magnet surface, which can further improve the torque density and overload capacity of the motor , Can make the air gap magnetic density more sine, and the rotor side of the motor is easy to assemble.
  • FIG. 1 is a schematic cross-sectional view of a low-inertia built-in Flat-type permanent magnet servo motor of the present invention.
  • FIG. 2 is one of the preferred solutions of the present invention: a schematic cross-sectional view of a motor rotor and rotor-side permanent magnets.
  • a is a schematic cross-sectional view of the rotor
  • b is a schematic cross-sectional view of the permanent magnet on the rotor side, which expresses that all the folded edges of the curved surface and the common side of the surface and the two side surfaces are co-circular on the cross section of the permanent magnet on the rotor side.
  • Figure c is a schematic cross-sectional view of the permanent magnet on the rotor side.
  • Fig. 3 is a second preferred solution of the present invention: a schematic cross-sectional view of a motor rotor and permanent magnets on the rotor side.
  • a is a schematic cross-sectional view of the rotor
  • b is a schematic cross-sectional view of the permanent magnet on the rotor side, which expresses that all the folded edges of the curved surface and the common side of the surface and the two side surfaces are co-circular on the cross section of the permanent magnet on the rotor side.
  • Figure c is a schematic cross-sectional view of the permanent magnet on the rotor side.
  • FIG. 4 is a third preferred solution of the present invention: a schematic cross-sectional view of a motor rotor and rotor-side permanent magnets.
  • a is a schematic cross-sectional view of the rotor
  • b is a schematic cross-sectional view of the permanent magnet on the rotor side, which expresses that all the folded edges of the curved surface and the common side of the surface and the two side surfaces are co-circular on the cross section of the permanent magnet on the rotor side.
  • Figure c is a schematic cross-sectional view of the permanent magnet on the rotor side.
  • FIG. 5 is a fourth preferred solution of the present invention: a schematic cross-sectional view of a motor rotor and rotor-side permanent magnets.
  • a is a schematic cross-sectional view of the rotor
  • b is a schematic cross-sectional view of the permanent magnet on the rotor side, which expresses that all the folded edges of the curved surface and the common side of the surface and the two side surfaces are co-circular on the cross section of the permanent magnet on the rotor side.
  • Figure c is a schematic cross-sectional view of the permanent magnet on the rotor side.
  • Fig. 1 shows a cross section of a built-in flat-type permanent magnet servo motor with low inertia according to the present invention.
  • the surface of the rotor core 1 is uniformly and continuously provided with a number of permanent magnets 2 on the rotor side; 3 is the stator core of the motor, 4 is the armature winding, and 5 is the rotating shaft of the motor.
  • the permanent magnet 2 on the rotor side of the Flat-type IPM motor has a pentagonal cross-section, and is composed of a bottom surface 9, two side surfaces (6, 8), and a surface.
  • the surface of the rotor-side permanent magnet 2 is formed by bending two planes, and the three points A, B, and C of the surface of the rotor-side permanent magnet 2 are co-circular and concentric with the rotor surface 7.
  • Flat IPM motor rotor core 1 is provided with a number of holes, which are evenly distributed along the circumferential direction of the rotor core, and the shape is adapted to the structure of the permanent magnet, and is used to place the rotor side with different magnetization directions Permanent magnet 2.
  • the part between the two slots close to the rotor surface is the rotor core rib, which is a non-working magnetic flux path.
  • the permanent magnet 2 on the rotor side of the Flat-type IPM motor has a hexagonal cross section, and is composed of a bottom surface 9, two side surfaces (6, 8), and a surface.
  • the surface of the rotor-side permanent magnet 2 is composed of three plane bends, and the four points A, B, C, and D of the surface of the rotor-side permanent magnet 2 are co-circular and concentric with the rotor surface 7.
  • the rotor core 1 of the Flat IPM motor is provided with a number of holes, which are evenly distributed along the circumferential direction of the rotor core, and the shape is adapted to the structure of the permanent magnet, and is used to place the rotor side with different magnetization directions Permanent magnet 2.
  • the part between the two slots close to the rotor surface is the rotor core rib, which is a non-working magnetic flux path.
  • the permanent magnet 2 on the rotor side of the Flat-type IPM motor has a heptagonal cross section, and is composed of a bottom surface 9, two side surfaces (6, 8), and a surface.
  • the surface of the rotor-side permanent magnet 2 is composed of four plane bends, and the five points of A, B, C, D, and E on the surface of the rotor-side permanent magnet 2 are co-circular and concentric with the rotor surface 7. .
  • Width of four planes are a 1, a 2, a 3 and a 4 (shown in FIG.
  • a 1, a 2, a 3 and a 4 position is only a schematic, represents the projected width is not) satisfied ,
  • a 1 a 2
  • a 3 a 4
  • a satisfies the relationship a 1 ⁇ a 3 ⁇ a 1 a 3 ⁇ a 1> a 3 between 1 and a 3,
  • the rotor core 1 of the Flat IPM motor is provided with a number of holes, which are evenly distributed along the circumferential direction of the rotor core, and the shape is adapted to the structure of the permanent magnet, and is used to place the rotor side with different magnetization directions Permanent magnet 2.
  • the part between the two slots close to the rotor surface is the rotor core rib, which is a non-working magnetic flux path.
  • the permanent magnet 2 on the rotor side of the Flat-type IPM motor has an octagonal cross section, and is composed of a bottom surface 9, two side surfaces (6, 8), and a surface.
  • the surface of the rotor-side permanent magnet 2 is composed of five plane bends, and the six points of A, B, C, D, E, and F on the surface of the rotor-side permanent magnet 2 are co-circular and are parallel to the rotor surface 7 Concentric.
  • the rotor core 1 of the Flat-type IPM motor is provided with a number of holes, which are evenly distributed along the circumferential direction of the rotor core, and the shape is adapted to the structure of the permanent magnet, and is used to place the rotor side with different magnetization directions Permanent magnet 2.
  • the part between the two slots close to the rotor surface is the rotor core rib, which is a non-working magnetic flux path.
  • the Flat type permanent magnet structure design scheme described in the above embodiments can be applied not only to rotating inner rotor permanent magnet motors, but also to outer rotor permanent magnet motors, and can also be applied to linear motors or axial field motors.
  • the application of the rotor-side permanent magnet structure of the present invention belongs to the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明公开了种低惯量内置Flat型永磁伺服电机,所述电机的转子铁芯沿转子铁芯断面圆周方向均匀设置若干孔槽,各孔槽内均设置个永磁体;所述转子侧永磁体是由底面、两个侧面、两个端面和表面构成的多棱柱。所述转子侧永磁体的表面是由两个或两个以上左右对称的平面构成的折曲面,折曲面全部的折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆,并且与转子铁芯表面同圆心,所述两个侧边等高。本发明电机,转子侧永磁体表面采用多平面共圆折曲面,可进步提高电机的转矩密度和过载能力,能使气隙磁密更趋向于正弦,电机转子侧易于装配。

Description

一种低惯量内置Flat型永磁伺服电机 技术领域
本发明涉及一种低惯量内置Flat型永磁伺服电机,尤其是一种转子侧永磁体表面为多折面的低惯量内置Flat型永磁伺服电机。
背景技术
由于具有较高的功率密度和功率因数,永磁电机在伺服、交通和家用电器中已获得广泛应用。表贴式永磁(Surface-mounted Permanent Magnet,SPM)电机,结构灵活简单,易于自动化生产,并且转矩脉动小,控制精度高。然而在转子永磁体表面,经常要采用不锈钢套管或者高强度纤维,其定转子之间气隙相对较大。为了进一步提高电机的转矩密度和过载能力,一些高端伺服产品开始逐渐采用内置式永磁(Interior Permanent Magnet,IPM)电机设计方案。该类电机不仅气隙相对较小,而且具有磁阻转矩,具有更高的转矩密度和恒功率速度范围。作为内置串联式磁路典型拓扑,Flat型转子侧相邻的两磁极永磁体串联提供每极磁通,并且转子侧极弧系数较高。
中国永磁电机专家唐任远院士于1997年系统提出内置Flat型IPM电机,该电机转子侧永磁体在二维空间为矩形截面(三维空间为长方体),其磁路为串联式结构,两个磁极通过永磁体串联提供一对极的磁动势,每极磁通由一个磁极的永磁体面积提供,气隙磁密相对较低,电机转子铁心可不采用隔磁措施或转轴无需采用非导磁材料。该种拓扑结构的电机不仅漏磁系数小,转轴制作成本低,极弧系数易于控制,而且转子冲片机械强度高,安装永磁体后转子铁心不易变形等优点。
在伺服电机领域,目前转子侧主流设计方案依然是SPM方案,然而日本某知名电机企业近年来逐渐推出几乎全系列Flat型IPM电机最新产品,其定子侧采用12槽模块化分数槽集中绕组设计方案,转子侧采用5对Flat型永磁转子,永磁体在转子的二维截面中为矩形。与同规格其他SPM产品相比,该种产品定子与转子之间气隙相对较小,电机轴向长度相对较小,并且通过输出电机的磁阻转矩,电机的过载能力进一步提升,在同类产品中具有较高的转矩密度和显著竞争力。然而,对于低惯量IPM电机,由于矩形永磁体的运用,相对减小了电机的极弧系数,电机功率密度和过载能力提升效果有限,因而通过改变永磁体结构拓扑,该类电机转子还可以进一步改善,从而提高电机的转矩密度。
发明内容
本发明的目的在于,克服现有技术存在的缺陷,提出了一种低惯量内置Flat型永磁伺服电机,其转子侧永磁体表面为折面,断面为五边形或五边以上的多边形。能解决现有低惯量Flat型IPM电机存在的过载能力弱和转矩密度低等缺陷。
本发明低惯量内置Flat型永磁伺服电机,包括电机转子,所述电机转子的转子铁芯沿转子铁芯断面圆周方向均匀设置若干孔槽,各孔槽内均设置一个转子侧永磁体。所述转子侧永磁体是由底面、两个侧面、两个端面和表面构成的多棱柱。其特征是:所述转子侧永磁体的表面是由两个或两个以上的平面构成的折曲面,折曲面的全部折边以及表面与两 侧面的共同边在转子侧永磁体的横断面(与侧面垂直的断面)上共圆,并且与转子铁芯表面同圆心。所述两个侧边等高。
优选方案之一:所述转子侧永磁体的表面是由两个平面构成的折曲面,两个平面宽度(平面在转子侧永磁体横断面上的长度)相等。所述平面宽度是指平面在转子侧永磁体横断面上的长度。该永磁体横断面呈五边形。
优选方案之二:所述转子侧永磁体的表面是由三个平面构成的折曲面,其中两个靠近侧面的平面宽度相等。该永磁体横断面呈六边形。
优选方案之三:所述转子侧永磁体的表面是由四个平面构成的折曲面,其中两个靠近侧面的平面宽度相等,两个中间的平面宽度相等。该永磁体横断面呈七边形。
优选方案之四:所述转子侧永磁体的表面是由五个平面构成的折曲面,其中两个靠近侧面的平面宽度相等,两个与中间平面邻接的平面宽度相等。该永磁体横断面呈八边形。
本发明低惯量内置Flat型永磁伺服电机与Flat型矩形结构永磁体IPM电机相比,转子侧永磁体表面采用多平面交线共圆的折曲面,可进一步提高电机的转矩密度和过载能力,能使气隙磁密更趋向于正弦,并且电机转子侧易于装配。
附图说明
图1是本发明低惯量内置Flat型永磁伺服电机剖面示意图。
图2是本发明优选方案之一:电机转子及转子侧永磁体断面示意图。其中,a图是转子断面示意图,b图是转子侧永磁体断面示意图,表达了折曲面的全部折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆。c图是转子侧永磁体断面示意图。
图3是本发明优选方案之二:电机转子及转子侧永磁体断面示意图。其中,a图是转子断面示意图,b图是转子侧永磁体断面示意图,表达了折曲面的全部折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆。c图是转子侧永磁体断面示意图。
图4是本发明优选方案之三:电机转子及转子侧永磁体断面示意图。其中,a图是转子断面示意图,b图是转子侧永磁体断面示意图,表达了折曲面的全部折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆。c图是转子侧永磁体断面示意图。
图5是本发明优选方案之四:电机转子及转子侧永磁体断面示意图。其中,a图是转子断面示意图,b图是转子侧永磁体断面示意图,表达了折曲面的全部折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆。c图是转子侧永磁体断面示意图。
具体实施方式
下面结合实施例和附图,对本发明的技术方案做进一步详细的说明。
图1表示的是本发明低惯量内置Flat型永磁伺服电机剖面。其中:转子铁心1的表面均匀连续的设置了若干转子侧永磁体2;3为电机定子铁心,4为电枢绕组,5为电机转轴。
实施例1
如图2(a)所示,Flat型IPM电机转子侧永磁体2横断面呈现为五边形,由底面9、两个侧面(6,8)和表面构成。如图2(b)所示,转子侧永磁体2表面由两个平面折曲构成,转子侧永磁体2表面的A、B、C三点共圆并且与转子表面7同圆心。如图2(c)所示,两个平面的宽度尺寸分 别为a 1和a 2(图中表示出的a 1和a 2只是一个位置示意,不是表示宽度的投影),满足a 1=a 2。转子侧永磁体的两个侧边高度尺寸分别为b 1和b 2,满足b 1=b 2
如图2(a)所示,Flat型IPM电机转子铁心1设置若干孔槽,孔槽沿转子铁芯圆周方向均匀分布,并且形状与永磁体结构适配,用于放置不同磁化方向的转子侧永磁体2。两个孔槽之间靠近转子表面的部分为转子铁心筋部,为非工作磁通路径。
实施例2
如图3(a)所示,Flat型IPM电机转子侧永磁体2横断面呈现为六边形,由底面9、两个侧面(6,8)和表面构成。如图3(b)所示,转子侧永磁体2表面由三个平面折曲构成,转子侧永磁体2表面的A、B、C和D四点共圆并且与转子表面7同圆心。三个平面的宽度尺寸分别为a 1,a 2和a 3(图中表示出的a 1和a 2只是一个位置示意,不是表示宽度的投影),满足a 1=a 2,a 1<a 3或a 1=a 3或a 1>a 3,图3(c)所示的是a 1=a 2<a 3。转子侧永磁体的两个侧边高度尺寸分别为b 1和b 2,满足b 1=b 2,因此本实施例共有三种拓扑选择方案。
如图3(a)所示,Flat型IPM电机转子铁心1设置若干孔槽,孔槽沿转子铁芯圆周方向均匀分布,并且形状与永磁体结构适配,用于放置不同磁化方向的转子侧永磁体2。两个孔槽之间靠近转子表面的部分为转子铁心筋部,为非工作磁通路径。
实施例3:
如图4(a)所示,Flat型IPM电机转子侧永磁体2横断面呈现为七边形,由底面9、两个侧面(6,8)和表面构成。如图4(b)所示,转子侧永磁体2表面由四个平面折曲构成,转子侧永磁体2表面的A、B、C、D和E五点共圆并且与转子表面7同圆心。四个平面的宽度尺寸分别为a 1,a 2,a 3和a 4(图中表示出的a 1,a 2,a 3和a 4只是一个位置示意,不是表示宽度的投影),,满足a 1=a 2,a 3=a 4,其中a 1与a 3之间满足关系a 1<a 3或a 1=a 3或a 1>a 3,如图4(c)所示。转子侧永磁体的两个侧边高度尺寸分别为b 1和b 2,满足b 1=b 2,因此本实施例共有三种典型拓扑选择方案。
如图4(a)所示,Flat型IPM电机转子铁心1设置若干孔槽,孔槽沿转子铁芯圆周方向均匀分布,并且形状与永磁体结构适配,用于放置不同磁化方向的转子侧永磁体2。两个孔槽之间靠近转子表面的部分为转子铁心筋部,为非工作磁通路径。
实施例4:
如图5(a)所示,Flat型IPM电机转子侧永磁体2横断面呈现为八边形,由底面9、两个侧面(6,8)和表面构成。如图5(b)所示,转子侧永磁体2表面由五个平面折曲构成,转子侧永磁体2表面的A、B、C、D、E和F六点共圆并且与转子表面7同圆心。五个平面的宽度尺寸分别为a 1,a 2,a 3,a 4和a 5(图中表示出的a 1,a 2,a 3和a 4只是一个位置示意,不是表示宽度的投影),满足a 1=a 2,a 3=a 4,其中a 1与a 3之间满足关系a 1<a 3或a 1=a 3或a 1>a 3,a 1与a 3之间满足关系a 1<a 5或a 1=a 5或a 1>a 5,其中a 3与a 5之间满足关系a 3<a 5或a 3=a 5或a 3>a 5,图5(c)所示的是a 1=a 2=a 3=a 4=a 5。转子侧永磁体的两个侧边高度尺寸分别为b 1和b 2,满足b 1=b 2,因此本实施例共有九种典型拓扑选择方案。
如图5(a)所示,Flat型IPM电机转子铁心1设置若干孔槽,孔槽沿转子铁芯圆周方向均匀分布,并且形状与永磁体结构适配,用于放置不同磁化方向的转子侧永磁体2。两个孔槽之间靠近转子表面的部分为转子铁心筋部,为非工作磁通路径。
上述实施例所述的Flat型永磁体结构设计方案,不仅可应用于旋转内转子永磁电 机中,也可应用于外转子永磁电机中,还可应用于直线电机或者轴向磁场电机中。在这些类型的电机中或这些类型的转子中,应用本发明转子侧永磁体结构,均属于本发明保护范围。

Claims (6)

  1. 一种低惯量内置Flat型永磁伺服电机,包括电机转子,所述电机转子的转子铁芯沿转子铁芯断面圆周方向均匀设置若干孔槽,各孔槽内均设置一个转子侧永磁体;所述转子侧永磁体是由底面、两个侧面、两个端面和表面构成的多棱柱;其特征是:所述转子侧永磁体的表面是由两个或两个以上的平面构成的折曲面,折曲面的全部折边以及表面与两侧面的共同边在转子侧永磁体的横断面上共圆,并且与转子铁芯表面同圆心;所述两个侧边等高,在转子排布时相邻两个永磁体的侧边平行。
  2. 根据权利要求1所述的一种低惯量内置Flat型永磁伺服电机,其特征是:所述转子侧永磁体的表面是由两个平面构成的折曲面,两个平面宽度相等。
  3. 根据权利要求1所述的一种低惯量内置Flat型永磁伺服电机,其特征是:所述转子侧永磁体的表面是由三个平面构成的折曲面,其中两个靠近侧面的平面宽度相等。
  4. 根据权利要求1所述的一种低惯量内置Flat型永磁伺服电机,其特征是:所述转子侧永磁体表面由四个平面构成的折曲面,其中两个靠近侧面的平面宽度相等,中间的两个平面宽度相等。
  5. 根据权利要求1所述的一种低惯量内置Flat型永磁伺服电机,其特征是:所述转子侧永磁体的表面是由五个平面构成的折曲面,其中两个靠近侧面的平面宽度相等,两个与中间平面邻接的平面宽度相等。
  6. 根据权利要求1所述的一种低惯量内置Flat型永磁伺服电机,所述电机转子,为内转子或外转子。
PCT/CN2019/086698 2018-12-25 2019-05-13 一种低惯量内置Flat型永磁伺服电机 WO2020133875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811592713.6 2018-12-25
CN201811592713.6A CN109412301A (zh) 2018-12-25 2018-12-25 一种低惯量内置Flat型永磁伺服电机

Publications (1)

Publication Number Publication Date
WO2020133875A1 true WO2020133875A1 (zh) 2020-07-02

Family

ID=65461401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086698 WO2020133875A1 (zh) 2018-12-25 2019-05-13 一种低惯量内置Flat型永磁伺服电机

Country Status (2)

Country Link
CN (1) CN109412301A (zh)
WO (1) WO2020133875A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412301A (zh) * 2018-12-25 2019-03-01 南京埃斯顿自动化股份有限公司 一种低惯量内置Flat型永磁伺服电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202405974U (zh) * 2012-01-01 2012-08-29 东菱技术股份有限公司 磁钢内置式不规则槽形永磁伺服电机
CN105827035A (zh) * 2016-05-17 2016-08-03 浙江绿源电动车有限公司 磁钢片及其加工方法、转子、电机及电动车
CN106165259A (zh) * 2014-04-08 2016-11-23 三菱电机株式会社 永磁体埋入型旋转电机
CN109412301A (zh) * 2018-12-25 2019-03-01 南京埃斯顿自动化股份有限公司 一种低惯量内置Flat型永磁伺服电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956872B (zh) * 2014-04-25 2018-07-20 联合汽车电子有限公司 永磁同步电机及其转子
CN107086686B (zh) * 2017-05-27 2019-04-19 南京航空航天大学 一种内置式永磁电机转子
CN209170078U (zh) * 2018-12-25 2019-07-26 南京埃斯顿自动化股份有限公司 一种低惯量内置Flat型永磁伺服电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202405974U (zh) * 2012-01-01 2012-08-29 东菱技术股份有限公司 磁钢内置式不规则槽形永磁伺服电机
CN106165259A (zh) * 2014-04-08 2016-11-23 三菱电机株式会社 永磁体埋入型旋转电机
CN105827035A (zh) * 2016-05-17 2016-08-03 浙江绿源电动车有限公司 磁钢片及其加工方法、转子、电机及电动车
CN109412301A (zh) * 2018-12-25 2019-03-01 南京埃斯顿自动化股份有限公司 一种低惯量内置Flat型永磁伺服电机

Also Published As

Publication number Publication date
CN109412301A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN108683313B (zh) 一种高功率密度高效率的轴向磁通永磁电机
JP2010114952A (ja) 電動機及び圧縮機及び送風機及び換気扇
JP5383915B2 (ja) 永久磁石型回転電機
US20120248927A1 (en) Electric motor
JP2002335643A (ja) 電動機
CN104218758A (zh) 一种永磁无铁芯无刷电机
JP5644880B2 (ja) 回転電機
JP4197584B2 (ja) 永久磁石式回転電機の回転子の製造方法
WO2020133875A1 (zh) 一种低惯量内置Flat型永磁伺服电机
CN204992838U (zh) 单相永磁电机
JP2011147346A (ja) 電動機
JP7047337B2 (ja) 永久磁石式回転電機
WO2020133874A1 (zh) 一种内嵌辐条式永磁转子的伺服电机
JP2007143331A (ja) 永久磁石埋設型ロータ
JP2013126355A (ja) 発電機
JP2000253608A (ja) ブラシレスモータ
US6741008B2 (en) Stator for reciprocating motor
JP5258944B2 (ja) 電動機及び分割固定子鉄心の製造方法
KR20180132113A (ko) 동기 릴럭턴스형 회전 전기 기기
JP2005051929A (ja) 電動機
JP5621372B2 (ja) 永久磁石埋込型回転子及び回転電機
CN209170078U (zh) 一种低惯量内置Flat型永磁伺服电机
JP2013021774A (ja) モータ
CN204168100U (zh) 一种永磁无铁芯无刷电机
CN209170079U (zh) 一种内嵌辐条式永磁转子的伺服电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903549

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19903549

Country of ref document: EP

Kind code of ref document: A1