WO2020133700A1 - 用于冷冻治疗的预冷装置与冷冻治疗系统 - Google Patents

用于冷冻治疗的预冷装置与冷冻治疗系统 Download PDF

Info

Publication number
WO2020133700A1
WO2020133700A1 PCT/CN2019/077260 CN2019077260W WO2020133700A1 WO 2020133700 A1 WO2020133700 A1 WO 2020133700A1 CN 2019077260 W CN2019077260 W CN 2019077260W WO 2020133700 A1 WO2020133700 A1 WO 2020133700A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigeration cycle
gas
outlet
inlet
Prior art date
Application number
PCT/CN2019/077260
Other languages
English (en)
French (fr)
Inventor
吴银龙
徐彬凯
杨迟
张瑞
常凯强
Original Assignee
上海导向医疗系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海导向医疗系统有限公司 filed Critical 上海导向医疗系统有限公司
Priority to ES19905260T priority Critical patent/ES2948718T3/es
Priority to EP19905260.6A priority patent/EP3872417B1/en
Publication of WO2020133700A1 publication Critical patent/WO2020133700A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00529Liver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention relates to the medical field, in particular to a pre-cooling device and a cryotherapy system for cryotherapy.
  • cryoablation As a minimally invasive targeted surgery, cryoablation has the characteristics of less trauma, less toxic and side effects, and precise efficacy. It also has the advantages of clear ablation ice hockey boundaries, participation in the activation of tumor immune function, no damage to large blood vessels, and no obvious pain.
  • the ultra-low temperature targeted freezing and hyperthermia become a reality.
  • cryosurgery has been widely used in the treatment of metastatic liver cancer, prostate cancer, kidney cancer, etc.
  • helium gas may be used, or nitrogen of normal temperature and high pressure nitrogen of 5 to 10 MPa may be used as a surgical working gas, for example.
  • the invention provides a pre-cooling device and a cryotherapy system for cryotherapy, to solve the gas pressure of pre-cooling is usually set manually, and a variety of pressure reducing valves are needed to adjust different pressures, which is not conducive to achieving targeted The problem of timely and stable adjustment.
  • a pre-cooling device for cryotherapy which includes an air inlet interface, at least three ventilation branches, a single-stage compression self-cascade refrigeration system component, and a pressure regulating component.
  • the air interface is connected to the air inlet end of the pressure regulating assembly, the air outlet end of the pressure regulating assembly is respectively connected to the air inlet end of the at least three ventilation branches, and the air inlet end of the freezing ablation needle connector of the freezing ablation needle Are respectively connected to the outlet ends of the at least three ventilation branches;
  • the single-stage compression self-cascade refrigeration system component includes at least three stages of refrigeration cycles, and for at least part of the refrigeration cycles, the refrigeration temperature is lower than the refrigeration temperature of the previous refrigeration cycle;
  • Each refrigeration cycle can exchange heat with the gas flowing in the corresponding ventilation branch to pre-cool the gas flowing in the ventilation branch; each of the ventilation branches is provided with a control Broken branch control components;
  • the pressure regulating assembly is used to control the pressure at the outlet end of the pressure regulating assembly.
  • the pressure at the outlet end of the pressure regulating assembly is associated with the currently precooled ventilation branch, and for at least two ventilation branches, pre The pressure at the outlet end of the pressure regulating assembly is different when cold.
  • the pressure regulating component is further used to change the first temperature information when the second temperature information satisfies the required temperature and the outlet pressure of the pressure regulating component satisfies the target pressure. Controlling the pressure of the outlet end of the pressure regulating assembly to change, and keeping the second temperature information to meet the required temperature.
  • the pressure regulating component is specifically used to control the pressure at the outlet end of the pressure regulating component according to the first pressure information and/or the second pressure information; the first pressure information is used to characterize the cryoablation needle The pressure at the intake end of the joint, and the second pressure information is used to characterize the pressure at the intake end of the pressure regulating assembly.
  • the pressure regulating assembly includes a proportional pressure reducing valve and a controller, the intake end of the freezing ablation needle connector is connected with a first pressure sensor for detecting the first pressure information, and the proportional pressure reducing valve A second pressure sensor for detecting the second pressure information is connected to the air inlet end of, and a third pressure sensor is connected to the air outlet end of the proportional pressure reducing valve;
  • the controller is connected to the first pressure sensor, the second pressure sensor, and the third pressure sensor, respectively, and is used for the first pressure sensor, the second pressure sensor, and the third pressure sensor
  • the detected information controls the proportional pressure reducing valve.
  • the pressure regulating component is further configured to control the pressure at the outlet end of the pressure regulating component according to temperature information, the temperature information includes first temperature information and/or second temperature information, and the first temperature information It is used to characterize the temperature of the ventilation branch, and the second temperature information is used to characterize the temperature of the intake end of the cryoablation needle connector.
  • the first temperature information is specifically used to characterize the temperature of the gas in the ventilation branch after being cooled by the corresponding refrigeration cycle
  • the pressure regulating component is further used to control the pressure regulating according to the change of the first temperature information after the second temperature information satisfies the required temperature and the outlet pressure of the pressure regulating component meets the target pressure The pressure at the outlet end of the pressure component changes, and the second temperature information is maintained to meet the required temperature.
  • the pressure regulating component is further used to control the pressure at the outlet end of the pressure regulating component and the current pre-cooled temperature when the temperature information does not reach the preset target temperature in a control mode
  • the first target pressure information corresponding to the ventilating branch matches, and after the temperature information reaches the target temperature and maintains a preset target duration, the pressure at the outlet end of the pressure regulating assembly is controlled to decrease to the current pre-cooled
  • the second target pressure information corresponding to the ventilation branch matches.
  • the return air pre-cooling assembly includes a return air passage and a return air pre-cooling control component provided in the return air passage, the intake end of the return air passage is connected to At the return end of the freezing and ablation needle connector, the gas flowing through the return passage can exchange heat with the gas flowing through the at least three ventilation branches, so that the gas flowing through the at least three ventilation branches The gas is pre-cooled.
  • the gas circulating in the ventilation branch can first exchange heat with the gas circulating in the return air passage for the first pre-cooling, and then exchange heat with the corresponding refrigeration cycle for the second Secondary pre-cooling.
  • the working fluid used for pre-cooling in each refrigeration cycle is obtained by reducing the temperature of the working fluid used for pre-cooling in the previous refrigeration cycle.
  • each refrigeration cycle is provided with a condensing evaporator and a gas-liquid separator;
  • the gas-liquid separator in each refrigeration cycle is used for gas-liquid separation of the gaseous working fluid discharged from the gas-liquid separator in the previous refrigeration cycle.
  • the condensing evaporator in each refrigeration cycle is used to control the gaseous working fluid discharged from the gas-liquid separator in the refrigeration cycle, the gas flowing in the corresponding vent branch, and the gas-liquid separation in the refrigeration cycle Heat exchange occurs between the liquid working fluid discharged from the device.
  • a compressor, a condenser, a condensing evaporator and a gas-liquid separator are provided in the first-stage refrigeration cycle; an evaporator is provided in the last refrigeration cycle of the at least three-stage refrigeration cycle;
  • the first input end and the first output end of the evaporator are connected to their corresponding ventilation branches, and the second input end of the evaporator is connected to the gas outlet of the gas-liquid separator in the previous refrigeration cycle.
  • the second output end of the device is connected to the first inlet of the condensing evaporator in the previous refrigeration cycle;
  • the inlet of the gas-liquid separator in each refrigeration cycle is connected to the second outlet of the condensing evaporator in the previous refrigeration cycle, and each refrigeration cycle
  • the gas outlet of the gas-liquid separator is connected to the second inlet of the condensation evaporator in the refrigeration cycle;
  • the liquid outlet of the gas-liquid separator in each refrigeration cycle is connected to the first inlet of the condensation evaporator in the refrigeration cycle ,
  • the first outlet of the condensing evaporator in each refrigeration cycle is connected to the first inlet of the condensing evaporator in the previous refrigeration cycle;
  • the third inlet and third outlet of the condensing evaporator in each refrigeration cycle are connected to Into the corresponding ventilation branch;
  • the outlet of the compressor is connected to the inlet of the condenser, the outlet of the condenser is connected to the inlet of the gas-liquid separator in the first-stage refrigeration cycle, and the gas-liquid separator in the first-stage refrigeration cycle
  • the liquid outlet is connected to the first inlet of the condensing evaporator in the refrigeration cycle
  • the gas outlet of the gas-liquid separator in the first-stage refrigeration cycle is connected to the second inlet of the condensing evaporator in the refrigeration cycle
  • the first The first outlet of the condensing evaporator in the first-stage refrigeration cycle is connected to the inlet of the compressor, and the third inlet and the third outlet of the condensing evaporator in the first-stage refrigeration cycle are respectively connected to corresponding ventilation branches.
  • a bypass line is further provided between the gas outlet of the gas-liquid separator and the inlet of the compressor in the first-stage refrigeration cycle, and the bypass line is provided with an expansion vessel and a bypass control Component, the bypass control component is provided on the inlet side and/or outlet side of the expansion vessel.
  • a cryotherapy system including a cryoablation needle, and a pre-cooling device for cryotherapy according to the first aspect and its alternatives connected to the cryoablation needle.
  • the pre-cooling device and the cryotherapy system for cryotherapy provided by the present invention can realize the pre-cooling of multiple different gear temperatures through the single-stage compression self-cascade refrigeration system components with at least three-stage refrigeration cycles. Different needs for different operations and different gases.
  • the present invention can control the pressure at the outlet end of the pressure-adjusting assembly through the pressure-adjusting assembly, and the pressure at the outlet end of the pressure-adjusting assembly and the current pre-cooled ventilation branch Correlation, so that during the pre-cooling of different gears, the ventilation pressure of the device is automatically and timely controlled, and the stability of the pressure is maintained.
  • the ventilation pressure of the device is automatically and timely controlled, and the stability of the pressure is maintained.
  • it can be beneficial to increase the cooling speed by matching the ventilation pressure, and thus to avoid the problem of too long pre-cooling time.
  • the ventilation pressure of the device can be adjusted for different current temperatures and adjustment needs.
  • the pressure at the outlet end of the pressure regulating assembly can be controlled to match the first target pressure information, and when the temperature information reaches the target temperature, the pressure can be controlled to drop to match the second target pressure information Furthermore, it is possible to effectively save gas when the gas meets the required temperature.
  • pre-cooling is also achieved twice by the return air pre-cooling component and the single-stage compression self-cascade refrigeration system component, which can be beneficial to further reduce the cooling temperature and effectively increase the cooling speed.
  • a multi-stage refrigeration cycle is also formed by a gas-liquid separator and a gas condensing evaporator to realize multi-stage refrigeration in a wide temperature range, and can effectively increase the speed of refrigeration, avoiding excessive pre-cooling time problem.
  • FIG. 1 is a schematic structural view of a pre-cooling device for cryotherapy in an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a pre-cooling device for cryotherapy in another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a voltage regulating component in an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a pre-cooling device for cryotherapy in still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a single-stage compression self-cascade refrigeration system component in an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a pre-cooling device for cryotherapy in an embodiment of the present invention.
  • a pre-cooling device for cryotherapy includes an air inlet interface, at least three ventilation branches, a single-stage compression self-cascade refrigeration system component 2 and a pressure regulating component 1, the air inlet interface is connected to all The inlet end of the pressure regulating assembly 1, the outlet ends of the pressure regulating assembly 1 are respectively connected to the inlet ends of the at least three ventilation branches, and the inlet ends of the freezing ablation needle connector 4 of the freezing ablation needle are respectively connected To the outlet end of the at least three ventilation branches.
  • the single-stage compression self-cascade refrigeration system component 2 can be understood as any component that pre-cools the gas flowing in the vent branch by using the single-stage compression self-cascade refrigeration system, which can include at least three-stage refrigeration cycle 200,
  • the refrigeration cycle 200 can be understood as that it can generate a refrigeration effect through the circulation of the working medium.
  • Each refrigeration cycle can be a self-circulation, and each refrigeration cycle can also not form a separate self-cycle, but each refrigeration cycle is combined to form a sustainable
  • the overall cycle, and each refrigeration cycle can refer to a link in the overall cycle where refrigeration occurs.
  • the refrigeration temperature is lower than the refrigeration temperature of the previous refrigeration cycle; therefore, through the multi-stage refrigeration cycle, multiple pre-cooling of different gear temperatures can be achieved, which can meet different operations, different The diverse needs of gas.
  • the following four gears can be adjusted: -20°C, -60°C, -80°C, and -120°C.
  • the four gears can be understood as different boiling points of the working gas, and the significance of distinguishing gears is to match the working gas with different boiling points, so as to realize one machine with multiple functions. It can be seen that different branches can correspond to different temperatures, and at the same time, they can also correspond to different working gases.
  • this embodiment is configured with multiple gear refrigeration cycles, and at the same time can meet the needs of different gases and temperatures by adjusting the gas pressure of a single channel, and realizes the integration of refrigeration of different gases and temperatures.
  • multiple ventilation branches can be connected to the air inlet interface and the pressure regulating assembly 1, and can also be connected to the frozen ablation needle connector 4, it can be seen that the present invention can realize the single channel of gas inlet and outlet, compared with the current In the related art, a multi-channel entry or exit method is used.
  • This embodiment is more compact and compact, and is suitable for the needs of the hospital operating environment.
  • each refrigeration cycle can exchange heat with the gas flowing in the corresponding ventilation branch to pre-cool the gas flowing in the ventilation branch; each of the ventilation branches is provided with a control The branch control unit 3 that opens and closes the ventilation branch.
  • the branch control component 3 may be a single component or a combination of multiple components, and the combination may be, for example, series and/or parallel.
  • the branch control component 3 may include: a solenoid valve and a check valve, and the solenoid valve may be a normally closed solenoid valve.
  • the pressure regulating assembly 1 can be understood as used to control the pressure at the outlet end of the pressure regulating assembly.
  • the pressure at the outlet end of the pressure regulating assembly is associated with the currently pre-cooled ventilation branch, and For at least two ventilation branches, the pressure at the outlet end of the pressure regulating assembly during pre-cooling is different.
  • the pressure regulating component may be specifically used to determine the target pressure information at the outlet end of the pressure regulating component according to the corresponding relationship between the preset ventilation branch and the pressure information after determining the currently precooled ventilation branch And: controlling the pressure of the outlet end of the pressure regulating assembly 1 according to the target pressure information.
  • the above-mentioned corresponding relationship may be pre-configured based on the needs of different gas surgeries and the needs at different temperatures generated therefrom, which may be called in this embodiment.
  • the pressure at the outlet end of the pressure regulating assembly 1 can also be understood as the working pressure, which is related to the ventilation branch of the current circulating gas, that is, how much the working pressure is controlled is based on the current The ventilatory branch of work is determined.
  • the pressure of the outlet end of the pressure regulating assembly 1, that is, the working pressure which is based on which gear of the currently required cooling temperature of cooling decided.
  • the pressure regulation component can control the pressure at the outlet end of the pressure regulation component, and the pressure at the outlet end of the pressure regulation component is the same as the current pre-cooled ventilation branch ⁇ associated. Furthermore, during the pre-cooling of different gears, the ventilation pressure of the device is automatically and timely controlled, and the stability of the pressure is maintained. In addition, through the automatic adjustment of the ventilation pressure, it can help to increase the cooling speed by matching the ventilation pressure, and thus help avoid the problem of too long pre-cooling time.
  • FIG. 2 is a schematic structural diagram of a pre-cooling device for cryotherapy in another embodiment of the present invention.
  • the device further includes a return air pre-cooling assembly
  • the return air pre-cooling assembly includes a return air passage and a return air pre-cooling control part 6 provided in the return air passage, the return air
  • the intake end of the passage is connected to the return end of the freezing ablation needle connector 4, and the gas flowing through the return passage can exchange heat with the gas flowing in the at least three ventilation branches to The gas circulating in the three ventilation branches is pre-cooled.
  • the regenerator 5 can be used to realize the heat exchange.
  • the return air pre-cooling control component 6 can be understood as any component or combination of components that can control whether the return air passage circulates externally. It can be a solenoid valve, specifically a normally open solenoid valve.
  • the gas flowing in the ventilation branch can first perform heat exchange with the gas flowing in the return air path for the first pre-cooling, and then perform heat exchange with the corresponding refrigeration cycle for the first Secondary pre-cooling.
  • the return air passage may be connected to outside air, and further, when the return air pre-cooling control part 6 controls the circulation of the return air passage, the recovered gas may be advantageously discharged to the outside.
  • the recovered gas can be further utilized during discharge to cause heat exchange with the ventilation branch, which can help to further reduce the cooling temperature and effectively increase the cooling speed.
  • the device may further include a first maintenance channel and a second maintenance channel, one end of the first maintenance channel may be connected to the gas outlet of the pressure regulating assembly 1, and the other end may be connected to a cryoablation needle connector 4, the first maintenance path may be provided with a first maintenance control part 7, the second maintenance path may be connected to the intake end of the cryoablation needle connector 4, the second maintenance path may be provided with a second maintenance control part 11.
  • the gas enters the first maintenance path through the pressure regulating assembly 1, then enters the return air end of the freezing ablation needle connector 4, and then enters The frozen ablation needle returns to the gas through the air inlet end, and can be discharged into the second maintenance passage through the air inlet end, and discharged into the air through the passage.
  • the first maintenance channel and the second maintenance channel can be used for gas protection in electric heating rewarming to prevent the electric heating wire from damaging the internal components of the cryoablation needle.
  • the first maintenance control component 7 may include a solenoid valve and a one-way valve
  • the solenoid valve may be a normally closed valve
  • the second maintenance control component 11 may include a solenoid valve
  • the solenoid valve may also be a normally closed valve
  • FIG. 3 is a schematic structural diagram of a voltage regulating component in an embodiment of the invention.
  • 4 is a schematic structural view of a pre-cooling device for cryotherapy in still another embodiment of the present invention.
  • the pressure regulating assembly 1 is specifically used to control the pressure at the outlet end of the pressure regulating assembly 1 according to the first pressure information and/or the second pressure information.
  • the first pressure information may be understood to be used to characterize the pressure of the intake end of the freezing ablation needle connector 4 and may be specifically detected by the first pressure sensor 103 connected to the intake end of the freezing ablation needle connector 4.
  • the second pressure information may be understood to be used to characterize the pressure at the intake end of the pressure regulating assembly 1, and the second pressure sensor 104 at a corresponding position may be specifically used.
  • first pressure information and the second pressure information may be real-time values, or may be data obtained by performing statistics and calculations on the data.
  • Controlling the pressure at the outlet end of the pressure regulating assembly 1 may refer to controlling the pressure to a specific pressure or controlling the pressure within a specific pressure range.
  • the first pressure information and/or the second pressure information can provide the basis for the control of the required working pressure. Based on this information, any control method such as PID control can be used to control, and the control such as PIC controller can also be used. Control. Furthermore, the control of working pressure can be maintained in a timely, effective and accurate manner.
  • the pressure regulating assembly 1 may include a proportional pressure reducing valve 102 and a controller 101, and the intake end of the freezing ablation needle connector 4 is connected for detecting the A first pressure sensor 103 for first pressure information, a second pressure sensor 104 for detecting the second pressure information is connected to the intake end of the proportional pressure reducing valve 102, and an outlet end of the proportional pressure reducing valve 102 is connected There is the third pressure sensor 105.
  • the controller 101 is respectively connected to the first pressure sensor 103, the second pressure sensor 104, and the third pressure sensor 105.
  • the connection can be understood as being capable of communication, that is, including a wired direct connection, a wired indirect connection, Wireless direct connection, wireless indirect connection and many other situations.
  • the controller 101 is used to control the proportional pressure reducing valve 102 according to the information detected by the first pressure sensor 103, the second pressure sensor 104, and the third pressure sensor 105.
  • the specific control method and the factors required for control may be changed according to the description of any implementation manner of this embodiment.
  • the factors used for characterizing the description in the description may include information detected by the above three pressure sensors.
  • the controller may be used to determine the currently pre-cooled ventilation branch, and then determine the target pressure information at the outlet end of the pressure regulating component according to the correspondence between the preset ventilation branch and the pressure information, And: control the pressure at the outlet end of the pressure regulating assembly according to the target pressure information and at least one of the first pressure information, the second pressure information, and the third pressure information mentioned above.
  • the process of determining the currently precooled ventilation branch can be, for example, the controller is connected to the branch control component of each ventilation branch, and further, can send a signal to the controller when the branch control component is turned on and/or off
  • the controller may determine the current pre-cooled ventilation branch according to the received signal.
  • the corresponding vent branch in a control mode, after determining the currently required pre-cooling temperature, the corresponding vent branch can be controlled to circulate, and then, the pressure at the outlet end of the pressure regulating assembly and the pre-cooling can be controlled Temperature or ventilation branch matching, which can be understood as controlling the pressure at the outlet end of the pressure regulating assembly to match the target pressure information corresponding to the currently pre-cooled ventilation branch.
  • the target pressure information may refer to a specific pressure value or a specific pressure range.
  • the target pressure information may be, for example, a pressure value of 1500 PSI or 1200 PSI, and the target pressure information may also be, for example, a pressure range of 500 PSI to 700 PSI.
  • the PSI can be understood as pounds force per square inch.
  • the gas enters the pressure regulating component 1, and the working pressure can be adjusted to about 1500 PSI, and then the gas passes through the regenerator 5, after a pre-cooling, and then enters the single-stage compression self-cascade refrigeration system component again.
  • One of the refrigeration cycles is pre-cooled, which can be pre-cooled to below -120°C, and then enter the freezing ablation needle through the freezing ablation needle connector 4 to achieve a temperature below -150°C.
  • the returned gas passes through the return air end After passing through the regenerator 5 after being heated up, it is discharged into the air. It may correspond to conventional industrial nitrogen or argon.
  • the gas enters the pressure regulating assembly 1, and the working pressure can be adjusted to about 1500 PSI, and then the gas passes through the regenerator 5, and can be pre-cooled once, and then enters the single-stage compression self-cascade refrigeration system assembly again to be
  • the other refrigeration cycle is pre-cooled again, which can be pre-cooled to below -60 °C, and then enter the frozen ablation needle through the frozen ablation needle connector 4 to achieve a temperature below -80 °C, and the returned gas passes back
  • the gas end flows through the regenerator 5 and is discharged into the air after being heated. It can also correspond to high-pressure argon gas or conventional nitrous oxide.
  • the gas enters the pressure regulating component 1, and the working pressure can be adjusted to about 500PS-700PSI, and then the gas passes through the regenerator 5, and can be pre-cooled once, and then enters the single-stage compression self-cascade refrigeration system component again.
  • the secondary pre-cooling is performed by another refrigeration cycle, which can be pre-cooled to below -20 °C, and then enter the frozen ablation needle through the frozen ablation needle connector 4 to achieve a temperature below -40 °C, the returned gas It flows through the regenerator 5 through the return air end and is discharged into the air after being heated up. It may correspond to conventional carbon dioxide or nitrous oxide.
  • the pressure regulating assembly 1 is specifically used to control the pressure at the outlet end of the pressure regulating assembly 1 according to the temperature information and the currently precooled ventilation branch.
  • the temperature information may include the first temperature information and/or the second temperature information, and the first temperature information may be understood to be used to characterize the temperature of the ventilation branch, which may be provided on each ventilation branch Measured by the first temperature sensor 106 of the circuit, the second temperature information can be understood to be used to characterize the temperature of the intake end of the freezing ablation needle connector 4, which can be Two temperature sensor 107 measured. In addition, the temperature of the return end of the cryoablation needle connector 4 can also be measured by the third temperature sensor 108.
  • the first temperature information is specifically used to characterize the temperature of the gas in the ventilation branch after being cooled by the corresponding refrigeration cycle; in addition, the first temperature sensor 106 that detects the first temperature information may be provided in FIG. 4
  • the front-end side of the single-stage compression self-cascade refrigeration system assembly 2 shown in the corresponding refrigeration cycle may also be provided on the rear-end side to detect the temperature after cooling, that is, the first temperature information.
  • the pressure regulating component is further used to control the pressure regulating according to the change of the first temperature information after the second temperature information satisfies the required temperature and the outlet pressure of the pressure regulating component meets the target pressure The pressure at the outlet end of the pressure component changes, and the second temperature information is maintained to meet the required temperature.
  • the change in pressure may be, for example, when the first temperature information decreases, the pressure may be reduced, and when the first temperature information becomes higher, the pressure may be increased.
  • the pressure regulating component 1 is specifically used to control the pressure and current of the outlet end of the pressure regulating component 1 when the temperature information does not reach the preset target temperature in a control mode
  • the first target pressure information corresponding to the pre-cooled ventilation branch matches, and after the temperature information reaches the target temperature and maintains the preset target duration, the pressure drop at the outlet end of the pressure regulating assembly 1 is controlled to be equal to
  • the second target pressure information corresponding to the currently pre-cooled ventilation branch matches.
  • the first target pressure information and the second target pressure information may refer to specific pressure values or specific pressure ranges. At the same time, the pressure represented by the second target pressure information needs to be lower than the first target pressure information.
  • the pressure value characterized by the second target pressure information needs to be lower than the pressure value characterized by the first target pressure information.
  • the upper limit value of the pressure range characterized by the second target pressure information may be lower than the pressure value characterized by the first target pressure information.
  • the lower limit value of the pressure range characterized by the first target pressure information may be higher than the pressure value characterized by the second target pressure information.
  • the lower limit of the pressure range characterized by the first target pressure information may be higher than that characterized by the second target pressure information
  • the upper limit of the pressure range it may also indicate that the statistical value of the pressure range characterized by the first target pressure information, such as the average value, may be higher than the statistical value of the pressure range characterized by the second target pressure information, such as the average value.
  • the above control mode can be understood as a gas-saving mode.
  • the target temperature can be understood as the lowest temperature of -150°C, for example, the target duration can be 3 minutes.
  • the gas enters the pressure regulating assembly 1 and the working pressure can be adjusted to about 1500 PSI. Then, the gas passes through the regenerator 5 After a pre-cooling, enter the single-stage compression self-cascade refrigeration system components for a second pre-cooling, and then enter the freezing ablation needle through the freezing ablation needle connector 4, at this time the needle begins to cool down, when the temperature reaches the lowest temperature (such as -150 °C ), and after maintaining for 3 minutes, the controller of the pressure regulating component 1 can slowly reduce the working pressure of the system in the automatic control gas saving mode, for example, to 1200 PSI, the gas flow of the system is reduced, but the needle temperature The minimum temperature can still be maintained. This operation has little effect on the cooling capacity of the needle, and can save gas consumption.
  • this embodiment can combine the change of temperature information, and can adjust the ventilation pressure of the device according to different current temperatures and adjustment needs. Further, when the temperature information does not reach the target temperature, the pressure at the outlet end of the pressure regulating assembly can be controlled to match the first target pressure information, and when the temperature information reaches the target temperature, the pressure can be controlled to drop to match the second target pressure information Furthermore, it is possible to effectively save gas when the gas meets the required temperature.
  • the pressure regulating assembly 1 can also control the pressure according to the pressure value detected by the first pressure sensor 103 and the third pressure sensor 104 to ensure that the pressure difference is within a safe range.
  • FIG. 5 is a schematic structural diagram of a single-stage compression self-cascade refrigeration system component in an embodiment of the present invention.
  • the working fluid used for pre-cooling in each refrigeration cycle is after the cooling of the working fluid used for pre-cooling in the previous refrigeration cycle owned.
  • each refrigeration cycle is provided with a condensing evaporator 202 and a gas-liquid separator 201.
  • the at least part of the refrigeration cycle may be all of the at least three refrigeration cycles except for the last-stage refrigeration cycle, or may be the at least three refrigeration cycles except for the first-stage refrigeration cycle and the last-stage refrigeration cycle. All refrigeration cycles can also be all refrigeration cycles.
  • the gas-liquid separator 201 in each refrigeration cycle is used to perform gas-liquid gas discharge from the gas-liquid separator 201 in the previous refrigeration cycle Separation to implement the temperature reduction; the condensing evaporator 202 in each refrigeration cycle is used to control the gaseous working fluid discharged from the gas-liquid separator 201 in the refrigeration cycle, the gas flowing in the corresponding vent branch, and the refrigeration cycle Heat exchange occurs between the liquid working fluid discharged from the gas-liquid separator 201, and furthermore, the gas working fluid discharged from the gas-liquid separator 201 can be beneficial to reduce the temperature of the gas flowing in the corresponding vent branch and to the refrigeration cycle.
  • the liquid working fluid discharged from the gas-liquid separator 201 is cooled, and further, the liquid working fluid discharged from the gas-liquid separator 201 may be evaporated into a gas working fluid.
  • a multi-stage refrigeration cycle is formed by a gas-liquid separator and a gas condensing evaporator, which realizes multi-stage refrigeration in a wide temperature range, and can effectively increase the speed of refrigeration and avoid the problem of too long pre-cooling time.
  • the gas and liquid can be separated by a gas-liquid separator, and then the mixed working fluid is driven to flow in the condensing evaporator by throttling refrigeration, to achieve an ultra-low temperature from the evaporation temperature of the conventional refrigeration cycle of -40 °C to -180 °C Wide temperature zone.
  • different pre-cooling temperatures can be achieved according to the temperature difference of different stages of heat exchangers.
  • the first-stage refrigeration cycle is provided with a compressor 204, a condenser 205, a condensing evaporator 202, and a gas-liquid separator 201; the last-stage refrigeration cycle of the at least three-stage refrigeration cycle Evaporator 203 is provided.
  • the first input end and the first output end of the evaporator 203 are connected to their corresponding ventilation branches, and the second input end of the evaporator 203 is connected to the gas-liquid separator in the previous refrigeration cycle At the gas outlet of 201, the second output end of the evaporator 203 is connected to the first inlet of the condensing evaporator 202 in the previous refrigeration cycle.
  • the inlet of the gas-liquid separator 201 in each refrigeration cycle is connected to the second outlet of the condensing evaporator 201 in the previous refrigeration cycle, each stage
  • the gas outlet of the gas-liquid separator 201 in the refrigeration cycle is connected to the second inlet of the condensation evaporator 202 in the refrigeration cycle;
  • the liquid outlet of the gas-liquid separator 201 in each refrigeration cycle is connected to the condensation and evaporation in the refrigeration cycle
  • the first inlet of the evaporator 202, the first outlet of the condensing evaporator 202 in each refrigeration cycle is connected to the first inlet of the condensing evaporator 202 in the previous refrigeration cycle;
  • the third inlet and the third outlet are respectively connected to corresponding ventilation branches.
  • the outlet of the compressor 204 communicates with the inlet of the condenser 205, and the outlet of the condenser 205 communicates with the inlet of the gas-liquid separator 201 in the first-stage refrigeration cycle, in the first-stage refrigeration cycle
  • the liquid outlet of the gas-liquid separator 201 is connected to the first inlet of the condensing evaporator 202 in the refrigeration cycle, and the gas outlet of the gas-liquid separator 201 in the first-stage refrigeration cycle is connected to the condensing evaporator 202 of the refrigeration cycle.
  • the second inlet, the first outlet of the condensing evaporator 202 in the first-stage refrigeration cycle communicates with the inlet of the compressor 204, the third inlet and the third inlet of the condensing evaporator 202 in the first-stage refrigeration cycle
  • the outlets are connected to the corresponding ventilation branches.
  • each condensing evaporator 202 can be understood by referring to the pair of inlets and outlets drawn at the bottom of the condensing evaporator 202, and the second The inlet and the second outlet can be understood by referring to the pair of inlets and outlets shown on the top of the condensing evaporator 202, and the third inlet and the third outlet of each condensing evaporator 202 can be understood by referring to the illustrated condensing evaporator A pair of imports and exports in the middle of 202 paintings.
  • a multi-stage single-stage compression self-cascade refrigeration system can be realized, which can effectively improve the efficiency of cooling while reducing the cooling of the required temperature while satisfying multi-speed cooling.
  • a bypass line is further provided between the gas outlet of the gas-liquid separator 201 and the inlet of the compressor 204 in the first-stage refrigeration cycle, and the bypass line is provided with an expansion vessel 206 With the bypass control member 207, the bypass control member 207 is provided on the inlet side and/or outlet side of the expansion vessel 206.
  • the bypass control member 207 is provided on the inlet side of the expansion vessel 206, and the condition of the evaporation pressure can be achieved by opening and closing the bypass control member 207.
  • bypass control component 207 may be a solenoid valve.
  • the bypass line may further be provided with a capillary 208, and the capillary 208 may be provided on the outlet side of the expansion vessel 206.
  • a drying filter 209 may be further provided between the condenser 205 and the inlet of the gas-liquid separator 201 of the first-stage refrigeration cycle.
  • a throttle valve may be provided on the liquid outlet side of each gas-liquid separator 201.
  • a main control part 9 and a drying filter 10 may be further provided between the air inlet port 8 and the pressure regulating assembly 1.
  • the main control part 9 may be a solenoid valve, specifically It can be a normally closed solenoid valve.
  • This embodiment also provides a cryotherapy system, including a cryoablation needle, and a pre-chilling device for cryotherapy related to the above alternative solution connected to the cryoablation needle.
  • the pre-cooling device and cryotherapy system for cryotherapy provided by this embodiment can realize multiple different gear temperatures through the single-stage compression self-cascade refrigeration system components with at least three-stage refrigeration cycles. Pre-cooling, which can meet the diverse needs of different operations and different gases.
  • the present invention can control the pressure of the outlet end of the pressure-adjusting assembly according to the currently pre-cooled ventilation branch through the pressure regulating assembly, and then during the pre-cooling of different gears , Automatically and timely control the ventilation pressure of the device, and maintain the stability of the pressure.
  • the automatic adjustment of the ventilation pressure it can be beneficial to increase the cooling speed by matching the ventilation pressure, and thus to avoid the problem of too long pre-cooling time.
  • the ventilation pressure of the device may be adjusted for different current temperatures and adjustment needs.
  • the pressure at the outlet end of the pressure regulating assembly can be controlled to match the first target pressure information, and when the temperature information reaches the target temperature, the pressure can be controlled to drop to match the second target pressure information Furthermore, it is possible to effectively save gas when the gas meets the required temperature.
  • pre-cooling is also achieved twice through the return air pre-cooling component and the single-stage compression self-cascade refrigeration system component, which can be beneficial to further reduce the cooling temperature and effectively increase the cooling speed.
  • a multi-stage refrigeration cycle is also formed by a gas-liquid separator and a gas condensing evaporator to realize multi-stage refrigeration in a wide temperature range, and can effectively increase the speed of refrigeration and avoid excessive pre-cooling time The problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种用于冷冻治疗的预冷装置与冷冻治疗系统,该装置包括进气接口(8)、至少三个通气支路、单级压缩自复叠制冷系统组件(2)与调压组件(1),单级压缩自复叠制冷系统组件(2)包括至少三级制冷循环(200);每个制冷循环(200)均能够与对应的通气支路中流通的气体发生热交换,以对该通气支路中流通的气体进行预冷;调压组件(1)用于控制调压组件(1)的出气端的压力,调压组件(1)的出气端的压力与当前所预冷的通气支路相关联。

Description

用于冷冻治疗的预冷装置与冷冻治疗系统 技术领域
本发明涉及医疗领域,尤其涉及一种用于冷冻治疗的预冷装置与冷冻治疗系统。
背景技术
冷冻消融术作为微创靶向手术以创伤小、毒副作用小、疗效确切的特点,而且还具有消融冰球边界清楚、参与激活机体肿瘤免疫功能、不损伤大血管、没有明显疼痛等优势,使肿瘤的超低温靶向冷冻和热疗成为现实。近年来,冷冻手术已广泛应用于对转移性肝癌、前列腺癌、肾癌等的治疗。其中,可以使用氦气,也可以使用例如5~10MPa的常温高压氮气的氮气作为手术工作气体。
在公开号为CN107951558A与CN106420039 A的专利中,为了实现气体的多功能预冷,可以通过多档位的控制满足多样的预冷需求,然而,预冷的气体压力通常通过手动设置,且需要多种减压阀来调节不同的压力,进而不利于实现针对性的及时、稳定的调节。
发明内容
本发明提供一种用于冷冻治疗的预冷装置与冷冻治疗系统,以解决预冷的气体压力通常通过手动设置,且需要多种减压阀来调节不同的压力,进而不利于实现针对性的及时、稳定的调节的问题。
根据本发明的第一方面,提供了一种用于冷冻治疗的预冷装置,包括进气接口、至少三个通气支路、单级压缩自复叠制冷系统组件与调压组件,所述进气接口连通至所述调压组件的进气端,所述调压组件的出气端分别连通至所述至少三个通气支路的进气端,冷冻消融针的冷冻消融针接头的进气端分别连通至所述至少三个通气支路的出气端;
所述单级压缩自复叠制冷系统组件包括至少三级制冷循环,对于其中的 至少部分制冷循环,其制冷温度低于其上一级制冷循环的制冷温度;
每个制冷循环均能够与对应的通气支路中流通的气体发生热交换,以对该通气支路中流通的气体进行预冷;每个所述通气支路均设有控制该通气支路通断的支路控制部件;
所述调压组件用于控制所述调压组件的出气端的压力,所述调压组件的出气端的压力与当前所预冷的通气支路相关联,且针对于至少两个通气支路,预冷时的所述调压组件的出气端的压力是不同的。
可选的,所述调压组件再进一步用于在所述第二温度信息满足所需温度,且所述调压组件的出气端压力满足目标压力时,根据所述第一温度信息的变化,控制所述调压组件的出气端的压力发生改变,并保持所述第二温度信息满足所述所需温度。
可选的,所述调压组件具体用于根据第一压力信息和/或第二压力信息,控制所述调压组件的出气端的压力;所述第一压力信息用于表征所述冷冻消融针接头进气端的压力,所述第二压力信息用于表征所述调压组件的进气端的压力。
可选的,所述调压组件包括比例减压阀与控制器,所述冷冻消融针接头的进气端连接有用于检测所述第一压力信息的第一压力传感器,所述比例减压阀的进气端连接有用于检测所述第二压力信息的第二压力传感器,所述比例减压阀的出气端连接有第三压力传感器;
所述控制器分别连接所述第一压力传感器、所述第二压力传感器与所述第三压力传感器,用于根据所述第一压力传感器、所述第二压力传感器与所述第三压力传感器检测到的信息,控制所述比例减压阀。
可选的,所述调压组件进一步用于根据温度信息,控制所述调压组件的出气端的压力,所述温度信息包括第一温度信息和/或第二温度信息,所述第一温度信息用于表征所述通气支路的温度,所述第二温度信息用于表征所述冷冻消融针接头的进气端的温度。
可选的,所述第一温度信息具体用于表征所述通气支路中经对应的所述制冷循环制冷后的气体的温度;
所述调压组件再进一步用于在所述第二温度信息满足所需温度,且所述调压组件的出气端压力满足目标压力之后,根据所述第一温度信息的变化, 控制所述调压组件的出气端的压力发生改变,并保持所述第二温度信息满足所述所需温度。
可选的,所述调压组件再进一步用于在一种控制模式下,在所述温度信息未达到预设的目标温度时,控制所述调压组件的出气端的压力与当前所预冷的通气支路对应的第一目标压力信息匹配,在所述温度信息达到所述目标温度且维持了预设的目标时长后,控制所述调压组件的出气端的压力下降为与当前所预冷的通气支路对应的第二目标压力信息匹配。
可选的,还包括回气预冷组件,所述回气预冷组件包括回气通路和设于所述回气通路的回气预冷控制部件,所述回气通路的进气端连通至所述冷冻消融针接头的回气端,所述回气通路流通的气体能够与所述至少三个通气支路中流通的气体发生热交换,以对所述至少三个通气支路中流通的气体进行预冷。
可选的,所述通气支路中流通的气体能够先与所述回气通路流通的气体发生热交换,以进行第一次预冷,再与对应的制冷循环发生热交换,以进行第二次预冷。
可选的,所述至少部分制冷循环中,每个制冷循环中用于进行预冷的工质均是通过对上一级制冷循环中用于进行预冷的工质实施降温后得到的。
可选的,所述至少部分制冷循环中,每个制冷循环中均设有冷凝蒸发器与气液分离器;
除了所述至少三级制冷循环中的第一级制冷循环,每个制冷循环中的气液分离器均用于对上一级制冷循环中气液分离器排出的气体工质进行气液分离,以实施所述降温;每个制冷循环中的冷凝蒸发器均用于控制该制冷循环中气液分离器排出的气体工质、对应通气支路中流通的气体,以及该制冷循环中气液分离器排出的液体工质之间发生热交换。
可选的,所述第一级制冷循环中设有压缩机、冷凝器、冷凝蒸发器与气液分离器;所述至少三级制冷循环中的最后一级制冷循环设有蒸发器;
所述蒸发器的第一输入端与第一输出端接入其对应的通气支路,所述蒸发器的第二输入端连接上一级制冷循环中气液分离器的气体出口,所述蒸发器的第二输出端连接上一级制冷循环中冷凝蒸发器的第一进口;
除了所述第一级制冷循环与所述最后一级制冷循环,每一级制冷循环中 气液分离器的进口均连通至上一级制冷循环中冷凝蒸发器的第二出口,每一级制冷循环中气液分离器的气体出口均连通至该制冷循环中冷凝蒸发器的第二进口;每一级制冷循环中气液分离器的液体出口均连通至该制冷循环中冷凝蒸发器的第一进口,每一级制冷循环中冷凝蒸发器的第一出口均连通至上一级制冷循环中冷凝蒸发器的第一进口;每一级制冷循环中的冷凝蒸发器的第三进口与第三出口分别接入对应的通气支路;
所述压缩机的出口连通至所述冷凝器的进口,所述冷凝器的出口连通至所述第一级制冷循环中气液分离器的进口,所述第一级制冷循环中气液分离器的液体出口连通至该制冷循环中冷凝蒸发器的第一进口,所述第一级制冷循环中气液分离器的气体出口连通至该制冷循环中冷凝蒸发器的第二进口,所述第一级制冷循环中冷凝蒸发器的第一出口连通至所述压缩机的进口,所述第一级制冷循环中的冷凝蒸发器的第三进口与第三出口分别接入对应的通气支路。
可选的,所述第一级制冷循环中气液分离器的气体出口与所述压缩机的进口之间还设有旁通管路,所述旁通管路设有膨胀容器与旁通控制部件,所述旁通控制部件设于所述膨胀容器的进口一侧和/或出口一侧。
根据本发明的第二方面,提供了一种冷冻治疗系统,包括冷冻消融针,以及连通至所述冷冻消融针的第一方面及其可选方案涉及的用于冷冻治疗的预冷装置。
本发明提供的用于冷冻治疗的预冷装置与冷冻治疗系统,通过具有至少三级制冷循环的单级压缩自复叠制冷系统组件,可实现多个不同档位温度的预冷,其可满足不同手术、不同气体的多样需求。
同时,针对于不同档位温度的预冷,本发明通过调压组件,可以控制所述调压组件的出气端的压力,且所述调压组件的出气端的压力与当前所预冷的通气支路相关联,进而在不同档位的预冷时,自动、及时地控制装置的通气压力,并保持压力的稳定性。此外,通过通气压力的自动调节,可有利于通过匹配的通气压力提高制冷的速度,进而有利于避免预冷时间过长的问题。
本发明可选方案中,进一步结合温度信息的变化,可针对于不同当前温度与调节需求,调节装置的通气压力。
进一步的,可在温度信息未达到目标温度时,控制所述调压组件的出气 端的压力匹配第一目标压力信息,在温度信息到达目标温度时,控制该压力下降至与第二目标压力信息匹配,进而,可以在满足所需温度的气体的情况下,有效节省气体。
本发明可选方案中,还通过回气预冷组件与单级压缩自复叠制冷系统组件实现两次的预冷,进而可有利于进一步降低制冷温度,以及有效提高制冷的速度。
本发明可选方案中,还通过气液分离器,以及气冷凝蒸发器形成多级的制冷循环,实现广阔温区的多级制冷,且能够有效提高制冷的速度,避免预冷时间过长的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中用于冷冻治疗的预冷装置的结构示意图;
图2是本发明另一实施例中用于冷冻治疗的预冷装置的结构示意图;
图3是本发明一实施例中调压组件的结构示意图;
图4是本发明再一实施例中用于冷冻治疗的预冷装置的结构示意图;
图5是本发明一实施例中单级压缩自复叠制冷系统组件的结构示意图。
附图标记说明:
1-调压组件;
101-控制器;
102比例减压阀;
103-第一压力传感器;
104-第二压力传感器;
105-第三压力传感器;
106-第一温度传感器;
107-第二温度传感器;
108-第三温度传感器;
2-单级压缩自复叠制冷系统组件;
200-制冷循环;
201-气液分离器;
202-冷凝蒸发器;
203-蒸发器;
204-压缩机;
205-冷凝器;
206-膨胀容器;
207-旁通控制部件;
208-毛细管;
209-干燥过滤器;
3-支路控制部件;
4-冷冻消融针接头;
5-回热器;
6-回气预冷控制部件;
7-第一维护控制部件;
8-进气接口;
9-总控制部件;
10-干燥过滤器;
11-第二维护控制部件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些 以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本发明一实施例中用于冷冻治疗的预冷装置的结构示意图。
请参考图1,用于冷冻治疗的预冷装置,包括进气接口、至少三个通气支路、单级压缩自复叠制冷系统组件2与调压组件1,所述进气接口连通至所述调压组件1的进气端,所述调压组件1的出气端分别连通至所述至少三个通气支路的进气端,冷冻消融针的冷冻消融针接头4的进气端分别连通至所述至少三个通气支路的出气端。
单级压缩自复叠制冷系统组件2,可以理解为利用单级压缩自复叠制冷系统的方式对通气支路中流通的气体进行预冷的任意组件,其可以包括至少三级制冷循环200,该制冷循环200可理解为其可通过工质的循环流通产生制冷作用,每个制冷循环可以为自循环,各制冷循环各自也可不形成单独的自循环,而是各制冷循环组合形成一个可持续的整体循环,而每个制冷循环可以指整体循环中一个发生制冷的环节。
对于其中的至少部分制冷循环,其制冷温度低于其上一级制冷循环的制冷温度;故而,通过多级制冷循环,可实现多个不同档位温度的预冷,其可满足不同手术、不同气体的多样需求。例如,可以实现以下四档位的调节:-20℃,-60℃,-80℃,-120℃。该四个档位可理解为工作气体的不同沸点,区分档位的意义在于匹配不同沸点的工作气体,从而实现一机多用多功能。可见,不同的支路可对应于不同的温度,同时,其也可对应于不同的工作气体。
故而,本实施例配置了多个档位的制冷循环,同时能够通过单通道气体压力的调节,满足不同气体、温度的需求,实现了不同气体、温度制冷的整合。
本实施例中,多个通气支路可以接入进气接口与调压组件1,也可接出冷冻消融针接头4,可见,本发明可实现单通道的气体进入与排出,相较于现有相关技术中利用多通道进入或排出的方式,本实施例更紧凑小巧,适合医院手术环境的需求。
本实施例中,每个制冷循环均能够与对应的通气支路中流通的气体发生热交换,以对该通气支路中流通的气体进行预冷;每个所述通气支路均设有控制该通气支路通断的支路控制部件3。该支路控制部件3可以是单个部件,也可以是多个部件的组合,该组合可例如串联和/或并联。其中一种实施方式中,支路控制部件3可以包括:电磁阀与单向阀,该电磁阀可以是常闭电磁阀。
本实施例中,所述调压组件1,可理解为用于控制所述调压组件的出气端的压力,所述调压组件的出气端的压力与当前所预冷的通气支路相关联,且针对于至少两个通气支路,预冷时的所述调压组件的出气端的压力是不同的。
具体可以为:所述调压组件具体用于在确定当前所预冷的通气支路后,根据预设的通气支路与压力信息的对应关系,确定所述调压组件的出气端的目标压力信息,以及:根据所述目标压力信息控制所述调压组件1的出气端的压力。
以上所涉及的对应关系,可以为基于不同气体手术的需求,以及基于此产生的不同温度下的需求而预先配置的,本实施例可对其进行调用。
本实施例中,调压组件1的出气端的压力,也可理解为工作压力,该工作压力是与当前流通气体的通气支路相关联的,即,该工作压力控制为多少,是以当前所工作的通气支路是哪个来决定的。其中,由于不同的通气支路对应于不同的制冷温度,故而,也可理解为调压组件1的出气端的压力,即工作压力为多少,是以当前所需制冷的制冷温度是哪个档位来决定的。
可见,针对于不同档位温度的预冷,本实施例通过调压组件,可以控制所述调压组件的出气端的压力,且所述调压组件的出气端的压力与当前所预冷的通气支路相关联。进而在不同档位的预冷时,自动、及时地控制装置的通气压力,并保持压力的稳定性。此外,通过通气压力的自动调节,可有利于通过匹配的通气压力提高制冷的速度,进而有利于避免预冷时间过长的问 题。
图2是本发明另一实施例中用于冷冻治疗的预冷装置的结构示意图。
请参考图2,所述的装置,还包括回气预冷组件,所述回气预冷组件包括回气通路和设于所述回气通路的回气预冷控制部件6,所述回气通路的进气端连通至所述冷冻消融针接头4的回气端,所述回气通路流通的气体能够与所述至少三个通气支路中流通的气体发生热交换,以对所述至少三个通气支路中流通的气体进行预冷。具体实施过程中,可利用回热器5实现该热交换。
其中,回气预冷控制部件6,可理解为能够控制该回气通路是否对外流通的任意部件或者部件的组合。其可以为电磁阀,具体可以为常开电磁阀。
具体实施过程中,所述通气支路中流通的气体能够先与所述回气通路流通的气体发生热交换,以进行第一次预冷,再与对应的制冷循环发生热交换,以进行第二次预冷。此外,回气通路可连接外部空气,进而,在回气预冷控制部件6控制回气通路流通时,可有利于回收的气体对外排出。
同时,在排出时可将该回收的气体进一步利用起来,使其与通气支路发生热交换,从而可有利于进一步降低制冷温度,以及有效提高制冷的速度。
其中一种实施方式中,所述的装置还可包括第一维护通路与第二维护通路,第一维护通路的一端可连接所述调压组件1的出气端,另一端可连接冷冻消融针接头4的回气端,第一维护通路可设有第一维护控制部件7,第二维护通路可连接于冷冻消融针接头4的进气端,该第二维护通路可设有第二维护控制部件11。
进而,通过第一维护控制部件7与第二维护控制部件11的控制,可实现:气体经调压组件1进入第一维护通路,然后进入到冷冻消融针接头4的回气端,进而进入到冷冻消融针,冷冻消融针再通过进气端返回该气体,具体可通过进气端排入到第二维护通路,并经该通路排入空气中。该第一维护通路与第二维护通路可以用于电加热复温中的气体保护,防止电加热丝损坏冷冻消融针内部组件。
具体实施过程中,第一维护控制部件7可以包括电磁阀和单向阀,该电磁阀可以为常闭阀,第二维护控制部件11可以包括电磁阀,该电磁阀也可以为常闭阀。
图3是本发明一实施例中调压组件的结构示意图。图4是本发明再一实施例中用于冷冻治疗的预冷装置的结构示意图。
请参考图3和图4,所述调压组件1具体用于根据所述第一压力信息和/或第二压力信息,控制所述调压组件1的出气端的压力。
第一压力信息,可以理解为用于表征所述冷冻消融针接头4进气端的压力,具体可以利用连接于冷冻消融针接头4进气端的第一压力传感器103检测到。
第二压力信息,可以理解为用于表征所述调压组件1的进气端的压力,具体可以利用对应位置的第二压力传感器104。
此外,第一压力信息与第二压力信息,可以为实时的数值,也可以为对数据进行统计、计算后得到的数据。
控制调压组件1的出气端的压力,可以指将该压力控制为某一特定的压力,也可以指将该压力控制在某一特定的压力范围内。
通过第一压力信息和/或第二压力信息,可以为所需的工作压力的控制提供依据,基于这些信息,可利用任意例如PID控制的控制方式进行控制,还可利用例如PIC控制器的控制器进行控制。进而,可以及时、有效、准确地保持工作压力的控制。
其中一种实施方式中,请参考图3和图4,所述调压组件1可以包括比例减压阀102与控制器101,所述冷冻消融针接头4的进气端连接有用于检测所述第一压力信息的第一压力传感器103,所述比例减压阀102的进气端连接有用于检测所述第二压力信息的第二压力传感器104,所述比例减压阀102的出气端连接有第三压力传感器105。
所述控制器101分别连接所述第一压力传感器103、所述第二压力传感器104与所述第三压力传感器105,该连接可理解为能够通讯,即可包含有线直接连接、有线间接连接、无线直接连接、无线间接连接等多种情况。该控制器101用于根据所述第一压力传感器103、所述第二压力传感器104与所述第三压力传感器105检测到的信息,控制所述比例减压阀102。其具体控制方式以及控制所需考量的因素可以根据本实施例任意实施方式的描述进行变化,该描述用于表征其所考量的因素可以包括以上三个压力传感器检测到的信息。
具体实施过程中,所述控制器可以用于确定当前所预冷的通气支路,再根据预设的通气支路与压力信息的对应关系,确定所述调压组件的出气端的目标压力信息,以及:根据所述目标压力信息,以及以上所涉及的第一压力信息、第二压力信息、第三压力信息中至少之一,控制所述调压组件的出气端的压力。
其中,确定当前所预冷的通气支路的过程,可例如,该控制器连接各通气支路的支路控制部件,进而,能在支路控制部件通和/或断时向控制器发送信号,进而,控制器可根据所收到的信号确定当前预冷的通气支路。
基于不同的控制算法,对压力传感器检测到的信息进行计算的方式也可以是多样的,此外,部分信息也可非用于直接控制,还可用于对控制的结果进行调整、验证等。可见,不论哪种对检测到信息进行应用的方式,均不脱离本实施例描述的范围。
其中一种实施方式中,在一种控制模式下,可在确定当前所需的预冷温度后,控制对应的通气支路流通,进而,控制所述调压组件的出气端的压力与该预冷温度或通气支路匹配,其可理解为控制所述调压组件的出气端的压力与当前所预冷的通气支路对应的目标压力信息匹配。
该目标压力信息可以指特定的压力值,也可以为特定的压力范围。
具体实施过程中,目标压力信息可以例如1500PSI、1200PSI的压力值,目标压力信息也可以例如500PS~700PSI的压力范围。其中的PSI可理解为磅力/平方英寸。
具体举例中,使用常规的氮气或者氩气气源作为工作气体时,结合以上所涉及的两次预冷,可在超低温预冷的控制模式下,实现不同的超低温预冷。
一种举例中,气体进入调压组件1,可将工作压力调整为1500PSI左右,然后气体经过回热器5,可进行一次预冷后再次进入单级压缩自复叠制冷系统组件,以被其中的一个制冷循环进行二次预冷,进而可以预冷到-120℃以下,然后通过冷冻消融针接头4进入冷冻消融针,可以实现刀头-150℃以下的温度,返回的气体通过回气端流经回热器5经过升温后排放至空气中。其可对应于常规的工业氮气或者氩气。
另一种举例中,气体进入调压组件1,可将工作压力调整为1500PSI左右,然后气体经过回热器5,可进行一次预冷后再次进入单级压缩自复叠制冷系 统组件,以被其中的另一个制冷循环进行二次预冷,进而可以预冷到-60℃以下,然后通过冷冻消融针接头4进入冷冻消融针,可以实现刀头-80℃以下的温度,返回的气体通过回气端流经回热器5经过升温后排放至空气中。其也可对应于高压的氩气或者常规的一氧化二氮。
再一种举例中,气体进入调压组件1,可将工作压力调整为500PS~700PSI左右,然后气体经过回热器5,可进行一次预冷后再次进入单级压缩自复叠制冷系统组件,以被其中的再一个制冷循环进行二次预冷,进而可以预冷到-20℃以下,然后通过冷冻消融针接头4进入冷冻消融针,可以实现刀头-40℃以下的温度,返回的气体通过回气端流经回热器5经过升温后排放至空气中。其可对应于常规的二氧化碳或者一氧化二氮。
其中一种实施方式中,所述调压组件1具体用于根据温度信息,以及当前所预冷的通气支路,控制所述调压组件1的出气端的压力。
温度信息,可以包括所述第一温度信息和/或所述第二温度信息,所述第一温度信息可以理解为用于表征所述通气支路的温度,其可利用设于每个通气支路的第一温度传感器106测得,所述第二温度信息可理解为用于表征所述冷冻消融针接头4的进气端的温度,其可利用设于冷冻消融针接头4的进气端的第二温度传感器107测得。此外,还可利用第三温度传感器108测得冷冻消融针接头4的回气端的温度。
结合温度信息的控制,可为控制的实施提供更多样的依据,保障控制是满足当前的温度情况的。
所述第一温度信息具体用于表征所述通气支路中经对应的所述制冷循环制冷后的气体的温度;进而,检测第一温度信息的第一温度传感器106除了可以设置于图4所示的单级压缩自复叠制冷系统组件2中对应制冷循环的前端一侧,也可设置于其后端一侧,以检测到制冷后的温度,即第一温度信息。
所述调压组件再进一步用于在所述第二温度信息满足所需温度,且所述调压组件的出气端压力满足目标压力之后,根据所述第一温度信息的变化,控制所述调压组件的出气端的压力发生改变,并保持所述第二温度信息满足所述所需温度。
其中压力的改变,可以例如:第一温度信息降低时可降低压力,第一温度信息变高时可提高压力。
其中一种实施方式中,所述调压组件1具体用于在一种控制模式下,在所述温度信息未达到预设的目标温度时,控制所述调压组件1的出气端的压力与当前所预冷的通气支路对应的第一目标压力信息匹配,在所述温度信息达到所述目标温度且维持了预设的目标时长后,控制所述调压组件1的出气端的压力下降为与当前所预冷的通气支路对应的第二目标压力信息匹配。
其中的第一目标压力信息与第二目标压力信息,可以指具体的压力值,也可以指具体的压力范围,同时,第二目标压力信息所表征的压力需低于第一目标压力信息。
若两者均表征压力值,则第二目标压力信息所表征的压力值需低于第一目标压力信息所表征的压力值。
若第一目标压力信息表征压力值,第二目标压力信息表征压力范围,则第二目标压力信息表征的压力范围的上限值可低于第一目标压力信息表征的压力值。
若第一目标压力信息表征压力范围,第二目标压力信息表征压力值,则第一目标压力信息表征的压力范围的下限值可高于第二目标压力信息表征的压力值。
若第一目标压力信息与第二目标压力信息均表征压力范围,则一种具体实施过程中,第一目标压力信息所表征的压力范围的下限值可高于第二目标压力信息所表征的压力范围的上限值。其他具体实施过程中,也可表示第一目标压力信息所表征的压力范围的例如平均值的统计值可高于第二目标压力信息所表征的压力范围的例如平均值的统计值。
以上控制模式,可理解为一种省气模式。
该目标温度可理解为例如-150℃的最低温,目标时长可例如3分钟,具体举例中,气体进入调压组件1,可将工作压力调整为1500PSI左右,然后气体经过回热器5,可进行一次预冷后再次进入单级压缩自复叠制冷系统组件进行二次预冷,然后通过冷冻消融针接头4进入冷冻消融针,此时针头开始降温,当温度达到最低温(如-150℃)、且维持3分钟后,调压组件1的控制器可在自动控制的省气模式下,慢慢的降低系统的工作压力,例如降低至1200PSI,系统的气体流量有所降低,但针头温度仍能维持最低温度,如此操作,对针头的冷量影响较小,而且可以节约气体耗气量。
可见,本实施方式可以结合温度信息的变化,可针对于不同当前温度与调节需求,调节装置的通气压力。进一步的,可在温度信息未达到目标温度时,控制所述调压组件的出气端的压力匹配第一目标压力信息,在温度信息到达目标温度时,控制该压力下降至与第二目标压力信息匹配,进而,可以在满足所需温度的气体的情况下,有效节省气体。
此外,调压组件1还可根据第一压力传感器103与第三压力传感器104检测到的压力值的压力值控制压力,保障该压力差处于安全范围。
图5是本发明一实施例中单级压缩自复叠制冷系统组件的结构示意图。
请参考图4和图5,所述至少部分制冷循环中,每个制冷循环中用于进行预冷的工质均是通过对上一级制冷循环中用于进行预冷的工质实施降温后得到的。
其中一种实施方式中,所述至少部分制冷循环中,每个制冷循环中均设有冷凝蒸发器202与气液分离器201。
该至少部分制冷循环可以为所述至少三个制冷循环中除最后一级制冷循环的所有制冷循环,也可以为所述至少三个制冷循环中除第一级制冷循环与最后一级制冷循环的所有制冷循环,还可以为全部制冷循环。
除了所述至少三级制冷循环中的第一级制冷循环,每个制冷循环中的气液分离器201均用于对上一级制冷循环中气液分离器201排出的气体工质进行气液分离,以实施所述降温;每个制冷循环中的冷凝蒸发器202均用于控制该制冷循环中气液分离器201排出的气体工质、对应通气支路中流通的气体,以及该制冷循环中气液分离器201排出的液体工质之间发生热交换,进而,气液分离器201排出的气体工质可有利于对对应通气支路中流通的气体进行降温,以及对该制冷循环中气液分离器201排出的液体工质进行降温,进而,也可将气液分离器201排出的液体工质蒸发为气体工质。
本实施方式通过气液分离器,以及气冷凝蒸发器形成多级的制冷循环,实现广阔温区的多级制冷,且能够有效提高制冷的速度,避免预冷时间过长的问题。具体的,可通过气液分离器实现气体和液体的分离,然后通过节流制冷驱动混合工质在冷凝蒸发器中流动,实现从常规制冷循环的蒸发温度-40℃到-180℃的超低温之间广阔的温区。同时,根据不同级数换热器的温差,可以实现不同的预冷温度。
其中一种实施方式中,所述第一级制冷循环中设有压缩机204、冷凝器205、冷凝蒸发器202与气液分离器201;所述至少三级制冷循环中的最后一级制冷循环设有蒸发器203。
请参考图5,所述蒸发器203的第一输入端与第一输出端接入其对应的通气支路,所述蒸发器203的第二输入端连接上一级制冷循环中气液分离器201的气体出口,所述蒸发器203的第二输出端连接上一级制冷循环中冷凝蒸发器202的第一进口。
除了所述第一级制冷循环与所述最后一级制冷循环,每一级制冷循环中气液分离器201的进口均连通至上一级制冷循环中冷凝蒸发器201的第二出口,每一级制冷循环中气液分离器201的气体出口均连通至该制冷循环中冷凝蒸发器202的第二进口;每一级制冷循环中气液分离器201的液体出口均连通至该制冷循环中冷凝蒸发器202的第一进口,每一级制冷循环中冷凝蒸发器202的第一出口均连通至上一级制冷循环中冷凝蒸发器202的第一进口;每一级制冷循环中的冷凝蒸发器202的第三进口与第三出口分别接入对应的通气支路。
所述压缩机204的出口连通至所述冷凝器205的进口,所述冷凝器205的出口连通至所述第一级制冷循环中气液分离器201的进口,所述第一级制冷循环中气液分离器201的液体出口连通至该制冷循环中冷凝蒸发器202的第一进口,所述第一级制冷循环中气液分离器201的气体出口连通至该制冷循环中冷凝蒸发器202的第二进口,所述第一级制冷循环中冷凝蒸发器202的第一出口连通至所述压缩机204的进口,所述第一级制冷循环中的冷凝蒸发器202的第三进口与第三出口分别接入对应的通气支路。
以图5为例,每个冷凝蒸发器202的第一进口与第一出口可参照理解为图示冷凝蒸发器202画在最底下的一对进口与出口,每个冷凝蒸发器202的第二进口与第二出口可参照理解为图示冷凝蒸发器202画在最顶上的一对进口与出口,每个冷凝蒸发器202的第三进口与第三出口可参照理解为图示冷凝蒸发器202画中间的一对进口与出口。
通过以上连接方式,可实现多级的单级压缩自复叠制冷系统,在满足多档位制冷的同时,有效提高制冷的效率,减少制冷至所需温度所需花费的时间。
具体实施过程中,所述第一级制冷循环中气液分离器201的气体出口与所述压缩机204的进口之间还设有旁通管路,所述旁通管路设有膨胀容器206与旁通控制部件207,所述旁通控制部件207设于所述膨胀容器206的进口一侧和/或出口一侧。
在图5所示实施方式中,旁通控制部件207设于膨胀容器206的进口一侧,通过旁通控制部件207的开启与关闭可实现蒸发压力的条件。
具体实施过程中,旁通控制部件207可以为电磁阀。
其中一种实施方式中,旁通管路还可设有毛细管208,该毛细管208可设于膨胀容器206的出口一侧。冷凝器205与第一级制冷循环的气液分离器201的进口之间还可设有干燥过滤器209。
其中一种实施方式中,各气液分离器201的液体出口一侧可设有节流阀。
请参考图4,本实施例所涉及的装置中,进气接口8与调压组件1之间还可设有总控制部件9与干燥过滤器10,该总控制部件9可以为电磁阀,具体可以为常闭的电磁阀。
本实施例还提供了一种冷冻治疗系统,包括冷冻消融针,以及连通至所述冷冻消融针的以上可选方案涉及的用于冷冻治疗的预冷装置。
综上所述,本实施例提供的用于冷冻治疗的预冷装置与冷冻治疗系统,通过具有至少三级制冷循环的单级压缩自复叠制冷系统组件,可实现多个不同档位温度的预冷,其可满足不同手术、不同气体的多样需求。
同时,针对于不同档位温度的预冷,本发明通过调压组件,可以根据当前所预冷的通气支路,控制所述调压组件的出气端的压力,进而在不同档位的预冷时,自动、及时地控制装置的通气压力,并保持压力的稳定性。此外,通过通气压力的自动调节,可有利于通过匹配的通气压力提高制冷的速度,进而有利于避免预冷时间过长的问题。
本实施例可选方案中,进一步结合温度信息的变化,可针对于不同当前温度与调节需求,调节装置的通气压力。
进一步的,可在温度信息未达到目标温度时,控制所述调压组件的出气端的压力匹配第一目标压力信息,在温度信息到达目标温度时,控制该压力下降至与第二目标压力信息匹配,进而,可以在满足所需温度的气体的情况 下,有效节省气体。
本实施例可选方案中,还通过回气预冷组件与单级压缩自复叠制冷系统组件实现两次的预冷,进而可有利于进一步降低制冷温度,以及有效提高制冷的速度。
本实施例可选方案中,还通过气液分离器,以及气冷凝蒸发器形成多级的制冷循环,实现广阔温区的多级制冷,且能够有效提高制冷的速度,避免预冷时间过长的问题。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种用于冷冻治疗的预冷装置,其特征在于,包括进气接口、至少三个通气支路、单级压缩自复叠制冷系统组件与调压组件,所述进气接口连通至所述调压组件的进气端,所述调压组件的出气端分别连通至所述至少三个通气支路的进气端,冷冻消融针的冷冻消融针接头的进气端分别连通至所述至少三个通气支路的出气端;
    所述单级压缩自复叠制冷系统组件包括至少三级制冷循环,对于其中的至少部分制冷循环,其制冷温度低于其上一级制冷循环的制冷温度;
    每个制冷循环均能够与对应的通气支路中流通的气体发生热交换,以对该通气支路中流通的气体进行预冷;每个所述通气支路均设有控制该通气支路通断的支路控制部件;
    所述调压组件用于控制所述调压组件的出气端的压力,所述调压组件的出气端的压力与当前所预冷的通气支路相关联,且针对于至少两个通气支路,预冷时的所述调压组件的出气端的压力是不同的。
  2. 根据权利要求1所述的装置,其特征在于,所述调压组件具体用于在确定当前所预冷的通气支路后,根据预设的通气支路与压力信息的对应关系,确定所述调压组件的出气端的目标压力信息,以及:根据所述目标压力信息控制所述调压组件的出气端的压力。
  3. 根据权利要求1所述的装置,其特征在于,所述调压组件具体用于根据第一压力信息和/或第二压力信息,控制所述调压组件的出气端的压力;所述第一压力信息用于表征所述冷冻消融针接头进气端的压力,所述第二压力信息用于表征所述调压组件的进气端的压力。
  4. 根据权利要求3所述的装置,其特征在于,所述调压组件包括比例减压阀与控制器,所述冷冻消融针接头的进气端连接有用于检测所述第一压力信息的第一压力传感器,所述比例减压阀的进气端连接有用于检测所述第二压力信息的第二压力传感器,所述比例减压阀的出气端连接有第三压力传感器;
    所述控制器分别连接所述第一压力传感器、所述第二压力传感器与所述第三压力传感器,用于根据所述第一压力传感器、所述第二压力传感器与所述第三压力传感器检测到的信息,控制所述比例减压阀。
  5. 根据权利要求1至4任一项所述的装置,其特征在于,所述调压组件进一步用于根据温度信息,控制所述调压组件的出气端的压力,所述温度信息包括第一温度信息和/或第二温度信息,所述第一温度信息用于表征所述通气支路的温度,所述第二温度信息用于表征所述冷冻消融针接头的进气端的温度。
  6. 根据权利要求5所述的装置,其特征在于,所述第一温度信息具体用于表征所述通气支路中经对应的所述制冷循环制冷后的气体的温度;
    所述调压组件再进一步用于在所述第二温度信息满足所需温度,且所述调压组件的出气端压力满足目标压力之后,根据所述第一温度信息的变化,控制所述调压组件的出气端的压力发生改变,并保持所述第二温度信息满足所述所需温度。
  7. 根据权利要求5所述的装置,其特征在于,所述调压组件再进一步用于在一种控制模式下,在所述温度信息未达到预设的目标温度时,控制所述调压组件的出气端的压力与当前所预冷的通气支路对应的第一目标压力信息匹配,在所述温度信息达到所述目标温度且维持了预设的目标时长后,控制所述调压组件的出气端的压力下降为与当前所预冷的通气支路对应的第二目标压力信息匹配。
  8. 根据权力要求1至4任一项所述的装置,其特征在于,还包括回气预冷组件,所述回气预冷组件包括回气通路和设于所述回气通路的回气预冷控制部件,所述回气通路的进气端连通至所述冷冻消融针接头的回气端,所述回气通路流通的气体能够与所述至少三个通气支路中流通的气体发生热交换,以对所述至少三个通气支路中流通的气体进行预冷;
    所述通气支路中流通的气体能够先与所述回气通路流通的气体发生热交换,以进行第一次预冷,再与对应的制冷循环发生热交换,以进行第二次预冷。
  9. 根据权利要求1至4任一项所述的装置,其特征在于,所述至少部分制冷循环中,每个制冷循环中用于进行预冷的工质均是通过对上一级制冷循环中用于进行预冷的工质实施降温后得到的;所述至少部分制冷循环中,每个制冷循环中均设有冷凝蒸发器与气液分离器;
    除了所述至少三级制冷循环中的第一级制冷循环,每个制冷循环中的气 液分离器均用于对上一级制冷循环中气液分离器排出的气体工质进行气液分离,以实施所述降温;每个制冷循环中的冷凝蒸发器均用于控制该制冷循环中气液分离器排出的气体工质、对应通气支路中流通的气体,以及该制冷循环中气液分离器排出的液体工质之间发生热交换。
  10. 根据权利要求9所述的装置,其特征在于,所述第一级制冷循环中设有压缩机、冷凝器、冷凝蒸发器与气液分离器;所述至少三级制冷循环中的最后一级制冷循环设有蒸发器;
    所述蒸发器的第一输入端与第一输出端接入其对应的通气支路,所述蒸发器的第二输入端连接上一级制冷循环中气液分离器的气体出口,所述蒸发器的第二输出端连接上一级制冷循环中冷凝蒸发器的第一进口;
    除了所述第一级制冷循环与所述最后一级制冷循环,每一级制冷循环中气液分离器的进口均连通至上一级制冷循环中冷凝蒸发器的第二出口,每一级制冷循环中气液分离器的气体出口均连通至该制冷循环中冷凝蒸发器的第二进口;每一级制冷循环中气液分离器的液体出口均连通至该制冷循环中冷凝蒸发器的第一进口,每一级制冷循环中冷凝蒸发器的第一出口均连通至上一级制冷循环中冷凝蒸发器的第一进口;每一级制冷循环中的冷凝蒸发器的第三进口与第三出口分别接入对应的通气支路;
    所述压缩机的出口连通至所述冷凝器的进口,所述冷凝器的出口连通至所述第一级制冷循环中气液分离器的进口,所述第一级制冷循环中气液分离器的液体出口连通至该制冷循环中冷凝蒸发器的第一进口,所述第一级制冷循环中气液分离器的气体出口连通至该制冷循环中冷凝蒸发器的第二进口,所述第一级制冷循环中冷凝蒸发器的第一出口连通至所述压缩机的进口,所述第一级制冷循环中的冷凝蒸发器的第三进口与第三出口分别接入对应的通气支路。
  11. 根据权利要求10所述的装置,其特征在于,所述第一级制冷循环中气液分离器的气体出口与所述压缩机的进口之间还设有旁通管路,所述旁通管路设有膨胀容器与旁通控制部件,所述旁通控制部件设于所述膨胀容器的进口一侧和/或出口一侧。
  12. 一种冷冻治疗系统,其特征在于,包括冷冻消融针,以及连通至所述冷冻消融针的权利要求1至11任一项所述的用于冷冻治疗的预冷装置。
PCT/CN2019/077260 2018-12-26 2019-03-07 用于冷冻治疗的预冷装置与冷冻治疗系统 WO2020133700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES19905260T ES2948718T3 (es) 2018-12-26 2019-03-07 Dispositivo de enfriamiento previo para crioterapia y sistema de crioterapia
EP19905260.6A EP3872417B1 (en) 2018-12-26 2019-03-07 Precooling device for cryotherapy and cryotherapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811606020.8 2018-12-26
CN201811606020.8A CN109405327B (zh) 2018-12-26 2018-12-26 用于冷冻治疗的预冷装置与冷冻治疗系统

Publications (1)

Publication Number Publication Date
WO2020133700A1 true WO2020133700A1 (zh) 2020-07-02

Family

ID=65461696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077260 WO2020133700A1 (zh) 2018-12-26 2019-03-07 用于冷冻治疗的预冷装置与冷冻治疗系统

Country Status (4)

Country Link
EP (1) EP3872417B1 (zh)
CN (1) CN109405327B (zh)
ES (1) ES2948718T3 (zh)
WO (1) WO2020133700A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113154771A (zh) * 2021-04-20 2021-07-23 北京阳光易帮医疗科技有限公司 一种自然吸气型冷冻消融系统
WO2023087506A1 (zh) * 2021-11-17 2023-05-25 烟台杰瑞石油装备技术有限公司 可燃气体循环处理设备和可燃气体循环处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405327B (zh) * 2018-12-26 2024-02-13 上海导向医疗系统有限公司 用于冷冻治疗的预冷装置与冷冻治疗系统
CN110464444B (zh) * 2019-08-14 2023-03-31 心诺普医疗技术(北京)有限公司 一种温度可控的冷冻消融系统
CN113616313B (zh) * 2021-08-12 2022-07-26 上海导向医疗系统有限公司 一种多通道冷冻消融系统及控制方法
CN116262067A (zh) * 2021-12-14 2023-06-16 杭州堃博生物科技有限公司 灌注泵的消融目标灌注方法、装置、灌注泵及存储介质
CN114668481B (zh) * 2022-05-26 2023-01-24 上海导向医疗系统有限公司 一种基于低温制冷机预冷的双系统低温治疗系统
CN115337093A (zh) * 2022-09-06 2022-11-15 上海美杰医疗科技有限公司 消融系统
CN117243689B (zh) * 2023-09-15 2024-04-19 南京康友医疗科技有限公司 一种防止组织碳化的微波消融系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440727A (zh) * 2002-02-25 2003-09-10 中国科学院理化技术研究所 用于人体腔道肿瘤冷冻治疗的柔性冷刀探针
US20140276706A1 (en) * 2013-03-13 2014-09-18 Horizon Scientific Corp. Therapeutic Cryoablation System
CN106420039A (zh) 2016-10-12 2017-02-22 上海导向医疗系统有限公司 经人体自然腔道的冷冻治疗系统
CN107951558A (zh) 2017-11-10 2018-04-24 上海导向医疗系统有限公司 多功能气体管路控制的冷冻消融系统
CN109405327A (zh) * 2018-12-26 2019-03-01 上海导向医疗系统有限公司 用于冷冻治疗的预冷装置与冷冻治疗系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1010730A7 (nl) * 1996-11-04 1998-12-01 Pira Luc Louis Marie Francis Cryoprobe op basis van peltier module.
CN101584602A (zh) * 2008-05-20 2009-11-25 上海导向医疗系统有限公司 多级预冷冷冻消融方法与设备
US9993280B2 (en) * 2015-07-02 2018-06-12 Medtronic Cryocath Lp N2O thermal pressurization system by cooling
CN107356007B (zh) * 2016-06-13 2024-04-09 北京库蓝科技有限公司 一种自复叠三温变容量输出制冷系统
CN107951559A (zh) * 2018-01-05 2018-04-24 北京阳光易帮医疗科技有限公司 一种低温手术系统
CN108645067A (zh) * 2018-05-21 2018-10-12 福建工程学院 一种双级压缩中间冷却三级自动复叠制冷系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440727A (zh) * 2002-02-25 2003-09-10 中国科学院理化技术研究所 用于人体腔道肿瘤冷冻治疗的柔性冷刀探针
US20140276706A1 (en) * 2013-03-13 2014-09-18 Horizon Scientific Corp. Therapeutic Cryoablation System
CN106420039A (zh) 2016-10-12 2017-02-22 上海导向医疗系统有限公司 经人体自然腔道的冷冻治疗系统
CN107951558A (zh) 2017-11-10 2018-04-24 上海导向医疗系统有限公司 多功能气体管路控制的冷冻消融系统
CN109405327A (zh) * 2018-12-26 2019-03-01 上海导向医疗系统有限公司 用于冷冻治疗的预冷装置与冷冻治疗系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113154771A (zh) * 2021-04-20 2021-07-23 北京阳光易帮医疗科技有限公司 一种自然吸气型冷冻消融系统
CN113154771B (zh) * 2021-04-20 2022-04-29 北京阳光易帮医疗科技有限公司 一种自然吸气型冷冻消融系统
WO2023087506A1 (zh) * 2021-11-17 2023-05-25 烟台杰瑞石油装备技术有限公司 可燃气体循环处理设备和可燃气体循环处理方法

Also Published As

Publication number Publication date
ES2948718T3 (es) 2023-09-18
CN109405327B (zh) 2024-02-13
CN109405327A (zh) 2019-03-01
EP3872417A4 (en) 2022-08-17
EP3872417B1 (en) 2023-05-31
EP3872417A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020133700A1 (zh) 用于冷冻治疗的预冷装置与冷冻治疗系统
CN100507402C (zh) 液态制冷剂与储液器的闪发气体接触进行再冷却的co2制冷回路及其运行方法
CN209326130U (zh) 用于冷冻消融的预冷装置与冷冻治疗系统
RU2656775C1 (ru) Холодильная система
WO2018121425A1 (zh) 串并联双蒸发器制冷系统及其控制方法
CN209470383U (zh) 用于冷冻治疗的预冷装置与冷冻治疗系统
CN107951558B (zh) 多功能气体管路控制的冷冻消融系统
CN103983044B (zh) 一种风冷热泵机组
CN109481000B (zh) 用于冷冻治疗的可压力调节的制冷装置与冷冻治疗系统
WO2020015407A1 (zh) 一种具有深冷功能的双系统风冷冰箱及其制冷控制方法
EP1637818A4 (en) FREEZING APPARATUS
CN105180489B (zh) 一种适应变工况运行的混合工质节流制冷机及其制冷方法
CN107816818A (zh) 一种冷库用带热气融霜的复叠式制冷系统
CN109737624A (zh) 一种双温制冷系统及其控制方法
CN1321298C (zh) 冷冻装置
CN110207412A (zh) 一种容量可调节的双级蒸发喷射制冷系统
CN210056206U (zh) 用于冷冻治疗的可压力调节的制冷装置与冷冻治疗系统
CN203893480U (zh) 一种风冷热泵机组
CN105605699A (zh) 空气调节系统及其控制方法
CN208222889U (zh) 可实现变流量单级压缩循环与双级压缩循环的制冷系统
WO2022222587A1 (zh) 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机
CN215571358U (zh) 一种具有自然冷却功能的复合型制冷系统
CN105757846B (zh) 制冷机组、冰蓄冷系统和制冷机组的运行方法
JPH08296942A (ja) 冷凍冷蔵庫およびその制御方法
CN109405326B (zh) 用于冷冻消融的预冷装置与冷冻治疗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019905260

Country of ref document: EP

Effective date: 20210526

NENP Non-entry into the national phase

Ref country code: DE