WO2020133088A1 - 一种可用于自动驾驶的地图更新系统与方法 - Google Patents

一种可用于自动驾驶的地图更新系统与方法 Download PDF

Info

Publication number
WO2020133088A1
WO2020133088A1 PCT/CN2018/124448 CN2018124448W WO2020133088A1 WO 2020133088 A1 WO2020133088 A1 WO 2020133088A1 CN 2018124448 W CN2018124448 W CN 2018124448W WO 2020133088 A1 WO2020133088 A1 WO 2020133088A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
vehicle
data
server
partial
Prior art date
Application number
PCT/CN2018/124448
Other languages
English (en)
French (fr)
Inventor
林伟
冯威
刘晓彤
张宇
石磊
Original Assignee
驭势科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 驭势科技(北京)有限公司 filed Critical 驭势科技(北京)有限公司
Priority to PCT/CN2018/124448 priority Critical patent/WO2020133088A1/zh
Priority to CN201910007653.5A priority patent/CN109783593A/zh
Publication of WO2020133088A1 publication Critical patent/WO2020133088A1/zh
Priority to US17/359,565 priority patent/US20210325207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3896Transmission of map data from central databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries

Definitions

  • the present application relates to the field of map construction, and in particular, to a map updating system and method that can be used for automatic driving.
  • a first aspect of the present application provides a map updating method that can be used for automatic driving, including: a vehicle sends a local map request to a server, the local map request includes current location data of the vehicle, and the vehicle includes general automatic driving A vehicle; the vehicle receives a first partial map of the current location from the server, the first partial map covers a first distance on the vehicle's travel path; a general-purpose sensor mounted on the vehicle collects the vehicle First surrounding environment data during driving along the first distance; and based on the first partial map and the first surrounding environment data, the vehicle generates map update data and sends it to the server.
  • the method may further include: the general-purpose sensor collects second surrounding environment data of the current location; the vehicle matches the second surrounding environment data with the first local map; And the vehicle determines the type of the map update data according to the matching result.
  • the matching result is that the ratio is greater than a first threshold
  • the first surrounding environment data may include a first feature point set
  • the first feature point set may correspond to the universal sensor in the Data collected within the first distance
  • the map update data may include feature points in the first feature point set that do not match all landmark points in the landmark point set.
  • the map update data may further include landmark points in the set of landmark points that can match the feature points in the first feature point set.
  • the first partial map may include the first distance and the second distance
  • the method may further include: after the vehicle sends the map update data to the server, the The vehicle deletes the portion of the first partial map corresponding to the first distance; the vehicle sends a new partial map request to the server; and the vehicle receives the second partial map sent by the server, the The second partial map includes the second distance and the third distance.
  • the matching result is that the ratio is less than a first threshold
  • the map update data may include a local map constructed by the vehicle according to the first surrounding environment data and corresponding to the first distance.
  • the first partial map may include a building instruction, the building instruction reflects that the first partial map is not stored in the server, and the vehicle is required to build the first partial map.
  • a second aspect of the present application provides a map update method that can be used for automatic driving, which may include: a server receiving a local map request sent by a vehicle, the local map request including current location data of the vehicle, and the vehicle including general-purpose Automated driving vehicle; the server determines the first partial map from the global map according to the current position data and sends it to the vehicle; the server receives map update data sent by the vehicle; and the server according to the map The update data updates the part of the global map corresponding to the first local map.
  • the global map may be stored in a storage device of the server, and the storage granularity of the global map may be a signpost data, and the signpost data may include three-dimensional spatial information of the signpost, Visual feature information, positioning effect information and group marks.
  • the partial map request may further include performance data of the vehicle's in-vehicle electronic equipment
  • the determining the first partial map may include: the server determining according to the performance data of the vehicle's in-vehicle electronic equipment The size of the first partial map.
  • the local map request may further include the driving direction of the vehicle
  • the determining the first local map may include: the server may determine the driving direction according to the driving direction of the vehicle and the current location data. Describe the first partial map.
  • the first partial map may include a building instruction, the building instruction reflects that the first partial map is not stored in the server, and the vehicle is required to build the first partial map.
  • the portion of the updated global map corresponding to the first partial map may include: the server updating data according to the map and the follow-up updates corresponding to the first partial map uploaded by other vehicles Data to update the part of the global map corresponding to the first local map.
  • a third aspect of the present application proposes an automatic driving system that can be used to update a map, including an in-vehicle electronic device.
  • the in-vehicle electronic device may include: at least one storage medium that stores a set of instructions; and at least one process
  • the processor communicates with the at least one storage medium, and when executing the set of instructions, the at least one processor is used to perform the method described above.
  • a fourth aspect of the present application proposes a map updating system that can be used for automatic driving, characterized in that it includes a server, and the server may include: at least one storage medium that stores a set of instructions; and at least one process
  • the processor communicates with the at least one storage medium, and when executing the set of instructions, the at least one processor is used to perform the method described above.
  • the fifth aspect of the present application proposes a computer-readable storage medium on which a computer program is stored.
  • the steps of the map updating method described above can be realized.
  • FIG. 1 is a schematic diagram of an embodiment of a map update by a universal automatic driving vehicle in this application;
  • FIG. 2 is a schematic diagram of an embodiment of a wireless communication system for network management of mobile devices
  • FIG. 3 is a block diagram of an exemplary vehicle with autonomous driving capabilities according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of exemplary hardware and software components of the information processing unit
  • FIG. 5 is an exemplary flowchart of a map updating method that can be used for automatic driving in this application;
  • FIG. 6 is an exemplary flowchart of a method for matching the first partial map and the second surrounding environment data in the present application
  • FIG. 8 is a schematic diagram of a vehicle-mounted electronic device in this application.
  • FIG. 9 is a schematic diagram of a server device in this application.
  • the present application discloses a system and method for updating maps with on-board equipment of ordinary autonomous vehicles.
  • the map may include a visual positioning map, and a vehicle with an automatic driving function (the following description about a vehicle with an automatic driving function may be replaced by "autonomous driving vehicle”) may perform automatic driving according to the visual positioning map.
  • a vehicle with an automatic driving function the following description about a vehicle with an automatic driving function may be replaced by "autonomous driving vehicle”
  • autonomous driving vehicle Due to the large amount of storage required for the visual positioning map, the visual positioning map can be stored in a cloud server, and the autonomous driving vehicle can dynamically obtain a local map of its current location from the cloud server during driving In order to ensure its driving needs for a period of time.
  • the cloud server can store a global map.
  • the global map may include a larger area, such as a map of a city, a map of a country, and so on. Due to the large coverage of the global map, if only relying on vehicles with professional mapping equipment to continuously collect data for updating, it still cannot meet the demand.
  • the solution proposed in this application allows ordinary vehicles with a certain mapping capability (building vehicles) to collect and upload the environmental data around the road sections in their daily driving process to the cloud server to perform the global map Update.
  • the mapping vehicle may include, but is not limited to, a general-purpose autonomous driving vehicle.
  • the general-purpose autonomous driving vehicle may be a vehicle without professional mapping equipment.
  • the general-purpose sensor on the vehicle is a non-professional level commercial sensor, which can map the surrounding environment during the driving process.
  • the general-purpose sensors include lidar, visual sensors (monocular camera, binocular camera, etc.) and so on.
  • the cloud server cannot provide a sufficiently detailed local map or the local map is wrong, after the map-building vehicle downloads the local map from the cloud server, it will complete the processing of the collected data locally, preliminary processing, and upload it to the
  • the cloud server completes the supplementary construction of the cloud map.
  • the map-building vehicle may directly upload the image to the cloud server without processing the image, and the cloud server may complete the map-building work. Due to the huge amount of data in the visual positioning map, this process of data interaction depends on sufficiently fast network uplink and downlink. For example, a 5G network or a network with a bandwidth of not less than 100 Mbps can provide a higher-quality network environment and help to update the global map by the universal autonomous vehicle. It should be recognized that a better network environment is more conducive to the implementation of the method described in this application, such as a network with a bandwidth of 200Mbps, 400Mbps up to 1Gbps
  • modules or units, blocks, units
  • the modules (or units, blocks, units) described in this application may be implemented as software and/or hardware modules. Unless the context clearly dictates otherwise, when a unit or module is described as “connected,” “connected to” or “coupled to” another unit or module, the expression may mean that the unit or module is directly connected or linked Or coupled to the other unit or module, it may also mean that the unit or module is indirectly connected, connected, or coupled to the other unit or module in some form. In this application, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • autonomous vehicle may refer to the environment that can perceive its environment and automatically perceive, judge and then make an external environment without human input (or driver, pilot, etc.) and/or intervention Decision making vehicle.
  • autonomous vehicle and “vehicle” can be used interchangeably.
  • autonomous driving may refer to the ability to make intelligent judgments on the surrounding environment and navigate without input by anyone (eg, driver, pilot, etc.).
  • the flowchart used in this application shows the operations implemented by the system according to some embodiments in this application. It should be clearly understood that the operations of the flowchart can be implemented out of order. Instead, the operations can be performed in reverse order or simultaneously. In addition, one or more other operations can be added to the flowchart. One or more operations can be removed from the flowchart.
  • the positioning technology used in this application can be based on Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Compass Navigation System (COMPASS), Galileo Positioning System, Quasi-Zenith Satellite System (QZSS), Wireless Fidelity (WiFi) Positioning technology, etc., or any combination thereof.
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • COMPASS Compass Navigation System
  • Galileo Positioning System Galileo Positioning System
  • QZSS Quasi-Zenith Satellite System
  • WiFi Wireless Fidelity
  • system and method in the present application mainly describe a map updating system and method that can be used for automatic driving, it should be understood that this is only an exemplary embodiment.
  • the system or method of the present application can be applied to any other type of transportation system.
  • the system or method of the present application can be applied to transportation systems in different environments, including land, ocean, aerospace, etc., or any combination thereof.
  • the self-driving vehicles of the transportation system may include taxis, private cars, trailers, buses, trains, bullet trains, high-speed railways, subways, ships, airplanes, spaceships, hot air balloons, autonomous vehicles, etc., or any combination thereof.
  • the system or method may find application in, for example, logistics warehouses and military affairs.
  • FIG. 1 is a schematic diagram of an embodiment of a map update performed by a universal automatic driving vehicle in this application.
  • the vehicle 130 travels along the path 120 on the road 121.
  • the vehicle 130 may include an ordinary self-driving vehicle instead of a construction vehicle equipped with professional construction equipment.
  • the vehicle 130 is equipped with a universal sensor 140.
  • the universal sensor 140 has a certain mapping capability. For example, during driving of the vehicle 130, the universal sensor 140 collects surrounding environmental data.
  • the processing device (not shown in the figure) of the vehicle 130 may reconstruct a visual positioning map of the surrounding environment according to the surrounding environment data collected by the general sensor 140.
  • the universal sensor 140 may include a sensor group used by the ordinary autonomous vehicle for normal driving, such as a laser radar, a millimeter wave radar, an ultrasonic radar, a camera (monocular camera, binocular camera), etc. .
  • the universal sensor 140 may also be a simple mapping device with certain mapping capabilities.
  • the simple drawing equipment can be universally installed on a private car, and during the daily driving of the private car, the simple drawing equipment can collect surrounding environment data and perform drawing.
  • a data interaction link is established between the vehicle 130 and the server 110.
  • the vehicle 130 may upload a partial map of the area 160 that it reconstructs to the server 110 to update the portion of the global map corresponding to the area 160.
  • the map that can be used for automatic driving may include a visual positioning map.
  • the visual positioning map may include multiple signpost points.
  • Each road sign point may include visual feature information of the road sign point and three-dimensional space information of the road sign point.
  • the street lamp 151 and the street sign 152 are the road sign points in the local map corresponding to the area 160.
  • the corresponding landmark points in the visual positioning map may include the visual characteristics (such as shape, outline, texture, color, etc.) of the street lamp 151, and the position information and scale of the street lamp 151 in space information.
  • Autonomous vehicles can position themselves based on the visual feature information and three-dimensional space information of multiple road signs.
  • FIG. 2 is a schematic diagram of an embodiment of a wireless communication system 200 for network management of mobile devices.
  • the mobile device network management system can be used as a supporting network application in the invention described in this disclosure.
  • the wireless communication system 200 includes remote units 242, 244, 246, a base station 210, and wireless communication links 215, 248.
  • remote units 242, 244, 246, base station 210 and wireless communication links 215, 248 are depicted in FIG. 2, but those skilled in the art will recognize that any number of remote units 242 may be included in the wireless communication system 200, 244,246, base station 210 and wireless communication links 215,248.
  • the remote units 242, 244, 246 may be mobile devices, such as in-vehicle computers (including on-board computers for manual driving vehicles and or self-driving vehicles with automatic driving capabilities) 242, 244, and other mobile devices 246, Such as mobile phones, laptop computers, personal digital assistants ("PDA"), tablet computers, smart watches, fitness bands, optical head-mounted displays, etc.
  • Remote units 242, 244, 246 may also include non-mobile computing devices, such as desktop computers, smart TVs (eg, televisions connected to the Internet), set-top boxes, game consoles, security systems (including security cameras), fixed Network equipment (eg, routers, switches, modems), etc.
  • mobile remote units 242, 244, 246 may be referred to as mobile stations, mobile devices, users, terminals, mobile terminals, fixed terminals, user stations, UEs, user terminals, devices, or by other terms used in the art.
  • the wireless link between the remote units 242, 244, 246 is 248.
  • the wireless link between the remote units 242, 244, and 246 may be 5G communication interaction and other forms of wireless interaction, such as Bluetooth, Wifi, and so on.
  • the base station 210 forms a radio access network (radio access network "RAN") 220.
  • the wireless link between the base stations 210 is 215.
  • the RAN 220 may be coupled to the mobile core network 230 through communication.
  • the mobile core network 230 may be a 5G network, or a 4G, 3G, 2G, or other form of network. In the present disclosure, the 5G network is taken as an example to illustrate the present invention.
  • any communication environment of 2G-4G can be used.
  • the 5G network environment is more suitable for the communication between the vehicles.
  • the data transmission rate of 4G is on the order of 100Mbps
  • the delay is 30-50ms
  • the maximum number of connections per square kilometer is on the order of 10,000
  • the mobility is about 350KM/h
  • the transmission rate of 5G is on the order of 10Gbps
  • the delay is 1ms
  • the maximum number of connections per square kilometer is on the order of millions
  • the mobility is about 500km/h.
  • 5G has higher transmission rates, shorter delays, more connections per square kilometer, and higher speed tolerance. Another change in 5G is the change in transmission paths.
  • the 5G mobile core network 230 may belong to a single public land mobile network (single public land mobile network "PLMN").
  • PLMN single public land mobile network
  • the mobile core network 230 can provide services with low latency and high reliability requirements, such as applications in the field of autonomous driving.
  • the mobile core network 230 may also provide services for other application requirements.
  • the mobile core network 230 can provide services with high data rates and medium-delay traffic, such as services for mobile devices such as mobile phones.
  • the mobile core network 230 may also provide services such as low mobility and low data rate.
  • the base station 210 may serve multiple remote units 242, 244, 246 within the service area, such as cells or cell sectors, through wireless communication links.
  • the base station 210 can directly communicate with one or more remote units 242, 244, 246 via communication signals.
  • the remote units 242, 244, 246 may directly communicate with one or more base stations 210 via uplink (UL) communication signals.
  • UL communication signals may be carried over wireless communication links 215, 248.
  • the base station 210 may also send a downlink (DLlink) communication signal to serve the remote units 242, 244, 246 in the time domain, frequency domain, and/or air domain.
  • DL communication signals may be carried over the wireless communication link 215.
  • the wireless communication link 215 may be any suitable carrier in the licensed or unlicensed radio spectrum.
  • the wireless communication link 215 may communicate with one or more remote units 242, 244, 246 and/or one or more base stations 210.
  • the wireless communication system 200 conforms to the long-term evolution (LTE) of the 3GPP protocol, where the base station 210 uses an orthogonal frequency division multiplexing (OFDM) modulation scheme on the DL Send it.
  • the remote units 242, 244, 246 use a single-carrier frequency division multiple access (single-carrier frequency division multiple access "SC-FDMA") scheme to transmit on the UL.
  • SC-FDMA single-carrier frequency division multiple access
  • the wireless communication system 2200 may implement some other open or proprietary communication protocols, for example, WiMAX, and other protocols. This disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
  • the base station 210 and the remote units 242, 244, 246 may be distributed over geographical areas.
  • the base station 210 and the remote units 242, 244, 246 may also be referred to as access points, access terminals, or by any other terminology used in the art.
  • two or more geographically adjacent base stations 210 or remote units 242, 244, 246 are combined into a routing area.
  • the routing area may also be referred to as a location area, a paging area, a tracking area, or by any other terminology used in the art.
  • Each "routing area" has an identifier sent from its serving base station 210 to the remote units 242, 244, 246 (or sent between the remote units 242, 244, 246).
  • the mobile remote unit 242, 244, 246 moves to a new cell that broadcasts a different "routing area" (eg, within the range of the new base station 210), the mobile remote unit 242, 244, 246 detects the change in the routing area.
  • RAN 220 in turn pages mobile remote units 242, 244, 246 in idle mode through base station 210 in its current routing area.
  • RAN 220 contains multiple routing areas. As is known in the art, the size of the routing area (eg, the number of base stations included in the routing area) can be selected to balance the routing area update signaling load and paging signaling load.
  • the remote units 242, 244, 246 may be attached to the core network 230.
  • the remote unit 242, 244, 246 detects a mobile device network management event (e.g., a change in routing area)
  • the remote unit 242, 244, 246 can report to the core network 230 (e.g., low latency and high reliability required for autonomous driving)
  • the required service or the high data rate and medium delay traffic required by the mobile phone sends a mobile device network management request message.
  • the core network 230 forwards the mobile device network management request to one or more auxiliary network slices connected to the remote units 242, 244, 246 to provide corresponding services.
  • the remote units 242, 244, 246 may no longer need a certain network service (for example, the service with low latency and high reliability required for autonomous driving or the service with high data rate and medium delay traffic required by mobile phones) .
  • the remote units 242, 244, 246 may send a separation request message, such as a data connection release message, to separate from the network separation.
  • FIG. 3 is a block diagram of an exemplary vehicle with autonomous driving capabilities according to some embodiments of the present disclosure.
  • the vehicle 300 may be vehicles 242, 244 in the wireless communication system 200 managed by the mobile device network shown in FIG.
  • the vehicle 300 with automatic driving capability may include a control module, multiple sensors, a memory, an instruction module, and a controller area network (CAN) and an actuator.
  • CAN controller area network
  • the actuator may include, but is not limited to, drive execution of an accelerator, an engine, a braking system, and a steering system (including steering of tires and/or operation of turn signals).
  • the plurality of sensors may include various internal and external sensors that provide data to the vehicle 300.
  • the plurality of sensors may include vehicle component sensors and environment sensors.
  • the vehicle component sensor is connected to the actuator of the vehicle 300, and can detect the operating state and parameters of various components of the actuator.
  • the environmental sensor allows the vehicle to understand and potentially respond to its environment in order to assist the autonomous vehicle 300 in navigation, path planning, and to ensure the safety of passengers and people or property in the surrounding environment.
  • the environmental sensor can also be used to identify, track and predict the movement of objects, such as pedestrians and other vehicles.
  • the environment sensor may include a position sensor and an external object sensor.
  • the position sensor may include a GPS receiver, an accelerometer, and/or a gyroscope, a receiver.
  • the position sensor may sense and/or determine more than one geographic location and orientation of the autonomous vehicle 300. For example, determine the latitude, longitude and altitude of the vehicle.
  • the external object sensor can detect objects outside the vehicle, such as other vehicles, obstacles in the road, traffic signals, signs, trees, etc.
  • External object sensors may include laser sensors, radar, cameras, sonar, and/or other detection devices.
  • the laser sensor can measure the distance between the vehicle and the surface of the object facing the vehicle by rotating on its axis and changing its spacing. Laser sensors can also be used to identify changes in surface texture or reflectivity. Therefore, the laser sensor may be configured to detect the lane line by distinguishing the amount of light reflected by the painted lane line relative to the unpainted dark road surface.
  • Radar sensors can be located on the front and rear of the car and on either side of the front bumper. In addition to using radar to determine the relative position of external objects, other types of radar can also be used for other purposes, such as traditional speed detectors. Shortwave radar can be used to determine the depth of snow on the road and determine the location and condition of the road surface.
  • the camera can capture visual images around the vehicle 300 and extract content therefrom. For example, the camera can photograph the signs on both sides of the road and recognize the meaning of these signs through the control module. For example, use the camera to determine the speed limit of the road.
  • the vehicle 300 may also calculate the distance of surrounding objects from the vehicle 300 through the parallax of different images captured by multiple cameras.
  • the sonar can detect the distance between the vehicle 300 and the surrounding obstacles.
  • the sonar may be an ultrasonic rangefinder.
  • the ultrasonic rangefinders are installed on both sides and behind the vehicle, and are turned on when parking to detect obstacles around the parking space and the distance between the vehicle 300 and the obstacles.
  • the control module may process information and/or data related to vehicle driving (eg, automatic driving) to perform one or more functions described in the present disclosure.
  • the control module may be configured to drive the vehicle autonomously.
  • the control module may output multiple control signals. Multiple control signals may be configured to be received by one or more electronic control units (ECUs) to control the driving of the vehicle.
  • the control module may determine the reference path and one or more candidate paths based on the environmental information of the vehicle.
  • control module may include one or more central processors (eg, single-core processors or multi-core processors).
  • the control module may include a central processing unit (CPU), application-specific integrated circuit (ASIC), application-specific instruction-set processor (ASIP), graphics Processing unit (graphics, processing unit, GPU), physical processing unit (physics, processing unit, PPU), digital signal processor (DSP), field programmable gate array (field programmable gate array, FPGA), programmable logic Device (programmable logic, device, PLD), controller, microcontroller unit, reduced instruction-set computer (RISC), microprocessor (microprocessor), etc., or any combination thereof.
  • the memory may store data and/or instructions.
  • the memory may store data obtained from autonomous vehicle sensors.
  • the memory may store data and/or instructions that the control module may execute or use to perform the exemplary methods described in this disclosure.
  • the memory may include mass storage, removable memory, volatile read-and-write memory, read-only memory (ROM), etc., or any combination thereof.
  • mass storage may include magnetic disks, optical disks, solid-state drives, etc.; for example, removable storage may include flash drives, floppy disks, optical disks, memory cards, zipper disks, magnetic tape; for example, volatile read-write memory may include random access Memory (RAM); for example, RAM can include dynamic RAM (DRAM), double data rate synchronous dynamic RAM (DDR SDRAM), static RAM (SRAM), thyristor RAM (T-RAM) and zero capacitor RAM (Z-RAM );
  • ROM may include mask ROM (MROM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), compact disk ROM (CD-ROM), and Digital universal disk ROM, etc.
  • storage can be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud cloud, a multi-cloud cloud, etc., or any combination thereof.
  • the memory may be local memory, that is, the memory may be part of the autonomous vehicle 300. In some embodiments, the memory may also be remote memory.
  • the central processor may connect the remote memory through the network 200 to communicate with one or more components (eg, control module, sensor module) of the autonomous vehicle 300. One or more components in the autonomous vehicle 200 can access data or instructions stored remotely in a remote memory via the network 200.
  • the memory may be directly connected to or communicate with one or more components in the autonomous vehicle 300 (eg, control module, sensor).
  • the command module receives the information from the control module and converts it into a command to drive the actuator to the Controller Area Network (Controller Area Network) CAN bus.
  • the control module sends the driving strategy (acceleration, deceleration, turning, etc.) of the autonomous vehicle 200 to the instruction module, and the instruction module receives the driving strategy and converts it into a driving instruction for the actuator (for throttle, braking Drive instructions for the mechanism and steering mechanism).
  • the instruction module then sends the instruction to the execution mechanism via the CAN bus.
  • the execution of the instruction by the actuator is detected by the vehicle component sensor and fed back to the control module, thereby completing the closed-loop control and driving of the automatic driving vehicle 300.
  • FIG. 4 is a schematic diagram of exemplary hardware and software components of the information processing unit 400.
  • the information processing unit 400 may carry a method for implementing data interaction between the server and the vehicle 130 and updating a map.
  • a cloud server and/or base station (collectively referred to as a server) as described in FIG. 3 may include at least one of the information processing unit 400, and the information processing unit 400 may dispatch a local map to the vehicle according to the request of the vehicle And receive map update data, and then update the global map.
  • the information processing unit 400 may be a dedicated computer device specially designed for map updating.
  • the information processing unit 400 may include a COM port 450 connected to a network connected thereto to facilitate data communication.
  • the information processing unit 400 may further include a processor 420 in the form of one or more processors for executing computer instructions.
  • Computer instructions may include, for example, routines, programs, objects, components, data structures, processes, modules, and functions that perform specific functions described herein.
  • the processor 420 may determine the local map according to the request of the vehicle and send it to the vehicle through the I/O component 460. In addition, the processor 420 may also update the map according to the map update data returned by the vehicle.
  • the processor 420 may include one or more hardware processors, such as a microcontroller, microprocessor, reduced instruction set computer (RISC), application specific integrated circuit (ASIC), application-specific instructions -Assembly processor (ASIP), central processing unit (CPU), graphics processing unit (GPU), physical processing unit (PPU), microcontroller unit, digital signal processor (DSP), field programmable gate array (FPGA) , Advanced RISC machine (ARM), programmable logic device (PLD), any circuit or processor capable of performing one or more functions, etc., or any combination thereof.
  • RISC reduced instruction set computer
  • ASIC application specific integrated circuit
  • ASIP application-specific instructions -Assembly processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physical processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM programmable logic device
  • PLD programmable logic device
  • the information processing unit 400 may include an internal communication bus 410, program storage, and different forms of data storage devices (e.g., magnetic disk 470, read only memory (ROM) 430, or random access memory (RAM) 440) used by the computer Various data files processed and/or sent.
  • the global map may be stored in the storage device.
  • the information processing unit 400 may further include program instructions stored in the ROM 430, RAM 440, and/or other types of non-transitory storage media to be executed by the processor 420.
  • the method and/or process of the present application may be implemented as program instructions.
  • the information processing unit 400 also includes an I/O component 460 that supports input/output between the computer and other components (eg, user interface elements).
  • the information processing unit 400 can also receive programming and data through network communication.
  • the information processing unit 400 in this application may also include multiple processors, therefore, the operations and/or method steps disclosed in this application may be performed by one processor as described in this application, or It can be executed jointly by multiple processors.
  • the processor 420 of the information processing unit 400 executes steps A and B in this application, it should be understood that steps A and B may also be executed jointly or separately by two different processors in information processing (for example, The first processor performs step A, the second processor performs step B, or the first and second processors perform steps A and B together.
  • FIG. 5 is an exemplary flowchart of a map updating method applicable to automatic driving in the present application.
  • the method mainly includes the vehicle 130 requesting a local map corresponding to the local area from the server, the server 110 issues the local map according to the request of the vehicle 130, and the vehicle 130 locally receives the local map and the data collected in the local area according to the received local map Map update data is generated and uploaded to the server 110.
  • the server 110 may subsequently update its stored global map according to the map update data.
  • the present disclosure will describe the inventions in this application by taking an autonomous vehicle as an example. However, those of ordinary skill in the art will understand that the inventions in this disclosure can also be applied to manually driven vehicles.
  • a manually driven vehicle equipped with a sensor with a certain map-building capability can also participate in the map update system during its daily driving.
  • the data collected by the universal sensor 140 mounted on it may be used only for building maps and not for automatic driving.
  • the on-board electronic equipment of the vehicle 130 may include at least one set of structures shown in FIG. 4 for communicating with the server 110 and processing data collected by the general sensor 140.
  • the vehicle 130 may send a local map request to the server 110.
  • the local map request may include the current position data of the vehicle.
  • the vehicle 130 may send the local map request to the server 110 when the vehicle 130 is at the position shown in the figure.
  • the server 110 may search in the global map stored by the server 110 to determine the first partial map it sends to the vehicle 130.
  • the storage device of the server 110 may pre-store the global map.
  • the global map may include a map of a city, such as a map of Beijing.
  • the storage method of the global map may be stored using a database technology, and the granularity of the storage may be a signpost data.
  • the signpost data may include three-dimensional spatial information, visual feature information, positioning effect information, and group marks of the signpost.
  • the positioning effect information may include a series of feedback data, and each feedback data may be data that is available/unavailable for a road sign point data fed back by a certain autonomous vehicle after using the road sign point data.
  • the group mark indicates that the road sign point can work in the same local map as other road sign points with the same group mark.
  • the server 110 may determine the first partial map according to the current position of the vehicle 130. For example, the server 110 may determine a circular first partial map with the current position as the center of the circle. For another example, the server 110 pre-stores a map divided into several areas, and the server 110 can search and determine the preset area where the current location is located.
  • the local map request further includes performance data (eg, memory storage capacity) of the vehicle 130 on-board electronic device. The server 110 may determine the size of the first partial map according to the performance data of the in-vehicle electronic devices of the vehicle 130.
  • the map described in the present application includes a visual positioning map, and the representation form of the visual positioning map is in the form of several landmark points, and the size of the map represents the number of landmark points included in a certain geographic range.
  • the first partial map may be a collection of all signpost points within a radius of 200 meters from the current position of the vehicle 130.
  • the first partial map may be a collection of all signpost points within 500 meters of the current location of the vehicle 130.
  • the local map request may further include the driving direction of the vehicle 130.
  • the server 110 may determine the first partial map according to the current position of the vehicle 130 and the driving direction. For example, in the embodiment shown in FIG. 1, the vehicle 130 may send its driving path 120 to the server 110 together. The server 110 may determine that the partial map corresponding to the area 160 to be passed by the vehicle is the first partial map according to the driving path 120.
  • the driving path 120 may be a path that the vehicle 130 decides at a previous moment. If the vehicle 130 is a manual driving vehicle, or when the automatic driving vehicle is in the manual driving mode, the driving direction may be the direction that the vehicle head points when the vehicle is at the current position.
  • the partial map request may also include the area range corresponding to the first partial map.
  • the vehicle 130 may determine the area 160 according to the performance of its in-vehicle electronic device and its driving path 120, so that the first partial map it obtains from the server 110 can satisfy its driving needs or a period of time in the future. Maximum processing power.
  • the search result of the server 110 in the global map according to the local map request may include that the first local map is retrieved and the first local map is not retrieved.
  • the server 110 may send the first partial map to the vehicle 130. If the first partial map is not retrieved, the first partial map sent to the vehicle 130 is empty and may include a request instruction, which may be used to instruct the vehicle 130 to build Describe the first partial map.
  • the vehicle 130 receives the first partial map from the server 110.
  • the first partial map covers the first distance on the vehicle travel path 120.
  • the first partial map may be a collection of road sign points in the area 160, such as street lights 151, street signs 152, and so on.
  • the first distance may be the link S1 on the path 120.
  • the vehicle 130 may process the data collected by the vehicle 130 and package and send it to the server 110.
  • the general-purpose sensor 140 mounted on the located vehicle 130 collects first surrounding environment data of the vehicle during driving along the first distance.
  • the first surrounding environment data includes data that can be used to reconstruct a visual positioning map of the area corresponding to the first distance.
  • the universal sensor 140 may perform multiple data collections for multiple times during the vehicle traveling along the first distance, and the multiple collected data is the first surrounding environment data. In some embodiments, the multiple collections may include collections at intervals and collections at intervals.
  • the first surrounding environment data includes a first feature point set. When the vehicle 130 receives the first partial map, it can perform the first data collection at the current location, and the collected data is the second surrounding environment data, including the second feature point set.
  • the second surrounding environment data may be regarded as a subset (or one frame) of the first surrounding environment data.
  • the method may further include matching the first surrounding environment data with the first local map, and performing subsequent data processing according to the matching result (for a detailed description, see FIG. 5 and related descriptions).
  • the vehicle 130 when receiving the first partial map, it can position itself according to the first partial map, and plan its location based on the positioning result. A driving strategy within the first partial map.
  • the feature point data corresponding to each feature point may include visual feature information and three-dimensional space information of the feature point.
  • the feature point data corresponding to each feature point may include visual feature information and three-dimensional space information of the feature point.
  • the vehicle may generate map update data based on the first partial map and the first surrounding environment data and send it to the server 110.
  • the generation of the map update data may adopt different generation schemes according to the difference between the first partial map and the first surrounding environment data.
  • the vehicle 130 can use its own mapping capabilities to generate the The local map corresponding to the first distance is used as the map update data.
  • the first surrounding environment data may include sensor data of a range corresponding to the first distance collected by a sensor mounted on the vehicle 130. For example, when the first distance is 100 meters and the sensor is a camera, the first surrounding environment data may be multi-frame image data captured by the camera when the vehicle 130 travels the 100 meters.
  • the vehicle 130 may first use the second surrounding environment data to match with the first partial map,
  • the scheme for generating map update data is determined according to the matching result.
  • the second surrounding environment data may include the surrounding environment data of the current location of the vehicle 130 collected by a sensor carried by the vehicle 130 when the vehicle 130 receives the first partial map.
  • the vehicle 130 uses the camera device mounted on it to capture images around its current location.
  • the vehicle 130 may recognize the first partial map as unavailable, immediately or select an opportunity (the vehicle 130 autonomously selects a feedback timing or according to a predetermined time Point feedback) sends a negative feedback to the server 110 to notify that the first partial map is unavailable, and uses its own mapping capability to generate a partial range of the first distance corresponding to the first surrounding environment data collected by it A map is used as the map update data.
  • the vehicle 130 may delete the first partial map to save local storage space.
  • the vehicle 130 may recognize the first partial map as available, and immediately or opt-in to send a positive feedback to the server 110 to notify the first Local maps are available.
  • the vehicle may generate the map update data based on the first partial map.
  • the map update data may include new feature points in the first feature point set relative to the landmark points in the first partial map.
  • the vehicle 130 may position itself and construct a map based on the first partial map.
  • the map-building in this case may be that the newly added feature points are added to the first partial map as new landmark points, and the generated new first partial map is used as the map update data.
  • the positive feedback or negative feedback may be uploaded to the server 110 together with the map update data.
  • the server 110 may update the global map.
  • the server 110 may combine data uploaded by multiple vehicles corresponding to the landmark points in the first partial map area, and perform superposition, fusion and other processing on the first partial map to obtain relative stability As the update of the first partial map.
  • the positive feedback or the negative feedback may reflect the positioning effect in the landmark data. For example, for road sign point A, when the server 110 receives the map update data sent back by several vehicles, according to the positive feedback or negative feedback information included in the map update data, it may be determined whether the road sign point A is available for the several vehicles . That is, the positioning effect of the signpost A may be a statistical data indicating the number of times the signpost A is available and the number of unavailable times.
  • FIG. 6 is an exemplary flowchart of a method for matching the first partial map and the second surrounding environment data in the present application.
  • the process mainly includes matching the feature points in the second feature point set with the landmark points in the first partial map to determine whether the first partial map is available.
  • the universal sensor 140 may collect the second surrounding environment data of the current location.
  • the vehicle 130 collects the second surrounding environment data of the current location after receiving the first partial map.
  • the second surrounding environment data may also be a part of the first surrounding environment data.
  • the second surrounding environment data includes a second feature point set, and each feature point includes its visual feature information and three-dimensional space information.
  • the vehicle 130 may match the second surrounding environment data with the first local map.
  • the matching may include matching feature points in the second feature point set with landmark points in the first partial map. For example, for each feature point in the second feature point set, the vehicle 130 may compare the visual feature information and the three-dimensional spatial information of the feature point with the visual feature information and each visual landmark information in the first partial map. Three-dimensional space information is matched, and it has been determined whether the feature point can match one of the landmark points. Furthermore, the number of matching feature points in the second feature point set that can match the landmark points in the first partial map can be determined.
  • the result of the matching may be a ratio of the number of matches to the number of all feature points in the second feature point set. For example, the second feature point set includes 100 feature points, and the first partial map includes 10000 road sign points. There are 80 feature points that can be matched with 80 of the 10,000 landmark points, then the number of matches is 80, and the ratio is 80%.
  • the vehicle 130 may determine the type of the map update data according to the matching result. For example, when the matching result meets requirements, for example, the ratio is greater than a first threshold, it indicates that the first partial map is available.
  • a strategy of patching can be adopted for updating the first part, that is, sending the newly added feature points to the server.
  • the map update data may include the newly added feature point .
  • the map update data may also include landmark points in the set of landmark points that can match the feature points in the first feature point set. This part of the data may be stored as positive feedback data in The positioning effect data of the signpost data.
  • the ratio is less than the first threshold, it indicates that the first partial map is unavailable.
  • An update strategy may be adopted for updating the first partial map, that is, a first partial map is reconstructed and uploaded to the server.
  • the map update data includes the reconstructed first partial map.
  • FIG. 7 is an exemplary flowchart of the dynamic interaction between the vehicle and the server of the present application. Due to the performance limitation of the onboard electronic equipment of the vehicle 130, it needs to dynamically interact with the server during driving to ensure that it can continuously upload map update data.
  • the vehicle 130 deletes a portion of the first partial map corresponding to the first distance.
  • the timing of the vehicle 130 uploading data to the server may be dynamically determined according to the network condition. For example, when the network condition is busy (for example, a local map is being downloaded from a server), the vehicle 130 may first store the map update data locally and wait until the network condition improves before sending. After the vehicle 130 sends the map update data to the server 110, it may locally delete a part of the map corresponding to the first distance to save storage resources.
  • the vehicle 130 sends a new local map request to the server 110.
  • the new local map request may be sent to the server 110 when the vehicle 130 is about to leave the area corresponding to the first local map, or may be generated when the map update corresponding to the first distance is generated
  • the data is sent to the server 110 together.
  • the vehicle 130 receives a second partial map sent by the server, and the second partial map includes the second distance and the third distance.
  • the first partial map includes a first distance of 0-100 meters and a second distance of 100-200 meters
  • the second partial map includes a second distance of 100-200 meters and a third distance of 200-300 meters.
  • the vehicle 130 drives to 100 meters, it requests a second partial map of 100-300 meters from the server to replace the first partial map stored locally, so as to ensure that the local storage resources are fully utilized and that there are sufficient scales Partial maps are available.
  • FIG. 8 is a schematic diagram of a vehicle-mounted electronic device 800 in this application.
  • the in-vehicle electronic device 800 includes a data sending unit 810, a data receiving unit 820, a data collecting unit 830, and a map update data generating unit 840.
  • the data sending unit 810 may send a local map request to the server.
  • the local map request includes current position data of the vehicle, and the vehicle includes a general-purpose autonomous driving vehicle.
  • the data receiving unit 820 may receive the first partial map of the current location from the server.
  • the first partial map covers the first distance on the driving path of the vehicle.
  • the data collection unit 830 may collect the first surrounding environment data of the vehicle during driving along the first distance.
  • the map update data generating unit 840 may generate map update data based on the first partial map and the first surrounding environment data and send the data to the server by the data sending unit 810.
  • the server device 900 includes a data receiving unit 910, a map retrieval unit 920, a data sending unit 930, and a map updating unit 940.
  • the data receiving unit 910 may receive a partial map request sent by a vehicle.
  • the local map request includes current position data of the vehicle, and the vehicle includes a general-purpose autonomous driving vehicle.
  • the map retrieval unit 920 may determine the first partial map from the global map according to the current location data, and send it to the vehicle by the data sending unit 930.
  • the data receiving unit 910 may further receive map update data sent by the vehicle.
  • the map update unit 940 may update the part of the global map corresponding to the first partial map according to the map update data.
  • This application also proposes a computer-readable storage medium on which a computer program is stored.
  • the steps of the map updating method described above can be realized.
  • a number expressing the quantity or nature used to describe and claim certain embodiments of the present application should be understood as modified in some cases by the terms “about”, “approximately”, or “substantially.” For example, unless stated otherwise, "about”, “approximately”, or “substantially” may represent a ⁇ 20% change in the value it describes. Therefore, in some embodiments, the numerical parameters listed in the written description and the appended claims are approximate values, which may vary depending on the desired properties sought by the particular embodiment. In some embodiments, the numerical parameter should be interpreted according to the number of significant digits reported and by applying ordinary rounding techniques. Although some embodiments that illustrate the present application list a wide range of numerical ranges and parameters are approximate values, specific examples list the most accurate numerical values possible.

Abstract

一种可用于自动驾驶的地图更新的方法、系统和可读存储介质,其中方法包括:车辆(130)向服务器(110)发送局部地图请求,局部地图请求包括车辆(130)的当前位置数据,车辆(130)包括通用自动驾驶车辆(130);车辆(130)从服务器(110)接收当前位置的第一局部地图,第一局部地图涵盖车辆(130)行驶路径上的第一距离;车辆(130)上装配的通用传感器(140)采集车辆(130)在沿着第一距离行驶过程中的第一周围环境数据;以及基于第一局部地图与第一周围环境数据,车辆(130)生成地图更新数据并发送到服务器(110);可以应用在4G网络环境,但由于数据共享的时候对网络时延和数据的传输速度要求较高,更适合5G网络环境。

Description

一种可用于自动驾驶的地图更新系统与方法 技术领域
本申请涉及地图构建领域,具体而言,涉及一种可用于自动驾驶的地图更新系统与方法。
背景技术
随着自动驾驶技术的发展,用于自动驾驶的地图建设工作也尤为重要。自动驾驶车辆在行驶过程中,依赖区别于普通地图的视觉定位地图来对自身进行定位,以及对行驶路径、行驶策略等作出决策。现有技术中,可以通过专业的地图建设的车辆对特定区域内的道路环境进行特征采集并构建地图。但是,这种方法不利于构建更大尺度的地图,且不能够保证地图的实时性。只有专业的采集车经过的地方才有对应的地图,这无疑会对自动驾驶车辆的活动范围造成限制。此外,道路情况的变化如果不能及时更新,则也会对自动驾驶车辆的决策正确性产生一定的干扰。
因此,需要提供一种地图更新系统和方法,能够准确快速地对现有的地图中变更的部分进行更新,对缺失的部分进行增补。
发明内容
本申请的第一方面提供了一种可用于自动驾驶的地图更新方法,包括:车辆向服务器发送局部地图请求,所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆;所述车辆从所述服务器接收所述当前位置的第一局部地图,所述第一局部地图涵盖所述车辆行驶路径上的第一距离;所述车辆上装配的通用传感器采集所述车辆在沿着所述第一距离行驶过程中的第一周围环境数据;以及基于所述第一局部地图与所述第一周围环境数据,所述车辆生成地图更新数据并发送到所述服务器。
在一些实施例中,所述方法可以进一步包括:所述通用传感器采集所述当前位置的第二周围环境数据;所述车辆将所述第二周围环境数据与所述第一局部地图进行匹配;以及所述车辆根据匹配结果确定所述地图更新数据的类型。
在一些实施例中,所述第一局部地图可以包括路标点集合;所述第二周围环境数据可以包括第二特征点集合;以及所述匹配可以包括确定所述第二特征点集合中,可以与所述路标点集合中的路标点相匹配的特征点数量与所述第二特征点集合中所有特征点数量的比值。
在一些实施例中,所述匹配结果为所述比值大于第一阈值,所述第一周围环境数据可 以包括第一特征点集合,所述第一特征点集合可以对应所述通用传感器在所述第一距离内采集的数据;所述地图更新数据可以包括所述第一特征点集合中,与所述路标点集合中的所有路标点不匹配的特征点。
在一些实施例中,所述地图更新数据还可以包括所述路标点集合中,与所述第一特征点集合中的特征点可以匹配的路标点。
在一些实施例中,所述第一局部地图可以包括所述第一距离和第二距离,所述方法可以进一步包括:在所述车辆将所述地图更新数据向所述服务器发送后,所述车辆删除所述第一局部地图中对应于所述第一距离的部分;所述车辆向所述服务器发送新的局部地图请求;以及所述车辆接收所述服务器发送的第二局部地图,所述第二局部地图包括所述第二距离和第三距离。
在一些实施例中,所述匹配结果为所述比值小于第一阈值,所述地图更新数据可以包括所述车辆根据所述第一周围环境数据构建的对应于所述第一距离的局部地图。
在一些实施例中,所述第一局部地图可以包括建图指令,所述建图指令反映所述服务器中没有存储所述第一局部地图,且要求所述车辆建立所述第一局部地图。
本申请的第二方面提供了一种可用于自动驾驶的地图更新方法,可以包括:服务器接收车辆发送的局部地图请求,所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆;所述服务器根据所述当前位置数据从全局地图中确定第一局部地图并发送给所述车辆;所述服务器接收所述车辆发送的地图更新数据;以及所述服务器根据所述地图更新数据更新全局地图中对应于所述第一局部地图的部分。在一些实施例中,所述全局地图可以存储在所述服务器的存储设备中,所述全局地图的存储粒度可以为一个路标点数据,所述路标点数据可以包括该路标点的三维空间信息、视觉特征信息、定位效果信息以及群组标记。
在一些实施例中,所述局部地图请求可以进一步包括所述车辆的车载电子设备性能数据,所述确定所述第一局部地图可以包括:所述服务器根据所述车辆的车载电子设备性能数据确定所述第一局部地图的大小。
在一些实施例中,所述局部地图请求可以进一步包括所述车辆的行驶方向,所述确定所述第一局部地图可以包括:所述服务器可以根据所述车辆的行驶方向以及当前位置数据确定所述第一局部地图。
在一些实施例中,所述第一局部地图可以包括建图指令,所述建图指令反映所述服务器中没有存储所述第一局部地图,且要求所述车辆建立所述第一局部地图。
在一些实施例中,所述更新全局地图中对应于所述第一局部地图的部分可以包括:所 述服务器根据所述地图更新数据以及其他车辆上传的对应于所述第一局部地图的跟新数据,更新所述全局地图中对应于所述第一局部地图的部分。
本申请的第三方面提出了一种可用于更新地图的自动驾驶系统,包括车载电子设备,所述车载电子设备可以包括:至少一个存储介质,所述存储介质存储一组指令;以及至少一个处理器,所述处理器与所述至少一个存储介质通讯,当执行所述一组指令时,所述至少一个处理器用于执行前文所述的方法。
本申请的第四方面提出了一种可用于自动驾驶的地图更新系统,其特征在于,包括服务器,所述服务器可以包括:至少一个存储介质,所述存储介质存储一组指令;以及至少一个处理器,所述处理器与所述至少一个存储介质通讯,当执行所述一组指令时,所述至少一个处理器用于执行前文所述的方法。
本申请的第五方面提出了一种计算机可读存储介质,其上存储有计算机程序。所述计算机程序被处理器执行时可以实现如前文所述的地图更新方法的步骤。
附图说明
以下附图详细描述了本申请中披露的示例性实施例。其中相同的附图标记在附图的若干视图中表示类似的结构。本领域的一般技术人员将理解这些实施例是非限制性的、示例性的实施例,附图仅用于说明和描述的目的,并不旨在限制本申请的范围,其他方式的实施例也可能同样的完成本申请中的发明意图。其中:
图1是本申请中的通过通用自动驾驶车辆进行地图更新的一个实施例的场景示意图;
图2为用于移动设备网络管理的无线通信系统的一个实施例的示意图;
图3是根据本公开的一些实施例的具有自主驾驶能力的示例性车辆的框图;
图4是信息处理单元的示例性硬件和软件组件的示意图;
图5是本申请中的一种可用于自动驾驶的地图更新方法的示例性流程图;
图6所示为本申请中所述第一局部地图与所述第二周围环境数据匹配方法的示例性流程图;
图7是本申请的车辆与服务器动态交互的示例性流程图;
图8是本申请中的一种车载电子设备的示意图;以及
图9是是本申请中的一种服务器设备的示意图。
具体实施方式
本申请披露了一种可用普通自动驾驶车辆的车载设备更新地图的系统与方法。所述地图可以包括视觉定位地图,具有自动驾驶功能的车辆(以下关于具有自动驾驶功能 的车辆的描述可以替换为“自动驾驶车辆”)可以根据所述视觉定位地图进行自动驾驶。由于所述视觉定位地图需求的存储量较大,所以所述视觉定位地图可以存储在云端服务器,所述具有自动驾驶车辆可以在行驶过程中动态地从所述云端服务器获取其当前位置的局部地图以保证其一段时间内的行驶需求。
所述云端服务器可以存储全局地图。所述全局地图相对于所述局部地图,可以包括更大的区域,例如一个城市的地图,一个国家的地图等。由于所述全局地图覆盖的范围较大,如果仅依赖有专业建图设备的车辆不断采集数据进行更新仍然不能满足需求。本申请提出的方案可以让具有一定建图能力的普通车辆(建图车辆)在其日常行驶过程中对其经过路段周围的环境数据进行采集并上传到所述云端服务器,对所述全局地图进行更新。所述建图车辆可以包括但不限于通用自动驾驶车辆。所述通用自动驾驶车辆可以为不带有专业建图设备的车辆,其搭载的通用传感器为非专业级别的商业传感器,可以在其行驶过程中对周围环境进行建图。所述通用传感器包括激光雷达、视觉传感器(单目摄像头、双目摄像头等)等。
如果云端服务器不能够提供足够细致的本地地图或者本地地图有错误,则所述建图车辆从所述云端服务器下载局部地图后,会在本地完成对采集数据的处理、初步处理并上传到所述云端服务器,完成对云端地图的补充建图。所述建图车辆也可以不对图像进行处理而直接将其上传到所述云端服务器,由云端服务器完成建图工作。由于所述视觉定位地图的数据量庞大,这种数据交互的过程依赖于足够快的网络上行和下行链路。例如5G网络或带宽不小于100Mbps的网络可以提供更优质的网络环境,有助于实现所述通用自动驾驶车辆对所述全局地图的更新。应当认识到,更好的网络环境更有利于本申请所述方法的实施,比如带宽为200Mbps、400Mbps直至1Gbps的网络
为了给本领域普通技术人员提供相关披露的透彻理解,在以下详细描述中通过示例阐述了本发明的具体细节。然而本申请披露的内容应该理解为与权利要求的保护范围一致,而不限于该具体发明细节。比如,对于本领域普通技术人员来说,对本申请中披露的实施例进行各种修改是显而易见的;并且在不脱离本申请的精神和范围的情况下,本领域的普通技术人员可以将这里定义的一般原理应用于其他实施例和应用。再比如,这些细节如果没有以下披露,对本领域普通技术人员来说也可以在不知道这些细节的情况下实践本申请。另一方面,为了避免不必要地模糊本申请的内容,本申请对公知的方法,过程,系统,组件和/或电路做了一般性概括而没有详细描述。因此,本申请披露的内容不限于所示的实施例,而是与权利要求的范围一致。
本申请中使用的术语仅用于描述特定示例实施例的目的,而不是限制性的。比如 除非上下文另有明确说明,本申请中如果对某要件使用了单数形式的描述(比如,“一”、“一个”和/或等同性的说明)也可以包括多个该要件。在本申请中使用的术语“包括”和/或“包含”是指开放性的概念。比如A包括/包含B仅仅表示A中有B特征的存在,但并不排除其他要件(比如C)在A中存在或添加的可能性。
应当理解的是,本申请中使用的术语,比如“系统”,“单元”,“模块”和/或“块”,是用于区分不同级别的不同组件,元件,部件,部分或组件的一种方法。但是,如果其他术语可以达到同样的目的,本申请中也可能使用该其他术语来替代上述术语。
本申请中描述的模块(或单元,块,单元)可以实现为软件和/或硬件模块。除非上下文另有明确说明,当某单元或模块被描述为“接通”、“连接到”或“耦合到”另一个单元或模块时,该表达可能是指该单元或模块直接接通、链接或耦合到该另一个单元或模块上,也可能是指该单元或模块间接的以某种形式接通、连接或耦合到该另一个单元或模块上。在本申请中,术语“和/或”包括一个或多个相关所列项目的任何和所有组合。
在本申请中,术语“自动驾驶车辆”可以指能够感知其环境并且在没有人(例如,驾驶员,飞行员等)输入和/或干预的情况下对外界环境自动进行感知、判断并进而做出决策的车辆。术语“自动驾驶车辆”和“车辆”可以互换使用。术语“自动驾驶”可以指没有人(例如,驾驶员,飞行员等)输入的对周边环境进行智能判断并进行导航的能力。
考虑到以下描述,本申请的这些特征和其他特征、以及结构的相关元件的操作和功能、以及部件的组合和制造的经济性可以得到明显提高。参考附图,所有这些形成本申请的一部分。然而,应该清楚地理解,附图仅用于说明和描述的目的,并不旨在限制本申请的范围。应理解,附图未按比例绘制。
本申请中使用的流程图示出了根据本申请中的一些实施例的系统实现的操作。应该清楚地理解,流程图的操作可以不按顺序实现。相反,操作可以以反转顺序或同时实现。此外,可以向流程图添加一个或多个其他操作。可以从流程图中移除一个或多个操作。
本申请中使用的定位技术可以基于全球定位系统(GPS),全球导航卫星系统(GLONASS),罗盘导航系统(COMPASS),伽利略定位系统,准天顶卫星系统(QZSS),无线保真(WiFi)定位技术等,或其任何组合。一个或多个上述定位系统可以在本申请中互换使用。
此外,尽管本申请中的系统和方法主要描述了关于可用于自动驾驶的地图更新系统与方法,但是应该理解,这仅是示例性实施例。本申请的系统或方法可以应用于任何其他类型的运输系统。例如,本申请的系统或方法可以应用于不同环境的运输系统,包括陆地,海洋,航空航天等,或其任何组合。运输系统的自动驾驶车辆可包括出租车,私家车,挂车,公共汽车,火车,子弹列车,高速铁路,地铁,船只,飞机,宇宙飞船,热气球,自动驾驶车辆等,或其任何组合。在一些实施例中,该系统或方法可以在例如物流仓库,军事事务中找到应用。
图1是本申请中的通过通用自动驾驶车辆进行地图更新的一个实施例的场景示意图。如图1所示,车辆130在道路121上沿着路径120行驶。所述车辆130可以包括普通的自动驾驶车辆,而非搭载专业建图设备的建图车辆。所述车辆130上装配有通用传感器140。所述通用传感器140具有一定的建图能力。比如所述车辆130在行驶过程中,所述通用传感器140采集周围的环境数据。所述车辆130的处理设备(图中未示出)可以根据所述通用传感器140采集到的周围环境数据重建周围环境的视觉定位地图。在一些实施例中,所述通用传感器140可以包括所述普通自动驾驶车辆用于其正常行驶的传感器组,例如激光雷达、毫米波雷达、超声波雷达、相机(单目摄像头、双目摄像头)等。在一些实施例中,所述通用传感器140也可以是具有一定建图能力的简易建图设备。比如,所述简易建图设备可以通用地装配在私家车上,私家车在日常行驶过程中,所述简易建图设备可以采集周围环境数据并进行建图。
在图1所示实施例中,所述车辆130与服务器110之间建立数据交互链路。所述车辆130可以将其重建的区域160的局部地图上传到所述服务器110,从而对全局地图中对应于区域160的部分进行更新。在本申请所示的实施例中,所述可用于自动驾驶的地图可以包括视觉定位地图。所述视觉定位地图可以包括多个路标点。每个路标点可以包括该路标点的视觉特征信息以及该路标点的三维空间信息。例如在图1中,路灯151和路牌152即为区域160对应局部地图中的路标点。以路灯151为例,其在所述视觉定位地图中对应的路标点可以包括该路灯151的视觉特征(例如形状、轮廓、纹理、颜色等),以及该路灯151在空间中的位置信息以及尺度信息。自动驾驶车辆可以根据多个路标点的视觉特征信息和三维空间信息对自身进行定位。
图2为用于移动设备网络管理的无线通信系统200的一个实施例的示意图。所述移动设备网络管理系统可以作为支持网络应用在本披露所描述的发明中。
无线通信系统200包括远程单元242,244,246,基站210和无线通信链路215,248。图2中描绘了特定数量的远程单元242,244,246,基站210和无线通信链路215, 248,但本领域技术人员会认识到,无线通信系统200中可包括任何数量的远程单元242,244,246,基站210和无线通信链路215,248。
在一些实施例中,远程单元242,244,246可以是移动设备,比如车载计算机(包括人工驾驶车辆和或有自动驾驶能力的自动驾驶车辆的车载计算机)242,244,和其他移动设备246,比如手机、笔记本电脑、个人数字助理(“PDA”)、平板计算机、智能手表、健身带、光学头戴式显示器等。远程单元242,244,246也可以包括非移动计算设备,诸如台式计算机,智能电视(例如,连接到因特网的电视机),设置-顶盒,游戏控制台,安全系统(包括安全摄像机),固定式网络设备(例如,路由器,交换机,调制解调器)等。此外,移动远程单元242,244,246可以被称为移动站,移动设备,用户,终端,移动终端,固定终端,用户站,UE,用户终端,设备,或者通过本领域中使用的其他术语。
远程单元242,244,246之间的无线链路为248。远程单元242,244,246之间的无线链路可以为5G通信交互以及其他方式的无线交互,比如蓝牙、Wifi等等。基站210形成无线电接入网络(radio access network“RAN”)220。基站210之间的无线链路为215。RAN 220可以通过通信的方式耦合到移动核心网络230。移动核心网络230可以是5G网络,也可以是4G、3G、2G或者其他形式的网路。在本披露中以5G网络为例说明本发明。远程单元与基站210通信时可以使用2G-4G的任何一种通讯环境。不过因为所述通讯对网络时延和数据的传输速度要求较高,5G网络环境更适所述车辆之间的通信。4G的数据传输速率是100Mbps量级,时延是30-50ms,每平方千米的最大连接数1万量级,移动性350KM/h左右,而5G的传输速率是10Gbps量级,时延是1ms,每平方千米的最大连接数是百万量级,移动性是500km/h左右。5G具有更高的传输速率,更短的时延,更多的平方千米连接数,以及更高的速度容忍度。5G还有一个变化,就是传输路径的变化。以往我们打电话或者传照片,信号都要通过基站进行中转,但是5G之后,设备和设备之间就可以直接进行传输,不需要再通过基站。因此,本发明虽然也适用于4G环境,但是5G环境下运行会得到更好的技术表现,体现更高的商业价值。
5G移动核心网络230可以属于单个公共陆地移动网络(single public land mobile network“PLMN”)。例如,移动核心网络230可以提供低延迟和高可靠性要求的服务,比如应用于自动驾驶领域。移动核心网络230也可以针对其他应用要求提供服务。比如移动核心网络230可以提供高数据速率和中等延迟流量的服务,比如对手机等移动设备提供服务。比如移动核心网络230也可以提供低移动性和低数据速率等服务。
基站210可以通过无线通信链路服务于服务区域内的多个远程单元242,244,246, 例如,小区或小区扇区。基站210可以经由通信信号直接与一个或多个远程单元242,244,246通信。远程单元242,244,246可以经由上行链路(uplink“UL”)通信信号直接与一个或多个基站210通信。此外,UL通信信号可以通过无线通信链路215,248承载。基站210也可以发送下行链路(downlink“DL”)通信信号以在时域,频域和/或空域中为远程单元242,244,246服务。此外,DL通信信号可以通过无线通信链路215承载。无线通信链路215可以是许可或未许可无线电频谱中的任何合适的载波。无线通信链路215可以与一个或多个远程单元242,244,246和/或一个或多个基站210通信。在一些实施例中,无线通信系统200符合3GPP协议的长期演进(long-term evolution“LTE”),其中基站210使用DL上的正交频分复用(orthogonal frequency division multiplexing“OFDM”)调制方案进行发送。远程单元242,244,246使用单载波频分多址(single-carrier frequency division multiple access“SC-FDMA”)方案在UL上进行发送。然而,更一般地,无线通信系统2200可以实现一些其他开放或专有通信协议,例如,WiMAX,以及其他协议。本公开不旨在限于任何特定无线通信系统架构或协议的实现。
基站210和远程单元242,244,246可以分布在地理区域上。在某些实施例中,基站210和远程单元242,244,246还可以称为接入点,接入终端或者通过本领域中使用的任何其他术语。通常,两个或更多个地理上相邻的基站210或远程单元242,244,246被组合在一起成为路由区域。在某些实施例中,路由区域还可以称为位置区域,寻呼区域,跟踪区域,或者通过本领域中使用的任何其他术语。每个“路由区域”具有从其服务基站210发送到远程单元242,244,246(或者远程单元242,244,246之间发送的)的标识符。
当移动远程单元242,244,246移动到广播不同“路由区域”的新小区(例如,在新基站210的范围内移动)时,移动远程单元242,244,246检测路由区域的改变。RAN 220又通过其当前路由区域中的基站210以空闲模式寻呼移动远程单元242,244,246。RAN 220包含多个路由区域。如本领域中已知的,可以选择路由区域的大小(例如,包括在路由区域中的数量基站)以平衡路由区域更新信令负载与寻呼信令负载。
在一些实施例中,远程单元242,244,246可以附接到核心网络230。当远程单元242,244,246检测到移动设备网络管理事件(例如,路由区域的改变)时,远程单元242,244,246可以向核心网络230(例如,自动驾驶需要的低延迟和高可靠性要求的服务或者手机需要的高数据速率和中等延迟流量的服务)发送移动设备网络管理请求消息。此后,核心网络230将移动设备网络管理请求转发到与远程单元242,244,246 连接的一个或多个辅助网络片以提供相应的服务。
在某一时刻,远程单元242,244,246可能不再需要某一网络服务(例如,自动驾驶需要的低延迟和高可靠性要求的服务或者手机需要的高数据速率和中等延迟流量的服务)。在这种情况下,远程单元242,244,246可以发送分离请求消息,例如数据连接释放消息,以从网络分离中分离。
图3是根据本公开的一些实施例的具有自主驾驶能力的示例性车辆的框图。所述车辆300可以是图2所示的移动设备网络管理的无线通信系统200中的车辆242、244。例如,具有自动驾驶能力的车辆300可包括控制模块、多个传感器、存储器、指令模块、和控制器区域网络(CAN)以及执行机构。
所述执行机构可以包括,但不限于,油门、引擎、制动系统和转向系统(包括轮胎的转向和/或转向灯的操作)的驱动执行。
所述多个传感器可以包括向车辆300提供数据的各种内部和外部传感器。比如图3中所示,所述多个传感器可以包括车辆部件传感器和环境传感器。车辆部件传感器连接着车辆300的执行机构,可以检测到所述执行机构各个部件的运行状态和参数。
所述环境传感器允许车辆理解并潜在地响应其环境,以便帮助自动驾驶车辆300进行导航、路径规划以及保障乘客以及周围环境中的人或财产的安全。所述环境传感器还可用于识别,跟踪和预测物体的运动,例如行人和其他车辆。所述环境传感器可以包括位置传感器和外部对象传感器。
所述位置传感器可以包括GPS接收器、加速度计和/或陀螺仪,接收器。所述位置传感器可以感知和/或确定自动驾驶车辆300多地理位置和方位。例如,确定车辆的纬度,经度和高度。
所述外部对象传感器可以检测车辆外部的物体,例如其他车辆,道路中的障碍物,交通信号,标志,树木等。外部对象传感器可以包括激光传感器、雷达、照相机、声纳和/或其他检测装置。
激光传感器可以通过在其轴上旋转并改变其间距来测量车辆和面向车辆的物体表面之间的距离。激光传感器还可用于识别表面纹理或反射率的变化。因此,激光传感器可以被配置为通过区分由涂漆的车道线相对于未涂漆的暗路面反射的光量来检测车道线。
雷达传感器可以位于汽车的前部和后部以及前保险杠的任一侧。除了使用雷达来确定外部物体的相对位置之外,其他类型的雷达也可以用于其他目的,例如传统的速度检测器。短波雷达可用于确定道路上的积雪深度并确定路面的位置和状况。
相机可以捕获车辆300周围的视觉图像并从中提取内容。例如,相机可以拍摄道路两边的路牌标识,并通过控制模块识别这些标识的意义。比如利用相机来判断道路的速限。车辆300还可以通过多个相机拍摄的不同图像的视差计算周围物体离车辆300的距离。
声纳可以探测车辆300同周围障碍物到距离。例如,所述声纳可以是超声波测距仪。所述超声波测距仪安装在车辆的两侧和后面,在泊车的时候开启来探测泊车位周围的障碍物以及车辆300同所述障碍物的距离。
所述控制模块接收所述多个传感器感知的信息后,可以处理与车辆驾驶(例如,自动驾驶)有关的信息和/或数据,以执行本公开中描述的一个或多个功能。在一些实施例中,控制模块可以配置成自主地驱动车辆。例如,控制模块可以输出多个控制信号。多个控制信号可以被配置为由一个或者多个电子控制模块(electronic control units,ECU)接收,以控制车辆的驱动。在一些实施例中,控制模块可基于车辆的环境信息确定参考路径和一个或多个候选路径。
在一些实施例中,控制模块可以包括一个或多个中央处理器(例如,单核处理器或多核处理器)。仅作为示例,控制模块可以包括中央处理单元(central processing unit,CPU),专用集成电路(application-specific integrated circuit,ASIC),专用指令集处理器(application-specific instruction-set processor,ASIP),图形处理单元(graphics processing unit,GPU),物理处理单元(physics processing unit,PPU),数字信号处理器(digital signal processor,DSP),场可编程门阵列(field programmable gate array,FPGA),可编程逻辑器件(programmable logic device,PLD),控制器,微控制器单元,精简指令集计算机(reduced instruction-set computer,RISC),微处理器(microprocessor)等,或其任何组合。
存储器可以存储数据和/或指令。在一些实施例中,存储器可以存储从自动驾驶车辆传感器获得的数据。在一些实施例中,存储器可以存储控制模块可以执行或使用的数据和/或指令,以执行本公开中描述的示例性方法。在一些实施例中,存储器可以包括大容量存储器,可移动存储器,易失性读写存储器(volatile read-and-write memory),只读存储器(ROM)等,或其任何组合。作为示例,比如大容量存储器可以包括磁盘,光盘,固态驱动器等;比如可移动存储器可以包括闪存驱动器,软盘,光盘,存储卡,拉链盘,磁带;比如易失性读写存储器可以包括随机存取存储器(RAM);比如RAM可以包括动态RAM(DRAM),双倍数据速率同步动态RAM(DDR SDRAM),静态RAM(SRAM),可控硅RAM(T-RAM)和零电容器RAM(Z-RAM);比如ROM可以包括掩模ROM(MROM), 可编程ROM(PROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM),光盘ROM(CD-ROM),以及数字通用磁盘ROM等。在一些实施例中,存储可以在云平台上实现。仅作为示例,云平台可以包括私有云,公共云,混合云,社区云,分布式云,云间云,多云等,或其任何组合。
在一些实施例中,存储器可以为本地存储器,即存储器可以是自动驾驶车辆300的一部分。在一些实施例中,存储器也可以是远程存储器。所述中央处理器可以通过网络200连接所述远程存储器以与自动驾驶车辆300的一个或多个组件(例如,控制模块,传感器模块)通信。自动驾驶车辆200中的一个或多个组件可以经由网络200访问远程存储在远程存储器中的数据或指令。在一些实施例中,存储器可以直接连接到自动驾驶车辆300中的一个或多个组件或与其通信(例如,控制模块,传感器)。
指令模块接收控制模块传来的信息,并将之转换成驱动执行机构的指令传给控制器区域网络(Controller Area Network)CAN总线。比如,控制模块向指令模块发送自动驾驶车辆200的行驶策略(加速、减速、转弯等等),指令模块接收所述行驶策略,并将之转换成对执行机构的驱动指令(对油门、制动机构、转向机构的驱动指令)。同时,指令模块再将所述指令通过CAN总线下发到所述执行机构去。执行机构对所述指令的执行情况再由车辆部件传感器检测并反馈到控制模块,从而完成对自动驾驶车辆300到闭环控制和驱动。
联系图1-3,图4是信息处理单元400的示例性硬件和软件组件的示意图。所述信息处理单元400上可以承载实施所述所述服务器与所述车辆130之间进行数据交互并对地图进行更新的方法。例如,如图3中所述的云端服务器和/或基站(统称服务器)可以包括至少一个所述信息处理单元400,所述信息处理单元400可以根据所述车辆的请求向所述车辆派发局部地图并接收地图更新数据,进而对全局地图进行更新。
所述信息处理单元400可以是专门设计用于地图更新的专用计算机设备。
例如,所述信息处理单元400可以包括连接到与其连接的网络的COM端口450,以便于数据通信。所述信息处理单元400还可以包括处理器420,处理器420以一个或多个处理器的形式,用于执行计算机指令。计算机指令可以包括例如执行本文描述的特定功能的例程,程序,对象,组件,数据结构,过程,模块和功能。所述处理器420可以根据车辆的请求确定局部地图并通过I/O组件460向车辆发送。此外,所述处理器420也可以根据车辆返回的地图更新数据对地图进行更新。
在一些实施例中,所述处理器420可以包括一个或多个硬件处理器,例如微控制器,微处理器,精简指令集计算机(RISC),专用集成电路(ASIC),特定于应用的指 令-集处理器(ASIP),中央处理单元(CPU),图形处理单元(GPU),物理处理单元(PPU),微控制器单元,数字信号处理器(DSP),现场可编程门阵列(FPGA),高级RISC机器(ARM),可编程逻辑器件(PLD),能够执行一个或多个功能的任何电路或处理器等,或其任何组合。
所述信息处理单元400可以包括内部通信总线410,程序存储和不同形式的数据存储设备(例如,磁盘470,只读存储器(ROM)430,或随机存取存储器(RAM)440)用于由计算机处理和/或发送的各种数据文件。所述全局地图可以存储在所述存储设备中。所述信息处理单元400还可以包括存储在ROM 430,RAM 440和/或将由处理器420执行的其他类型的非暂时性存储介质中的程序指令。本申请的方法和/或过程可以作为程序指令实现。所述信息处理单元400还包括I/O组件460,支持计算机和其他组件(例如,用户界面元件)之间的输入/输出。所述信息处理单元400还可以通过网络通信接收编程和数据。
仅仅为了说明问题,在本申请中所述信息处理单元400中仅描述了一个处理器。然而,应当注意,本申请中的所述信息处理单元400还可以包括多个处理器,因此,本申请中披露的操作和/或方法步骤可以如本申请所述的由一个处理器执行,也可以由多个处理器联合执行。例如,如果在本申请中信息处理单元400的处理器420执行步骤A和步骤B,则应该理解,步骤A和步骤B也可以由信息处理中的两个不同处理器联合或分开执行(例如,第一处理器执行步骤A,第二处理器执行步骤B,或者第一和第二处理器共同执行步骤A和B)。
图5是本申请中的一种可用于自动驾驶的地图更新方法的示例性流程图。该方法主要包括车辆130向服务器请求局部区域对应的局部地图,服务器110根据所述车辆130的请求下发该局部地图,车辆130在本地根据收到的局部地图以及自身在该局部区域采集的数据生成地图更新数据并上传到所述服务器110。所述服务器110后续可以根据所述地图更新数据对其存储的全局地图进行更新。仅仅作为展示之用,本披露将以自动驾驶车辆为例描述本申请中的发明点,然而本领域的普通技术人员会了解本披露中的发明点也可以应用在人工驾驶的车辆中。比如搭载了具有一定建图能力的传感器的人工驾驶车辆,在其日常行驶中也可以参与到所述地图更新系统中。又例如所述自动驾驶车辆在进行人工驾驶模式时,其搭载的通用传感器140采集的数据可以仅用于建图而不用于自动驾驶。所述车辆130的车载电子设备可以包括至少一组图4所示的结构,用于与所述服务器110进行通信,以及处理所述通用传感器140采集的数据。
在510中,车辆130可以向服务器110发送局部地图请求。所述局部地图请求可 以包括所述车辆的当前位置数据。对应到图1中,所述车辆130在图中所示位置时可以向所述服务器110发送所述局部地图请求。所述服务器110在接收到所述局部地图请求后可以在其存储的全局地图中进行检索,以确定其向所述车辆130发送的第一局部地图。
在一些实施例中,所述服务器110的存储设备可以预先存储所述全局地图。所述全局地图可以包括一个城市的地图,例如北京市地图。所述全局地图的存储方式可以采用数据库技术进行存储,存储的粒度可以是一个路标点数据,所述路标点数据可以包括该路标点的三维空间信息、视觉特征信息、定位效果信息以及群组标记。所述定位效果信息可以包括一系列反馈数据,每个反馈数据可以是某个自动驾驶车辆在使用该路标点数据后反馈的该路标点数据可用/不可用的数据。所述群组标记表示该路标点可以与其他具有相同群组标记的路标点在同一个局部地图内工作。
在一些实施例中,所述服务器110可以根据所述车辆130的当前位置确定第一局部地图。例如,所述服务器110可以以所述当前位置为圆心,确定一个圆形的第一局部地图。再比如,所述服务器110预先存储有分成若干个区域的地图,所述服务器110可以搜索并确定当前位置所处的预先设定好的区域。在一些实施例中,所述局部地图请求进一步包括所述车辆130车载电子设备的性能数据(例如存储器的存储量)。所述服务器110可以根据所述车辆130车载电子设备的性能数据确定所述第一局部地图的尺寸。应当理解的是,本申请所述的地图包括视觉定位地图,所述视觉定位地图的表现形式是若干路标点的形式,所述地图的尺寸表示一定地理范围内包含的路标点的数量。比如,所述第一局部地图可以是所述车辆130当前位置方圆200米内的所有路标点的集合。又比如,所述车辆130的车载电子设备性能更好时,所述第一局部地图可以是所述车辆130当前位置方圆500米内的所有路标点的集合。
在一些实施例中,所述局部地图请求可以进一步包括所述车辆130的行驶方向。所述服务器110可以根据所述车辆130的当前位置和所述行驶方向确定所述第一局部地图。例如在图1所示的实施例中,所述车辆130可以将其行驶路径120一并发送给所述服务器110。所述服务器110可以根据该行驶路径120确定所述车辆即将经过的区域160对应的局部地图为所述第一局部地图。所述车辆130为自动驾驶车辆且处于自动驾驶模式时,所述行驶路径120可以是所述车辆130在之前时刻决策的路径。若所述车辆130为人工驾驶车辆,或者是自动驾驶车辆处于人工驾驶模式时,所述行驶方向可以是所处车辆在当前位置时车头指向的方向。
在一些实施例中,所述局部地图请求也可以包括所述第一局部地图对应的区域范围。例如,所述车辆130可以根据其车载电子设备的性能,及其行驶路径120,确定所 述区域160,使得其从服务器110获取的第一局部地图能够尽量满足其未来一段时间内的行驶需求或最大处理能力。
所述服务器110根据所述局部地图请求在所述全局地图中的检索结果可以包括检索到所述第一局部地图和没有检索到所述第一局部地图。所述服务器110可以将所述第一局部地图向所述车辆130发送。如果是没有检索到所述第一局部地图的情况,其向所述车辆130发送的第一局部地图为空,并可以包括一个请求指令,所述请求指令可以用于指示所述车辆130构建所述第一局部地图。
在520中,所述车辆130从所述服务器110接收所述第一局部地图。所述第一局部地图涵盖所述车辆行驶路径120上的第一距离。例如在图1中,所述第一局部地图可以为区域160内的路标点的集合,例如路灯151、路牌152等。所述第一距离可以是所述路径120上的路段S1。所述车辆130在行驶过所述路段S1后可以将其采集的数据处理后打包发送给所述服务器110。
在430中,所处车辆130上装配的通用传感器140采集所述车辆在沿着所述第一距离行驶过程中的第一周围环境数据。所述第一周围环境数据包括可以用来重建所述第一距离对应区域的视觉定位地图的数据。所述通用传感器140在所述车辆沿所述第一距离行驶的过程中可以多次对进行多次数据采集,所述多次采集的数据为所述第一周围环境数据。在一些实施例中,所述多次采集可以包括每隔一段时间进行一次采集,以及每隔一段行驶距离进行一次采集等。所述第一周围环境数据包括第一特征点集合。在所述车辆130接收到所述第一局部地图时,其在当前位置可以进行第一次数据采集,采集的数据为第二周围环境数据,包括第二特征点集合。所述第二周围环境数据可以认为是所述第一周围环境数据的子集(或一帧)。所述方法可以进一步包括将所述第一周围环境数据和所述第一局部地图进行匹配,根据匹配结果进行后续的数据处理(具体描述请见图5及其相关描述)。
在一些实施例中,所述车辆130为自动驾驶车辆时,其在接收到所述第一局部地图时,可以根据所述第一局部地图对自身进行定位,并根据所述定位结果规划其在所述第一局部地图范围内的行驶策略。
在一些实施例中,所述第一特征点集合中,每个特征点对应的特征点数据可以包括该特征点的视觉特征信息以及三维空间信息。同样的,所述第二特征点集合中,每个特征点对应的特征点数据可以包括该特征点的视觉特征信息以及三维空间信息。
在540中,所述车辆可以基于所述第一局部地图与所述第一周围环境数据生成地图更新数据并发送到所述服务器110。所述地图更新数据的生成可以根据所述第一局部 地图与所述第一周围环境数据的差异采取不同的生成方案。
当所述第一局部地图为空,且包含请求所述车辆130建图的指令时(也就是,当所述服务器110找不到所述第一局部地图时,则返回的第一局部地图为空并且传送一个指令,命令所述车辆130采集当前环境的地图并传送给所述服务器110),所述车辆130可以利用其自身建图能力根据其采集到的第一周围环境数据,生成所述第一距离对应范围的局部地图作为所述地图更新数据。所述第一周围环境数据可以包括所述车辆130上搭载的传感器采集到的所述第一距离对应范围的传感器数据。比如当所述第一距离为100米,所述传感器为相机时,所述第一周围环境数据可以是所述相机在所述车辆130行驶所述100米时拍摄的多帧图像数据。
当所述车辆130接收到所述第一局部地图时(即所述第一局部地图不为空的时候),其可以先利用所述第二周围环境数据与所述第一局部地图进行匹配,根据匹配结果确定所述生成地图更新数据的方案。所述第二周围环境数据可以包括所述车辆130在接收到所述第一局部地图时,其搭载的传感器采集的所述车辆130当前所处位置的周围环境的数据。比如所述车辆130在接收到所述第一局部地图后,即利用其搭载的相机设备拍摄其当前位置周围的图像。当所述第一局部地图不能够匹配所述第二周围环境数据时,所述车辆130可以将所述第一局部地图识别为不可用,立刻或择机(车辆130自主选择反馈时机或者根据预定时间点来反馈)向所述服务器110发送一个负反馈通知该第一局部地图不可用,并利用其自身建图能力根据其采集到的第一周围环境数据,生成所述第一距离对应范围的局部地图作为所述地图更新数据。所述车辆130在识别所述第一局部地图不可用时,可以删除所述第一局部地图以节约本地存储空间。
当所述第一局部地图可以匹配所述第二周围环境数据时,所述车辆130可以将所述第一局部地图识别为可用,立刻或择机向所述服务器110发送一个正反馈通知该第一局部地图可用。所述车辆可以基于所述第一局部地图生成所述地图更新数据。这种情况下,所述地图更新数据可以包括所述第一特征点集合中,相对于所述第一局部地图中路标点,新增的特征点。所述车辆130为自动驾驶模式时,其沿所述第一距离行驶过程中,可以基于所述第一局部地图对自身进行定位并建图。这种情况下的建图可以是将所述新增的特征点作为新的路标点增加到所述第一局部地图中,生成的新的第一局部地图并作为所述地图更新数据。
在一些实施例中,所述正反馈或负反馈可以与所述地图更新数据一并向所述服务器110上传。所述服务器110在接收到所述地图更新数据后,可以对所述全局地图进行更新。在一些实施例中,所述服务器110可以结合多个车辆上传的对应于所述第一局部 地图区域内路标点的数据,对所述第一局部地图进行叠加、融合等处理,以获取相对稳定的路标点,作为对所述第一局部地图的更新。所述正反馈或负反馈可以反应所述路标点数据中定位效果。例如对于路标点A,所述服务器110接收到若干车辆发送回的地图更新数据时,根据该地图更新数据包括的正反馈或负反馈信息,可以确定该路标点A对于所述若干辆车是否可用。即所述路标点A的定位效果可以是一个统计数据,表示所述路标点A可用的次数和不可用的次数。
图6所示为本申请中所述第一局部地图与所述第二周围环境数据匹配方法的示例性流程图。该流程主要包括将所述第二特征点集合中的特征点与所述第一局部地图中的路标点进行匹配从而判断出所述第一局部地图是否可用。
在610中,所述通用传感器140可以采集所述当前位置的第二周围环境数据。在一些实施例中,所述车辆130在接收到所述第一局部地图后即采集当前位置的所述第二周围环境数据。根据图5中的描述,所述第二周围环境数据也可以是所述第一周围环境数据的一部分。所述第二周围环境数据包括第二特征点集合,每个特征点包括其视觉特征信息以及三维空间信息。
在620中,所述车辆130可以将所述第二周围环境数据与所述第一局部地图进行匹配。所述匹配可以包括将所述第二特征点集合中的特征点与所述第一局部地图中的路标点进行匹配。比如,对于第二特征点集合中的每一个特征点,所述车辆130可以将该特征点的视觉特征信息与三维空间信息与所述第一局部地图中的每个路标点的视觉特征信息与三维空间信息进行匹配,已确定该特征点能否与其中一个路标点匹配。进而可以确定所述第二特征点集合中可以与所述第一局部地图中路标点匹配的特征点的匹配数量。所述匹配的结果可以是所述匹配数量与所述第二特征点集合中所有特征点数量的比值。例如,所述第二特征点集合包括100个特征点,所述第一局部地图包括10000个路标点。有80个特征点可以与10000个路标点中的80个匹配,则匹配数量为80,所述比值为80%。
在630中,所述车辆130可以根据所述匹配结果确定所述地图更新数据的类型。例如,当所述匹配结果满足要求时,比如所述比值大于第一阈值,表示所述第一局部地图可用。对该第一局部的更新可以采取修补的策略,即将新增加的特征点发送给服务器即可。在这种情况下,第一特征点集合中,不能与所述路标点集合中的路标点匹配的,可以认为是新增的特征点,所述地图更新数据可以包括所述新增的特征点。在一些实施例中,所述地图更新数据也可以包括所述路标点集合中,可以与所述第一特征点集合中的特征点匹配的路标点,这部分数据可以作为正反馈数据,存储在该路标点数据的定位 效果数据中。
当所述匹配结果不满足要求,比如所述比值小于第一阈值时,表示所述第一局部地图不可用。对该第一局部地图的更新可以采用替换的策略,即重新构建一个第一局部地图并上传给服务器。所述地图更新数据包括所述重新构建的第一局部地图。
图7是本申请的车辆与服务器动态交互的示例性流程图。由于所述车辆130车载电子设备的性能限制,其在行驶过程中需要动态地与服务器进行数据交互,以保证其能够源源不断地上传地图更新数据。
在710中,所述车辆130将所述地图更新数据向所述服务器110发送后,所述车辆130删除所述第一局部地图中对应于所述第一距离的部分。所述车辆130向所述服务器上传数据的时机可以根据网络状况动态决定。比如网络状况较忙时(例如正在从服务器下载局部地图),所述车辆130可以先将所述地图更新数据存储在本地,等到网络状况转好时再发发送。所述车辆130在将所述地图更新数据发送到所述服务器110后,其在本地可以删除所述第一距离对应的部分地图以节约存储资源。
在720中,所述车辆130向所述服务器110发送新的局部地图请求。在一些实施例中所述新的局部地图请求可以在所述车辆130即将驶出所述第一局部地图对应区域时向所述服务器110,也可以是在生成所述第一距离对应的地图更新数据时一并向所述服务器110发送。
在730中,所述车辆130接收所述服务器发送的第二局部地图,所述第二局部地图包括所述第二距离和第三距离。比如,所述第一局部地图包括第一距离0-100米和第二距离100-200米,所述第二局部地图包括第二距离100-200米和第三距离200-300米。所述车辆130在行驶到100米时即向服务器请求100-300米的第二局部地图以替换掉本地原来存储的第一局部地图,这样可以保证充分利用本地的存储资源且保证有足够尺度的局部地图备用。
图8是本申请中的一种车载电子设备800的示意图。所述车载电子设备800包括数据发送单元810,数据接收单元820,数据采集单元830以及地图更新数据生成单元840。
所述数据发送单元810可以向服务器发送局部地图请求。所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆。
所述数据接收单元820可以从所述服务器接收所述当前位置的第一局部地图。所述第一局部地图涵盖所述车辆行驶路径上的第一距离。
所述数据采集单元830可以采集所述车辆在沿着所述第一距离行驶过程中的第 一周围环境数据。
所述地图更新数据生成单元840可以基于所述第一局部地图与所述第一周围环境数据,生成地图更新数据并由所述数据发送单元810发送到所述服务器。
图9是本申请中的一种服务器设备900的示意图。所述服务器设备900包括数据接收单元910,地图检索单元920,数据发送单元930以及地图更新单元940。
所述数据接收单元910可以接收车辆发送的局部地图请求。所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆。
所述地图检索单元920可以根据所述当前位置数据从全局地图中确定第一局部地图,并由所述数据发送单元930发送给所述车辆。
所述数据接收单元910可以进一步接收所述车辆发送的地图更新数据。
所述地图更新单元940可以根据所述地图更新数据更新全局地图中对应于所述第一局部地图的部分。
本申请还提出了一种计算机可读存储介质,其上存储有计算机程序。所述计算机程序被处理器执行时可以实现如前文所述的地图更新方法的步骤。
综上所述,在阅读本详细公开内容之后,本领域技术人员可以明白,前述详细公开内容可以仅以示例的方式呈现,并且可以不是限制性的。尽管这里没有明确说明,本领域技术人员可以理解本申请意图囊括对实施例的各种合理改变,改进和修改。这些改变,改进和修改旨在由本申请提出,并且在本申请的示例性实施例的精神和范围内。
此外,本申请中的某些术语已被用于描述本申请的实施例。例如,“一个实施例”,“实施例”和/或“一些实施例”意味着结合该实施例描述的特定特征,结构或特性可以包括在本申请的至少一个实施例中。因此,可以强调并且应当理解,在本说明书的各个部分中对“实施例”或“一个实施例”或“替代实施例”的两个或更多个引用不一定都指代相同的实施例。此外,特定特征,结构或特性可以在本申请的一个或多个实施例中适当地组合。
应当理解,在本申请的实施例的前述描述中,为了帮助理解一个特征,出于简化本申请的目的,本申请有时将各种特征组合在单个实施例、附图或其描述中。或者,本申请又是将各种特征分散在多个本发明的实施例中。然而,这并不是说这些特征的组合是必须的,本领域技术人员在阅读本申请的时候完全有可能将其中一部分特征提取出来作为单独的实施例来理解。也就是说,本申请中的实施例也可以理解为多个次级实施例的整合。而每个次级实施例的内容在于少于单个前述公开实施例的所有特征的时候也是成立的。
在一些实施方案中,表达用于描述和要求保护本申请的某些实施方案的数量或性质的数字应理解为在某些情况下通过术语“约”,“近似”或“基本上”修饰。例如,除非另有说明,否则“约”,“近似”或“基本上”可表示其描述的值的±20%变化。因此,在一些实施方案中,书面描述和所附权利要求书中列出的数值参数是近似值,其可以根据特定实施方案试图获得的所需性质而变化。在一些实施方案中,数值参数应根据报告的有效数字的数量并通过应用普通的舍入技术来解释。尽管阐述本申请的一些实施方案列出了广泛范围的数值范围和参数是近似值,但具体实施例中都列出了尽可能精确的数值。
本文引用的每个专利,专利申请,专利申请的出版物和其他材料,例如文章,书籍,说明书,出版物,文件,物品等,可以通过引用结合于此。用于所有目的的全部内容,除了与其相关的任何起诉文件历史,可能与本文件不一致或相冲突的任何相同的,或者任何可能对权利要求的最宽范围具有限制性影响的任何相同的起诉文件历史。现在或以后与本文件相关联。举例来说,如果在与任何所包含的材料相关联的术语的描述、定义和/或使用与本文档相关的术语、描述、定义和/或之间存在任何不一致或冲突时,使用本文件中的术语为准。
最后,应理解,本文公开的申请的实施方案是对本申请的实施方案的原理的说明。其他修改后的实施例也在本申请的范围内。因此,本申请披露的实施例仅仅作为示例而非限制。本领域技术人员可以根据本申请中的实施例采取替代配置来实现本申请中的发明。因此,本申请的实施例不限于申请中被精确地描述过的哪些实施例。

Claims (20)

  1. 一种可用于自动驾驶的地图更新方法,其特征在于,包括:
    车辆向服务器发送局部地图请求,所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆;
    所述车辆从所述服务器接收所述当前位置的第一局部地图,所述第一局部地图涵盖所述车辆行驶路径上的第一距离;
    所述车辆上装配的通用传感器采集所述车辆在沿着所述第一距离行驶过程中的第一周围环境数据;以及
    基于所述第一局部地图与所述第一周围环境数据,所述车辆生成地图更新数据并发送到所述服务器。
  2. 根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
    所述通用传感器采集所述当前位置的第二周围环境数据;
    所述车辆将所述第二周围环境数据与所述第一局部地图进行匹配;以及
    所述车辆根据匹配结果确定所述地图更新数据的类型。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一局部地图包括路标点集合;
    所述第二周围环境数据包括第二特征点集合;以及
    所述匹配包括确定所述第二特征点集合中,可以与所述路标点集合中的路标点相匹配的特征点数量与所述第二特征点集合中所有特征点数量的比值。
  4. 根据权利要求3所述的方法,其特征在于,所述匹配结果为所述比值大于第一阈值,所述第一周围环境数据包括第一特征点集合,所述第一特征点集合对应所述通用传感器在所述第一距离内采集的数据;
    所述地图更新数据包括所述第一特征点集合中,与所述路标点集合中的所有路标点不匹配的特征点。
  5. 根据权利要求4所述的方法,其特征在于,所述地图更新数据还包括所述路标点集合中,与所述第一特征点集合中的特征点可以匹配的路标点。
  6. 根据权利要求5所述的方法,其特征在于,所述第一局部地图包括所述第一距离和第二距离,所述方法进一步包括:
    在所述车辆将所述地图更新数据向所述服务器发送后,所述车辆删除所述第一局部地图中对应于所述第一距离的部分;
    所述车辆向所述服务器发送新的局部地图请求;以及
    所述车辆接收所述服务器发送的第二局部地图,所述第二局部地图包括所述第二距离和第三距离。
  7. 根据权利要求3所述的方法,其特征在于,所述匹配结果为所述比值小于第一阈值,所述地图更新数据包括所述车辆根据所述第一周围环境数据构建的对应于所述第一距离的局部地图。
  8. 根据权利要求1所述的方法,其特征在于,所述第一局部地图包括建图指令,所述建图指令反映所述服务器中没有存储所述第一局部地图,且要求所述车辆建立所述第一局部地图。
  9. 一种可用于自动驾驶的地图更新方法,其特征在于,包括:
    服务器接收车辆发送的局部地图请求,所述局部地图请求包括所述车辆的当前位置数据,所述车辆包括通用自动驾驶车辆;
    所述服务器根据所述当前位置数据从全局地图中确定第一局部地图并发送给所述车辆;
    所述服务器接收所述车辆发送的地图更新数据;以及
    所述服务器根据所述地图更新数据更新全局地图中对应于所述第一局部地图的部分。
  10. 根据权利要求9所述的方法,其特征在于,所述全局地图存储在所述服务器的存储设备中,所述全局地图的存储粒度为一个路标点数据,所述路标点数据包括该路标点的三维空间信息、视觉特征信息、定位效果信息以及群组标记。
  11. 根据权利要求9所述的方法,其特征在于,所述局部地图请求进一步包括所述车辆的车载电子设备性能数据,所述确定所述第一局部地图包括:
    所述服务器根据所述车辆的车载电子设备性能数据确定所述第一局部地图的大小。
  12. 根据权利要求9所述的方法,其特征在于,所述局部地图请求进一步包括所述车辆的行驶方向,所述确定所述第一局部地图包括:
    所述服务器根据所述车辆的行驶方向以及当前位置数据确定所述第一局部地图。
  13. 根据权利要求9所述的方法,其特征在于,所述第一局部地图包括建图指令,所述建图指令反映所述服务器中没有存储所述第一局部地图,且要求所述车辆建立所述第一局部地图。
  14. 根据权利要求9所述的方法,其特征在于,所述更新全局地图中对应于所述第一局部地图的部分包括:
    所述服务器根据所述地图更新数据以及其他车辆上传的对应于所述第一局部地图的跟新数据,更新所述全局地图中对应于所述第一局部地图的部分。
  15. 一种可用于更新地图的自动驾驶系统,其特征在于,包括车载电子设备,所述车载电子设备包括:
    至少一个存储介质,所述存储介质存储一组指令;以及
    至少一个处理器,所述处理器与所述至少一个存储介质通讯,当执行所述一组指令时,所述至少一个处理器用于执行权利要求1-8所述的方法。
  16. 如权利要求15所述的自动驾驶系统,其特征在于,还包括:传感器,所述传感器至少包括激光雷达、毫米波雷达、超声波雷达、相机中的一种。
  17. 如权利要求15所述的自动驾驶系统,其特征在于,还包括:车体,所述车载电子设备装在在所述车体上。
  18. 一种非暂时性计算机可读介质,其特征在于,包括至少一组指令,当至少一个计算设备的处理器执行所述至少一组指令时,所述至少一组指令使所述计算设备执行权利要求1-8所述的方法。
  19. 一种可用于自动驾驶的地图更新系统,其特征在于,包括服务器,所述服务器包括:
    至少一个存储介质,所述存储介质存储一组指令;以及
    至少一个处理器,所述处理器与所述至少一个存储介质通讯,当执行所述一组指令时, 所述至少一个处理器用于执行权利要求9-14所述的方法。
  20. 一种非暂时性计算机可读介质,其特征在于,包括至少一组指令,当至少一个计算设备的处理器执行所述至少一组指令时,所述至少一组指令使所述计算设备执行权利要求9-14所述的方法。
PCT/CN2018/124448 2018-12-27 2018-12-27 一种可用于自动驾驶的地图更新系统与方法 WO2020133088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/124448 WO2020133088A1 (zh) 2018-12-27 2018-12-27 一种可用于自动驾驶的地图更新系统与方法
CN201910007653.5A CN109783593A (zh) 2018-12-27 2019-01-04 一种可用于自动驾驶的地图更新系统与方法
US17/359,565 US20210325207A1 (en) 2018-12-27 2021-06-27 Map updating system and method for autonomous driving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124448 WO2020133088A1 (zh) 2018-12-27 2018-12-27 一种可用于自动驾驶的地图更新系统与方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/359,565 Continuation US20210325207A1 (en) 2018-12-27 2021-06-27 Map updating system and method for autonomous driving

Publications (1)

Publication Number Publication Date
WO2020133088A1 true WO2020133088A1 (zh) 2020-07-02

Family

ID=66499911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124448 WO2020133088A1 (zh) 2018-12-27 2018-12-27 一种可用于自动驾驶的地图更新系统与方法

Country Status (3)

Country Link
US (1) US20210325207A1 (zh)
CN (1) CN109783593A (zh)
WO (1) WO2020133088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964278A (zh) * 2022-07-29 2022-08-30 深圳消安科技有限公司 基于云服务器的地图更新方法及设备

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209754B (zh) * 2019-06-06 2020-08-14 广东电网有限责任公司 一种可自动生成勘察图的道路规划导航系统
CN110244742B (zh) 2019-07-01 2023-06-09 阿波罗智能技术(北京)有限公司 无人驾驶车辆巡游的方法、设备以及存储介质
WO2021012243A1 (en) * 2019-07-25 2021-01-28 Beijing Voyager Technology Co., Ltd. Positioning systems and methods
CN110426966A (zh) * 2019-07-31 2019-11-08 驭势(上海)汽车科技有限公司 一种虚拟车辆寻路的方法、装置、存储介质和电子设备
CN112347206A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 地图更新方法、装置及存储介质
CN110544376B (zh) * 2019-08-19 2021-06-22 新奇点智能科技集团有限公司 一种自动驾驶辅助方法和装置
CN110609502A (zh) * 2019-09-26 2019-12-24 武汉市珞珈俊德地信科技有限公司 一种装配式地图数据处理系统
CN110660218B (zh) * 2019-09-29 2021-01-05 上海莫吉娜智能信息科技有限公司 利用毫米波雷达的高精度地图制作方法及系统
CN112629546B (zh) * 2019-10-08 2023-09-19 宁波吉利汽车研究开发有限公司 一种位置调节参数确定方法、装置、电子设备及存储介质
CN111162991B (zh) * 2019-12-24 2022-09-30 广东天创同工大数据应用有限公司 一种基于无人驾驶车辆智联协助系统的在线互联方法
CN212623054U (zh) * 2019-12-24 2021-02-26 炬星科技(深圳)有限公司 辅助定位柱以及自行走机器人的导航辅助系统
US11466992B2 (en) * 2020-03-02 2022-10-11 Beijing Baidu Netcom Science And Technology Co., Ltd. Method, apparatus, device and medium for detecting environmental change
CN111639148B (zh) * 2020-05-13 2022-03-11 广州小鹏自动驾驶科技有限公司 一种建图方法、系统及存储介质
CN111750877A (zh) * 2020-06-30 2020-10-09 深圳市元征科技股份有限公司 一种地图更新方法及相关装置
CN111858805A (zh) * 2020-07-08 2020-10-30 中国第一汽车股份有限公司 高精地图更新方法、车辆、服务器及存储介质
CN114760330B (zh) * 2020-12-28 2024-04-12 华为技术有限公司 用于车联网的数据传输方法、装置、存储介质和系统
CN112484740B (zh) * 2021-02-02 2021-04-23 奥特酷智能科技(南京)有限公司 用于港口无人物流车的自动建图与自动地图更新系统
JP2022137534A (ja) * 2021-03-09 2022-09-22 本田技研工業株式会社 地図生成装置および車両位置認識装置
CN112960000A (zh) * 2021-03-15 2021-06-15 新石器慧义知行智驰(北京)科技有限公司 高精地图更新方法、装置、电子设备和存储介质
CN113763504A (zh) * 2021-03-26 2021-12-07 北京四维图新科技股份有限公司 地图更新方法、系统、车载终端、服务器及存储介质
CN113295175A (zh) * 2021-04-30 2021-08-24 广州小鹏自动驾驶科技有限公司 一种地图数据修正的方法和装置
CN113535743B (zh) * 2021-06-30 2023-11-14 上海西井科技股份有限公司 无人驾驶地图实时更新方法、装置、电子设备、存储介质
CN114166206A (zh) * 2021-12-08 2022-03-11 阿波罗智能技术(北京)有限公司 图像处理方法、装置、电子设备及存储介质
EP4198456A1 (en) * 2021-12-14 2023-06-21 Bayerische Motoren Werke Aktiengesellschaft Method and device for controlling an automated vehicle
CN114396963A (zh) * 2022-01-26 2022-04-26 广州小鹏自动驾驶科技有限公司 行驶路径的规划方法、装置、车载终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110288763A1 (en) * 2010-05-18 2011-11-24 Alpine Electronics, Inc. Method and apparatus for displaying three-dimensional route guidance
CN103389103A (zh) * 2013-07-03 2013-11-13 北京理工大学 一种基于数据挖掘的地理环境特征地图构建与导航方法
CN105203094A (zh) * 2015-09-10 2015-12-30 联想(北京)有限公司 构建地图的方法和设备
CN107990899A (zh) * 2017-11-22 2018-05-04 驭势科技(北京)有限公司 一种基于slam的定位方法和系统
CN108387241A (zh) * 2017-02-02 2018-08-10 百度(美国)有限责任公司 更新自动驾驶车辆的定位地图的方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286641A (ja) * 2003-03-24 2004-10-14 Calsonic Kansei Corp 車両用地図処理システム
CN101694392B (zh) * 2009-09-29 2015-03-18 北京四维图新科技股份有限公司 一种导航终端的地图更新方法、导航终端及系统
DE102011084993A1 (de) * 2011-10-21 2013-04-25 Robert Bosch Gmbh Übernahme von Daten aus bilddatenbasierenden Kartendiensten in ein Assistenzsystem
CN105973245A (zh) * 2016-04-28 2016-09-28 百度在线网络技术(北京)有限公司 利用无人驾驶车辆更新在线地图的方法和装置
CN107515006A (zh) * 2016-06-15 2017-12-26 华为终端(东莞)有限公司 一种地图更新方法和车载终端
US10584971B1 (en) * 2016-10-28 2020-03-10 Zoox, Inc. Verification and updating of map data
EP3563265B1 (en) * 2016-12-30 2021-06-02 DeepMap Inc. High definition map updates
US10794710B1 (en) * 2017-09-08 2020-10-06 Perceptin Shenzhen Limited High-precision multi-layer visual and semantic map by autonomous units
US10684372B2 (en) * 2017-10-03 2020-06-16 Uatc, Llc Systems, devices, and methods for autonomous vehicle localization
US10891863B2 (en) * 2018-06-27 2021-01-12 Viasat, Inc. Vehicle and trip data navigation for communication service monitoring using map graphical interface
US11340094B2 (en) * 2018-12-12 2022-05-24 Baidu Usa Llc Updating map data for autonomous driving vehicles based on sensor data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110288763A1 (en) * 2010-05-18 2011-11-24 Alpine Electronics, Inc. Method and apparatus for displaying three-dimensional route guidance
CN103389103A (zh) * 2013-07-03 2013-11-13 北京理工大学 一种基于数据挖掘的地理环境特征地图构建与导航方法
CN105203094A (zh) * 2015-09-10 2015-12-30 联想(北京)有限公司 构建地图的方法和设备
CN108387241A (zh) * 2017-02-02 2018-08-10 百度(美国)有限责任公司 更新自动驾驶车辆的定位地图的方法和系统
CN107990899A (zh) * 2017-11-22 2018-05-04 驭势科技(北京)有限公司 一种基于slam的定位方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964278A (zh) * 2022-07-29 2022-08-30 深圳消安科技有限公司 基于云服务器的地图更新方法及设备
CN114964278B (zh) * 2022-07-29 2022-11-18 深圳消安科技有限公司 基于云服务器的地图更新方法及设备

Also Published As

Publication number Publication date
CN109783593A (zh) 2019-05-21
US20210325207A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020133088A1 (zh) 一种可用于自动驾驶的地图更新系统与方法
WO2020133450A1 (zh) 一种移动设备动态组网分享算力的系统与方法
CN109709965B (zh) 一种自动驾驶车辆的控制方法和自动驾驶系统
CN112050792B (zh) 一种图像定位方法和装置
WO2021103511A1 (zh) 一种设计运行区域odd判断方法、装置及相关设备
EP4071661A1 (en) Automatic driving method, related device and computer-readable storage medium
US10810807B2 (en) Data collection system and data center
US11210023B2 (en) Technologies for data management in vehicle-based computing platforms
US20200180633A1 (en) Systems and methods of autonomously controlling vehicle lane change maneuver
CN109756572B (zh) 一种分布式计算网络系统与方法
CN113792589B (zh) 一种高架识别方法及装置
CN114779790B (zh) 识别障碍物方法、装置、车辆、服务器、存储介质及芯片
WO2022052881A1 (zh) 一种构建地图的方法及计算设备
CN111284447B (zh) 车辆位置跟踪
CN115100377A (zh) 地图构建方法、装置、车辆、可读存储介质及芯片
CN115205311B (zh) 图像处理方法、装置、车辆、介质及芯片
CN114937351B (zh) 车队控制方法、装置、存储介质、芯片、电子设备及车辆
CN115056784B (zh) 车辆控制方法、装置、车辆、存储介质及芯片
WO2022148068A1 (zh) 一种车辆检测方法和车辆检测装置
CN115203457A (zh) 图像检索方法、装置、车辆、存储介质及芯片
CN115205848A (zh) 目标检测方法、装置、车辆、存储介质及芯片
US20200225671A1 (en) Remove Objects From a Digital Road Map
US20240069217A1 (en) Vehicle-mounted controller and method for issuing absolute time of vehicle and vehicle
CN115348657B (zh) 用于车辆时间同步的系统、方法及车辆
CN115257628B (zh) 车辆控制方法、装置、存储介质、车辆及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944432

Country of ref document: EP

Kind code of ref document: A1