WO2020125008A1 - Structure d'échange de chaleur pour séchoir réfrigéré à air comprimé - Google Patents

Structure d'échange de chaleur pour séchoir réfrigéré à air comprimé Download PDF

Info

Publication number
WO2020125008A1
WO2020125008A1 PCT/CN2019/096760 CN2019096760W WO2020125008A1 WO 2020125008 A1 WO2020125008 A1 WO 2020125008A1 CN 2019096760 W CN2019096760 W CN 2019096760W WO 2020125008 A1 WO2020125008 A1 WO 2020125008A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
cavity
heat exchange
compressed air
freeze dryer
Prior art date
Application number
PCT/CN2019/096760
Other languages
English (en)
Chinese (zh)
Inventor
廖志远
Original Assignee
佛山市天地元一净化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市天地元一净化设备有限公司 filed Critical 佛山市天地元一净化设备有限公司
Publication of WO2020125008A1 publication Critical patent/WO2020125008A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions

Definitions

  • the present invention relates to the technical field of heat exchangers, and particularly refers to a structure for heat exchange of a compressed air refrigeration dryer.
  • the heat exchange structure of some compressed air dryers mainly includes the following categories: The first type, the structure of the heat exchange of the refrigeration dryer, as shown in FIG. 3, la-cold heat exchanger, 2a-evaporation 3a-gas-liquid separator separate barrel, the structure is complicated, the manufacture is complicated, the volume is huge, the evaporator adopts copper aluminum fin type or stainless steel fin type heat exchanger, the fin gap is small, the condensate is in the evaporator It is easy to freeze in the middle, causing ice blockage.
  • the first type the structure of the heat exchange of the refrigeration dryer, as shown in FIG. 3, la-cold heat exchanger, 2a-evaporation 3a-gas-liquid separator separate barrel, the structure is complicated, the manufacture is complicated, the volume is huge, the evaporator adopts copper aluminum fin type or stainless steel fin type heat exchanger, the fin gap is small, the condensate is in the evaporator It is easy to freeze in the middle, causing ice blockage.
  • the second category, plate or plate fin type cold and dry heat exchanger as shown in Figure 4, this heat exchange structure has the following problems: 1, cold and heat exchange and evaporator using aluminum plate fin heat exchanger or stainless steel
  • the welds are easy to leak and cannot be repaired; 2.
  • the thin plates are also easy to corrode and perforate and cannot be repaired; 3.
  • the steam-water separation effect is not good due to the small size; if an external steam-water separator is installed, it cannot reach To achieve the effect of compact structure; 4.
  • the gap between the plates is small, and it is easy to be blocked by dirt.
  • the present invention provides a compressed air refrigeration dryer heat exchange structure, compact structure, anti-corrosion does not produce secondary pollution, small pressure loss, reduce ice blocking and leakage, simple process, low cost , Good water vapor separation effect.
  • a heat exchange structure of a compressed air refrigeration dryer is characterized in that it includes a vertically arranged first tube
  • a second tube provided in the lumen of the first tube and a third tube provided in the lumen of the second tube, a first cavity is formed between the first tube and the second tube, the second tube and the A second cavity is formed in the third tube, a third cavity is formed in the third tube, and the first cavity, the second cavity, and the third cavity are not in communication with each other, and the second cavity
  • the upper and lower parts are respectively provided with a refrigerant outlet and a refrigerant inlet.
  • a plurality of first heat exchange tubes are provided in the third cavity.
  • One end of the plurality of first heat exchange tubes is connected to the outside world, and the other end is connected to the The first cavity, an air inlet is opened in the third tube and communicated with the third cavity, and the third cavity and the first cavity are communicated through a second heat exchange tube, the One end of the second heat exchange tube is connected to the lower part of the third cavity, the other end is connected to the upper part of the first cavity, and a drain tube is provided at the bottom of the first tube.
  • the second heat exchange tube is provided in the second cavity.
  • the second heat exchange tube is provided in the third cavity.
  • the outer wall of the second tube is provided with a spiral piece.
  • the bottom end of the first heat exchange tube is connected to the lower portion of the first cavity.
  • the third cavity is provided with a plurality of baffles to disturb the gas, and a plurality of the baffles are fixed on the first heat exchange tube.
  • the first tube, the second tube, the third tube and the second heat exchange tube are all 304 stainless steel structure.
  • a plurality of first heat exchange tubes are evenly distributed in the third cavity.
  • both ends of the second tube are placed in the first tube, the top end of the third tube extends out of the first tube, the bottom end is located in the first tube, the upper part of the third tube
  • the air inlet is provided on the side of the third tube and below the sealing of the third tube, and the top of the first heat exchange tube protrudes from the sealing at the upper part of the third tube and communicates with the outside world.
  • Anti-corrosion All components are made of 304 stainless steel or above anti-corrosion material, which is not easy to corrode and produce secondary pollution.
  • Compressed air inlet and outlet pressure difference is small: the compressed air flow process has a relatively large cross-sectional area and is not easily blocked by dirt, compressed air inlet and outlet pressure difference is small.
  • the second cavity uses a stainless steel heat exchange tube with an inner diameter greater than 10mm, which is much larger than the 2-3mm gap of the fin, plate or plate fin heat exchanger, greatly reducing ice Blocking phenomenon.
  • the second heat exchange tube adopts a stainless steel heat exchange tube with a thickness greater than 1 mm
  • the first tube and the second tube use stainless steel tubes with a thickness greater than 3 mm
  • the upper and lower end plates use a stainless steel material with a thickness greater than 5 mm.
  • argon arc welding has thicker heat exchange materials and fewer welding points, which greatly reduces the risk of corrosion leakage and welding point leakage.
  • the gas-liquid separation effect is better: The device is installed vertically, and the compressed air is better under the action of rotation separation and gravity.
  • FIG. 1 is a schematic structural view of Embodiment 1;
  • FIG. 2 is a schematic structural view of Example 2
  • FIG. 3 is a schematic structural view of the heat exchange of the freeze dryer
  • FIG. 4 is a schematic structural view of a plate or plate fin type cold and dry heat exchanger
  • FIG. 5 is a schematic structural view of a cold and dry machine in which a cold heat exchanger and an evaporator are built in one barrel.
  • Embodiment 1 As shown in FIG. 1, a heat exchange structure of a compressed air freeze dryer, including a vertical arrangement
  • the first tube 1 further includes a second tube 2 disposed in the cavity of the first tube 1 and a third tube 3 disposed in the cavity of the second tube 2, the first tube 1, the second tube 2 and the third
  • the tubes 3 are preferably arranged coaxially and fixed to each other, a first cavity 4 is formed between the inner wall of the first tube 1 and the outer wall of the second tube 2, the inner wall of the second tube 2 and the third tube 3
  • a second cavity 5 is formed between the outer walls, a third cavity 6 is formed in the inner cavity of the third tube 3, and both ends of the first tube 1, the second tube 2, and the third tube 3 are sealed so that the first cavity The cavity 4, the second cavity 5 and the third cavity 6 are not in communication with each other.
  • the upper and lower parts of the second cavity 5 are provided with a refrigerant outlet 7 and a refrigerant inlet 8 respectively.
  • the inlet 8 enters, fills the second cavity 5, and then exits from the refrigerant outlet 7.
  • the third cavity 6 is provided with a plurality of first heat exchange tubes 9, the plurality of first heat exchange tubes 9 are evenly distributed in the third cavity 6, and both ends of the second tube 2 are placed In the first tube 1, the upper part of the third tube 3 is sealed, and the top end of the third tube 3 extends out of the first tube 1 and is opened to form an air outlet 15, where a flange can be provided to facilitate connection with other
  • an air inlet 10 is opened on the side of the third tube 3 and communicates with the third cavity 6, the air inlet 10 is located below the upper seal of the third tube 3, and the top of the first heat exchange tube 9 A seal extending above the third tube 3 and communicating with the outside world, the first heat exchange tube 9 is not higher than the air outlet 15, so that a unified air outlet is formed,
  • a water collecting groove 16 is formed at the bottom of the inner cavity of the first tube 1, the water collecting groove 16 communicates with the first cavity 4, the outer wall of the second tube 2 A spiral piece 13 is provided, and a drain pipe 12 is provided at the bottom of the first pipe 1.
  • the second heat exchange tube 4 uses a stainless steel heat exchange tube with a thickness greater than 1 mm
  • both the first tube 1 and the second tube 2 use a stainless steel tube with a thickness greater than 3 mm
  • the upper and lower end plates use a stainless steel material with a thickness greater than 5 mm , Argon arc welding, less solder joints, high strength, not easy to leak.
  • the third cavity 6 is provided with a plurality of baffles 14 to cause turbulence of gas, and the plurality of baffles 14 are fixed on the first heat exchange tube 9 and can be fixed by welding In this way, after the compressed air enters the third cavity 6 from the air inlet 10, turbulence will be generated, so that the compressed air will move around in the third cavity 6 to improve the heat exchange efficiency.
  • the turbulence of the gas is caused by the baffle plate 14 in the third cavity 6 and the cooling in the second cavity 5 Heat exchange between the agent and the low-temperature air in the first heat exchange tube 9, and the temperature of the compressed air gradually decreases.
  • the compressed air When the compressed air reaches the lower part of the third cavity 6, it enters the second heat exchange tube 11, In the second heat exchange tube 11, heat exchange with the refrigerant in the second cavity 5 and then enter the upper part of the first cavity 4, under the action of the spiral sheet 13 of the first cavity 4, the compressed air Spiral descending, the compressed air comes into contact with the outer surface of the second tube 2 and is cooled by the low-temperature refrigerant inside the second tube 2, the temperature continues to decrease, and a large amount of liquid water is produced. At the same time, the compressed air generates a centrifugal force during the high-speed rotation and downward flow.
  • the present invention has the following advantages:
  • Anti-corrosion All components are made of 304 stainless steel or above anti-corrosion material, which is not easy to corrode and produce secondary pollution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)

Abstract

L'invention concerne une structure d'échange de chaleur pour un séchoir réfrigéré à air comprimé, la structure comprenant un premier tuyau agencé verticalement (1), et comprenant en outre un second tuyau (2) agencé dans une cavité interne du premier tuyau (1), et un troisième tuyau (3) agencé dans une cavité interne du second tuyau (2), une première cavité (4) étant formée entre le premier tuyau (1) et le second tuyau (2), une seconde cavité (5) étant formée entre le second tuyau (2) et le troisième tuyau (3), une troisième cavité (6) étant formée dans une cavité interne du troisième tuyau (3), des parties supérieure et inférieure de la seconde cavité (5) étant respectivement pourvues d'une sortie de fluide frigorigène (7) et d'une entrée de fluide frigorigène (8), une pluralité de tuyaux d'échange de chaleur (9) étant agencés dans la troisième cavité (6), une extrémité de chacun de la pluralité de premiers tuyaux d'échange de chaleur (9) étant en communication avec l'extérieur, et l'autre extrémité de celui-ci est en communication avec la première cavité (4), et la troisième cavité (6) et la première cavité (4) étant en communication au moyen d'un second tuyau d'échange de chaleur (11).
PCT/CN2019/096760 2018-12-20 2019-07-19 Structure d'échange de chaleur pour séchoir réfrigéré à air comprimé WO2020125008A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811564224.X 2018-12-20
CN201811564224.XA CN109595952A (zh) 2018-12-20 2018-12-20 一种压缩空气冷冻式干燥机换热的结构

Publications (1)

Publication Number Publication Date
WO2020125008A1 true WO2020125008A1 (fr) 2020-06-25

Family

ID=65963502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096760 WO2020125008A1 (fr) 2018-12-20 2019-07-19 Structure d'échange de chaleur pour séchoir réfrigéré à air comprimé

Country Status (2)

Country Link
CN (3) CN109595952A (fr)
WO (1) WO2020125008A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构
CN110440611A (zh) * 2019-07-25 2019-11-12 佛山市天地元一净化设备有限公司 一种气体干燥机的换热结构
CN111375267B (zh) * 2020-04-18 2023-05-16 青岛科技大学 一种气液固多效分离器
JP7422033B2 (ja) * 2020-08-06 2024-01-25 株式会社ジェイテクトサーモシステム 水分分離装置
DE102022113558A1 (de) 2022-05-30 2023-11-30 Hps Home Power Solutions Ag Vorrichtung zum Trocknen eines Gasstroms
CN115532031B (zh) * 2022-10-31 2023-10-03 盐城天尔机械有限公司 一种基于空气热交换压缩空气预冷机
CN117085474B (zh) * 2023-09-25 2024-03-15 珠海蕲艾医疗科技有限公司 一种基于医用分子筛制氧用高效率气水自动分离装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541807A (en) * 1968-09-05 1970-11-24 Joseph H Henderson Air drying device
US3818718A (en) * 1973-04-26 1974-06-25 C Freese Heat exchanger for compressed air dryer
DE3133452A1 (de) * 1980-09-19 1982-04-15 Orion Machinery Co., Ltd., Suzaka, Nagano Drucklufttrockner
JP2010162509A (ja) * 2009-01-19 2010-07-29 Orion Mach Co Ltd 圧縮空気除湿装置
CN102202765A (zh) * 2008-10-24 2011-09-28 保思科特斯技有限公司 包括涡流管的空气干燥器
CN202122900U (zh) * 2011-06-01 2012-01-25 湖南云箭集团有限公司 一体式预冷蒸发器
CN102791358A (zh) * 2010-01-15 2012-11-21 英格索尔-兰德公司 空气干燥机组件
CN103480248A (zh) * 2013-09-27 2014-01-01 林锦志 一种冷干机
CN207203809U (zh) * 2017-06-26 2018-04-10 杨喧 冷冻式压缩空气干燥器热交换装置
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1435490A (en) * 1972-08-08 1976-05-12 Galindale Ltd Compressed gas dryer assembly tare setting
FR2212919A7 (en) * 1973-01-03 1974-07-26 Issaly Robert Shell and tube type heat exchanger - for use as calorifier, condenser, evaporator etc.
SU620799A1 (ru) * 1977-03-05 1978-08-25 Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа Теплообменник
AT409489B (de) * 2000-10-20 2002-08-26 Agrolinz Melamin Gmbh Verfahren zur herstellung von melamin
ATE457814T1 (de) * 2003-12-15 2010-03-15 Agt Thermotechnik Gmbh Vorrichtung zur kältetrocknung eines gases oder eines gas-dampf-gemisches
CN200941019Y (zh) * 2006-07-20 2007-08-29 苏宇贵 空调用换热器
US20090301699A1 (en) * 2008-06-05 2009-12-10 Lummus Novolent Gmbh/Lummus Technology Inc. Vertical combined feed/effluent heat exchanger with variable baffle angle
JP5232556B2 (ja) * 2008-07-23 2013-07-10 株式会社神鋼環境ソリューション グラスライニング製熱交換器
CN102284233B (zh) * 2011-06-01 2013-10-23 湖南云箭集团有限公司 一种预冷蒸发一体式压缩空气冷冻干燥机
KR101723458B1 (ko) * 2015-02-16 2017-04-14 주식회사 글로벌 그린 에너지 다챔버 순환방식을 이용한 열교환기
CN207056283U (zh) * 2017-06-02 2018-03-02 江苏新凯晟机械设备有限公司 一种冷冻式干燥机气液分离机构
CN207203774U (zh) * 2017-09-19 2018-04-10 河南省康源生物工程技术有限公司 一种冷冻式干燥机用气水分离器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541807A (en) * 1968-09-05 1970-11-24 Joseph H Henderson Air drying device
US3818718A (en) * 1973-04-26 1974-06-25 C Freese Heat exchanger for compressed air dryer
DE3133452A1 (de) * 1980-09-19 1982-04-15 Orion Machinery Co., Ltd., Suzaka, Nagano Drucklufttrockner
CN102202765A (zh) * 2008-10-24 2011-09-28 保思科特斯技有限公司 包括涡流管的空气干燥器
JP2010162509A (ja) * 2009-01-19 2010-07-29 Orion Mach Co Ltd 圧縮空気除湿装置
CN102791358A (zh) * 2010-01-15 2012-11-21 英格索尔-兰德公司 空气干燥机组件
CN202122900U (zh) * 2011-06-01 2012-01-25 湖南云箭集团有限公司 一体式预冷蒸发器
CN103480248A (zh) * 2013-09-27 2014-01-01 林锦志 一种冷干机
CN207203809U (zh) * 2017-06-26 2018-04-10 杨喧 冷冻式压缩空气干燥器热交换装置
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构

Also Published As

Publication number Publication date
CN110375563A (zh) 2019-10-25
CN211120739U (zh) 2020-07-28
CN109595952A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2020125008A1 (fr) Structure d'échange de chaleur pour séchoir réfrigéré à air comprimé
WO2020125007A1 (fr) Structure d'échange de chaleur efficace de sécheur de réfrigération à air comprimé
CN202734612U (zh) 高换热效率的蒸发式冷凝器
CN201876171U (zh) 双管偏心热虹吸管换热器
CN207975999U (zh) 便于维修的蒸发式冷凝器
CN211147362U (zh) 一种压缩气体干燥机的换热除水结构
WO2021012936A1 (fr) Échangeur de chaleur à plaques doté de circuit à plaques de division d'écoulement
CN209689234U (zh) 一种温度控制精准的管壳式蒸发器
CN202126119U (zh) 耐腐蚀壳管式蒸发器
CN110701833A (zh) 一种水冷壳管式冷凝器
CN210292446U (zh) 以水作为制冷剂的制冷循环冷凝器
CN201885560U (zh) 蒸汽列管回转窑加热装置
CN211435148U (zh) 一种真空处理器的二次冷凝装置
CN209348128U (zh) 一种化工品生产用除湿装置
CN208735969U (zh) 整体翅片圆管冷风机
CN210569383U (zh) 一种卧式冷凝器
CN202803079U (zh) 板片式冷干机
CN206347786U (zh) 一种高换热效率的蒸发器
CN206347783U (zh) 一种微通道换热器
CN214701348U (zh) 一种螺纹槽管制冷设备
CN208832781U (zh) 一种大型制冷设备节能式冷凝器
CN215336791U (zh) 一种除湿机水冷节能装置
CN220321674U (zh) 一种空气源热泵机组及其涡流管除霜结构
CN216223715U (zh) 一种压缩空气自动排水装置
CN108679883A (zh) 整体翅片圆管冷风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19900285

Country of ref document: EP

Kind code of ref document: A1