WO2020129625A1 - 酸化ガリウム膜の製造方法 - Google Patents

酸化ガリウム膜の製造方法 Download PDF

Info

Publication number
WO2020129625A1
WO2020129625A1 PCT/JP2019/047268 JP2019047268W WO2020129625A1 WO 2020129625 A1 WO2020129625 A1 WO 2020129625A1 JP 2019047268 W JP2019047268 W JP 2019047268W WO 2020129625 A1 WO2020129625 A1 WO 2020129625A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
film
carrier gas
gallium oxide
heating
Prior art date
Application number
PCT/JP2019/047268
Other languages
English (en)
French (fr)
Inventor
渡部 武紀
洋 橋上
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201980083078.5A priority Critical patent/CN113196458A/zh
Priority to KR1020217017793A priority patent/KR20210101232A/ko
Priority to US17/299,051 priority patent/US20220223406A1/en
Priority to EP19898190.4A priority patent/EP3901995A4/en
Publication of WO2020129625A1 publication Critical patent/WO2020129625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Definitions

  • the present invention relates to a method for producing a gallium oxide film on a substrate using a mist-like raw material.
  • a high-vacuum film forming apparatus capable of realizing a non-equilibrium state such as a pulsed laser deposition method (PLD), a molecular beam epitaxy method (Molecular beam epitaxy: MBE), and a sputtering method has been developed. It has become possible to manufacture oxide semiconductors that could not be manufactured by the melt method or the like.
  • a mist chemical vapor deposition method (Mist CVD, hereinafter referred to as “mist CVD method”) for growing a crystal on a substrate using an atomized mist-like material has been developed. It has become possible to manufacture gallium oxide having a corundum structure (also referred to as ⁇ -gallium oxide or ⁇ -Ga 2 O 3 ). As a semiconductor having a large band gap, ⁇ -gallium oxide is expected to be applied to a next-generation switching element that can realize high breakdown voltage, low loss, and high heat resistance.
  • PLD pulsed laser deposition method
  • MBE molecular beam epitax
  • Patent Document 1 describes a tubular furnace-type mist CVD apparatus.
  • Patent Document 2 describes a fine channel type mist CVD apparatus.
  • Patent Document 3 describes a linear source type mist CVD apparatus.
  • Patent Document 4 describes a mist CVD device for a tubular furnace, which is different from the mist CVD device described in Patent Document 1 in that a carrier gas is introduced into the mist generator.
  • Patent Document 5 describes a mist CVD apparatus in which a substrate is installed above a mist generator and a susceptor is a rotary stage provided on a hot plate.
  • the mist CVD method does not require a high temperature, and a crystal structure of a metastable phase such as a corundum structure of ⁇ -gallium oxide can be produced.
  • gallium acetylacetonate, gallium bromide, gallium iodide, or the like is used as a gallium source.
  • gallium chloride or metal gallium dissolved in hydrochloric acid is an inexpensive material, and since stable supply of the material can be expected, it is one of the options for the material used for the mist CVD method. ..
  • the present invention has been made in order to solve the above problems, and an object of the present invention is to provide a method for producing an ⁇ -gallium oxide film which is low in cost and excellent in film formation rate in the mist CVD method.
  • the present invention has been made in order to achieve the above-mentioned object, and a mist produced by atomizing or dropletizing a raw material solution is transported using a carrier gas, and the mist is heated to A method for producing a gallium oxide film by thermally reacting the mist to form a film, wherein a raw material solution containing at least chloride ions and gallium ions is used as the raw material solution, and the time for heating the mist is 0.002.
  • a method for producing a gallium oxide film which has a duration of 2 seconds to 6 seconds.
  • a method for producing a gallium oxide film in which the time for heating the mist is 0.02 seconds or more and 0.5 seconds or less can be used.
  • a method for producing a gallium oxide film can be used in which the time for heating the mist is 0.07 seconds or more and 0.3 seconds or less.
  • a method for producing a gallium oxide film in which the heating temperature of the substrate for thermally reacting the mist is 100° C. or more and 600° C. or less can be used.
  • the gallium oxide film can be formed more reliably and at low cost.
  • a method for producing a gallium oxide film can be used in which the substrate has a plate-like shape and has a surface on which a film is to be formed is 100 mm 2 or more.
  • FIG. 1 It is a schematic block diagram which shows an example of the film-forming apparatus used for the film-forming method which concerns on this invention. It is a figure explaining an example of the mist-ized part in a film-forming apparatus. It is a figure which shows a mist heating area
  • the inventors of the present invention have made extensive studies on the above-mentioned problems, and as a result, atomize or make droplets of a raw material solution to generate a mist, which is transported using a carrier gas, and the mist is heated on a substrate.
  • a method for producing a gallium oxide film by thermally reacting the mist comprising using a raw material solution containing at least chloride ions and gallium ions as the raw material solution, and heating the mist for 0.002 seconds.
  • the present inventors have completed the present invention by finding that the method of producing a gallium oxide film for 6 seconds or less can solve the problem of the decrease in film formation rate and produce a gallium oxide film at low cost.
  • the mist in the present invention refers to a general term for liquid fine particles dispersed in a gas, and includes what is called a mist, a droplet, or the like.
  • FIG. 1 shows an example of a film forming apparatus 101 that can be used in the method for producing a gallium oxide film according to the present invention.
  • the film forming apparatus 101 forms a film on a substrate by heat-treating the mist, a mist forming part 120 for forming a mist by forming a mist from a raw material solution, a carrier gas supply part 130 for supplying a carrier gas for carrying the mist, and a mist. It has a film forming unit 140, and a transfer unit 109 that connects the mist forming unit 120 and the film forming unit 140 and transfers the mist by a carrier gas.
  • the film forming apparatus 101 may include a control unit (not shown) that controls the whole or part of the film forming apparatus 101, so that the operation thereof may be controlled.
  • the present invention has one of the features in that it contains at least gallium ions and chloride ions as a raw material used for producing the gallium oxide film. Such materials are inexpensive and have excellent supply stability.
  • the raw material solution 104a is not particularly limited as long as it contains at least gallium ions and chloride ions. That is, in addition to gallium, for example, one or more metal ions selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel and cobalt may be contained.
  • the raw material solution 104a is not particularly limited as long as it can mist the metal, but it is preferable to use the raw material solution 104a in which the metal is dissolved or dispersed in water in the form of a complex or a salt.
  • the form of the complex include an acetylacetonate complex, a carbonyl complex, an ammine complex, and a hydride complex.
  • the salt form include metal chloride salts, metal bromide salts, metal iodide salts and the like.
  • a solution obtained by dissolving the above metal in hydrobromic acid, hydrochloric acid, hydroiodic acid or the like can also be used as an aqueous salt solution.
  • An acid may be mixed with the raw material solution 104a.
  • the acid include hydrobromic acid, hydrochloric acid, hydrogen halide such as hydroiodic acid, hypochlorous acid, chlorous acid, hypobromic acid, bromic acid, hypoiodic acid and iodic acid.
  • the halogen oxo acid carboxylic acid such as formic acid, nitric acid, and the like.
  • gallium ion and chloride ion are mixed at least by mixing hydrochloric acid as described above. From the viewpoint of cost, a solution of metallic gallium in hydrochloric acid or an aqueous solution of gallium chloride is most preferable.
  • the raw material solution may contain a dopant in order to control the electrical characteristics of the gallium oxide film.
  • the dopant is not particularly limited. Examples thereof include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium and niobium, and p-type dopants such as copper, silver, tin, iridium and rhodium.
  • the concentration of the dopant may be, for example, about 1 ⁇ 10 16 /cm 3 to 1 ⁇ 10 22 /cm 3 , and even at a low concentration of about 1 ⁇ 10 17 /cm 3 or less, about 1 ⁇ 10 20. The concentration may be as high as /cm 3 or more.
  • mist forming section 120 the raw material solution 104a is misted to generate mist.
  • the mist forming means is not particularly limited as long as the raw material solution 104a can be formed into a mist, and a known mist forming means may be used, but it is preferable to use a mist forming means by ultrasonic vibration. This is because the mist can be made more stable.
  • mist forming unit 120 may include a mist generation source 104 in which the raw material solution 104a is stored, a container 105 in which a medium capable of transmitting ultrasonic vibration, for example, water 105a, and an ultrasonic transducer 106 attached to the bottom surface of the container 105.
  • the mist generation source 104 including a container containing the raw material solution 104a is contained in a container 105 containing water 105a by using a support (not shown).
  • An ultrasonic transducer 106 is provided at the bottom of the container 105, and the ultrasonic transducer 106 and the oscillator 116 are connected to each other. Then, when the oscillator 116 is operated, the ultrasonic vibrator 106 vibrates, the ultrasonic waves propagate through the water 105a into the mist generation source 104, and the raw material solution 104a is formed into a mist.
  • the transport unit 109 connects the mist forming unit 120 and the film forming unit 140.
  • the mist is conveyed by the carrier gas from the mist generation source 104 of the mist forming section 120 to the film forming chamber 107 of the film forming section 140 via the conveying section 109.
  • the transport unit 109 can be, for example, the supply pipe 109a.
  • As the supply pipe 109a for example, a quartz pipe or a resin tube can be used.
  • the film forming unit 140 includes, for example, a film forming chamber 107, a substrate 110 is installed in the film forming chamber 107, and a hot plate 108 for heating the substrate 110 can be provided.
  • the hot plate 108 may be provided outside the film forming chamber 107 as shown in FIG. 1, or may be provided inside the film forming chamber 107.
  • the film forming chamber 107 may be provided with an exhaust port 112 for exhaust gas at a position that does not affect the supply of mist to the substrate 110.
  • the substrate 110 may be placed face down by installing it on the upper surface of the film forming chamber 107, or the substrate 110 may be placed on the bottom surface of the film forming chamber 107 and facing up.
  • the thermal reaction only needs to react with the mist by heating, and the reaction conditions are not particularly limited. It can be appropriately set according to the raw material and the like. By heating the base 110 with the hot plate 108, mist existing near the base 110 can be heated. By doing so, it is possible to easily heat the mist without providing a complicated heating mechanism. Further, as will be described later, in such a heating method, it is easy to control the time for heating the mist.
  • the heating temperature of the base 110 is preferably in the range of 100 to 600°C. Within such a temperature range, it is possible to more reliably heat to a temperature at which the mist thermally reacts, and the gallium oxide film can be formed at low cost. It is preferably in the range of 200°C to 600°C, and more preferably in the range of 300°C to 550°C.
  • the thermal reaction may be performed in any of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, an air atmosphere, and an oxygen atmosphere, and may be appropriately set depending on a film-formed product. Further, the reaction pressure may be performed under atmospheric pressure, under increased pressure or under reduced pressure, but film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
  • the substrate 110 is not particularly limited as long as it can form a film and can support the film.
  • the material of the base 110 is not particularly limited, and a known base may be used, and may be an organic compound or an inorganic compound.
  • a known base may be used, and may be an organic compound or an inorganic compound.
  • the present invention is not limited to this.
  • the shape of the base may be any shape, and is effective for all shapes, for example, plate-like such as flat plate or disc, fibrous, rod-like, columnar, prismatic, Examples thereof include a cylindrical shape, a spiral shape, a spherical shape, and a ring shape.
  • a plate-shaped substrate is preferable.
  • the thickness of the plate-shaped substrate is not particularly limited, but it is preferably 10 to 2000 ⁇ m, more preferably 50 to 800 ⁇ m.
  • the area of the surface on which the film is formed is preferably 100 mm 2 or more. More preferably, the diameter is 2 inches (50 mm) or more. By using such a substrate, a large-area ⁇ -gallium oxide film can be obtained at low cost.
  • the upper limit of the area of the surface on which the film is formed is not particularly limited, but may be, for example, 71000 mm 2 or less.
  • the carrier gas supply unit 130 has a carrier gas source 102a for supplying a carrier gas, and a flow rate control valve 103a for adjusting the flow rate of a carrier gas (hereinafter, referred to as "main carrier gas") sent from the carrier gas source 102a. May be provided. Further, a diluent carrier gas source 102b for supplying a diluent carrier gas and a flow rate control valve 103b for adjusting the flow rate of the diluent carrier gas sent from the diluent carrier gas source 102b can be provided as needed. ..
  • the type of carrier gas is not particularly limited and can be appropriately selected according to the film-formed product. Examples thereof include oxygen, ozone, an inert gas such as nitrogen and argon, or a reducing gas such as hydrogen gas and forming gas.
  • the type of carrier gas may be one type or two or more types. For example, a diluent gas obtained by diluting the same gas as the first carrier gas with another gas (for example, 10 times) may be further used as the second carrier gas, or air may be used. Further, the supply position of the carrier gas is not limited to one, but may be two or more.
  • the flow rate Q of the carrier gas refers to the total flow rate of the carrier gas used.
  • the total flow rate of the main carrier gas sent from the carrier gas source 102a and the flow rate of the diluent carrier gas sent from the diluent carrier gas source 102b is set as the carrier gas flow rate Q.
  • the raw material solution 104a is housed in the mist generation source 104 of the mist forming section 120, the substrate 110 is placed on the hot plate 108 directly or via the wall of the film forming chamber 107, and the hot plate 108 is operated.
  • the flow rate control valves 103a and 103b are opened to supply the carrier gas from the carrier gas sources 102a and 102b into the film forming chamber 107, the atmosphere in the film forming chamber 107 is sufficiently replaced with the carrier gas, and the main carrier gas is used. And the flow rate of the diluting carrier gas are adjusted to control the flow rate Q of the carrier gas.
  • the ultrasonic vibrator 106 is vibrated, and the vibration is propagated to the raw material solution 104a through the water 105a to mist the raw material solution 104a to generate a mist.
  • the mist is carried by the carrier gas from the mist forming section 120 through the carrying section 109 to the film forming section 140 and introduced into the film forming chamber 107.
  • the mist introduced into the film forming chamber 107 is heat-treated by the heat of the hot plate 108 in the film forming chamber 107 and thermally reacted to form a film on the substrate 110.
  • mist heating region 500 is a space in which the heating surface extends vertically in the film forming chamber 107 (region indicated by diagonal lines).
  • FIGS. 3A, 3C, and 3E are examples in which a partial region in the film forming chamber 107 is the mist heating region 500, and FIGS. In this example, the entire area inside the film chamber 107 is the mist heating area 500.
  • the relationship between the carrier gas flow rate Q and the film formation rate was investigated using film formation chambers having different heights.
  • the height of the film forming chamber was 0.5 cm, 0.09 cm, and 0.9 cm, and the hot plate had a common heat transfer area of 113 cm 2 . That is, the volume V of the mist heating region is 57 cm 3 , 10 cm 3 , and 102 cm 3 , respectively.
  • FIG. 4 shows the relationship between the carrier gas flow rate Q and the film formation rate.
  • the horizontal axis represents the carrier gas flow rate Q (L/min), and the vertical axis represents the film formation rate ( ⁇ m/hour).
  • Each plot corresponds to the volume V (57 cm 3 , 10 cm 3 , 102 cm 3 ) of the mist heating area, as indicated in the legend.
  • the film forming rate distribution has a peak that maximizes the carrier gas flow rate Q. It was found that there are conditions under which the film formation rate becomes high.
  • FIG. 5 shows a graph in which the second axis is plotted on the horizontal axis. Each plot corresponds to the volume V (57 cm 3 , 10 cm 3 , 102 cm 3 ) of the mist heating area, as indicated in the legend. As shown in FIG.
  • the gallium oxide film can be formed at a high deposition rate even when a solution containing at least gallium ions and chloride ions is used as a raw material. It has been found that it becomes possible to manufacture
  • the time T for heating the mist is too short (less than 0.002 seconds), it will be released outside the furnace before the mist reacts, and conversely the time T for heating the mist will be too long (longer than 6 seconds). It is considered that the reaction (evaporation) of the mist proceeds in the furnace and the reaction does not occur on the substrate.
  • aqueous halide solution forms an azeotrope with water.
  • chloride has a lower azeotropic temperature than bromide and iodide. Therefore, the mist evaporates faster than bromide or iodide (that is, chloride easily evaporates), and it is interpreted that the film formation rate was significantly reduced under the same conditions as when using conventional materials.
  • the time T for heating the mist is preferably 0.02 seconds or more and 0.5 seconds or less, and more preferably 0.07 seconds or more and 0.3 seconds or less.
  • Example 1 A film of gallium oxide ( ⁇ -gallium oxide) having a corundum structure was formed on the basis of the above-mentioned investigation results.
  • an aqueous solution containing 0.1 mol/L of gallium chloride was prepared and used as the raw material solution 104a.
  • This raw material solution 104 a was housed in the mist generation source 104.
  • a 4-inch (100 mm diameter) c-plane sapphire substrate was installed as the base 110 in the film formation chamber 107 so as to be adjacent to the hot plate 108.
  • the hot plate 108 was operated to raise the temperature to 500°C. Since the heat transfer area of the hot plate 108 is 113 cm 2 and the height inside the film forming chamber is 0.5 cm, the volume of the mist heating region 500 is 57 cm 3 .
  • the flow rate control valves 103a and 103b were opened to supply oxygen gas as a carrier gas into the film forming chamber 107 from the carrier gas sources 102a and 102b, and the atmosphere in the film forming chamber 107 was sufficiently replaced with the carrier gas.
  • the flow rate of the main carrier gas was 0.4 L/min
  • the flow rate of the diluting carrier gas was 16 L/min
  • the carrier gas flow rate Q was adjusted to 16.4 L/min.
  • the time for heating the mist in this case is 0.21 seconds.
  • the ultrasonic vibrator 106 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 104a through the water 105a to mist the raw material solution 104a to generate mist.
  • This mist was introduced into the film formation chamber 107 by a carrier gas through the supply pipe 109a. Then, under atmospheric pressure and at 500° C., the mist was thermally reacted in the film forming chamber 107 to form an ⁇ -gallium oxide thin film on the substrate 110.
  • the film formation time was 30 minutes.
  • the film thickness of the obtained thin film on the substrate 110 was measured using an interferometric film thickness meter. An average value was calculated and an average film thickness was obtained with 17 measurement points on the surface of the substrate 110. The value obtained by dividing the obtained average film thickness by the film formation time of 30 minutes was defined as the film formation rate.
  • the crystallinity of the obtained ⁇ -gallium oxide thin film was evaluated by X-ray diffraction measurement. Specifically, the rocking curve of the (0006) plane diffraction peak of ⁇ -gallium oxide was measured to determine the full width at half maximum.
  • Example 1 Film formation was performed under the same conditions as in Example 1 except that the time for heating the mist was 8.55 seconds by setting the flow rate of the carrier gas for dilution to 0 L/min and the flow rate Q of the carrier gas to 0.4 L/min. , Evaluated.
  • the flow rate of the main carrier gas was 0.08 L/min
  • the flow rate of the diluting carrier gas was 2.82 L/min
  • the carrier gas flow rate Q was adjusted to 2.9 L/min.
  • the time for heating the mist in this case is 0.21 seconds. Except for this, film formation and evaluation were performed under the same conditions as in Example 1.
  • Example 3 Film formation was performed under the same conditions as in Example 3 except that the time for heating the mist was 7.65 seconds by setting the flow rate of the diluent carrier gas to 0 L/min and the carrier gas flow rate Q to 0.8 L/min. , Evaluated.
  • Example 1-3 has a significantly higher film forming rate than Comparative Example 1-3.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the invention having substantially the same configuration as the technical idea described in the scope of the claims of the present invention and exhibiting the same operation effect is not limited to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、原料溶液を霧化又は液滴化して生成されたミストを、キャリアガスを用いて搬送し、前記ミストを加熱して、基体上で前記ミストを熱反応させて成膜を行う酸化ガリウム膜の製造方法であって、前記原料溶液として少なくとも塩化物イオンとガリウムイオンを含む原料溶液を用い、前記ミストを加熱する時間を0.002秒以上6秒以下とする酸化ガリウム膜の製造方法である。これにより、低コストで成膜速度に優れたα-酸化ガリウム膜の製造方法が提供される。

Description

酸化ガリウム膜の製造方法
 本発明は、ミスト状の原料を用いて基体上に酸化ガリウム膜を製造する方法に関する。
 従来、パルスレーザー堆積法(Pulsed laser deposition:PLD)、分子線エピタキシー法(Molecular beam epitaxy:MBE)、スパッタリング法等の非平衡状態を実現できる高真空成膜装置が開発されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきた。また、霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α-酸化ガリウム、α-Gaと表記することもある。)の作製が可能となってきた。α-酸化ガリウムは、バンドギャップの大きな半導体として、高耐圧、低損失及び高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。
 ミストCVD法に関して、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1に記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。
特開平1-257337号公報 特開2005-307238号公報 特開2012-46772号公報 特許第5397794号 特開2014-63973号公報
 ミストCVD法は、他のCVD法とは異なり高温にする必要もなく、α-酸化ガリウムのコランダム構造のような準安定相の結晶構造も作製可能である。α-酸化ガリウムの作製には、ガリウム源として、ガリウムアセチルアセトナートや臭化ガリウム、ヨウ化ガリウム等が用いられている。このような材料は比較的高価であり、また、供給の安定性にも不安がある。こういった観点から、塩化ガリウム、又は、金属ガリウムを塩酸で溶解したものは、安価な材料であり、また、材料の安定供給が期待できるため、ミストCVD法に用いる材料の選択肢の一つとなる。
 しかしながら、本発明者が、塩化ガリウムや塩酸を含む材料を用いて検討を行ったところ、上記のような材料を用いた場合に比べ、成膜速度が著しく低下してしまうという問題があることを、見出した。
 本発明は、上記問題を解決するためになされたものであり、ミストCVD法において、低コストで成膜速度に優れたα-酸化ガリウム膜の製造方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、原料溶液を霧化又は液滴化して生成されたミストを、キャリアガスを用いて搬送し、前記ミストを加熱して、基体上で前記ミストを熱反応させて成膜を行う酸化ガリウム膜の製造方法であって、前記原料溶液として少なくとも塩化物イオンとガリウムイオンを含む原料溶液を用い、前記ミストを加熱する時間を0.002秒以上6秒以下とする酸化ガリウム膜の製造方法を提供する。
 このような酸化ガリウム膜の製造方法によれば、成膜速度の低下という問題を改善し、低コストで酸化ガリウム膜を製造できる。
 このとき、前記ミストを加熱する時間を0.02秒以上0.5秒以下とする酸化ガリウム膜の製造方法とすることができる。
 これにより、安定してより高い成膜速度とすることができる。
 このとき、前記ミストを加熱する時間を0.07秒以上0.3秒以下とする酸化ガリウム膜の製造方法とすることができる。
 これにより、より安定してより高い成膜速度とすることができる。
 このとき、前記ミストを熱反応させる前記基体の加熱温度を100℃以上600℃以下とする酸化ガリウム膜の製造方法とすることができる。
 これにより、より確実に低コストで酸化ガリウム膜を成膜することができる。
 このとき、前記基体として、板状であり、成膜を行う面の面積が100mm以上のものを用いる酸化ガリウム膜の製造方法とすることができる。
 これにより、大面積の酸化ガリウム膜を低コストで得ることができる。
 以上のように、本発明の酸化ガリウム膜の製造方法によれば、成膜速度の低下を改善し、低コストで酸化ガリウム半導体膜を製造することが可能となる。
本発明に係る成膜方法に用いる成膜装置の一例を示す概略構成図である。 成膜装置におけるミスト化部の一例を説明する図である。 ミスト加熱領域を示す図である。 キャリアガス流量Qと成膜速度の関係を示す図である。 ミストの加熱時間Tと成膜速度の関係を示す図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、ミストCVD法において、低コストで成膜速度に優れたα-酸化ガリウム膜の製造方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、原料溶液を霧化又は液滴化して生成されたミストを、キャリアガスを用いて搬送し、前記ミストを加熱して、基体上で前記ミストを熱反応させて成膜を行う酸化ガリウム膜の製造方法であって、前記原料溶液として少なくとも塩化物イオンとガリウムイオンを含む原料溶液を用い、前記ミストを加熱する時間を0.002秒以上6秒以下とする酸化ガリウム膜の製造方法により、成膜速度の低下という問題を改善し、低コストで酸化ガリウム膜を製造できることを見出し、本発明を完成した。
 ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。
 以下、図面を参照して説明する。
 図1に、本発明に係る酸化ガリウム膜の製造方法に使用可能な成膜装置101の一例を示す。成膜装置101は、原料溶液をミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、ミストを熱処理して基体上に成膜を行う成膜部140と、ミスト化部120と成膜部140とを接続し、キャリアガスによってミストが搬送される搬送部109とを有する。また、成膜装置101は、成膜装置101の全体又は一部を制御する制御部(図示なし)を備えることによって、その動作が制御されてもよい。
 (原料溶液)
 本発明においては、酸化ガリウム膜の製造に用いる原料として、少なくともガリウムイオン及び塩化物イオンを含む点に特徴の一つを有する。このような材料は、安価であり、供給の安定性にも優れている。
 原料溶液104aは、少なくともガリウムイオン及び塩化物イオンを含んでいれば特に限定されない。すなわち、ガリウムの他、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属イオンを含んでもよい。
 前記原料溶液104aは、上記金属をミスト化できるものであれば特に限定されないが、前記原料溶液104aとして、前記金属を錯体又は塩の形態で、水に溶解又は分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。
 また、前記原料溶液104aには、酸を混合してもよい。前記酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などのハロゲン化水素、次亜塩素酸、亜塩素酸、次亜臭素酸、亜臭素酸、次亜ヨウ素酸、ヨウ素酸等のハロゲンオキソ酸、蟻酸等のカルボン酸、硝酸、等が挙げられる。
 塩酸もしくは塩化ガリウム以外の材料を用いる場合は、上述のように、少なくとも塩酸も混合させて、ガリウムイオン及び塩化物イオンを存在させる必要がある。コストの観点からは、金属ガリウムを塩酸に溶解したもの、もしくは塩化ガリウム水溶液が最も好ましい。
 さらに、前記原料溶液には、酸化ガリウム膜の電気的特性を制御するために、ドーパントが含まれていてもよい。これにより、酸化ガリウム膜の半導体膜としての利用が容易になる。前記ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム等のp型ドーパントなどが挙げられる。ドーパントの濃度は、例えば、約1×1016/cm~1×1022/cmであってもよく、約1×1017/cm以下の低濃度にしても、約1×1020/cm以上の高濃度としてもよい。
 (ミスト化部)
 ミスト化部120では、前記原料溶液104aをミスト化してミストを発生させる。ミスト化手段は、原料溶液104aをミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
 このようなミスト化部120の一例を図2に示す。例えば、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されている。容器105の底部には、超音波振動子106が備え付けられており、超音波振動子106と発振器116とが接続されている。そして、発振器116を作動させると、超音波振動子106が振動し、水105aを介して、ミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されている。
 (搬送部)
 搬送部109は、ミスト化部120と成膜部140とを接続する。搬送部109を介して、ミスト化部120のミスト発生源104から成膜部140の成膜室107へと、キャリアガスによってミストが搬送される。搬送部109は、例えば、供給管109aとすることができる。供給管109aとしては、例えば石英管や樹脂製のチューブなどを使用することができる。
 (成膜部)
 成膜部140では、ミストを加熱し熱反応を生じさせて、基体110の表面の一部又は全部に成膜を行う。成膜部140は、例えば、成膜室107を備え、成膜室107内には基体110が設置されており、該基体110を加熱するためのホットプレート108を備えることができる。ホットプレート108は、図1に示されるように成膜室107の外部に設けられていてもよいし、成膜室107の内部に設けられていてもよい。また、成膜室107には、基体110へのミストの供給に影響を及ぼさない位置に、排ガスの排気口112が設けられてもよい。また、本発明においては、基体110を成膜室107の上面に設置するなどして、フェイスダウンとしてもよいし、基体110を成膜室107の底面に設置して、フェイスアップとしてもよい。
 熱反応は、加熱によりミストが反応すればよく、反応条件等も特に限定されない。原料等に応じて適宜設定することができる。ホットプレート108で基体110を加熱することにより、基体110の近傍に存在するミストを加熱することができる。このようにすることで、複雑な加熱機構を設けることなく、容易にミストを加熱することが可能である。また、後述するように、このような加熱方法は、ミストを加熱する時間の制御が容易である。
 基体110の加熱温度は100~600℃の範囲とすることが好ましい。このような温度範囲であれば、より確実にミストが熱反応する温度に加熱することができ、低コストで酸化ガリウム膜を成膜することができる。好ましくは200℃~600℃の範囲であり、さらに好ましくは300℃~550℃の範囲とすることができる。
 熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
 (基体)
 基体110は、成膜可能であり膜を支持できるものであれば特に限定されない。前記基体110の材料も、特に限定されず、公知の基体を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、シリコン、サファイア、石英、ガラス、酸化ガリウム等が挙げられるが、これに限られるものではない。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、板状の基体が好ましい。板状の基体の厚さは、特に限定されないが、好ましくは、10~2000μmであり、より好ましくは50~800μmである。基体が板状の場合、成膜を行う面の面積は100mm以上が好ましい。より好ましくは口径が2インチ(50mm)以上である。このような基体を用いることにより、大面積のα-酸化ガリウム膜を低コストで得ることができる。成膜を行う面の面積の上限は特に限定されないが、例えば、71000mm以下とすることができる。
 (キャリアガス供給部)
 キャリアガス供給部130は、キャリアガスを供給するキャリアガス源102aを有し、キャリアガス源102aから送り出されるキャリアガス(以下、「主キャリアガス」という)の流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
 キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどを、第2のキャリアガスとしてさらに用いてもよく、空気を用いることもできる。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。
 本明細書においては、キャリアガスの流量Qは、使用するキャリアガスの総流量を指す。上記の例では、キャリアガス源102aから送り出される主キャリアガスの流量と、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量の総流量を、キャリアガスの流量Qとする。
 (成膜方法)
 次に、図1を参照しながら、本発明に係る酸化ガリウム膜の製造方法の一例を説明する。
 まず、原料溶液104aをミスト化部120のミスト発生源104内に収容し、基体110をホットプレート108上に直接又は成膜室107の壁を介して設置し、ホットプレート108を作動させる。
 次に、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換するとともに、主キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節し、キャリアガスの流量Qを制御する。
 ミストを発生させる工程では、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化させてミストを生成する。次に、ミストをキャリアガスにより搬送する工程では、ミストがキャリアガスによってミスト化部120から搬送部109を経て成膜部140へ搬送され、成膜室107内に導入される。成膜を行う工程で、成膜室107内に導入されたミストは、成膜室107内でホットプレート108の熱により熱処理され熱反応して、基体110上に成膜される。
 ここで、ミストを加熱する時間Tと酸化ガリウム膜の成膜速度との関係を調査した結果について説明する。
 熱反応に関する説明で述べたように、ミストの加熱は、成膜室107内の加熱面を含む空間で生じると考えられる。以下、この空間を「ミスト加熱領域」と呼ぶ。図3(a)~(e)に、成膜部140における成膜室107の構造の具体例を示す。なお、図3においては、基体は省略している。図3に示すように、成膜室107内で加熱面が鉛直方向に張る空間(斜線で示される領域)がミスト加熱領域500である。図3(a)、(c)、(e)は、成膜室107内の一部の領域がミスト加熱領域500となっている例であり、図3(b)、(d)は、成膜室107内の全部の領域がミスト加熱領域500となっている例である。
 キャリアガスの流量Qを調節することにより、成膜原料であるミストが前記ミスト加熱領域500に滞留する時間を調節することができる。ミストは、ミスト加熱領域500に滞留している間に加熱されるため、ミストを加熱する時間Tは、ミストがミスト加熱領域500に滞留する時間に等しい。つまり、ミスト加熱領域500の体積をVとしたとき、前述の滞留時間に相当するV÷Qが、ミストを加熱する時間Tに相当する(T=V/Q)。
 まず、キャリアガス流量Qと成膜速度との関係を、高さが異なる成膜室を用いて調査を行った。成膜室の高さは、0.5cm、0.09cm、0.9cmの3種類とし、ホットプレートの伝熱面積は113cmで共通とした。つまり、ミスト加熱領域の体積Vは、それぞれ、57cm、10cm、102cmである。
 図4にキャリアガス流量Qと成膜速度との関係を示す。横軸はキャリアガス流量Q(L/分)、縦軸は成膜速度(μm/時間)である。各プロットは凡例に示すように、ミスト加熱領域の体積V(57cm、10cm、102cm)に対応する。図4から明らかなように、成膜室の高さ(ミスト加熱領域の体積)がどのような場合であっても、成膜速度分布は最大となるピークを有し、キャリアガス流量Qに対して成膜速度が高くなる条件が存在することがわかった。
 この結果を用いて、ミスト加熱領域500でのミストの滞留時間(ミスト加熱領域500の体積V÷キャリアガス流量Q)、すなわち、ミストを加熱する時間Tを算出し、ミストを加熱する時間T(秒)を横軸にとったグラフを図5に示す。各プロットは凡例に示すように、ミスト加熱領域の体積V(57cm、10cm、102cm)に対応する。図5に示すように、ミストを加熱する時間Tを0.002秒以上6秒以下とすると、少なくともガリウムイオン及び塩化物イオンを含む溶液を原料とした場合でも、大きな成膜速度で酸化ガリウム膜の製造を行うことが可能となることを見出した。
 ミストを加熱する時間Tが短すぎる(0.002秒未満)と、ミストが反応する前に炉外に放出されてしまい、逆にミストを加熱する時間Tが長すぎる(6秒より長い)と、炉内でミストの反応(蒸発)が進行してしまい、基板上で反応が起きなくなってしまうものと考えられる。
 ハロゲン化物の水溶液は水と共沸混合物を形成する。中でも塩化物は、臭化物やヨウ化物に比べ共沸温度が低い。このため、臭化物やヨウ化物に比べミストの蒸発が速く(すなわち、塩化物は蒸発しやすい)、従来の材料を用いた場合と同等の条件では、成膜速度が著しく低下してしまっていたと解釈される。ミストを加熱する時間Tは、好ましくは0.02秒以上0.5秒以下であり、より好ましくは0.07秒以上0.3秒以下である。
 以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
 (実施例1)
 上述の調査結果に基づいて、コランダム構造を有する酸化ガリウム(α-酸化ガリウム)の成膜を行った。
 まず、塩化ガリウム0.1mol/Lの水溶液を調整し、これを原料溶液104aとした。この原料溶液104aをミスト発生源104内に収容した。次に、基体110として4インチ(直径100mm)のc面サファイア基板を、成膜室107内でホットプレート108に隣接するように設置した。ホットプレート108を作動させて温度を500℃に昇温した。ホットプレート108の伝熱面積は113cmであり、成膜室内の高さは0.5cmであることから、ミスト加熱領域500の体積は57cmである。
 続いて、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスとして酸素ガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した。この後、主キャリアガスの流量を0.4L/分、希釈用キャリアガスの流量を16L/分とし、キャリアガス流量Qを16.4L/分に調節した。この場合のミストを加熱する時間は、0.21秒である。
 次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管109aを経て成膜室107内に導入した。そして、大気圧下、500℃の条件で、成膜室107内でミストを熱反応させて、基体110上にα-酸化ガリウムの薄膜を形成した。成膜時間は30分とした。
 得られた基体110上の薄膜について、干渉式膜厚計を用いて膜厚を測定した。測定箇所を基体110の面内の17点として、平均値を算出し平均膜厚を得た。得られた平均膜厚を成膜時間30分で割った値を成膜速度とした。
 また、得られたα-酸化ガリウムの薄膜についてX線回折測定を行い、結晶性を評価した。具体的には、α-酸化ガリウムの(0006)面回折ピークのロッキングカーブを測定し、その半値全幅を求めた。
 (比較例1)
 希釈用キャリアガスの流量を0L/分、キャリアガス流量Qを0.4L/分とすることで、ミストを加熱する時間を8.55秒とした以外は、実施例1と同じ条件で成膜、評価を行った。
 (実施例2)
 ホットプレート108の伝熱面積を113cmのままとし、成膜室内の高さが0.09cm(ミスト加熱領域の体積=10cm)の成膜室を使用した。また、主キャリアガスの流量を0.08L/分、希釈用キャリアガスの流量を2.82L/分とし、キャリアガス流量Qを2.9L/分に調節した。この場合のミストを加熱する時間は、0.21秒である。これ以外は、実施例1と同じ条件で成膜、評価を行った。
 (比較例2)
 希釈用キャリアガスの流量を0L/分、キャリアガス流量Qを0.08L/分とすることで、ミストを加熱する時間を7.50秒とした以外は、実施例2と同じ条件で成膜、評価を行った。
 (実施例3)
 ホットプレート108の伝熱面積を113cmのままとし、成膜室内の高さが0.9cm(ミスト加熱領域の体積=102cm)の成膜室を使用した。また、主キャリアガスの流量を0.8L/分、希釈用キャリアガスの流量を28.7L/分とし、キャリアガス流量Qを29.5L/分に調節した。この場合のミストを加熱する時間は、0.21秒である。これ以外は、実施例1,2と同じ条件で成膜、評価を行った。
 (比較例3)
 希釈用キャリアガスの流量を0L/分、キャリアガス流量Qを0.8L/分とすることで、ミストを加熱する時間を7.65秒とした以外は、実施例3と同じ条件で成膜、評価を行った。
 実施例1-3、比較例1-3の評価結果を表1に示す。実施例1-3は、比較例1-3に比べて成膜速度が著しく高いことがわかる。
 また、実施例1-3はいずれも比較例1-3に比べ半値全幅が小さくなっており、結晶性が大幅に改善されていることがわかった。比較例1-3のようにミストを加熱する時間が長いと、ミスト中の水分が炉内に設置した基体に到達する前に蒸発してしまい、粉体を形成し、これが基体に付着して結晶性を悪化させていると考えられる。ミストを加熱する時間を短くすることで上記のような粉体の形成は抑制され、結晶性の良好なα-酸化ガリウムが形成できることがわかった。
Figure JPOXMLDOC01-appb-T000001
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  原料溶液を霧化又は液滴化して生成されたミストを、キャリアガスを用いて搬送し、前記ミストを加熱して、基体上で前記ミストを熱反応させて成膜を行う酸化ガリウム膜の製造方法であって、
     前記原料溶液として少なくとも塩化物イオンとガリウムイオンを含む原料溶液を用い、
     前記ミストを加熱する時間を0.002秒以上6秒以下とすることを特徴とする酸化ガリウム膜の製造方法。
  2.  前記ミストを加熱する時間を0.02秒以上0.5秒以下とすることを特徴とする請求項1に記載の酸化ガリウム膜の製造方法。
  3.  前記ミストを加熱する時間を0.07秒以上0.3秒以下とすることを特徴とする請求項1又は2に記載の酸化ガリウム膜の製造方法。
  4.  前記ミストを熱反応させる前記基体の加熱温度を100℃以上600℃以下とすることを特徴とする請求項1から請求項3のいずれか1項に記載の酸化ガリウム膜の製造方法。
  5.  前記基体として、板状であり、成膜を行う面の面積が100mm以上のものを用いることを特徴とする請求項1から請求項4のいずれか1項に記載の酸化ガリウム膜の製造方法。
PCT/JP2019/047268 2018-12-18 2019-12-03 酸化ガリウム膜の製造方法 WO2020129625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980083078.5A CN113196458A (zh) 2018-12-18 2019-12-03 氧化镓膜的制造方法
KR1020217017793A KR20210101232A (ko) 2018-12-18 2019-12-03 산화갈륨막의 제조 방법
US17/299,051 US20220223406A1 (en) 2018-12-18 2019-12-03 Method for manufacturing gallium oxide film
EP19898190.4A EP3901995A4 (en) 2018-12-18 2019-12-03 PROCESS FOR MAKING A GALLIUM OXIDE FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236030 2018-12-18
JP2018236030A JP6934852B2 (ja) 2018-12-18 2018-12-18 酸化ガリウム膜の製造方法

Publications (1)

Publication Number Publication Date
WO2020129625A1 true WO2020129625A1 (ja) 2020-06-25

Family

ID=71102807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047268 WO2020129625A1 (ja) 2018-12-18 2019-12-03 酸化ガリウム膜の製造方法

Country Status (7)

Country Link
US (1) US20220223406A1 (ja)
EP (1) EP3901995A4 (ja)
JP (3) JP6934852B2 (ja)
KR (1) KR20210101232A (ja)
CN (1) CN113196458A (ja)
TW (1) TWI821481B (ja)
WO (1) WO2020129625A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088926A (zh) * 2021-03-12 2021-07-09 江苏师范大学 一种通过磁场控制α-Ga2O3掺杂浓度的薄膜沉积系统及方法
JP2022093208A (ja) * 2020-12-12 2022-06-23 高知県公立大学法人 Ga2O3薄膜の製造方法
WO2023149037A1 (ja) * 2022-02-04 2023-08-10 株式会社村田製作所 ミストcvd成膜装置及び成膜方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875336B2 (ja) * 2018-08-27 2021-05-26 信越化学工業株式会社 成膜方法
JP6934852B2 (ja) * 2018-12-18 2021-09-15 信越化学工業株式会社 酸化ガリウム膜の製造方法
WO2023062889A1 (ja) * 2021-10-14 2023-04-20 信越化学工業株式会社 成膜装置及び製造方法
WO2023079787A1 (ja) * 2021-11-02 2023-05-11 信越化学工業株式会社 成膜装置及び成膜方法並びに酸化物半導体膜及び積層体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2004224675A (ja) * 2003-01-27 2004-08-12 Fuji Photo Film Co Ltd 13族窒化物半導体ナノ粒子の製造方法
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2010510165A (ja) * 2006-11-22 2010-04-02 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ 窒化ガリウム堆積からの反応ガスの低減
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
JP2016146442A (ja) * 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法
JP2016157878A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2017069424A (ja) * 2015-09-30 2017-04-06 株式会社Flosfia 結晶性半導体膜および半導体装置
JP2017088454A (ja) * 2015-11-11 2017-05-25 国立大学法人京都工芸繊維大学 基体、発光素子および基体の製造方法
JP2018070422A (ja) * 2016-11-01 2018-05-10 国立大学法人 和歌山大学 酸化ガリウムの製造方法及び結晶成長装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390704B2 (en) * 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2016051824A (ja) 2014-08-29 2016-04-11 高知県公立大学法人 エピタキシャル成長方法および成長装置ならびに量子井戸構造の作製方法
JP2016126988A (ja) * 2015-01-08 2016-07-11 株式会社Flosfia 透明導電膜および積層構造体
JP6547225B2 (ja) * 2015-02-06 2019-07-24 高知県公立大学法人 膜厚算出方法、成膜装置およびプログラム
JP6620328B2 (ja) 2015-09-08 2019-12-18 株式会社Flosfia 深紫外光発生用ターゲット、深紫外光源および深紫外発光素子
TWI660505B (zh) * 2015-12-18 2019-05-21 日商Flosfia股份有限公司 Semiconductor device
JP7065443B2 (ja) * 2016-06-30 2022-05-12 株式会社Flosfia p型酸化物半導体及びその製造方法
US10804362B2 (en) * 2016-08-31 2020-10-13 Flosfia Inc. Crystalline oxide semiconductor film, crystalline oxide semiconductor device, and crystalline oxide semiconductor system
JP6934852B2 (ja) * 2018-12-18 2021-09-15 信越化学工業株式会社 酸化ガリウム膜の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2004224675A (ja) * 2003-01-27 2004-08-12 Fuji Photo Film Co Ltd 13族窒化物半導体ナノ粒子の製造方法
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2010510165A (ja) * 2006-11-22 2010-04-02 エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ 窒化ガリウム堆積からの反応ガスの低減
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP2016146442A (ja) * 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法
JP2016157878A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2017069424A (ja) * 2015-09-30 2017-04-06 株式会社Flosfia 結晶性半導体膜および半導体装置
JP2017088454A (ja) * 2015-11-11 2017-05-25 国立大学法人京都工芸繊維大学 基体、発光素子および基体の製造方法
JP2018070422A (ja) * 2016-11-01 2018-05-10 国立大学法人 和歌山大学 酸化ガリウムの製造方法及び結晶成長装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093208A (ja) * 2020-12-12 2022-06-23 高知県公立大学法人 Ga2O3薄膜の製造方法
CN113088926A (zh) * 2021-03-12 2021-07-09 江苏师范大学 一种通过磁场控制α-Ga2O3掺杂浓度的薄膜沉积系统及方法
WO2023149037A1 (ja) * 2022-02-04 2023-08-10 株式会社村田製作所 ミストcvd成膜装置及び成膜方法

Also Published As

Publication number Publication date
JP7164685B2 (ja) 2022-11-01
JP2020098846A (ja) 2020-06-25
EP3901995A1 (en) 2021-10-27
JP2023011687A (ja) 2023-01-24
JP7374282B2 (ja) 2023-11-06
EP3901995A4 (en) 2022-10-26
US20220223406A1 (en) 2022-07-14
CN113196458A (zh) 2021-07-30
KR20210101232A (ko) 2021-08-18
TWI821481B (zh) 2023-11-11
JP2021192439A (ja) 2021-12-16
JP6934852B2 (ja) 2021-09-15
TW202035771A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020129625A1 (ja) 酸化ガリウム膜の製造方法
JP6478103B2 (ja) 成膜装置および成膜方法
JP7223515B2 (ja) 成膜装置及び成膜方法
JP7473591B2 (ja) 成膜装置及び成膜方法
WO2022009524A1 (ja) 酸化ガリウム半導体膜の製造方法及び成膜装置
JP7432904B2 (ja) 酸化ガリウム半導体膜及び原料溶液
US20230082812A1 (en) Film forming method
JP7274024B2 (ja) 成膜装置
WO2023062889A1 (ja) 成膜装置及び製造方法
JP7492621B2 (ja) 成膜装置
CN118103547A (zh) 成膜装置及制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898190

Country of ref document: EP

Effective date: 20210719