WO2020133546A1 - 可重构式关节履带复合移动机器人 - Google Patents

可重构式关节履带复合移动机器人 Download PDF

Info

Publication number
WO2020133546A1
WO2020133546A1 PCT/CN2018/125990 CN2018125990W WO2020133546A1 WO 2020133546 A1 WO2020133546 A1 WO 2020133546A1 CN 2018125990 W CN2018125990 W CN 2018125990W WO 2020133546 A1 WO2020133546 A1 WO 2020133546A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
joint
wheel
track
main
Prior art date
Application number
PCT/CN2018/125990
Other languages
English (en)
French (fr)
Inventor
刘金国
李兴
丁健
刘玉旺
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to US16/976,922 priority Critical patent/US11235821B2/en
Publication of WO2020133546A1 publication Critical patent/WO2020133546A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/12Arrangement, location, or adaptation of driving sprockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/12Arrangement, location, or adaptation of driving sprockets
    • B62D55/125Final drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts

Definitions

  • the invention relates to the field of mobile robots, in particular to a reconfigurable joint tracked compound mobile robot.
  • Mobile robots often need to quickly enter and work in complex terrain, such as surveying terrain and transmitting environmental information at the survey site. Because mobile robots have very complex active terrain, there are artificially built steps, stairs, trenches and other terrain. The messy terrain formed after the disaster also has terrain with a narrow environmental space, which requires the mobile chassis of the mobile robot to have the ability to overcome the above complex terrain.
  • the mobile robot used for detection operations in the prior art has a single walking mechanism and poor terrain adaptability And the flexibility is low, it is difficult to meet the movement requirements of complex terrains such as narrow channels, ravines, steps and so on.
  • the object of the present invention is to provide a reconfigurable articulated crawler compound mobile robot, which can realize the structural reconstruction by changing the angles of different yaw joints and auxiliary crawler modules, can realize complex and changeable walking forms, and is suitable for narrow passages, Various complex terrain environments such as wide ravines, step terrain movement, step climbing, and rough road movement.
  • a reconfigurable joint tracked compound mobile robot includes a main body, a yaw joint and an auxiliary track module.
  • the main body is provided with a main track, and a clutch brake and a A wheel joint
  • a second track joint is provided in the main track driven wheel
  • a main track drive mechanism and a wheel joint drive mechanism are provided on the main body, wherein the main track drive wheel is driven to rotate by the main track drive mechanism, and
  • the main track drive mechanism is connected to the clutch brake, the second wheel joint is driven to rotate by the wheel joint drive mechanism, and the first wheel joint and the second wheel joint are respectively connected to the corresponding yaw joints.
  • An adapter seat is provided at the end of the joint away from the main vehicle body, and an auxiliary crawler is provided on the auxiliary crawler module, and the shaft end of the first axle of the auxiliary crawler is rotatably connected to the adapter seat on the corresponding yaw joint.
  • a yaw drive mechanism is provided inside, and the auxiliary crawler module is driven to swing by a yaw drive mechanism corresponding to the yaw joint.
  • An auxiliary crawler drive mechanism and a rotary drive mechanism are provided in the auxiliary crawler module, and the auxiliary The track is driven to rotate by the auxiliary track drive mechanism, and the entire auxiliary track module is driven to rotate around the first axle of the auxiliary track by the rotation drive mechanism.
  • the main body of the main vehicle is provided with a first track axle of the main crawler and a second track axle of the main track, and a main track driving wheel is provided at both ends of the first track axle of the main track, and a main track driven wheel is located at both ends of the second track axle of the main track.
  • the main crawler driving wheel and the main crawler driven wheel are connected through the main crawler.
  • the main crawler drive mechanism includes a main crawler drive device, a main crawler drive gear, and a main crawler driven gear.
  • the main crawler drive device is fixed in the main vehicle body, and the main crawler drive gear is mounted on the output shaft of the main crawler drive device ,
  • the main track driven gear is fixed in the corresponding main track driving wheel and is connected to the clutch brake in the main track driving wheel, and the main track driving gear meshes with the main track driven gear.
  • the wheel joint driving mechanism includes a wheel joint driving device, a wheel joint driving gear, and a wheel joint driven gear.
  • the wheel joint driving device is fixed in the main vehicle body, and the wheel joint driving gear is mounted on the output shaft of the wheel joint driving device ,
  • the wheel joint driven gear is rotatably set in the corresponding main track driven wheel, and the wheel joint driven gear is fixedly connected to the second wheel joint in the main track driven wheel, and the wheel joint driving gear is connected to the The wheel joint driven gear meshes.
  • the yaw joint is provided with a joint housing, and the yaw drive mechanism is provided in the yaw joint housing.
  • the yaw drive mechanism includes a yaw drive device, a yaw drive gear, and a yaw driven bevel gear.
  • the driving device is fixed in the casing of the yaw joint, and the yaw drive gear is installed on the output shaft of the yaw drive device and meshes with the yaw driven bevel gear.
  • the yaw driven bevel gear and the corresponding auxiliary track first The axle ends of the axles are fixedly connected.
  • a yaw joint is provided at one end of the yaw joint housing, and an adapter seat is provided at the other end, and the yaw drive gear and the yaw driven bevel gear are both provided in the adapter seat.
  • the secondary crawler module includes a secondary crawler first axle, a secondary crawler second axle, a secondary crawler frame and a secondary crawler.
  • the secondary crawler first axle and secondary crawler second axle are located at both ends of the secondary crawler frame, and the secondary A secondary track driven wheel is provided on the first track axle of the crawler, and a secondary track drive wheel is provided on the second axle of the secondary track.
  • the secondary track drive wheel and the secondary track driven wheel are connected through the secondary track and are provided on the secondary track frame There are the auxiliary crawler drive mechanism and the rotary drive mechanism.
  • the auxiliary track drive mechanism includes an auxiliary track drive device, an auxiliary track drive gear, and an auxiliary track driven gear.
  • the auxiliary track drive device is fixed in the auxiliary track frame, and the auxiliary track drive gear is mounted on the output shaft of the auxiliary track drive device
  • the secondary track driven gear meshes with the secondary track driven gear and the secondary track axle of the secondary track is fixedly connected.
  • the rotary drive mechanism includes a secondary crawler module rotary drive device, a rotary drive gear, a rotary driven gear, a worm and a worm gear
  • the secondary crawler module rotary drive device is fixed in the secondary crawler frame
  • the rotary driven gear and the worm are coaxial and It is rotatably installed in the auxiliary crawler frame
  • the rotary drive gear is installed on the output shaft of the auxiliary drive module rotary drive device
  • the rotary drive gear meshes with the rotary driven gear
  • the worm gear is fixed on the first wheel axle of the auxiliary crawler
  • the worm gear meshes with the worm.
  • the main vehicle body is provided with a sensor module.
  • the invention realizes the structural reconstruction by changing the angles of different yaw joints and auxiliary crawler modules, can realize complex and changeable walking forms, and is suitable for narrow passages, wide ravines, step terrain movement, step climbing, and rough road movement Various complex terrain environments can better meet the needs of disaster terrain and complex terrain, as well as the need for environmental information detection and scene scene information collection on disaster scenes and complex terrain scenes.
  • the clutch brake in the main crawler driving wheel is used to drive the corresponding yaw joint to swing.
  • the clutch brake is not braked, the main crawler and the auxiliary crawler realize a common walking mode and are flexible to use.
  • Figure 1 is a perspective schematic view of the present invention
  • Figure 2 is a schematic diagram of the structure of the main car body in Figure 1
  • FIG. 3 is a schematic diagram of the structure of the driven wheel in FIG. 2,
  • FIG. 4 is a schematic structural diagram of the driving wheel in FIG. 2,
  • FIG. 5 is a schematic view of the structure of the yaw joint in FIG. 1,
  • FIG. 6 is a schematic structural diagram of the sub-track module in FIG. 1,
  • FIG. 7 is a schematic diagram of another walking form of the present invention.
  • FIG. 8 is a schematic diagram of another walking form of the present invention.
  • FIG. 9 is a schematic diagram of another walking form of the present invention.
  • FIG. 10 is a schematic diagram of the present invention when passing through a narrow channel
  • FIG. 11 is a schematic diagram of the present invention when passing through a wide ravine
  • FIG. 12 is a schematic diagram of the present invention when passing through stepped terrain
  • FIG. 13 is a schematic diagram of the present invention when climbing stairs
  • FIG. 14 is a schematic diagram of the present invention when moving on a rough road.
  • 1 is the main body
  • 101 is the track
  • 102 is the controller
  • 103 is the track's second axle
  • 104 is the wheel joint drive device
  • 105 is the track driven wheel
  • 1051 is the wheel joint driven gear
  • 1052 is The second wheel joint
  • 1053 is the second wheel joint bearing
  • 106 is the wheel joint drive gear
  • 107 is the main track drive gear
  • 108 is the main track drive wheel
  • 1081 is the main track driven gear
  • 1082 is the clutch brake
  • 1083 is the first One wheel joint
  • 1084 is the first wheel joint bearing
  • 109 is the main track drive device
  • 110 is the conductive slip ring
  • 111 is the main frame
  • 112 is the main body cover plate
  • 113 is the main track first axle
  • 2 is the horizontal Swing joint
  • 201 is a yaw driven bevel gear
  • 202 is a yaw joint housing
  • 203 is a yaw connection
  • 204 is a yaw drive
  • the present invention includes a main vehicle body 1, a yaw joint 2 and an auxiliary crawler module 3.
  • the main body 1 is provided with a main crawler 101 on both sides, and
  • the main track driving wheel 108 is provided with a clutch brake 1082 and a first wheel joint 1083 that are fixedly connected together.
  • the main track driven wheel 105 is provided with a second wheel joint 1052.
  • the main body 1 is provided with a main track drive mechanism And wheel joint drive mechanism, wherein the main crawler driving wheel 108 is driven to rotate by the main crawler drive mechanism and drives the main crawler 101 to move, the main crawler drive mechanism is connected to the clutch brake 1082, when the clutch When the brake 1082 brakes, the clutch brake 1082 and the first wheel joint 1083 rotate with the main crawler driving wheel 108.
  • the main crawler driving mechanism only drives the main crawler driving wheel 108 Rotation, the first wheel joint 1083 does not rotate, at this time the main track 101 and the auxiliary track module 3 jointly realize the walking mode, the second wheel joint 1052 is driven to rotate by the wheel joint driving mechanism, the first wheel joint 1083
  • the second wheel joint 1052 is connected to the corresponding yaw joint 2 respectively, and each yaw joint 2 is rotatably connected to an auxiliary track module 3, as shown in FIGS.
  • the yaw joint 2 is far away from the main vehicle
  • An adapter 207 is provided at one end of the body 1
  • the auxiliary crawler module 3 is provided with an auxiliary crawler 304
  • the shaft end 3011 of the first axle 301 of the auxiliary crawler is rotatably connected to the adapter 207 on the corresponding yaw joint 2.
  • the yaw joint 2 is provided with a yaw drive mechanism, and the auxiliary crawler module 3 is driven to swing by a yaw drive mechanism corresponding to the yaw joint 2, and an auxiliary crawler drive mechanism is provided in the auxiliary crawler module 3
  • the secondary crawler 304 on the secondary crawler module 3 is driven to rotate and move by the secondary crawler drive mechanism, and the entire secondary crawler module 3 is driven to rotate around the secondary track first axle 301 by the rotary drive mechanism.
  • the main body 1 is provided with a main track first axle 113 and a main track second axle 103, and the main track first axle 113 is provided with main track drive wheels 108 at both ends, and the main track second At both ends of the axle 103, there are main track driven wheels 105.
  • the main track driven wheels 108 and the main track driven wheels 105 on the same side are connected through the main track 101.
  • Two main track drive mechanisms and two are provided in the main body 1 In the wheel joint driving mechanism, each main crawler driving wheel 108 is driven and rotated by the corresponding main crawler driving mechanism, and the second wheel joint 1052 in each main track driven wheel 105 is driven and rotated by the corresponding wheel joint driving mechanism.
  • the first track main axle 113 and the second track main axle 103 are hollow inside and can be used for routing.
  • the main crawler drive mechanism includes a main crawler drive device 109, a main crawler drive gear 107, and a main crawler driven gear 1081.
  • the main crawler drive device 109 is fixed in the main vehicle body 1, and the main The track drive gear 107 is mounted on the output shaft of the main track drive device 109.
  • the main track driven gear 1081 is fixed in the main track drive wheel 108 and is connected to the clutch brake 1082.
  • the main track drive gear 107 and The main track driven gear 1081 meshes.
  • the main crawler drive device 109 transmits torque through the main crawler drive gear 107 and the main crawler driven gear 1081 to drive the main crawler driving wheel 108 to rotate, thereby driving the main crawler 101 to move, and when the clutch brake 1082 brakes At this time, the clutch brake 1082 is connected to the main track driven gear 1081, and the first wheel joint 1083 rotates together with the main track driving wheel 108.
  • the clutch brake 1082 is a well-known technology in the art and is a commercially available product.
  • the main track drive device 109 is a motor and a reducer connected together.
  • a conductive slip ring 110 is provided on the first axle 113 of the main crawler.
  • the conductive slip ring 110 includes an inner ring stator and an outer ring rotor.
  • the stator is fixed to the main track first axle 113.
  • the cable of the clutch brake 1082 is connected to the outer ring rotor of the conductive slip ring 110.
  • the main track drive wheel 108 rotates
  • the cable of the clutch brake 1082 also rotates
  • the rotor of the conductive slip ring 110 and the clutch brake 1082 line The other end of the cable rotates synchronously to prevent twisting of the clutch brake 1082 cable.
  • the conductive slip ring 110 is known in the art.
  • the wheel joint driving mechanism includes a wheel joint driving device 104, a wheel joint driving gear 106 and a wheel joint driven gear 1051.
  • the wheel joint driving device 104 is fixed in the main body 1 and the wheels
  • the joint driving gear 106 is mounted on the output shaft of the wheel joint driving device 104
  • the wheel joint driven gear 1051 is rotatably provided in the main track driven wheel 105 through bearing support
  • the wheel joint driven gear 1051 is fixedly connected to the second wheel joint 1052 And mesh with the wheel joint drive gear 106.
  • the wheel joint drive device 104 transmits torque through the wheel joint drive gear 106 and the wheel joint driven gear 1051 to drive the second wheel joint 1052 to rotate.
  • the wheel joint drive device 104 is a motor and a reducer connected together.
  • the first wheel joint 1083 is mounted on the main crawler driving wheel 108 via the first wheel joint bearing 1084, and the second wheel joint 1052 is mounted on the main crawler driven wheel via the second wheel joint bearing 1053.
  • the yaw joint 2 swings, it does not affect the rotation of the main crawler 101.
  • the main vehicle body 1 includes a main vehicle frame 111 carrying various driving mechanisms and a controller 102.
  • a main vehicle body cover plate 112 is provided on the upper side of the main vehicle frame 111, and the clutch brake 1082 Controlled by the controller 102.
  • the yaw joint 2 includes a yaw joint housing 202, a yaw joint 203, an adapter 207, and a yaw drive mechanism.
  • the yaw joint housing 202 is provided with a yaw joint 203 at one end
  • the first wheel joint 1083 or the second wheel joint 1052 are connected.
  • the yaw joint 203 is a 90° steering elbow and is used for internal wiring.
  • the other end of the yaw joint housing 202 is provided with an adapter
  • the seat 207 is rotatably connected to the corresponding sub-track module 3, and the yaw drive mechanism is provided in the yaw joint housing 202.
  • the yaw drive mechanism includes a yaw drive device 204, a yaw drive gear 206, and a yaw driven bevel gear 201.
  • the yaw drive device 204 is fixed in the yaw joint housing 202, and the yaw
  • the driving gear 206 is mounted on the output shaft of the yaw drive device 204, and the shaft end 3011 of the first wheel axle 301 of the auxiliary crawler is rotatably connected to the adapter seat 207 of the yaw joint 2 through the yaw bearing 205.
  • the yaw driven bevel gear 201 meshes, and the yaw driven bevel gear 201 is fixedly connected to the shaft end 3011 of the secondary track first axle 301, the yaw drive gear 206 and the yaw driven bevel gear 201 All are located in the adapter 207.
  • the yaw drive device 204 transmits torque through the yaw drive gear 206 and the yaw driven bevel gear 201, thereby driving the auxiliary crawler module 3 to rotate about the axial direction of the shaft end 3011.
  • the yaw drive device 204 includes a motor, a first-stage reducer, and a second-stage reducer connected in sequence.
  • the secondary crawler module 3 includes a secondary crawler first axle 301, a secondary crawler second axle 307, a secondary crawler frame 302, and a secondary crawler 304.
  • the secondary crawler first axle 301 and secondary crawler second The wheel axle 307 is located at both ends of the auxiliary crawler frame 302, and the auxiliary track driven wheel 311 is provided on the auxiliary track first axle 301, and the auxiliary track drive wheel 308 is provided on the auxiliary track second axle 307.
  • the auxiliary track drive wheel 308 It is connected to the auxiliary crawler driven wheel 311 through the auxiliary crawler 304, and the auxiliary crawler drive mechanism and the rotation drive mechanism are provided on the auxiliary crawler frame 302.
  • the inside of the first axle 301 of the secondary crawler is hollow for wiring.
  • the sub-track driving mechanism includes a sub-track driving device 303, a sub-track driving gear 305, and a sub-track driven gear 306.
  • the sub-track driving device 303 is fixed in the sub-track frame 302, and the sub-track
  • the movable gear 306 is fixedly connected to the secondary crawler second axle 307, and the secondary crawler drive gear 305 is mounted on the output shaft of the secondary crawler drive device 303 and meshes with the secondary crawler driven gear 306.
  • the auxiliary crawler drive device 303 transmits torque through the auxiliary crawler drive gear 305 and the auxiliary crawler driven gear 306 to drive the auxiliary crawler second axle 307 to rotate, and then the auxiliary crawler driving wheel 308 drives the auxiliary crawler 304 to move.
  • the auxiliary crawler drive device 303 is a connected motor and reducer.
  • the rotary drive mechanism includes a secondary crawler module rotary drive device 309, a rotary drive gear 312, a rotary driven gear 313, a worm 314, and a worm gear 310, and the secondary crawler module rotary drive device 309 is fixed to the secondary crawler vehicle In the frame 302, the rotary driven gear 313 and the worm 314 are coaxially and rotatably provided in the sub-track frame 302, the rotary drive gear 312 is mounted on the output shaft of the sub-track module rotary drive device 309, and the rotary drive gear 312 To mesh with the rotating driven gear 313, the worm gear 310 is fixed on the first axle 301 of the secondary track, and the worm gear 310 meshes with the worm 314.
  • the rotary drive device 309 sequentially transmits torque through the rotary drive gear 312, the rotary driven gear 313, the worm 314, and the worm wheel 310, so that the entire sub-track module 3 rotates around the sub-track first axle 301.
  • the auxiliary crawler module rotation driving device 309 is a connected motor and reducer.
  • an auxiliary crawler bearing 315 is provided in the middle of the auxiliary crawler first axle 301 to be mounted on the auxiliary crawler frame 302.
  • the main vehicle body 1 is provided with a sensor module 4.
  • the sensor module 4 includes a mounting bracket 402, a visual sensor 401 and an environmental information detection and sensing device 403.
  • the mounting bracket 402 is fixed on the main vehicle body 1, and the visual sensor 401 and the environmental information detection and sensing device 403 are mounted on the mounting bracket 402.
  • the visual sensor 401 and the environmental information detection and sensing device 403 are well-known technologies in the art and are commercially available products.
  • the working principle of the present invention is:
  • each driving mechanism is controlled by the controller 102, wherein the main crawler driving mechanism drives the main crawler 101 to move, and when the clutch brake 1082 in the main crawler driving wheel 108 brakes, the clutch brake 1082 and the main The track driven gear 1081 is connected, and the first wheel joint 1083 rotates together with the main track drive wheel 108, which in turn drives the corresponding yaw joint 2 to swing.
  • the main track 101 and the auxiliary track 304 realize walking together
  • the second wheel joint 1052 in the main track driven wheel 105 is driven to rotate by the wheel joint driving mechanism, thereby driving the corresponding yaw joint 2 to swing, and the swinging of the yaw joint 2 drives the corresponding sub-track module 3 to swing
  • a yaw drive mechanism is provided in the yaw joint 2 to drive the auxiliary crawler mold 2 to rotate around the central axis of the adapter 207 at the axial end of the yaw joint 2;
  • the auxiliary crawler module 3 is provided with a driving auxiliary
  • the auxiliary crawler drive mechanism in which the crawler track 304 moves is also provided with a rotary drive mechanism to drive the entire auxiliary crawler module 3 to rotate around the auxiliary crawler first axle 301.
  • the present invention can realize complex and varied walking patterns by changing different angles of the yaw joint 2 and the sub-track module 3, and is suitable for narrow passages, wide ravines, step terrain movement, and step climbing , Rugged road movement and other complex terrain environments, such as tilting the auxiliary crawler module 3 upward by a certain angle to increase the climbing capacity, the auxiliary crawler modules 3 are all sideways, which can increase the ability of the present invention to pass through a narrow channel, the main crawler 101 advances and rotates at the same time
  • the first round joint 1083 allows the present invention to use gait mode to cross higher obstacles or climbing steps.
  • the center position and clearance height of the present invention can be adjusted by controlling the angle of each joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种可重构式关节履带复合移动机器人,包括主车体(1)、横摆关节(2)和副履带模块(3),主车体设有主履带(101),且主履带主动轮(108)内设有离合制动器(1082)和第一轮关节(1083),主履带从动轮(105)内设有第二轮关节(1052),主车体上设有主履带驱动机构和轮关节驱动机构,主履带主动轮通过主履带驱动机构驱动转动,且主履带驱动机构与对应的离合制动器相连,第二轮关节通过轮关节驱动机构驱动旋转,各个轮关节与横摆关节对应相连,横摆关节与副履带模块转动连接,横摆关节内设有驱动副履带模块摆动的横摆驱动机构,副履带模块内设有副履带驱动机构和驱动整个副履带模块转动的旋转驱动机构。该可重构式关节履带复合移动机器人能够实现复杂多变的行走形态,适用于各种复杂地形环境。

Description

可重构式关节履带复合移动机器人 技术领域
本发明涉及移动机器人领域,具体地说是一种可重构式关节履带复合移动机器人。
背景技术
移动机器人经常需要快速进入复杂地形并在复杂地形中作业,比如勘测地形并传递勘测现场的环境信息,而由于移动机器人的活动地形非常复杂,有人工建造的台阶、楼梯、沟道等地形,有灾后形成的凌乱地形,也有环境空间狭窄的地形,这就要求移动机器人的移动底盘具有克服上述复杂地形的能力,但现有技术中用于探测作业的移动机器人其行走机构形式单一,地形适应性差且灵活性低,难以满足狭小通道、沟壑、台阶等复杂地形的移动要求。
发明内容
本发明的目的在于提供一种可重构式关节履带复合移动机器人,通过改变不同的横摆关节和副履带模块角度实现结构重构,能够实现复杂多变的行走形态,并且适用于狭窄通道、宽沟壑、台阶地形移动、台阶攀爬、崎岖路面移动等各种复杂地形环境。
本发明的目的是通过以下技术方案来实现的:
一种可重构式关节履带复合移动机器人,包括主车体、横摆关节和副履带模块,主车体设有主履带,且主履带主动轮内设有固连在一起的离合制动器和第一轮关节,主履带从动轮内设有第二轮关节,所述主车体上设有主履带驱动机构和轮关节驱动机构,其中主履带主动轮通过所述主履带驱动机构驱动转动,且所述主履带驱动机构与所述离合制动器相连,第二轮关节通过所述轮关节驱动机构驱动旋转,所述第一轮关节和第二轮关节分别与对应的横摆关节相连,在横摆关节远离主车体一端设有转接座,在副履带模块上设有副履带,且副履带第一轮轴的轴端与对应横摆关节上的转接座转动连接,在所述横摆关节内设有横摆驱动机构,且所述副履带模块通过对应横摆关节内的横摆驱动机构驱动摆动,在所述副履带模块内设有副履带驱动机构和旋转驱动机构,且所述副履带通过所述副履带驱动机构驱动旋转,整个副履带模块通过所述旋转驱动机构驱动绕所述副履带第一轮轴转动。
所述主车体内设有主履带第一轮轴和主履带第二轮轴,且主履带第一轮轴两端设有主履带主动轮,主履带第二轮轴两端设有主履带从动轮,位于同侧的主履带主动轮和主履带从动轮通过主履带相连,在主车体内设有两个主履带驱动机构和两个轮关节驱动机构,每个主履带主动轮通过对应的主履带驱动机构 驱动转动,每个主履带从动轮内的第二轮关节通过对应的轮关节驱动机构驱动转动。
所述主履带驱动机构包括主履带驱动装置、主履带驱动齿轮和主履带从动齿轮,主履带驱动装置固设于主车体内,主履带驱动齿轮安装于所述主履带驱动装置的输出轴上,主履带从动齿轮固设于对应的主履带主动轮内且与所述主履带主动轮内的离合制动器相连,所述主履带驱动齿轮和所述主履带从动齿轮啮合。
所述轮关节驱动机构包括轮关节驱动装置、轮关节驱动齿轮和轮关节从动齿轮,轮关节驱动装置固设于主车体内,轮关节驱动齿轮安装于所述轮关节驱动装置的输出轴上,轮关节从动齿轮转动设置于对应的主履带从动轮中,且所述轮关节从动齿轮与所述主履带从动轮中的第二轮关节固连,所述轮关节驱动齿轮与所述轮关节从动齿轮啮合。
所述横摆关节设有关节外壳,横摆驱动机构设于所述横摆关节外壳中,所述横摆驱动机构包括横摆驱动装置、横摆驱动齿轮和横摆从动锥齿轮,横摆驱动装置固设于横摆关节外壳内,横摆驱动齿轮安装于横摆驱动装置的输出轴上并与横摆从动锥齿轮啮合,所述横摆从动锥齿轮与对应的副履带第一轮轴的轴端固连。
横摆关节外壳一端设有横摆连接件,另一端设有转接座,且所述横摆驱动齿轮和横摆从动锥齿轮均设于所述转接座内。
所述副履带模块包括副履带第一轮轴、副履带第二轮轴、副履带车架和副履带,所述副履带第一轮轴和副履带第二轮轴分设于副履带车架两端,且副履带第一轮轴上设有副履带从动轮,副履带第二轮轴上设有副履带主动轮,所述副履带主动轮和副履带从动轮通过副履带相连,在所述副履带车架上设有所述副履带驱动机构和旋转驱动机构。
所述副履带驱动机构包括副履带驱动装置、副履带驱动齿轮和副履带从动齿轮,副履带驱动装置固设于副履带车架内,副履带驱动齿轮安装于副履带驱动装置的输出轴上且与副履带从动齿轮啮合,副履带从动齿轮与副履带第二轮轴固连。
所述旋转驱动机构包括副履带模块旋转驱动装置、旋转驱动齿轮、旋转从动齿轮、蜗杆和蜗轮,副履带模块旋转驱动装置固设于副履带车架内,旋转从动齿轮和蜗杆同轴且可转动地设于副履带车架内,旋转驱动齿轮安装于副履带模块旋转驱动装置的输出轴上,且旋转驱动齿轮与所述旋转从动齿轮啮合,蜗轮固设于副履带第一轮轴上,且蜗轮与所述蜗杆啮合。
所述主车体上设有传感器模块。
本发明的优点与积极效果为:
1、本发明通过改变不同的横摆关节和副履带模块角度实现结构重构,能够实现复杂多变的行走形态,并且适用于狭窄通道、宽沟壑、台阶地形移动、台阶攀爬、崎岖路面移动等各种复杂地形环境,能够较好地满足灾害地形和复杂地形的通过性需要,以及对灾害现场和复杂地形现场进行环境信息探测、现场场景信息采集等需要。
2、本发明通过主履带主动轮内的离合制动器实现驱动相应横摆关节摆动,当离合制动器非制动时,主履带和副履带实现共同行走模式,使用灵活。
附图说明
图1为本发明的立体示意图,
图2为图1中的主车体结构示意图,
图3为图2中的从动轮结构示意图,
图4为图2中的主动轮结构示意图,
图5为图1中的横摆关节结构示意图,
图6为图1中的副履带模块结构示意图,
图7为本发明的另一种行走形式示意图,
图8为本发明的又一种行走形式示意图,
图9为本发明的再一种行走形式示意图,
图10为本发明通过狭窄通道时的示意图,
图11为本发明通过宽沟壑时的示意图,
图12为本发明通过台阶地形时的示意图,
图13为本发明攀爬台阶时的示意图,
图14为本发明在崎岖路面上移动时的示意图。
其中,1为主车体,101为主履带,102为控制器,103为主履带第二轮轴,104为轮关节驱动装置,105为主履带从动轮,1051为轮关节从动齿轮,1052为第二轮关节,1053为第二轮关节轴承,106为轮关节驱动齿轮,107为主履带驱动齿轮,108为主履带主动轮,1081为主履带从动齿轮,1082为离合制动器,1083为第一轮关节,1084为第一轮关节轴承,109为主履带驱动装置,110为导电滑环,111为主车架,112为主车体盖板,113为主履带第一轮轴;2为横摆关节,201为横摆从动锥齿轮,202为横摆关节外壳,203为横摆连接件,204为横摆驱动装置,205为横摆轴承,206为横摆驱动齿轮,207为转接座,3为副履带模块,301为副履带第一轮轴,3011为轴端,302为副履带车架,303为副履带驱动装置,304为副履带,305为副履带驱动齿轮,306为副履带从动 齿轮,307为副履带第二轮轴,308为副履带主动轮,309为副履带模块旋转驱动装置,310为蜗轮,311为副履带从动轮,312为旋转驱动齿轮,313为旋转从动齿轮,314为蜗杆,315为副履带轴承;4为传感器模块,401为视觉传感器,402为安装支架,403为环境信息探测传感装置。
具体实施方式
下面结合附图对本发明作进一步详述。
如图1~6所示,本发明包括主车体1、横摆关节2和副履带模块3,如图2~4所示,所述主车体1两侧均设有主履带101,且主履带主动轮108内设有固连在一起的离合制动器1082和第一轮关节1083,主履带从动轮105内设有第二轮关节1052,所述主车体1上设有主履带驱动机构和轮关节驱动机构,其中所述主履带主动轮108通过所述主履带驱动机构驱动转动并带动所述主履带101移动,所述主履带驱动机构与所述离合制动器1082相连,当所述离合制动器1082制动时,所述离合制动器1082和第一轮关节1083随主履带主动轮108一起转动,当所述离合制动器1082未制动时,所述主履带驱动机构仅驱动主履带主动轮108转动,第一轮关节1083不发生转动,此时主履带101和副履带模块3共同实现行走模式,所述第二轮关节1052通过所述轮关节驱动机构驱动旋转,所述第一轮关节1083和第二轮关节1052分别与对应的横摆关节2相连,且每个横摆关节2均与一个副履带模块3转动连接,如图5~6所示,所述横摆关节2远离主车体1一端设有转接座207,所述副履带模块3上设有副履带304,且副履带第一轮轴301的轴端3011与对应横摆关节2上的转接座207转动连接,在所述横摆关节2内设有横摆驱动机构,且所述副履带模块3通过对应横摆关节2内的横摆驱动机构驱动摆动,在所述副履带模块3内设有副履带驱动机构和旋转驱动机构,副履带模块3上的副履带304通过所述副履带驱动机构驱动旋转移动,整个副履带模块3通过所述旋转驱动机构驱动绕所述副履带第一轮轴301转动。
如图2所示,所述主车体1内设有主履带第一轮轴113和主履带第二轮轴103,且主履带第一轮轴113两端设有主履带主动轮108,主履带第二轮轴103两端设有主履带从动轮105,位于同侧的主履带主动轮108和主履带从动轮105通过主履带101相连,在主车体1内设有两个主履带驱动机构和两个轮关节驱动机构,每个主履带主动轮108通过对应的主履带驱动机构驱动转动,每个主履带从动轮105内的第二轮关节1052通过对应的轮关节驱动机构驱动转动。如图2所示,所述主履带第一轮轴113和主履带第二轮轴103内部中空可用于走线。
如图2和图4所示,所述主履带驱动机构包括主履带驱动装置109、主履 带驱动齿轮107和主履带从动齿轮1081,主履带驱动装置109固设于主车体1内,主履带驱动齿轮107安装于所述主履带驱动装置109的输出轴上,主履带从动齿轮1081固设于主履带主动轮108内且与所述离合制动器1082相连,所述主履带驱动齿轮107和主履带从动齿轮1081啮合。设备工作时,主履带驱动装置109通过所述主履带驱动齿轮107和主履带从动齿轮1081传递转矩驱动主履带主动轮108转动,进而驱动主履带101移动,当所述离合制动器1082制动时,所述离合制动器1082和主履带从动齿轮1081连接,第一轮关节1083随主履带主动轮108一起转动。所述离合制动器1082为本领域公知技术且为市购产品,另外本实施例中,所述主履带驱动装置109为连接在一起的电机和减速机。
如图2所示,在所述主履带第一轮轴113上设有导电滑环110,所述导电滑环110包括内圈定子和外圈转子,所述定子套装固定于主履带第一轮轴113上,所述离合制动器1082的线缆与所述导电滑环110外圈转子相连,当主履带主动轮108旋转时,离合制动器1082线缆也随之旋转,导电滑环110转子与离合制动器1082线缆另一端同步旋转,防止离合制动器1082线缆发生绞线。所述导电滑环110为本领域公知技术。
如图2和图3所示,所述轮关节驱动机构包括轮关节驱动装置104、轮关节驱动齿轮106和轮关节从动齿轮1051,轮关节驱动装置104固设于主车体1内,轮关节驱动齿轮106安装于轮关节驱动装置104的输出轴上,轮关节从动齿轮1051通过轴承支撑转动设置于主履带从动轮105中,且轮关节从动齿轮1051与第二轮关节1052固连并与所述轮关节驱动齿轮106啮合。设备工作时,轮关节驱动装置104通过轮关节驱动齿轮106和轮关节从动齿轮1051传递转矩驱动所述第二轮关节1052转动。本实施例中,所述轮关节驱动装置104为连接在一起的电机和减速机。
如图3和图4所示,第一轮关节1083通过第一轮关节轴承1084支承安装于主履带主动轮108上,第二轮关节1052通过第二轮关节轴承1053支承安装于主履带从动轮105上,横摆关节2摆动时不影响主履带101转动行走。
如图2所示,所述主车体1包括承载各个驱动机构以及控制器102的主车架111,在所述主车架111上侧设有主车体盖板112,所述离合制动器1082通过所述控制器102控制。
如图5所示,所述横摆关节2包括横摆关节外壳202、横摆连接件203、转接座207和横摆驱动机构,横摆关节外壳202一端设有横摆连接件203与对应的第一轮关节1083或第二轮关节1052相连,本实施例中,所述横摆连接件203为90°转向弯管且内部用于走线,横摆关节外壳202另一端设有转接座207与对应的副履带模块3转动连接,横摆驱动机构设于所述横摆关节外壳202中。
如图5所示,所述横摆驱动机构包括横摆驱动装置204、横摆驱动齿轮206和横摆从动锥齿轮201,横摆驱动装置204固设于横摆关节外壳202内,横摆驱动齿轮206安装于横摆驱动装置204的输出轴上,副履带第一轮轴301的轴端3011通过横摆轴承205支承与横摆关节2的转接座207转动连接,横摆驱动齿轮206与横摆从动锥齿轮201啮合,且所述横摆从动锥齿轮201与所述副履带第一轮轴301的轴端3011固连,所述横摆驱动齿轮206和横摆从动锥齿轮201均设于转接座207内。设备工作时,横摆驱动装置204通过横摆驱动齿轮206和横摆从动锥齿轮201传递转矩,进而驱动副履带模块3绕所述轴端3011的轴向转动。本实施例中,所述横摆驱动装置204包括依次相连的电机、一级减速机和二级减速机。
如图6所示,所述副履带模块3包括副履带第一轮轴301、副履带第二轮轴307、副履带车架302和副履带304,所述副履带第一轮轴301和副履带第二轮轴307分设于副履带车架302两端,且副履带第一轮轴301上设有副履带从动轮311,副履带第二轮轴307上设有副履带主动轮308,所述副履带主动轮308和副履带从动轮311通过副履带304相连,在所述副履带车架302上设有所述副履带驱动机构和旋转驱动机构。所述副履带第一轮轴301内部中空用于走线。
如图6所示,所述副履带驱动机构包括副履带驱动装置303、副履带驱动齿轮305和副履带从动齿轮306,副履带驱动装置303固设于副履带车架302内,副履带从动齿轮306与副履带第二轮轴307固连,副履带驱动齿轮305安装于副履带驱动装置303的输出轴上且与副履带从动齿轮306啮合。设备工作时,副履带驱动装置303通过副履带驱动齿轮305和副履带从动齿轮306传递转矩驱动副履带第二轮轴307转动,进而通过副履带主动轮308驱动副履带304移动。本实施例中,所述副履带驱动装置303为相连的电机和减速机。
如图6所示,所述旋转驱动机构包括副履带模块旋转驱动装置309、旋转驱动齿轮312、旋转从动齿轮313、蜗杆314和蜗轮310,副履带模块旋转驱动装置309固设于副履带车架302内,旋转从动齿轮313和蜗杆314同轴且可转动地设于副履带车架302内,旋转驱动齿轮312安装于副履带模块旋转驱动装置309的输出轴上,且旋转驱动齿轮312与所述旋转从动齿轮313啮合,蜗轮310固设于副履带第一轮轴301上,且蜗轮310与所述蜗杆314啮合。设备工作时,旋转驱动装置309依次通过旋转驱动齿轮312、旋转从动齿轮313、蜗杆314和蜗轮310传递转矩,使副履带模块3整体绕副履带第一轮轴301转动。本实施例中,所述副履带模块旋转驱动装置309为相连的电机和减速机,另外所述副履带第一轮轴301中部设有副履带轴承315支承安装于副履带车架302 上。
如图1~2所示,所述主车体1上设有传感器模块4,本实施例中,所述传感器模块4包括安装支架402、视觉传感器401和环境信息探测传感装置403,所述安装支架402固装于主车体1上,视觉传感器401和环境信息探测传感装置403安装于所述安装支架402上。所述视觉传感器401和环境信息探测传感装置403为本领域公知技术且为市购产品。
本发明的工作原理为:
本发明工作时,各个驱动机构均受控制器102控制,其中所述主履带驱动机构驱动主履带101移动,并且当主履带主动轮108内的离合制动器1082制动时,所述离合制动器1082和主履带从动齿轮1081连接,第一轮关节1083随主履带主动轮108一起转动,进而带动相应的横摆关节2摆动,当离合制动器1082非制动时,主履带101和副履带304共同实现行走模式,主履带从动轮105内的第二轮关节1052则通过所述轮关节驱动机构驱动旋转,进而带动相应的横摆关节2摆动,横摆关节2摆动即带动相应的副履带模块3摆动,并且在所述横摆关节2内设有横摆驱动机构驱动副履带模2绕着横摆关节2轴端的转接座207中轴线转动,另外在所述副履带模块3内除了设有驱动副履带304移动的副履带驱动机构,还设有旋转驱动机构驱动整个副履带模块3绕副履带第一轮轴301转动。如图7~14所示,本发明通过改变不同的横摆关节2和副履带模块3角度,能够实现复杂多变的行走形态,并且适用于狭窄通道、宽沟壑、台阶地形移动、台阶攀爬、崎岖路面移动等各种复杂地形环境,比如将副履带模块3向上倾斜一定角度可增加爬升能力,副履带模块3全部侧置,可增加本发明通过狭小通道的能力,主履带101前进同时旋转第一轮关节1083,使本发明利用步态模式跨越更高的障碍或爬升台阶,另外通过控制各个关节的角度还可以调整本发明的中心位置以及净空高度。

Claims (10)

  1. 一种可重构式关节履带复合移动机器人,其特征在于:包括主车体(1)、横摆关节(2)和副履带模块(3),主车体(1)设有主履带(101),且主履带主动轮(108)内设有固连在一起的离合制动器(1082)和第一轮关节(1083),主履带从动轮(105)内设有第二轮关节(1052),所述主车体(1)上设有主履带驱动机构和轮关节驱动机构,其中主履带主动轮(108)通过所述主履带驱动机构驱动转动,且所述主履带驱动机构与所述离合制动器(1082)相连,第二轮关节(1052)通过所述轮关节驱动机构驱动旋转,所述第一轮关节(1083)和第二轮关节(1052)分别与对应的横摆关节(2)相连,在横摆关节(2)远离主车体(1)一端设有转接座(207),在副履带模块(3)上设有副履带(304),且副履带第一轮轴(301)的轴端(3011)与对应横摆关节(2)上的转接座(207)转动连接,在所述横摆关节(2)内设有横摆驱动机构,且所述副履带模块(3)通过对应横摆关节(2)内的横摆驱动机构驱动摆动,在所述副履带模块(3)内设有副履带驱动机构和旋转驱动机构,且所述副履带(304)通过所述副履带驱动机构驱动旋转,整个副履带模块(3)通过所述旋转驱动机构驱动绕所述副履带第一轮轴(301)转动。
  2. 根据权利要求1所述的可重构式关节履带复合移动机器人,其特征在于:所述主车体(1)内设有主履带第一轮轴(113)和主履带第二轮轴(103),且主履带第一轮轴(113)两端设有主履带主动轮(108),主履带第二轮轴(103)两端设有主履带从动轮(105),位于同侧的主履带主动轮(108)和主履带从动轮(105)通过主履带(101)相连,在主车体(1)内设有两个主履带驱动机构和两个轮关节驱动机构,每个主履带主动轮(108)通过对应的主履带驱动机构驱动转动,每个主履带从动轮(105)内的第二轮关节(1052)通过对应的轮关节驱动机构驱动转动。
  3. 根据权利要求1或2所述的可重构式关节履带复合移动机器人,其特征在于:所述主履带驱动机构包括主履带驱动装置(109)、主履带驱动齿轮(107)和主履带从动齿轮(1081),主履带驱动装置(109)固设于主车体(1)内,主履带驱动齿轮(107)安装于所述主履带驱动装置(109)的输出轴上,主履带从动齿轮(1081)固设于对应的主履带主动轮(108)内且与所述主履带主动轮(108)内的离合制动器(1082)相连,所述主履带驱动齿轮(107)和所述主履带从动齿轮(1081)啮合。
  4. 根据权利要求1或2所述的可重构式关节履带复合移动机器人,其特征在于:所述轮关节驱动机构包括轮关节驱动装置(104)、轮关节驱动齿轮(106) 和轮关节从动齿轮(1051),轮关节驱动装置(104)固设于主车体(1)内,轮关节驱动齿轮(106)安装于所述轮关节驱动装置(104)的输出轴上,轮关节从动齿轮(1051)转动设置于对应的主履带从动轮(105)中,且所述轮关节从动齿轮(1051)与所述主履带从动轮(105)中的第二轮关节(1052)固连,所述轮关节驱动齿轮(106)与所述轮关节从动齿轮(1051)啮合。
  5. 根据权利要求1所述的可重构式关节履带复合移动机器人,其特征在于:所述横摆关节(2)设有关节外壳(202),横摆驱动机构设于所述横摆关节外壳(202)中,所述横摆驱动机构包括横摆驱动装置(204)、横摆驱动齿轮(206)和横摆从动锥齿轮(201),横摆驱动装置(204)固设于横摆关节外壳(202)内,横摆驱动齿轮(206)安装于横摆驱动装置(204)的输出轴上并与横摆从动锥齿轮(201)啮合,所述横摆从动锥齿轮(201)与对应的副履带第一轮轴(301)的轴端(3011)固连。
  6. 根据权利要求5所述的可重构式关节履带复合移动机器人,其特征在于:横摆关节外壳(202)一端设有横摆连接件(203),另一端设有转接座(207),且所述横摆驱动齿轮(206)和横摆从动锥齿轮(201)均设于所述转接座(207)内。
  7. 根据权利要求1所述的可重构式关节履带复合移动机器人,其特征在于:所述副履带模块(3)包括副履带第一轮轴(301)、副履带第二轮轴(307)、副履带车架(302)和副履带(304),所述副履带第一轮轴(301)和副履带第二轮轴(307)分设于副履带车架(302)两端,且副履带第一轮轴(301)上设有副履带从动轮(311),副履带第二轮轴(307)上设有副履带主动轮(308),所述副履带主动轮(308)和副履带从动轮(311)通过副履带(304)相连,在所述副履带车架(302)上设有所述副履带驱动机构和旋转驱动机构。
  8. 根据权利要求7所述的可重构式关节履带复合移动机器人,其特征在于:所述副履带驱动机构包括副履带驱动装置(303)、副履带驱动齿轮(305)和副履带从动齿轮(306),副履带驱动装置(303)固设于副履带车架(302)内,副履带驱动齿轮(305)安装于副履带驱动装置(303)的输出轴上且与副履带从动齿轮(306)啮合,副履带从动齿轮(306)与副履带第二轮轴(307)固连。
  9. 根据权利要求7所述的可重构式关节履带复合移动机器人,其特征在于:所述旋转驱动机构包括副履带模块旋转驱动装置(309)、旋转驱动齿轮(312)、旋转从动齿轮(313)、蜗杆(314)和蜗轮(310),副履带模块旋转驱动装置(309)固设于副履带车架(302)内,旋转从动齿轮(313)和蜗杆(314)同轴且可转动地设于副履带车架(302)内,旋转驱动齿轮(312)安装于副履带模块旋转驱动装置(309)的输出轴上,且旋转驱动齿轮(312)与所述旋转从动齿轮(313) 啮合,蜗轮(310)固设于副履带第一轮轴(301)上,且蜗轮(310)与所述蜗杆(314)啮合。
  10. 根据权利要求1所述的可重构式关节履带复合移动机器人,其特征在于:所述主车体(1)上设有传感器模块(4)。
PCT/CN2018/125990 2018-12-29 2018-12-31 可重构式关节履带复合移动机器人 WO2020133546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,922 US11235821B2 (en) 2018-12-29 2018-12-31 Reconfigurable joint track compound mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811633906.1A CN109515538B (zh) 2018-12-29 2018-12-29 可重构式关节履带复合移动机器人
CN201811633906.1 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020133546A1 true WO2020133546A1 (zh) 2020-07-02

Family

ID=65798103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125990 WO2020133546A1 (zh) 2018-12-29 2018-12-31 可重构式关节履带复合移动机器人

Country Status (3)

Country Link
US (1) US11235821B2 (zh)
CN (1) CN109515538B (zh)
WO (1) WO2020133546A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435785A (zh) * 2019-07-31 2019-11-12 山东科技大学 一种齿轮式行走装置
CN113548119B (zh) * 2021-09-02 2022-10-18 厦门理工学院 一种可变型多用途微型移动平台
CN114394167B (zh) * 2021-12-31 2023-04-14 浙江警察学院 一种可适应楼梯和不同地形的无人巡逻车
CN114789759B (zh) * 2022-05-05 2023-10-24 东南大学 一种十字交叉变构履带的管道巡检机器人及其控制方法
CN114987647B (zh) * 2022-06-12 2023-03-21 东北石油大学 可重构机器人组件以及应用其的机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061963A (ja) * 2010-09-16 2012-03-29 Japan Agengy For Marine-Earth Science & Technology クローラ型走行装置及び段差乗り越え方法
CN102627127A (zh) * 2011-12-08 2012-08-08 兰州理工大学 关节履带复合式仿生机器人
CN104443085A (zh) * 2014-11-18 2015-03-25 上海大学 履带式六自由度移动机器人
CN105480313A (zh) * 2015-11-26 2016-04-13 哈尔滨工业大学 一种重构式履带机器人
US20170344027A1 (en) * 2014-11-13 2017-11-30 Wirtgen Gmbh Transport Mode Conversion
CN107776692A (zh) * 2016-08-26 2018-03-09 深圳市安泽智能工程有限公司 移动机器人及其行进方法
CN107953937A (zh) * 2017-12-01 2018-04-24 北京履坦科技有限公司 一种步履复合式移动机器人行走系统的改良结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730287A (en) * 1971-05-17 1973-05-01 Nasa Vehicle for use in planetary exploration
JPS61271176A (ja) * 1985-05-28 1986-12-01 Mitsubishi Electric Corp 移動機械
US4977971A (en) * 1989-05-17 1990-12-18 University Of Florida Hybrid robotic vehicle
US6263989B1 (en) * 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
CN102476663B (zh) * 2010-11-29 2013-07-31 中国科学院沈阳自动化研究所 一种基于差动机构的履腿复合式移动机器人
IT1403799B1 (it) * 2011-01-20 2013-10-31 Oto Melara Spa Sistema di prelievo di lavoro meccanico per l'azionamento di estensioni articolate in applicazioni veicolari.
CN102167100B (zh) * 2011-04-08 2013-06-12 北京交通大学 一种反四边形双节履带机器人
WO2013000514A1 (en) * 2011-06-29 2013-01-03 Bluebotics Sa Mobile robot
KR101304107B1 (ko) * 2012-04-26 2013-09-05 영남대학교 산학협력단 계단 등반용 로봇
US8434576B1 (en) * 2012-08-21 2013-05-07 Andrew Ferguson Mobile reconnaissance apparatus with articulating traction control
IL230750B (en) * 2014-01-30 2018-02-28 Wolf Yosi Propulsion system of a terrestrial robot
CN206552137U (zh) * 2016-11-23 2017-10-13 国网山东省电力公司电力科学研究院 电磁离合控制的可切换式轮履复合移动机器人
IT201700032682A1 (it) * 2017-03-24 2018-09-24 Zona Eng & Design S A S Di Zona Mauro & C Veicolo atv ad alta mobilita', utilizzabile ad esempio in attivita' civili di emergenza e soccorso, in campo agricolo o in attivita' di movimento terra
CN206813141U (zh) * 2017-06-23 2017-12-29 漳州市龙文区健达电子科技有限公司 一种机器人的行走机构
CN209305715U (zh) * 2018-12-29 2019-08-27 中国科学院沈阳自动化研究所 一种可重构式关节履带复合移动机器人
CN211893441U (zh) * 2020-01-15 2020-11-10 南京六朝智能科技有限公司 一种移动机器人的可重构式关节履带
CN112091929B (zh) * 2020-09-09 2021-09-21 南华大学 核应急机器人在狭窄空间的通行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061963A (ja) * 2010-09-16 2012-03-29 Japan Agengy For Marine-Earth Science & Technology クローラ型走行装置及び段差乗り越え方法
CN102627127A (zh) * 2011-12-08 2012-08-08 兰州理工大学 关节履带复合式仿生机器人
US20170344027A1 (en) * 2014-11-13 2017-11-30 Wirtgen Gmbh Transport Mode Conversion
CN104443085A (zh) * 2014-11-18 2015-03-25 上海大学 履带式六自由度移动机器人
CN105480313A (zh) * 2015-11-26 2016-04-13 哈尔滨工业大学 一种重构式履带机器人
CN107776692A (zh) * 2016-08-26 2018-03-09 深圳市安泽智能工程有限公司 移动机器人及其行进方法
CN107953937A (zh) * 2017-12-01 2018-04-24 北京履坦科技有限公司 一种步履复合式移动机器人行走系统的改良结构

Also Published As

Publication number Publication date
CN109515538B (zh) 2023-05-30
US11235821B2 (en) 2022-02-01
CN109515538A (zh) 2019-03-26
US20210039726A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2020133546A1 (zh) 可重构式关节履带复合移动机器人
CN101417674B (zh) 煤矿井下搜救探测机器人运动装置
CN101269678B (zh) 一种带行走系统的轮式机器人
CN102582706B (zh) 煤矿井下搜救探测机器人运动装置
CN106275113B (zh) 关节履带与车轮相复合的移动平台及具有其的消防机器人
WO2021000900A1 (zh) 多功能通用型机器人底盘
CN107717941A (zh) 一种面向电缆沟巡检作业多功能移动机器人
CN102699893B (zh) 具有多自由度机械手臂的差动驱动磁吸附式多功能爬壁机器人
CN105035192A (zh) 轮履复合式巡检机器人行走机构及其工作方法
CN108725612B (zh) 一种多自由度多功能机器人
JP2011105137A (ja) クローラ型走行装置
CN101380978A (zh) 虾形六轮移动机器人
CN104058022A (zh) 一种地形自适应的可变形移动机器人
CN112873188B (zh) 自组装模块化机器人单元、机器人、组装及控制方法
CN104787133A (zh) 一种适用于轮履复合式底盘的翻转臂机构
CN107323560A (zh) 一种轮腿式移动救援机器人
CN101428652B (zh) 冰雪面移动机器人
CN208557467U (zh) 一种面向电缆沟巡检作业多功能移动机器人
KR20140111162A (ko) 험지 주행 가능한 다관절 로봇
KR101204147B1 (ko) 듀얼 오프셋 구조를 갖는 전방향 휠 메커니즘 및 이를 이용한 전방향 이동 로봇
CN113276083A (zh) 一种轮履式移动机器人
CN110615048B (zh) 一种基于泥泞地域快速移动的越野机器人
CN210592195U (zh) 一种多功能通用型机器人底盘
CN209351486U (zh) 一种电缆隧道巡检机器人的底盘结构
CN107215398A (zh) 平面全自由度越障履带底盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944325

Country of ref document: EP

Kind code of ref document: A1