WO2020125793A1 - 投影物镜波像差检测装置及方法、光刻机 - Google Patents

投影物镜波像差检测装置及方法、光刻机 Download PDF

Info

Publication number
WO2020125793A1
WO2020125793A1 PCT/CN2019/127371 CN2019127371W WO2020125793A1 WO 2020125793 A1 WO2020125793 A1 WO 2020125793A1 CN 2019127371 W CN2019127371 W CN 2019127371W WO 2020125793 A1 WO2020125793 A1 WO 2020125793A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
projection objective
wave aberration
dimensional grating
imaging
Prior art date
Application number
PCT/CN2019/127371
Other languages
English (en)
French (fr)
Inventor
马明英
姜雪林
夏建培
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020125793A1 publication Critical patent/WO2020125793A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system

Definitions

  • the invention relates to the technical field of optics, in particular to a projection objective wave aberration detection device, a projection objective wave aberration detection method, and a lithography machine including the projection objective wave aberration detection device.
  • the lithography machine is one of the key equipments in the manufacturing process of integrated circuits (ICs). It projects the pattern on the mask plate through the projection objective unit onto the substrate (such as a wafer) on which the photoresist is spin-coated. Imaging quality is an important factor that affects the lithography resolution and overlay accuracy of the lithography machine. As the lithographic feature size (CD) continues to decrease, the aberration of the projection objective wave aberration of the lithography machine has become more and more prominent, which is an important factor that limits the resolution of the projection system and also causes line width. An important reason for change. Therefore, it is necessary to detect the wave aberration of the projection objective unit of the lithography machine online to ensure the lithography quality.
  • CD lithographic feature size
  • the method needs to be measured in two directions of 0° and 90°.
  • a small hole is used to generate the detection light source on the object surface.
  • the small hole is imaged by the projection objective to the grating mark of the image surface and generates shear interference fringes in the far field.
  • the dimensional array photosensitive element records the interference image on the conjugate plane of the projection objective pupil.
  • One of the objects of the present invention is to provide a projection aberration wave aberration detection device to solve the problem of low wave aberration detection accuracy in the 0° direction and the 90° direction.
  • Another object of the present invention is to provide a method for detecting wave aberration of a projection objective, so as to solve the problem that the wave aberration detection time is long, so as to improve the test efficiency.
  • the present invention provides a projection objective wave aberration detection device for detecting a wave aberration of a projection objective unit, including: a light source, an object surface grating marking unit, a beam splitting collimating unit, and a diffraction unit , Imaging detection unit and workpiece table;
  • the light source is used to provide a detection beam, and the detection beam is incident on the object grating marking unit;
  • the object grating marking unit is used to divide the detection beam into a first beam in a first direction and a second beam in a second direction, the first beam and the second beam are incident on the projection objective unit After entering the spectroscopic collimating unit;
  • the beam splitting and collimating unit is used to split and collimate the first light beam and the second light beam passing through the projection objective lens unit to form first direction imaging and second direction imaging on the diffraction unit, respectively;
  • the diffractive unit is used to form the first direction interference image and the second direction interference image on the imaging detection unit after performing diffraction processing on the first direction imaging and the second direction imaging;
  • the workpiece stage is used to drive the object grating marking unit, spectroscopic collimating unit, diffraction unit and imaging detection unit along a straight line in a predetermined direction between the first direction and the second direction along a straight line Stepping, so that the imaging detection unit simultaneously collects the light intensity of the interference image formed at each step of the first beam and the second beam to obtain wave images in the first direction and the second direction, respectively difference;
  • first direction and the second direction are perpendicular.
  • the object grating marking unit includes a first substrate and a two-dimensional grating marking, the two-dimensional grating marking is located on a surface of the first substrate facing the projection objective unit, and the two-dimensional grating marking is used In order to obtain the first light beam and the second light beam.
  • the two-dimensional grating mark includes:
  • a first slit mark arranged along the first direction, the first slit mark is used to obtain a first light beam
  • a second slit mark arranged along the second direction, the second slit mark is used to obtain a second light beam.
  • the spectroscopic collimating unit includes:
  • the first one-dimensional grating mark group is used to perform a beam splitting process on the first light beam and the second light beam incident on the spectroscopic collimating unit to divide into the first direction light beam and the second direction light beam.
  • the group is located on the side of the second substrate facing the projection objective unit;
  • the second one-dimensional grating mark group is used to collimate the first direction light beam and the second direction light beam to obtain the first direction imaging and the second direction imaging, and the second one-dimensional grating The mark group is located on the side of the second substrate facing away from the projection objective unit.
  • the first one-dimensional grating mark group includes a plurality of first one-dimensional grating marks with the same period
  • the second one-dimensional grating mark group includes a plurality of second one-dimensional grating marks with the same period.
  • the diffraction angle of the first one-dimensional grating mark is 30° to 60°
  • the grating period of the first one-dimensional grating mark is 100 nm to 300 nm.
  • the grating period of the first one-dimensional grating mark and the grating period of the second one-dimensional grating mark are the same.
  • the diffraction unit includes:
  • the third one-dimensional grating mark group is used for performing diffraction processing on the first direction imaging and the second direction imaging, and the third one-dimensional grating mark group is located on the third substrate toward the spectroscopic collimating unit On the side. Further, the third one-dimensional grating mark group includes at least one pair of third one-dimensional grating marks having the same period, and the grating period of the third one-dimensional grating mark is the same as the grating period of the two-dimensional grating mark.
  • each pair of the third one-dimensional grating marks includes two mutually perpendicular third one-dimensional grating marks, and the two mutually perpendicular third one-dimensional grating marks are respectively used to image the first direction Perform diffraction processing with the second direction imaging.
  • the imaging detection unit includes:
  • An image acquisition unit configured to perform image acquisition on the interference image in the first direction and the interference image in the second direction, and select an acquisition area
  • the driving unit is used to drive the image acquisition unit to perform image acquisition.
  • the number of the image acquisition unit is one.
  • It also includes a processing unit, which is communicatively connected to the imaging detection unit for processing the data transmitted by the image acquisition unit to obtain the wave aberration in the first direction and the wave in the second direction Aberration.
  • the present invention also provides a lithography machine including a projection objective unit and the above-mentioned projection objective wave aberration detection device.
  • the present invention also provides a method for detecting wave aberration of a projection objective.
  • the above-mentioned device for detecting wave aberration of a projection objective includes the following steps:
  • the light source provides a detection beam, and the detection beam is incident on the object grating marking unit;
  • the object grating marking unit splits the detection beam to obtain a first beam in a first direction and a second beam in a second direction, the first direction and the second direction are perpendicular;
  • the first light beam and the second light beam After passing through the projection objective unit, the first light beam and the second light beam enter a beam splitting and collimating unit, and the beam splitting and collimating unit splits and collimates the first light beam and the second light beam on the diffraction unit respectively Forming a first direction imaging and a second direction imaging;
  • the diffraction unit forms the first direction interference image and the second direction interference image on the imaging detection unit after performing diffraction processing on the first direction imaging and the second direction imaging;
  • the workpiece table drives the object grating marking unit, spectroscopic collimating unit, diffraction unit and imaging detection unit to step along a straight line in a predetermined direction between the first direction and the second direction, so
  • the imaging detection unit simultaneously collects the light intensity of the interference image formed at each step of the first light beam and the second light beam to obtain wave aberrations in the first direction and the second direction, respectively.
  • the step of obtaining the wave aberration in the first direction and the second direction includes:
  • the processing unit processes the data transmitted by the image acquisition unit, and calculates the pupil plane interference intensity of the shear interference spot in the first direction and the second direction at each step;
  • the wave aberrations in the first direction and the second direction are calculated according to the pupil plane interference light intensity of the shear interference spot in the first direction and the second direction, respectively.
  • the first direction is a 0° direction
  • the second direction is a 90° direction
  • the phase shift direction of the workpiece table stepping is an arbitrary angle direction between 0° and 90°.
  • the calculation formula of the pupil plane interference light intensity of the shear interference spot in the first direction and the second direction is as follows:
  • U 0 (x, y, d) is the coordinate intensity of the pupil plane in the first direction when the coordinate is (x, y) and the step distance is d
  • U 90 (x, y, d) is the coordinate of (x , Y)
  • n is the diffraction order
  • p is the grating period marked by the third one-dimensional grating
  • ⁇ (x) is the center of the intensity of the shear interference spot
  • the x-direction position, ⁇ (y) is the y-direction position of the shear intensity of the interference spot
  • is the wavelength of the detection beam generated by the light source
  • x is the coordinate in the first direction
  • y is the coordinate in the second direction.
  • phase shift direction of the step of the workpiece table is a 45° direction.
  • the projection objective wave aberration detection device of the present invention simultaneously detects the first direction and the second direction by imaging the first light beam in the first direction and the second light beam in the second direction at the same time Wave aberration, specifically, the first beam and the second beam obtained after the detection beam passes through the object grating marking unit enters the beam splitting collimating unit after passing through the projection objective unit, and the beam splitting collimating unit divides the first beam and The second light beam is separately imaged on the diffraction unit after being split and collimated, and the diffraction unit performs diffraction processing on the image formed thereon, and forms an interference image on the imaging detection unit, thereby shortening the detection time of the wave aberration , And reduces the inconsistency of the first stage wave aberration and the second direction wave aberration due to the fluctuation of the workpiece table during the separate detection, which is conducive to improving the detection accuracy of the wave aberration.
  • FIG. 1 is a schematic structural diagram of a projection objective wave aberration detection device according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of a diffracted light spot marked by a two-dimensional grating according to an embodiment of the invention
  • FIG. 3 is an interferogram acquired by the imaging detector according to an embodiment of the present invention in the 0° direction;
  • FIG. 4 is an interferogram acquired by an imaging detector according to an embodiment of the present invention in a 90° direction;
  • FIG. 5 shows the phase shift directions of 0° and 90° grating marks according to an embodiment of the invention.
  • 100-object surface grating marking unit 110-first substrate; 120-two-dimensional grating marking;
  • This embodiment discloses a projection objective wave aberration detection device, for example, a projection objective wave aberration detection device of a lithography machine, which is used to detect a wave aberration of the projection objective unit.
  • the projection objective unit 200 is, for example, a projection objective.
  • the projection objective wave aberration detection device includes a light source (not shown in the figure).
  • the light source is used to provide a detection beam.
  • the light source is, for example, a deep ultraviolet laser source.
  • the projection objective wave aberration detection device further includes an illumination system for adjusting the detection beam.
  • the detection beam adjusted by the illumination system is incident on the object grating marking unit 100.
  • the projection objective wave aberration detection device further includes an object surface grating marking unit 100, which is used to split the detection beam to obtain the first (polarization) direction
  • the first light beam 11 and the second light beam 12 in the second (polarization) direction wherein the first direction and the second direction are perpendicular, for example, the first direction is 0° (polarization) direction, the The second direction is a 90° (polarization) direction; or, the first direction is a 90° direction, and the second direction is a 0° direction.
  • the following description uses the first direction as the 0° direction and the second direction as the 90° direction.
  • the object plane grating marking unit 100 includes a first substrate 110 and a two-dimensional grating marking 120 formed on the first substrate 110.
  • the material of the first substrate 110 is preferably a material with high light transmittance (light transmittance greater than 80%), such as quartz glass.
  • the side of the first substrate 110 facing away from the light source is, for example, the lower surface of the first substrate 110, and the lower surface of the first substrate 110 further has a light blocking layer (not shown in the figure). The light blocking layer covers the area outside the two-dimensional grating mark 120.
  • a light blocking material is coated on the area outside the two-dimensional grating mark 120 on the lower surface of quartz glass (the light transmittance of the light blocking material is preferably less than or equal to 2%, which can be regarded as capable of blocking all Light), the light blocking material is chromium, for example.
  • the two-dimensional grating mark 120 is used to obtain the first light beam 11 in the first direction and the second light beam 12 in the second direction.
  • the two-dimensional grating mark 120 is located on the lower surface of the first substrate 110, for example It is located at the center of the lower surface of the first substrate 110.
  • the duty ratio of the grating mark of the two-dimensional grating mark 120 is, for example, 50%, that is, the ratio of the area occupied by the light-transmitting area and the opaque area of the two-dimensional grating mark 120 is 1:1.
  • the two-dimensional grating mark 120 includes a first slit mark and a second slit mark, and the first slit mark and the second slit mark are both grid-shaped (for example, a strip grid);
  • the first The slit mark is a slit mark arranged along the first direction, which is used to obtain the first light beam 11 in the first direction, and the duty ratio of the grating mark of the first slit mark is 50%;
  • the two slit marks are slit marks arranged along the second direction for obtaining the second light beam 12 in the second direction, and the grating mark duty ratio of the second slit marks is 50%.
  • FIG. 2 is a schematic diagram of a diffracted light spot marked by a two-dimensional grating in this embodiment.
  • the detection beam generated by the light source passes through the illumination system and passes through the two-dimensional grating mark 120 of the object surface grating marking unit 100, the first beam 11 in the first direction and the second beam 12 in the second direction are obtained.
  • the diffraction order of the detection beam in the figure is -1, 0, +1.
  • the projection objective wave aberration detection device further includes a beam splitting collimating unit and a diffractive unit 400, the beam splitting collimating unit is used to pass the first light beam 11 passing through the projection objective unit 200 and The second light beam 12 is separately imaged on the diffractive unit 400 after being split and collimated, so that the detection light beam is imaged in the first direction and the second direction at the same time.
  • the beam splitting and collimating unit is used to split the first light beam 11 and the second light beam 12 to separate the first light beam 11 and the second light beam 12 (for example, the 0° direction and the 90° direction) Then, the split first beam 11 and second beam 12 enter the diffraction unit 400.
  • the spectroscopic collimating unit includes a second substrate 320, a first one-dimensional grating mark group 310 and a second one-dimensional grating mark group 330.
  • the material of the second substrate 320 is preferably a material with high light transmittance (preferably greater than 80%), such as quartz glass.
  • the surface of the second substrate 320 facing the projection objective unit 200 is, for example, the upper surface of the second substrate 320, and the surface of the second substrate 320 facing the diffraction unit 400 is, for example, the second substrate 320
  • a light blocking layer (not shown in the figure) is further provided on the upper surface of the second substrate 320, and the light blocking layer covers an area outside the first one-dimensional grating mark group 310.
  • a light blocking material is coated on an area outside the first one-dimensional grating mark group 310 on the upper surface of quartz glass (the light transmittance of the light blocking material is preferably less than or equal to 2%, which can be regarded as approximately Block all light), the light blocking material is chromium, for example.
  • the lower surface of the second substrate 320 also has a light blocking layer (not shown in the figure), and the light blocking layer covers an area outside the second one-dimensional grating mark group 330.
  • a light blocking material is coated on the area outside the second one-dimensional grating mark group 330 on the lower surface of quartz glass (the light transmittance of the light blocking material is preferably less than or equal to 2%, which can be regarded as All light can be blocked), the light blocking material is chrome, for example.
  • the first one-dimensional grating mark group 310 is used to perform a beam splitting process on the first light beam 11 and the second light beam 12 incident on the beam splitter collimating unit, so as to be divided into the first directional light beam 11' and the second directional light beam 12'.
  • the first one-dimensional grating mark group 310 is located on the upper surface of the second substrate 320.
  • the first one-dimensional grating mark group 310 includes a plurality of first one-dimensional grating marks with the same period.
  • the first one-dimensional grating mark is, for example, a one-dimensional spectroscopic grating mark, and the first one-dimensional grating mark
  • the duty cycle of the raster mark is, for example, 50%.
  • the plurality of first one-dimensional grating marks with the same period are, for example, distributed on the upper surface of the second substrate 320, and further, distributed on the center position of the upper surface of the second substrate 320 and a plurality of concentrics centered on the center position On the circumference of the circle, and at least two first one-dimensional grating marks on the circumference of each concentric circle.
  • the first one-dimensional grating mark group 310 divides the first beam 11 and the second beam 12 incident on the beam splitter into a first direction beam 11' and a second direction beam 12 with uniform light intensity '.
  • the first one-dimensional grating mark 310 of the beam splitting and collimating unit is subjected to a beam splitting process to make the first
  • the first beam 11 in the direction and the second beam 12 in the second direction are separated, so that the first beam 11 in the first direction and the second beam 12 in the second direction can be simultaneously subjected to wave aberration detection, which shortens
  • the time of wave aberration detection is improved, and the production efficiency is improved.
  • the first one-dimensional grating mark group 310 includes three first one-dimensional grating marks 311, 312, and 313 with the same period, wherein the first one-dimensional grating mark 312 is located on the second substrate 320 The center position of the upper surface of the first surface, and the first one-dimensional grating marks 311, 312, 313 are located on the same straight line, and the first one-dimensional grating marks 311, 313 are located on both sides of the first one-dimensional grating marks 312 at the same distance.
  • the second one-dimensional grating mark group 330 is used to collimate the first direction light beam 11' and the second direction light beam 12'.
  • the second one-dimensional grating mark group 330 is located on a side of the second substrate 320 facing away from the projection objective unit 200.
  • the second one-dimensional grating mark group 330 includes a plurality of second one-dimensional grating marks with the same period.
  • the second one-dimensional grating mark is, for example, a one-dimensional collimating grating mark, and the second one-dimensional grating mark
  • the duty cycle of the raster mark is, for example, 50%.
  • the grating period of the first one-dimensional grating mark is the same as the grating period of the second one-dimensional grating mark.
  • the plurality of second one-dimensional grating marks with the same period are, for example, distributed on the circumference of a plurality of concentric circles centered on the lower surface of the second substrate 320, or the second with the same period
  • the one-dimensional grating marks are, for example, distributed on the center position of the lower surface of the second substrate 320 and the circumferences of a plurality of concentric circles centered on the center position, and there are at least two second one-dimensional gratings on the circumference of each concentric circle Mark so that most of the light in the first direction light beam 11' and the second direction light beam 12' can be separately emitted.
  • the number of second one-dimensional grating marks that collimate the first direction light beam 11' is the same as the number of second one-dimensional grating marks that collimate the second direction light beam 12', so that The light intensity of the first direction light beam 11' of the collimating unit is the same as the light intensity of the second direction light beam 12'.
  • the second one-dimensional grating mark group 330 may include three second one-dimensional grating marks 331, 332, 333 with the same period, wherein the second one-dimensional grating mark 332 is located on the second substrate
  • the center position of the lower surface of 320, and the second one-dimensional grating marks 331, 332, and 333 are on the same straight line, and the second one-dimensional grating marks 331, 333 are located on both sides of the second one-dimensional grating mark 332 at the same distance.
  • the second one-dimensional grating mark group may also include two second one-dimensional grating marks with the same period, and the two second one-dimensional grating marks are located from the lower surface of the second substrate to the center position Any location with the same distance.
  • the two second one-dimensional grating marks are respectively used to collimate the first direction light beam 11' and the second direction light beam 12', so that the intensity of the first direction light beam 11' and the second direction light beam after being emitted The light intensity at 12' is the same.
  • the two second one-dimensional grating marks may also be located at other positions on the lower surface of the second substrate, and the positions of the two second one-dimensional grating marks only need to satisfy the condition that the first direction light beam 11' after being emitted
  • the light intensity may be the same as the light intensity of the second direction light beam 12'.
  • the grating period of the first one-dimensional grating mark and the thickness of the second substrate 320 satisfy the following relationship:
  • d is the grating period of the first one-dimensional grating mark
  • is the diffraction angle of the first one-dimensional grating mark
  • is the wavelength of the detection beam generated by the light source
  • x is formed by the beam splitting and collimating of the beam splitting unit
  • the diameter of the light spot n is the refractive index of the second substrate
  • h is the thickness of the second substrate.
  • the diffraction angle of the first one-dimensional grating mark is 30° to 60°
  • the grating period of the first one-dimensional grating mark is 100 nm to 300 nm
  • the thickness of the second substrate 320 is 1 mm to 6 mm.
  • the first one-dimensional grating mark has a diffraction angle other than 30°-60°, a grating period other than 100nm-300nm, and a thickness of the second substrate 320 of 1mm-6mm Values other than these can be changed according to actual needs.
  • the diffraction unit 400 is used to form an interference image on the imaging detection unit after performing diffraction processing on the image formed thereon.
  • the diffraction unit 400 includes a third substrate 420 and a third one-dimensional grating mark group 410.
  • the material of the third substrate 420 is preferably a material with high light transmittance (light transmittance greater than 80%), such as quartz glass.
  • the surface of the third substrate 420 facing the beam splitting and collimating unit is, for example, the upper surface of the third substrate 420, and the upper surface of the third substrate 420 further has a light blocking layer (not shown in the figure).
  • the optical layer covers the area outside the third one-dimensional grating mark group 410.
  • an area outside the third one-dimensional grating mark group 410 on the upper surface of quartz glass is coated with a light blocking material (the light transmittance of the light blocking material is preferably less than or equal to 2%, which can be regarded as approximately Block all light), the light blocking material is chromium, for example.
  • the third one-dimensional grating mark group 410 is used for diffracting the image on the diffraction unit 400, that is, diffracting the first light beam 11 and the second light beam 12 passing through the spectroscopic collimating unit, A shear interference spot in the first direction and a shear interference spot in the second direction are generated, that is, to form an interference image in the first direction and the second direction.
  • the third one-dimensional grating mark group 410 is located on the upper surface of the third substrate 420.
  • the third one-dimensional raster mark group 410 includes at least one pair of third one-dimensional raster marks with the same period.
  • the third one-dimensional raster mark has a grid shape (for example, a stripe grid), and each pair of the third The one-dimensional grating mark includes two mutually perpendicular third one-dimensional grating marks, which are respectively used for performing diffraction processing on the imaging in the first direction and the imaging in the second direction.
  • the third one-dimensional grating mark group 410 includes, for example, an even number of third one-dimensional grating marks, for example, 2, 4, 6, and so on.
  • the third one-dimensional grating marks are used to diffract the first direction imaging 11", and the other half of the third one-dimensional grating marks are used to diffract the second direction imaging 12", so that the imaging detection unit 500
  • One or more sets of interference images in the first direction and one or more sets of interference images in the second direction can be collected.
  • the third one-dimensional grating for diffracting the image 11" in the first direction is marked as a stripe grid arranged along the first direction
  • the third one-dimensional grating for diffracting the image 12" in the second direction is marked as a bar grid arranged along the second direction.
  • the grating period of the third one-dimensional grating mark is the same as the grating period of the two-dimensional grating mark 120.
  • the third one-dimensional grating mark group 410 includes two third one-dimensional grating marks 411, 412, wherein the third one-dimensional grating mark 411 is used to diffract the first direction image 11", and the third The one-dimensional grating mark 412 is used to diffract the second direction image 12".
  • the projection objective wave aberration detection device further includes an imaging detection unit 500, which is used for image acquisition of the interference image formed thereon. After the first direction imaging 11" and the second direction imaging 12" pass through the diffraction unit, interference images are formed on the imaging detection unit 500, respectively, so that the interference images in the first direction and the second direction can be collected simultaneously.
  • the imaging detection unit 500 includes an image acquisition unit (not shown in the figure) and a driving unit (not shown in the figure).
  • the image acquisition unit is used for image acquisition of the interference image and selection of the acquisition area.
  • the image acquisition unit is, for example, a CMOS acquisition chip, and a fluorescent conversion layer is coated on its upper surface, that is, a fluorescent conversion layer is coated on its surface facing the third substrate 420.
  • the image acquisition unit when the image acquisition unit performs image acquisition, the image acquisition unit is located directly under the diffraction unit 400. There is a gap between the image acquisition unit and the diffraction unit 400, which makes the image imaged to the image acquisition unit a far-field image.
  • the distance of the gap is greater than or equal to 1 mm, preferably 1 mm to 2 mm.
  • the number of the image acquisition unit is one, so that one image acquisition unit can acquire the interference image in the first direction and the interference image in the second direction at the same time. Compared with the imaging detector, it reduces the influence of dark current, non-linearity, and bad pixel inconsistency between the two imaging detectors on the consistency of the final collected graphics, thereby improving the detection accuracy of wave aberration.
  • the driving unit is, for example, a driving board, which is used to drive the image acquisition unit to perform image acquisition.
  • the image acquisition unit is located on the driving unit, for example.
  • FIG. 3 is an interference diagram acquired by the imaging detector of this embodiment in the 0° direction.
  • FIG. 4 is an interference diagram acquired by the imaging detector of this embodiment in the 90° direction.
  • the interference image of the first light beam 11 in the first direction (ie, the 0° direction) on the imaging detection unit 500 is a shear interference spot in the first direction
  • the second direction That is, the interference image of the second light beam 12 on the imaging detection unit 500 in the direction of 90° is a shear interference spot in the second direction.
  • the diffraction order of the image collected by the image collection unit is, for example, -1, 0, +1.
  • the detection time is shortened and the wave aberration is also improved. Detection accuracy.
  • the projection objective wave aberration detection device further includes a processing unit (not shown in the figure), the processing unit is in communication connection with the imaging detection unit 500, which is used to process the data transmitted by the graphics acquisition unit for calculation Wave aberration in the first direction and wave aberration in the second direction.
  • a processing unit (not shown in the figure)
  • the processing unit is in communication connection with the imaging detection unit 500, which is used to process the data transmitted by the graphics acquisition unit for calculation Wave aberration in the first direction and wave aberration in the second direction.
  • the projection objective wave aberration detection device further includes a workpiece stage 600 for driving the object plane grating marking unit 100, the beam splitting collimation unit, the diffraction unit, and the imaging detection unit 500 in Unidirectional step along a straight line in a predetermined direction between the first direction and the second direction, so that the imaging detection unit 500 simultaneously acquires the interference image of the first beam 11 and the second beam 12 each step To obtain the wave aberration in the first direction and the second direction respectively.
  • the detection beam provided by the light source of this embodiment obtains the first beam in the first direction and the second beam in the second direction through the object surface grating marking unit, and the first beam and the second beam pass through the projection objective unit Then enter the spectroscopic collimating unit.
  • the spectroscopic collimating unit splits and collimates the first light beam and the second light beam to form an image on a diffraction unit, and the diffraction unit diffracts the image formed thereon.
  • interference images are respectively formed on the imaging detection unit to obtain the wave aberration in the first direction and the wave aberration in the second direction at the same time.
  • This embodiment also discloses a lithography machine, which includes a projection objective unit and the above-mentioned projection objective wave aberration detection device. Since the focus of the present invention is to detect the wave aberration of the projection objective, other known structures of the lithography machine will not be described in detail, and those skilled in the art should be aware of it.
  • This embodiment also discloses a method for detecting the wave aberration of the projection objective, for example, a method for detecting the wave aberration of the projection objective of a lithography machine.
  • the method uses the above-mentioned device for detecting the wave aberration of the projection objective, and includes the following steps:
  • Step S1 providing a detection beam, the detection beam is incident on an object grating marking unit;
  • Step S2 the object surface grating marking unit splits the detection beam to obtain a first beam in the first direction and a second beam in the second direction, the first direction and the second direction are perpendicular;
  • Step S3 The first beam and the second beam pass through the projection objective unit and enter a beam splitting and collimating unit.
  • the beam splitting and collimating unit splits and collimates the first beam and the second beam on the diffraction unit Separate imaging;
  • Step S4 The diffraction unit performs diffraction processing on the image formed thereon to form interference images on the imaging detection unit respectively;
  • Step S5 the workpiece table drives the object surface grating marking unit, the spectroscopic collimating unit, the diffractive unit and the imaging detection unit to step along a straight line in a predetermined direction between the first direction and the second direction, the The imaging detection unit simultaneously collects the light intensity of the interference image at each step of the first light beam and the second light beam to obtain wave aberrations in the first direction and the second direction, respectively.
  • step S1 is executed to provide a detection beam.
  • the light source is, for example, a deep ultraviolet laser source.
  • the detection beam is incident on an object grating marking unit 100.
  • step S2 is performed, and the object surface grating marking unit 100 splits the detection beam to obtain the first beam 11 in the first direction and the second beam 12 in the second direction.
  • the two directions are perpendicular.
  • step S3 is executed.
  • the first beam 11 and the second beam 12 pass through the projection objective unit 200 and enter a beam splitting and collimating unit.
  • the beam splitting and collimating unit splits and collimates the first beam 11 and the second beam 12 Immediately after the straight processing, the diffraction units are imaged separately.
  • step S4 is performed, and the diffraction unit performs diffraction processing on the image formed thereon to form interference images on the imaging detection unit 500, respectively.
  • Fig. 5 shows the phase shift directions of the 0° and 90° grating marks of this embodiment.
  • step S5 is performed.
  • the workpiece stage 600 drives the object plane grating marking unit 100, the beam splitting collimating unit, the diffraction unit, and the imaging detection unit 500 in the first direction and the second direction Stepping along a straight line in a certain predetermined direction between each other, the imaging detection unit 500 simultaneously collects the light intensity of the interference image at each step of the first beam 11 and the second beam 12 to obtain respectively The wave aberration in the first direction and the second direction is described.
  • the intensity of the collected interference image can be decomposed into the intensity of the first direction and the second direction by calculation, so that the first The light intensity in the direction and the second direction are collected at the same time, thereby shortening the time of image acquisition and improving the test efficiency.
  • the first direction is, for example, a 0° direction
  • the second direction is, for example, a 90° direction
  • the phase shift direction of the workpiece table 600 step is, for example, any angle between 0° and 90°, preferably
  • the phase shift direction of the workpiece table 600 step is 45°.
  • the specific steps of obtaining the wave aberration in the first direction and the second direction include:
  • Step S5a Collect the light intensity of the interference image at each step by the imaging detection unit 500.
  • Step S5b The processing unit processes the data transmitted by the graphics acquisition unit 500, and calculates the pupil plane interference light intensity of the shear interference spot in the first direction and the second direction at each step.
  • the calculation formula of the pupil plane interference light intensity of the shear interference spot in the 0° direction and the 90° direction is as follows:
  • U 0 (x, y, d) is the coordinate intensity of the pupil plane in the first direction when the coordinate is (x, y) and the step distance is d
  • U 90 (x, y, d) is the coordinate of (x , Y)
  • n is the diffraction order
  • p is the grating period marked by the third one-dimensional grating
  • ⁇ (x) is the center of the intensity of the shear interference spot
  • the x-direction position, ⁇ (y) is the y-direction position of the shear intensity of the interference spot
  • is the wavelength of the detection beam generated by the light source
  • x is the coordinate in the first direction
  • y is the coordinate in the second direction.
  • Step S5c According to the pupil plane interference light intensity of the shear interference spot in the first direction and the second direction, respectively calculate the wave aberration in the first direction and the second direction.
  • a projection objective wave aberration detection device and method, a lithography machine of the present invention by simultaneously aligning the first beam in the first direction and the second direction Imaging of the second beam to detect the wave aberration in the first direction and the second direction at the same time, that is to say, the first beam and the second beam obtained after the detection beam passes through the object grating marking unit after passing through the projection objective unit Enter a spectroscopic collimating unit, the spectroscopic collimating unit separates and collimates the first light beam and the second light beam to form an image on a diffraction unit, and the diffraction unit performs diffraction processing on the image formed thereon, and
  • the interference images are formed on the imaging detection unit respectively, thereby shortening the detection time of the wave aberration, and reducing the inconsistency of the first-direction wave aberration and the second-direction wave aberration due to the fluctuation of the workpiece table when separately detected The effect is helpful to improve the detection accuracy of wave

Abstract

一种投影物镜波像差检测装置,包括:光源,用于提供检测光束;物面光栅标记单元(100),用于对检测光束进行分光,以得到第一方向上的第一光束(11)和第二方向上的第二光束(12);分光准直单元,用于将经过投影物镜单元(200)的光束进行分光及准直处理;衍射单元(400),用于将经过分光准直单元的光束进行衍射处理,以得到两个方向的干涉图像;工件台(600),用于带动物面光栅标记单元(100)、分光准直单元、衍射单元(400)和成像探测单元(500)在第一方向和第二方向之间的预定方向上沿直线单向步进,可以同时采集第一光束(11)和第二光束(12)每次步进时的干涉图像的光强,以分别获得第一方向和第二方向的波像差,从而缩短检测时间,提高波像差的检测精度。还公开了一种投影物镜波像差检测方法和一种光刻机。

Description

投影物镜波像差检测装置及方法、光刻机 技术领域
本发明涉及光学技术领域,特别涉及一种投影物镜波像差检测装置、投影物镜波像差检测方法以及包含投影物镜波像差检测装置的光刻机。
背景技术
光刻机是集成电路(IC)的生产制造过程中的关键设备之一,其将掩模板上的图案经过投影物镜单元投影在旋涂有光刻胶的衬底(如晶圆)上。成像质量是影响光刻机的光刻分辨率和套刻精度的重要因素。随着光刻特征尺寸(CD)的不断减小,光刻机的投影物镜波像差对光刻质量的影响越来越突出,其是限制投影系统分辨率的重要因素,亦是造成线宽变化的重要原因。因而,有必要在线检测光刻机投影物镜单元的波像差,以保证光刻质量。
在线测量波像差的一种方法是剪切干涉法。该方法需要在0°和90°这两个方向进行测量,在物面使用小孔产生探测光源,小孔经投影物镜成像到像面的光栅标记并在远场产生剪切干涉条纹,使用二维阵列光敏元件在投影物镜光瞳的共轭面记录干涉图像。研究发现,由于测量过程中0°方向的测量和90°方向的测量是分开进行的,这样会导致在0°方向相移过程中工件台的位置和波动与90°方向相移过程中工件台的位置和波动存在偏差,这个偏差影响了波像差检测精度;而且,上述两个方向的分开测试所需的时间较长,测试效率较低。
发明内容
本发明的目的之一在于提供一种投影物镜波像差检测装置,以解决0°方向和90°方向上的波像差检测精度较低的问题。
本发明的另一目的在于提供一种投影物镜波像差检测方法,以解决波像差检测时间较长的问题,以提高测试效率。
为解决上述技术问题,一方面,本发明提供一种投影物镜波像差检测装置,用于检测投影物镜单元的波像差,包括:光源、物面光栅标记单元、分光准直单元、衍射单元、成像探测单元以及工件台;
所述光源用于提供检测光束,所述检测光束入射至所述物面光栅标记单元;
所述物面光栅标记单元用于将所述检测光束分为第一方向上的第一光束和第二方向上的第二光束,所述第一光束和第二光束入射至所述投影物镜单元后进入所述分光准直单元;
所述分光准直单元用于将经过所述投影物镜单元的所述第一光束和第二光束进行分光及准直处理后在所述衍射单元上分别形成第一方向成像和第二方向成像;
所述衍射单元用于将所述第一方向成像和所述第二方向成像进行衍射处理后在所述成像探测单元上分别形成第一方向的干涉图像和第二方向的干涉图像;
所述工件台用于带动所述物面光栅标记单元、分光准直单元、衍射单元和成像探测单元在所述第一方向和所述第二方向之间的某一预定方向上沿直线单向步进,使所述成像探测单元同时采集所述第一光束和第二光束每次步进时形成的干涉图像的光强,以分别获得所述第一方向和所述第二方向的波像差;
其中,所述第一方向和所述第二方向垂直。
可选的,所述物面光栅标记单元包括第一基底和二维光栅标记,所述二维光栅标记位于所述第一基板朝向所述投影物镜单元的一面上,所述二维光 栅标记用于得到所述第一光束和所述第二光束。
可选的,所述二维光栅标记包括:
沿所述第一方向排列的第一狭缝标记,所述第一狭缝标记用于得到第一光束;以及
沿所述第二方向排列的第二狭缝标记,所述第二狭缝标记用于得到第二光束。
可选的,所述分光准直单元包括:
第二基底;
第一一维光栅标记组,用于对入射到分光准直单元上的第一光束和第二光束进行分光处理,以分成第一方向光束和第二方向光束,所述第一一维光栅标记组位于所述第二基底朝向所述投影物镜单元的一面上;
第二一维光栅标记组,用于将所述第一方向光束和第二方向光束进行准直处理,以得到所述第一方向成像和所述第二方向成像,所述第二一维光栅标记组位于所述第二基底背向所述投影物镜单元的一面上。
可选的,所述第一一维光栅标记组包括多个周期相同的第一一维光栅标记,所述第二一维光栅标记组包括多个周期相同的第二一维光栅标记。进一步的,所述第一一维光栅标记的衍射角度为30°~60°,所述第一一维光栅标记的光栅周期为100nm~300nm。更进一步的,所述第一一维光栅标记的光栅周期和所述第二一维光栅标记的光栅周期相同。
可选的,所述衍射单元包括:
第三基底;以及
第三一维光栅标记组,用于将所述第一方向成像和所述第二方向成像进行衍射处理,所述第三一维光栅标记组位于所述第三基底朝向所述分光准直单元的一面上。进一步的,所述第三一维光栅标记组包括至少一对周期相同 的第三一维光栅标记,所述第三一维光栅标记的光栅周期与所述二维光栅标记的光栅周期相同。更进一步的,每对所述第三一维光栅标记包括两个相互垂直的第三一维光栅标记,所述两个相互垂直的第三一维光栅标记分别用于对所述第一方向成像和所述第二方向成像进行衍射处理。
可选的,所述成像探测单元包括:
图像采集单元,用于对所述第一方向的干涉图像和所述第二方向的干涉图像进行图像采集,以及对采集面积进行选择;以及
驱动单元,用于驱动所述图像采集单元进行图像采集。其中,所述图像采集单元的数量为1个。
还包括一处理单元,所述处理单元与所述成像探测单元通信连接,用于处理所述图像采集单元传送的数据,以得到所述第一方向的波像差和所述第二方向的波像差。
另一方面,本发明还提供了一种光刻机,包括投影物镜单元以及上述的投影物镜波像差检测装置。
再一方面,本发明还提供了一种投影物镜波像差检测方法,采用上述投影物镜波像差检测装置,包括以下步骤:
光源提供一检测光束,所述检测光束入射至物面光栅标记单元;
所述物面光栅标记单元对所述检测光束进行分光,以得到第一方向上的第一光束和第二方向上的第二光束,所述第一方向和所述第二方向垂直;
所述第一光束和所述第二光束经过投影物镜单元之后进入分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别形成第一方向成像和第二方向成像;
所述衍射单元将所述第一方向成像和所述第二方向成像进行衍射处理后在成像探测单元上分别形成第一方向的干涉图像和第二方向的干涉图像;以 及
工件台带动所述物面光栅标记单元、分光准直单元、衍射单元和成像探测单元在所述第一方向和所述第二方向之间的某一预定方向上沿直线单向步进,所述成像探测单元同时采集所述第一光束和第二光束每次步进时形成的干涉图像的光强,以分别获得所述第一方向和所述第二方向的波像差。
可选的,获得所述第一方向和所述第二方向的波像差的步骤包括:
通过图像采集单元采集每次步进的所述第一方向的干涉图像和所述第二方向的干涉图像的光强;
通过处理单元处理所述图像采集单元传送来的数据,并计算出每次步进时所述第一方向和所述第二方向的剪切干涉光斑的瞳面干涉光强;
根据所述第一方向和第二方向的剪切干涉光斑的瞳面干涉光强,分别计算出所述第一方向和所述第二方向的波像差。
进一步的,所述第一方向为0°方向,所述第二方向为90°方向,所述工件台步进的相移方向为在0°~90°之间的任意角度方向。
更进一步的,所述第一方向和所述第二方向的剪切干涉光斑的瞳面干涉光强的计算公式如下:
Figure PCTCN2019127371-appb-000001
Figure PCTCN2019127371-appb-000002
其中,U 0(x,y,d)是坐标为(x、y)、步进距离为d时的第一方向瞳面干涉光强,U 90(x,y,d)是坐标为(x、y)、步进距离为d时的第二方向瞳面干涉光强,n是衍射级次,p是第三一维光栅标记的光栅周期,δ(x)是剪切干涉光斑光强中心的x向位置,δ(y)是剪切干涉光斑光强中心的y向位置,λ是光源所产生检 测光束的波长,x是第一方向的坐标,y是第二方向的坐标。
可选的,所述工件台步进的相移方向为45°方向。
与现有技术相比,本发明的投影物镜波像差检测装置,通过同时对第一方向上的第一光束和第二方向上的第二光束成像,以同时检测第一方向和第二方向的波像差,具体地,检测光束经过物面光栅标记单元后得到的第一光束和第二光束经过投影物镜单元之后进入分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别成像,所述衍射单元对其上的成像进行衍射处理,并在成像探测单元上分别形成干涉图像,从而缩短了波像差的检测时间,并降低了第一方向波像差和第二方向波像差在分开检测时由于工件台波动的不一致性的影响,有利于提高波像差的检测精度。
附图说明
图1为本发明一实施例的投影物镜波像差检测装置的结构示意图;
图2为本发明一实施例的经过二维光栅标记的衍射光斑的示意图;
图3为本发明一实施例的成像探测器采集0°方向的干涉图;
图4为本发明一实施例的成像探测器采集90°方向的干涉图;
图5为本发明一实施例的0°和90°光栅标记相移方向。
附图标记说明:
11-第一光束;12-第二光束;11'-第一方向光束;12'-第二方向光束;
11″-第一方向成像;12″-第二方向成像;
100-物面光栅标记单元;110-第一基底;120-二维光栅标记;
200-投影物镜单元;
310-第一一维光栅标记组;311、312、313-第一一维光栅标记;320-第二 基底;330-第二一维光栅标记组;331、332、333-第二一维光栅标记;
400-衍射单元;
410-第三一维光栅标记组;411、412-第三一维光栅标记;420-第三基底;
500-成像探测单元;
600-工件台;a-步进方向。
具体实施方式
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
本实施例公开了一种投影物镜波像差检测装置,例如是光刻机的投影物镜波像差检测装置,其用于检测投影物镜单元的波像差。如图1所示,所述投影物镜单元200例如是一个投影物镜。
所述投影物镜波像差检测装置包括一光源(图中未示出),所述光源用于提供检测光束,所述光源例如是深紫外激光源。
所述投影物镜波像差检测装置还包括一照明系统,所述照明系统用于调整所述检测光束。经过所述照明系统调整后的所述检测光束入射至所述物面光栅标记单元100。
如图1所示,所述投影物镜波像差检测装置还包括物面光栅标记单元100,所述物面光栅标记单元100用于对所述检测光束进行分光,以得到第一(偏振)方向上的第一光束11和第二(偏振)方向上的第二光束12,其中,所述第一方向和第二方向垂直,例如,所述第一方向为0°(偏振)方向,所述第二方向为90°(偏振)方向;或者,所述第一方向为90°方向,所述第二方向为0°方向。后文以所述第一方向为0°方向、所述第二方向为90°方向进 行说明。作为示例,所述物面光栅标记单元100包括第一基底110和形成于第一基底110上的二维光栅标记120。所述第一基底110的材料优选是透光率较高(透光率大于80%)的材料,例如是石英玻璃。所述第一基板110背向所述光源的一面例如为所述第一基底110的下表面,所述第一基底110的下表面上还具有挡光层(图中未示出),所述挡光层覆盖所述二维光栅标记120之外的区域。例如,在石英玻璃的下表面的所述二维光栅标记120之外的区域涂覆一挡光材料(所述挡光材料的透光率优选小于等于2%,可以近似看成能够遮挡所有的光线),所述挡光材料例如是铬。
所述二维光栅标记120用于得到第一方向上的第一光束11和第二方向上的第二光束12,所述二维光栅标记120位于所述第一基底110的下表面,例如是位于所述第一基底110下表面的中心位置。所述二维光栅标记120的光栅标记占空比例如为50%,即,所述二维光栅标记120的透光区与不透光区所占面积的比例为1:1。所述二维光栅标记120包括第一狭缝标记和第二狭缝标记,所述第一狭缝标记和第二狭缝标记均呈栅格状(例如条状栅格);所述第一狭缝标记为沿所述第一方向排列的狭缝标记,其用于得到第一方向上的第一光束11,所述第一狭缝标记的光栅标记占空比为50%;所述第二狭缝标记为沿所述第二方向排列的狭缝标记,用于得到第二方向上的第二光束12,所述第二狭缝标记的光栅标记占空比为50%。图2为本实施例的经过二维光栅标记的衍射光斑的示意图。如图2所示,光源所产生的检测光束经过照明系统后经过物面光栅标记单元100的二维光栅标记120之后,得到第一方向的第一光束11和第二方向的第二光束12,其中图中检测光束的衍射级次为-1,0,+1。
请继续参阅图1,所述投影物镜波像差检测装置还包括分光准直单元和衍射单元400,所述分光准直单元用于将经过所述投影物镜单元200的所述第一 光束11和第二光束12进行分光及准直处理后在所述衍射单元400上分别成像,使得检测光束同时在第一方向和第二方向成像。作为示例,所述分光准直单元用于对所述第一光束11和第二光束12进行分光处理,以将第一光束11和第二光束12(例如是0°方向和90°方向)分开,分开后的第一光束11和第二光束12入射到衍射单元400。
具体的,所述分光准直单元包括第二基底320、第一一维光栅标记组310和第二一维光栅标记组330。所述第二基底320的材料优选是透光率较高(透光率优选大于80%)的材料,例如是石英玻璃。所述第二基底320朝向所述投影物镜单元200的表面例如为所述第二基底320的上表面,所述第二基底320朝向所述衍射单元400的表面例如为所述第二基底320的下表面,所述第二基底320的上表面上还具有挡光层(图中未示出),所述挡光层覆盖第一一维光栅标记组310之外的区域。例如,在石英玻璃的上表面的所述第一一维光栅标记组310之外的区域涂覆一挡光材料(所述挡光材料的透光率优选小于等于2%,可以近似看成能够遮挡所有的光线),所述挡光材料例如是铬。所述第二基底320的下表面上也具有挡光层(图中未示出),所述挡光层覆盖所述第二一维光栅标记组330之外的区域。同理,在石英玻璃的下表面的所述第二一维光栅标记组330之外的区域涂覆一挡光材料(所述挡光材料的透光率优选小于等于2%,可以近似看成能够遮挡所有的光线),所述挡光材料例如是铬。
所述第一一维光栅标记组310用于对入射到分光准直单元上的第一光束11和第二光束12进行分光处理,以分成第一方向光束11'和第二方向光束12'。其中,所述第一一维光栅标记组310位于所述第二基底320的上表面。详细的,所述第一一维光栅标记组310包括多个周期相同的第一一维光栅标记,所述第一一维光栅标记例如为一维分光光栅标记,所述第一一维光栅标记的 光栅标记占空比例如为50%。所述多个周期相同的第一一维光栅标记例如是分布在第二基底320的上表面,进一步的,分布在第二基底320的上表面的中心位置以及以中心位置为圆心的多个同心圆的圆周上,且每个同心圆的圆周上至少有两个第一一维光栅标记。较佳方案中,所述第一一维光栅标记组310将入射到分光准直单元上的第一光束11和第二光束12分成光强均匀的第一方向光束11'和第二方向光束12'。由上可知,第一方向上的第一光束11和第二方向上的第二光束12经过投影物镜单元200之后,通过分光准直单元的第一一维光栅标记310的分光处理,使得第一方向上的第一光束11和第二方向上的第二光束12分开,从而使得第一方向上的第一光束11和第二方向上的第二光束12可以同时进行波像差检测,其缩短了波像差检测的时间,提高了生产效率。
在本实施例中,所述第一一维光栅标记组310包括三个周期相同的第一一维光栅标记311、312、313,其中,第一一维光栅标记312位于所述第二基底320的上表面的中心位置,且第一一维光栅标记311、312、313位于同一直线上,第一一维光栅标记311、313位于第一一维光栅标记312两侧且与其距离相同。
所述第二一维光栅标记组330用于将所述第一方向光束11'和第二方向光束12'进行准直处理。所述第二一维光栅标记组330位于所述第二基底320背向所述投影物镜单元200的一面上。其中,所述第二一维光栅标记组330包括多个周期相同的第二一维光栅标记,所述第二一维光栅标记例如为一维准直光栅标记,所述第二一维光栅标记的光栅标记占空比例如为50%。所述第一一维光栅标记的光栅周期和所述第二一维光栅标记的光栅周期相同。所述多个周期相同的第二一维光栅标记例如是分布在第二基底320的下表面的以中心位置为圆心的多个同心圆的圆周上,或者,所述多个周期相同的第二 一维光栅标记例如是分布在第二基底320的下表面的中心位置以及以该中心位置为圆心的多个同心圆的圆周上,每个同心圆的圆周上至少有两个第二一维光栅标记,以将所述第一方向光束11'和第二方向光束12'中大部分的光可以分别出射。优选的,对第一方向光束11'进行准直处理的第二一维光栅标记的数量与对第二方向光束12'进行准直处理的第二一维光栅标记的数量相同,以使得通过分光准直单元的第一方向光束11'的光强与第二方向光束12'的光强相同。
在本实施例中,所述第二一维光栅标记组330可以包括三个周期相同的第二一维光栅标记331、332、333,其中,第二一维光栅标332位于所述第二基底320的下表面的中心位置,且第二一维光栅标记331、332、333位于同一直线上,第二一维光栅标记331、333位于第二一维光栅标记332两侧且与其距离相同。
在其他实施例中,所述第二一维光栅标记组也可以包括两个周期相同的第二一维光栅标记,所述两个第二一维光栅标记位于第二基底的下表面至中心位置距离相相同的任意位置。所述两个第二一维光栅标记分别用于对第一方向光束11'和第二方向光束12'进行准直处理,使得出射后的第一方向光束11'的光强和第二方向光束12'的光强相同。另外,所述两个第二一维光栅标记也可以位于第二基底的下表面其他位置,所述两个第二一维光栅标记的位置只需满足使得出射后的第一方向光束11'的光强和第二方向光束12'的光强相同即可。
为了避免经过第一一维光栅标记分光之后的光斑之间发生干涉,所述第一一维光栅标记的光栅周期和第二基底320的厚度之间满足以下关系式:
dnsinθ=λ;
Figure PCTCN2019127371-appb-000003
其中,d为第一一维光栅标记的光栅周期,θ为第一一维光栅标记的衍射角度,λ为光源所产生的检测光束的波长,x为分光准直单元分光及准直后所形成的光斑的直径,n为第二基底的折射率,h为第二基底的厚度。
由上可知,当第一一维光栅标记的衍射角度过大时,第一一维光栅标记的光栅周期变小,第二基底320的厚度太薄,使得第二基底320加工难度增大。当第一一维光栅标记的衍射角度过小时,第一一维光栅标记的光栅周期变大,第二基底320的厚度太厚,超出了预计需求的范围。因此,优选的,所述第一一维光栅标记的衍射角度为30°~60°,第一一维光栅标记的光栅周期为100nm~300nm,第二基底320的厚度为1mm~6mm。应理解,具体实施时,所述第一一维光栅标记的衍射角度为30°~60°以外的其他角度,光栅周期为100nm~300nm以外的其他数值,第二基底320的厚度为1mm~6mm以外的其他数值,可以根据实际需求进行变换。
所述衍射单元400用于将其上的成像进行衍射处理后在所述成像探测单元上分别形成干涉图像。作为示例,所述衍射单元400包括第三基底420和第三一维光栅标记组410。所述第三基底420的材料优选是透光率较高(透光率大于80%)的材料,例如是石英玻璃。所述第三基底420朝向所述分光准直单元的表面例如为第三基底420的上表面,所述第三基底420的上表面还具有挡光层(图中未示出),所述挡光层覆盖第三一维光栅标记组410之外的区域。例如,在石英玻璃的上表面的所述第三一维光栅标记组410之外的区域涂覆一挡光材料(所述挡光材料的透光率优选小于等于2%,可以近似看成能够遮挡所有的光线),所述挡光材料例如是铬。
所述第三一维光栅标记组410用于将所述衍射单元400上的成像进行衍射处理,即,将经过所述分光准直单元的第一光束11和第二光束12进行衍射处理,以产生第一方向的剪切干涉光斑和第二方向的剪切干涉光斑,即, 以在第一方向和第二方向形成干涉图像。所述第三一维光栅标记组410位于所述第三基底420的上表面。
所述第三一维光栅标记组410包括至少一对周期相同的第三一维光栅标记,所述第三一维光栅标记呈栅格状(例如条状栅格),每对所述第三一维光栅标记包括两个相互垂直的第三一维光栅标记,其分别用于对第一方向成像和第二方向成像进行衍射处理。换言之,所述第三一维光栅标记组410例如是包括偶数个第三一维光栅标记,例如,2个、4个、6个等。其中一半数量的第三一维光栅标记用于对第一方向成像11″进行衍射,另一半数量的第三一维光栅标记用于对第二方向成像12″进行衍射,以使得成像探测单元500可以采集到一组或多组第一方向的干涉图像,以及一组或多组第二方向的干涉图像。其中,用于对第一方向成像11″进行衍射的第三一维光栅标记为沿着第一方向排列的条状栅格,用于对第二方向成像12″进行衍射的第三一维光栅标记为沿着第二方向排列的条状栅格。进一步的,所述第三一维光栅标记的光栅周期与二维光栅标记120的光栅周期相同。在本实施例中,第三一维光栅标记组410包括两个第三一维光栅标记411、412,其中,第三一维光栅标记411用于对第一方向成像11″进行衍射,第三一维光栅标记412用于对第二方向成像12″进行衍射。
所述投影物镜波像差检测装置还包括成像探测单元500,用于对其上所成的干涉图像进行图像采集。所述第一方向成像11″和第二方向成像12″经过衍射单元后在所述成像探测单元500上分别形成干涉图像,使得第一方向和第二方向上的干涉图像可以同时采集。作为示例,所述成像探测单元500包括图像采集单元(图中未示出)和驱动单元(图中未示出)。所述图像采集单元用于对其上的干涉图像进行图像采集以及对采集面积进行选择。所述图像采集单元例如是一块CMOS采集芯片,其上表面涂覆一层荧光转换层,也就是 说,其面向所述第三基底420的表面上涂覆一层荧光转换层。优选的,所述图像采集单元在进行图像采集时,所述图像采集单元位于所述衍射单元400的正下方。所述图像采集单元与所述衍射单元400之间存在间隙,该间隙使得成像到图像采集单元的像是远场像。该间隙的距离大于或等于1mm,优选的为1mm~2mm。较佳方案中,所述图像采集单元的数量为1个,使得一个所述图像采集单元可以对第一方向的干涉图像和第二方向的干涉图像同时进行采集,与现有技术中采用两个成像探测器相比,其减小了两个成像探测器之间的暗电流、非线性、以及坏像素不一致性等因素对最终采集图形一致性的影响,从而提高了波像差的检测精度。所述驱动单元例如是一驱动板卡,其用于驱动所述图像采集单元进行图像采集。所述图像采集单元例如是位于所述驱动单元上。
图3为本实施例的成像探测器采集0°方向的干涉图。图4为本实施例的成像探测器采集90°方向的干涉图。如图3和4所示,所述第一方向(即,0°方向)的第一光束11在成像探测单元500上的干涉图像为第一方向的剪切干涉光斑,所述第二方向(即,90°方向)的第二光束12在成像探测单元500上的干涉图像为第二方向的剪切干涉光斑。其中,所述图像采集单元所采集的图像的衍射级次例如是-1,0,+1。在本实施例中其为同时成像于图像采集单元上,并同时被同一个图像采集单元采集,与现有的只能一次采集一个方向相比,缩短了检测时间,同时也提高了波像差的检测精度。
所述投影物镜波像差检测装置还包括一处理单元(图中未示出),所述处理单元与所述成像探测单元500通信连接,其用于处理图形采集单元传送来的数据,以计算出第一方向的波像差和第二方向的波像差。
继续参考图1,所述投影物镜波像差检测装置还包括工件台600,所述工件台600用于带动所述物面光栅标记单元100、分光准直单元、衍射单元和成 像探测单元500在第一方向和第二方向之间的某一预定方向上沿直线单向步进,使所述成像探测单元500同时采集所述第一光束11和第二光束12每次步进时的干涉图像的光强,以分别获得所述第一方向和第二方向的波像差。
本实施例的光源所提供的检测光束通过物面光栅标记单元得到第一方向上的第一光束和第二方向上的第二光束,所述第一光束和第二光束经过所述投影物镜单元之后进入所述分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别成像,所述衍射单元将其上的成像进行衍射处理后在所述成像探测单元上分别形成干涉图像,以同时得到第一方向的波像差和第二方向的波像差。
本实施例还公开了一种光刻机,包括投影物镜单元以及如上所述的投影物镜波像差检测装置。由于本发明的重点在于投影物镜波像差的检测,因而对光刻机的其他公知结构不做详细介绍,本领域技术人员应是知晓的。
本实施例还公开了一种投影物镜波像差检测方法,例如是一种光刻机投影物镜波像差检测方法,所述方法采用上述投影物镜波像差检测装置,包括以下步骤:
步骤S1:提供一检测光束,所述检测光束入射至一物面光栅标记单元;
步骤S2:所述物面光栅标记单元对所述检测光束进行分光,以得到第一方向上的第一光束和第二方向上的第二光束,所述第一方向和第二方向垂直;
步骤S3:所述第一光束和第二光束经过投影物镜单元之后进入分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别成像;
步骤S4:所述衍射单元将其上的成像进行衍射处理后在成像探测单元上 分别形成干涉图像;以及
步骤S5:工件台带动所述物面光栅标记单元、分光准直单元、衍射单元和成像探测单元在第一方向和第二方向之间的某一预定方向上沿直线单向步进,所述成像探测单元同时采集所述第一光束和第二光束每次步进时的干涉图像的光强,以分别获得所述第一方向和第二方向的波像差。
下面结合图1和图5对本实施例的一种投影物镜波像差检测方法进行详细介绍。
首先执行步骤S1,提供一检测光束,所述光源例如是深紫外激光源。所述检测光束入射至一物面光栅标记单元100。
接着执行步骤S2,所述物面光栅标记单元100对所述检测光束进行分光,以得到第一方向上的第一光束11和第二方向上的第二光束12,所述第一方向和第二方向垂直。
接着执行步骤S3,所述第一光束11和第二光束12经过投影物镜单元200之后进入分光准直单元,所述分光准直单元将所述第一光束11和第二光束12进行分光及准直处理后在所述衍射单元上分别成像。
接着执行步骤S4,所述衍射单元将其上的成像进行衍射处理后在所述成像探测单元500上分别形成干涉图像。
图5为本实施例的0°和90°光栅标记相移方向。如图5所示,同时请参阅图1,接着执行步骤S5,工件台600带动所述物面光栅标记单元100、分光准直单元、衍射单元和成像探测单元500在第一方向和第二方向之间的某一预定方向上沿直线单向步进,所述成像探测单元500同时采集所述第一光束11和第二光束12每次步进时的干涉图像的光强,以分别获得所述第一方向和第二方向的波像差。可知,工件台600在第一方向和第二方向之间的某一方向a步进时,采集的干涉图像的光强可以通过计算分解为第一方向和第 二方向的光强,使得第一方向和第二方向的光强同时被采集,从而缩短了图像采集的时间,提高了测试效率。
其中,所述第一方向例如为0°方向,所述第二方向例如为90°方向,所述工件台600步进的相移方向例如为在0°~90°之间的任意角度,优选的,所述工件台600步进的相移方向为45°。如图5所示,在所述工件台600步进时,所述物面光栅标记单元100的二维光栅标记120中的第一狭缝标记和第二狭缝标记跟随所述工件台600沿着步进方向a步进。
在本步骤中,获得所述第一方向和第二方向的波像差的具体步骤包括:
步骤S5a:通过所述成像探测单元500采集每次步进的干涉图像的光强。
步骤S5b:通过处理单元处理图形采集单元500传送来的数据,并计算出每次步进时第一方向和第二方向的剪切干涉光斑的瞳面干涉光强。
在本实施例中,所述0°方向和90°方向的剪切干涉光斑的瞳面干涉光强的计算公式如下:
Figure PCTCN2019127371-appb-000004
Figure PCTCN2019127371-appb-000005
其中,U 0(x,y,d)是坐标为(x、y)、步进距离为d时的第一方向瞳面干涉光强,U 90(x,y,d)是坐标为(x、y)、步进距离为d时的第二方向瞳面干涉光强,n是衍射级次,p是第三一维光栅标记的光栅周期,δ(x)是剪切干涉光斑光强中心的x向位置,δ(y)是剪切干涉光斑光强中心的y向位置,λ是光源所产生检测光束的波长,x是第一方向的坐标,y是第二方向的坐标。
由上可知,通过对第一光束11和第二光束12成像的干涉图像的光强的 同时采集,使得第一方向和第二方向上的波像差得以同时被检测,与现有技术相比,没有了第一方向的图像采集和第二方向的图像采集分开时的工件台600波动情况不一致的问题,提高了波像差的检测精度。
步骤S5c:根据所述第一方向和第二方向的剪切干涉光斑的瞳面干涉光强,分别计算出第一方向和第二方向的波像差。
综上所述,本发明的一种投影物镜波像差检测装置及方法、光刻机,所述投影物镜波像差检测装置,通过同时对第一方向上的第一光束和第二方向上的第二光束成像,以同时检测第一方向和第二方向的波像差,也就是说,检测光束经过物面光栅标记单元后得到的所述第一光束和第二光束经过投影物镜单元之后进入分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别成像,所述衍射单元对其上的成像进行衍射处理,并在所述成像探测单元上分别形成干涉图像,从而缩短了波像差的检测时间,并降低了第一方向波像差和第二方向波像差在分开检测时由于工件台波动的不一致性的影响,有利于提高波像差的检测精度。
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”的描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (19)

  1. 一种投影物镜波像差检测装置,用于检测投影物镜单元的波像差,其特征在于,包括:光源、物面光栅标记单元、分光准直单元、衍射单元、成像探测单元以及工件台;
    所述光源用于提供检测光束,所述检测光束入射至所述物面光栅标记单元;
    所述物面光栅标记单元用于将所述检测光束分为第一方向上的第一光束和第二方向上的第二光束,所述第一光束和第二光束入射至所述投影物镜单元后进入所述分光准直单元;
    所述分光准直单元用于将经过所述投影物镜单元的所述第一光束和第二光束进行分光及准直处理后在所述衍射单元上分别形成第一方向成像和第二方向成像;
    所述衍射单元用于将所述第一方向成像和所述第二方向成像进行衍射处理后在所述成像探测单元上分别形成第一方向的干涉图像和第二方向的干涉图像;
    所述工件台用于带动所述物面光栅标记单元、分光准直单元、衍射单元和成像探测单元在所述第一方向和所述第二方向之间的某一预定方向上沿直线单向步进,使所述成像探测单元同时采集所述第一光束和第二光束每次步进时形成的干涉图像的光强,以分别获得所述第一方向和所述第二方向的波像差;
    其中,所述第一方向和所述第二方向垂直。
  2. 如权利要求1所述的投影物镜波像差检测装置,其特征在于,所述物面光栅标记单元包括第一基底和二维光栅标记,所述二维光栅标记位于所述 第一基板朝向所述投影物镜单元的一面上,所述二维光栅标记用于得到所述第一光束和所述第二光束。
  3. 如权利要求2所述的投影物镜波像差检测装置,其特征在于,所述二维光栅标记包括:
    沿所述第一方向排列的第一狭缝标记,所述第一狭缝标记用于得到第一光束;以及
    沿所述第二方向排列的第二狭缝标记,所述第二狭缝标记用于得到第二光束。
  4. 如权利要求1-3中任一项所述的投影物镜波像差检测装置,其特征在于,所述分光准直单元包括:
    第二基底;
    第一一维光栅标记组,用于对入射到分光准直单元上的第一光束和第二光束进行分光处理,以分成第一方向光束和第二方向光束,所述第一一维光栅标记组位于所述第二基底朝向所述投影物镜单元的一面上;
    第二一维光栅标记组,用于将所述第一方向光束和第二方向光束进行准直处理,以得到所述第一方向成像和所述第二方向成像,所述第二一维光栅标记组位于所述第二基底背向所述投影物镜单元的一面上。
  5. 如权利要求4所述的投影物镜波像差检测装置,其特征在于,所述第一一维光栅标记组包括多个周期相同的第一一维光栅标记,所述第二一维光栅标记组包括多个周期相同的第二一维光栅标记。
  6. 如权利要求5所述的投影物镜波像差检测装置,其特征在于,所述第一一维光栅标记的衍射角度为30°~60°,所述第一一维光栅标记的光栅周期为100nm~300nm。
  7. 如权利要求6所述的投影物镜波像差检测装置,其特征在于,所述第 一一维光栅标记的光栅周期和所述第二一维光栅标记的光栅周期相同。
  8. 如权利要求2所述的投影物镜波像差检测装置,其特征在于,所述衍射单元包括:
    第三基底;以及
    第三一维光栅标记组,用于将所述第一方向成像和所述第二方向成像进行衍射处理,所述第三一维光栅标记组位于所述第三基底朝向所述分光准直单元的一面上。
  9. 如权利要求8所述的投影物镜波像差检测装置,其特征在于,所述第三一维光栅标记组包括至少一对周期相同的第三一维光栅标记,所述第三一维光栅标记的光栅周期与所述二维光栅标记的光栅周期相同。
  10. 如权利要求9所述的投影物镜波像差检测装置,其特征在于,每对所述第三一维光栅标记包括两个相互垂直的第三一维光栅标记,所述两个相互垂直的第三一维光栅标记分别用于对所述第一方向成像和所述第二方向成像进行衍射处理。
  11. 如权利要求1-3中任一项所述的投影物镜波像差检测装置,其特征在于,所述成像探测单元包括:
    图像采集单元,用于对所述第一方向的干涉图像和所述第二方向的干涉图像进行图像采集,以及对采集面积进行选择;以及
    驱动单元,用于驱动所述图像采集单元进行图像采集。
  12. 如权利要求11所述的投影物镜波像差检测装置,其特征在于,所述图像采集单元的数量为1个。
  13. 如权利要求11所述的投影物镜波像差检测装置,其特征在于,还包括一处理单元,所述处理单元与所述成像探测单元通信连接,用于处理所述图像采集单元传送的数据,以得到所述第一方向的波像差和所述第二方向的 波像差。
  14. 一种光刻机,其特征在于,包括投影物镜单元以及如权利要求1-13中任一项所述的投影物镜波像差检测装置。
  15. 一种投影物镜波像差检测方法,采用如权利要求1-13中任一项所述的投影物镜波像差检测装置,其特征在于,包括以下步骤:
    光源提供一检测光束,所述检测光束入射至物面光栅标记单元;
    所述物面光栅标记单元对所述检测光束进行分光,以得到第一方向上的第一光束和第二方向上的第二光束,所述第一方向和所述第二方向垂直;
    所述第一光束和所述第二光束经过投影物镜单元之后进入分光准直单元,所述分光准直单元将所述第一光束和第二光束进行分光及准直处理后在衍射单元上分别形成第一方向成像和第二方向成像;
    所述衍射单元将所述第一方向成像和所述第二方向成像进行衍射处理后在成像探测单元上分别形成第一方向的干涉图像和第二方向的干涉图像;以及
    工件台带动所述物面光栅标记单元、分光准直单元、衍射单元和成像探测单元在所述第一方向和所述第二方向之间的某一预定方向上沿直线单向步进,所述成像探测单元同时采集所述第一光束和第二光束每次步进时形成的干涉图像的光强,以分别获得所述第一方向和所述第二方向的波像差。
  16. 如权利要求15所述的投影物镜波像差检测方法,其特征在于,获得所述第一方向和所述第二方向的波像差的步骤包括:
    通过图像采集单元采集每次步进的所述第一方向的干涉图像和所述第二方向的干涉图像的光强;
    通过处理单元处理所述图像采集单元传送来的数据,并计算出每次步进时所述第一方向和所述第二方向的剪切干涉光斑的瞳面干涉光强;
    根据所述第一方向和第二方向的剪切干涉光斑的瞳面干涉光强,分别计算出所述第一方向和所述第二方向的波像差。
  17. 如权利要求16所述的投影物镜波像差检测方法,其特征在于,所述第一方向为0°方向,所述第二方向为90°方向,所述工件台步进的相移方向为在0°~90°之间的任意角度方向。
  18. 如权利要求16或17所述的投影物镜波像差检测方法,其特征在于,所述第一方向和所述第二方向的剪切干涉光斑的瞳面干涉光强的计算公式如下:
    Figure PCTCN2019127371-appb-100001
    Figure PCTCN2019127371-appb-100002
    其中,U 0(x,y,d)是坐标为(x、y)、步进距离为d时的第一方向瞳面干涉光强,U 90(x,y,d)是坐标为(x、y)、步进距离为d时的第二方向瞳面干涉光强,n是衍射级次,p是第三一维光栅标记的光栅周期,δ(x)是剪切干涉光斑光强中心的x向位置,δ(y)是剪切干涉光斑光强中心的y向位置,λ是光源所产生检测光束的波长,x是第一方向的坐标,y是第二方向的坐标。
  19. 如权利要求18所述的投影物镜波像差检测方法,其特征在于,所述工件台步进的相移方向为45°方向。
PCT/CN2019/127371 2018-12-21 2019-12-23 投影物镜波像差检测装置及方法、光刻机 WO2020125793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811573750.2 2018-12-21
CN201811573750.2A CN111352303B (zh) 2018-12-21 2018-12-21 投影物镜波像差检测装置及方法、光刻机

Publications (1)

Publication Number Publication Date
WO2020125793A1 true WO2020125793A1 (zh) 2020-06-25

Family

ID=71100218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127371 WO2020125793A1 (zh) 2018-12-21 2019-12-23 投影物镜波像差检测装置及方法、光刻机

Country Status (3)

Country Link
CN (1) CN111352303B (zh)
TW (1) TWI731523B (zh)
WO (1) WO2020125793A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100144A1 (en) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus having the same, and device manufacturing method
US20100177323A1 (en) * 2009-01-09 2010-07-15 Canon Kabushiki Kaisha Wavefront-aberration-measuring device and exposure apparatus
CN102073217A (zh) * 2009-11-20 2011-05-25 上海微电子装备有限公司 一种波像差实时测量装置和方法
CN102608870A (zh) * 2011-01-21 2012-07-25 上海微电子装备有限公司 波像差测量装置及其测量方法
CN102681365A (zh) * 2012-05-18 2012-09-19 中国科学院光电技术研究所 一种投影物镜波像差检测装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660668B1 (ko) * 2006-09-01 2016-09-27 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
CN102081308B (zh) * 2009-11-27 2014-02-19 上海微电子装备有限公司 投影物镜波像差测量装置和方法
JP2013004547A (ja) * 2011-06-11 2013-01-07 Nikon Corp 波面収差計測装置およびその校正方法、露光装置、露光方法、並びにデバイス製造方法
NL2008957A (en) * 2011-07-08 2013-01-09 Asml Netherlands Bv Methods and systems for pattern design with tailored response to wavefront aberration.
US9046791B2 (en) * 2011-11-30 2015-06-02 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences Apparatuses and methods for detecting wave front abberation of projection objective system in photolithography machine
CN108139682B (zh) * 2015-10-02 2020-12-25 Asml荷兰有限公司 量测方法和设备、计算机程序及光刻系统
CN106647176B (zh) * 2015-10-30 2019-03-12 上海微电子装备(集团)股份有限公司 波像差测量装置与方法
DE102016212464A1 (de) * 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Messvorrichtung zum Bestimmen eines Wellenfrontfehlers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100144A1 (en) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus having the same, and device manufacturing method
US20100177323A1 (en) * 2009-01-09 2010-07-15 Canon Kabushiki Kaisha Wavefront-aberration-measuring device and exposure apparatus
CN102073217A (zh) * 2009-11-20 2011-05-25 上海微电子装备有限公司 一种波像差实时测量装置和方法
CN102608870A (zh) * 2011-01-21 2012-07-25 上海微电子装备有限公司 波像差测量装置及其测量方法
CN102681365A (zh) * 2012-05-18 2012-09-19 中国科学院光电技术研究所 一种投影物镜波像差检测装置及方法

Also Published As

Publication number Publication date
CN111352303B (zh) 2021-06-18
TWI731523B (zh) 2021-06-21
TW202024706A (zh) 2020-07-01
CN111352303A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
TWI635272B (zh) 電腦程式產品、用以量測目標結構之性質的方法及檢測裝置及製造器件之方法
JP4222926B2 (ja) デバイス検査
KR101966572B1 (ko) 오버레이 에러를 검출하는 방법 및 디바이스
TWI515518B (zh) 量測微結構不對稱性的方法及裝置、位置量測方法、位置量測裝置、微影裝置及半導體元件製造方法
CN108292038B (zh) 物镜系统
JP6367209B2 (ja) リソグラフィシステムにおいて基板の位置を測定すること
US6842237B2 (en) Phase shifted test pattern for monitoring focus and aberrations in optical projection systems
TWI605311B (zh) 量測方法以及曝光方法與設備
JP2018526674A (ja) リソグラフィプロセスのパラメータを測定するための方法及び装置、並びにこの方法で使用される基板及びパターニングデバイス
TWI635373B (zh) Apparatus and method for measuring stacking error
KR101632463B1 (ko) 위치 검출 장치, 임프린트 장치 및 디바이스 제조 방법
WO2005116577A1 (ja) 結像光学系の調整方法、結像装置、位置ずれ検出装置、マ-ク識別装置及びエッジ位置検出装置
US20140139815A1 (en) In-situ metrology
US10866526B2 (en) Metrology method and device
JP2014505900A (ja) マスク上の構造を特徴付ける方法及び方法を実施するためのデバイス
CN101799640A (zh) 一种确定光刻机最佳焦面位置的装置及方法
TW202117309A (zh) 量測方法
US9268124B2 (en) Microscope and method for characterizing structures on an object
WO2020125793A1 (zh) 投影物镜波像差检测装置及方法、光刻机
CN106610571B (zh) 一种用于光刻装置的对准方法及系统
JP4677183B2 (ja) 位置検出装置、および露光装置
JP2003309066A (ja) 投影光学系の収差測定方法
JPS61208220A (ja) 露光装置及び位置合わせ方法
JP2009053135A (ja) 回折干渉計、回折干渉計測方法、露光装置及び電子デバイスの製造方法
TW202132926A (zh) 對準方法與相關對準及微影裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898354

Country of ref document: EP

Kind code of ref document: A1