WO2020125502A1 - 电池模组及其制造方法、电池包及车辆 - Google Patents

电池模组及其制造方法、电池包及车辆 Download PDF

Info

Publication number
WO2020125502A1
WO2020125502A1 PCT/CN2019/124364 CN2019124364W WO2020125502A1 WO 2020125502 A1 WO2020125502 A1 WO 2020125502A1 CN 2019124364 W CN2019124364 W CN 2019124364W WO 2020125502 A1 WO2020125502 A1 WO 2020125502A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
boundary
top cover
cover plate
positive electrode
Prior art date
Application number
PCT/CN2019/124364
Other languages
English (en)
French (fr)
Inventor
黄小腾
陈明澍
吴兴远
洪家荣
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020125502A1 publication Critical patent/WO2020125502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular, to a battery module and a method for manufacturing the same, a battery pack, and a vehicle.
  • the battery module When the battery module is used in a battery pack of a new energy vehicle, it is usually necessary to collect the temperature of the battery in the battery module.
  • the commonly used way to collect the battery temperature is to arrange a thermistor (such as NTC) on the connecting piece (located above the battery and connecting the electrode terminals of two adjacent batteries).
  • a thermistor such as NTC
  • this collection method will cause a large deviation between the collected temperature and the actual temperature of the battery, which causes the battery pack battery system to limit the power in advance or False alarm, etc.
  • the purpose of the present application is to provide a battery module and a manufacturing method thereof, a battery pack and a vehicle, which greatly reduce the deviation between the temperature collected by the thermistor and the actual temperature of the battery, Improve the accuracy of sampling.
  • the present application provides a battery module including a plurality of batteries arranged side by side along a longitudinal direction and a thermistor for collecting the temperature of each battery.
  • Each battery includes a top cover plate, a positive electrode terminal, a negative electrode terminal, and an explosion-proof valve.
  • the positive electrode terminal and the negative electrode terminal are spaced on the top cover plate, and the explosion-proof valve is provided on the top cover plate between the positive electrode terminal and the negative electrode terminal .
  • the top cover plate has a first boundary away from the positive electrode terminal in the lateral direction, and the explosion-proof valve has a third boundary near the positive electrode terminal in the lateral direction.
  • the thermistor is disposed on the top cover plate and is located between the first boundary of the top cover plate and the third boundary of the explosion-proof valve.
  • the negative electrode terminal has a fifth boundary away from the explosion-proof valve in the lateral direction, and the thermistor is located between the fifth boundary of the negative electrode terminal and the third boundary of the explosion-proof valve.
  • the negative electrode terminal also has a sixth boundary near the explosion-proof valve in the lateral direction, and the thermistor is located between the sixth boundary of the negative electrode terminal and the third boundary of the explosion-proof valve.
  • the thermistor is located between the fifth and sixth boundaries of the negative electrode terminal.
  • the explosion-proof valve further has a fourth boundary away from the positive electrode terminal, and the thermistor is located between the fourth boundary and the third boundary of the explosion-proof valve.
  • the battery module further includes: a circuit board disposed above the top cover plates of the plurality of batteries and between the positive electrode terminal and the negative electrode terminal.
  • the thermistor is electrically connected to the circuit board.
  • the battery module also includes: a wire, one end of the wire is connected to the circuit board, and the other end is connected to the thermistor.
  • Each battery also includes: an electrode assembly having a main body and positive and negative electrode tabs protruding from the main body; a case, which encapsulates the electrode assembly together with the top cover plate; a first adaptor, which is connected to the positive electrode tab of the electrode assembly and A positive electrode terminal; and a second adapter piece, connected to the negative electrode tab and the negative electrode terminal of the electrode assembly.
  • the first transition piece has a weak area.
  • a thermal pad or thermal adhesive is provided between the thermistor and the top cover of the battery.
  • the present application also provides a method for manufacturing a battery module, which includes the following steps: providing a plurality of batteries, and each battery includes a top cover plate, a positive electrode terminal, a negative electrode terminal, and an explosion-proof valve, the positive electrode The terminal and the negative electrode terminal are spaced on the top cover plate, and the explosion-proof valve is provided on the top cover plate between the positive electrode terminal and the negative electrode terminal.
  • the top cover plate has a first boundary away from the positive electrode terminal in the lateral direction.
  • a third boundary near the positive electrode terminal in the lateral direction arrange the plurality of batteries side by side in the longitudinal direction; provide the thermistor and position the thermistor between the first boundary of the top cover plate and the third boundary of the explosion-proof valve; And, fix the thermistor on the top cover plate.
  • the present application also provides a battery pack including the battery module described in the first aspect.
  • the present application also provides a vehicle that includes the battery pack described in the third aspect.
  • the melting point of the material of the positive electrode terminal is higher than the melting point of the material of the negative electrode terminal (that is, at the same current, the temperature of the positive electrode terminal rises fast and generates more heat)
  • the first adapter piece electrically connected to the positive electrode terminal is formed with In the weak area (due to the small overcurrent cross-section, its resistance is large and heat is generated), the heat generated in the weak area is also conducted to the positive electrode terminal and its vicinity, resulting in a higher temperature in the positive electrode terminal and its vicinity.
  • FIG. 1 is a perspective view of an embodiment of a battery module of the present application.
  • FIG. 2 is a perspective view of the battery module of the present application in another embodiment.
  • Fig. 3 is an exploded view of a single cell in the battery module.
  • Fig. 4 is a plan view of a single cell in the battery module.
  • FIG. 5 is a modification of FIG. 4.
  • FIG. 6 is a schematic diagram of the distribution of sampling points during the simulation experiment, where the letters a to q indicate the number of sampling points.
  • Fig. 7 is the simulation experiment results of different sampling points. For the sake of clarity, the results of temperature acquisition on the connection piece in the background art are given.
  • the battery module of the present application includes a plurality of batteries 1, the thermistor 2, a circuit board 3 and wires 4.
  • each battery 1 includes a top cover plate 11, a positive electrode terminal 12, a negative electrode terminal 13, an explosion-proof valve 14, an electrode assembly 15, a case 16, and a first turn The tab 17, the second adapter 18 and the electrolyte packaged in the casing 16.
  • the top cover plate 11 has a first boundary 111 away from the positive electrode terminal 12 and a second boundary 112 close to the positive electrode terminal 12 in the lateral direction X.
  • the top cover plate 11 may be made of metal material.
  • the positive electrode terminal 12 and the negative electrode terminal 13 are provided on the top cover 11 at intervals.
  • the negative electrode terminal 13 needs to be selected from a material with a higher melting point than that of the positive electrode terminal 12.
  • the material of the positive electrode terminal 12 may be aluminum
  • the material of the negative electrode terminal 13 may be copper. 4 to 6, the negative electrode terminal 13 has a fifth boundary 131 away from the explosion-proof valve 14 in the lateral direction X and a sixth boundary 132 close to the explosion-proof valve 14.
  • the explosion-proof valve 14 is provided on the top cover plate 11 and is located between the positive electrode terminal 12 and the negative electrode terminal 13. 4 to 6, the explosion-proof valve 14 has a third boundary 141 near the positive electrode terminal 12 and a fourth boundary 142 away from the positive electrode terminal 12 in the lateral direction X.
  • the electrode assembly 15 has a main body 151 and positive and negative electrode tabs 152 and 153 protruding from the main body 151.
  • the main body 151 includes a positive electrode sheet, a negative electrode sheet, and a separator, and the separator is disposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet, the separator, and the negative electrode sheet may be sequentially stacked and wound into a jelly-roll shape to form the main body 151 of the electrode assembly 15 (ie, the wound electrode assembly).
  • the positive electrode sheet, the separator, and the negative electrode sheet may also be stacked in a multilayer structure in order to form the body 151 of the electrode assembly 15 (ie, the stacked electrode assembly).
  • the positive electrode sheet includes a positive electrode current collector (such as aluminum foil) and a positive electrode active material (such as lithium cobalt oxide) coated on the surface of the positive electrode current collector, and the negative electrode sheet includes a negative electrode current collector (such as copper foil) and a negative electrode coated on the surface of the negative electrode current collector Active material (eg silicon).
  • the edge of the positive electrode current collector may have a blank area that is not covered by the positive electrode active material.
  • the positive electrode tab 152 may be directly formed by cutting the positive electrode current collector blank area; correspondingly, the negative electrode tab 153 may be directly cut by cutting the negative electrode collector Fluid blank area.
  • the material of the positive tab 152 may be aluminum foil
  • the material of the negative tab 153 may be copper foil.
  • a housing cavity is formed inside the housing 16 to accommodate the electrode assembly 15 and the electrolyte.
  • the case 16 forms an opening at one end, and the electrode assembly 15 can be placed into the receiving cavity of the case 15 via the opening.
  • the top cover 11 covers the opening of the case 16 and is fixedly connected (eg, welded) to the case 16 to encapsulate the electrode assembly 15 and the electrolyte in the case 16.
  • the housing 2 may be made of conductive metal materials such as aluminum or aluminum alloy, or may be made of insulating materials such as plastic.
  • the first transition piece 17 and the second transition piece 18 are used to realize the connection between the electrode assembly 15 and the positive electrode terminal 12 and the negative electrode terminal 13.
  • the first transition piece 17 is connected to the positive tab 152 and the positive electrode terminal 12 of the electrode assembly 15, and the second transition piece 18 is connected to the negative tab 153 and the negative electrode terminal 13 of the electrode assembly 15.
  • the first transition piece 17 is formed with a weak area 171 (that is, a fuse-like structure). When the current in the circuit is too large, the weak area 171 will first blow to break the circuit.
  • the circuit board 3 is provided above the top cover plate 11 of the plurality of batteries 1, and since the portion of the top cover plate 11 between the positive electrode terminal 12 and the negative electrode terminal 13 is not provided with other electrical connection parts, the circuit board 3 is located Between the positive electrode terminal 12 and the negative electrode terminal 13.
  • the circuit board 3 may be a flexible printed circuit (Flexible Printed Circuit, abbreviated as FPC).
  • the thermistor 2 is disposed on the top cover plate 11 of the battery 1 and connected to the circuit board 3 for collecting the temperature of the battery 1. Wherein, the thermistor 2 may be directly located on the top cover plate 11, or a thermally conductive pad or heat conductive adhesive may be added between the top cover plate 11 and the thermistor 2.
  • the tab 17 is formed with a weak area 171 (due to a small overcurrent cross-section, its resistance is large and heat is generated), the heat generated in the weak area 171 is also conducted to the positive electrode terminal 12 and its vicinity, resulting in the positive electrode terminal 12 The temperature in and around it is high.
  • the thermistor 2 when the thermistor 2 is disposed on the top cover plate 11 and is located between the first boundary 111 of the top cover plate 11 and the third boundary 141 of the explosion-proof valve 14 to collect the temperature, the collection of the thermistor 2 is greatly reduced The deviation between the temperature and the actual temperature of the battery 1 (ie, the internal temperature of the battery 1), thereby improving the accuracy of temperature sampling.
  • the thermistor 2 is located between the fifth boundary 131 of the negative electrode terminal 13 and the third boundary 141 of the explosion-proof valve 14.
  • the thermistor 2 is located between the sixth boundary 132 of the negative electrode terminal 13 and the third boundary 141 of the explosion-proof valve 14, and the circuit board 3 is laid over the thermistor 2 (ie the thermistor The resistor 2 is located between the circuit board 3 and the top cover 11).
  • the thermistor 2 is located between the fifth boundary 131 and the sixth boundary 132 of the negative electrode terminal 13, and the thermistor 2 is located on the side of the circuit board 3 in the lateral direction X.
  • the circuit board 3 is connected to the thermistor 2 through the wire 4 (that is, one end of the wire 4 is connected to the circuit board 3 and the other end is connected to the thermistor 2 ).
  • the "boundary" mentioned above refers to the maximum envelope position of the outer contour of the corresponding component in the transverse direction X (that is, it can be its own boundary line, or it can be made by the maximum envelope position (The extension line perpendicular to the transverse direction X).
  • the present application selects different positions on the top cover plate 11 of the battery 1 as sampling points (sampling points are sequentially numbered a to q) to perform simulation experiments (Including the case where the position on the connecting piece is used as a sampling point), and the results of the simulation experiment are shown in FIG. 7, where the horizontal axis is the sampling point number and the vertical axis is the difference between the collected temperature and the actual temperature of the battery 1.
  • the thermistor 2 when the thermistor 2 is set on the connecting piece (ie, busbar), the difference between the acquired temperature and the actual temperature of the battery 1 is the largest, exceeding 10°C; the thermistor 2 is set at the sampling point When a ⁇ h, the difference between the acquired collection temperature and the actual temperature of the battery 1 is above 2°C; when the thermistor 2 is set at the sampling points o ⁇ q, the acquired collection temperature and the actual temperature of the battery 1 Although the difference between the temperatures is less than 1°C, in actual application, the battery module needs to be placed in the cabinet, and the sampling points o ⁇ q are located at the edge of the battery 1, which is easily affected by the temperature of the cabinet and may be collected.
  • the connecting piece ie, busbar
  • the thermistor 2 is located between the fifth boundary 131 of the negative electrode terminal 13 and the third boundary 141 of the explosion-proof valve 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池模组及其制造方法、电池包及车辆,电池模组包括多个电池(1)以及热敏电阻(2)。各电池(1)包括顶盖板(11)、正极电极端子(12)、负极电极端子(13)和防爆阀(14)。正极电极端子(12)和负极电极端子(13)间隔设置于顶盖板(11)、防爆阀(14)设置于顶盖板(11)且位于正极电极端子(12)与负极电极端子(13)之间。顶盖板(11)在横向(X)上具有远离正极电极端子(12)的第一边界(111),防爆阀(14)在横向(X)上具有靠近正极电极端子(12)的第三边界(141)。热敏电阻(2)设置于顶盖板(11)上且位于顶盖板(11)的第一边界(111)与防爆阀(14)的第三边界(141)之间。由于正极电极端子(12)及其附近的温度较高,因此将热敏电阻(2)设置于顶盖板(11)的第一边界(111)与防爆阀(14)的第三边界(141)之间来采集温度时,极大地降低了热敏电阻(2)的采集温度与电池(1)的实际温度之间的偏差,从而提高了温度采样的准确性。

Description

电池模组及其制造方法、电池包及车辆 技术领域
本申请涉及电池技术领域,尤其涉及一种电池模组及其制造方法、电池包及车辆。
背景技术
电池模组应用于新能源汽车的电池包中时,通常需要采集电池模组中的电池的温度。目前,常用的采集电池温度的方式是:在连接片(位于电池上方并连接相邻两个电池的电极端子)上布置热敏电阻(如NTC)。当电池模组处于大电流工况中时,由于连接片上的过流较大,这种采集方式会导致采集的温度与电池的实际温度偏差较大,从而导致电池包的电池系统提前限功率或者误报警等。
发明内容
鉴于背景技术中存在的问题,本申请的目的在于提供一种电池模组及其制造方法、电池包及车辆,其极大地降低了热敏电阻采集的温度与电池的实际温度之间的偏差,提高了采样的准确性。
为了实现上述目的,在第一方面,本申请提供了一种电池模组,其包括沿纵向并排布置的多个电池以及用于采集各电池温度的热敏电阻。各电池包括顶盖板、正极电极端子、负极电极端子和防爆阀,正极电极端子和负极电极端子间隔设置于顶盖板、防爆阀设置于顶盖板且位于正极电极端子与负极电极端子之间。顶盖板在横向上具有远离正极电极端子的第一边界,防爆阀在横向上具有靠近正极电极端子的第三边界。热敏电阻设置在顶盖板上且位于顶盖板的第一边界与防爆阀的第三边界之间。
负极电极端子在横向上具有远离防爆阀的第五边界,热敏电阻位于负极电极端子的第五边界与防爆阀的第三边界之间。
负极电极端子在横向上还具有靠近防爆阀的第六边界,热敏电阻位于负 极电极端子的第六边界与防爆阀的第三边界之间。
热敏电阻位于负极电极端子的第五边界与第六边界之间。
防爆阀还具有远离正极电极端子的第四边界,热敏电阻位于防爆阀的第四边界与第三边界之间。
电池模组还包括:电路板,设置于所述多个电池的顶盖板上方,并位于正极电极端子与负极电极端子之间。热敏电阻电连接于电路板。
电池模组还包括:导线,导线的一端连接于电路板,另一端连接于热敏电阻。
各电池还包括:电极组件,具有主体以及伸出主体的正极极耳和负极极耳;壳体,与顶盖板一起封装电极组件;第一转接片,连接于电极组件的正极极耳和正极电极端子;以及第二转接片,连接于电极组件的负极极耳和负极电极端子。
第一转接片具有薄弱区。
热敏电阻与电池的顶盖板之间设置有导热垫或导热胶。
在第二方面,本申请还提供了一种电池模组的制造方法,其包括以下步骤:提供多个电池,并且各电池包括顶盖板、正极电极端子、负极电极端子和防爆阀,正极电极端子和负极电极端子间隔设置于顶盖板,防爆阀设置于顶盖板且位于正极电极端子与负极电极端子之间,顶盖板在横向上具有远离正极电极端子的第一边界,防爆阀在横向上具有靠近正极电极端子的第三边界;将所述多个电池沿纵向并排布置;提供热敏电阻并使热敏电阻位于顶盖板的第一边界与防爆阀的第三边界之间;以及,将所述热敏电阻固定在顶盖板上。
在第三方面,本申请还提供了一种电池包,其包括第一方面所述的电池模组。
在第四方面,本申请还提供了一种车辆,其包括第三方面所述的电池包。
本申请的有益效果如下:
由于正极电极端子材质的熔点高于负极电极端子材质的熔点(即在同等电流下,正极电极端子的温度上升快、产热多)、且与正极电极端子电连接的第一转接片形成有薄弱区(由于过流截面小,其电阻较大、产热较多),薄弱区产生的热量也会传导至正极电极端子及其附近,从而导致正极电极端 子及其附近的温度较高。因此,将热敏电阻设置于顶盖板的第一边界与防爆阀的第三边界之间来采集温度时,极大地降低了热敏电阻的采集温度与电池的实际温度之间的偏差,从而提高了温度采样的准确性。
附图说明
图1是本申请的电池模组在一实施例中的立体图。
图2是本申请的电池模组在另一实施例中的立体图。
图3是电池模组中的单电池的分解图。
图4是电池模组中的单电池的俯视图。
图5是图4的变形例。
图6是在仿真实验过程中的采样点位置分布示意图,其中字母a~q表示采样点的编号。
图7是不同采样点的仿真实验结果,为了清楚起见,给出了背景技术中在连接片上采集温度的结果。
其中,附图标记说明如下:
1电池                   152正极极耳
11顶盖板                153负极极耳
111第一边界             16壳体
112第二边界             17第一转接片
12正极电极端子          171薄弱区
13负极电极端子          18第二转接片
131第五边界             2热敏电阻
132第六边界             3电路板
14防爆阀                4导线
141第三边界             X横向
142第四边界             Y纵向
15电极组件              Z上下方向
151主体
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”是指两个或两个以上;除非另有规定或说明,术语“连接”、“固定”均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接,或信号连接;“连接”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”、等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
参照图1和图2,本申请的电池模组包括多个电池1、热敏电阻2、电路板3和导线4。
参照图3,所述多个电池1沿纵向Y并排布置,各电池1包括顶盖板11、正极电极端子12、负极电极端子13、防爆阀14、电极组件15、壳体16、第一转接片17、第二转接片18以及封装于壳体16的电解液。
参照图4至图6,顶盖板11在横向X上具有远离正极电极端子12的第一边界111以及靠近正极电极端子12的第二边界112。顶盖板11可采用金属材料制成。
正极电极端子12和负极电极端子13间隔设置于顶盖板11。在各电池1中,由于正极的电位高于负极的电位,为了防止电解液电化学腐蚀负极电极端子13,负极电极端子13需要选取熔点比正极电极端子12材质高的材质。具体地,正极电极端子12的材质可为铝,负极电极端子13的材质可为铜。参照图4至图6,负极电极端子13在横向X上具有远离防爆阀14的第五边 界131以及靠近防爆阀14的第六边界132。
防爆阀14设置于顶盖板11且位于正极电极端子12与负极电极端子13之间。参照图4至图6,防爆阀14在横向X上具有靠近正极电极端子12的第三边界141以及远离正极电极端子12的第四边界142。
参照图3,电极组件15具有主体151以及伸出主体151的正极极耳152和负极极耳153。主体151包括正极片、负极片和隔膜,隔膜设置于正极片和负极片之间。正极片、隔膜及负极片可以顺序堆叠并卷绕为果冻卷状,以形成电极组件15的主体151(即卷绕式电极组件)。当然,正极片、隔膜及负极片也可以依次层叠成多层结构,以形成电极组件15的主体151(即层叠式电极组件)。
正极片包括正极集流体(例如铝箔)以及涂覆于正极集流体表面的正极活性材料(例如钴酸锂),负极片包括负极集流体(例如铜箔)以及涂覆于负极集流体表面的负极活性材料(例如硅)。正极集流体的边缘处可具有未被正极活性材料覆盖的空白区,正极极耳152可直接通过裁切正极集流体的空白区而成;对应地,负极极耳153可直接通过裁切负极集流体的空白区而成。换句话说,正极极耳152的材质可为铝箔,负极极耳153的材质为铜箔。
参照图3,壳体16内部形成收容腔,以容纳电极组件15和电解液。壳体16在一端形成开口,电极组件15可经由所述开口放置到壳体15的收容腔中。顶盖板11覆盖壳体16的开口并固定连接(如焊接)于壳体16,以将电极组件15和电解液封装在壳体16内。壳体2可由铝或铝合金等导电金属材料制成,也可由塑胶等绝缘材料制成。
参照图3,第一转接片17和第二转接片18用于实现电极组件15与正极电极端子12和负极电极端子13之间的连接。其中,第一转接片17连接于电极组件15的正极极耳152和正极电极端子12,第二转接片18连接于电极组件15的负极极耳153和负极电极端子13。为了对电路进行过载保护,第一转接片17形成有薄弱区171(即类似保险丝的结构),当电路中的电流过大时,薄弱区171会首先熔断以断开电路。
电路板3设置于所述多个电池1的顶盖板11上方,且由于顶盖板11处于正极电极端子12与负极电极端子13之间的部分不设置其它电连接部件,因而电路板3位于正极电极端子12与负极电极端子13之间。具体地,电路 板3可为柔性印制电路板(Flexible Printed Circuit,缩写为FPC)。
热敏电阻2设置在电池1的顶盖板11上且连接于电路板3,以用于采集电池1的温度。其中,热敏电阻2可以直接位于顶盖板11上、也可以在顶盖板11与热敏电阻2之间增设导热垫或导热胶。
由于正极电极端子12材质的熔点低于负极电极端子13材质的熔点(即在同等电流下,正极电极端子12的温度上升快、产热多)、且与正极电极端子12电连接的第一转接片17形成有薄弱区171(由于过流截面小,其电阻较大、产热较多),薄弱区171产生的热量也会传导至正极电极端子12及其附近,从而导致正极电极端子12及其附近的温度较高。因此,将热敏电阻2设置于顶盖板11且位于顶盖板11的第一边界111与防爆阀14的第三边界141之间来采集温度时,极大地降低了热敏电阻2的采集温度与电池1的实际温度(即电池1的内部温度)之间的偏差,从而提高了温度采样的准确性。
由于顶盖板11的第一边界111至负极电极端子13的第五边界131之间的部分靠近电池1外部,该部分受外部环境的影响较大,在某些情况下可能偏离电池1的实际温度。因此,优选地热敏电阻2位于负极电极端子13的第五边界131与防爆阀14的第三边界141之间。
在一实施例中,参照图1,热敏电阻2位于负极电极端子13的第六边界132与防爆阀14的第三边界141之间,电路板3铺设在热敏电阻2上方(即热敏电阻2位于电路板3与顶盖板11之间)。
在另一实施例中,参照图2,热敏电阻2位于负极电极端子13的第五边界131与第六边界132之间,此时热敏电阻2在横向X上位于电路板3一侧。为了不干扰负极电极端子13上的其它电连接部件且实现准确采样,电路板3通过导线4连接于热敏电阻2(即导线4的一端连接于电路板3、另一端连接于热敏电阻2)。
需要补充说明的是,上文所述的“边界”均是指对应部件的外轮廓在横向X上的最大包络位置(即可以是自身的边界线,也可以是通过最大包络位置作出的垂直于横向X的延伸线)。
为了进一步说明本申请的电池模组采集电池1温度的准确性,本申请选取了电池1的顶盖板11上的不同位置作为采样点(将采样点依次编号为a~q)进行了仿真实验(包括连接片上的位置作为采样点的情况),且仿真实验的 结果如图7所示,其中横轴为采样点编号、竖轴为采集温度与电池1的实际温度的差值。
由图7可知,热敏电阻2设置于连接片(即busbar)上时,获得的采集温度与电池1的实际温度之间的差值最大,超过10℃以上;热敏电阻2设置于采样点a~h上时,获得的采集温度与电池1的实际温度之间的差值均在2℃以上;热敏电阻2设置于采样点o~q上时,获得的采集温度与电池1的实际温度之间的差值虽然小于1℃,但是在实际应用时,需要将电池模组置于箱体中,采样点o~q位于电池1的边缘,容易受到箱体温度的影响,可能出现采集温度偏离电池1的实际温度,因而在某些情况下不适合作为温度采样点;热敏电阻2设置于采样点i~n上时,获得的采集温度与电池1的实际温度之间的差值均在2℃以下且受外界环境的影响较小(可以忽略)。因此,优选地,热敏电阻2位于负极电极端子13的第五边界131与防爆阀14的第三边界141之间。

Claims (13)

  1. 一种电池模组,包括沿纵向(Y)并排布置的多个电池(1)以及用于采集各电池(1)温度的热敏电阻(2),
    各电池(1)包括顶盖板(11)、正极电极端子(12)、负极电极端子(13)和防爆阀(14),正极电极端子(12)和负极电极端子(13)间隔设置于顶盖板(11)、防爆阀(14)设置于顶盖板(11)且位于正极电极端子(12)与负极电极端子(13)之间;
    顶盖板(11)在横向(X)上具有远离正极电极端子(12)的第一边界(111),防爆阀(14)在横向(X)上具有靠近正极电极端子(12)的第三边界(141);
    热敏电阻(2)设置在顶盖板(11)上且位于顶盖板(11)的第一边界(111)与防爆阀(14)的第三边界(141)之间。
  2. 根据权利要求1所述的电池模组,其特征在于,
    负极电极端子(13)在横向(X)上具有远离防爆阀(14)的第五边界(131);
    热敏电阻(2)位于负极电极端子(13)的第五边界(131)与防爆阀(14)的第三边界(141)之间。
  3. 根据权利要求2所述的电池模组,其特征在于,
    负极电极端子(13)在横向(X)上还具有靠近防爆阀(14)的第六边界(132);
    热敏电阻(2)位于负极电极端子(13)的第六边界(132)与防爆阀(14)的第三边界(141)之间。
  4. 根据权利要求3所述的电池模组,其特征在于,热敏电阻(2)位于负极电极端子(13)的第五边界(131)与第六边界(132)之间。
  5. 根据权利要求3所述的电池模组,其特征在于,
    防爆阀(14)还具有远离正极电极端子(12)的第四边界(142);
    热敏电阻(2)位于防爆阀(14)的第四边界(142)与第三边界(141)之间。
  6. 根据权利要求1所述的电池模组,其特征在于,
    电池模组还包括:电路板(3),设置于所述多个电池(1)的顶盖板(11)上方,并位于正极电极端子(12)与负极电极端子(13)之间;
    热敏电阻(2)电连接于电路板(3)。
  7. 根据权利要求6所述的电池模组,其特征在于,电池模组还包括:导线(4),导线(4)的一端连接于电路板(3),另一端连接于热敏电阻(2)。
  8. 根据权利要求1所述的电池模组,其特征在于,各电池(1)还包括:电极组件(15),具有主体(151)以及伸出主体(151)的正极极耳(152)和负极极耳(153);壳体(16),与顶盖板(11)一起封装电极组件(15);第一转接片(17),连接于电极组件(15)的正极极耳(152)和正极电极端子(12);以及第二转接片(18),连接于电极组件(15)的负极极耳(153)和负极电极端子(13)。
  9. 根据权利要求8所述的电池模组,其特征在于,第一转接片(17)具有薄弱区(171)。
  10. 根据权利要求1所述的电池模组,其特征在于,热敏电阻(2)与电池(1)的顶盖板(11)之间设置有导热垫或导热胶。
  11. 一种电池模组的制造方法,其特征在于,包括步骤:
    提供多个电池(1),并且各电池(1)包括顶盖板(11)、正极电极端子(12)、负极电极端子(13)和防爆阀(14),正极电极端子(12)和负极电极端子(13)间隔设置于顶盖板(11)、防爆阀(14)设置于顶盖板(11)且位于正极电极端子(12)与负极电极端子(13)之间,顶盖板(11)在横 向(X)上具有远离正极电极端子(12)的第一边界(111),防爆阀(14)在横向(X)上具有靠近正极电极端子(12)的第三边界(141);
    将所述多个电池(1)沿纵向(Y)并排布置;
    提供热敏电阻(2)并使热敏电阻(2)位于顶盖板(11)的第一边界(111)与防爆阀(14)的第三边界(141)之间;以及,
    将所述热敏电阻(2)固定在顶盖板(11)上。
  12. 一种电池包,其特征在于,包括根据权利要求1-10任一项所述的电池模组。
  13. 一种车辆,其特征在于,包括权利要求12所述的电池包。
PCT/CN2019/124364 2018-12-21 2019-12-10 电池模组及其制造方法、电池包及车辆 WO2020125502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811574829.7A CN111430826B (zh) 2018-12-21 2018-12-21 电池模组
CN201811574829.7 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020125502A1 true WO2020125502A1 (zh) 2020-06-25

Family

ID=68501354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124364 WO2020125502A1 (zh) 2018-12-21 2019-12-10 电池模组及其制造方法、电池包及车辆

Country Status (5)

Country Link
US (1) US11302990B2 (zh)
EP (1) EP3671940A1 (zh)
JP (1) JP6874076B2 (zh)
CN (1) CN111430826B (zh)
WO (1) WO2020125502A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764148A (zh) * 2020-10-19 2023-03-07 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN113745769A (zh) * 2021-08-19 2021-12-03 新余赣锋电子有限公司 一种高安全性的电池
CN113839113A (zh) * 2021-09-15 2021-12-24 国网青海省电力公司 一种储能电站用储能电池模组管理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453513A1 (en) * 2010-11-12 2012-05-16 Samsung SDI Co., Ltd. Thermistor device and secondary battery
CN207183388U (zh) * 2017-09-21 2018-04-03 宁德时代新能源科技股份有限公司 电池模组
CN207233789U (zh) * 2017-08-30 2018-04-13 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN107946489A (zh) * 2017-11-23 2018-04-20 江西安驰新能源科技有限公司 一种电池模组
CN207398245U (zh) * 2017-09-29 2018-05-22 宁德时代新能源科技股份有限公司 电池模组
CN208256795U (zh) * 2018-05-17 2018-12-18 宁德时代新能源科技股份有限公司 二次电池及用于其的连接组件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175558B2 (ja) 1995-10-24 2001-06-11 松下電器産業株式会社 密閉形蓄電池
JP6012575B2 (ja) 2012-12-19 2016-10-25 三菱重工業株式会社 電池状態監視装置及びこれを備えた電池モジュール
KR101702985B1 (ko) 2013-04-17 2017-02-06 삼성에스디아이 주식회사 이차 전지
KR101698768B1 (ko) * 2013-07-18 2017-01-23 삼성에스디아이 주식회사 배터리 팩
US10044018B2 (en) * 2013-09-06 2018-08-07 Johnson Controls Technology Company Battery module lid assembly system and method of making the same
CN204243156U (zh) 2014-06-30 2015-04-01 深圳市比亚迪锂电池有限公司 信号采集模块和具有其的电池系统
CN105895835B (zh) * 2016-06-24 2018-07-17 合肥国轩高科动力能源有限公司 一种三元锂电池的安全防过充盖板
EP3316384B1 (en) 2016-10-25 2019-02-20 Samsung SDI Co., Ltd. Battery module with a fixing for a temperature sensitive element
CN109891661B (zh) * 2016-10-25 2022-03-11 三星Sdi株式会社 具有用于温度感测元件的固定结构的电池模块
CN108155335B (zh) * 2016-12-02 2021-02-12 宁德时代新能源科技股份有限公司 用于二次电池的组件
JP6870313B2 (ja) 2016-12-19 2021-05-12 株式会社豊田自動織機 カバーユニット、電池モジュール、及び電池モジュールの製造方法
CN207116634U (zh) * 2017-09-06 2018-03-16 宁德时代新能源科技股份有限公司 电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453513A1 (en) * 2010-11-12 2012-05-16 Samsung SDI Co., Ltd. Thermistor device and secondary battery
CN207233789U (zh) * 2017-08-30 2018-04-13 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN207183388U (zh) * 2017-09-21 2018-04-03 宁德时代新能源科技股份有限公司 电池模组
CN207398245U (zh) * 2017-09-29 2018-05-22 宁德时代新能源科技股份有限公司 电池模组
CN107946489A (zh) * 2017-11-23 2018-04-20 江西安驰新能源科技有限公司 一种电池模组
CN208256795U (zh) * 2018-05-17 2018-12-18 宁德时代新能源科技股份有限公司 二次电池及用于其的连接组件

Also Published As

Publication number Publication date
CN111430826B (zh) 2022-06-14
US11302990B2 (en) 2022-04-12
JP6874076B2 (ja) 2021-05-19
JP2020102435A (ja) 2020-07-02
CN111430826A (zh) 2020-07-17
US20200203689A1 (en) 2020-06-25
EP3671940A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
EP2731174B1 (en) Secondary battery pack
JP5345588B2 (ja) 二次電池
WO2020125502A1 (zh) 电池模组及其制造方法、电池包及车辆
US8334063B2 (en) Secondary battery
EP2164121B1 (en) Protection circuit board, secondary battery and battery pack
US9905835B2 (en) Secondary battery pack
JP5450634B2 (ja) 新規な構造を有する二次電池パック
US9819058B2 (en) Protection circuit module and battery pack including the same
KR100839785B1 (ko) 이차전지 및 그 형성 방법
US9685681B2 (en) Battery pack
EP2725639A2 (en) Secondary battery pack
EP2284926B1 (en) Secondary battery
TW200527741A (en) Lead member and secondary battery module with the same
EP2728649A2 (en) Secondary battery pack
TW200937697A (en) Secondary battery pack having excellent energy density and PCM assembly therefor
JP5490027B2 (ja) 二次電池及びその製造方法
EP2624336A1 (en) Secondary battery pack having a novel structure
JP2023501612A (ja) 電池モジュール及び車両
CN112234296B (zh) 电芯以及电池模组
KR20080035401A (ko) 리튬 이차전지
KR101749718B1 (ko) 용접용 금속이 도금되어 있는 이차전지 팩
CN216899300U (zh) 一种用于电池安全理系统的铝片式温感器
CN214378587U (zh) 一种新型储能箱的电池组结构
JPS63122201A (ja) 過電流保護素子
JP2014102989A (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901076

Country of ref document: EP

Kind code of ref document: A1