WO2020125007A1 - 一种压缩空气冷冻式干燥机的高效换热结构 - Google Patents

一种压缩空气冷冻式干燥机的高效换热结构 Download PDF

Info

Publication number
WO2020125007A1
WO2020125007A1 PCT/CN2019/096759 CN2019096759W WO2020125007A1 WO 2020125007 A1 WO2020125007 A1 WO 2020125007A1 CN 2019096759 W CN2019096759 W CN 2019096759W WO 2020125007 A1 WO2020125007 A1 WO 2020125007A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
cavity
heat exchange
pipe
compressed air
Prior art date
Application number
PCT/CN2019/096759
Other languages
English (en)
French (fr)
Inventor
廖志远
Original Assignee
佛山市天地元一净化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市天地元一净化设备有限公司 filed Critical 佛山市天地元一净化设备有限公司
Publication of WO2020125007A1 publication Critical patent/WO2020125007A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to the technical field of heat exchangers, in particular to a high-efficiency heat exchange structure of a compressed air refrigeration dryer.
  • the heat exchange structure of some compressed air dryers mainly includes the following categories: The first type, the structure of the heat exchange of the refrigeration dryer, as shown in FIG. 3, la-cold heat exchanger, 2a-evaporation 3a-gas-liquid separator separate barrel, the structure is complicated, the manufacture is complicated, the volume is huge, the evaporator adopts copper aluminum fin type or stainless steel fin type heat exchanger, the fin gap is small, the condensate is in the evaporator It is easy to freeze in the middle, causing ice blockage.
  • the first type the structure of the heat exchange of the refrigeration dryer, as shown in FIG. 3, la-cold heat exchanger, 2a-evaporation 3a-gas-liquid separator separate barrel, the structure is complicated, the manufacture is complicated, the volume is huge, the evaporator adopts copper aluminum fin type or stainless steel fin type heat exchanger, the fin gap is small, the condensate is in the evaporator It is easy to freeze in the middle, causing ice blockage.
  • the second category, plate or plate fin type cold and dry heat exchanger as shown in Figure 4, this heat exchange structure has the following problems: 1, cold and heat exchange and evaporator using aluminum plate fin heat exchanger or stainless steel
  • the welds are easy to leak and cannot be repaired; 2.
  • the thin plates are also easy to corrode and perforate and cannot be repaired; 3.
  • the steam-water separation effect is not good due to the small size; if an external steam-water separator is installed, it cannot reach To achieve the effect of compact structure; 4.
  • the gap between the plates is small, and it is easy to be blocked by dirt.
  • the present invention provides a high-efficiency heat exchange structure of compressed air refrigeration dryer, compact structure, anti-corrosion does not produce secondary pollution, small pressure loss, reduce ice blocking and leakage, simple process, cost Low water vapor separation effect is good.
  • a high-efficiency heat exchange structure of a compressed air refrigeration dryer is characterized by comprising: a first tube arranged vertically, and a second tube arranged in the cavity of the first tube, the first The upper and lower ends of the tube and the second tube are sealed, the top of the first tube protrudes from the top of the second tube, a first cavity is formed between the inner wall of the first tube and the outer wall of the second tube, and the inner cavity of the second tube is formed A second cavity, an air inlet is opened in the upper part of the second tube and communicates with the second cavity, the second tube is provided with a plurality of first heat exchange tubes penetrating up and down, and a plurality of the first exchange tubes The top end of the heat pipe passes through the second pipe to communicate with the outside, and the bottom end of the heat pipe communicates with the first cavity.
  • the second pipe is also provided with a connecting pipe.
  • the top end of the connecting pipe communicates with the first cavity
  • the upper and lower portions are sealed and form a third cavity.
  • a plurality of second heat exchange tubes are provided through the third cavity, and the upper part of the second heat exchange tube communicates with the upper part of the connection tube.
  • the lower portion of the second heat exchange tube communicates with the first cavity, the lower portion of the third cavity is provided with a refrigerant inlet, and the upper portion thereof is provided with a refrigerant outlet.
  • a high-efficiency heat exchange structure of a compressed air refrigeration dryer is characterized by comprising: a first tube arranged vertically, and a second tube arranged in an inner cavity of the first tube, the first The upper and lower ends of the tube and the second tube are sealed, the top of the first tube protrudes from the top of the second tube, a first cavity is formed between the inner wall of the first tube and the outer wall of the second tube, and the inner cavity of the second tube is formed A second cavity, an air inlet is opened in the upper part of the second tube and communicates with the second cavity, the second tube is provided with a plurality of first heat exchange tubes penetrating up and down, and a plurality of the first exchange tubes The top end of the heat pipe passes through the second pipe to communicate with the outside, and the bottom end of the heat pipe communicates with the first cavity.
  • the second pipe is also provided with a connecting pipe.
  • the top end of the connecting pipe communicates with the first cavity
  • a plurality of baffles are provided in the second cavity to cause turbulence of gas, and the plurality of baffles are fixed on the first heat exchange tube.
  • the first tube and the second tube are disposed coaxially.
  • the first tube, the second tube, the connecting tube and the second heat exchange tube are all 304 stainless steel structure.
  • a plurality of first heat exchange tubes are evenly distributed in the second cavity.
  • the lower outer wall of the second tube is provided with a spiral piece.
  • Compressed air inlet and outlet pressure difference is small: the compressed air flow process has a relatively large cross-sectional area and is not easily blocked by dirt, compressed air inlet and outlet pressure difference is small.
  • the second cavity uses a stainless steel heat exchange tube with an inner diameter greater than 10mm, which is much larger than the 2-3mm gap of the fin, plate or plate fin heat exchanger, greatly reducing ice Blocking phenomenon.
  • the first tube and the second tube are made of stainless steel with a thickness greater than 3mm, and the upper and lower end plates are made of stainless steel with a thickness greater than 5mm.
  • Argon arc welding is compared with finned, plate finned and plated. Heat exchangers have thicker heat exchange materials and fewer solder joints, greatly reducing the risk of corrosion leaks and solder joint leaks.
  • FIG. 1 is a schematic structural view of Example 1;
  • FIG. 2 is a schematic structural view of Embodiment 2;
  • FIG. 3 is a schematic structural view of the heat exchange of the freeze dryer
  • FIG. 4 is a schematic structural view of a plate or plate fin type cold and dry heat exchanger
  • FIG. 5 is a schematic structural view of a cold and dry machine in which a cold heat exchanger and an evaporator are built into one barrel.
  • a high-efficiency heat exchange structure of a compressed air freeze dryer includes a first tube 1 disposed vertically, and further includes a cavity disposed in the first tube 1
  • the second tube 2 the first tube 1 and the second tube 2 are coaxially arranged, the structure is symmetrical, the upper and lower ends of the first tube 1 and the second tube 2 are sealed, the top of the first tube 1 extends At the top of the second tube 2, a first cavity 3 is formed between the inner wall of the first tube 1 and the outer wall of the second tube 2, the inner cavity of the second tube 2 forms a second cavity 4, the upper part of the second tube 2
  • An air inlet 11 is opened and communicates with the second cavity 4, the second tube 2 is provided with a plurality of first heat exchange tubes 5 penetrating up and down, and the plurality of first heat exchange tubes 5 are evenly distributed in the first cavity In the two cavities 4, the tops of the plurality of first heat exchange tubes 5 pass through the second tube 2 and communicate with the outside world, and an air
  • a plurality of baffles 9 are provided in the second cavity 4 to cause turbulence of gas.
  • the plurality of baffles 9 are fixed on the first heat exchange tube 5 and can be fixed by welding.
  • the baffles 9 has multiple through holes, and the first heat exchange tube 5 passes through the through holes of the baffle plate 9 and is welded and fixed.
  • the second tube 2 is also provided with a connecting tube 6, the top of the connecting tube 6 communicates with the upper part of the first cavity 3, and the bottom of the connecting tube 6 communicates with the lower part of the second cavity 4, so that the second The compressed air at the bottom of the cavity 4 is led to the top of the first cavity 3, and the bottom of the second tube 2 does not contact the bottom of the first tube 1, so that there is enough space at the bottom of the first tube 1 to form a set
  • the water tank 7 and the water collection tank 7 are also provided with a drain pipe 8 for draining.
  • the lower outer wall of the second pipe 2 is provided with a spiral sheet 10.
  • the compressed air coming from the first cavity 3 under the action of the spiral sheet 10 will An air flow that rotates downward is generated, thereby throwing out moisture in the air for water vapor separation.
  • the upper and lower portions of the second cavity 4 are sealed and a third cavity 12 is formed, and the third cavity 12 is up and down
  • a plurality of second heat exchange tubes 13 are provided throughout, the second heat exchange tube 13 is a first heat exchange tube of stainless steel, the upper part of the second heat exchange tube 13 communicates with the upper part of the connecting tube 6, the second The lower portion of the heat exchange tube 13 communicates with the first cavity 3, the lower portion of the third cavity 12 is provided with a refrigerant inlet 14, the upper portion thereof is provided with a first refrigerant outlet 15, and the third cavity 12 is used to accommodate refrigeration Agent.
  • the first tube 1, the second tube 2, the connecting tube 6 and the second heat exchange tube 13 are all 304 stainless steel structure, good corrosion resistance, and the second heat exchange tube 13 is thicker than 1mm
  • the first tube 1 and the second tube 2 are made of stainless steel with a thickness of more than 3mm.
  • the upper and lower end plates are made of stainless steel with a thickness of more than 5mm.
  • Argon arc welding has fewer welding points and high strength. It is not easy to leak.
  • compressed air enters the second cavity 4 from the air inlet 11, passes through the baffle 9 to cause turbulence of gas, and in the second cavity 4 and the first cavity 3 cooling Heat exchange between the agent and the low-temperature air in the first heat exchange tube 5, and the temperature of the compressed air gradually decreases.
  • the compressed air reaches the lower part of the second cavity 4, it enters the connecting tube 6, and the connecting tube 6 Go up to the upper part of the first cavity 3, and then enter the second heat exchange tube 13 and flow down, and the second heat exchange tube 13 is placed in the third cavity 12, the second change
  • the compressed air of the heat pipe 13 exchanges heat with the refrigerant in the third cavity 12 and the temperature gradually decreases.
  • the compressed air comes out of the bottom of the second heat exchange tube 13.
  • the compressed air takes the form of a spiral Down, the compressed air at this time has produced a large amount of liquid water, and at the same time, the compressed air generates a centrifugal force during the high-speed rotation and downward flow.
  • the liquid water and the gas are separated, and the liquid water is attached to the first tube 1
  • the inner wall flows downwards, the liquid water enters the lower sump 16, and the compressed air enters the tube from the bottom of the first heat exchange tube 9, and when the compressed air is discharged outside, it exchanges heat with the compressed air in the first cavity 3 After the temperature rises, it is discharged from the air outlet 19 to finish drying the compressed air.
  • a high-efficiency heat exchange structure of a compressed air refrigeration dryer includes a first tube 1 disposed vertically, and further includes a first tube disposed in the inner cavity of the first tube 1.
  • Two tubes 2, the first tube 1 and the second tube 2 are coaxially arranged, the structure is symmetrical and reasonable, the upper and lower ends of the first tube 1 and the second tube 2 are sealed, and the top of the first tube 1 extends
  • a first cavity 3 is formed between the inner wall of the first tube 1 and the outer wall of the second tube 2
  • the inner cavity of the second tube 2 forms a second cavity 4, and the upper portion of the second tube 2 is opened
  • the second tube 2 is provided with a plurality of first heat exchange tubes 5 up and down, the plurality of first heat exchange tubes 5 are evenly distributed in the second In the cavity 4, the tops of the plurality of first heat exchange tubes 5 pass through the second tube 2 and communicate with the outside world,
  • a plurality of baffles 9 are provided in the second cavity 4 to cause turbulence of the gas.
  • the plurality of baffles 9 are fixed on the first heat exchange tube 5 and can be fixed by welding.
  • the flow plate 9 has a plurality of through holes, the first heat exchange tube 5 passes through the through holes of the baffle plate 9 and is welded and fixed, and the second tube 2 is also provided with a connecting pipe 6, the connection
  • the top end of the connecting pipe 6 communicates with the upper part of the first cavity 3, and the bottom end thereof communicates with the lower part of the second cavity 4, so that the compressed air at the bottom of the second cavity 4 can be led to the top of the first cavity 3, so
  • the bottom of the second tube 2 does not contact the bottom of the first tube 1, so that there is enough space at the bottom of the first tube 1 and a sump 7 is formed.
  • the sump 7 is also provided with a drain pipe 8 for draining.
  • the lower wall of the second tube 2 is provided with a spiral sheet 10, and the compressed air coming down from the first cavity 3 will produce a downward airflow under the action of the spiral sheet 10, thereby throwing out the water in the air.
  • Water vapor is separated, and a coil 16 is provided in the first cavity 3, a bottom end of the coil is a refrigerant inlet 17, and a top thereof is a second refrigerant outlet 18.
  • the first tube 1, the second tube 2 and the connecting tube 6 are all 304 stainless steel structure, good corrosion resistance, and the first tube 1 and the second tube 2 are made of stainless steel pipe with a thickness greater than 3mm
  • the upper and lower end plates are made of stainless steel with a thickness of more than 5mm, argon arc welding, less welding points, high strength, and not easy to leak.
  • compressed air When compressed air reaches the lower part of the second cavity 4, it enters the connecting tube 6 and moves upward in the connecting tube 6 until it reaches the upper part of the first cavity 3, and then flows downward from the upper part of the first cavity 3, In the first cavity 3, the heat exchange with the refrigerant in the coil 16, the temperature gradually decreases, the compressed air comes to the lower portion of the first cavity 3, under the action of the spiral plate 10, the compressed air decreases in a spiral manner. At the same time, the compressed air has produced a large amount of liquid water due to the temperature decrease. At the same time, the compressed air generates a centrifugal force during the high-speed rotation and downward flow.
  • Both the first tube 1 and the second tube 2 are made of stainless steel with a thickness greater than 3mm, and the upper and lower end plates are made of stainless steel with a thickness greater than 5mm.
  • Argon arc welding is compared with the fin type and plate fin type. Compared with plate heat exchangers, the heat exchange material is thicker and there are fewer solder joints, which greatly reduces the risk of corrosion leakage and solder joint leakage.
  • the gas-liquid separation effect is better: The device is installed vertically, and the compressed air is better under the action of rotation separation and gravity.
  • installation should be broadly understood, for example, it can be a fixed connection, it can also be Detachable connection, or integral connection; may be mechanical connection, or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, or may be internal communication between two components.
  • installation should be broadly understood, for example, it can be a fixed connection, it can also be Detachable connection, or integral connection; may be mechanical connection, or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, or may be internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明提供一种一种压缩空气冷冻式干燥机的高效换热结构,可以改善现有设备容易冰堵、结构不紧凑、干燥效果不佳的问题,包括竖直设置的第一管,还包括设于所述第一管内腔中的第二管,所述第一管内壁与第二管外壁之间形成第一空腔,所述第二管内腔形成第二空腔,所述第二管上部开有空气进口并连通于所述第二空腔,所述第二管上下贯穿地设有多根第一换热管,其底端连通于所述第一空腔,所述第二管内还设有连接管,所述连接管顶端连通于第一空腔的上部,其底端连通于第二空腔的下部,所述第一管底部具有集水槽并设有排水管。本发明结构紧凑、防腐不产生二次污染、压损小、减少冰堵及泄露现象、工艺简单、成本低、水汽分离效果好。

Description

一种压缩空气冷冻式干燥机的高效换热结构 技术领域
[0001] 本发明涉及换热器技术领域, 特指一种压缩空气冷冻式干燥机的高效换热结构 背景技术
[0002] 5见有的压缩空气干燥机的换热结构主要有以下几类: 第一类, 冷冻式干燥机换 热的结构, 如图 3所示, la-冷热交换器、 2a-蒸发器、 3a-气液分离器分开的桶体 制作, 结构复杂, 制作复杂, 体积庞大, 蒸发器采用铜铝翅片式或不锈钢翅片 式换热器, 翅片间隙小, 冷凝水在蒸发器中容易结冰, 产生冰堵现象。 第二类 , 板式或板翅式冷干机换热器, 如图 4所示, 这种换热结构存在以下问题: 1、 冷热交换和蒸发器采用铝制板翅式换热器或不锈钢板式换热器, 焊口容易泄露 且无法维修; 2、 板片较薄, 也容易腐蚀穿孔且不能维修; 3、 由于体积较小, 汽水分离效果不好; 如果外置汽水分离器, 达不到结构紧凑的效果; 4、 板片间 隙小, 易被脏物堵塞, 积累较多脏物会影响换热效果, 并且阻力增加, 使得压 缩空气的进出口产生越来越大的压差, 而且冷凝水在蒸发器中容易结冰堵塞压 缩空气通道, 产生冰堵现象; 5、 制作复杂, 只有专业的板式或板翅式换热器厂 家才能制作, 成本高。 第三类, 冷热交换器、 蒸发器内置于一个桶内的冷干机 , 如图 5所示, 图中: a-制冷剂入口, b-制冷剂出口, h-空气入口, i-空气出口, g-螺旋管, e-滤液网, f-蒸发器, 蒸发器采用铜铝翅片式或不锈钢翅片式换热器 , 这种结构存在以下问题: 1) 翅片间隙小, 冷凝水在蒸发器中容易结冰, 产生 冰堵现象; 2) 没有专门的气液分离装置, 而是依靠自然重力析水, 水分容易被 气流带走, 气水分离效果不好; 3) 制作精密度要求较高, 制作工艺复杂, 成本 高。
[0003] 综上所述, 5见有的压缩空气干燥机的换热结构均不太理想。
发明概述
技术问题 问题的解决方案
技术解决方案
[0004] 针对以上问题, 本发明提供了一种压缩空气冷冻式干燥机的高效换热结构, 结 构紧凑、 防腐不产生二次污染、 压损小、 减少冰堵及泄露现象、 工艺简单、 成 本低、 水汽分离效果好。
[0005] 为了实现上述目的, 本发明采用的第一个技术方案如下:
[0006] 一种压缩空气冷冻式干燥机的高效换热结构, 其特征在于: 包括竖直设置的第 一管, 还包括设于所述第一管内腔中的第二管, 所述第一管及第二管上下两端 均封口, 所述第一管顶部伸出第二管顶部, 所述第一管内壁与第二管外壁之间 形成第一空腔, 所述第二管内腔形成第二空腔, 所述第二管上部开有空气进口 并连通于所述第二空腔, 所述第二管上下贯穿地设有多根第一换热管, 多根所 述第一换热管顶端穿出于所述第二管连通于外界, 其底端连通于所述第一空腔 , 所述第二管内还设有连接管, 所述连接管顶端连通于第一空腔的上部, 其底 端连通于第二空腔的下部, 所述第二管底部不接触所述第一管底部, 所述第一 管底部具有集水槽并设有排水管, 所述第二空腔上、 下部封口并形成第三空腔 , 所述第三空腔内上、 下贯穿地设有多根第二换热管, 所述第二换热管上部连 通于所述连接管上部, 所述第二换热管下部连通于所述第一空腔, 所述第三空 腔下部设有制冷剂进口, 其上部设有制冷剂出口。
[0007] 为了实现上述目的, 本发明采用的第二个技术方案如下:
[0008] 一种压缩空气冷冻式干燥机的高效换热结构, 其特征在于: 包括竖直设置的第 一管, 还包括设于所述第一管内腔中的第二管, 所述第一管及第二管上下两端 均封口, 所述第一管顶部伸出第二管顶部, 所述第一管内壁与第二管外壁之间 形成第一空腔, 所述第二管内腔形成第二空腔, 所述第二管上部开有空气进口 并连通于所述第二空腔, 所述第二管上下贯穿地设有多根第一换热管, 多根所 述第一换热管顶端穿出于所述第二管连通于外界, 其底端连通于所述第一空腔 , 所述第二管内还设有连接管, 所述连接管顶端连通于第一空腔的上部, 其底 端连通于第二空腔的下部, 所述第二管底部不接触所述第一管底部, 所述第一 管底部具有集水槽并设有排水管, 所述第一空腔内设有盘管, 所述盘管的底端 为制冷剂进口, 其顶端为制冷剂出口。
[0009] 优选地, 所述第二空腔内设有多块折流板使气体产生扰流, 多块所述折流板固 定在第一换热管上。
[0010] 优选地, 所述第一管与第二管同轴设置。
[0011] 优选地, 所述第一管、 第二管、 连接管及第二换热管均为 304不锈钢结构。
[0012] 优选地, 多根第一换热管均匀分设于所述第二空腔内。
[0013] 优选地, 所述第二管的下部外壁设有螺旋片。
发明的有益效果
有益效果
[0014] 本发明有益效果:
[0015] a)防腐: 所有部件采用 304不锈钢材料, 不易腐蚀产生二次污染。
[0016] b)压缩空气进出口压差小: 压缩空气流动过程中都有比较大的流通截面积并且 不易被脏物堵塞, 压缩空气的进出口压差小。
[0017] c)采购简单: 所有材料都是市场上广泛使用的管材 (包括不锈钢换热管) , 采 购简单。
[0018] d)减少冰堵现象: 第二空腔内采用内径大于 10mm的不锈钢换热管, 远远大于 翅片式、 板式或板翅式换热器的 2-3mm的间隙, 大大减少冰堵现象的发生。
[0019] e)减少泄漏: 第一管与第二管均采用厚度大于 3mm的不锈钢管材, 上下端板采 用大于 5mm厚的不锈钢材料, 氩弧焊接, 相比翅片式、 板翅式和板式换热器, 换热材料更厚, 焊点更少, 大大减少腐蚀泄漏和焊点泄漏的风险。
[0020] 气液分离效果更好: 本装置竖直安装, 压缩空气在旋转分离和重力作用下, 气液分离效果更好。
[0021] g)制作工艺简单: 全部采用简单焊接工艺, 无需特殊制作设备, 制作简单。
[0022] h)结构紧凑: 由外而内分别由第一管与第二管组成, 没有无效区域, 结构紧凑 对附图的简要说明
附图说明
[0023] 图 1是实施例 1的结构示意图; [0024] 图 2是实施例 2的结构示意图;
[0025] 图 3是冷冻式干燥机换热的结构示意图;
[0026] 图 4是板式或板翅式冷干机换热器的结构示意图;
[0027] 图 5是将冷热交换器、 蒸发器内置于一个桶内的冷干机的结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0028] 下面结合附图与实施例对本发明的技术方案进行说明。
[0029] 实施例 1 : 如图 1所示, 一种压缩空气冷冻式干燥机的高效换热结构, 包括竖直 设置的第一管 1, 还包括设于所述第一管 1内腔中的第二管 2, 所述第一管 1与第 二管 2同轴设置, 结构对称, 所述第一管 1及第二管 2上下两端均封口, 所述第一 管 1顶部伸出第二管 2顶部, 所述第一管 1内壁与第二管 2外壁之间形成第一空腔 3 , 所述第二管 2内腔形成第二空腔 4 , 所述第二管 2上部开有空气进口 11并连通于 所述第二空腔 4 , 所述第二管 2上下贯穿地设有多根第一换热管 5 , 多根第一换热 管 5均匀分设于所述第二空腔 4内, 多根所述第一换热管 5顶端穿出于所述第二管 2并连通于外界, 在出口处设有一空气出口 19 , 其底端连通于所述第一空腔 3。 所述第二空腔 4内设有多块折流板 9使气体产生扰流, 多块所述折流板 9固定在第 一换热管 5上, 可以采用焊接的方式固定, 折流板 9具有多个通孔, 第一换热管 5 穿过折流板 9的通孔再焊接固定。 所述第二管 2内还设有连接管 6 , 所述连接管 6 顶端连通于第一空腔 3的上部, 其底端连通于第二空腔 4的下部, 这样就能把第 二空腔 4底部的压缩空气引到第一空腔 3的顶部, 所述第二管 2底部不接触所述第 一管 1底部, 这样在第一管 1的底部就有一足够的空间并形成一集水槽 7 , 集水槽 7还设有排水管 8用于排水, 所述第二管 2的下部外壁设有螺旋片 10 , 从第一空腔 3下来的压缩空气在螺旋片 10的作用下, 会产生旋转向下的气流, 从而把空气中 的水份甩出进行水汽分离, 所述第二空腔 4上、 下部封口并形成第三空腔 12 , 所 述第三空腔 12内上、 下贯穿地设有多根第二换热管 13 , 第二换热管 13是不锈钢 的第一换热管, 所述第二换热管 13上部连通于所述连接管 6上部, 所述第二换热 管 13下部连通于所述第一空腔 3 , 所述第三空腔 12下部设有制冷剂进口 14 , 其上 部设有第一制冷剂出口 15 , 第三空腔 12用于容纳制冷剂。 [0030] 具体的, 所述第一管 1、 第二管 2、 连接管 6及第二换热管 13均为 304不锈钢结构 , 防腐效果好, 而且, 第二换热管 13采用厚度大于 1mm的不锈钢换热管, 第一 管 1与第二管 2均采用厚度大于 3mm的不锈钢管材, 上下端板采用大于 5mm厚的 不锈钢材料, 氩弧焊接, 焊点少, 强度高, 不易泄露。
[0031] 本发明工作时, 压缩空气从空气进口 11进入第二空腔 4后, 经过折流板 9使气体 产生扰流, 在第二空腔 4内, 与第一空腔 3内的制冷剂进行热交换, 同时也跟从 第一换热管 5内的低温空气进行热交换, 压缩空气的温度逐渐降低, 压缩空气至 第二空腔 4的下部时, 进入连接管 6 , 在连接管 6内往上走, 一直到第一空腔 3的 上部, 再进入到第二换热管 13并往下流动, 而第二换热管 13是置于第三空腔 12 内的, 第二换热管 13的压缩空气就与第三空腔 12内的制冷剂进行热交换, 温度 逐渐降低, 压缩空气从第二换热管 13底部出来, 在螺旋片 10的作用下, 压缩空 气呈螺旋式下降, 此时的压缩空气已产生大量液态水, 同时, 压缩空气高速旋 转向下流动过程中产生离心力, 在离心力和重力的双重作用下, 液态水和气体 分离, 液态水附于第一管 1内壁并往下流, 液态水进入下部的集水槽 16中, 而压 缩空气从第一换热管 9的底部进入管内, 压缩空气往外排出时, 再与第一空腔 3 内的压缩空气进行热交换, 温度上升后, 由空气出口 19排出, 完成对压缩空气 干燥。
[0032] 实施例 2: 参照图 2, 一种压缩空气冷冻式干燥机的高效换热结构, 包括竖直设 置的第一管 1, 还包括设于所述第一管 1内腔中的第二管 2, 所述第一管 1与第二 管 2同轴设置, 结构对称合理, 所述第一管 1及第二管 2上下两端均封口, 所述第 一管 1顶部伸出第二管 2顶部, 所述第一管 1内壁与第二管 2外壁之间形成第一空 腔 3 , 所述第二管 2内腔形成第二空腔 4, 所述第二管 2上部开有空气进口 11并连 通于所述第二空腔 4, 所述第二管 2上下贯穿地设有多根第一换热管 5 , 多根第一 换热管 5均匀分设于所述第二空腔 4内, 多根所述第一换热管 5顶端穿出于所述第 二管 2并连通于外界, 在出口处设有一空气出口 19 , 其底端连通于所述第一空腔 3 , 所述第二空腔 4内设有多块折流板 9使气体产生扰流, 多块所述折流板 9固定 在第一换热管 5上, 可以采用焊接的方式固定, 折流板 9具有多个通孔, 第一换 热管 5穿过折流板 9的通孔再焊接固定, 所述第二管 2内还设有连接管 6 , 所述连 接管 6顶端连通于第一空腔 3的上部, 其底端连通于第二空腔 4的下部, 这样就能 把第二空腔 4底部的压缩空气引到第一空腔 3的顶部, 所述第二管 2底部不接触所 述第一管 1底部, 这样在第一管 1的底部就有一足够的空间并形成一集水槽 7 , 集 水槽 7还设有排水管 8用于排水, 所述第二管 2的下部外壁设有螺旋片 10, 从第一 空腔 3下来的压缩空气在螺旋片 10的作用下, 会产生旋转向下的气流, 从而把空 气中的水份甩出进行水汽分离, 所述第一空腔 3内设有盘管 16 , 所述盘管的底端 为制冷剂进口 17 , 其顶端为第二制冷剂出口 18。
[0033] 具体的, 所述第一管 1、 第二管 2及连接管 6均为 304不锈钢结构, 防腐效果好, 而且, 第一管 1与第二管 2均采用厚度大于 3mm的不锈钢管材, 上下端板采用大 于 5mm厚的不锈钢材料, 氩弧焊接, 焊点少, 强度高, 不易泄露。
[0034] 本发明工作时, 压缩空气从空气进口 11进入第二空腔 4后, 经过折流板 9使气体 产生扰流, 第一空腔 3具有盘管 16 , 因此第二管 2侧壁是冷的, 在第二空腔 4内, 压缩空气与第二管 2的侧壁进行热交换, 同时也跟从第一换热管 5内的低温空气 进行热交换, 压缩空气的温度逐渐降低, 压缩空气至第二空腔 4的下部时, 进入 连接管 6 , 在连接管 6内往上走, 一直到第一空腔 3的上部, 再从第一空腔 3的上 部往下流动, 在第一空腔 3内, 与盘管 16内的制冷剂进行热交换, 温度逐渐降低 , 压缩空气从来到第一空腔 3下部, 在螺旋片 10的作用下, 压缩空气呈螺旋式下 降, 此时的压缩空气因降温已产生大量液态水, 同时, 压缩空气高速旋转向下 流动过程中产生离心力, 在离心力和重力的双重作用下, 液态水和气体分离, 液态水附于第一管 1内壁并往下流, 液态水进入下部的集水槽 16中, 而压缩空气 从第一换热管 9的底部进入管内, 压缩空气往外排出时, 再与第一空腔 3内的压 缩空气进行热交换, 温度上升后, 从空气出口 19排出, 完成对压缩空气干燥。
[0035] 以上两个实施例均具有以下优点:
[0036] a)防腐: 所有部件采用 304不锈钢材料, 不易腐蚀产生二次污染。
[0037] b)压缩空气进出口压差小: 压缩空气流动过程中都有比较大的流通截面积并且 不易被脏物堵塞, 压缩空气的进出口压差小。
[0038] c)采购简单: 所有材料都是市场上广泛使用的管材 (包括不锈钢换热管) , 采 购简单。 [0039] d)减少冰堵现象: 第二空腔 4内采用内径大于 10mm的不锈钢换热管, 远远大于 翅片式、 板式或板翅式换热器的 2-3mm的间隙, 大大减少冰堵现象的发生。
[0040] e)减少泄漏: 第一管 1与第二管 2均采用厚度大于 3mm的不锈钢管材, 上下端板 采用大于 5mm厚的不锈钢材料, 氩弧焊接, 相比翅片式、 板翅式和板式换热器 , 换热材料更厚, 焊点更少, 大大减少腐蚀泄漏和焊点泄漏的风险。
[0041] 气液分离效果更好: 本装置竖直安装, 压缩空气在旋转分离和重力作用下, 气液分离效果更好。
[0042] g)制作工艺简单: 全部采用简单焊接工艺, 无需特殊制作设备, 制作简单。
[0043] h)结构紧凑: 由外而内分别由第一管 1与第二管 2组成, 没有无效区域, 结构紧 凑。
[0044] 在本发明的描述中, 需要理解的是, 术语“上”、 “下”、 “左”、 “右”等指示方位 或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简 化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以及特定 的方位构造和操作, 因此, 不能理解为对本发明的限制。 此外, “第一”、 “第二” 仅由于描述目的, 且不能理解为指示或暗示相对重要性或者隐含指明所指示的 技术特征的数量。 因此, 限定有“第一”、 “第二”的特征可以明示或者隐含地包括 一个或者多个该特征。 本发明的描述中, 除非另有说明, “多个”的含义是两个 或两个以上。
[0045] 在本发明的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语“安装” “相连”“连接”等应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以 通过中间媒介间接连接, 可以是两个元件内部的连通。 对于本领域的普通技术 人员而言, 可以具体情况理解上述术语在本发明中的具体含义。
[0046] 以上对本发明的一个实施例进行了详细说明, 但所述内容仅为本发明的较佳实 施例, 不能被认为用于限定本发明的实施范围。 凡依本发明申请范围所作的均 等变化与改进等, 均应仍归属于本发明的专利涵盖范围之内。

Claims

权利要求书
[权利要求 1] 一种压缩空气冷冻式干燥机的高效换热结构, 其特征在于: 包括竖直 设置的第一管, 还包括设于所述第一管内腔中的第二管, 所述第一管 及第二管上下两端均封口, 所述第一管顶部伸出第二管顶部, 所述第 一管内壁与第二管外壁之间形成第一空腔, 所述第二管内腔形成第二 空腔, 所述第二管上部开有空气进口并连通于所述第二空腔, 所述第 二管上下贯穿地设有多根第一换热管, 多根所述第一换热管顶端穿出 于所述第二管连通于外界, 其底端连通于所述第一空腔, 所述第二管 内还设有连接管, 所述连接管顶端连通于第一空腔的上部, 其底端连 通于第二空腔的下部, 所述第二管底部不接触所述第一管底部, 所述 第一管底部具有集水槽并设有排水管, 所述第二空腔上、 下部封口并 形成第三空腔, 所述第三空腔内上、 下贯穿地设有多根第二换热管, 所述第二换热管上部连通于所述连接管上部, 所述第二换热管下部连 通于所述第一空腔, 所述第三空腔下部设有制冷剂进口, 其上部设有 制冷剂出口。
[权利要求 2] 一种压缩空气冷冻式干燥机的高效换热结构, 其特征在于: 包括竖直 设置的第一管, 还包括设于所述第一管内腔中的第二管, 所述第一管 及第二管上下两端均封口, 所述第一管顶部伸出第二管顶部, 所述第 一管内壁与第二管外壁之间形成第一空腔, 所述第二管内腔形成第二 空腔, 所述第二管上部开有空气进口并连通于所述第二空腔, 所述第 二管上下贯穿地设有多根第一换热管, 多根所述第一换热管顶端穿出 于所述第二管连通于外界, 其底端连通于所述第一空腔, 所述第二管 内还设有连接管, 所述连接管顶端连通于第一空腔的上部, 其底端连 通于第二空腔的下部, 所述第二管底部不接触所述第一管底部, 所述 第一管底部具有集水槽并设有排水管, 所述第一空腔内设有盘管, 所 述盘管的底端为制冷剂进口, 其顶端为制冷剂出口。
[权利要求 3] 根据权利要求 1或 2所述的一种压缩空气冷冻式干燥机的高效换热结构 , 其特征在于: 所述第二空腔内设有多块折流板使气体产生扰流, 多 块所述折流板固定在第一换热管上。
[权利要求 4] 根据权利要求 1或 2所述的一种压缩空气冷冻式干燥机的高效换热结构 , 其特征在于: 所述第一管与第二管同轴设置。
[权利要求 5] 根据权利要求 1或 2所述的一种压缩空气冷冻式干燥机的高效换热结构 , 其特征在于: 所述第一管、 第二管、 连接管及第二换热管均为 304 不锈钢结构。
[权利要求 6] 根据权利要求 1或 2所述的一种压缩空气冷冻式干燥机的高效换热结构 , 其特征在于: 多根第一换热管均匀分设于所述第二空腔内。
[权利要求 7] 根据权利要求 1或 2所述的一种压缩空气冷冻式干燥机的高效换热结构 , 其特征在于: 所述第二管的下部外壁设有螺旋片。
PCT/CN2019/096759 2018-12-20 2019-07-19 一种压缩空气冷冻式干燥机的高效换热结构 WO2020125007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811563790.9 2018-12-20
CN201811563790.9A CN109556433A (zh) 2018-12-20 2018-12-20 一种压缩空气冷冻式干燥机的高效换热结构

Publications (1)

Publication Number Publication Date
WO2020125007A1 true WO2020125007A1 (zh) 2020-06-25

Family

ID=65870533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096759 WO2020125007A1 (zh) 2018-12-20 2019-07-19 一种压缩空气冷冻式干燥机的高效换热结构

Country Status (2)

Country Link
CN (3) CN109556433A (zh)
WO (1) WO2020125007A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057678A1 (es) * 2021-10-08 2023-04-13 Jose Antonio Mata Vasco Dispositivo mecánico secador refrigerado

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构
CN110440611A (zh) * 2019-07-25 2019-11-12 佛山市天地元一净化设备有限公司 一种气体干燥机的换热结构
CN111468060A (zh) * 2020-05-22 2020-07-31 福建省龙德新能源股份有限公司 一种用于合成六氟磷酸盐的智能合成装置
CN114623694B (zh) * 2022-04-19 2024-03-22 江苏友盛换热器科技有限公司 一种提高换热效率及冷量利用率的换热器
CN115790210B (zh) * 2022-10-09 2023-10-17 中国电力工程顾问集团中南电力设计院有限公司 适用于压缩空气储能电站的一体式气水分离换热器及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060207757A1 (en) * 2005-03-16 2006-09-21 Detroit Diesel Corporation Heat exchanger exhaust gas recirculation cooler
CN2879088Y (zh) * 2005-12-08 2007-03-14 十堰邦本科工贸有限公司 热交换器模块及冷冻式压缩空气净化器
CN102893115A (zh) * 2010-05-11 2013-01-23 阿特拉斯·科普柯空气动力股份有限公司 用于压缩和干燥气体的设备
CN207203809U (zh) * 2017-06-26 2018-04-10 杨喧 冷冻式压缩空气干燥器热交换装置
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA940470A (en) * 1969-07-29 1974-01-22 Steven H. Corwin Flocculation of fermentation broths
CN2746970Y (zh) * 2004-12-07 2005-12-21 广州东誉工业设备有限公司 冷冻式干燥机
CN200941019Y (zh) * 2006-07-20 2007-08-29 苏宇贵 空调用换热器
CN200946994Y (zh) * 2006-08-23 2007-09-12 余明 一种冷冻式压缩空气干燥机中的换热器
CN102500196A (zh) * 2011-10-09 2012-06-20 无锡宏盛换热器制造有限责任公司 一种用于压缩空气冷冻干燥的集成式换热器
CN103480248B (zh) * 2013-09-27 2016-12-07 林锦志 一种冷干机
CN205759894U (zh) * 2016-05-30 2016-12-07 湖州南浔展辉分子筛厂 冷冻干燥机用的气液分离装置
CN107789856A (zh) * 2016-08-29 2018-03-13 北京航天长峰股份有限公司 一种医用空压机的除水装置
CN106323072B (zh) * 2016-09-23 2018-08-28 楚雄绿福鲜农业科技有限公司 真空冷冻干燥机用耐污热交换板
KR101919556B1 (ko) * 2016-12-29 2018-11-16 주식회사 씨원켐 미생물 Acetobacterium woodii를 이용한 포르메이트(formate)의 생산 방법
CN207056283U (zh) * 2017-06-02 2018-03-02 江苏新凯晟机械设备有限公司 一种冷冻式干燥机气液分离机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060207757A1 (en) * 2005-03-16 2006-09-21 Detroit Diesel Corporation Heat exchanger exhaust gas recirculation cooler
CN2879088Y (zh) * 2005-12-08 2007-03-14 十堰邦本科工贸有限公司 热交换器模块及冷冻式压缩空气净化器
CN102893115A (zh) * 2010-05-11 2013-01-23 阿特拉斯·科普柯空气动力股份有限公司 用于压缩和干燥气体的设备
CN207203809U (zh) * 2017-06-26 2018-04-10 杨喧 冷冻式压缩空气干燥器热交换装置
CN109556433A (zh) * 2018-12-20 2019-04-02 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机的高效换热结构
CN109595952A (zh) * 2018-12-20 2019-04-09 佛山市天地元净化设备有限公司 一种压缩空气冷冻式干燥机换热的结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057678A1 (es) * 2021-10-08 2023-04-13 Jose Antonio Mata Vasco Dispositivo mecánico secador refrigerado

Also Published As

Publication number Publication date
CN110514036A (zh) 2019-11-29
CN210802145U (zh) 2020-06-19
CN109556433A (zh) 2019-04-02
CN110514036B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2020125007A1 (zh) 一种压缩空气冷冻式干燥机的高效换热结构
WO2020125008A1 (zh) 一种压缩空气冷冻式干燥机换热的结构
CN102901225B (zh) 一种强制螺旋翅片盘管冷凝供热换热器
CN202734612U (zh) 高换热效率的蒸发式冷凝器
CN201876171U (zh) 双管偏心热虹吸管换热器
CN207975999U (zh) 便于维修的蒸发式冷凝器
CN211147362U (zh) 一种压缩气体干燥机的换热除水结构
CN202126119U (zh) 耐腐蚀壳管式蒸发器
CN110701833A (zh) 一种水冷壳管式冷凝器
CN217604747U (zh) 一种应用于汽水换热二次均压的容积式换热器
CN213657588U (zh) 蒸汽加热装置
CN210004818U (zh) 一种高效热能交换器
CN212619484U (zh) 一种中央空调机组用自动气液分离冷凝器
CN105486133B (zh) 热管烟气余热回收装置及工作介质
CN210292446U (zh) 以水作为制冷剂的制冷循环冷凝器
CN2762045Y (zh) 双管偏心热虹吸管换热器
CN202803079U (zh) 板片式冷干机
CN208735980U (zh) 换热管水冷式冷凝器
CN209147756U (zh) 一种湿冷表面式凝汽器
CN208735969U (zh) 整体翅片圆管冷风机
CN112161493A (zh) 蒸汽加热装置
CN206593342U (zh) 一种高效的蒸发式冷凝翅片换热器
CN214701340U (zh) 一种低水压差壳管式蒸发器
CN220871535U (zh) 一种提高传热性能的径向热管及换热器
CN219121147U (zh) 一种带疏水防腐密封结构的燃气锅炉节能器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19898147

Country of ref document: EP

Kind code of ref document: A1