WO2020125371A1 - 一种伽马辐射成像装置及成像方法 - Google Patents

一种伽马辐射成像装置及成像方法 Download PDF

Info

Publication number
WO2020125371A1
WO2020125371A1 PCT/CN2019/121615 CN2019121615W WO2020125371A1 WO 2020125371 A1 WO2020125371 A1 WO 2020125371A1 CN 2019121615 W CN2019121615 W CN 2019121615W WO 2020125371 A1 WO2020125371 A1 WO 2020125371A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
detectors
imaging device
layers
different
Prior art date
Application number
PCT/CN2019/121615
Other languages
English (en)
French (fr)
Inventor
马天予
刘亚强
王学武
王�忠
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to JP2021535274A priority Critical patent/JP7162377B2/ja
Priority to EP19900092.8A priority patent/EP3896493A4/en
Priority to KR1020217022314A priority patent/KR20210101309A/ko
Priority to CA3123980A priority patent/CA3123980C/en
Priority to BR112021012091-2A priority patent/BR112021012091A2/pt
Priority to US17/415,578 priority patent/US11644584B2/en
Priority to AU2019411375A priority patent/AU2019411375B2/en
Publication of WO2020125371A1 publication Critical patent/WO2020125371A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2907Angle determination; Directional detectors; Telescopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/242Stacked detectors, e.g. for depth information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4225Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using image intensifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • the present disclosure relates to the field of nuclear technology and application technology, in particular to a gamma radiation imaging device and imaging method.
  • Gamma radiation imaging is widely used in medical diagnosis, nuclear leakage and nuclear radiation hotspot monitoring, nuclear waste management, and management of industrial and agricultural radioactive sources.
  • the gamma radiation imaging device is used to detect the nuclide emitting gamma photons and form an image of its spatial distribution. It can be used independently as an industrial gamma camera, as a gamma camera for medical diagnosis, or as a single
  • SPECT photon emission tomography
  • PET positron emission tomography
  • the gamma radiation imaging device generally includes a detector and a collimator.
  • the detector part uses a position-sensitive gamma detector to obtain the position information, energy information and time information of the photons incident on the detector, which can be a scintillation detector composed of a scintillation crystal + photomultiplier tube, or a semiconductor detector , Or other detectors that can be used for gamma radiation measurement.
  • the collimator is placed between the detector and the detected object. It only allows photons in a certain direction to be incident on the detector and absorbs photons in other directions.
  • the path information of the photons emitted from the human body can be obtained to form a plane gamma radiation source distribution image. It is also possible to rotate the detector and collimator around the imaged object, measure multiple planar gamma images in multiple directions, and obtain a three-dimensional gamma radiation source distribution image by using a tomographic reconstruction algorithm.
  • the collimator of the gamma radiation imaging device uses the principle of absorption collimation. That is, the collimator is made of heavy metals such as lead and tungsten, and the collimator is provided with holes, slits, slots and other gaps. The photons entering the gaps are detected by the detector through the collimator, and the rest of the photons are detected. The collimator is blocked and absorbed. Typical examples include parallel hole collimators, fan beam collimators, pinhole collimators, etc.
  • the collimator made in this way blocks most of the photons, and only allows a small part of the photons to be transmitted, so that the photon events received on the detector unit can only come from the relatively small space in the imaged object. For a small part of the area, a higher spatial resolution image can be obtained through the image reconstruction algorithm. However, because a large number of photons are absorbed, the detection efficiency is very low, which seriously affects the imaging performance.
  • the gamma radiation imaging device based on the coded aperture collimator greatly improves the aperture ratio of the collimator.
  • a large number of photons incident from the radiation sources in different directions form different projection plane distributions on the detector and use the image
  • the reconstruction algorithm solves the direction of the radioactive source.
  • the detection efficiency of this collimator is greatly improved, the photon events received on the detector unit may come from multiple areas or large areas in the space of the imaged object, and the direction information that can be obtained from a single photon Significant decline, only applicable to imaging of specific distributions such as point-like or sparse sources.
  • the imaging effect is inferior to gamma cameras based on low-detection efficiency such as parallel-hole collimators.
  • the traditional gamma radiation imaging device uses a collimator that uses the principle of absorption collimation to absorb a large number of photons, resulting in a low detection efficiency of the imaging device, resulting in a long acquisition time or poor image quality within a limited acquisition time.
  • the coded aperture collimator of the aperture ratio improves the detection efficiency, but reduces the directional information carried by the received photon event, and its image quality has not been correspondingly improved.
  • the photon events measured by all detector units (including detector units that have collimating effect on other detectors) in the above device can be input to any imaging method, thereby improving detection efficiency and increasing Directional information carried by photon events, resulting in higher quality images.
  • an imaging device including: a plurality of separated detectors, the plurality of separated detectors forming a plurality of detector layers, arranged in multiple layers outside the object to be detected, There is a gap between two adjacent detector layers.
  • an imaging method including: providing a plurality of separated detectors; arranging the plurality of separated detectors in a multi-layered arrangement outside the detected object to form multiple Detector layers, and there is a gap between two adjacent detector layers; the plurality of detector layers are used to image the detected object.
  • an imaging method including: providing a collimator and at least two types of multiple separate detectors; dividing the multiple separate detectors into multiple layers outside the object to be detected Arranged in an arrangement manner to form a plurality of detector layers; the collimator is disposed between the detected object and the innermost detector layer along the direction of photon motion; the collimator and the Multiple detector layers image the detected object.
  • the detector unit used to detect photons can be used as a collimator for other detector units at the same time, so that rays from a certain detector unit in different directions, because they pass through a different number of other detections in their path Collimator unit, or other detector units of different thicknesses, or other detector units of different materials, with different attenuation ratios, which can reduce the absorption loss of photons on the collimator and improve the judgment effect and imaging quality of the photon direction , Which has both high photon detection efficiency and high photon event information.
  • the detector can be divided into multiple layers in space, increasing the change in the spatial arrangement of the detector unit and/or the change in the distance between the detector units, so that rays coming from a certain detector unit in different directions, because of its path It passes through different other detector units and has different attenuation ratios, which can reduce the absorption loss of photons on the collimator and improve the judgment effect and imaging quality of the photon direction.
  • FIG. 1 is a schematic structural diagram of a gamma radiation imaging device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a gamma radiation imaging device according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a gamma radiation imaging device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a gamma radiation imaging device according to still another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a gamma radiation imaging device according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a gamma radiation imaging device according to another embodiment of the present disclosure.
  • the present disclosure proposes to use a detector that can detect scintillation photons for the collimator that constitutes the gamma radiation imaging device.
  • the collimator part may be entirely composed of a detector that can detect scintillation photons, or may be composed of any existing collimator and a detector that can detect scintillation photons. Any detector in the detector section can be used as a collimator for other detectors, or can only work as a detector.
  • At least one of the detector thickness, detector material, and number of detectors that the rays emitted from different positions of the imaging area reach when they reach the same detector is different (For example, for any detector a, the ray b and ray c emitted from different positions in the imaging area before reaching this detector a, the thickness of the passed detector is different, and/or the material of the passed detector Different, and/or the number of detectors passed), so that the position of the rays can be determined by measuring the intensity of the rays in the detectors, and an image can be obtained.
  • the detector can be composed of multiple detector materials, so that the detectors in different positions in the space can have different photon (ray) attenuation ratios (attenuation coefficients) ).
  • the rays from a certain detector in different directions have different attenuation ratios because they pass through different detector materials in their paths, so that the purpose of judging the photon direction can be achieved.
  • the detectors can be arranged non-closely in space.
  • the distance between adjacent layers is equal to or greater than the size of the detector, or the distance between adjacent detectors of the same layer is equal to or greater than the size of the detector, so that rays coming from a certain detector in different directions Because it passes through different other detectors on its path and has different attenuation ratios, the purpose of judging the photon direction can be achieved.
  • the imaging device includes 9 detectors, and the 9 detectors form 3 detector layers, which are distributed in 3 layers outside the detected object (such as a human body). From inside to outside, the first detector layer, the second detector layer and the third detector layer are in order.
  • the nine detectors include two types of detectors, a first type detector 1 and a second type detector 2. Moreover, any two adjacent detectors have different attenuation ratios for the photons.
  • the first detector and the second detector are made of different materials.
  • the light rays 3 from the position 5 and the light rays 4 at the position 6 of the detected object O are respectively subjected to the first detection before being incident on the second type detector 2 in the second detector layer
  • the first type detector 1 and the second type detector 2 in the detector layer thereby causing different attenuation, so that the photons received on the second type detector 2 in the second detector layer come from the position 5 and
  • the probability of the position 6 is different, so as to determine the direction of the photon.
  • the position 5 and the position 6 are two different positions inside the object O to be detected.
  • the number of detectors, the number of detector layers, and the number of detector types in this embodiment are only exemplary descriptions, that is, the number of detectors is not limited to 9, and the number of detector layers is also It is not limited to three layers, and the types of detectors are not limited to two types. Those skilled in the art can adjust them as needed.
  • the imaging device includes six detectors, and the six detectors form two detector layers, which are distributed in two layers outside the detected object (such as a human body). From inside to outside, it is the first detector layer and the second detector layer.
  • the six detectors are all first-type detectors 1. Moreover, there is an interval between any two adjacent detectors, that is, there is an interval between the first detector layer and the second detector layer, and there is an interval between two adjacent detectors of the first detector layer There is also a gap between two adjacent detectors in the second detector layer.
  • the imaging device of this embodiment the light 3 from the position 5 of the detected object and the light 4 from the position 6 before entering the detector in the second detector layer, the light from the position 5 of the detected object 3 passes the detector of the first detector layer, and the light 4 from the position 6 of the detected object only passes through the air, thereby causing different attenuation, so that the photons received on the detector in the second detector layer
  • the probabilities from position 5 and position 6 are different, and thus play a role in determining the direction of the photon.
  • the number of detectors, the number of detector layers, and the number of detector types in this embodiment are only exemplary descriptions, that is, the number of detectors is not limited to 6, and the number of detector layers is also It is not limited to two layers, and the type of detector is not limited to one, and those skilled in the art can adjust it as needed.
  • each detector layer of the imaging device of this embodiment may also include multiple types of detectors, and the photon direction is determined by the difference between the intervals and the types of detectors.
  • the imaging device includes 9 detectors, and the 9 detectors form 3 detector layers, which are distributed in 3 layers outside the detected object (such as a human body). From inside to outside, the first detector layer, the second detector layer and the third detector layer are in order.
  • the nine detectors include two types of detectors, a first type detector 1 and a second type detector 2. There is an interval between two adjacent detector layers, and the interval between the first detector layer and the second detector layer may be different from the interval between the second detector layer and the third detector layer. Any two adjacent detectors have different attenuation ratios for the photons.
  • the layers are separated by a certain distance to further improve the effect of determining the photon direction.
  • the light 3 from the position 5 of the detected object and the light 4 from the position 6 come from the detected object before entering the detector of the second type detector 2 in the second detector layer
  • the light 3 at position 5 passes through the first type detector 1 of the first detector layer
  • the light 4 from the detected object position 6 passes through the second type detector 2 of the first detector layer, thereby causing different attenuation
  • the probability that the photons received on the second-type detector 2 in the second detector layer come from the positions 5 and 6 is different, so as to determine the direction of the photons.
  • the number of detectors, the number of detector layers, and the number of detector types in this embodiment are only exemplary descriptions, that is, the number of detectors is not limited to 9, and the number of detector layers is also It is not limited to three layers, and the type of detector is not limited to two types, and those skilled in the art can make appropriate adjustments as needed.
  • the gamma radiation imaging device of the composite detector/collimator includes 9 detectors, the 9 detectors form 3 detector layers, and the detected object ( For example, the outside of the human body is distributed in three layers, and from the inside to the outside are the first detector layer, the second detector layer, and the third detector layer.
  • the nine detectors include two types of detectors, a first type detector 1 and a second type detector 2. There is an interval between two adjacent detector layers, and the interval between the first detector layer and the second detector layer may be different from the interval between the second detector layer and the third detector layer. Any two adjacent detectors have different attenuation ratios for the photons.
  • the layers are separated by a certain distance to further improve the effect of determining the photon direction.
  • the gamma radiation imaging device includes a detector unit, and the detector unit includes four detector array layers, which are a first detector array layer, a second detector array layer, and a third detector array layer, The fourth detector array layer; each detector array layer includes two types of detectors, namely a first detector and a second detector.
  • the first detector includes a NaI inorganic scintillator
  • the second detector includes an LSO inorganic scintillator.
  • the first detector and the second detector are staggered.
  • the first detectors of the first detector array layer are opposite to the positions of the second detectors of the second detector array layer, and the second detectors of the first detector array layer are respectively the first detectors of the second detector array layer.
  • the detectors are relatively positioned. The photons emitted from different positions in the detected object will pass through two materials with different attenuation ratios in the detector unit, thus forming different distributions.
  • the gamma radiation imaging device includes multiple detector array layers, and each detector array layer includes multiple detectors.
  • the outermost detector array layer with the largest distance from the detected object includes one type of detector; the detectors other than the outermost detector array layer in the multilayer detector array layer
  • the array layer includes multiple detectors. In the same detector array layer, the multiple detectors are arranged alternately, as shown in FIG. 5.
  • the imaging device of this embodiment further includes a collimator between the first detector layer and the detected object, as shown in FIG. 6.
  • the gamma radiation imaging device adopting the separation detector of the present disclosure has a better collimation effect, a larger number of measured gamma photons, and effectively improves the spatial resolution and detection efficiency.
  • an imaging method including:
  • the plurality of detector layers are used to image the detected object.
  • the present disclosure also provides another imaging method, including:
  • the plurality of detector layers are used to image the detected object.
  • the present disclosure also provides another imaging method, including:
  • collimator and multiple separate detectors including at least two types
  • the collimator and the plurality of detector layers are used to image the detected object.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

本公开提供了一种伽马射线成像装置及成像方法,其中,所述成像装置包括多个分离的探测器。所述多个分离的探测器通过设定合适的空间位置、排布方式、探测器材料,使得从成像区域不同位置发出的射线,在到达所述多个分离的探测器中的至少一个探测器时,所经过的探测器厚度、探测器材料、探测器数目中至少有一个不同,从而达到判定射线方向的效果。

Description

一种伽马辐射成像装置及成像方法 技术领域
本公开涉及核技术及应用技术领域,具体涉及一种伽马辐射成像的装置及成像方法。
背景技术
伽马辐射成像在医学诊断、核泄露及核辐射热点监测、核废料管理、工农业放射源管理监控方面都有广泛应用。伽马辐射成像装置用于对发射gamma光子的核素进行探测,并形成其在空间分布的图像,可以独立作为工业用伽马相机使用,或作为医疗诊断用伽马相机使用,也可以作为单光子发射断层成像(SPECT)或正电子发射断层成像(PET)的关键功能部件使用。
伽马辐射成像装置一般包含探测器和准直器两部分。其中,探测器部分采用位置灵敏伽马探测器获取光子入射至探测器上的位置信息、能量信息和时间信息,其可以为闪烁晶体+光电倍增管组成的闪烁探测器,也可以为半导体探测器,或其他可以用于伽马辐射测量的探测器。准直器放置于探测器与被探测物体之间,其只允许某个特定方向的光子入射至探测器上而吸收其他方向的光子。结合探测器上探测到的光子位置及准直器所允许的光子入射方向,可以获得光子自人体内发射出来的路径信息,形成平面伽马辐射源分布图像。也可以通过探测器和准直器绕被成像物体旋转,在多个方向上测量多幅平面伽马图像,并利用断层重建算法求解获得三维伽马辐射源分布图像。
伽马辐射成像装置的准直器采用吸收准直原理。即,利用铅、钨等重金属制成准直器,在准直器上开有孔、缝、槽等空隙部分,射入空隙部分的光子透过准直器被探测器探测到,其余光子被准直器阻挡而被吸收。典型有平行孔准直器,扇形束准直器,针孔准直器等。采用这种方式制成的准直器阻挡了绝大部分光子,仅允许很小一部分光子被透过,从而使得探测器单元上所接收到的光子事件只可能来自于被成像物体空间中的较小一部分区域,通过图像重建算法可以获得较高空间分辨率的图像。但是因 为大量光子被吸收,其探测效率很低,严重影响了成像性能。
基于编码孔径准直器的伽马辐射成像装置,将准直器上的开孔率大大提高,由不同方向的放射源入射的大量光子,在探测器上形成不同的投影平面分布,并利用图像重建算法求解放射源方向。尽管该种准直器探测效率大大提高,但是探测器单元上所接收到的光子事件可能来自于被成像物体空间中的多个区域或较大面积的区域,从单个光子所能获得的方向信息显著下降,仅适用于特定分布如点状或稀疏放射源的成像。在核医学成像等场景中,由于放射性药物在人体内广泛连续分布,其成像效果反而差于基于平行孔准直器等低探测效率的伽马相机。
综上,传统伽马辐射成像装置,由于采用吸收准直原理的准直器吸收大量光子,造成成像装置探测效率很低,使得采集时间长,或者在有限采集时间内的图像质量差;采用高开孔率的编码孔径准直器提高了探测效率,但降低了接收到的光子事件所携带的方向性信息,其图像质量也未得到相应的提高。
发明内容
(一)要解决的技术问题
鉴于上述问题,本公开的主要目的在于提供一种既具有高的光子探测效率,又具有高的光子事件信息的伽马辐射成像装置及成像方法,以便解决上述问题的至少之一。
(二)技术方案
为了达到上述目的,本公开提供了一种分离探测器的伽马辐射成像装置及成像方法。通过将探测器在空间上分离为多个单元,并使不同探测器单元沿光子运动方向前后放置,使沿光子运动方向在前的探测器单元可以起到对在后的探测器单元的光子阻挡准直作用;并且通过使用对光子衰减比例不同的探测器材料制成不同的探测器单元,使沿光子运动方向在前的不同探测器单元可以起到对在后的探测器单元的不同光子阻挡准直作用,从而实现对光子方向的判断效果。
上述装置中全部探测器单元(包含对其他探测器有准直作用的探测器单元)所测量到的光子事件都可被输入至任何一种成像方法中,从而即提 高了探测效率,又增加了光子事件所携带的方向性信息,从而得到更高质量的图像。
根据本公开的一个方面,提供了一种伽马射线成像装置,包括:多个分离的探测器,所述多个分离的探测器中至少存在一个探测器,从成像区域不同位置发出的射线,在到达该一个探测器前,所经过的其他探测器的厚度、探测器材料、探测器数目中至少有一个不同。
根据本公开的另一个方面,提供了一种成像装置,包括:多个分离的探测器,所述多个分离的探测器形成多个探测器层,在被检测物体外呈多层排布,相邻两探测器层之间具有一间隔。
根据本公开的又一个方面,提供了一种成像装置,包括:多个分离的探测器,该多个分离的探测器包括至少两种类型的探测器,所述多个分离的探测器形成多个探测器层,在被检测物体外呈多层排布,所述成像装置还包括准直器,位于被检测物体与沿光子运动方向的最内层探测器层之间。
根据本公开的再一个方面,提供了一种成像方法,包括:提供多个分离的探测器,将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;利用所述多个探测器层对所述被检测物体进行成像;其中,所述多个分离的探测器中的至少一个探测器,从成像区域不同位置发出的射线,在到达所述一个探测器前,所经过的其他探测器的厚度、探测器材料、探测器数目中的至少一者不同。
根据本公开的又一个方面,提供了一种成像方法,包括:提供多个分离的探测器;将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层,且使相邻两探测器层之间具有一间隔;利用所述多个探测器层对所述被检测物体进行成像。
根据本公开的再一个方面,提供一种成像方法,包括:提供准直器以及包括至少两种类型多个分离的探测器;将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;将所述准直器设置在所述被检测物体与沿光子运动方向的最内层探测器层之间;利用所述准直器和所述多个探测器层对所述被检测物体进行成像。
(三)有益效果
从以上技术方案可以看出,本公开一种分离探测的伽马辐射成像装置及成像方法至少具有以下有益效果其中之一:
(1)用于探测光子的探测器单元,可以同时作为其他探测器单元的准直器使用,使得来自不同方向入射某一探测器单元的射线,因为在其路径上穿过不同数目的其他探测器单元,或者不同厚度的其他探测器单元,或者不同材料的其他探测器单元,而具有不同的衰减比例,从而可以减少光子在准直器上的吸收损失和提升光子方向的判断效果和成像质量,由此既具有高的光子探测效率,又具有高的光子事件信息。
(2)探测器在空间中可以分为多层,增加探测器单元空间排布的变化和/或探测器单元间距的变化,使得来自不同方向入射某一探测器单元的射线,因为在其路径上穿过不同的其他探测器单元而具有不同的衰减比例,从而可以减少光子在准直器上的吸收损失和提升光子方向的判断效果和成像质量。
(3)探测器可以由多种材料组成,不同材料所具有的不同光子衰减比例可以提升光子方向的判断效果和成像质量。使得来自不同方向入射某一探测器单元的射线,因为在其路径上穿过不同的探测器材料而具有不同的衰减比例,从而既可以在减少光子在准直器上的吸收损失,同时可以进一步提升光子方向的判断效果和成像质量。
附图说明
图1为本公开一实施例伽马辐射成像装置结构示意图。
图2为本公开另一实施例伽马辐射成像装置结构示意图。
图3为本公开又一实施例伽马辐射成像装置结构示意图。
图4为本公开再一实施例伽马辐射成像装置结构示意图。
图5为本公开另一实施例伽马辐射成像装置结构示意图。
图6为本公开又一实施例伽马辐射成像装置结构示意图。
<符号说明>
1-第一类型探测器、2-第二类型探测器、3,4-光线、5,6-位置、7-准直器、O-被检测物体。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
本公开提出将可探测闪烁光子的探测器用于组成伽马辐射成像装置的准直器。准直器部分可以全部由可探测闪烁光子的探测器组成,也可以由任一种现有的准直器与可探测闪烁光子的探测器共同组成准直器。探测器部分的任一探测器即可以作为其他探测器的准直器,也可以仅作为探测器工作。通过合适的探测器结构、材料、排布关系等,使得从成像区域不同位置发出的射线,在到达同一个探测器时所经过的探测器厚度、探测器材料、探测器数目中至少有一个不同(例如,对于任一探测器a,从成像区域不同位置发出的射线b和射线c在到达这一探测器a之前,所经过的探测器的厚度不同,和/或所经过的探测器的材料不同,和/或所经过的探测器的数目不同),从而可以通过测量探测器中的射线强度来确定射线所发出的位置,并获得图像。
为了进一步提升作为准直器使用的探测器的准直器效果,探测器可以由多种探测器材料组成,使得空间中处于不同位置的探测器可以有不同的光子(射线)衰减比例(衰减系数)。使得来自不同方向入射某一探测器的射线,因为在其路径上穿过不同的探测器材料而具有不同的衰减比例,从而可以达到判断光子方向的目的。
为了进一步提升作为准直器使用的探测器的准直器效果,探测器可以在空间当中非紧密排列。通过改变探测器间的距离,使得相邻层的间距等于或者大于探测器尺寸,或者使得同一层相邻探测器的间距等于或者大于探测器尺寸,从而使来自不同方向入射某一探测器的射线,因为在其路径上穿过不同的其他探测器而具有不同的衰减比例,从而可以达到判断光子方向的目的。
实施例1
在本实施例中,如图1所示,所述成像装置包括9个探测器,所述9探测器形成3个探测器层,在所述被检测物体(如人体)外部呈3层分布,由内而外依次为第1探测器层、第2探测器层和第3探测器层。所述9个探测器共包括两种类型的探测器,第一类型探测器1和第二类型探测器2。 而且,任意相邻的两个探测器对所述光子的衰减比例不同。
具体的,所述第一探测器和第二探测器采用不同材料制成。采用本实施例成像装置,来自被检测物体O的位置5的光线3和位置6的光线4,在入射至所述第2探测器层中的第二类型探测器2之前,分别经过第一探测器层中第一类型探测器1和第二类型探测器2,由此造成不同的衰减,使得所述第2探测器层中的第二类型探测器2上接收到的光子来自于位置5和位置6的概率不同,从而起到判断光子方向的作用,所述位置5和位置6为被检测物体O内部的两个不同位置。
需要说明的是,本实施例中探测器的数量,探测器层数,探测器的类型数仅仅是示例性说明,也就是说,探测器的数量并不限于9个,探测器的层数也并不限于3层,探测器的类型也并不限于两类,本领域技术人员可以根据需要适当调整。
实施例2
在本实施例中,如图2所示,所述成像装置包括6个探测器,所述6探测器形成2个探测器层,在所述被检测物体(如人体)外部呈2层分布,由内而外依次为第1探测器层和第2探测器层。所述6个探测器均为第一类型探测器1。而且,任意相邻的两个探测器之间具有一间隔,即第1探测器层和第2探测器层之间具有一间隔,第1探测器层的相邻两探测器之间具有一间隔,第2探测器层的相邻两探测器之间也具有一间隔。
具体的,采用本实施例成像装置,来自被检测物体的位置5的光线3和位置6的光线4,在入射至第2探测器层中的探测器之前,来自被检测物体的位置5的光线3经过第1探测器层的探测器,而来自被检测物体的位置6的光线4只经过空气,由此造成不同的衰减,使得所述第2探测器层中的探测器上接收到的光子来自于位置5和位置6的概率不同,从而起到判断光子方向的作用。
需要说明的是,本实施例中探测器的数量,探测器层数,探测器的类型数仅仅是示例性说明,也就是说,探测器的数量并不限于6个,探测器的层数也并不限于2层,探测器的类型也并不限于1类,本领域技术人员可以根据需要适当调整。
此外,本实施例成像装置的各探测器层也可以包括多种类型的探测器, 利用间隔和探测器类型的不同来判断光子方向。
实施例3
在本实施例中,如图3所示,所述成像装置包括9个探测器,所述9探测器形成3个探测器层,在所述被检测物体(如人体)外部呈3层分布,由内而外依次为第1探测器层、第2探测器层和第3探测器层。所述9个探测器共包括两种类型的探测器,第一类型探测器1和第二类型探测器2。相邻两探测器层之间具有间隔,而且,第1探测器层和第2探测器层之间的间隔,可以与第2探测器层和第3探测器层之间的间隔不同。任意相邻的两个探测器对所述光子的衰减比例不同。通过各层间隔开一定的间距以进一步提高判断光子方向的效果。
具体的,采用本实施例成像装置,来自被检测物体位置5的光线3和位置6的光线4,在入射至第2探测器层中的第二类型探测器2探测器之前,来自被检测物体位置5的光线3经过第1探测器层的第一类型探测器1,而来自被检测物体位置6的光线4经过第1探测器层的第二类型探测器2,由此造成不同的衰减,使得所述第2探测器层中的第二类型探测器2上接收到的光子来自于位置5和位置6的概率不同,从而起到判断光子方向的作用。
需要说明的是,本实施例中探测器的数量,探测器层数,探测器的类型数仅仅是示例性说明,也就是说,探测器的数量并不限于9个,探测器的层数也并不限于3层,探测器的类型也并不限于2类,本领域技术人员可以根据需要适当调整。
实施例4
在本实施例中,如图4所示,复合探测器/准直器的伽马辐射成像装置包括9个探测器,所述9探测器形成3个探测器层,在所述被检测物体(如人体)外部呈3层分布,由内而外依次为第1探测器层、第2探测器层和第3探测器层。所述9个探测器共包括两种类型的探测器,第一类型探测器1和第二类型探测器2。相邻两探测器层之间具有间隔,而且,第1探测器层和第2探测器层之间的间隔,可以与第2探测器层和第3探测器层之间的间隔不同。任意相邻的两个探测器对所述光子的衰减比例不同。通过各层间隔开一定的间距以进一步提高判断光子方向的效果。
进一步的,所述成像装置在所述第1探测器层与所述被检测物体之间还包括高开孔率的吸收准直器7。本实施例成像装置,除第一层探测器外,其余各层探测器因为受到前面各层探测器的衰减而具有光子方向判断的效果。通过在第1探测器层和被检测物体间设置高开孔率的吸收准直器,进一步提升了第1探测器层中探测器对光子方向判断的效果。
需要说明的是,本实施例中探测器的数量,探测器层数,探测器的类型数仅仅是示例性说明,也就是说,探测器的数量并不限于9个,探测器的层数也并不限于3层,探测器的类型也并不限于2类,本领域技术人员可以根据需要适当调整。
此外,本实施例包括准直器的成像装置,其探测器的类型、排布等可以前述实施例相同,此处不再赘述。
实施例5
在本实施例中,伽马辐射成像装置包括探测器单元,探测器单元包括四个探测器阵列层,分别为第一探测器阵列层、第二探测器阵列层、第三探测器阵列层、第四探测器阵列层;每个探测器阵列层包括两种探测器,分别为第一探测器和第二探测器。第一探测器包括NaI无机闪烁体,第二探测器包括LSO无机闪烁体。在每个探测器阵列层中,第一探测器和第二探测器交错排列。第一探测器阵列层各第一探测器分别与第二探测器阵列层各第二探测器的位置相对,第一探测器阵列层各第二探测器分别与第二探测器阵列层各第一探测器的位置相对。被检测物体内不同位置发出的光子,在探测器单元内将穿过不同衰减比例的两种材料,从而形成不同的分布。
实施例6
在本实施例中,伽马辐射成像装置包括探测器单元,探测器单元包括四个探测器阵列层,分别为第一探测器阵列层、第二探测器阵列层、第三探测器阵列层、第四探测器阵列层;每个探测器阵列层包括两种探测器,分别为第一探测器和第二探测器。第一探测器为GSO探测器,第二探测器为YSO探测器。被检测物体内不同位置发出的光子,在探测器内将穿过不同衰减比例的两种材料,从而形成不同的分布。
实施例7
在本实施例中,伽马辐射成像装置包括多个探测器阵列层,每个探测器阵列层包括多种探测器。其中,距离所述被检测物体距离最大、也即最外层探测器阵列层包括一种类型的探测器;所述多层探测器阵列层中除最外层探测器阵列层之外的探测器阵列层包括多种探测器。在同一层探测器阵列层中,所述多种探测器交替排列,如图5所示。
实施例8
与实施例7不同的是,本实施例成像装置在第1探测器层与所述被检测物体之间还包括准直器,如图6所示。
采用本公开分离探测器的伽马辐射成像装置,准直效果更好,测量伽马光子的数量更多,有效提升了空间分辨率和探测效率。
此外,本公开提供了一种成像方法,包括:
提供多个分离的探测器,
将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;
利用所述多个探测器层对所述被检测物体进行成像。
其中,所述多个分离的探测器中的至少一个探测器,从成像区域不同位置发出的射线,在到达所述一个探测器前,所经过的其他探测器的厚度、探测器材料、探测器数目中的至少一者不同。
本公开还提供了另一种成像方法,包括:
提供多个分离的探测器;
将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层,且使相邻两探测器层之间具有一间隔;
利用所述多个探测器层对所述被检测物体进行成像。
本公开还提供了另一种成像方法,包括:
提供准直器以及包括至少两种类型多个分离的探测器;
将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;
将所述准直器设置在所述被检测物体与沿光子运动方向的最内层探测器层之间;
利用所述准直器和所述多个探测器层对所述被检测物体进行成像。
本公开成像方法中的所述探测器、准直器、间隔等的细节与前述成像装置实施例中的相同,此处不再赘述。
此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
再者,单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而 已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种伽马射线成像装置,包括:多个分离的探测器,所述多个分离的探测器中至少存在一个探测器,从成像区域不同位置发出的射线,在到达该一个探测器前,所经过的其他探测器的厚度、探测器材料、探测器数目中至少有一个不同。
  2. 根据权利要求1所述的成像装置,其中,所述多个分离的探测器中的至少一个探测器所接收的从不同方向入射的射线,由于所经过的其他探测器的厚度、探测器材料、探测器数目中至少有一个不同,从而具有不同的衰减比例,由此判断射线方向。
  3. 根据权利要求1所述的成像装置,其中,所述多个分离的探测器的多个相邻两探测器的厚度不同。
  4. 根据权利要求1所述的成像装置,其中,所述多个分离的探测器包括沿光子运动方向排布的至少两个探测器,所述至少两个探测器包括沿光子运动方向在前的探测器和在后的探测器,所述在前的探测器用于对向所述在后的探测器运动的光子进行阻挡和准直。
  5. 根据权利要求1所述的成像装置,其中,所述多个分离的探测器沿光子运动方向及垂直于光子运动方向的方向呈阵列排布,每个探测器和与其相邻的探测器对所述光子的衰减比例不同。
  6. 根据权利要求1所述的成像装置,其中,所述多个分离的探测器沿光子运动方向形成多个探测器层,在相邻的两探测器层中,位于外侧的探测器层比位于内侧探测器层的面积小。
  7. 根据权利要求5所述的成像装置,其中,相邻两探测器层具有一间隔。
  8. 根据权利要求6所述的成像装置,其中,所述多个分离的探测器层的多个相邻两探测器层的间隔不同。
  9. 根据权利要求5所述的成像装置,其中,相邻两探测器具有一间隔。
  10. 根据权利要求8所述的成像装置,其中,所述多个分离的探测器的多个相邻两探测器的间隔不同。
  11. 根据权利要求7或8所述的成像装置,其中,通过改变多个探测器间的距离,使得从不同方向入射至一探测器上的光子具有不同的衰减比例。
  12. 根据权利要求6所述的成像装置,其中,所述多个分离的探测器包括多个第一类型探测器和多个第二类型探测器,多个第一类型探测器和多个第二类型探测器交替排布,相邻的两个探测器的类型不同。
  13. 根据权利要求12所述的成像装置,其中,所述第一类型探测器和第二类型探测器均为NaI、CsI、BGO、LSO、LYSO、GSO、YSO、CZT、YAP、GAGG中的任意一种。
  14. 根据权利要求5所述的成像装置,其中,所述多个探测器层分别为第1探测器层至第N探测器层,N≥2,所述第1探测器层至第N探测器层沿光子运动方向排布;所述成像装置还包括在所述第1探测器层和被检测物体间的吸收准直器。
  15. 一种成像装置,包括:多个分离的探测器,所述多个分离的探测器形成多个探测器层,在被检测物体外呈多层排布,相邻两探测器层之间具有一间隔。
  16. 一种成像装置,包括:多个分离的探测器,该多个分离的探测器包括至少两种类型的探测器,所述多个分离的探测器形成多个探测器层,在被检测物体外呈多层排布,所述成像装置还包括准直器,位于被检测物体与沿光子运动方向的最内层探测器层之间。
  17. 一种成像方法,包括:
    提供多个分离的探测器,
    将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;
    利用所述多个探测器层对所述被检测物体进行成像;
    其中,所述多个分离的探测器中的至少一个探测器,从成像区域不同位置发出的射线,在到达所述一个探测器前,所经过的其他探测器的厚度、探测器材料、探测器数目中的至少一者不同。
  18. 一种成像方法,包括:
    提供多个分离的探测器;
    将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成 多个探测器层,且使相邻两探测器层之间具有一间隔;
    利用所述多个探测器层对所述被检测物体进行成像。
  19. 一种成像方法,包括:
    提供准直器以及包括至少两种类型多个分离的探测器;
    将所述多个分离的探测器在被检测物体外按多层排布方式排布,形成多个探测器层;
    将所述准直器设置在所述被检测物体与沿光子运动方向的最内层探测器层之间;
    利用所述准直器和所述多个探测器层对所述被检测物体进行成像。
PCT/CN2019/121615 2018-12-19 2019-11-28 一种伽马辐射成像装置及成像方法 WO2020125371A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021535274A JP7162377B2 (ja) 2018-12-19 2019-11-28 ガンマ放射結像装置及び結像方法
EP19900092.8A EP3896493A4 (en) 2018-12-19 2019-11-28 GAMMA RADIATION IMAGING DEVICE AND IMAGING METHOD
KR1020217022314A KR20210101309A (ko) 2018-12-19 2019-11-28 감마 방사선 이미징 장치 및 이의 이미징 방법
CA3123980A CA3123980C (en) 2018-12-19 2019-11-28 Gamma radiation imaging device and imaging method thereof
BR112021012091-2A BR112021012091A2 (pt) 2018-12-19 2019-11-28 Dispositivo de imagem de raios gama e método de imagem
US17/415,578 US11644584B2 (en) 2018-12-19 2019-11-28 Gamma radiation imaging device and imaging method thereof
AU2019411375A AU2019411375B2 (en) 2018-12-19 2019-11-28 Gamma radiation imaging device and imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811559943.2 2018-12-19
CN201811559943.2A CN111329500B (zh) 2018-12-19 2018-12-19 一种伽马辐射成像装置及成像方法

Publications (1)

Publication Number Publication Date
WO2020125371A1 true WO2020125371A1 (zh) 2020-06-25

Family

ID=71100938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121615 WO2020125371A1 (zh) 2018-12-19 2019-11-28 一种伽马辐射成像装置及成像方法

Country Status (9)

Country Link
US (1) US11644584B2 (zh)
EP (1) EP3896493A4 (zh)
JP (1) JP7162377B2 (zh)
KR (1) KR20210101309A (zh)
CN (1) CN111329500B (zh)
AU (1) AU2019411375B2 (zh)
BR (1) BR112021012091A2 (zh)
CA (1) CA3123980C (zh)
WO (1) WO2020125371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057664A (zh) * 2021-03-17 2021-07-02 清华大学 单光子发射断层成像装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076972A (zh) * 2020-08-19 2022-02-22 清华大学 探测准直单元、探测装置及spect成像系统
CN113031046B (zh) * 2021-03-12 2023-11-24 清华大学 核辐射探测成像的装置及联合成像的方法
CN113100795A (zh) * 2021-04-15 2021-07-13 清华大学 一种伽马探测器、成像系统及实时成像方法、设备及介质
WO2023015564A1 (en) * 2021-08-13 2023-02-16 Shenzhen Xpectvision Technology Co., Ltd. Determination of photon origination points using radiation detectors
CN115299976B (zh) * 2022-08-23 2024-05-28 清华大学 多伽马光子符合成像系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558626A (zh) * 2013-11-14 2014-02-05 北京华脉世纪石油科技有限公司 伽马射线探测器和伽马射线的处理方法
CN108139491A (zh) * 2015-10-21 2018-06-08 皇家飞利浦有限公司 用于低能量辐射量子和高能量辐射量子的组合探测的辐射探测器
US20180172848A1 (en) * 2016-09-09 2018-06-21 Minnesota Imaging And Engineering Llc Structured detectors and detector systems for radiation imaging

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037105A (en) * 1976-06-01 1977-07-19 Laurer Gerard R Radiation detector with array of different scintillators
US5665970A (en) * 1996-07-03 1997-09-09 The United States Of America As Represented By The Secretary Of The Army Directional radiation detector and imager
JP3897245B2 (ja) 2002-04-24 2007-03-22 三菱重工業株式会社 多層放射線検出器を用いたガンマ線源の距離測定装置
US8299437B2 (en) * 2007-05-15 2012-10-30 National Institute Of Radiological Sciences Gamma ray detector and gamma ray reconstruction method
JP5146072B2 (ja) 2008-04-17 2013-02-20 株式会社島津製作所 放射線検出器、およびそれを備えた陽電子放出型断層撮影装置
JP4634494B2 (ja) * 2008-10-31 2011-02-16 独立行政法人 宇宙航空研究開発機構 放射線源位置検出システム、及び放射線源位置検出用プローブ
CN101806912A (zh) * 2010-03-18 2010-08-18 清华大学 高能射线叠层式晶体模块探测器
JP5774242B2 (ja) 2012-02-27 2015-09-09 コーニンクレッカ フィリップス エヌ ヴェ 撮像システム及び方法
JP2013200164A (ja) * 2012-03-23 2013-10-03 Shimadzu Corp 放射線検出器およびこれを備えた診断装置
JP6349385B2 (ja) 2013-09-27 2018-06-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. マルチモーダルイメージング装置
US9349495B2 (en) * 2014-04-22 2016-05-24 General Electric Company Systems and methods for improved collimation sensitivity
DE102014108178A1 (de) 2014-06-11 2015-12-17 Universitätsklinikum Jena Verfahren zur Bestimmung des Ursprungsortes eines Strahlungssignals in einem Messbereich und Messgerät zur simultanen Erfassung von Strahlungsereignissen zerfallender Radionuklide in dem Messbereich
US9606245B1 (en) * 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector
CN104793231B (zh) * 2015-05-13 2018-04-27 北京永新医疗设备有限公司 伽马射线成像探测器和具有其的伽马射线成像探测器系统
WO2020032924A1 (en) * 2018-08-07 2020-02-13 Siemens Medical Solutions Usa, Inc. Adaptive compton camera for medical imaging
CN109009198B (zh) * 2018-08-21 2020-05-19 北京科技大学 多模态成像系统、方法和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558626A (zh) * 2013-11-14 2014-02-05 北京华脉世纪石油科技有限公司 伽马射线探测器和伽马射线的处理方法
CN108139491A (zh) * 2015-10-21 2018-06-08 皇家飞利浦有限公司 用于低能量辐射量子和高能量辐射量子的组合探测的辐射探测器
US20180172848A1 (en) * 2016-09-09 2018-06-21 Minnesota Imaging And Engineering Llc Structured detectors and detector systems for radiation imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896493A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057664A (zh) * 2021-03-17 2021-07-02 清华大学 单光子发射断层成像装置

Also Published As

Publication number Publication date
US20220066056A1 (en) 2022-03-03
JP2022514044A (ja) 2022-02-09
EP3896493A1 (en) 2021-10-20
BR112021012091A2 (pt) 2021-08-31
CN111329500B (zh) 2022-09-09
AU2019411375A1 (en) 2021-07-29
JP7162377B2 (ja) 2022-10-28
CA3123980A1 (en) 2020-06-25
CN111329500A (zh) 2020-06-26
KR20210101309A (ko) 2021-08-18
US11644584B2 (en) 2023-05-09
EP3896493A4 (en) 2022-01-12
AU2019411375B2 (en) 2022-10-27
CA3123980C (en) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020125371A1 (zh) 一种伽马辐射成像装置及成像方法
US10281594B2 (en) Gamma-ray Compton TOF camera system
JP6887427B2 (ja) 低エネルギー放射線量子及び高エネルギー放射線量子の組み合わされた検出のための放射線検出器
US8299437B2 (en) Gamma ray detector and gamma ray reconstruction method
ES2804265T3 (es) Sistema y procedimiento de detección de radiación gamma del tipo cámara gamma
US20120039446A1 (en) Interwoven multi-aperture collimator for 3-dimensional radiation imaging applications
WO2000004403A1 (fr) Unite d&#39;imagerie a rayonnement numerique
US9304211B2 (en) Scintillation detector with active light guide
JP2013246156A (ja) 3次元放射線位置検出器
WO2022037473A1 (zh) 探测准直单元、探测装置及spect成像系统
NL2020607B1 (en) Scintillator array for limited light sharing for depth-of—interaction determination.
WO2016112135A1 (en) Compact trapezoidal pet detector with light sharing
RU2782169C1 (ru) Устройство для визуализации гамма-излучения и способ такой визуализации
US11150364B2 (en) Crystal array, detector, medical detection device and method of manufacturing crystal array
EP0179095A1 (en) Gamma photon detection apparatus and method
CN208399701U (zh) 一种用于辐射检测以及发射成像设备的检测器
WO2019135676A1 (en) Active collimator for positron emission and single photon emission computed tomography
KR102316574B1 (ko) 컴프턴 영상 장치 및 이를 포함하는 단일 광자 및 양전자 단층 촬영 시스템
WO2024084314A1 (en) Double light output scintillation structure for scintigraphic investigations
JPS6139977Y2 (zh)
CN114076974A (zh) 单光子发射断层成像装置
CN117289331A (zh) 一种由条状闪烁体构建的三维位置灵敏康普顿成像探测器
KR20120101854A (ko) 박막 증착 시스템을 이용한 방사선 검출 모듈 개발방법
KR20140139225A (ko) 단층 또는 다층 단층 또는 다층 반사체 증착장치
JP2001330672A (ja) Pet装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535274

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3123980

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012091

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217022314

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019900092

Country of ref document: EP

Effective date: 20210716

ENP Entry into the national phase

Ref document number: 2019411375

Country of ref document: AU

Date of ref document: 20191128

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021012091

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210618