WO2020125331A1 - 锂金属电池 - Google Patents

锂金属电池 Download PDF

Info

Publication number
WO2020125331A1
WO2020125331A1 PCT/CN2019/120597 CN2019120597W WO2020125331A1 WO 2020125331 A1 WO2020125331 A1 WO 2020125331A1 CN 2019120597 W CN2019120597 W CN 2019120597W WO 2020125331 A1 WO2020125331 A1 WO 2020125331A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
lithium metal
protective layer
metal battery
lithium
Prior art date
Application number
PCT/CN2019/120597
Other languages
English (en)
French (fr)
Inventor
李丽红
刘成勇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US17/414,388 priority Critical patent/US20220045314A1/en
Priority to EP19900302.1A priority patent/EP3796429B1/en
Publication of WO2020125331A1 publication Critical patent/WO2020125331A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of battery materials, in particular to a lithium metal battery.
  • the object of the present invention is to provide a negative electrode for a lithium metal battery, which is used to solve the problems in the prior art.
  • the present invention provides a lithium metal battery including a positive electrode, a negative electrode, and an electrolyte.
  • the negative electrode includes lithium metal and a protective layer on at least a portion of the surface of the lithium metal.
  • the protective layer includes a polymer X and polymer Y; said polymer X includes polymer Z and polymer W, said polymer Z is selected from polytetrafluoroethylene, one or more compounds of formula I, said polymer W is selected One or more of the compounds of formula II and formula III; the polymer Y is selected from one or more of polyvinylidene fluoride and polyvinylidene fluoride-hexafluoropropylene;
  • R 2 is selected from H, or methyl
  • the lithium metal battery provided by the present invention is provided with a protective layer on the surface of the negative electrode lithium metal, and the protective layer contains a specific polymer. Through the regulation of the polymer structure, the interpenetrating network structure is formed by chain entanglement between the polymers.
  • the protective layer forms a channel that is conducive to the rapid conduction of lithium ions and can realize the charging and discharging of large currents;
  • the protective layer has good strength and elasticity, which can effectively improve the uniformity of lithium deposition/dissolution under high current charge and discharge, and suppress the formation of dendritic lithium; (3) At the same time, reduce the reactivity between the lithium anode and the electrolyte ; Thus significantly improve the cycle stability and safety performance of lithium metal batteries.
  • the lithium metal battery of the present invention will be described in detail below.
  • the lithium metal battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte.
  • the negative electrode includes lithium metal and a protective layer on at least a portion of the surface of the lithium metal.
  • the protective layer includes polymer X and polymer Y; the polymer X includes a polymer Z and a polymer W, the polymer Z is selected from one or more of polytetrafluoroethylene and a compound of formula I, and the polymer W is selected from one of a compound of formula II and formula III Or several; the polymer Y is selected from one or more of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene;
  • 0 ⁇ m ⁇ 2500 0 ⁇ m ⁇ 5, 5 ⁇ m ⁇ 10, 10 ⁇ m ⁇ 20, 20 ⁇ m ⁇ 50, 50 ⁇ m ⁇ 100, 100 ⁇ m ⁇ 200, 200 ⁇ m ⁇ 400, 400 ⁇ m ⁇ 600, 600 ⁇ m ⁇ 1000, 1000 ⁇ m ⁇ 1500, 1500 ⁇ m ⁇ 2000, or 2000 ⁇ m ⁇ 2500;
  • 0 ⁇ n ⁇ 2500 0 ⁇ n ⁇ 5, 5 ⁇ n ⁇ 10, 10 ⁇ n ⁇ 20, 20 ⁇ n ⁇ 50, 50 ⁇ n ⁇ 100, 100 ⁇ n ⁇ 200, 200 ⁇ n ⁇ 400, 400 ⁇ n ⁇ 600, 600 ⁇ n ⁇ 1000, 1000 ⁇ n ⁇ 1500, 1500 ⁇ n ⁇ 2000, 2000 ⁇ n ⁇ 2500, 2500 ⁇ n ⁇ 3000, 3000 ⁇ n ⁇ 3500, 3500 ⁇ n ⁇ 4000, 4000 ⁇ n ⁇ 4500, or 4500 ⁇ n ⁇ 5000;
  • 0 ⁇ n' ⁇ 2500 0 ⁇ n' ⁇ 5, 5 ⁇ n' ⁇ 10, 10 ⁇ n' ⁇ 20, 20 ⁇ n' ⁇ 50, 50 ⁇ n' ⁇ 100, 100 ⁇ n' ⁇ 200, 200 ⁇ n' ⁇ 400, 400 ⁇ n' ⁇ 600, 600 ⁇ n' ⁇ 1000, 1000 ⁇ n' ⁇ 1500, 1500 ⁇ n' ⁇ 2000, 2000 ⁇ n' ⁇ 2500, 2500 ⁇ n' ⁇ 3000, 3000 ⁇ n' ⁇ 3500, 3500 ⁇ n' ⁇ 4000, 4000 ⁇ n' ⁇ 4500, or 4500 ⁇ n' ⁇ 5000;
  • the polymerization degree m of the polymer Z and the polymerization degree n of the polymer W satisfy: 1:25 ⁇ 2m:n ⁇ 25:1, 1:25 ⁇ 2m:n ⁇ 1:20, 1:20 ⁇ 2m:n ⁇ 1 :15, 1:15 ⁇ 2m:n ⁇ 1:10, 1:10 ⁇ 2m:n ⁇ 1:5, 1:5 ⁇ 2m:n ⁇ 1:3, 1:3 ⁇ 2m:n ⁇ 1:1 , 1:1 ⁇ 2m:n ⁇ 1:3, 1:3 ⁇ 2m:n ⁇ 1:5, 1:5 ⁇ 2m:n ⁇ 1:10, 1:10 ⁇ 2m:n ⁇ 1:15, 1 :15 ⁇ 2m:n ⁇ 1:20 or 1:20 ⁇ 2m:n ⁇ 1:25;
  • the degree of polymerization m of the polymer Z and the degree of polymerization n'of the polymer W satisfy: 1:25 ⁇ 2m:n' ⁇ 25:1, 1:25 ⁇ 2m:n' ⁇ 1:20, 1:20 ⁇ 2m: n' ⁇ 1:15, 1:15 ⁇ 2m: n' ⁇ 1:10, 1:10 ⁇ 2m: n' ⁇ 1:5, 1:5 ⁇ 2m: n' ⁇ 1:3, 1:3 ⁇ 2m:n' ⁇ 1:1, 1:1 ⁇ 2m:n' ⁇ 1:3, 1:3 ⁇ 2m:n' ⁇ 1:5, 1:5 ⁇ 2m:n' ⁇ 1:10, 1: 10 ⁇ 2m:n' ⁇ 1:15, 1:15 ⁇ 2m:n' ⁇ 1:20 or 1:20 ⁇ 2m:n' ⁇ 1:25.
  • R 4 is selected from H, branched or unbranched, saturated or unsaturated, substituted or unsubstituted C1-C20, C1-C12 or C1-C6 aliphatic groups, saturated or unsaturated, substituted or Unsubstituted C3-C9 or C3-C6 cycloalkyl, the cycloalkyl optionally contains at least one heteroatom selected from S, N, P or O as a ring member; or, each is selected from a number of carbon atoms Saturated or unsaturated alkyl groups less than or equal to 20 and containing one or more elements of fluorine, chlorine, bromine, iodine, nitrogen, oxygen, sulfur, silicon, boron, phosphorus;
  • R 2 is selected from H, or methyl
  • R 3 is selected from H, branched or unbranched, saturated or unsaturated, substituted or unsubstituted C1-C20, C1-C12 or C1-C6 aliphatic groups, saturated or unsaturated, substituted or Unsubstituted C3-C9 or C3-C6 cycloalkyl, the cycloalkyl optionally contains at least one heteroatom selected from S, N, P or O as a ring member; or, each is selected from a number of carbon atoms Saturated or unsaturated alkyl groups less than or equal to 20 and containing one or more elements of fluorine, chlorine, bromine, iodine, nitrogen, oxygen, sulfur, silicon, boron, phosphorus;
  • the aliphatic group generally includes an alkyl group, an alkenyl group and an alkynyl group, for example, it may include but not limited to methyl, ethyl, vinyl, ethynyl, propyl, n-propyl, and isopropyl Group, propenyl, propynyl, butyl, n-butyl, isobutyl, sec-butyl, tert-butyl, butenyl, butynyl, pentyl, hexyl, heptyl, octyl, nonyl and Decyl and so on.
  • the cycloalkyl generally refers to saturated and unsaturated (but not aromatic) cyclic hydrocarbons, which may optionally be unsubstituted, mono-substituted or poly-substituted.
  • the cycloalkyl group may be a saturated cycloalkyl group, wherein optionally at least one carbon atom may be replaced with a hetero atom, and the hetero atom is preferably S, N, P, or O.
  • the cycloalkyl group may be a monounsaturated or polyunsaturated (but not aromatic) cycloalkyl group having no hetero atoms in the ring.
  • the aryl group generally refers to a ring system having at least one aromatic ring, but without heteroatoms, for example, may include but not limited to phenyl, naphthyl, fluoranthenyl, fluorenyl, tetrahydro Naphthyl, indanyl or anthracenyl.
  • the interpenetrating network structure is formed between the polymer X and the polymer Y in the protective layer by chain entanglement.
  • the chain entanglement generally refers to molecular chain winding, overlapping, Through or through the dynamic interaction between the segments, so as to form the role of physical cross-linking.
  • the polymer X is used to improve the ionic conductivity of the protective layer body, so that the protective layer has good ionic conductivity, which is conducive to the consistency of the lithium ion concentration on the surface of the negative electrode during the charging and discharging process of large current , Also reduces the capacity loss caused by polarization during charge and discharge; the strength of the property changes the apparent morphology of the lithium deposition process; when the protective layer contains both X and Y polymers, the protective layer can be balanced Electrical conductivity and high mechanical strength, so that the electric field and mechanics can coordinate the control of the deposition/dissolution process of lithium, achieve the uniformity of lithium deposition/dissolution, and improve battery performance.
  • the polymer Z and the polymer W may be blended polymers, and the blended polymer generally means that the polymer Z and the polymer W are physically mixed.
  • the polymer Z and the polymer W may also be copolymerized polymers, and the copolymerized polymer generally refers to the monomer corresponding to the polymer Z and the monomer corresponding to the polymer W
  • the copolymerization forms a copolymer, and the first block in the formed copolymer may correspond to the polymer Z, and the second block may thus correspond to the polymer W.
  • the structure of the copolymer of polymer Z and polymer W may be a copolymer including but not limited to the structure of Poly(Z-c-W), Poly(Z-b-W), Poly(Z-b-W-b-Z).
  • the Poly(ZcW) generally refers to a random polymer formed by the monomer corresponding to the polymer Z and the monomer corresponding to the polymer W
  • Poly(ZbW) generally refers to the polymer Z and the first block A diblock copolymer formed by the polymer W as the second block
  • the Poly(ZbWbZ) generally refers to the polymer Z as the first block and the third block and the polymer W as the second block
  • c usually means that the monomers in the polymer are randomly polymerized
  • b usually means that there is a block between the monomers.
  • the number average molecular weight of the polymer Y may be 100,000 to 2,000,000, 100,000 to 1000000, 100,000 to 200,000, 200,000 to 300,000, 300,000 to 400,000, 400,000 to 500,000, 500,000 to 600,000, 600,000 to 700,000 , 700,000 to 800,000, 800,000 to 900000, 900000 to 1000000, 1000000 to 1200000, 1200000 to 1.400000, 1.400000 to 1.600000, 1600000 to 1800000, or 1.800000 to 2000000, preferably 100000 to 1000000.
  • the number average molecular weight of the polymer Z may be 5,000 to 1,000,000, 20,000 to 1,000,000, 5,000 to 10,000, 10,000 to 20,000, 20,000 to 50,000, 50,000 to 100,000, 100,000 to 200000, 20,000 to 400,000 , 400,000 to 600,000, 600,000 to 800,000, or 800,000 to 1,000,000, preferably 20,000 to 1,000,000.
  • the number average molecular weight of the polymer W may be 5,000 to 1,000,000, 20,000 to 500,000, 5,000 to 10,000, 10,000 to 20,000, 20,000 to 50,000, 50,000 to 100,000, 100,000 to 200,000, 20,000 to 300,000, 300,000 to 400,000, or 400,000 to 500,000, preferably 20,000 to 500,000.
  • the polymer Y may be one or more types including but not limited to polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP).
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • the polymer Z is selected from glass transition temperatures satisfying 50°C to 120°C, 50°C to 60°C, 60°C to 70°C, 70°C to 80°C, 80°C to 90°C, 90°C ⁇ 100°C, 100°C ⁇ 110°C, or 110°C ⁇ 120°C.
  • the polymer Z may be one or more of polytetrafluoroethylene, polystyrene, polyphenylene ether, and polymethylstyrene.
  • the polymer W may be polyethylene oxide, polymethyl acrylate, polyethyl acrylate, poly-n-propyl acrylate, polyisopropyl acrylate, poly-n-butyl acrylate, polyisopropyl acrylate Butyl ester, poly-n-pentyl acrylate, poly-n-hexyl acrylate, poly-2-ethylhexyl acrylate, hydroxyethyl n-acrylate, polyhydroxypropyl acrylate, n-butyl methacrylate, poly-n-methacrylate Homopolymer or copolymer formed by one or more of ester, poly-n-hexyl methacrylate, poly-n-octyl methacrylate, polyhydroxypropyl methacrylate, etc.
  • a person skilled in the art can select a suitable number average molecular weight of the copolymer of polymer W and polymer Z according to the types and physicochemical properties of polymer W and polymer Z, for example, the copolymer of polymer W and polymer Z
  • the number average molecular weight can be 5,000 to 1 million, 5,000 to 10,000, 10,000 to 20,000, 20,000 to 40,000, 40,000 to 60,000, 60,000 to 80,000, 80,000 to 100,000, 100,000 to 200,000 , 200,000 to 400,000, 400,000 to 600,000, 600,000 to 800,000, 800,000 to 1 million.
  • a person skilled in the art can also appropriately adjust the lengths of the monomers corresponding to the polymer Z and the monomers corresponding to the polymer W in the block copolymer according to the parameters such as the types, physicochemical properties and molecular weight of the polymer Z and polymer W
  • the ratio between and. may satisfy the proportional relationship as described above.
  • the ratio of W and Z can affect the elasticity of the protective layer, and the proportion of Y in the total mass of the protective layer can affect its strength.
  • Those skilled in the art can determine the application environment of the protective layer , Adjust the proportion of polymer Y and/or polymer Z and/or polymer W in the protective layer.
  • the mass ratio of polymer W to polymer Z may be 1:9-9:1, 3:7-7:3, 1:9-1:7, 1:7-1: 5. 1:5 ⁇ 1:3, 1:3 ⁇ 3:7, 3:7 ⁇ 1:2, 1:2 ⁇ 2:3, 2:3 ⁇ 1:1, 1:1 ⁇ 2:3, 2:3 ⁇ 1:2, 1:2 ⁇ 3:7, 3:7 ⁇ 1:3, 1:3 ⁇ 1:5, 1:5 ⁇ 1:7, or 1:7 ⁇ 1:9, preferably It is 3:7 ⁇ 7:3.
  • the mass percentage of the polymer Y may be 10wt% to 90wt%, 40wt% to 90wt%, 10wt% to 15wt%, 15wt% to 20wt%, 20wt% to 25wt %, 25wt% ⁇ 30wt%, 30wt% ⁇ 35wt%, 35wt% ⁇ 40wt%, 40wt% ⁇ 45wt%, 45wt% ⁇ 50wt%, 50wt% ⁇ 55wt%, 55wt% ⁇ 60wt%, 60wt% ⁇ 65wt%, 65wt% to 70wt%, 70wt% to 75wt%, 75wt% to 80wt%, 80wt% to 85wt%, or 85wt% to 90wt%, preferably 30wt% to 60wt%.
  • the mass percentage of polymer X may be 10wt% to 90wt%, 40wt% to 90wt%, 10wt% to 15wt%, 15wt% to 20wt%, 20wt% to 25wt %, 25wt% ⁇ 30wt%, 30wt% ⁇ 35wt%, 35wt% ⁇ 40wt%, 40wt% ⁇ 45wt%, 45wt% ⁇ 50wt%, 50wt% ⁇ 55wt%, 55wt% ⁇ 60wt%, 60wt% ⁇ 65wt%, 65wt% to 70wt%, 70wt% to 75wt%, 75wt% to 80wt%, 80wt% to 85wt%, or 85wt% to 90wt%, preferably 40wt% to 70wt%.
  • the protective layer in order to obtain higher lithium ion conductivity, the protective layer needs to have sufficient lithium ion transmission channels, that is, higher pore diameter and porosity.
  • the more porous structure is not conducive to maintaining good mechanical strength of the protective layer.
  • the pore size of the protective layer is 10 nm to 100 nm, 100 to 500 nm, 500 nm to 1 um, 1 um to 5 um, 5 um to 10 um, preferably 500 nm to 5 um.
  • the protective layer has a porosity of 20% to 30%, 30% to 40%, 40% to 50%, 50% to 70%, preferably 30% to 50%.
  • the elastic modulus of the protective layer is 0.1 MPa to 0.5 MPa, 0.5 MPa to 1 MPa, 1 MPa to 5 MPa, 5 MPa to 10 MPa, 10 MPa to 20 MPa, 20 MPa to 40 MPa, 40 MPa to 60 MPa, or 60 MPa ⁇ 80MPa, preferably 0.1MPa-50MPa.
  • the elastic deformation ranges from 20% to 500%, 20% to 50%, 50% to 100%, 100% to 200%, 200% to 300%, 300% to 400%, 400% ⁇ 500%, preferably 100% ⁇ 300%.
  • the thickness of the protective layer may be 500 nm to 30 um, preferably 5 to 20 um.
  • the protective layer may further include a ceramic material for improving the mechanical strength and lithium ion conductivity of the protective layer.
  • a ceramic material for improving the mechanical strength and lithium ion conductivity of the protective layer.
  • the ceramic material may include but is not limited to Al 2 O 3 , SiO 2 , TiO 2 , ZnO, ZrO, BaTiO 3 , metal-organic framework (MOF), nano-iron oxide, One or more combinations of nano-zinc oxide, nano-zirconium oxide, etc.
  • MOF metal-organic framework
  • the particle size of the ceramic material may be 2 nm to 500 nm, 2 nm to 10 nm, 10 nm to 20 nm, 20 nm to 40 nm, 40 nm to 60 nm, 60 nm to 80 nm, 80 nm to 100 nm, 100 nm to 200 nm, 200 nm ⁇ 300nm, 300nm ⁇ 400nm, or 400nm ⁇ 500nm.
  • the weight percentage of the ceramic material in the protective layer may be 1wt%-30wt%, 1wt%-3wt%, 3wt%-5wt%, 5wt%-10wt%, 10wt% ⁇ 15wt%, 15wt%-20wt%, 20wt%-25wt%, or 25wt%-30wt%.
  • the ion conductivity of the protective layer is ⁇ 10 -6 S cm -1 , preferably ⁇ 10 -4 S cm -1 .
  • the protective layer can improve the deposition morphology of the lithium dendrite of the lithium metal battery under a certain charging current density, and relieve the volume expansion of the lithium metal anode. This is because when the battery is charged, electrons and ions instantly transfer substances and charges at the anode interface, and the electrons move much faster than ions. Therefore, the moving speed of ions determines the upper limit of the charging current density; at the same time, if the charging current density speed is too low, the charging time is too long, and the application range of the battery is limited.
  • the applicable charging current density may be 0.3 mA/cm 2 to 12 mA/cm 2 , and more preferably 1 mA/cm 2 to 6 mA/cm 2 .
  • the applicable charging current density may be 0.3 mA/cm 2 to 0.5 mA/cm 2 , 0.5 mA/cm 2 to 1 mA/cm 2 , 1 mA/cm 2 to 1.5 mA/cm 2 , 1.5mA/cm 2 ⁇ 2mA/cm 2 ⁇ 2mA/cm 2 ⁇ 2.5mA/cm 2 ⁇ 2.5mA/cm 2 ⁇ 3mA/cm 2 ⁇ 3mA/cm 2 ⁇ 3.5mA/cm 2 ⁇ 3.5mA/cm 2 ⁇ 4mA / cm 2, 4mA / cm 2 ⁇ 4.5mA / cm 2, 4.5mA / cm 2 ⁇ 5mA / cm 2, 5mA / cm 2 ⁇ 5.5mA / cm 2, 5.5mA / cm 2 ⁇ 6mA / cm 2, 6mA /cm 2 ⁇ 8mA/cm 2 , 8mA/
  • the positive electrode and the electrolyte may be various materials suitable for the lithium metal battery.
  • the positive electrode may include but not limited to lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, olivine structure
  • the electrolyte may be a liquid electrolyte, a gel electrolyte, a solid electrolyte, or the like.
  • the method used may be a coating method, a spray method, a spin coating method, a vapor deposition method, and the like.
  • the provided protective layer may further include a ceramic material, and the ceramic material may generally be uniformly dispersed in the solution in a suspended manner, so that the protective layer Evenly dispersed.
  • one or more of the method steps mentioned in the present invention does not exclude that there may be other method steps before or after the combination step or that other method steps may be inserted between these explicitly mentioned steps unless otherwise Explained; It should also be understood that the combined connection relationship between one or more devices/devices mentioned in the present invention does not exclude that other devices/devices may exist before or after the combined devices/devices or those mentioned explicitly Other devices/apparatuses can also be inserted between the two devices/apparatuses unless otherwise stated.
  • each method step is only a convenient tool to identify each method step, not to limit the order of each method step or to limit the scope of the present invention, the change or adjustment of its relative relationship, in If the technical content is not substantially changed, it should be regarded as the scope of the invention.
  • Preparation of positive pole pieces mix positive electrode active material LiCoO 2 , conductive agent acetylene black, and binder PVDF at a mass ratio of 96:2:2, add solvent NMP and stir until the system is uniform, to obtain positive electrode slurry; The material is evenly coated on the aluminum foil of the positive electrode current collector, dried at room temperature and transferred to an oven to continue drying, and then cut into a disc with a diameter of ⁇ 14mm as a positive pole piece, and the positive electrode surface capacity is 3mAh/cm 2 .
  • polymer X is a copolymer of polymer Z and polymer W
  • polymer Z is styrene and the molecular weight is 104g/mol
  • polymer W is polybutyl acrylate and the molecular weight is 128g/ mol
  • Polymer Y uses PVDF with a molecular weight of 30W;
  • the polymer X and the polymer Y are physically mixed, wherein the mass ratio of the polymer Y in the protective layer is 75%, and the mass ratio of the polymer Z and the polymer W is 1:2;
  • step (2) Apply the mixed solution obtained in step (1) evenly to the surface of 20um thick lithium metal foil to form a protective layer, the thickness of the protective layer is 5um, and then cut into a disc with a diameter of 16mm as the negative pole piece .
  • LiPF 6 Lithium hexafluorophosphate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Configuration of polymer layer solution Configuration of polymer X solution: Weigh 1g of polymer X, add it to 9g N-methylpyrrolidone (NMP) solvent, stir until it dissolves; Configuration of polymer Z solution: weigh 1g Add polymer Y to 9g of N-methylpyrrolidone (NMP) solvent and stir until it dissolves; polymer layer solution configuration: weigh polymer X solution and polymer Y solution according to a certain ratio, mix, and continue stirring for 5h; Apply the above polymer solution to the glass plate with a doctor blade, evaporate and remove the solvent under vacuum at 50°C to prepare a polymer film of a certain thickness;
  • d is the thickness of the membrane, measured with a micrometer
  • A is the area of the membrane
  • R is the impedance of the membrane
  • the test frequency is 10 -6 ⁇ 10 -1 Hz
  • the amplitude is 5mV; the intersection of the graph and the horizontal axis is the impedance R of the polymer film.
  • the polymer film is cut into long strips with a length L 0 of 50 mm and a width of 20 mm.
  • the elastic modulus of the polymer film is measured by a universal testing machine. The stretching distance is 50 mm and the stretching speed is 20 mm/min. It is the elastic modulus.
  • Elastic deformation when the polymer film is stretched, and the length when the film breaks is L, the elastic deformation of the film can be calculated as (LL 0 )/L 0 ⁇ 100%.
  • Cycle performance test The lithium metal battery is charged to 4.25V for a certain constant current for the first time, and then discharged to 3.0V to obtain the specific discharge capacity (Cd1) for the first week, and the charge and discharge are repeated until 50 weeks.
  • the specific discharge capacity of the lithium metal battery after n cycles was recorded as Cdn.
  • Capacity retention rate specific discharge capacity (Cdn) after n cycles of circulation / specific discharge capacity (Cd1) in the first week ⁇ 100%.
  • the volume expansion rate of the pole piece the thickness of the fresh lithium piece is d 1 , after the battery is circulated for 50 weeks to the full discharge state, the battery is disassembled, and the thickness of the lithium piece is measured by an optical microscope as d 2 , and the pole piece expansion rate is (d 2 -d 1 )/d 1 ⁇ 100%.
  • Example 1 Comparing Example 1 and Examples 2 to 6, it can be seen that the molecular weight of the monomer structure and the corresponding amount have a great influence on the mechanical properties of the polymer film. Although a lower molecular weight helps to improve the elasticity of the film, it is easy to swell in carbonate In the electrolyte, lithium deposition is uneven and there are many lithium dendrites. When the molecular weight is high, the rigidity of the diaphragm is low, but the conductivity is low, which is not conducive to charging and discharging with a large current of 3 mA/cm 2 or more, and the polarization of the battery is large, resulting in rapid capacity decay.
  • Example 1 Comparing Example 1 and Examples 7-9, it can be seen that by adjusting the pore size, porosity, and membrane thickness in the membrane, the membrane can exhibit different electrical conductivity and mechanical strength. Generally, the higher pore diameter and porosity are beneficial to the rapid transfer of lithium ions (Example 9), but will reduce the mechanical strength of the diaphragm, which is not conducive to suppress the volume expansion of the lithium anode.
  • Example 12 Comparing Example 1 and Example 12, it can be seen that the monomer copolymerization (Example 1) is easier to form a winding structure that is conducive to lithium ion conduction than the blending system (Example 12). At the same time, the strength and deformation ability of the copolymerized film are higher and the energy Effectively suppress the uneven deposition of dendrites and lithium.
  • the pore size, porosity, thickness, etc. of the protective layer film can be adjusted to achieve a higher electrical conductivity and mechanical strength of the membrane, which is beneficial to the application of the membrane in a lithium metal battery that performs charge and discharge cycles at a large current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂金属电池,包括锂金属负极和位于所述锂金属负极上的保护层,所述保护层包括聚合物Y、聚合物Z和聚合物W,所述聚合物Y选自聚偏氟乙烯、聚偏氟乙烯-六氟丙烯中的一种或几种,所述聚合物Z选自聚四氟乙烯或式I化合物中的一种或几种,所述聚合物W选自式II和/或式III化合物中的一种或几种。该锂金属电池可以通过两种或多种聚合物之间的链缠结作用形成互穿网络结构,从而在锂负极表面形成聚合物保护层,所形成的保护层可实现大电流充放电时锂均匀沉积与溶出,同时抑制锂负极与电解液的过度副反应。

Description

锂金属电池 技术领域
本发明涉及电池材料领域,特别是涉及一种锂金属电池。
背景技术
目前,二次电池已广泛应用于手机、笔记本、无人机消费类电子产品和作为车用动力源。基于石墨负极结构的商业化锂离子电池的能量密度上限为270Wh/kg左右,很难通过对石墨进行处理而高幅度提升锂离子电池的能量密度。而金属锂的理论比容量高达3860mAh/g,电极电位低至-3.04V(vs.H 2/H +),有助于电池体系能量密度达到500Wh/kg,因此发展以金属锂作为负极的锂二次电池再次引起科研工作者的关注。
然而,限制锂二次电池进一步发展及应用的原因主要是在循环过程中锂沉积/溶出的不均匀,容易生成锂枝晶,导致电池短路,引起安全性问题;且锂枝晶的存在大大降低了电池的循环性能。
因此如何有效的改善锂金属表面性质、提升锂沉积/溶出的均匀性、抑制锂枝晶的生成是进一步发展锂金属电池需要解决的重点问题。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种锂金属电池用负极,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明提供一种锂金属电池,包括正极、负极、电解质,所述负极包括锂金属和位于所述锂金属表面至少一部分的保护层,所述保护层包括聚合物X和聚合物Y;所述聚合物X包括聚合物Z和聚合物W,所述聚合物Z选自聚四氟乙烯、式I化合物中的一种或几种,所述聚合物W选自式II、式III化合物中的一种或几种;所述聚合物Y选自聚偏氟乙烯、聚偏氟乙烯-六氟丙烯中的一种或几种;
Figure PCTCN2019120597-appb-000001
Figure PCTCN2019120597-appb-000002
其中,0<m≤2500,0<n≤5000,0<n’≤5000,1:25≤2m:n≤25:1,1:25≤2m:n’≤25:1;
R 1选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,(C=O)OR 4,-SO 3R 4,-PO 3R 4,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 4选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 1和R 4中,所述脂肪族基团和环烷基基团的取代基各自独立地选自C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基;
R 2选自H,或甲基;
R 3选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 3中,所述脂肪族基团和环烷基基团的取代基各自独立地选自芳基、C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基。
相对于现有技术,本发明的有益效果为:
本发明所提供的锂金属电池,在负极锂金属表面设置有保护层,且保护层中包含特定的聚合物。通过对聚合物结构的调控,实现聚合物之间以链缠结作用形成互穿网络结构,(1)使得保护层形成有利于锂离子快速传导的通道,可实现大电流的充放电;(2)使保护层具有兼具良好的强度和弹性,能够有效改善大电流充放电下锂沉积/溶出均匀性,抑制枝晶锂形成;(3)同时,降低锂负极与电解液之间的反应性;从而显著改善锂金属电池的循环稳定性能和安全性能。
具体实施方式
下面详细说明本发明的锂金属电池。
本发明的锂金属电池,包括正极、负极、电解质,所述负极包括锂金属和位于所述锂金 属表面至少一部分的保护层,所述保护层包括聚合物X和聚合物Y;所述聚合物X包括聚合物Z和聚合物W,所述聚合物Z选自聚四氟乙烯、式I化合物中的一种或几种,所述聚合物W选自式II、式III化合物中的一种或几种;所述聚合物Y选自聚偏氟乙烯、聚偏氟乙烯-六氟丙烯中的一种或几种;
Figure PCTCN2019120597-appb-000003
其中,0<m≤2500、0<m≤5、5≤m≤10、10≤m≤20、20≤m≤50、50≤m≤100、100≤m≤200、200≤m≤400、400≤m≤600、600≤m≤1000、1000≤m≤1500、1500≤m≤2000、或2000≤m≤2500;
0<n≤2500、0<n≤5、5≤n≤10、10≤n≤20、20≤n≤50、50≤n≤100、100≤n≤200、200≤n≤400、400≤n≤600、600≤n≤1000、1000≤n≤1500、1500≤n≤2000、2000≤n≤2500、2500≤n≤3000、3000≤n≤3500、3500≤n≤4000、4000≤n≤4500、或4500≤n≤5000;
0<n’≤2500、0<n’≤5、5≤n’≤10、10≤n’≤20、20≤n’≤50、50≤n’≤100、100≤n’≤200、200≤n’≤400、400≤n’≤600、600≤n’≤1000、1000≤n’≤1500、1500≤n’≤2000、2000≤n’≤2500、2500≤n’≤3000、3000≤n’≤3500、3500≤n’≤4000、4000≤n’≤4500、或4500≤n’≤5000;
聚合物Z的聚合度m和聚合物W的聚合度n满足:1:25≤2m:n≤25:1、1:25≤2m:n≤1:20、1:20≤2m:n≤1:15、1:15≤2m:n≤1:10、1:10≤2m:n≤1:5、1:5≤2m:n≤1:3、1:3≤2m:n≤1:1、1:1≤2m:n≤1:3、1:3≤2m:n≤1:5、1:5≤2m:n≤1:10、1:10≤2m:n≤1:15、1:15≤2m:n≤1:20或1:20≤2m:n≤1:25;
聚合物Z的聚合度m和聚合物W的聚合度n’满足:1:25≤2m:n’≤25:1、1:25≤2m:n’≤1:20、1:20≤2m:n’≤1:15、1:15≤2m:n’≤1:10、1:10≤2m:n’≤1:5、1:5≤2m:n’≤1:3、1:3≤2m:n’≤1:1、1:1≤2m:n’≤1:3、1:3≤2m:n’≤1:5、1:5≤2m:n’≤1:10、1:10≤2m:n’≤1:15、1:15≤2m:n’≤1:20或1:20≤2m:n’≤1:25。
R 1选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20、C1-C12或C1-C6脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9或C3-C6环烷基,(C=O)OR 4,-SO 3R 4,-PO 3R 4,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;或,各种选自碳原子数小于等于20且含有氟、氯、溴、碘、氮、氧、硫、硅、硼、磷中的一种或几种元素的饱和的或不饱和的烷基;
R 4选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20、C1-C12或C1-C6脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9或C3-C6环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;或,各种选自碳原子数小于等于20且含有氟、氯、溴、碘、氮、氧、硫、硅、硼、磷中的一种或几种元素的饱和的或不饱和的烷基;
R 1和R 4中,所述脂肪族基团和环烷基基团的取代基各自独立地选自C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基。
R 2选自H,或甲基;
R 3选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20、C1-C12或C1-C6脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9或C3-C6环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;或,各种选自碳原子数小于等于20且含有氟、氯、溴、碘、氮、氧、硫、硅、硼、磷中的一种或几种元素的饱和的或不饱和的烷基;
R 3中,所述脂肪族基团和环烷基基团的取代基各自独立地选自芳基、C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基。
本发明中,所述脂肪族基团通常包括烷基、烯基和炔基,例如,可以是包括但不限于甲基、乙基、乙烯基、乙炔基、丙基、正丙基、异丙基、丙烯基、丙炔基、丁基、正丁基、异丁基、仲丁基、叔丁基、丁烯基、丁炔基、戊基、己基、庚基、辛基、壬基和癸基等。
本发明中,所述环烷基通常指饱和的和不饱和的(但不是芳族的)环状烃,其可以任选地是未取代的、单取代或多取代的。例如,所述环烷基可以是饱和的环烷基,其中任选地至少一个碳原子可以被杂原子替换,所述杂原子优选为S、N、P或O。再例如,所述环烷基可以是在环中没有杂原子的单不饱和或多不饱和的(但不是芳族的)环烷基。
本发明中,所述芳基通常指具有至少一个芳香环的环体系、但没有杂原子的基团,例如,可以是包括但不限于苯基、萘基、荧蒽基、芴基、四氢化萘基、茚满基或蒽基等。
本发明所提供的锂金属电池中,保护层中的聚合物X和聚合物Y之间以链缠结作用形成互穿网络结构,所述链缠结作用通常指通过分子链缠绕、交叠、贯穿或由链段间动态等形式 相互作用,从而形成物理交联的作用。
本发明所提供的锂金属电池中,所述聚合物X用于提高保护层体的离子电导率,使保护层具有良好的离子电导率,利于大电流充放电过程中负极表面锂离子浓度保持一致,也降低充放电时极化作用引起的容量损失;所述性质强度改变锂沉积过程中的表观形貌;当所述保护层中同时包含X和Y聚合物时,可以使保护层兼顾良好的导电性和较高的机械强度,从而实现电场和力学协同控制锂的沉积/溶出过程,实现锂沉积/溶出的均匀性,提升电池性能。
在本发明一些实施方式中,所述聚合物Z和聚合物W可以为共混的聚合物,所述共混的聚合物通常指聚合物Z和聚合物W以物理的形式混合。
在本发明一些实施方式中,所述聚合物Z和聚合物W还可以是共聚的聚合物,所述共聚的聚合物通常指聚合物Z所对应的单体与聚合物W所对应的单体共聚形成共聚物,所形成的共聚物中的第一嵌段可以与聚合物Z相对应,第二嵌段可以从而与聚合物W相对应。优选的,聚合物Z和聚合物W的共聚物的结构可以是包括但不限于结构为Poly(Z-c-W)、Poly(Z-b-W)、Poly(Z-b-W-b-Z)的共聚物。所述Poly(Z-c-W)通常指由聚合物Z所对应的单体和聚合物W所对应的单体所形成的无规聚合物,Poly(Z-b-W)通常指作为第一嵌段的聚合物Z与作为第二嵌段的聚合物W所形成的二嵌段共聚物,所述Poly(Z-b-W-b-Z)通常指作为第一嵌段和第三嵌段的聚合物Z与作为第二嵌段的聚合物W所形成的三嵌段共聚物,其中,c通常表示聚合物中的单体是无规聚合,b通常表示单体之间为嵌段。
在本发明一些实施方式中,所述聚合物Y的数均分子量可以为100000~2000000、100000~1000000、100000~200000、200000~300000、300000~400000、400000~500000、500000~600000、600000~700000、700000~800000、800000~900000、900000~1000000、1000000~1200000、1200000~1400000、1400000~1600000、1600000~1800000、或1800000~2000000,优选为100000~1000000。
在本发明一些实施方式中,所述聚合物Z的数均分子量可以为5000~1000000、20000~1000000、5000~10000、10000~20000、20000~50000、50000~100000、100000~200000、20000~400000、400000~600000、600000~800000、或800000~1000000,优选为20000~1000000。
在本发明一些实施方式中,所述聚合物W的数均分子量可以5000~1000000、20000~500000、5000~10000、10000~20000、20000~50000、50000~100000、100000~200000、20000~300000、300000~400000、或400000~500000,优选为20000~500000。
在本发明一些实施方式中,所述聚合物Y可以是包括但不限于聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)中的一种或几种。
在本发明一些实施方式中,所述聚合物Z选自玻璃化转变温度满足50℃~120℃、50℃~60℃、60℃~70℃、70℃~80℃、80℃~90℃、90℃~100℃、100℃~110℃、或110℃~120℃。
在本发明一些实施方式中,优选地,所述聚合物Z可以是聚四氟乙烯、聚苯乙烯、聚苯醚、聚甲基苯乙烯中的一种或几种。
在本发明一些实施方式中,所述聚合物W可以是聚氧化乙烯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸正丙酯、聚丙烯酸异丙酯、聚丙烯酸正丁酯、聚丙烯酸异丁酯、聚丙烯酸正戊酯、聚丙烯酸正己酯、聚丙烯酸-2-乙基己酯、正丙烯酸羟乙酯、聚丙烯酸羟丙酯、正甲基丙烯酸正丁酯、聚甲基丙烯酸正戊酯、聚甲基丙烯酸正己酯、聚甲基丙烯酸正辛酯、聚甲基丙烯酸羟丙酯等中的一种或几种形成的均聚物或共聚物。
本领域技术人员可根据聚合物W和聚合物Z的种类和物化性质,选择合适的聚合物W和聚合物Z的共聚物的数均分子量,例如,聚合物W和聚合物Z的共聚物的数均分子量可以为5000~100万、5000~1万、1万~2万、2万~4万、4万~6万、6万~8万、8万~10万、10万~20万、20万~40万、40万~60万、60万~80万、80万~100万。本领域技术人员还可以根据聚合物Z和聚合物W的种类、物化性质和分子量等参数,适当调整嵌段共聚物中聚合物Z所对应的单体和聚合物W所对应的单体的长度和之间的比例。例如,聚合物Z所对应的单体的数量m和聚合物W所对应的单体的数量n或n’可以满足如上所述的比例关系。
本发明所提供的锂金属电池中,W和Z的比例可以影响保护层的弹性,Y在保护层总质量中的占比可以影响其强度,本领域技术人员可以根据所述保护层的应用环境,调整保护层体中聚合物Y和/或聚合物Z和/或聚合物W所占的比例。
在本发明一些实施方式中,聚合物W与聚合物Z的质量比可以为1:9~9:1、3:7~7:3、1:9~1:7、1:7~1:5、1:5~1:3、1:3~3:7、3:7~1:2、1:2~2:3、2:3~1:1、1:1~2:3、2:3~1:2、1:2~3:7、3:7~1:3、1:3~1:5、1:5~1:7、或1:7~1:9,优选为3:7~7:3。
在本发明一些实施方式中,保护层中,聚合物Y所占的质量百分比可以是10wt%~90wt%、40wt%~90wt%、10wt%~15wt%、15wt%~20wt%、20wt%~25wt%、25wt%~30wt%、30wt%~35wt%、35wt%~40wt%、40wt%~45wt%、45wt%~50wt%、50wt%~55wt%、55wt%~60wt%、60wt%~65wt%、65wt%~70wt%、70wt%~75wt%、75wt%~80wt%、80wt%~85wt%、或85wt%~90wt%,优选为30wt%~60wt%。
在本发明一些实施方式中,保护层中,聚合物X所占的质量百分比可以是10wt%~90wt%、40wt%~90wt%、10wt%~15wt%、15wt%~20wt%、20wt%~25wt%、25wt%~30wt%、30wt%~35wt%、35wt%~40wt%、40wt%~45wt%、45wt%~50wt%、50wt%~55wt%、 55wt%~60wt%、60wt%~65wt%、65wt%~70wt%、70wt%~75wt%、75wt%~80wt%、80wt%~85wt%、或85wt%~90wt%,优选为40wt%~70wt%。
本发明所提供的锂金属电池中,为获得较高的锂离子电导率需要保护层有足够的锂离子传输通道,即较高的孔径和孔隙率。但较多的孔结构不利于保护层保持良好的机械强度。为了形成具有合适的孔密度的保护膜结构,需要在保护层的制备过程中考虑不同聚合物的相容性以及其他工艺参数等问题。
在本发明一些实施方式中,所述保护层的孔径为10nm~100nm、100~500nm、500nm~1um、1um~5um、5um~10um,优选为500nm~5um。
在本发明一些实施方式中,所述保护层的孔隙率为20%~30%、30%~40%、40%~50%、50%~70%,优选为30%~50%。
在本发明一些实施方式中,所述保护层的弹性模量为0.1MPa~0.5MPa、0.5MPa~1MPa、1MPa~5MPa、5MPa~10MPa、10MPa~20MPa、20MPa~40MPa、40MPa~60MPa、或60MPa~80MPa,优选为0.1MPa~50MPa。
在本发明一些实施方式中,弹性形变范围为20%~500%、20%~50%、50%~100%、100%~200%、200%~300%、300%~400%、400%~500%,优选为100%~300%。
在本发明一些实施方式中,所述保护层的厚度可以为500nm~30um,优选为5~20um。
本发明所提供的锂金属电池中,所述保护层还可以包括陶瓷材料,用于提升保护层的机械强度和锂离子传导能力。本领域技术人员可选择合适的适用于锂金属电池的陶瓷材料的种类和参数。
在本发明一些实施方式中,所述陶瓷材料可以是包括但不限于Al 2O 3、SiO 2、TiO 2、ZnO、ZrO、BaTiO 3、金属-有机骨架(MOF)、纳米三氧化二铁、纳米氧化锌、纳米氧化锆等中的一种或多种的组合。
在本发明一些实施方式中,所述陶瓷材料的粒径可以为2nm~500nm、2nm~10nm、10nm~20nm、20nm~40nm、40nm~60nm、60nm~80nm、80nm~100nm、100nm~200nm、200nm~300nm、300nm~400nm、或400nm~500nm。
在本发明一些实施方式中,所述陶瓷材料在保护层中所占的重量百分比可以为1wt%~30wt%、1wt%~3wt%、3wt%~5wt%、5wt%~10wt%、10wt%~15wt%、15wt%~20wt%、20wt%~25wt%、或25wt%~30wt%。
在本发明一些实施方式中,通过对上述聚合物保护层进行调控后,保护层的离子电导率为≥10 -6S cm -1,优选为≥10 -4S cm -1
本发明所提供的锂金属电池中,所述保护层可以改善一定充电电流密度下的锂金属电池的锂枝晶的沉积形貌、缓解锂金属负极体积膨胀。这是因为电池充电时,电子与离子在阳极界面处瞬间完成物质和电荷转移,且电子的运动速度远大于离子。因此,离子的运动速度决定充电电流密度上限;同时,若充电电流密度速度太低,充电时间过长,电池的应用范围受限。优选地,所适用的充电电流密度可以是0.3mA/cm 2~12mA/cm 2,更优选为1mA/cm 2~6mA/cm 2
在本发明一些实施方式中,所适用的充电电流密度可以是0.3mA/cm 2~0.5mA/cm 2、0.5mA/cm 2~1mA/cm 2、1mA/cm 2~1.5mA/cm 2、1.5mA/cm 2~2mA/cm 2、2mA/cm 2~2.5mA/cm 2、2.5mA/cm 2~3mA/cm 2、3mA/cm 2~3.5mA/cm 2、3.5mA/cm 2~4mA/cm 2、4mA/cm 2~4.5mA/cm 2、4.5mA/cm 2~5mA/cm 2、5mA/cm 2~5.5mA/cm 2、5.5mA/cm 2~6mA/cm 2、6mA/cm 2~8mA/cm 2、8mA/cm 2~10mA/cm 2、或10mA/cm 2~12mA/cm 2
本发明所提供的锂金属电池中,所述正极和电解质可以是各种适用于锂金属电池的材料。例如,所述正极可以是包括但不限于锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐等,还可以使用其他可被用作电池正极活性材料的传统公知的材料。再例如,所述电解质可以是液体电解质,凝胶电解质、固态电解质等。
本领域技术人员通常可以根据锂金属负极的结构,选择合适的方法形成保护层。例如,所采用的方法可以是涂布法、喷涂法、旋涂法、气相沉积法等。
本发明所提供的所述锂金属电池的制备方法中,所提供的保护层中还可以包括有陶瓷材料,所述陶瓷材料通常可以是以悬浮的方式均匀分散于溶液中,从而可以在保护层中均匀分散。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
须知,下列实施例中未具体注明的工艺设备或装置均采用本领域内的常规设备或装置。
此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明;还应理解,本发明中提到的一个或多个设备/装置之间的组合连接关系并不排斥在所述组合设备/装置前后还可以存在其他设备/装置或在这些明确提到的两个设备/装置之间还可以插入其 他设备/装置,除非另有说明。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
实施例1
正极极片制备:将正极活性材料LiCoO 2、导电剂乙炔黑、粘结剂PVDF按质量比96:2:2进行混合,加入溶剂NMP搅拌至体系呈均一状,获得正极浆料;将正极浆料均匀涂覆在正极集流体铝箔上,室温晾干后转移至烘箱继续干燥,然后裁切成直径为Φ14mm的圆片做为正极极片,正极面容量为3mAh/cm 2
负极极片制备:
(1)聚合物溶液的制备:聚合物X选用聚合物Z和聚合物W的共聚物,聚合物Z选用苯乙烯,分子量为104g/mol,聚合物W选用聚丙烯酸丁酯,分子量为128g/mol;
聚合物Y选用PVDF,分子量为30W;
将聚合物X和聚合物Y物理混合,其中,聚合物Y在保护层中的质量占比为75%,聚合物Z和聚合物W的质量比为1:2;
(2)将步骤(1)所得的混合溶液均匀涂覆于厚度为20um金属锂箔的表面形成保护层,保护层的厚度为5um,然后裁切成直径为Φ16mm的圆片做为负极极片。
电解液制备:
将六氟磷酸锂(LiPF 6)缓慢加入至碳酸乙烯酯(EC)与碳酸甲乙酯(EMC)混合溶剂中(EC、EMC体积比为1:1),配置LiPF 6浓度为1mol/L的电解液。
隔离膜:
选用聚丙烯薄膜。
电池制备:
将上述正极极片、隔离膜、负极极片按顺序放好,使隔离膜处于正负极片中间起到隔离的作用,注入上述配制好的电解液,组装成扣式电池。电池测试前,将锂金属电池以3.0mA/cm 2的恒定电流充电至4.25V,再以3.0mA/cm 2的恒定电流放电至3.0V。
实施例2~12及对比例1~5的制备方法与实施例1类似,不同点详见表1。
表1
Figure PCTCN2019120597-appb-000004
接下来说明锂金属电池的性能测试:
1、保护层参数测试:
聚合物层溶液的配置:聚合物X溶液的配置:称取1g聚合物X,加至9g N-甲基吡咯烷酮(NMP)溶剂中,搅拌至其溶解;聚合物Z溶液的配置:称取1g聚合物Y,加至9g N-甲基吡咯烷酮(NMP)溶剂中,搅拌至其溶解;聚合物层溶液配置:按一定比例称取聚合物X溶液、聚合物Y溶液,混合,持续搅拌5h;将上述聚合物溶液使用刮刀刮涂在玻璃板上,50℃真空条件挥发除去溶剂,制备某一厚度的聚合物膜;
(1)离子电导率:
将聚合物膜冲成直径为16mm的圆片;将聚合物膜圆片在电解液中浸泡1h,取出,滤纸擦拭膜表面电解液;采用公式σ=d/RA计算溶胀电解液后的聚合物膜的离子电导率,其中d为膜厚度,千分尺测量,A为膜的面积,R为膜的阻抗,使用电化学工作站测试对称电池的阻抗,测试频率为10 -6~10 -1Hz,电压振幅为5mV;图形与横轴交点即为聚合物膜的阻抗R。
(2)孔径及孔隙率:
利用全自动压汞仪测试膜片的孔径分布和孔隙率,详见表1。
(3)弹性模量和弹性形变:
将聚合物膜裁成长度L 0为50mm,宽度为20mm的长条,聚合物膜的弹性模量通过万能试验机测量,拉伸距离50mm,拉伸速度20mm/min,聚合物膜拉力最大值即为弹性模量。弹性形变:对聚合物膜拉伸,以膜断裂时的长度为L,则该膜的弹性形变可计算为(L-L 0)/L 0×100%。
2、电池性能测试:
(1)循环性能测试:将锂金属电池首次以某一恒定电流充电至4.25V,后放电至3.0V,得首周放电比容量(Cd1),如此反复充放电至50周。锂金属电池循环n周后的放电比容量记为Cdn。容量保持率=循环n周后的放电比容量(Cdn)/首周放电比容量(Cd1)×100%。
(2)锂负极表面观察:循环至第50周放电完全状态后,拆解电池,在光学显微镜下观察锂沉积/溶出的均匀性、锂负极表面平整性;
(3)极片体积膨胀率:新鲜锂片厚度为d 1,电池循环50周至放电完全状态后,拆解电池,用光学显微镜测量锂片的厚度为d 2,极片膨胀率为(d 2-d 1)/d 1×100%。
实施例1~12及对比例1~5的测试结果详见表2。
表2
Figure PCTCN2019120597-appb-000005
Figure PCTCN2019120597-appb-000006
从表2可以看出:相对于对比例1而言,含有本专利所述保护膜后(实施例1~12,对比例2~5),锂金属电池循环多次后,锂负极体积膨胀得到了明显的抑制,有利于电池保持良好的容量保持率。
比较实施例1,10~11和对比例2~5可知,调控保护膜中不同单体的结构,可实现不同的缠绕结构。柔性基团的引入(PEO、PVDF-HFP),有助于提高保护膜的锂离子传导能力。
比较实施例1和实施例2~6可知,单体结构的分子量及对应的用量对聚合物膜的力学影响较大,尽管分子量较低时有助于提高膜的弹性,但易于溶胀于碳酸酯电解液中,锂沉积不均匀且锂枝晶较多。而分子量较高时,膜片的刚性较低,但电导率低,不利于3mA/cm 2以上大电流充放电,电池极化大而导致容量快速衰减。
比较实施例1和实施例7~9可知,通过对调节膜片中孔径大小、孔隙率及膜片厚度,膜片能够表现出不同的电导率和机械强度。一般较高的孔径和孔隙率利于锂离子快速传递(实施例9),但会降低膜片机械强度,不利于抑制锂负极体积膨胀。
比较实施例1和实施例12可知,单体共聚(实施例1)比共混体系(实施例12)更容易形成利于锂离子传导的缠绕结构,同时共聚膜的强度和形变能力较高,能有效抑制枝晶及 锂的不均匀沉积。
综上,可以通过调节保护层膜的孔径、孔隙率、厚度等,可以实现膜片获得较高的电导率、机械强度,利于膜片应用在以大电流密度进行充放电循环的锂金属电池。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (12)

  1. 一种锂金属电池,包括正极、负极、电解质,所述负极包括锂金属和位于所述锂金属表面至少一部分的保护层,所述保护层包括聚合物X和聚合物Y;所述聚合物X包括聚合物Z和聚合物W,所述聚合物Z选自聚四氟乙烯、式I化合物中的一种或几种,所述聚合物W选自式II、式III化合物中的一种或几种;所述聚合物Y选自聚偏氟乙烯、聚偏氟乙烯-六氟丙烯中的一种或几种;
    Figure PCTCN2019120597-appb-100001
    其中,0<m≤2500,0<n≤5000,0<n’≤5000,1:25≤2m:n≤25:1,1:25≤2m:n’≤25:1;
    R 1选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,(C=O)OR 4,-SO 3R 4,-PO 3R 4,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 4选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 1和R 4中,所述脂肪族基团和环烷基的取代基各自独立地选自C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基;
    R 2选自H,或甲基;
    R 3选自H,有支链或无支链的、饱和或不饱和的、取代或非取代的C1-C20脂肪族基团,饱和或不饱和的、取代或非取代的C3-C9环烷基,所述环烷基可选地至少含有一个选自S、N、P或O的杂原子作为环成员;R 3中,所述脂肪族基团和环烷基的取代基各自独立地选自芳基、C1-C6烷基、直链或支链的C1-C6烷氧基、F、Cl、I、Br、CF 3、CH 2F、CHF 2、CN、OH、SH、NH 2、oxo、(C=O)R’、SR’、SOR’、SO 2R’、NHR’、NR’R”、SiRR’R”、SiOR’R”、(R’O) 2(P=O)、(R’O) 2(P=S)、(R’S) 2(P=O)’、BR’R”,此处,各取代基的R、R’和R”各自独立地选自直链或支链的C 1-6烷基。
  2. 如权利要求1所述的锂金属电池,其特征在于,所述聚合物Y的数均分子量为100000~2000000,优选为100000~1000000;所述聚合物Z的数均分子量为5000~1000000,优选为20000~1000000;所述聚合物W的数均分子量为5000~1000000,优选为20000~500000。
  3. 如权利要求1所述的锂金属电池,其特征在于,所述聚合物Z和聚合物W为共混的聚合物。
  4. 如权利要求1所述的锂金属电池,其特征在于,所述聚合物Z和聚合物W为共聚的聚合物,优选的,所述聚合物Z和聚合物W的共聚物的结构选自Poly(Z-c-W)、Poly(Z-b-W)、Poly(Z-b-W-b-Z)中的一种或几种的组合。
  5. 如权利要求1所述的锂金属电池,其特征在于,所述聚合物Z的玻璃化转变温度满足50℃~120℃;优选地,所述聚合物Z选自聚四氟乙烯、聚苯乙烯、聚苯醚、聚甲基苯乙烯中的一种或几种。
  6. 如权利要求1所述的锂金属电池,其特征在于,所述聚合物W选自聚氧化乙烯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸正丙酯、聚丙烯酸异丙酯、聚丙烯酸正丁酯、聚丙烯酸异丁酯、聚丙烯酸正戊酯、聚甲基丙烯酸甲酯的一种或几种所形成的均聚物或共聚物。
  7. 如权利要求1所述的锂金属电池,其特征在于,聚合物W与聚合物Z的质量比为1:9~9:1,优选为3:7~7:3;
    和/或,所述聚合物Y在所述保护层中的质量百分比为10wt%~90wt%,优选为30wt%~60wt%;
    和/或,所述聚合物X在所述保护层中的质量百分比为10wt%~90wt%,优选为40wt%~70wt%。
  8. 如权利要求1所述的锂金属电池,其特征在于,所述保护层的弹性模量为0.1MPa~80MPa,优选为0.1MPa~50MPa;
    和/或,所述保护层的弹性形变范围为20%~500%,优选为100%~300%。
  9. 如权利要求1所述的锂金属电池,其特征在于,所述保护层为含孔结构,所述孔结构的孔径为10nm~10um,优选为500nm~5μm;
    和/或,所述保护层孔隙率为20%~70%,优选为30%~50%。
  10. 如权利要求1所述的锂金属电池,其特征在于,所述保护层厚度为500nm~30um,优选为5~20um。
  11. 如权利要求1-9所述的锂金属电池,其特征在于,所述保护层还包括陶瓷材料,所述陶瓷 材料选自Al 2O 3、SiO 2、TiO 2、ZnO、ZrO、BaTiO 3、金属-有机骨架、纳米三氧化二铁、纳米氧化锌、纳米氧化锆中的一种或多种的组合;
    和/或,所述陶瓷材料的粒径为2nm~500nm;
    和/或,所述陶瓷材料在保护层中所占的重量百分比为1%~30%。
  12. 如权利要求1所述的锂金属电池,其特征在于,所述锂金属电池适用于0.3mA/cm 2~12mA/cm 2的充电电流密度,优选为1mA/cm 2~6mA/cm 2
PCT/CN2019/120597 2018-12-17 2019-11-25 锂金属电池 WO2020125331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/414,388 US20220045314A1 (en) 2018-12-17 2019-11-25 Lithium metal battery
EP19900302.1A EP3796429B1 (en) 2018-12-17 2019-11-25 Lithium metal battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811543809.3A CN111326736B (zh) 2018-12-17 2018-12-17 锂金属电池
CN201811543809.3 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020125331A1 true WO2020125331A1 (zh) 2020-06-25

Family

ID=71100796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120597 WO2020125331A1 (zh) 2018-12-17 2019-11-25 锂金属电池

Country Status (4)

Country Link
US (1) US20220045314A1 (zh)
EP (1) EP3796429B1 (zh)
CN (1) CN111326736B (zh)
WO (1) WO2020125331A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531145B (zh) * 2020-12-09 2022-07-29 山东省科学院能源研究所 一种钠金属负极保护层、钠金属负极及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074968A (zh) * 2013-09-11 2015-11-18 株式会社Lg化学 锂电极和包含该锂电极的锂二次电池
CN105556730A (zh) * 2013-09-27 2016-05-04 罗伯特·博世有限公司 锂电池功能层的制备方法
US20160372743A1 (en) * 2015-06-19 2016-12-22 SolidEnergy Systems Multi-layer polymer coated li anode for high density li metal battery
CN107359309A (zh) * 2016-05-09 2017-11-17 三星电子株式会社 用于锂金属电池的负极和包括其的锂金属电池
CN108292727A (zh) * 2015-12-04 2018-07-17 罗伯特·博世有限公司 Sic-隔膜和sic-电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557437B2 (en) * 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
WO2014107433A2 (en) * 2013-01-01 2014-07-10 Massachusetts Institute Of Technology Multi-layer structures prepared by layer-by-layer assembly
CN105591071B (zh) * 2014-10-24 2018-01-12 宁德时代新能源科技股份有限公司 锂金属阳极片及其制备方法及锂金属电池
JP6461328B2 (ja) * 2014-12-08 2019-01-30 エルジー・ケム・リミテッド 安全性が向上した電極組立体、その製造方法及びその電極組立体を含む電気化学素子
EP3136475B1 (en) * 2015-08-31 2021-09-22 Samsung Electronics Co., Ltd. Lithium metal battery
CN107394115B (zh) * 2016-04-29 2022-03-29 三星电子株式会社 用于锂金属电池的负极和包括其的锂金属电池
KR102003307B1 (ko) * 2016-09-21 2019-07-24 주식회사 엘지화학 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
KR102140129B1 (ko) * 2016-09-28 2020-07-31 주식회사 엘지화학 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102328253B1 (ko) * 2016-09-30 2021-11-18 주식회사 엘지에너지솔루션 전도성 직물로 형성된 보호층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102160708B1 (ko) * 2016-09-30 2020-09-28 주식회사 엘지화학 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102129557B1 (ko) * 2016-12-01 2020-07-02 주식회사 엘지화학 리튬 금속 이차전지용 음극 및 상기 음극의 제조방법
CN108565414B (zh) * 2018-03-28 2021-04-13 天津中能锂业有限公司 具有表面修饰层的锂硅合金材料及其制备方法、电极和电化学储能装置、负极补锂方法
CN108987796B (zh) * 2018-09-10 2020-09-01 江西克莱威纳米碳材料有限公司 一种柔性锂离子电池及其制备方法
KR20200052707A (ko) * 2018-11-07 2020-05-15 삼성전자주식회사 전고체전지용 무음극 코팅층 및 이를 포함하는 전고체전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074968A (zh) * 2013-09-11 2015-11-18 株式会社Lg化学 锂电极和包含该锂电极的锂二次电池
CN105556730A (zh) * 2013-09-27 2016-05-04 罗伯特·博世有限公司 锂电池功能层的制备方法
US20160372743A1 (en) * 2015-06-19 2016-12-22 SolidEnergy Systems Multi-layer polymer coated li anode for high density li metal battery
CN108292727A (zh) * 2015-12-04 2018-07-17 罗伯特·博世有限公司 Sic-隔膜和sic-电池
CN107359309A (zh) * 2016-05-09 2017-11-17 三星电子株式会社 用于锂金属电池的负极和包括其的锂金属电池

Also Published As

Publication number Publication date
CN111326736A (zh) 2020-06-23
CN111326736B (zh) 2021-05-28
EP3796429A1 (en) 2021-03-24
EP3796429B1 (en) 2023-06-28
EP3796429A4 (en) 2021-08-11
US20220045314A1 (en) 2022-02-10
EP3796429C0 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
KR102014566B1 (ko) 다공성 층을 포함하는 세퍼레이터 및 상기 세퍼레이터를 제조하는 방법
CN109509857B (zh) 一种具有互穿网络结构的多孔性锂离子电池隔膜及其应用
KR101198806B1 (ko) 다공절연층을 포함하는 이차전지 전극 및 그 제조 방법
JP6186852B2 (ja) 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
CN108878751A (zh) 导电陶瓷复合隔膜和固态电池
CN105470576B (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
JP6915059B2 (ja) 電池セパレーターおよびリチウムイオン電池ならびにその製造方法
JP2012531716A (ja) 高分子複合電解質、高分子複合電解質を含む電池、およびそれを調製する方法
TWI725822B (zh) 鋰電池及其負極材料
JPWO2016047360A1 (ja) 金属二次電池用セパレータ
JP2019530128A (ja) 電気化学発電装置用のイオン伝導性材料及び製造方法
WO2016161920A1 (zh) 复合隔膜及其制备方法以及锂离子电池
CN111584827A (zh) 锂电池负极极片及其制备方法和应用
Zhang et al. Advanced poly (vinyl alcohol) porous separator with overcharge protection function for lithium-ion batteries
CN112952030A (zh) 一种正极极片及包含所述正极极片的电化学装置和电子装置
CN114006036A (zh) 一种非对称凝胶聚合物电解质及其制备方法和应用
WO2020125331A1 (zh) 锂金属电池
TW202200641A (zh) 用於二次電池的黏結劑組合物
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
CN109461881B (zh) 负极极片及二次电池
WO2023098646A1 (zh) 一种隔膜和含有该隔膜的电池
Wang et al. Preparation of monodispersed ZrO2 nanoparticles and their applications in poly [(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolytes
TW201351759A (zh) 離子聚合物膜材料及其製備方法和鋰二次電池
JP2018160400A (ja) 蓄電デバイス電極用バインダー
CN109755638B (zh) 复合电解质膜、复合电解质膜的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019900302

Country of ref document: EP

Effective date: 20201217

NENP Non-entry into the national phase

Ref country code: DE