WO2020125535A1 - 数据传输方法和通信装置 - Google Patents

数据传输方法和通信装置 Download PDF

Info

Publication number
WO2020125535A1
WO2020125535A1 PCT/CN2019/124795 CN2019124795W WO2020125535A1 WO 2020125535 A1 WO2020125535 A1 WO 2020125535A1 CN 2019124795 W CN2019124795 W CN 2019124795W WO 2020125535 A1 WO2020125535 A1 WO 2020125535A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transport block
tbs
rvs
configuration information
Prior art date
Application number
PCT/CN2019/124795
Other languages
English (en)
French (fr)
Inventor
余雅威
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19900950.7A priority Critical patent/EP3890226A4/en
Publication of WO2020125535A1 publication Critical patent/WO2020125535A1/zh
Priority to US17/352,749 priority patent/US11895534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a data transmission method and a communication device.
  • the new radio (NR) system uses the following methods to ensure the transmission of TB on the upstream data channel and the downstream data channel: 1.
  • Adoptive adaptive modulation (AMC) is used to upload data The TB to be transmitted on the channel and the downlink data channel is modulated and coded to select an appropriate modulation method and coding method to adapt the wireless channel quality and ensure the transmission quality of the link.
  • a low-density parity check code (LDPC) is used to encode and decode the TB to be transmitted on the upstream data channel and the downstream data channel to enhance the reliability of data transmission by adding check bits.
  • HARQ hybrid automatic repeat-request
  • a smaller equivalent transmission code rate will be used to transmit the redundancy version of TB on the uplink data channel or the downlink data channel (redundancy) version, RV).
  • RV downlink data channel
  • the RV starting position of the mother code after the four types of LDPC encoding defined by the current NR system makes the spacing between the starting positions of different RVs larger.
  • the length of the transmitted RV is required to be greater than or equal to the distance between the starting points of two adjacent RVs, that is, the distance between the starting points of two adjacent RVs is the minimum granularity of the RV length, resulting in each transmission
  • the particle size of RV is large. Therefore, when HARQ retransmits multiple times until the current transmitted TB is correctly decoded after merging, the total number of transmitted bits may be significantly higher than the minimum number of bits required for correct decoding of the current channel, resulting in lower spectrum efficiency. In other words, the above method of transmitting TB will result in lower spectrum efficiency.
  • the embodiments of the present application provide a data transmission method and a communication device, which are used to solve the technical problem that the existing TB transmission method causes lower spectrum efficiency.
  • an embodiment of the present application provides a data transmission method in which a network device sends first information to a terminal device, where the first information is used to indicate transmission block size TBS configuration information and/or redundancy version RV configuration Information, the TBS configuration information is used to configure the first transport block size TBS, and the RV configuration information is used to configure the first RV information; the network device receives the transport block from the terminal device, or the network device sends The terminal device sends a transport block, wherein the TBS of the transport block is the first TBS, and/or the RV information of the transport block is the first RV information.
  • the network device may indicate the TBS configuration information and/or RV configuration information to the terminal device through the first information, so that the TBS configuration information and/or RV configuration information may be used to extend the TBS and/or refine the RV, so that Network equipment and terminal equipment may use extended TBS and/or refined RV for TB transmission, thereby improving the spectral efficiency when transmitting TB.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs; wherein, M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the encoding of the transport block and the number of the starting position of the RV among M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the network device can flexibly indicate the granularity of the RV used when transmitting TB with the terminal device based on transmission requirements, and then can use refined RV to improve the spectral efficiency when transmitting TB.
  • the method further includes: the network device determining the order of the M RVs.
  • the first RV information further includes: the order of the M RVs.
  • the method further includes the network device sending second information to the terminal device, where the second information is used to indicate the order of the M RVs.
  • the network device receiving the transmission block from the terminal device, or the network device sending the transmission block to the terminal device includes: the network device receiving the transmission block from the terminal device Or the first RV of the transport block, where the network device sends the first RV of the transport block to the terminal device, where the first RV is the RV of the M RVs.
  • the method further includes: the network device receiving the second RV of the transmission block from the terminal device, or the network device sending the second RV of the transmission block to the terminal device,
  • the second RV is an RV of the M RVs, the first RV and the second RV are different, and the order of sending the first RV and the second RV satisfies the order indicated by the order Order relationship.
  • the network device can flexibly indicate the transmission sequence of the RV used when transmitting the TB with the terminal device.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the overlap information of RVs in adjacent transmission orders can be minimized, that is, the number of newly added bits of the current RV transmission compared to the previous RV transmission can be maximized, so that the device receiving the TB can Soft combining all received RVs to obtain better decoding gain.
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the network device sends third information to the terminal device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the network device can flexibly extend the TBS of the TB transmitted with the terminal device, so that the network device can use the extended TBS for TB transmission, and thus can improve the spectral efficiency when transmitting the TB.
  • an embodiment of the present application provides a data transmission method in which a terminal device receives first information from a network device, where the first information is used to indicate transmission block size TBS configuration information and/or redundancy version RV Configuration information, the TBS configuration information is used to configure the first transport block size TBS, and the RV configuration information is used to configure the first RV information; in this way, the terminal device can be based on the TBS configuration information and/or the RV Configuration information, sending a transmission block to the network device, or the terminal device receiving a transmission block from the network device according to the TBS configuration information and/or the RV configuration information, wherein the TBS of the transmission block Is the first TBS, and/or RV information of the transport block is the first RV information.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs; wherein, M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the encoding of the transport block and the number of the starting position of the RV among M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the method further includes: the terminal device determining the order of the M RVs.
  • the terminal device receives second information from the network device, where the second information is used to indicate the order of the M RVs.
  • the first RV information further includes: the order of the M RVs.
  • the terminal device sends a transmission block to the network device according to the TBS configuration information and/or the RV configuration information, or the terminal device according to the TBS configuration information and/or The RV configuration information, receiving the transmission block from the network device, includes: the terminal device sending the first RV of the transmission block to the network device according to the TBS configuration information and/or the RV configuration information, Alternatively, the terminal device receives the first RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, where the first RV is the RV of the M RVs .
  • the method further includes: the terminal device sending the second RV of the transport block to the network device according to the TBS configuration information and/or the RV configuration information, or the terminal device Receiving a second RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, the second RV is the RV of the M RVs, and the first RV It is different from the second RV, and the order of sending the first RV and the second RV satisfies the order relationship indicated by the order.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the terminal device receives third information from the network device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • an embodiment of the present application provides a communication device.
  • the communication device involved in this embodiment may be the aforementioned network device or a chip applied to the network device.
  • the communication device may be used to perform the actions of the network device in the above method embodiments.
  • the communication device may include a sending module and a receiving module.
  • the communication device further includes: a processing module. among them,
  • the sending module is configured to send first information to the terminal device, the first information is used to indicate a transmission block size TBS configuration information and/or redundancy version RV configuration information, and the TBS configuration information is used to configure the first transmission A block size TBS, and the RV configuration information is used to configure first RV information;
  • the receiving module is used to receive a transmission block from the terminal device, or the sending module is also used to send a transmission block to the terminal device; wherein, the TBS of the transmission block is the first TBS, And/or RV information of the transport block is the first RV information.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs, where the M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the encoding of the transport block and the number of the starting position of the RV among M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the processing module is configured to determine the order of the M RVs.
  • the sending module is further configured to send second information to the terminal device, where the second information is used to indicate the order of the M RVs.
  • the first RV information further includes: the order of the M RVs.
  • the receiving module is specifically used to receive the first RV of the transmission block from the terminal device, or the sending module is specifically used to send the transmission block to the terminal device.
  • the first RV is an RV among the M RVs.
  • the receiving module is further used to receive the second RV of the transmission block from the terminal device, or the sending module is further used to send the second RV of the transmission block to the terminal device RV, the second RV is the RV of the M RVs, the first RV and the second RV are different, and the order of sending the first RV and the second RV satisfies the order The indicated order relationship.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the sending module is further configured to send third information to the terminal device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • an embodiment of the present application provides a communication device.
  • the communication device involved in this embodiment may be the aforementioned terminal device or a chip applied to the terminal device.
  • the communication device may be used to perform the actions of the terminal device in the above method embodiments.
  • the communication device may include a receiving module and a sending module.
  • the communication device further includes: a processing module. among them,
  • the receiving module is configured to receive first information from a network device, the first information is used to indicate transport block size TBS configuration information and/or redundancy version RV configuration information, and the TBS configuration information is used to configure the first Transport block size TBS, and the RV configuration information is used to configure first RV information;
  • the sending module is configured to send a transmission block to the network device according to the TBS configuration information and/or the RV configuration information; or, the receiving module is further configured to use the TBS configuration information and/or The RV configuration information receives a transport block from the network device; wherein the TBS of the transport block is the first TBS, and/or the RV information of the transport block is the first RV information.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs, where the M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the encoding of the transport block and the number of the starting position of the RV among M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV among the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the processing module is configured to determine the order of the M RVs.
  • the receiving module is further configured to receive second information from the network device, and the second information is used to indicate the order of the M RVs.
  • the first RV information further includes: the order of the M RVs.
  • the sending module is specifically configured to send the first RV of the transport block to the network device according to the TBS configuration information and/or the RV configuration information, or the receiving module , Specifically used to receive the first RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, where the first RV is the RV of the M RVs.
  • the sending module is further configured to send the second RV of the transport block to the network device according to the TBS configuration information and/or the RV configuration information, or the receiving module, further Configured to receive a second RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, the second RV is an RV of the M RVs, and the first An RV is different from the second RV, and the order of sending the first RV and the second RV satisfies the order relationship indicated by the order.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the receiving module is further configured to receive third information from the network device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • an embodiment of the present application provides a communication device, including: a processor and a memory;
  • the memory is used to store computer executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the communication device to execute the method provided in the first aspect or each possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes: a processor, a memory, a receiver, and a transmitter; both the receiver and the transmitter are coupled to the processor, and the The processor controls the receiving action of the receiver, and the processor controls the sending action of the transmitter;
  • the memory is used to store computer executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the communication device to perform the method provided in the second aspect or each possible implementation manner of the second aspect.
  • an embodiment of the present application provides a communication device, including a unit, module, or circuit for executing the method provided in the above first aspect or each possible implementation manner of the first aspect.
  • the communication device may be a network device or a module applied to the network device, for example, may be a chip applied to the network device.
  • an embodiment of the present application provides a communication device, including a unit, module, or circuit for executing the method provided in the second aspect or each possible implementation manner of the second aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, may be a chip applied to the terminal device.
  • an embodiment of the present application provides a chip that stores a computer program on the chip, and when the computer program is executed by the chip, implements the first aspect or each possible implementation manner of the first aspect. The method provided.
  • an embodiment of the present application provides a chip that stores a computer program, and when the computer program is executed by the chip, the second aspect or each possible implementation manner of the second aspect is implemented. The method provided.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the above-mentioned first aspect or methods in various possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the method in the second aspect or various possible implementation manners of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored therein, which when executed on a computer, causes the computer to execute the first aspect or the first aspect described above Methods in various possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored therein, which when executed on a computer, causes the computer to perform the second aspect or the second aspect Methods in various possible implementations.
  • the network device may indicate the TBS configuration information and/or RV configuration information to the terminal device through the first information, so that the TBS configuration information and/or RV configuration information may be used to extend the TBS And/or refined RV, so that network devices and terminal devices can use extended TBS and/or refined RV for TB transmission, thereby improving the spectral efficiency when transmitting TB.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a spectrum resource provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of yet another communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system may include a core network device 110, a wireless access network device 120, and at least one terminal device (such as terminal device 130 and terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device 120 in a wireless manner, and the wireless access network device 120 is connected to the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the wireless access network device 120 may be independent different physical devices, or the functions of the core network device 110 and the logical function of the wireless access network device 120 may be integrated on the same physical device, or It is a physical device that integrates part of the functions of the core network device 110 and part of the functions of the wireless access network device 120.
  • the terminal device may be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the mobile communication system may further include other network devices, for example, wireless relay devices and wireless backhaul devices, etc., which are not shown in FIG. 1.
  • the embodiments of the present application do not limit the number of core network devices 110, radio access network devices 120, and terminal devices included in the mobile communication system.
  • the wireless access network device 120 is an access device in which the terminal device accesses the mobile communication system in a wireless manner, and may be a base station NodeB, an evolved base station eNodeB, a 5G mobile communication system, or a new generation of radio (NR) communication
  • the network side in the system, the network side in the future mobile communication system, the access node in the WiFi system, etc., the embodiments of the present application do not limit the specific technology and the specific device form adopted by the wireless access network device 120.
  • the wireless access network device 120 is simply referred to as a network device. If there is no special description, in the embodiment of the present application, the network device refers to the wireless access network device 120.
  • the terms 5G and NR may be equivalent.
  • a terminal device may also be called a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote surgery (remote medical), wireless terminals in smart grid (smart grid), wireless in transportation safety (transportation safety) Terminals, wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • wireless terminals in self-driving self-driving
  • wireless terminals in remote surgery remote surgery
  • wireless terminals in smart grid smart grid
  • wireless in transportation safety (transportation safety) Terminals wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smar
  • the wireless access network device 120 and the terminal device can be deployed on land, including indoor or outdoor, handheld, or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airplanes, balloons, and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device 120 and the terminal device.
  • the embodiments of the present application may be applicable to downlink data transmission, uplink data transmission, and device-to-device (D2D) data transmission.
  • the sending device is a radio access network device 120
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device 120.
  • the sending device is a terminal device
  • the corresponding receiving device is also a terminal device.
  • the embodiments of the present application do not limit the data transmission direction.
  • Communication between the radio access network device 120 and the terminal device and between the terminal device and the terminal device can be through licensed spectrum (licensed spectrum) or unlicensed spectrum (unlicensed spectrum). Unlicensed spectrum for communication.
  • the wireless access network device 120 and the terminal device can communicate through the spectrum below 6 gigahertz (GHz), or can communicate through the spectrum above 6 GHz, and can also use the spectrum below 6 GHz and the spectrum above 6 GHz simultaneously. Communicate.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device 120 and the terminal device.
  • the uplink data channel is used to carry uplink data.
  • uplink data For example, physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the downlink data channel is used to carry downlink data.
  • a physical downlink shared channel PDSCH.
  • the uplink data channel and the downlink data channel transmit data in units of transmit blocks (TB).
  • the size of TB can be expressed in terms of transmit block size (TBS), in bits.
  • the NR system uses the following methods to ensure the transmission of TB on the uplink data channel and the downlink data channel:
  • AMC adaptive modulation and coding
  • a low-density parity check code (LDPC) is used to encode and decode the TB to be transmitted on the upstream data channel and the downstream data channel to enhance the reliability of data transmission by adding check bits.
  • LDPC low-density parity check code
  • the hybrid automatic repeat-request (HARQ) technology is used to automatically retransmit and merge the TB with transmission errors to ensure correct data transmission.
  • the sending device is a terminal device
  • the receiving device may be a network device
  • the sending device is a network device
  • the receiving device may be a terminal device
  • Step 1 The sending device determines the initial transmission block size (transmit block size (TBS)) of the TB to be transmitted according to the number of scheduled resource units, transmission code rate, modulation mode, and space division multiplexing layers.
  • TBS transmit block size
  • N info N ⁇ R ⁇ Q m ⁇ v (1)
  • N info represents the initial TBS
  • R represents the channel transmission code rate, 0 ⁇ R ⁇ 1;
  • Q m represents the number of bits that can be carried on one modulation symbol when this modulation method is used to modulate TB, for example: when the modulation method is Binary Phase Shift Keying (BPSK), Q m takes the value 1; When the modulation mode is Quadrature Phase Shift Keying (QPSK), Q m can be set to 2, when the modulation mode is 16 Quadrature Amplitude Modulation (QAM), Q m The value can be 4 etc.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • Q m When the modulation mode is Quadrature Phase Shift Keying (QPSK), Q m can be set to 2, when the modulation mode is 16 Quadrature Amplitude Modulation (QAM), Q m
  • Q m The value can be 4 etc.
  • v represents the number of layers of space division multiplexing, for example: when the value of v is 1, it represents single-layer transmission, and when the value of v is 2, it represents the two-layer space division multiplexing transmission;
  • N represents the number of resource units occupied by the transmission TB.
  • the resource unit mentioned here may be the smallest resource granularity unit scheduled in the NR system, for example, Resource Element (RE).
  • RE Resource Element
  • N can be calculated by the following formula (2):
  • N N RB ⁇ (N SC ⁇ N sym -N DM-RS -N oh ) (2)
  • N RB represents the number of scheduled resource blocks (Resource Block, RB)
  • N SC represents the number of subcarriers of each RB
  • N sym represents the number of symbols in a slot
  • N DM-RS represents the slot Number of REs occupied by internal dedicated demodulation reference signal (DMRS)
  • Noh represents the overhead of high-level parameter configuration.
  • Step 2 The sending device determines the TBS of the TB to be transmitted according to the determined initial TBS (ie, N info ).
  • the sending device can change the distance in Table 1 below The most recent and greater than or equal to TBS as the TBS of the TB to be transmitted.
  • Table 1 shows the quantized value range of TBS when N info ⁇ 3824:
  • index TBS index TBS index TBS index TBS 1 twenty four 25 240 49 808 73 2024 2 32 26 256 50 848 74 2088 3 40 27 272 51 888 75 2152 4 48 28 288 52 928 76 2216 5 56 29 304 53 984 77 2280 6 64 30 320 54 1032 78 2408 7 72 31 336 55 1064 79 2472 8 80 32 352 56 1128 80 2536 9 88 33 368 57 1160 81 2600 10 96 34 384 58 1192 82 2664 11 104 35 408 59 1224 83 2728 12 112 36 432 60 1256 84 2792 13 120 37 456 61 1288 85 2856 14 128 38 480 62 1320 86 2976 15 136 39 504 63 1352 87 3104 16 144 40 528 64 1416 88 3240 17 152 41 552 65 1480 89 3368 18 160 42 576 66 1544 90 3496
  • the sending device can use the following formula (5) and intermediate TBS (ie ), calculate the TBS of the TB to be transmitted:
  • TBS indicating the TB to be transmitted.
  • the sending device can use the following formula (7) and intermediate TBS (ie ), calculate the TBS of the TB to be transmitted:
  • Step 3 In order to support different transmission code rates and TBS, two different LDPC codes of base graph (BG) type are used in the NR system, namely BG1 and BG2. Therefore, after determining the TBS of the TB to be transmitted, the sending device may determine whether it is necessary to divide the TB into multiples according to the transmission code rate and the TBS determined in step 2 through Table 2 which characterizes the correspondence between the TBS and the BG type A code block (code, block, CB), and performing LDPC coding of BG1 or BG2 on each CB obtained after division to obtain a mother code after coding of each CB.
  • BG base graph
  • the TBS when it is determined to use BG2 LDPC coding according to the transmission code rate and the TBS determined in step 2, if the TBS is less than or equal to 3824 bits, there is no need to divide the TB. If the TBS is greater than 3824, the TB needs to be divided into multiple CBs.
  • the TBS when it is determined to use the LDPC encoding of BG1 according to the transmission code rate and the TBS determined in step 1, if the TBS is less than or equal to 8424 bits, there is no need to divide the TB. If the TBS is greater than 8424, the TB needs to be divided into multiple CBs. That is to say, the CB size limits corresponding to different BGs are different, which is related to the transmission code rate and the TBS value range.
  • a redundant version (redundancy version, RV) of the encoded mother code refers to a certain length of bits in the encoded mother code, including a part of system information bits and a part of check information bits.
  • the current NR system defines the starting position of the RV of the mother code after 4 LDPC encodings and the transmission order of the 4 RVs.
  • the starting position of the RV can be shown in Table 3 below, and the transmission order of the RV is ⁇ 0, 2, 3, 1 ⁇ , the transmission sequence is used to characterize the transmission sequence of each RV in the HARQ retransmission process. That is, RV0 is transmitted for the first time, RV2 is transmitted for the first retransmission, RV3 is transmitted for the second retransmission, and RV4 is transmitted for the third retransmission.
  • N cb represents the length of the encoded mother code written into the circular buffer
  • Z c is used to determine the size of the LDPC check matrix dimension.
  • the sending device may perform rate matching (for example, bit selection and interleaving) on the mother codes encoded by each CB based on the aforementioned RV transmission sequence and the starting position of each RV Code) to get the RV currently to be transmitted by each CB.
  • the bit selection refers to selecting a certain length of bits (including part of system information and check information) from the encoded mother code as the current RV of the CB according to the starting position of the RV to be transmitted currently.
  • the certain length mentioned here may be referred to as the RV length, and the RV length is greater than or equal to the interval between adjacent RV starting point positions, that is, the distance between two adjacent RV starting point positions is the minimum granularity of the RV length.
  • Interleaved coding refers to the distribution of transmitted information bits in the time or frequency domain, or in the time and frequency domains at the same time, so that the burst errors of the channel can be spread in time, so that the decoder can treat these burst errors as Random error handling.
  • the sending device may select RV length bits as the RV2 from the starting position of RV2, and interleave the RV2.
  • steps one to three are the steps that need to be performed when the TB is transmitted for the first time, and when the TB is subsequently retransmitted, it is not necessary to perform steps one to three again.
  • Step 5 The sending device merges the RVs currently to be transmitted by each CB to obtain the RVs currently to be transmitted by the TB.
  • Step 6 The sending device performs scrambling and modulation on the RV currently to be transmitted by the TB, and then sends it to the receiving device.
  • the receiving device After receiving the RV of the TB, the receiving device will perform corresponding demodulation, descrambling, and decoding on the RV of the TB. If the decoding is incorrect, the receiving device may send a negative acknowledgement (NACK) to the sending device to instruct the sending device to HARQ retransmit the TB.
  • NACK negative acknowledgement
  • the sending device can perform HARQ retransmission on the TB, that is, perform steps 4 to 6 again to send the RV-based transmission sequence to the receiving device based on the RV transmission sequence.
  • the receiving device merges all the received RVs until the receiving device decodes the TB correctly. It can be understood that not all RVs shown in the transmission sequence are transmitted, and the specific can be determined according to the decoding situation of the TB by the receiving device.
  • the sending device sends RV0 of the TB for the first time, including RV0 of each CB of the TB, and RV2 of the TB for the second time, including the TB.
  • the RV2 of each CB is sent for the third time to the RV3 of the TB, including the RV3 of each CB of the TB.
  • RV4 of TB is not transmitted.
  • the equivalent transmission code rate of the TB can be shown as the following formula (8):
  • the above-mentioned system information bits refer to the system information bits included in the RV of the transmitted TB
  • the above-mentioned check information bits refer to the check information bits included in the RV of the transmitted TB.
  • a smaller equivalent transmission code rate will be used to transmit TB on the uplink data channel or the downlink data channel.
  • the smaller the equivalent transmission code rate the fewer system information bits are transmitted and the lower the spectrum efficiency.
  • the receiving device when the total number of bits after transmission combining exceeds the number of bits required for correct decoding of the channel, it is possible for the receiving device to correctly decode the TB.
  • the starting positions of the RVs of the parent codes after the four types of LDPC encoding defined by the current NR system make the spacing between the starting positions of different RVs larger, resulting in a larger granularity of the RV transmitted each time.
  • the total number of transmitted bits may be higher than the minimum number of bits required for correct decoding of the current channel, resulting in lower spectrum efficiency. In other words, the above method of transmitting TB will result in lower spectrum efficiency.
  • the embodiments of the present application provide a data transmission method, which can improve the above problem of low spectrum efficiency by extending TBS and/or refining RV. It can be understood that the methods of the embodiments of the present application include but are not limited to the above-mentioned NR system, and can also be applied to any mobile communication system that has the above-mentioned problems, which will not be repeated here.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present application. As shown in FIG. 2, the method may include:
  • the network device determines TBS configuration information and/or RV configuration information.
  • the TBS configuration information is used to configure the first TBS
  • the RV configuration information is used to configure the first RV information.
  • this step may be replaced by the network device determining the first TBS and/or the first RV information.
  • This step S100 is optional.
  • the network device sends first information to the terminal device.
  • the terminal device receives the first information.
  • the first information is used to indicate TBS configuration information and/or RV configuration information.
  • the terminal device determines the TBS configuration information and/or RV configuration information, or the terminal device determines the first TBS and/or the first RV information. This step is optional. Specifically, the terminal device determines the TBS configuration information and/or RV configuration information according to the first information, or the terminal device determines the first TBS and/or the location based on the first information The first RV information is described.
  • the first information may be carried in first signaling, and the first signaling may be higher layer signaling or physical layer signaling.
  • the first signaling is used to indicate TBS configuration information and/or RV configuration information.
  • the high-level signaling mentioned here may be, for example, Radio Resource Control (RRC) signaling or MAC signaling.
  • RRC Radio Resource Control
  • the first signaling is physical layer signaling
  • the first signaling may be a physical downlink control channel (PDCCH) carrying downlink control information (downlink control information, DCI).
  • the DCI includes one or more An information field for indicating TBS configuration information and/or RV configuration information.
  • the network device and the terminal device transmit TB. Specifically, the network device sends the TB to the terminal device, or the network device receives the TB from the terminal device. Correspondingly, the terminal device receives the TB from the network device, or the terminal device sends the TB to the network device, where the TBS of the TB is the first TBS, and/or the RV information of the TB is the first One RV message.
  • the network device determines the first transport block TB. This step is optional.
  • the first TB is the TB sent by the network device in step S102 or the TB received from the terminal device. It should be noted here that the "first” here does not specifically refer to a certain transmission block or limits the transmission order of the transmission block, just to clearly explain the transmission process, and for convenience of explanation, the first TB may be referred to as TB.
  • the terminal device determines the first TB. This step is optional.
  • the network device may send the TB to the terminal device based on the first TBS and/or first RV information.
  • the terminal device may send the TB to the network device according to the first TBS and/or first RV information.
  • the first information is used to indicate RV configuration information
  • the RV configuration information is used to configure the first RV information.
  • the first RV information may include at least one of the following information: the number of RVs M, and the starting position information of the M RVs, where M is an integer greater than or equal to 1.
  • M may be any one of 2, 4, 6, 8, 16, 32, and so on.
  • the minimum threshold value of the RV length is larger/the minimum value of the RV length is larger (it can also be called the minimum particle of /RV length) The greater the degree).
  • the minimum threshold value of the RV length is smaller / the minimum value of the RV length is smaller (it can also be called the minimum particle size of /RV length) (The smaller the degree), the finer the RV. Therefore, an RV whose value of M is greater than 4 or greater than a specific value may also be referred to as a refined RV, and the specific value may be defined or configured in advance.
  • the value of M can be set according to the requirements of the mobile communication system. Exemplarily, when the transmission delay is very demanding, M with a smaller value (for example, 2 or 4) may be selected to reduce the number of TB retransmissions.
  • M with a larger value (for example, 6 or 8 or 16 or 32, etc.) can be selected.
  • M with a larger value for example, 6 or 8 or 16 or 32, etc.
  • the channel quality indicator channel quality indicator (channel quality indicator (CQI)
  • M with a larger value can be selected (for example, M greater than 4 is selected).
  • the starting position of each RV can be determined according to the length of the mother code after TB encoding and the number of the starting position of the RV in the starting positions of M RVs.
  • the starting position of each RV can be determined according to the length of the mother code after TB encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs.
  • the first parameter mentioned here is used to determine the TB
  • all the original RV starting positions may correspond to 4RV 8RV Rv id number in the RV starting positions 0,2,4,6, and Rv id number for The starting positions of RVs 1, 3, 5, and 7 are located in the starting interval of two adjacent RVs before and after the RV.
  • the starting position of an RV with Rv id number 1 can be the starting point of an RV with Rv id number 0
  • the intermediate value between the position and the starting position of the RV with Rv id number 2 can be the starting position of the RV with Rv id number 2 and the starting point of the RV with Rv id number 4
  • the intermediate value between the positions, the starting position of the RV with the Rv id number 5 can be the middle value between the starting position of the RV with the Rv id number 4 and the starting position of the RV with the Rv id number 6, the Rv id number is
  • the starting position of the RV of 7 may be an intermediate value between the starting position of the RV whose Rv id number is 6 and the starting position of the RV whose Rv id number is 0.
  • all RV starting positions of the original 4RV may correspond to the starting positions of RVs with Rv id numbers 0, 4, 8, and 12, respectively, and the Rv id number is 1,
  • the starting position of the RVs 2 and 3 can be located in the starting point interval between the starting point of the RV with Rv id number 0 and the starting point of the RV with Rv id number 4, for example, they can correspond to the starting points of the RV with Rv id number 0, respectively
  • the starting point interval between the starting points of the RV with the id number 8 for example, it can correspond to a 4 equal division in the starting point interval between the starting point of the RV with the Rv id number 4 and the starting point of the RV with the Rv id number 8 respectively
  • the starting position of each RV is determined according to the length of the mother code after TB encoding, the number of M and RV starting positions in the starting positions of M RVs, and the preset bit offset. It can be understood that when the TB is divided into a plurality of CBs, the above-mentioned number M of RVs and the starting position information of M RVs refer to the number of RVs of each CB in the TB and the starting position information of the RVs.
  • the starting position of each RV can be calculated according to the following formula (9), specifically:
  • L represents the length of the mother code after encoding
  • RV (i) represents the number of the i-th RV, satisfying RV (i) ⁇ 0,1,2,...,M-1 ⁇
  • a represents a constant position offset
  • the default value can be 2 for example.
  • the RV configuration information is used to indicate the number M of RVs.
  • the RV configuration information may indicate the value of M by carrying the value of M, or an index indicating the value of M.
  • the RV configuration information is used to indicate the starting position information of M RVs, and the RV configuration information may indicate the starting position information of the M RVs, for example, by carrying an index indicating the starting position of each RV, or , By carrying the index of the table indicating the starting position information of the M RVs, indicating the starting position information of the M RVs.
  • the above RV configuration information may be used to indicate at least one of the number M of RVs and the starting position information of M RVs, and may also be indicated in other ways, which is not limited.
  • the starting position information of the M RVs may be preset on the network device and the terminal device, or may be passed by the network device and the terminal device
  • the aforementioned formula (9) is calculated by itself, and this is not limited.
  • the order of the M RVs may be pre-configured or stored on the network device and the terminal device, or may be indicated to the terminal device by the network device through the RV configuration information (that is, the first RV information It may also include the sequence of M RVs), or it may be indicated to the terminal device by the network device through the second information.
  • the second information may be carried in the first signaling, or may be carried in the second signaling other than the first signaling, and the second signaling may be higher layer signaling or physical layer signaling.
  • the second signaling is used to indicate the order of M RVs.
  • high-level signaling please refer to the foregoing explanation when describing the first signaling.
  • the RV configuration information may carry the transmission order of the M RVs, or carry an index indicating the transmission order of the M RVs, indicate the order of the M RVs, etc., which is not limited.
  • the sequence of M RVs mentioned here is used to indicate the transmission sequence of the M RVs in the HARQ process. For example, taking a network device as a sending device and a terminal device as a receiving device as an example, when the network device transmits a TB with the terminal device, if the network device sends one RV of the M RVs of the TB to the terminal device, it is assumed that One RV. At this time, if the TB is not correctly decoded by the terminal device, the network device may retransmit the next RV adjacent to the first RV transmission sequence to the terminal device, assuming that the next RV is the second RV.
  • the second RV is one of the M RVs, and the second RV is different from the first RV, and at the same time, the transmission order of the first RV and the second RV satisfies the order relationship indicated by the order of the M RVs.
  • the network device is the receiving device and the terminal device is the sending device
  • the RV of the TB sent by the terminal device to the network device also satisfies the order relationship indicated by the order of M RVs, which will not be repeated here.
  • the sequence relationship and the transmission sequence have the same meaning, and no distinction is made here.
  • the transmission order indicated by the order of the M RVs may be the transmission order determined based on the results of link simulation, or the transmission order determined by the network device based on the following principles:
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are the farthest from the encoded mother code; or ,
  • the number of overlapping mother code bits in two adjacent RVs is the smallest, and the system information bits included in the overlapping mother code bits are the largest.
  • RV (i) arg minsub( ⁇ (i) , ⁇ (i-1) ) (10)
  • L rv represents the position of all L rv bits of RV (i-1) after coding, satisfying: the position of the lth bit L rv represents the number of bits included in the RV (i-1) , that is , the length of the RV (i-1) .
  • l represents the lth bit, Indicates the position of the lth bit.
  • L represents the length of the encoded mother code, and mod() is used to ensure that when the position of the lth bit of the RV (i-1) exceeds the length of the encoded mother code, the length of the encoded mother code can be The starting position restarts the cyclic shift.
  • sub( ⁇ (i) , ⁇ (i-1) ) represents the number of overlapping elements between ⁇ (i) and ⁇ (i-1) , if they satisfy the same sub( ⁇ (i) , ⁇ (i-1) )
  • RV (i) values defined as a set You can select an RV (i) from the RV set.
  • the selection methods include but are not limited to the following two:
  • Option 1 Take the furthest RV, as shown in the following formula (11):
  • Option 2 Take the RV that contains the most number of system information bits, as shown in the following formula (12):
  • NumSysBit (.) represents the number of system information bits contained in the RV.
  • the overlap information of RVs in adjacent transmission orders can be minimized, that is, the number of newly added check bits of the current RV transmission compared to the RV of the previous transmission is maximized, so that the reception of the TB
  • the device can perform soft combining on all received RVs to obtain better decoding gain.
  • FIG. 3 is a schematic diagram of a spectrum resource provided by an embodiment of this application. As shown in FIG. 3, assume that the TBS is 700 bits, the number of bits required for correct decoding under the current channel conditions is 1000, and the number of bits of the mother code after LDPC encoding is 3000.
  • the interval between the positions of the starting points of two adjacent RVs is approximately equal to 750 bits (that is, the quotient of the number of bits of the encoded mother code and M).
  • the minimum length of RV is 750 bits. Since the number of bits required for correct decoding under the current channel conditions is 1000, that is, 2 RVs need to be transmitted for correct decoding. In this scenario, the total number of transmission bits used to transmit TB is 1500 bits, and 500 bits of spectrum resources are wasted.
  • the interval between the starting positions of two adjacent RVs is 375 bits.
  • the minimum length of RV is 375 bits. In this scenario, correct decoding requires 3 RVs to be transmitted, the total number of transmission bits used to transmit TB is 1125 bits, and 125 bits of spectrum resources are wasted.
  • the granularity of a single transmission of RV can be smaller, and the RV of multiple HARQ transmissions can more accurately approximate the minimum number of resources required for correct decoding , Can more accurately adapt to the current channel's carrying capacity, reduce the waste of resources in correct decoding, and improve the spectrum efficiency.
  • the foregoing embodiment describes how to improve the spectral efficiency of transmitting TB based on the RV configuration information indicated by the first information.
  • the following is how to improve the spectral efficiency of transmitting TB based on the TBS configuration information indicated by the first information, specifically:
  • the first TBS configured by the TBS configuration information may be an expanded TBS or an unexpanded TBS.
  • the unexpanded TBS mentioned here may be a TBS determined by using the method for calculating TBS in the prior art. For example, in the description of the existing TB transmission process in the NR system in the foregoing method embodiment, step 1 and step 2 are used. The determined TBS.
  • the expanded TBS mentioned here is larger than the unexpanded TBS.
  • the extended TBS is used to transmit TB, which can make more system information bits transmitted on the same resource unit, so that the equivalent transmission code rate of TB can be improved, even exceeding 1.0, which can increase the spectrum effectiveness.
  • the TBS configuration information may include enable information used to indicate whether to extend the transport block size, even if the transport block size can be extended or not.
  • the first TBS is the extended TBS, that is, the network device can use the extended TBS to transmit the TB.
  • the enable information is used to indicate that the transport block size is not extended, the first TBS is an unextended TBS, and the network device may use the description of the existing transmission TB process in the NR system in the foregoing method embodiment, through steps one to step The TBS determined by the second transmits the TB.
  • the above-mentioned TBS configuration information may indirectly indicate whether to extend the transport block size by indicating whether an expansion factor of the transport block size. For example, when the TBS configuration information indicates the expansion factor of the transport block size, and the expansion factor is greater than 1, the first TBS is the expanded TBS, that is, the network device may use the expanded TBS to transmit the TB. When the TBS configuration information does not indicate the extension factor of the transport block size, or the value of the indicated extension factor of the transport block size is 1, the first TBS is an unextended TBS, and the network device may use the foregoing method embodiment In the description about the existing TB transmission process in the NR system, the TB is transmitted through the TBS determined in steps 1 to 2.
  • the network device and the terminal device may follow step 1 and step in the description about the existing TB transmission process in the NR system in the foregoing method embodiment In the manner shown in the second, the first TBS is determined.
  • the value of the first TBS may be determined directly according to the indicated transport block size extension factor.
  • the expansion factor ⁇ and for how to calculate the value of the first TBS according to the expansion factor ⁇ of the transport block, refer to the subsequent description.
  • the value of the first TBS may be determined in the following ways:
  • Manner 1 The value of the first TBS is a predefined value.
  • the value of the first TBS may be a value determined according to the expansion factor ⁇ of the transport block size.
  • the expansion factor ⁇ may be greater than 1. The following describes how to determine the value of the first TBS according to the expansion factor ⁇ of the transport block size:
  • the sending device can determine the TBS after the initial spread according to the number of scheduled resource units, the transmission code rate, the modulation method, the number of space division multiplexing layers, and the spreading factor ⁇ , as shown in the following formula (13):
  • N′ info N ⁇ R ⁇ Q m ⁇ v ⁇ (13)
  • N'info represents the TBS after initial expansion.
  • other parameters please refer to the foregoing description of the parameters in formula (1), which has the same meaning and will not be repeated here.
  • the sending device may determine the first TBS according to the determined initial expanded TBS (that is, N′info ).
  • the method of determining the TBS based on the initial TBS shown in step 2 is as follows: This will not be repeated here.
  • the expansion factor ⁇ of the transmission block size may be a predefined ⁇ , or may be an expansion factor determined according to the transmission parameters of the TB.
  • the transmission parameter mentioned here may be, for example, a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the network device and the terminal device are preset with a mapping relationship between the transmission parameter and the expansion factor ⁇ of the transmission block size.
  • the mapping relationship between the transmission parameter and the expansion factor ⁇ of the transmission block size can be shown in Table 7 below:
  • the embodiment of the present application does not limit the above-mentioned method for the terminal device to obtain the transmission parameter of the TB.
  • the network device may indicate the transmission parameter of the TB to the terminal device in an existing manner, which will not be repeated here.
  • the above-mentioned spreading factor ⁇ of the transmission block size may also be indicated to the terminal device by the network device, for example, the network device indicates the spreading factor ⁇ of the transport block size through the enabling information, or The field indicates the extension factor ⁇ of the transport block size, or the network device indicates the extension factor ⁇ of the transport block size through the third information.
  • the third information mentioned here may be carried in the first signaling, or may be carried in the third signaling other than the first signaling, and the third signaling may be higher layer signaling or physical layer signaling. In other words, the third signaling is used to indicate the expansion factor ⁇ .
  • the third signaling may be signaling carrying downlink control information (downlink control information, DCI), and the third information may be carried in the DCI.
  • the value of the expansion factor ⁇ of the transport block size may be an integer type or a decimal type.
  • the spreading factor ⁇ of the transport block size may extend the initial TBS by an integer multiple.
  • the spreading factor ⁇ of the transport block size may extend the initial TBS by a factor of several. Therefore, the above-mentioned integer type expansion factor may also be called a radical type expansion factor, and the above-mentioned decimal type expansion factor may also be called a relaxation type expansion factor.
  • the expansion factor ⁇ of the transmission block size is an integer
  • the expansion factor ⁇ of the transmission block size is an integer
  • the value of the spreading factor ⁇ of the transport block size may be any value of 2, 3, 4, 5, and so on, for example.
  • the network device may indicate this by using a field occupying two bits as follows The spreading factor ⁇ of the transport block size.
  • this field may be the scaling field field in DCI.
  • the value of the spreading factor ⁇ of the transport block size is less than 2
  • the extended TBS can make the equivalent transmission code rate of TB greater than 1 or equal to 1
  • the value of the spreading factor ⁇ of the transport block size can be as shown in the following formula (15):
  • the network device Taking the value of the spreading factor ⁇ of the transport block size being less than 2, for example, when the spreading factor ⁇ of the transport block size is indicated by the network device through TBS configuration information, or, through the enabling information, or the network device passes the third
  • the information indicates that the network device may indicate the spreading factor ⁇ of the transport block size through a field occupying two bits as follows.
  • this field may be the scaling field field in DCI.
  • an appropriate value can be selected according to the current channel conditions, spectrum efficiency requirements, etc., to appropriately extend the TBS, ensuring the accuracy of the TBS extension Sex.
  • the equivalent transmission code rate of TB can be increased, so that the equivalent transmission code rate can even be greater than 1.0, which can improve the data transmission. Spectral efficiency.
  • the extended TBS and the refined RV may be used in combination. That is, you can first determine the expanded TBS according to the TBS configuration information, and then use a larger value of M and use a more refined RV for data transmission to further improve the spectral efficiency of data transmission. The separate description of the two will not be repeated here.
  • the above-mentioned extended TBS and/or refined RV are two relatively independent solutions, that is, they can both increase the equivalent transmission code rate, and even make the equivalent transmission code rate greater than 1.0. Therefore, based on the value of the equivalent transmission bit rate of the extended TBS, a joint design of'extended TBS' and/or'refined RV' can be carried out and indicated to the terminal device in the aforementioned manner, as applicable Data transmission under different channel conditions and different transmission requirements.
  • the higher the equivalent transmission code rate the shorter the actual transmitted RV length.
  • the higher the equivalent transmission code rate the shorter the actual transmitted RV length.
  • the initial transmission code rate (that is, the code rate without TBS extension and refined RV, which may also be referred to as the transmission code rate determined by the prior art method) is 3/4, to adopt an aggressive type of transmission block size expansion
  • the factor ⁇ expands TBS as an example, assuming that the value of the spreading factor ⁇ of the transport block size is 2, at this time, the equivalent transmission code rate is approximately equal to 3/2 (that is, the product of the initial code rate and the spreading factor).
  • the approximation here is because after the initial TBS is expanded by 2 times, the expanded TBS needs to be determined based on the method shown in step 2 in the description of the existing TB transmission process in the NR system in the foregoing method embodiment
  • the value of, the value of the expanded TBS determined in this way is approximately twice the initial TBS.
  • the equivalent code rate is higher, and it is better to choose a more refined RV design, such as 16RV.
  • the equivalent transmission code rate is approximately equal to 1.05 (that is, the initial code rate Product of the expansion factor). It can be understood that the approximation here is because after the initial TBS is expanded by 1.4 times, the expanded TBS needs to be determined based on the method shown in step 2 in the description of the existing TB transmission process in the NR system in the foregoing method embodiment The value of, the value of the expanded TBS determined in this way, is approximately 1.05 times the initial TBS. At this time, the equivalent transmission code rate is low, and a general RV design, such as 8RV, should be selected.
  • a general RV design such as 8RV
  • the TBS configuration information is used to indicate the spreading factor ⁇ of the transport block size
  • the RV configuration information is used to indicate the number M of RVs, for example, Indicate as indicated in Table 10 below:
  • Table 10 is only an illustration, and does not constitute a limitation on how the first information indicates the spreading factor ⁇ of the transport block size, and the number M of RVs.
  • the above RV configuration information is used to indicate the starting position information of M RVs, a manner similar to that shown in Table 10 may also be used, and details are not described herein again.
  • the network device may indicate the TBS configuration information and/or RV configuration information to the terminal device through the first information, so that the TBS configuration information and/or RV configuration information may be used to extend the TBS and/or Refined RV, so that network equipment and terminal equipment can use extended TBS and/or refined RV for TB transmission, which can improve the spectral efficiency when transmitting TB.
  • the communication device involved in this embodiment may be the aforementioned network device, or may be a chip applied to the network device.
  • the communication device may be used to perform the actions of the network device in the above method embodiments.
  • the communication device may include: a sending module 11 and a receiving module 12.
  • the communication device further includes: a processing module 13. among them,
  • the sending module 11 is configured to send first information to a terminal device, where the first information is used to indicate transmission block size TBS configuration information and/or redundancy version RV configuration information, and the TBS configuration information is used to configure the first A transport block size TBS, and the RV configuration information is used to configure first RV information;
  • the receiving module 12 is used to receive a transmission block from the terminal device, or the sending module 11 is also used to send a transmission block to the terminal device; wherein, the TBS of the transmission block is the first TBS, and/or RV information of the transport block is the first RV information.
  • the processing module 13 is configured to determine the TBS configuration information and/or redundancy version RV configuration information, or to determine the first TBS and/or first RV information.
  • the processing module 13 is configured to determine the first transmission block.
  • the first transmission block is the transmission block received by the receiving module 12, or the transmission block sent by the sending module 11.
  • the first transport block refer to the description of the method embodiment.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs, where the M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the encoding of the transport block and the number of the starting position of the RV among M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the processing module 13 is configured to determine the order of the M RVs.
  • the sending module 11 is further configured to send second information to the terminal device, where the second information is used to indicate the order of the M RVs.
  • the first RV information further includes the order of the M RVs.
  • the receiving module 12 is specifically used to receive the first RV of the transmission block from the terminal device, or the sending module 11 is specifically used to send the transmission to the terminal device The first RV of the block.
  • the first RV is the RV of the M RVs.
  • the receiving module 12 is also used to receive the second RV of the transmission block from the terminal device, or the sending module 11 is further used to send the transmission block to the terminal device A second RV, the second RV is an RV of the M RVs, the first RV and the second RV are different, and the order of sending the first RV and the second RV satisfies the The order relationship indicated by the order.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the sending module 11 is further configured to send third information to the terminal device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the communication apparatus provided in the embodiments of the present application can perform the actions of the network device in the above method embodiments, and its implementation principles and technical effects are similar, and are not repeated here.
  • FIG. 5 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device involved in this embodiment may be the aforementioned terminal device, or may be a chip applied to the terminal device.
  • the communication device may be used to perform the actions of the terminal device in the above method embodiments.
  • the communication device may include: a receiving module 21 and a sending module 22, and optionally, the communication device may further include a processing module 23. among them,
  • the receiving module 21 is configured to receive first information from a network device, where the first information is used to indicate transmission block size TBS configuration information and/or redundancy version RV configuration information, and the TBS configuration information is used to configure the first transmission A block size TBS, and the RV configuration information is used to configure first RV information;
  • the sending module 22 is configured to send a transmission block to the network device according to the TBS configuration information and/or the RV configuration information; or, the receiving module 21 is further configured to use the TBS configuration information and/or The RV configuration information receives a transport block from the network device, wherein the TBS of the transport block is the first TBS, and/or the RV information of the transport block is the first RV information.
  • the processing module 23 is configured to determine the TBS configuration information and/or the RV configuration information, or in other words, determine the first TBS and/or the first RV information. Specifically, the processing module 23 determines the TBS configuration information and/or the RV configuration information according to the first information.
  • the processing module 23 is configured to determine the first transmission block.
  • the first transmission block is the transmission block received by the receiving module 21, or the transmission block sent by the sending module 22.
  • the first RV information includes at least one of the following information: the number of RVs M and the starting position information of the M RVs, where the M is an integer greater than or equal to 1.
  • the starting position of each RV may be determined according to the length of the mother code after the transport block is encoded, and the number of the starting position of the RV among the M starting positions of the RVs.
  • the starting position of each RV is determined according to the length of the mother code after the transport block encoding, the first parameter, and the number of the starting position of the RV in the starting positions of the M RVs, the first parameter It is used to determine the check matrix dimension corresponding to the coding mode adopted by the transport block; or, the starting position of each RV is based on the length of the mother code after the transport block is encoded, the M, and the starting positions of the RV are in M The number in the starting position of the RV and the preset bit offset are determined.
  • the processing module 23 is configured to determine the order of the M RVs.
  • the receiving module 21 is further configured to receive second information from the network device, where the second information is used to indicate the order of the M RVs.
  • the first RV information further includes the order of the M RVs.
  • the sending module 22 is specifically configured to send the first RV of the transport block to the network device according to the TBS configuration information and/or the RV configuration information, or, the receiving Module 21 is specifically configured to receive the first RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, where the first RV is the RV of the M RVs .
  • the sending module 22 is further configured to send the second RV of the transport block to the network device according to the TBS configuration information and/or the RV configuration information, or the receiving module 21 , Also used to receive the second RV of the transport block from the network device according to the TBS configuration information and/or the RV configuration information, the second RV is the RV of the M RVs, so The first RV and the second RV are different, and the order of sending the first RV and the second RV satisfies the order relationship indicated by the order.
  • the number of overlapping mother code bits in the two adjacent RVs is the smallest, and the bit start points of the two adjacent RVs are in the transmission
  • the TBS configuration information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the TBS configuration information includes enabling information, and the enabling information is used to indicate whether to extend the transport block size.
  • the enable information is also used to indicate an extension factor of the transport block size, the extension factor is greater than 1; or, the extension factor and the There is a correspondence between the transmission parameters of the transmission blocks.
  • the receiving module 21 is further configured to receive third information from the network device, where the third information is used to indicate an expansion factor of the transport block size, and the expansion factor is greater than 1.
  • the communication device provided by the embodiment of the present application can perform the actions of the terminal device in the above method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the above transmission module may be a transmitter when actually implemented, and the receiver module may be a receiver when actually implemented.
  • the processing module can be implemented in the form of software calling through processing elements; it can also be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or may be integrated in a chip of the above-mentioned device, and may also be stored in the memory of the above-mentioned device in the form of a program code, and a processing element of the above-mentioned device Call and execute the functions of the above processing modules.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (application specific integrated circuits, ASICs), or one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASICs application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the communication device may include: a processor 31 (such as a CPU), a memory 32, a receiver 33, and a transmitter 34; both the receiver 33 and the transmitter 34 are coupled to the processor 31, and the processor 31 controls reception The receiving operation of the device 33, the processor 31 controls the sending operation of the transmitter 34;
  • the memory 32 may include a high-speed random access memory (random-access memory, RAM), or may also include a non-volatile memory (non-volatile memory, NVM), for example, at least one disk storage, various instructions can be stored in the memory 32 for performing various processing functions and implementing the method steps of the present application.
  • the communication device involved in this application may further include: a power supply 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the communication device, or may be independent transceiver antennas on the communication device.
  • the communication bus 36 is used to realize the communication connection between the elements.
  • the above communication port 37 is used to implement connection communication between the communication device and other peripheral devices.
  • the above-mentioned memory 32 is used to store computer-executable program code, and the program code includes instructions; when the processor 31 executes the instruction, the instruction causes the processor 31 of the communication device to perform the processing of the terminal device in the above-described method embodiment
  • the action causes the receiver 33 to perform the receiving action of the terminal device in the above method embodiment, and causes the transmitter 34 to perform the sending action of the terminal device in the above method embodiment.
  • the communication device may include: a processor 41 (such as a CPU) and a memory 42; the memory 42 may include a high-speed random access memory (random-access memory, RAM), or may also include a non-volatile memory (Non-volatile memory, NVM), for example, at least one disk memory, various instructions can be stored in the memory 42 for completing various processing functions and implementing the method steps of the present application.
  • the communication device involved in this application may further include: a power supply 43, a communication bus 44, and a communication port 45.
  • the communication bus 44 is used to realize the communication connection between the elements.
  • the above communication port 45 is used to implement connection communication between the communication device and other peripheral devices.
  • the above-mentioned memory 42 is used to store computer-executable program code, and the program code includes instructions; when the processor 41 executes the instructions, the instructions cause the processor 41 of the communication device to perform the actions of the network device in the above-described method embodiments
  • the implementation principles and technical effects are similar, and will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server, or data center via wire (e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media. Available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, Solid State Disk (SSD)), and so on.
  • the term “plurality” herein refers to two or more.
  • the term “and/or” in this article is just an association relationship that describes an associated object, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, exist alone B these three cases.
  • the character "/" in this article generally indicates that the related object is a "or” relationship; in the formula, the character "/" indicates that the related object is a "divide” relationship.
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the examples constitutes no limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法和通信装置,该方法包括:网络设备向终端设备发送第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;网络设备从终端设备接收传输块,或者,网络设备向终端设备发送传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。本申请实施例的方法,网络设备通过TBS配置信息和/或RV配置信息,可以扩展TBS和/或精细化RV,从而使得网络设备与终端设备可以采用扩展TBS和/或精细化RV进行TB传输,改善传输TB时的频谱效率。

Description

数据传输方法和通信装置
本申请要求于2018年12月21日提交中国专利局、申请号为201811573994.0、申请名称为“数据传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输方法和通信装置。
背景技术
目前,新空口(new radio,NR)系统采用如下几种方式来保证上行数据信道和下行数据信道上的TB的传输:1、采用自适应调制编码(adaptive modulation and coding,AMC)方式对上行数据信道和下行数据信道上待传输的TB进行调制和编码,以选择合适的调制方式和编码方式来适配无线信道质量,保证链路的传输质量。2、采用低密度奇偶校验码(low density parity check coding,LDPC)对上行数据信道和下行数据信道上待传输的TB进行编解码,以通过增加校验比特增强数据传输的可靠性。3、采用混合自动重传请求(hybrid automatic repeat-request,HARQ)技术,对传输出错的TB进行自动重传和合并译码,保证数据传输的正确性。
现有技术中,为保证首次传输能够以较大的概率进行正确解调译码,会使用较小的等效的传输码率在上行数据信道或下行数据信道上传输TB的冗余版本(redundancy version,RV)。等效的传输码率越小,说明传输的冗余校验比特越多,频谱效率越低。另外,当传输/HARQ重传合并后的比特总数超过信道正确译码要求的比特数时,接收设备才有可能对TB正确译码。但是,当前NR系统定义的4种LDPC编码后母码的RV的起点位置,使得不同RV起点位置之间的间距较大。为了保证能够正确译码,要求传输的RV的长度大于或等于相邻两个RV起点位置的间距,即,相邻两个RV起点位置的间距是RV长度的最小颗粒度,导致每次传输的RV的颗粒度较大。因此,当HARQ多次重传直至合并后正确译码当前传输的TB时,可能会导致传输的比特总数明显高于当前信道正确译码所需的最小比特数,导致频谱效率较低。也就是说,上述传输TB的方式会导致频谱效率较低。
发明内容
本申请实施例提供一种数据传输方法和通信装置,用于解决现有的传输TB的方式会导致频谱效率较低的技术问题。
第一方面,本申请实施例提供一种数据传输方法,该方法中网络设备向终端设备发送第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;所述网络设备从所述终端设备接收传输块,或者,所述网络设备向所述终端设备发送传输块,其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述 第一RV信息。
上述方法中,网络设备可以通过第一信息向终端设备指示TBS配置信息和/或RV配置信息,从而可以通过TBS配置信息和/或RV配置信息,来扩展TBS和/或精细化RV,从而使得网络设备与终端设备可以采用扩展TBS和/或精细化RV进行TB传输,从而可以改善传输TB时的频谱效率。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。作为一种示例,每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
通过该可能的实施方式,网络设备可以基于传输需求,灵活的指示与终端设备之间传输的TB时使用的RV的粒度,进而可以采用精细化的RV时,可以改善传输TB时的频谱效率。
作为一种可能的实施方式,所述方法还包括:所述网络设备确定所述M个RV的顺序。可选的,所述第一RV信息还包括:所述M个RV的顺序。或者,所述方法还包括:所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述M个RV的顺序。在该实现方式下,所述网络设备从所述终端设备接收传输块,或者,所述网络设备向所述终端设备发送传输块,包括:所述网络设备从所述终端设备接收所述传输块的第一RV,或者,所述网络设备向所述终端设备发送所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述方法还包括:所述网络设备从所述终端设备接收所述传输块的第二RV,或者,所述网络设备向所述终端设备发送所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
通过该可能的实施方式,网络设备可以灵活的指示与终端设备之间传输TB时使用的RV的传输顺序。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
通过这种确定RV传输顺序的方式,可以尽量减少相邻传输顺序的RV的交叠信息,即最大化当前RV传输相比前一次传输的RV新增的比特数,从而使接收TB的设备可以对接收到的所有RV进行软合并来获得更好的译码增益。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块 的传输参数之间存在对应关系。或者,所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
通过该实施方式,网络设备可以灵活的扩展与终端设备之间传输的TB的TBS,从而使得网络设备可以采用扩展TBS进行TB传输,进而可以改善传输TB时的频谱效率。
第二方面,本申请实施例提供一种数据传输方法,该方法中终端设备接收来自网络设备的第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;这样,所述终端设备可以根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块,或者,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块,其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。作为一种示例,每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
作为一种可能的实施方式,所述方法还包括:所述终端设备确定所述M个RV的顺序。可选的,所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示所述M个RV的顺序。或者,所述第一RV信息还包括:所述M个RV的顺序。
在该实现方式下,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块,或者,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块,包括:所述终端设备根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第一RV,或者,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述方法还包括:所述终端设备根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第二RV,或者,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用 于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块的传输参数之间存在对应关系。或者,所述终端设备接收来自所述网络设备的第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
上述第二方面和第二方面的各可能的实现方式所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第三方面,本申请实施例提供一种通信装置,本实施例所涉及的通信装置可以为前述所说的网络设备,也可以为应用于网络设备的芯片。该通信装置可以用于执行上述方法实施例中网络设备的动作。该通信装置可以包括:发送模块和接收模块。可选的,该通信装置还包括:处理模块。其中,
所述发送模块,用于向终端设备发送第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
所述接收模块,用于从所述终端设备接收传输块,或者,所述发送模块,还用于向所述终端设备发送传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息,其中,所述M为大于或等于1的整数。作为一种示例,每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
作为一种可能的实施方式,所述处理模块,用于确定所述M个RV的顺序。可选的,所述发送模块,还用于向所述终端设备发送第二信息,所述第二信息用于指示所述M个RV的顺序。或者,所述第一RV信息还包括:所述M个RV的顺序。
在该实现方式下,所述接收模块,具体用于从所述终端设备接收所述传输块的第一RV,或者,所述发送模块,具体用于向所述终端设备发送所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述接收模块,还用于从所述终端设备接收所述传输块的第二RV,或者,所述发送模块,还用于向所述终端设备发送所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用 于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块的传输参数之间存在对应关系。或者,所述发送模块,还用于向所述终端设备发送第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
上述第三方面和第三方面的各可能的实现方式所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第四方面,本申请实施例提供一种通信装置,本实施例所涉及的通信装置可以为前述所说的终端设备,也可以为应用于终端设备的芯片。该通信装置可以用于执行上述方法实施例中终端设备的动作。该通信装置可以包括:接收模块和发送模块。可选的,该通信装置还包括:处理模块。其中,
所述接收模块,用于接收来自网络设备的第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
所述发送模块,用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块;或者,所述接收模块,还用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息,其中,所述M为大于或等于1的整数。作为一种示例,每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
作为一种可能的实施方式,所述处理模块,用于确定所述M个RV的顺序。可选的,所述接收模块,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示所述M个RV的顺序。或者,所述第一RV信息还包括:所述M个RV的顺序。
在该实现方式下,所述发送模块,具体用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第一RV,或者,所述接收模块,具体用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述发送模块,还用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第二RV,或者,所述接收模块,还用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块的传输参数之间存在对应关系。或者,所述接收模块,还用于接收来自所述网络设备的第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
上述第四方面和第四方面的各可能的实现方式所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第一方面或第一方面的各可能的实现方式所提供的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第二方面或第二方面的各可能的实现方式所提供的方法。
第七方面,本申请实施例提供一种通信装置,包括用于执行以上第一方面或第一方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为网络设备,也可以为应用于网络设备的一个模块,例如,可以为应用于网络设备的芯片。
第八方面,本申请实施例提供一种通信装置,包括用于执行以上第二方面或第二方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第九方面,本申请实施例提供一种芯片,所述芯片上存储有计算机程序,在所述计算机程序被所述芯片执行时,实现如第一方面或第一方面的各可能的实现方式所提供的方法。
第十方面,本申请实施例提供一种芯片,所述芯片上存储有计算机程序,在所述计算机程序被所述芯片执行时,实现如第二方面或第二方面的各可能的实现方式所提供的方法。
第十一方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第十二方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的实现方式中的方法。
第十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的实现方式中的方法。
本申请实施例提供的数据传输方法和通信装置,网络设备可以通过第一信息向终端设备指示TBS配置信息和/或RV配置信息,从而可以通过TBS配置信息和/或RV配置信息,来扩展TBS和/或精细化RV,从而使得网络设备与终端设备可以采用扩展TBS和/或精细化RV 进行TB传输,从而可以改善传输TB时的频谱效率。
附图说明
图1为本申请实施例应用的移动通信系统的架构示意图;
图2为本申请实施例提供的一种数据传输方法的流程示意图;
图3为本申请实施例提供的一种频谱资源示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的另一种通信装置的结构示意图;
图6为本申请实施例提供的又一种通信装置的结构示意图;
图7为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
图1为本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与无线接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备110的功能和部分的无线接入网设备120的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备等,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备110、无线接入网设备120和终端设备的数量不做限定。
无线接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的网络侧、未来移动通信系统中的网络侧、WiFi系统中的接入节点等,本申请实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备120简称网络设备,如果无特殊说明,在本申请实施例中,网络设备均指无线接入网设备120。另外,在本申请实施例中,术语5G和NR可以等同。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备120和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对无线接入网设备120和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。对于下行数据传输,发送设备是无线接入网设备120,对应的接收设备是终端设备。对于上行数据传输,发送设备是终端设备,对应的接收设备是无线接入网设备120。对于D2D的数据传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对数据的传输方向不做限定。
无线接入网设备120和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备120和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对无线接入网设备120和终端设备之间所使用的频谱资源不做限定。
为了便于对本申请实施例的理解,先对几个定义进行介绍和说明。具体地:
上行数据信道,用于承载上行数据。例如,物理上行共享信道(physical uplink shared channel,PUSCH)。
下行数据信道,用于承载下行数据。例如,物理下行共享信道(physical downlink shared channel,PDSCH)。
上行数据信道和下行数据信道上以传输块(transmit block,TB)为单位传输数据,TB的大小可以用传输块大小(transmit block size,TBS)表示,单位为比特。
以移动通信系统为NR系统为例,目前,NR系统采用如下几种方式来保证上行数据信道和下行数据信道上的TB的传输:
1、采用自适应调制编码(adaptive modulation and coding,AMC)方式对对上行数据信道和下行数据信道上待传输的TB进行调制和编码,以选择合适的调制方式和编码方式来适配无线信道质量,保证链路的传输质量。
2、采用低密度奇偶校验码(low density parity check coding,LDPC)对上行数据信道和下行数据信道上待传输的TB进行编解码,以通过增加校验比特增强数据传输的可靠性。
3、采用混合自动重传请求(hybrid automatic repeat-request,HARQ)技术,对传输出错的TB进行自动重传和合并译码,保证数据传输的正确性。
下面以发送设备和接收设备为例,对NR系统中传输TB的过程进行介绍和说明。需要说明的是,当发送设备为终端设备时,接收设备可以为网络设备,当发送设备为网络设备时,接收设备可以为终端设备。
步骤一、发送设备依据调度的资源单元的数量、传输码率、调制方式、空分复用的层数,确定待传输的TB的初始传输块大小(transmit block size,TBS),具体可以如下述公式(1)所示:
N info=N·R·Q m·v        (1)
其中,N info表示初始TBS;R表示信道的传输码率,0<R<1;
Q m表示采用该调制方式对TB进行调制时,一个调制符号上所能承载的比特数,例如:当调制方式为二进制相移键控(Binary Phase Shift Keying,BPSK)时,Q m取值为1;当调制方式为正交相移键控(Quadrature Phase Shift Keying,QPSK)时,Q m取值可以为2,当调制方式为16正交幅度调制(Quadrature Amplitude Modulation,QAM)时,Q m取值可以 为4等。
v表示空分复用的层数,例如:v取值为1时,表示单层传输,v取值为2时,表示两层的空分复用传输等;
N表示传输TB占用的资源单元的数量,这里所说的资源单元可以为NR系统中调度的最小资源粒度单位,例如,资源元素(Resource Element,RE)。以资源单元RE为例,则N可以通过下述公式(2)计算得到:
N=N RB·(N SC·N sym-N DM-RS-N oh)      (2)
其中,N RB表示调度的资源块(Resource Block,RB)的数量,N SC表示每个RB的子载波数目,N sym表示一个时隙(slot)内的符号数,N DM-RS表示该slot内专用解调参考信号(dedicated modulation reference signal,DMRS)占用的RE数,N oh表示高层参数配置的开销。
步骤二、发送设备根据所确定的初始TBS(即N info),确定待传输的TB的TBS。
情况1:当N info≤3824时,发送设备可以根据下述公式(3)计算中间TBS(intermediate TBS):
Figure PCTCN2019124795-appb-000001
其中,
Figure PCTCN2019124795-appb-000002
表示中间TBS,
Figure PCTCN2019124795-appb-000003
然后,发送设备可以将下述表1中距离
Figure PCTCN2019124795-appb-000004
最近的、且大于或等于
Figure PCTCN2019124795-appb-000005
的TBS作为待传输的TB的TBS。表1示出的是N info≤3824时TBS的量化取值范围:
表1
索引 TBS 索引 TBS 索引 TBS 索引 TBS
1 24 25 240 49 808 73 2024
2 32 26 256 50 848 74 2088
3 40 27 272 51 888 75 2152
4 48 28 288 52 928 76 2216
5 56 29 304 53 984 77 2280
6 64 30 320 54 1032 78 2408
7 72 31 336 55 1064 79 2472
8 80 32 352 56 1128 80 2536
9 88 33 368 57 1160 81 2600
10 96 34 384 58 1192 82 2664
11 104 35 408 59 1224 83 2728
12 112 36 432 60 1256 84 2792
13 120 37 456 61 1288 85 2856
14 128 38 480 62 1320 86 2976
15 136 39 504 63 1352 87 3104
16 144 40 528 64 1416 88 3240
17 152 41 552 65 1480 89 3368
18 160 42 576 66 1544 90 3496
19 168 43 608 67 1608 91 3624
20 176 44 640 68 1672 92 3752
21 184 45 672 69 1736 93 3824
22 192 46 704 70 1800    
23 208 47 736 71 1864    
24 224 48 768 72 1928    
情况2:当3824<N info≤8424时,发送设备可以根据下述公式(4)计算intermediate TBS:
Figure PCTCN2019124795-appb-000006
其中,
Figure PCTCN2019124795-appb-000007
然后,发送设备可以根据下述公式(5)和intermediate TBS(即
Figure PCTCN2019124795-appb-000008
),计算待传输的TB的TBS:
Figure PCTCN2019124795-appb-000009
其中,
Figure PCTCN2019124795-appb-000010
表示待传输的TB的TBS。
情况3:当N info>8424时,发送设备可以根据下述公式(6)计算intermediate TBS:
Figure PCTCN2019124795-appb-000011
其中,
Figure PCTCN2019124795-appb-000012
然后,发送设备可以根据下述公式(7)和intermediate TBS(即
Figure PCTCN2019124795-appb-000013
),计算待传输的TB的TBS:
Figure PCTCN2019124795-appb-000014
其中,
Figure PCTCN2019124795-appb-000015
步骤三、为了支持不同的传输码率和TBS,NR系统中采用两种不同基本图(base graph,BG)类型的LDPC编码,分别为BG1和BG2。因此,发送设备在确定待传输的TB的TBS后,可以通过表征TBS与BG类型的对应关系的表2,依据传输码率和步骤二中所确定的TBS,判断是否需要将TB分割成多个码块(code block,CB),并对分割后得到的各CB进行相应的BG1或BG2的LDPC编码,得到各个CB编码后的母码。
表2
传输码率R init TBS≤292 292<TBS≤3824 TBS>3824
R init≤1/4 BG2 BG2 BG2
1/4<R init≤2/3 BG2 BG2 BG1
R init>2/3 BG2 BG1 BG1
例如,在依据传输码率和步骤二所确定的TBS,确定使用BG2的LDPC编码时,若TBS小于或等于3824比特,则无需对TB分割。若TBS大于3824,则需要将TB分割成多个CB。或者,在依据传输码率和步骤1所确定的TBS,确定使用BG1的LDPC编码时,若TBS小于或等于8424比特,则无需对TB分割。若TBS大于8424,则需要将TB分割成多个CB。也就是说,不同BG对应的CB大小限制不一样,与传输码率和TBS取值范围有关。
步骤四、编码后母码的一个冗余版本(redundancy version,RV)是指编码后的母码中的一定长度的比特,包括一部分系统信息比特和一部分校验信息比特。当前NR系统定义了4个LDPC编码后母码的RV的起点位置和该4个RV的传输顺序,RV的起点位置可以如下述表3所示,RV的传输顺序为{0,2,3,1},该传输顺序用于表征各RV在HARQ重传过程中的传输顺序。即,初次传输RV0,第一次重传时传输RV2,第二次重传时传输RV3,第三次重传时传输RV4。
表3
Figure PCTCN2019124795-appb-000016
其中,N cb表示编码后的母码写进循环缓存器的长度,Z c用于确定LDPC校验矩阵维度的大小。
因此,发送设备在得到各个CB编码后的母码后,可以基于前述所说的RV传输顺序,以及,各RV的起点位置,对各个CB编码后的母码进行速率匹配(例如比特选择和交织编码),得到各个CB当前待传输的RV。其中,比特选择是指根据当前待传输的RV的起点位置,从编码后的母码中选择一定长度的比特(包括一部分系统信息和校验信息)作为该CB的当前待传输的RV。这里所说的一定长度可以称为RV长度,该RV长度大于或等于相邻RV起点位置间隔,即相邻两个RV起点位置的间距是RV长度的最小颗粒度。交织编码是指在时域或者频域,或者同时在时域、频域上分布传输的信息比特,使信道的突发错误在时间上得以扩散,从而使得译码器可以将这些突发错误当做随机错误处理。
示例性的,若基于前述所说的RV传输顺序,确定当前待传输的RV为RV2,则发送设备可以从RV2的起点位置选择RV长度的比特作为该RV2,并对该RV2进行交织编码。
可以理解,步骤一至步骤三为初次传输TB时所需执行的步骤,后续重传该TB时,可以不用再次执行步骤一至步骤三。
步骤五、发送设备合并各个CB当前待传输的RV,得到TB当前待传输的RV。
步骤六、发送设备对TB当前待传输的RV进行加扰、调制等处理后,发送给接收设备。
接收设备接收到该TB的RV之后,会对该TB的RV进行相应的解调、解扰、译码等 处理。如果译码不正确,则接收设备可以向发送设备发送否定应答(negative acknowledgement,NACK),以指示发送设备对该TB进行HARQ重传。
相应地,发送设备在接收到接收设备发送的NACK后,可以对该TB进行HARQ重传,即再次执行步骤四至步骤六,以基于RV的传输顺序,向接收设备发送传输顺序中与该RV相邻的下一个RV,接收设备对收到的所有RV进行合并,直至接收设备对TB正确译码。可以理解,传输顺序中所示的RV并非都会被传输,具体可以根据接收设备对TB的译码情况确定。
以一个TB传输3次才被正确译码为例,则发送设备第一次发送的是TB的RV0,包括该TB的各个CB的RV0,第二次发送的是TB的RV2,包括该TB的各个CB的RV2,第三次发送的是TB的RV3,包括该TB的各个CB的RV3。在该示例下,TB的RV4未被传输。
在采用上述方式传输TB时,该TB等效的传输码率可以如下述公式(8)所示:
Figure PCTCN2019124795-appb-000017
其中,上述系统信息比特是指传输的TB的RV所包括的系统信息比特,上述校验信息比特是指传输的TB的RV所包括的校验信息比特。
现有技术中,为保证首次传输能够以较大的概率进行正确解调译码,会使用较小的等效的传输码率在上行数据信道或下行数据信道上传输TB。等效的传输码率越小,说明传输的系统信息比特越少,频谱效率越低。另外,当传输合并后的比特总数超过信道正确译码要求的比特数时,接收设备才有可能对TB正确译码。但是,当前NR系统定义的4种LDPC编码后母码的RV的起点位置,使得不同RV起点位置之间的间距较大,导致每次传输的RV的颗粒度较大。因此,在采用HARQ多次重传合并直至正确译码的方式传输TB时,可能会导致传输的比特总数高于当前信道正确译码所需的最小比特数,导致频谱效率较低。也就是说,上述传输TB的方式会导致频谱效率较低。
考虑到上述问题,本申请实施例提供了一种数据传输方法,可以通过扩展TBS和/或精细化RV的方式,改善上述频谱效率低的问题。可以理解,本申请实施例的方法包括但不限于上述NR系统,也可以适用于任一存在上述问题的移动通信系统,对此不再赘述。
下面通过一些实施例对本申请实施例的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的一种数据传输方法的流程示意图。如图2所示,该方法可以包括:
S100、网络设备确定TBS配置信息和/或RV配置信息。
其中,该TBS配置信息用于配置第一TBS,该RV配置信息用于配置第一RV信息。
或者,该步骤可以替换为,所述网络设备确定第一TBS和/或第一RV信息。
该步骤S100为可选的。
S101、网络设备向终端设备发送第一信息。相应的,终端设备接收所述第一信息。
其中,第一信息用于指示TBS配置信息和/或RV配置信息。
S1010、终端设备确定所述TBS配置信息和/或RV配置信息,或者所述终端设备确定所述第一TBS和/或所述第一RV信息。该步骤为可选的。具体的,所述终端设备根据所述 第一信息,确定所述TBS配置信息和/或RV配置信息,或者,所述终端设备根据所述第一信息,确定所述第一TBS和/或所述第一RV信息。
可选的,该第一信息可以承载于第一信令中,所述第一信令可以为高层信令或物理层信令。或者说,所述第一信令用于指示TBS配置信息和/或RV配置信息。
这里所说的高层信令例如可以为无线资源控制(Radio Resource Control,RRC)信令或MAC信令。当第一信令为物理层信令时,该第一信令可以为承载下行控制信息(downlink control information,DCI)的物理下行控制信道(physical downlink control channel,PDCCH),该DCI包括一个或多个用于指示TBS配置信息和/或RV配置信息的信息域。
S102、网络设备与终端设备传输TB。具体的,网络设备向终端设备发送TB,或者,网络设备从终端设备接收TB。相应的,终端设备从网络设备接收所述TB,或者终端设备向网络设备发送所述TB其中,所述TB的TBS为所述第一TBS,和/或所述TB的RV信息为所述第一RV信息。
S1021、网络设备确定第一传输块TB。该步骤为可选的。所述第一TB为步骤S102中所述网络设备发送的所述TB或者从所述终端设备接收的所述TB。这里需要说明的是,这里的“第一”没有特指某一传输块或者限定传输块的传输顺序,仅是为了清楚说明传输过程,为阐述方便,可以简称第一TB为TB。
S1022、终端设备确定所述第一TB。该步骤为可选的。
需要说明的是,上述步骤的序号顺序不代表实质的执行顺序。
当网络设备为发送设备、终端设备为接收设备时,网络设备可以基于第一TBS和/或第一RV信息向终端设备发送TB。当网络设备为接收设备、终端设备为发送设备时,终端设备可以根据第一TBS和/或第一RV信息,向网络设备发送TB。
可选的,第一信息用于指示RV配置信息,该RV配置信息用于配置第一RV信息。作为一种可能的实施方式,上述第一RV信息可以包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息,其中,该M为大于或等于1的整数。例如,M的取值可以为2、4、6、8、16、32等中任一个。当M取值越小,相邻两个RV的起点位置之间的间隔越大,RV长度的最小门限值越大/RV长度的最小值越大(也可以称为/RV长度的最小颗粒度越大)。当M取值越大,相邻两个RV的起点位置之间的间隔越小,RV长度的最小门限值越小/RV长度的最小值越小(也可以称为/RV长度的最小颗粒度越小),即RV越精细化。因此,也可以将M取值大于4或者大于一特定值的RV称为精细化RV,所述特定值可以是预先定义或者配置的。具体实现时,该M的取值具体可以根据移动通信系统的需求设定。示例性的,当对传输时延要求很苛刻时,可以选用取值较小的M(例如2或4),以减少TB的重传次数。当对频谱资源效率要求较高时,可以选用取值较大的M(例如6或8或16或32等)。可选的,在一些实施例中,当信道状态信息(channel state information,CSI)反馈不准确或者CSI反馈粒度较粗,例如CSI所反馈的被配置宽带的信道质量指示(channel quality indicator,CQI)不准确或粒度较粗时,可以选用取值较大的M(例如,选择大于4的M)。
上述每个RV的起点位置可以根据TB编码后的母码的长度、RV的起点位置在M个RV的起点位置中的编号确定。
例如,每个RV的起点位置可以根据TB编码后的母码的长度、第一参数、RV的起点位置在M个RV的起点位置中的编号确定,这里所说的第一参数用于确定TB采用的编码方式 对应的校验矩阵维度,例如前述表1中的Z c,下述实施例以第一参数为Z c为例进行说明。可以理解,当该TB分割成多个CB时,上述所说的RV的数量M和M个RV的起点位置信息是指TB中每个CB的RV的数量和RV的起点位置信息。
示例性的,当M的取值为8时,原有4RV的所有RV起点位置可以分别对应于8RV中Rv id编号为0、2、4、6的RV的起点位置,而对于Rv id编号为1、3、5、7的RV的起点位置则位于该RV前后相邻的两个RV的起点区间内,例如Rv id编号为1的RV的起点位置可以为Rv id编号为0的RV的起点位置和Rv id编号为2的RV的起点位置之间的中间值,Rv id编号为3的RV的起点位置可以为Rv id编号为2的RV的起点位置和Rv id编号为4的RV的起点位置之间的中间值,Rv id编号为5的RV的起点位置可以为Rv id编号为4的RV的起点位置和Rv id编号为6的RV的起点位置之间的中间值,Rv id编号为7的RV的起点位置可以为Rv id编号为6的RV的起点位置和Rv id编号为0的RV的起点位置之间的中间值。
如下表格给出了一种8RV的起点位置信息配置:
表4
Figure PCTCN2019124795-appb-000018
示例性的,当M的取值为16时,原有4RV的所有RV起点位置可以分别对应于16RV中Rv id编号为0、4、8、12的RV的起点位置,Rv id编号为1、2、3的RV的起点位置可以位于Rv id编号为0的RV的起点至Rv id编号为4的RV的起点之间的起点区间内,例如可以分别对应为Rv id编号为0的RV的起点到Rv id编号为4的RV的起点之间的起点区间内的一个4等分点;Rv id编号为5、6、7的RV的起点位置可以位于Rv id编号为4的RV的起点至Rv id编号为8的RV的起点之间的起点区间内,例如可以分别对应为Rv id编号为4的RV的起点到Rv id编号为8的RV的起点之间的起点区间内的一个4等分点;Rv id编号为9、10、11的RV的起点位置可以位于Rv id编号为8的RV的起点至Rv iv编号为12的RV的起点之间的起点区间内,例如可以分别对应为Rv id编号为8的RV的起点到Rv id编号为12的RV的起点之间的起点区间内的一个4等分点;Rv id编号为13、14、15的RV的起点位置可以位于Rv id编号为12的RV的起点至Rv id编号为0的RV的起点之间的起点区间内,例如可以分别对应为Rv id编号为12的RV的起 点到Rv id编号为0的RV的起点之间的起点区间内的一个4等分点。
如下表格给出了一种16RV的起点位置信息配置:
表5
Figure PCTCN2019124795-appb-000019
通过表4和表5可以看出,M的取值越大,M个RV的起点位置对编码后的母码进行更细致的、更均匀的分割。
再例如,每个RV的起点位置根据TB编码后的母码的长度、M、RV的起点位置在M个RV的起点位置中的编号和预设比特偏移量确定。可以理解,当TB分割成多个CB时,上述所说的RV的数量M和M个RV的起点位置信息是指TB中每个CB的RV的数量和RV的起点位置信息。
例如,可以根据下述公式(9),计算每个RV的起点位置,具体地:
Figure PCTCN2019124795-appb-000020
其中,
Figure PCTCN2019124795-appb-000021
表示第i个RV的起点位置,L表示编码后的母码长度,RV (i)表示第i个RV的编号,满足RV (i)∈{0,1,2,…,M-1},a表示一个常量的位置偏移,缺省值例如可以为2。
一种可选的,上述RV配置信息用于指示RV的数量M,上述RV配置信息例如可以通过携带M的取值,或者,用于表示M的取值的索引来指示该M。又一可选的,上述RV配置信息用于指示M个RV的起点位置信息,上述RV配置信息例如可以通过携带表示每个RV的起点位置的索引来指示该M个RV的起点位置信息,或者,通过携带用于指示该M个RV的起点位置信息的表格的索引,来指示M个RV的起点位置信息。需要说明的是,上述RV配置信息可以用于指示RV的数量M和M个RV的起点位置信息中的至少一个,还可以采用其它方式进行指示,对此不进行限定。
需要说明的是,当上述RV配置信息仅用于指示RV的数量M时,该M个RV的起点位置信息可以为预设在网络设备和终端设备上的,也可以由网络设备和终端设备通过例如前述公式(9)自行计算出来的,对此不进行限定。
另外,在上述实现方式中,该M个RV的顺序可以为预先配置或存储在网络设备和终端设备上的,还可以为网络设备通过RV配置信息指示给终端设备的(即上述第一RV信息还可以包括M个RV的顺序),还可以为网络设备通过第二信息指示给终端设备的。该第二信息可以承载于第一信令中,也可以承载于第一信令之外的第二信令中,所述第二信令可以为高层信令或物理层信令。或者说,第二信令用于指示M个RV的顺序。关于高层信令的描述可以参见前述描述第一信令时的解释。
具体实现时,RV配置信息可以通过携带该M个RV的传输顺序,或者,通过携带用于指示该M个RV的传输顺序的索引,指示该M个RV的顺序等,对此不进行限定。
这里所说的M个RV的顺序用于指示在HARQ过程中该M个RV的传输顺序。例如,以网络设备为发送设备、终端设备为接收设备为例,则网络设备在与终端设备传输TB的过程中,若网络设备向终端设备发送TB的M个RV中的一个RV,假定为第一RV。此时若该TB未被终端设备正确译码,则网络设备可以向终端设备重传与该第一RV传输顺序相邻的下一个RV,假定下一个RV为第二RV。也就是说,第二RV为M个RV中的一个、且第二RV与第一RV不同,同时,第一RV和第二RV的发送顺序满足M个RV的顺序所指示的顺序关系。反之依然,当网络设备为接收设备,终端设备为发送设备时,终端设备向网络设备发送的TB的RV也满足M个RV的顺序所指示的顺序关系,对此不再加以赘述。可以理解,在本实施例中,顺序关系与传输顺序含义相同,对此不进行区分。
其中,该M个RV的顺序所指示的传输顺序(也可以称为顺序关系)可以为基于链路仿真的结果所确定出的传输顺序,也可以为网络设备基于如下原则所确定的传输顺序:
在M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且相邻的两个RV的比特起点在编码后的母码中距离最远;或者,
在M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
上述原则可以通过如下公式(10)至公式(12)表示:
RV (i)=arg minsub(Λ (i)(i-1))      (10)
其中,
Figure PCTCN2019124795-appb-000022
表示RV (i-1)所有L rv个bit在编码后比特的位 置,满足:第l个bit所在的位置
Figure PCTCN2019124795-appb-000023
L rv表示该RV (i-1)包含的bit数目,即RV (i-1)的长度。l表示第l个bit,
Figure PCTCN2019124795-appb-000024
表示第l个比特的位置。L表示编码后的母码的长度,mod()用于确保当该RV (i-1)的第l个比特的位置在超过编码后的母码的长度后,可以从编码后的母码的起始位置重新开始进行循环移位。
sub(Λ (i)(i-1))表示Λ (i)与Λ (i-1)交叠元素的个数,若满足相同sub(Λ (i)(i-1))的RV (i)取值有多个,定义为集合
Figure PCTCN2019124795-appb-000025
可以从RV集合中选择一个RV (i),选择方法包括但不限于如下两种:
选择方式1:取相距最远的RV,如下述公式(11)所示:
Figure PCTCN2019124795-appb-000026
选择方式2:取包含系统信息比特数最多的RV,如下述公式(12)所示:
Figure PCTCN2019124795-appb-000027
其中,NumSysBit(.)表示RV中包含的系统信息比特的数量。
以M取值为8为例,假定TBS为1000比特,编码后母码长度为3000比特,传输码率为0.75,RV (i)的起点初始化为
Figure PCTCN2019124795-appb-000028
则后续RV的起点位置和RV的顺序关系可以如下述表6所示:
表6
Figure PCTCN2019124795-appb-000029
通过上述确定RV传输顺序的方式,可以尽量减少相邻传输顺序的RV的交叠信息,即最大化当前RV传输相比前一次传输的RV新增的校验比特数,从而使接收该TB的设备可以对接收到的所有RV进行软合并来获得更好的译码增益。
下面通过一个具体的示例来对采用精细化的RV如何提高频谱效率进行说明,具体地:
图3为本申请实施例提供的一种频谱资源示意图。如图3所示,假设TBS为700比特,当前信道条件下正确译码所需的比特数为1000,LDPC编码后的母码的比特数为3000。
以现有的4RV为例,即M取值为4为例,相邻两个RV起点位置的间隔约等于750比特(即编码后的母码的比特数与M的商)。为保证所有RV可以遍历编码后的母码的所有比特位置,RV的最小长度为750比特。由于当前信道条件下正确译码所需的比特数为1000,也就是说,正确译码需要传输2个RV。在该场景下,传输TB所使用的总的传输比特数目为1500比特,频谱资源浪费了500比特。
若采用比4RV更加精细化的8RV,则相邻两个RV起点位置的间隔为375比特。为保证所有RV可以遍历编码后的母码的所有比特位置,RV的最小长度为375比特。在该场景下,正确译码需要传输3个RV,传输TB所使用的总的传输比特数目为1125比特,频谱资源浪费了125比特。
通过上述示例可以看出,如果进行更精细化的RV起点设置,则单次传输的RV的颗 粒度可以更小,多次HARQ传输的RV能够更准确的逼近正确译码所需的最小资源数,能够更准确的适配当前信道的承载能力,减少正确译码时的资源浪费,提高了频谱效率。
前述实施例介绍了如何基于第一信息所指示的RV配置信息,改善传输TB的频谱效率。下面针对如何基于第一信息所指示的TBS配置信息,改善传输TB的频谱效率,具体地:
在本实施例中,上述TBS配置信息所配置的第一TBS可以为扩展后的TBS,也可以为未扩展的TBS。这里所说的未扩展的TBS可以为采用现有技术中计算TBS的方式所确定的TBS,例如前述方法实施例中关于NR系统中现有的传输TB过程的描述中,通过步骤一和步骤二所确定的TBS。这里所说的扩展后的TBS大于未扩展的TBS。相比未扩展的TBS,采用扩展后的TBS传输TB,可以使相同的资源单元上传输的系统信息比特更多,从而可以提高TB的等效的传输码率,甚至超过1.0,进而可以提高频谱效率。
在一种可能的实施方式中,上述TBS配置信息可以包括使能信息,该使能信息用于指示是否扩展传输块大小,即使能扩展传输块大小或不使能扩展传输块大小。当使能信息用于指示扩展传输块大小时,第一TBS为扩展后的TBS,即网络设备可以使用扩展后的TBS传输TB。当使能信息用于指示不扩展传输块大小时,第一TBS为未扩展的TBS,网络设备可以使用前述方法实施例中关于NR系统中现有的传输TB过程的描述中,通过步骤一至步骤二所确定的TBS传输TB。
另一种可能的实施方式中,上述TBS配置信息可以通过是否指示传输块大小的扩展因子,来间接的指示是否扩展传输块大小。例如,当TBS配置信息指示传输块大小的扩展因子、且该扩展因子大于1时,第一TBS为扩展后的TBS,即网络设备可以使用扩展后的TBS传输TB。当TBS配置信息未指示传输块大小的扩展因子时,或者,所指示的传输块大小的扩展因子的取值为1时,第一TBS为未扩展的TBS,网络设备可以使用前述方法实施例中关于NR系统中现有的传输TB过程的描述中,通过步骤一至步骤二所确定的TBS传输TB。
可以理解,当上述TBS配置信息所指示的第一TBS为未扩展的TBS时,网络设备和终端设备可以根据前述方法实施例中关于NR系统中现有的传输TB过程的描述中步骤一和步骤二所示的方式,确定第一TBS。
下面重点描述当TBS配置信息所配置的第一TBS为扩展后的TBS时,网络设备和终端设备如何确定第一TBS:
当上述TBS配置信息通过所指示传输块大小的扩展因子,间接指示扩展传输块大小时,可以直接根据所指示的传输块大小的扩展因子,确定第一TBS的取值。关于扩展因子β的描述,以及,关于如何根据传输块的扩展因子β,计算第一TBS的取值可以参见后续描述。
当上述TBS配置信息通过使能信息指示扩展传输块大小时,所述第一TBS的取值可以通过如下几种方式确定:
方式1:所述第一TBS的取值为预定义的取值。
方式2:所述第一TBS的取值可以为根据传输块大小的扩展因子β确定的取值。其中,该扩展因子β可以大于1。下面对如何根据传输块大小的扩展因子β确定所述第一TBS的取值进行说明:
发送设备可以依据调度的资源单元的数量、传输码率、调制方式、空分复用的层数、扩展因子β,确定初始扩展后的TBS,具体可以如下述公式(13)所示:
N′ info=N·R·Q m·v·β      (13)
其中,N′ info表示初始扩展后的TBS,关于其他参数的描述可以参见前述关于公式(1)中参数的描述,其含义相同,不再赘述。
然后,发送设备可以根据所确定的初始扩展后的TBS(即N′ info),确定所述第一TBS。其中,如何根据初始扩展后的TBS,确定所述第一TBS可以采用前述方法实施例中关于NR系统中现有的传输TB过程的描述中,步骤二所示的基于初始TBS确定TBS方式,在此不再赘述。
可以理解,该传输块大小的扩展因子β可以为预定义的β,也可以为根据TB的传输参数确定的扩展因子。这里所说的传输参数例如可以为调制与编码方案(modulation and coding scheme,MCS)。则在该实现方式下,网络设备和终端设备上预设有传输参数与传输块大小的扩展因子β的映射关系。该传输参数与传输块大小的扩展因子β的映射关系可以如下述表7所示:
表7
传输参数 β取值
传输参数1 β1
传输参数2 β2
传输参数3 β3
…… ……
传输参数x βx
本申请实施例不限定上述终端设备获取TB的传输参数的方式,例如,网络设备可以通过现有的方式,向终端设备指示TB的传输参数,对此不再赘述。
可选的,上述传输块大小的扩展因子β也可以由网络设备指示给终端设备,例如,网络设备通过使能信息指示该传输块大小的扩展因子β,或者,网络设备通过TBS配置信息的其他字段指示该传输块大小的扩展因子β,或者,网络设备通过第三信息指示该传输块大小的扩展因子β。这里所说的第三信息可以承载于第一信令中,也可以承载于第一信令之外的第三信令中,所述第三信令可以为高层信令或物理层信令。或者说,第三信令用于指示该扩展因子β。关于高层信令的描述可以参见前述描述第一信令时的解释。例如第三信令可以为携带有下行控制信息(downlink control information,DCI)的信令,第三信息可以携带在DCI中。
可以理解,若上述使能信息用于指示不扩展传输块大小,即不使能扩展传输块大小,即便网络设备通过上述任一方式向终端设备指示了传输块大小的扩展因子β,网络设备和终端设备仍然会采用未扩展的TBS进行TB的传输。
本实施例不限定上述传输块大小的扩展因子β的取值,该传输块大小的扩展因子β的取值可以为整数型也可以为小数型。当传输块大小的扩展因子β的取值为整数型时,该传输 块大小的扩展因子β可以整数倍扩展初始TBS。当传输块大小的扩展因子β的取值为小数型时,该传输块大小的扩展因子β可以小数倍扩展初始TBS。因此,上述整数型的扩展因子也可以称为激进型的扩展因子,上述小数型的扩展因子也可以称为缓和型的扩展因子。
例如,以扩展后的TBS可以使TB的等效的传输码率大于1或等于1为例,则当传输块大小的扩展因子β的取值为整数型时,该传输块大小的扩展因子β的取值可以如下述公式(14)所示;
β=arg min{β·R≥1,β∈Z +}      (14)
在该实现方式下,传输块大小的扩展因子β的取值例如可以为2、3、4、5等中任一值。
当上述传输块大小的扩展因子β由网络设备通过TBS配置信息指示,或者,通过使能信息指示,或者,网络设备通过第三信息指示,则网络设备可以通过如下占用两个比特的字段指示该传输块大小的扩展因子β。当第三信息携带在DCI中时,该字段可以为DCI中的scaling factor field字段。
其中,该字段的取值与传输块大小的扩展因子β的对应关系可以如下述表8所示:
表8
字段 β取值
00 2
01 3
10 4
11 5
以该传输块大小的扩展因子β的取值小于2、且扩展后的TBS可以使TB的等效的传输码率大于1或等于1为例,当传输块大小的扩展因子β的取值为小数型时,则该传输块大小的扩展因子β的取值可以如下述公式(15)所示:
β=arg min{β·R≥1,β∈{1.2,1.4,1.6,1.8}}       (15)
以该传输块大小的扩展因子β的取值小于2为例,当上述传输块大小的扩展因子β由网络设备通过TBS配置信息指示,或者,通过使能信息指示,或者,网络设备通过第三信息指示,则网络设备可以通过如下占用两个比特的字段指示该传输块大小的扩展因子β。当第三信息携带在DCI中时,该字段可以为DCI中的scaling factor field字段。
其中,该字段的取值与传输块大小的扩展因子β的对应关系可以如下述表9所示:
表9
字段 β取值
00 1.2
01 1.4
10 1.6
11 1.8
可以理解,虽然上述示例均以直接指示该传输块大小的扩展因子β的取值为例进行了说明和介绍,但是,本领域技术人员可以理解的是,也可以通过指示传输块大小的扩展因子β的取值对应的索引,间接的指示传输块大小的扩展因子β的取值,其实现方式类似,对 此不再赘述。
另外,当上述传输块大小的扩展因子β存在多个取值时,例如可以根据当前信道条件、频谱效率要求等,选择合适的取值,以对TBS进行适度的扩展,确保了TBS扩展的准确性。
通过上述扩展TBS的方法,在满足当前NR中数据信道的LDPC编码要求的同时,可以提升TB的等效的传输码率,使该等效的传输码率甚至可以大于1.0,可以改善数据传输的频谱效率。
可以理解,当上述第一信息用于指示TBS配置信息和RV配置信息时,可以将扩展TBS和精细化RV结合使用。即,可以先根据TBS配置信息,确定扩展后的TBS,然后,使用取值较大的M,采用更精细化的RV进行数据传输,进一步改善数据传输的频谱效率,其实现方式可以参见前述关于两者的分别描述,对此不再赘述。
需要说明的是,上述扩展TBS和/或精细化RV是两个相对独立的方案,即都可以提高等效的传输码率,甚至可以使等效的传输码率大于1.0。因此,基于扩展后的TBS的等效的传输码率的取值,可以进行‘扩展TBS‘和/或‘精细化RV’的联合设计,并通过前述所说的方式指示给终端设备,以适用于不同的信道条件下和不同传输要求下的数据传输。
在一些实施例中,扩展TBS后,等效的传输码率越高,实际传输的RV长度会变小。为了保证所有RV能遍历编码后的母码的所有比特,所以需要采用更精细化的RV,即RV的起点数目要更多,从而可以结合HARQ合并译码的增益,确保数据传输的可靠性。下面通过一个示例进行举例说明:
假定初始传输码率(即未进行TBS扩展和精细化RV的码率,也可以称为通过现有技术的方式确定的传输码率)为3/4,以采用激进型的传输块大小的扩展因子β对TBS进行扩展为例,假定传输块大小的扩展因子β的取值为2,此时,等效的传输码率约等于3/2(即初始码率与扩展因子的乘积)。可以理解,这里所说的约等于是因为初始TBS扩展2倍后,需要基于前述方法实施例中关于NR系统中现有的传输TB过程的描述中,步骤二所示的方式确定扩展后的TBS的取值,在采用该方式确定的扩展后的TBS的取值,近似为初始TBS的2倍。此时,等效的码率较高,宜选择更精细化的RV设计,例如16RV。
若采用缓和型的传输块大小的扩展因子β对TBS进行扩展为例,假定传输块大小的扩展因子β的取值为1.4,此时,等效的传输码率约等于1.05(即初始码率与扩展因子的乘积)。可以理解,这里所说的约等于是因为初始TBS扩展1.4倍后,需要基于前述方法实施例中关于NR系统中现有的传输TB过程的描述中,步骤二所示的方式确定扩展后的TBS的取值,在采用该方式确定的扩展后的TBS的取值,近似为初始TBS的1.05倍。此时,等效的传输码率较低,宜选择一般的RV设计,例如8RV。
另外,当上述第一信息用于指示TBS配置信息和RV配置信息时,若TBS配置信息用于指示传输块大小的扩展因子β,且RV配置信息用于指示RV的数量M时,例如可以通过如下述表10所示的方式进行指示:
表10
Figure PCTCN2019124795-appb-000030
Figure PCTCN2019124795-appb-000031
可以理解,上述表10仅是一种示意,并不构成对第一信息如何指示传输块大小的扩展因子β,以及,RV的数量M进行限定。另外,当上述RV配置信息用于指示M个RV的起点位置信息时,也可以采用类似表10所示的方式,对此不再赘述。
本申请实施例提供的数据传输方法,网络设备可以通过第一信息向终端设备指示TBS配置信息和/或RV配置信息,从而可以通过TBS配置信息和/或RV配置信息,来扩展TBS和/或精细化RV,从而使得网络设备与终端设备可以采用扩展TBS和/或精细化RV进行TB传输,从而可以改善传输TB时的频谱效率。
图4为本申请实施例提供的一种通信装置的结构示意图。本实施例所涉及的通信装置可以为前述所说的网络设备,也可以为应用于网络设备的芯片。该通信装置可以用于执行上述方法实施例中网络设备的动作。如图4所示,该通信装置可以包括:发送模块11和接收模块12。可选的,该通信装置还包括:处理模块13。其中,
所述发送模块11,用于向终端设备发送第一信息,,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
所述接收模块12,用于从所述终端设备接收传输块,或者,所述发送模块11,还用于向所述终端设备发送传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
可选的,所述处理模块13,用于确定所述TBS配置信息和/或冗余版本RV配置信息,或者,用于确定第一TBS和/或第一RV信息。
可选的,所述处理模块13,用于确定第一传输块。所述第一传输块为所述接收模块12接收的所述传输块,或者,所述发送模块11发送的所述传输块。所述第一传输块的解释参照方法实施例的表述。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息,其中,所述M为大于或等于1的整数。作为一种示例,每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
作为一种可能的实施方式,所述处理模块13,用于确定所述M个RV的顺序。可选的,所述发送模块11,还用于向所述终端设备发送第二信息,所述第二信息用于指示所述M个RV的顺序。或者,所述第一RV信息还包括所述M个RV的顺序。
在该实现方式下,所述接收模块12,具体用于从所述终端设备接收所述传输块的第一RV,或者,所述发送模块11,具体用于向所述终端设备发送所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述接收模块12,还用于从所述终端设备接收所述传输块的第二RV,或者,所述发送模块11,还用于向所述终端设备发送所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块的传输参数之间存在对应关系。或者,所述发送模块11,还用于向所述终端设备发送第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
本申请实施例提供的通信装置,可以执行上述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
图5为本申请实施例提供的另一种通信装置的结构示意图。本实施例所涉及的通信装置可以为前述所说的终端设备,也可以为应用于终端设备的芯片。该通信装置可以用于执行上述方法实施例中终端设备的动作。如图5所示,该通信装置可以包括:接收模块21和发送模块22,可选的,该通信装置还可以包括处理模块23。其中,
接收模块21,用于接收来自网络设备的第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
发送模块22,用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块;或者,所述接收模块21,还用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块,其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
可选的,所述处理模块23,用于确定所述TBS配置信息和/或所述RV配置信息,或者说,确定所述第一TBS和/或所述第一RV信息。具体的,所述处理模块23根据所述第一信息确定所述TBS配置信息和/或所述RV配置信息。
可选的,所述处理模块23,用于确定第一传输块。所述第一传输块为所述接收模块21接收的所述传输块,或者,所述发送模块22发送的所述传输块。
作为一种可能的实施方式,所述第一RV信息包括以下信息中的至少一个:RV的数量M、M个所述RV的起点位置信息,其中,所述M为大于或等于1的整数。作为一种示例, 每个所述RV的起点位置可以根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。例如,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
作为一种可能的实施方式,所述处理模块23,用于确定所述M个RV的顺序。可选的,所述接收模块21,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示所述M个RV的顺序。或者,所述第一RV信息还包括所述M个RV的顺序。
在该实现方式下,所述发送模块22,具体用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第一RV,或者,所述接收模块21,具体用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第一RV,所述第一RV为所述M个RV中的RV。可选的,所述发送模块22,还用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送所述传输块的第二RV,或者,所述接收模块21,还用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收所述传输块的第二RV,所述第二RV为所述M个RV中的RV,所述第一RV和所述第二RV不同,且所述第一RV和所述第二RV的发送顺序满足所述顺序所指示的顺序关系。
可选的,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
作为一种可能的实施方式,所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。或者,所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。可选的,当所述使能信息用于指示扩展传输块大小时,所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,所述扩展因子与所述传输块的传输参数之间存在对应关系。或者,所述接收模块21,还用于接收来自所述网络设备的第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
本申请实施例提供的通信装置,可以执行上述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述设备的存储器中,由上述设备的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一 个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图6为本申请实施例提供的又一种通信装置的结构示意图。如图6所示,该通信装置可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、处理器31控制发送器34的发送动作;存储器32可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使通信装置的处理器31执行上述方法实施例中终端设备的处理动作,使接收器33执行上述方法实施例中终端设备的接收动作,使发送器34执行上述方法实施例中终端设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
图7为本申请实施例提供的又一种通信装置的结构示意图。如图7所示,该通信装置可以包括:处理器41(例如CPU)、存储器42;存储器42可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:电源43、通信总线44以及通信端口45。通信总线44用于实现元件之间的通信连接。上述通信端口45用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使通信装置的处理器41执行上述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可 用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (36)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
    所述网络设备从所述终端设备接收传输块,或者,所述网络设备向所述终端设备发送传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一RV信息包括以下信息中的至少一个:
    RV的数量M;
    M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。
  4. 根据权利要求3所述的方法,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,
    每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一RV信息还包括:所述M个RV的顺序;或者,
    所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述M个RV的顺序。
  6. 根据权利要求5所述的方法,其特征在于,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,
    在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
  7. 根据权利要求1-6任一项所述的方法,其特征在于:
    所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  8. 根据权利要求1-7任一项所述的方法,其特征在于:
    所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。
  9. 根据权利要求8所述的方法,其特征在于,所述使能信息用于指示扩展传输块大小,其中:
    所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,
    所述扩展因子与所述传输块的传输参数之间存在对应关系;或者,
    所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  10. 一种数据传输方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
    所述终端设备根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块,或者,所述终端设备根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块,其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
  11. 根据权利要求10所述的方法,其特征在于:
    所述第一RV信息包括以下信息中的至少一个:
    RV的数量M;
    M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。
  12. 根据权利要求11所述的方法,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。
  13. 根据权利要求12所述的方法,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,
    每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第一RV信息还包括所述M个RV的顺序;或者,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示所述M个RV的顺序。
  15. 根据权利要求14所述的方法,其特征在于,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,
    在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
  16. 根据权利要求10-15任一项所述的方法,其特征在于:
    所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  17. 根据权利要求10-16任一项所述的方法,其特征在于:
    所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。
  18. 根据权利要求17所述的方法,其特征在于,所述使能信息用于指示扩展传输块大小,其中:
    所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,
    所述扩展因子与所述传输块的传输参数之间存在对应关系;或者,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  19. 一种通信装置,其特征在于,所述装置包括发送模块和接收模块:
    所述发送模块,用于向终端设备发送第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
    所述接收模块,用于从所述终端设备接收传输块,或者,所述发送模块,还用于向所述终端设备发送传输块;其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
  20. 根据权利要求19所述的装置,其特征在于:
    所述第一RV信息包括以下信息中的至少一个:
    RV的数量M;
    M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。
  21. 根据权利要求20所述的装置,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。
  22. 根据权利要求21所述的装置,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,
    每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
  23. 根据权利要求20-22任一项所述的装置,其特征在于,所述第一RV信息还包括:所述M个RV的顺序;或者,
    所述发送模块,还用于向所述终端设备发送第二信息,所述第二信息用于指示所述M个RV的顺序。
  24. 根据权利要求23所述的装置,其特征在于,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,
    在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
  25. 根据权利要求19-24任一项所述的装置,其特征在于:
    所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  26. 根据权利要求19-25任一项所述的装置,其特征在于:
    所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。
  27. 根据权利要求26所述的装置,其特征在于,所述使能信息用于指示扩展传输块大小,其中:
    所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,
    所述扩展因子与所述传输块的传输参数之间存在对应关系;或者,
    所述发送模块,还用于向所述终端设备发送第三信息,所述第三信息用于指示传输块 大小的扩展因子,所述扩展因子大于1。
  28. 一种通信装置,其特征在于,所述装置包括接收模块和发送模块,其中:
    所述接收模块,用于接收来自网络设备的第一信息,所述第一信息用于指示传输块大小TBS配置信息和/或冗余版本RV配置信息,所述TBS配置信息用于配置第一传输块大小TBS,所述RV配置信息用于配置第一RV信息;
    所述发送模块,用于根据所述TBS配置信息和/或所述RV配置信息,向所述网络设备发送传输块;或者,所述接收模块,还用于根据所述TBS配置信息和/或所述RV配置信息,从所述网络设备接收传输块,其中,所述传输块的TBS为所述第一TBS,和/或所述传输块的RV信息为所述第一RV信息。
  29. 根据权利要求28所述的装置,其特征在于:
    所述第一RV信息包括以下信息中的至少一个:
    RV的数量M;
    M个所述RV的起点位置信息;其中,所述M为大于或等于1的整数。
  30. 根据权利要求29所述的装置,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、所述RV的起点位置在M个所述RV的起点位置中的编号确定。
  31. 根据权利要求30所述的装置,其特征在于,每个所述RV的起点位置根据传输块编码后的母码的长度、第一参数、所述RV的起点位置在M个所述RV的起点位置中的编号确定,所述第一参数用于确定传输块采用的编码方式对应的校验矩阵维度;或者,
    每个所述RV的起点位置根据传输块编码后的母码的长度、所述M、所述RV的起点位置在M个所述RV的起点位置中的编号和预设比特偏移量确定。
  32. 根据权利要求29-31任一项所述的装置,其特征在于,所述第一RV信息还包括:所述M个RV的顺序;或者,
    所述接收模块,还用于接收来自所述网络设备的第二信息,所述第二信息用于指示所述M个RV的顺序。
  33. 根据权利要求32任一项所述的装置,其特征在于,在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且所述相邻的两个RV的比特起点在所述传输块编码后的母码中距离最远;或者,
    在所述M个RV的顺序所指示的顺序关系中,相邻的两个RV中重叠的母码比特数目最少,且重叠的母码比特中包括的系统信息比特最多。
  34. 根据权利要求28-33任一项所述的装置,其特征在于:
    所述TBS配置信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
  35. 根据权利要求28-34任一项所述的装置,其特征在于:
    所述TBS配置信息包括使能信息,所述使能信息用于指示是否扩展传输块大小。
  36. 根据权利要求35所述的装置,其特征在于,所述使能信息用于指示扩展传输块大小,其中:
    所述使能信息还用于指示传输块大小的扩展因子,所述扩展因子大于1;或者,
    所述扩展因子与所述传输块的传输参数之间存在对应关系;或者,
    所述接收模块,还用于接收来自所述网络设备的第三信息,所述第三信息用于指示传输块大小的扩展因子,所述扩展因子大于1。
PCT/CN2019/124795 2018-12-21 2019-12-12 数据传输方法和通信装置 WO2020125535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19900950.7A EP3890226A4 (en) 2018-12-21 2019-12-12 DATA TRANSMISSION METHOD AND COMMUNICATION DEVICE
US17/352,749 US11895534B2 (en) 2018-12-21 2021-06-21 Data transmission method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811573994.0 2018-12-21
CN201811573994.0A CN111355562B (zh) 2018-12-21 2018-12-21 数据传输方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/352,749 Continuation US11895534B2 (en) 2018-12-21 2021-06-21 Data transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020125535A1 true WO2020125535A1 (zh) 2020-06-25

Family

ID=71101984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124795 WO2020125535A1 (zh) 2018-12-21 2019-12-12 数据传输方法和通信装置

Country Status (4)

Country Link
US (1) US11895534B2 (zh)
EP (1) EP3890226A4 (zh)
CN (1) CN111355562B (zh)
WO (1) WO2020125535A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660056B (zh) * 2020-05-12 2024-05-17 华为技术有限公司 信息传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559201A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 传输方式的指示方法及装置
WO2018031620A1 (en) * 2016-08-12 2018-02-15 Intel IP Corporation Uplink grant-free noma (non-orthogonal multiple access) transmissions
CN107852313A (zh) * 2015-07-24 2018-03-27 Lg 电子株式会社 下行链路控制信息接收方法和用户设备以及下行链路控制信息发送方法和基站

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809920B (zh) * 2007-07-30 2014-12-17 马维尔以色列(M.I.S.L)有限公司 无线通信系统的速率匹配
US8532164B2 (en) * 2008-03-12 2013-09-10 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
CN101677454B (zh) * 2008-09-19 2013-01-16 中兴通讯股份有限公司 支持mimo模式的高速共享控制信道指示信息传输方法
CN103648175B (zh) * 2010-03-22 2017-09-29 华为技术有限公司 多子帧调度方法、系统和设备
CN103378936A (zh) * 2012-04-28 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
CN107046453B (zh) * 2016-02-05 2021-02-12 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及系统
US10965407B2 (en) * 2017-02-02 2021-03-30 Sharp Kabushiki Kaisha User equipments, base stations and communication methods
JP2020523934A (ja) * 2017-06-15 2020-08-06 コンヴィーダ ワイヤレス, エルエルシー ビームベース下りリンク制御シグナリング
EP3646507A4 (en) * 2017-06-27 2021-03-17 Apple Inc. UPLOAD CONTROL (UCI) INFORMATION TRANSMISSION AND HYBRID AUTOMATIC REPEAT REQUEST PROCESS (HARQ) IDENTIFICATION FOR SHARED PHYSICAL UPLOAD LINK CHANNEL WITHOUT AUTHORIZATION (PUSCH)
WO2019033389A1 (en) * 2017-08-18 2019-02-21 Lenovo (Beijing) Limited AGGREGATION OF MULTIPLE PROGRAMMED INTERVALS IN HARQ PROCEDURE
EP3679679A2 (en) * 2017-09-08 2020-07-15 Convida Wireless, LLC Communications management using down link control information
EP3731586A1 (en) * 2017-09-11 2020-10-28 Telefonaktiebolaget LM Ericsson (publ) Preemption indication for new radio
US11956182B2 (en) * 2020-06-05 2024-04-09 Qualcomm Incorporated Techniques for configuring downlink control information for multi-beam full-duplex operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852313A (zh) * 2015-07-24 2018-03-27 Lg 电子株式会社 下行链路控制信息接收方法和用户设备以及下行链路控制信息发送方法和基站
CN106559201A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 传输方式的指示方法及装置
WO2018031620A1 (en) * 2016-08-12 2018-02-15 Intel IP Corporation Uplink grant-free noma (non-orthogonal multiple access) transmissions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details of PDSCH repetitions", 3GPP TSG RAN WG1 MEETING #93 R1-1806494, 25 May 2018 (2018-05-25), XP051441696, DOI: 20200226220804X *
See also references of EP3890226A4
ZTE ET AL.: "Considerations on BG Determination", 3GPP TSG RAN WG1 MEETING #91 R1-1721440, 1 December 2017 (2017-12-01), XP051363886, DOI: 20200226220529X *

Also Published As

Publication number Publication date
EP3890226A1 (en) 2021-10-06
CN111355562A (zh) 2020-06-30
CN111355562B (zh) 2021-06-15
EP3890226A4 (en) 2022-01-19
US11895534B2 (en) 2024-02-06
US20210314814A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR20220132486A (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
WO2018082661A1 (zh) 一种数据传输方法和装置
CN108390741B (zh) 数据传输方法和设备
WO2018099196A1 (zh) 一种编码和调制方法、通信装置
AU2017426621B2 (en) Method and apparatus
US11316725B2 (en) Wireless communication transceiver and wireless communication method
CN103155470A (zh) 在无线通信系统中的方法和装置
CN108347295B (zh) 一种数据传输方法及装置
WO2019157669A1 (zh) 通信方法及装置
WO2018201831A1 (zh) 通信方法和装置
EP3595220B1 (en) Method and apparatus for sending and receiving feedback information
JP7092795B2 (ja) データ処理方法およびデータ処理装置
WO2019056369A1 (zh) 通信方法和装置
CN113056882A (zh) 在无线通信系统中使用多个mcs的数据通信方法和设备
WO2018201984A1 (zh) 数据的传输方法和设备
WO2020125535A1 (zh) 数据传输方法和通信装置
WO2021134717A1 (zh) 数据传输方法及装置
WO2014110812A1 (zh) 信息传输方法和设备
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2022140907A1 (zh) 一种数据发送方法及装置
WO2017054571A1 (zh) 一种数据传输方法、设备和系统
WO2021227834A1 (zh) 信息传输方法、装置及存储介质
WO2022268114A1 (zh) 一种调制和编码方案mcs表格确定方法及装置
WO2022126648A1 (zh) 一种信息传输方法及其装置
WO2021062791A1 (zh) 一种上行控制信息的传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900950

Country of ref document: EP

Effective date: 20210701