WO2020124494A1 - 一种基准站的位置标定方法及装置 - Google Patents

一种基准站的位置标定方法及装置 Download PDF

Info

Publication number
WO2020124494A1
WO2020124494A1 PCT/CN2018/122402 CN2018122402W WO2020124494A1 WO 2020124494 A1 WO2020124494 A1 WO 2020124494A1 CN 2018122402 W CN2018122402 W CN 2018122402W WO 2020124494 A1 WO2020124494 A1 WO 2020124494A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
position data
reference station
calibration
difference
Prior art date
Application number
PCT/CN2018/122402
Other languages
English (en)
French (fr)
Inventor
李明辉
潘国秀
胡孟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/122402 priority Critical patent/WO2020124494A1/zh
Priority to CN201880069215.5A priority patent/CN111279221A/zh
Publication of WO2020124494A1 publication Critical patent/WO2020124494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of communication technology, and in particular, to a positioning method and device.
  • RTK Real-time Kinematic carrier phase differential technology
  • the reference station transmits its observation value and coordinate position information to the RTK mobile station through the data link.
  • the RTK mobile station receives the data of the reference station through the data link, collects the satellite observation data at the same time, performs real-time processing, and then realizes positioning.
  • an embodiment of the present invention provides a position calibration method for a reference station, the method at least includes:
  • the input location data and/or observation location data include altitude, longitude and latitude.
  • the observation position data includes an average value of satellite observation data received by the reference station.
  • the calculating the first difference between the input position and the observation position data includes:
  • the first difference value is calculated based on the converted input position data and observation position data.
  • calculating the first difference value includes: calculating the distance between the input position data and the observation position data under the geocentric geostationary coordinates (ECEF).
  • ECEF geocentric geostationary coordinates
  • confirming whether the input location data is credible based on the difference and a predetermined difference threshold includes: when the difference is less than or equal to the difference threshold, confirming that the input location data is credible of.
  • the method further includes: using the trusted input location data as the calibration location data.
  • the acquiring the input location data includes: receiving the input location data set by a user through a wireless link.
  • the method further includes:
  • the confirming whether to use the calibrated position data before restarting based on the second difference value and a predetermined second difference threshold value includes when the second difference value is less than or equal to the second difference threshold value , The calibration position data before the restart is used as the calibration position data; when the second difference is greater than the second difference threshold, the calibration position data before the restart is not used as the calibration position data.
  • the method further includes: when receiving a query request, sending the calibration location data of the reference station, where the query request includes information for querying the calibration location data of the reference station.
  • the method further includes: clearing the calibration position data of the base station when receiving the clearing request, where the clearing request includes information for clearing the calibration position data of the reference station.
  • an embodiment of the present invention provides a position calibration method for a reference station, the method at least includes:
  • the position data of the reference station in the handheld mode is obtained.
  • the method further includes: switching the handheld mode of the reference station to the reference mode, and using the position data of the reference point as the calibration position data.
  • the acquiring RTCM data originating from an RTK base station or a network RTK includes receiving RTCM data sent by a remote control device, where the RTCM data includes RTCM data that the RTK base station or network RTK periodically sends to the remote control device.
  • the reference station in the handheld mode sends the position data of the lead point to a remote control device for display.
  • the present invention also provides a position calibration system for a reference station, which at least includes: a data source device for providing RTCM data;
  • the reference station in the handheld mode is used to obtain the position data of the base station based on the RTCM data and satellite observation data;
  • the remote control device is used to transmit the RTCM data of the data source device to the reference station in the handheld mode.
  • the data source device includes: a reference station or a network composed of reference stations.
  • the remote control device is also used to select the data source device.
  • the remote control device is also used to receive the position data of the base station.
  • the reference station uses the method as described above to calibrate the position of the reference station.
  • FIG. 1 is a method for calibrating the position of a reference station according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an example of a method for calibrating a position of a reference station according to an embodiment of the present invention
  • 3 is another method for calibrating the position of a reference station according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an example of a method for calibrating the position of a reference station according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a position calibration system according to an embodiment of the present invention.
  • FIG. 6 is a position calibration device of a reference station according to an embodiment of the present invention.
  • FIG. 7 is another position calibration device of a reference station according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a position calibration system of a reference station according to an embodiment of the present invention.
  • step S110 the input position data and the observation position data of the reference station are obtained; in step S120, the first difference between the input position data and the observation position data is calculated;
  • step S130 it is confirmed whether the input position data is authentic based on the first difference value and a predetermined first difference threshold value.
  • the position calibration method of the reference station ensures the accuracy of the coordinates of the calibration position by implementing the coordinate judgment during the calibration of the position.
  • the step S110 may further include: receiving the input location data set by a user through a wireless link.
  • the user can interact with the reference station through a remote control device.
  • the remote control device is connected to the reference station through a wireless link to perform communication and data transmission.
  • the user can set the operation mode of the reference station through a remote control device, and input position data of the reference station and send the input position data to the reference station through a wireless link.
  • the wireless link includes: SDR (Software Defined Radio), 4G or WIFI link.
  • SDR Software Defined Radio
  • 4G Wireless Fidelity
  • WIFI Wireless Fidelity
  • the input location data and/or observation location data include altitude, longitude and latitude.
  • the acquiring observation position data includes: acquiring the satellite observation data through a GNSS chip after the reference station is powered on.
  • the observation position data includes an average value of satellite observation data received by the reference station.
  • the step S120 may further include:
  • the calculating the first difference between the input position data and the observation position data includes:
  • the first difference value is calculated based on the converted input position data and observation position data.
  • converting the input position data and the observation position data into coordinates under the geocentric geostationary coordinate system includes: calculating the coordinates (X, Y, Z) under the geocentric geostationary coordinate system using the following formula:
  • N a/sqrt[1-e*e*pow(sin(lat), 2)]
  • a is the semi-major axis of the ellipsoid in the geocentric solid coordinate system
  • b is the semi-major axis of the ellipsoid in the geocentric solid coordinate system
  • e is the eccentricity of the ellipsoid
  • hgt is the altitude coordinate
  • lat is the latitude coordinate
  • lon Longitude coordinates.
  • the calculation of the first difference includes: a first difference Among them, x1, y1, and z1 are the geocentric coordinates (ECEF) coordinates converted by the input position data; x2, y2, and z2 are the geocentric coordinates (ECEF) coordinates converted by the observation position data.
  • ECEF geocentric coordinates
  • the reference station includes an inertial measurement unit (Inertial Measurement Unit, IMU), which is used to obtain the deviation of the reference station; based on the inertial measurement data of the IMU, it can be determined whether the reference station has moved or tilted, and the location data of the base station Corrected value.
  • IMU Inertial Measurement Unit
  • the inertial measurement data includes a tilt angle, and the correction value is obtained according to the tilt angle and the height of the base station.
  • converting the input position data and the observation position data to coordinates under the geocentric solid coordinate system may further include:
  • the observation position data is corrected according to the base station position correction value, and then converted into coordinates in a geocentric solid coordinate system.
  • converting the input position data and the observation position data to coordinates under the geocentric solid coordinate system may further include:
  • correction of the above observation position data may be performed inside the reference station, or may be sent to other devices for calculation and then sent to the reference station.
  • the step S130 may further include: when the difference is less than or equal to the difference threshold, confirming that the input position data is authentic.
  • the trusted input position data is used as the calibration position data of the reference station.
  • the using the trusted input position data as the calibration position data of the reference station includes: configuring the trusted input position data on a GNSS receiving chip. Further, the credible input position data is used as the position output data of 1005/1006 in the RTCM data output from the reference station.
  • the input position data is saved, for example, in a “position calibration file”.
  • the difference value is greater than the difference threshold value, it is confirmed that the input position data is not credible.
  • the user is prompted to succeed in the location calibration of the reference station; when it is confirmed that the input location data is unreliable, a prompt is presented The position calibration of the reference station by the user failed. By feeding back the result of the position calibration to the user, the problem that the user cannot directly obtain the feedback result is solved, and the possibility that the user inputs the calibration position by mistake is avoided.
  • the position calibration method of the reference station performs position judgment after restarting. If it is confirmed that the reference station has not moved, the calibration position before restarting is automatically used; if the position changes, the calibration is performed again. In this way, the problem of requiring the user to recalibrate the position after restarting when the base station does not move is avoided.
  • the method 100 further includes:
  • the confirming whether to use the calibrated position data before restarting based on the second difference value and a predetermined second difference threshold value includes when the second difference value is less than or equal to the second difference threshold value , The calibration position data before the restart is used as the calibration position data; when the second difference is greater than the second difference threshold, the calibration position data before the restart is not used as the calibration position data.
  • the calibration position data before restart is not used as the calibration position data, the calibration position data before restart is cleared.
  • the method 100 further includes: when receiving a query request, sending the calibration location data of the reference station, where the query request includes information for querying the calibration location data of the reference station. Then, the user can clearly understand the calibration position used by the current reference station.
  • the method 100 further includes: clearing the calibration position data of the reference station when receiving the clearing request, where the clearing request includes information for clearing the calibration position data of the reference station. It is convenient for users to clear the current calibration position of the base station according to their needs, and avoids the problem that the calibration position of the current base station cannot be cleared during the use of the base station. Moreover, the problem of inconvenient acquisition of the position of the reference station, which needs to be acquired through purchase or long-term measurement is solved, which improves the user's efficiency and reduces the user's cost.
  • FIG. 2 shows a schematic flowchart of an example of a method for calibrating the position of a reference station according to an embodiment of the present invention.
  • the user realizes the interaction with the reference station through the remote control APP, and the remote control APP provides an external input and output interface; the remote control can communicate with the reference station through SDR or 4G or WIFI link.
  • the location calibration method of the reference station is as follows:
  • the remote controller sends the longitude, latitude, altitude data of the input base station, and the "position calibration command" to the base station; the base station receives the "position calibration command", and the longitude input by the user, Latitude, altitude data;
  • the coordinates entered by the user are considered reliable, and the coordinates are configured on the GNSS receiving board, which is output as the position of RTCM 1005/1006, and saved and recorded in the "position calibration file"; the remote control APP Prompt the user to "Successful calibration position";
  • the remote control APP prompts "Calibration position failed, and the position of the reference station is within 5 meters", so that the user can know in time whether the data entered is valid and avoid the user Data entered incorrectly.
  • the built-in GNSS receiver chip converges 100 sets of positioning data and takes the average value; at the same time, it reads the calibration position before restart from the "position calibration file"; the difference between the two positions is judged to further judge the base station Whether there is movement, if the difference between the two is within 0.5 meters, it is considered that the base station has not moved, and the calibration position before restart is used; if the difference between the two is not within 0.5 meters, the calibration position before restart is not used, and it is cleared Coordinates recorded by "Position Calibration File".
  • the user can also view or clear the current calibration position used by the base station through the remote control: the remote control sends a "query calibration position" command to the base station, the base station receives the query command, and sends the used calibration coordinates to the remote control APP for Display; the remote controller sends a "clear calibration position” command to the base station; the base station receives the clear command, clears the calibration coordinates used to 0, and configures the built-in GNSS receiver board chip, and sends a clear successful response to the remote controller .
  • the method 300 includes:
  • step S310 the reference station is set to a handheld mode
  • step S320 RTCM data derived from an RTK base station or network RTK, and satellite observation data are acquired;
  • step S330 the position data of the reference point of the reference station in the handheld mode is obtained based on the RTCM data and satellite observation data.
  • the positioning base station B and the positioning mobile station A simultaneously observe Global Navigation Satellite System (Global Navigation Satellite System, GNSS) data.
  • GNSS Global Navigation Satellite System
  • L is the carrier phase observation value
  • P is the pseudorange observation value
  • is the distance between the satellite and the base station
  • c is the speed of light
  • is the clock difference
  • T is the tropospheric delay
  • I is the ionospheric delay
  • N is the full-period ambiguity
  • is random error.
  • the method of transmitting the observation data (L B , P B ) of the positioning base station B to the positioning mobile station A in real time through wireless, and performing joint calculation is called real-time dynamic difference, that is, calculating real-time dynamic positioning data (Real-TimeKinemati, RTK ) Difference.
  • the precise positioning (x b , y b , z b ) of the positioning base station B in the coordinate system can be obtained, the centimeter-level precise positioning (X r , Y r , Z r ) of the positioning mobile station A can be obtained.
  • This application is based on the above-mentioned basic principles of differential positioning, using the first GNSS differential data of the positioning base station and the absolute positioning data of the positioning base station, and the positioning mobile station can determine the positioning information of the positioning mobile station based on its second GNSS differential data to achieve spot positioning .
  • the step S310 may further include: setting the GNSS receiving chip in the reference station to a mobile station mode.
  • the step S330 may further include: receiving RTCM data sent by the remote control device, where the RTCM data includes RTCM data sent to the remote control device periodically by an RTK base station or a network RTK.
  • the reference station in the handheld mode sends the position data of the lead point to a remote control device for display.
  • the above method of calibrating the position of the reference station in the handheld mode enables the reference station in the handheld mode to receive external RTCM data, combine with the satellite observations received by it to solve the centimeter-level positioning, and set the positioning position with a key It is the calibration position in the base station mode; this calibration position will be used when the base station is switched to the base station mode, which greatly facilitates the user to obtain and calibrate the coordinate position of the RTK base station.
  • the method 300 further includes: switching the handheld mode of the reference station to the reference mode, and using the position data of the reference point as the calibration position data.
  • the reference station may slightly tilt or move during actual operation. If the RTK base station has been moved or the RTK base station is in a tilted state, the GNSS differential data (RTCM data) provided by the RTK base station is not Accurate, it will cause the RTCM data received by the reference station in the handheld mode to be inaccurate, which leads to inaccurate calibration of the reference point.
  • the reference station in hand-held mode includes a hand-held pole, and the hand-held pole is more susceptible to human factors and external environmental factors, and is slightly tilted or moved, so the data used for calculation is also inaccurate; Point calibration accuracy requires correction of the position data of the RTK base station and/or the base station in handheld mode.
  • Both the RTK reference station and the reference station in handheld mode include an inertial measurement unit (Inertial Measurement Unit (IMU)), which is used to obtain the deviation of the RTK reference station and the reference station in handheld mode; based on the RTK reference station and handheld
  • IMU Inertial Measurement Unit
  • the inertial measurement data of the IMU of the reference station in the mode can determine whether each has moved or tilted and the correction value of the position data.
  • the inertial measurement data includes a tilt angle, and the correction value is obtained according to the tilt angle and the height of the reference station or the handheld pole.
  • the correction of the RTCM data of the RTK reference station may be performed on the data before being converted to the geocentric fixed coordinate system, or may be performed on the data after the conversion to the geocentric fixed coordinate system.
  • the correction method as in the aforementioned position calibration method 100.
  • the correction of the reference station in the hand-held mode may include correction of satellite observation data or the position data of the reference point; similarly, the correction of the satellite observation data of the reference station in the hand-held mode may be converted to geocentric fixation It can be performed before the coordinate system, or after the conversion to the geocentric solid coordinate system.
  • the correction of the RTCM data (including observation position data) of the above RTK reference station can be performed in the RTK reference station, or the positioning data and inertial measurement data can be sent to other relay control devices (such as remote control devices, servers, etc.) Correction;
  • the correction of the reference station in the handheld mode can be performed in the reference station in the handheld mode, or positioning data (including satellite observation data or position data of the initiation point) and inertial measurement data can be sent to other relays Control equipment (such as remote control devices, servers, etc.) to make corrections.
  • acquiring satellite observation data also includes:
  • step S320 the RTCM data is corrected data.
  • FIG. 4 shows a schematic flowchart of an example of a method for calibrating the position of a reference station according to an embodiment of the present invention.
  • the user realizes the interaction with the reference station through the remote control APP.
  • the reference station performs data transmission and communication with the remote control APP through a wireless link and receives observation data sent by satellites; the remote control APP also regularly passes
  • the wireless link receives the GNSS differential data source (including the RTK reference station or network RTK in the area).
  • the location calibration method of the reference station is as follows:
  • the user sets the reference station to the handheld mode through the remote control APP, and the GNSS chip in the reference station is set to the mobile station mode;
  • the remote control APP regularly receives RTCM data sent by the RTK base station or network RTK in the area; where, if the RTK base station in the area is selected as the data source, the remote control The APP configures the RTK option as an RTK base station; if the network RTK is selected as the data source, the remote control APP configures the RTK option as the network RTK;
  • the remote control APP sends the received RTCM data to the reference station in the handheld mode; at the same time, the reference station in the handheld mode also receives satellite observation data from the satellite; wherein, the satellite observation data
  • the correction includes specifically obtaining a handheld position correction value according to the inertial measurement data of the reference station in the handheld mode, and correcting the satellite observation data based on the handheld position correction value to obtain the corrected satellite observation data;
  • the reference station in handheld mode sends centimeter-level positioning data to the remote control APP for display;
  • the user calibrates the lead positioning data in the handheld mode to the calibration position data of the reference station through the remote control APP;
  • the user switches the handheld mode of the reference station to the base station mode through the remote control APP, and the positioning data of the lead point takes effect as the calibration position data.
  • a position calibration system according to an embodiment of the present invention is described with reference to FIG. 5.
  • the system includes:
  • Data source device used to provide RTCM data
  • the reference station in the handheld mode is used to obtain the position data of the base station based on the RTCM data and satellite observation data;
  • the remote control device is used to transmit the RTCM data of the data source device to the reference station in the handheld mode.
  • the data source device includes: a reference station or a network composed of reference stations.
  • All of the data source devices can provide GNSS differential signal format data (also known as RTCM data), wherein the reference station can be set at a known position or an unknown position, and the reference station can adopt the embodiment of the present invention
  • GNSS differential signal format data also known as RTCM data
  • the reference station's position calibration method is provided for position calibration;
  • the network composed of reference stations includes the continuously operating (satellite positioning service) reference stations (Continuously Operating Reference Stations) (referred to as CORS stations) established by the multi-base station RTK technology.
  • the CORS station performs overall modeling and calculation in the area, and automatically generates a virtual reference station (including reference station coordinates and GPS observation value information) corresponding to the mobile station position and passes the existing
  • the data communication network and/or wireless data communication network provides code phase/carrier phase differential correction information in an internationally accepted format.
  • the data source device is further configured to send RTCM data to the remote control device. Further, the data source device periodically sends RTCM data to the remote control device.
  • the remote control device includes a remote control APP.
  • the remote control device is further configured to receive RTCM data sent by the data source device. Further, the remote control device periodically receives RTCM data sent by the data source device.
  • the remote control device is also used to receive the position data of the base station.
  • the remote control device is also used to display the position data of the lead point.
  • the remote control device not only realizes data communication between the data source device and the reference station in the handheld mode, but also can realize the interaction between the user and the reference station in the handheld mode.
  • the user sends a control signal to the Base station, control the base station to switch between different working modes, and also display the positioning data and other relevant information of the base station in the handheld mode to the user, which is helpful for the user to understand the base station in the handheld mode in real time Working conditions (such as calibration conditions) avoid errors caused by human factors.
  • the remote control device is also used to select the data source device. Further, the remote control device is configured according to the selected data source device. When a reference station is selected as a data source device, the remote control device configures its RTK option as an RTK base station; when a network composed of reference stations is selected as a data source device, the remote control device configures its RTK option as a network RTK.
  • the remote control device communicates with the data source device or the reference station in handheld mode through a wireless link.
  • the wireless link includes an SDR (Software Defined Radio), 4G or WIFI link.
  • the reference station in the handheld mode is used to receive the RTCM data sent by the remote control device.
  • the reference station in the handheld mode also receives satellite observation data sent by satellites through the wireless communication network in real time; the reference station in the handheld mode will receive the satellite observation data and the received remote control device.
  • the RTCM data is jointly solved in real time, and the coordinate increment (baseline vector) between the data source device and the reference station in the handheld mode can be obtained, and then the position data of the reference point of the reference station in the handheld mode can be obtained.
  • the lead position data is used as the calibration position data of the reference station in the base station mode.
  • the position calibration system can perform accurate measurement at the centimeter level, which can be used not only for the position calibration of the reference station itself in the handheld mode, but also for areas such as area measurement. For example, selecting several key points in the area to be measured, and measuring the several key points through the position calibration system according to an embodiment of the present invention, the reference stations in the handheld mode can be respectively set to the key points Position, you can get the position data of the reference points of several reference stations in the handheld mode, that is, the position data of the several key points. After data processing, the measurement information such as the boundary or area of the area to be measured is obtained.
  • the data source device may be a pre-existing reference station or a network composed of reference stations, or may be established in real time; and when the data source device is established in real time, the above-mentioned present invention may be used
  • the position calibration method of the reference station in the embodiment performs calibration.
  • the position calibration system includes: a data source device, which may be a reference station or a CORS station; a control device includes a controller APP; and a reference station in a handheld mode.
  • the GNSS satellite sends satellite observation data to the data source device and the reference station in handheld mode in real time.
  • the data source device receives satellite observation data sent by the GNSS satellite, and sends RTCM data to the controller APP based on the calibration position data of the data source device itself. Wherein, the data source device may periodically send RTCM data to the controller APP.
  • the controller APP receives a user's instruction, such as "indicating the location of the reference station"; the controller APP sends the RTCM data to the reference station in the handheld mode through a wireless link.
  • the reference station in the handheld mode receives the RTCM data sent by the controller APP, and according to the satellite observation data sent by the implemented satellite, the current reference point position data of the reference station in the handheld mode is solved.
  • the reference point position data is centimeter-level positioning data; the reference station in the handheld mode sends the centimeter-level reference point position data to the controller APP.
  • the controller APP receives centimeter-level lead point position data sent by the reference station in the handheld mode, and displays the data on the controller APP, which is convenient for the user to obtain.
  • the device 600 includes:
  • the position data module 610 is used to obtain input position data and observation position data of the reference station;
  • the difference calculation module 620 is used to calculate the difference between the input position data and the observed position data
  • the data judgment module 630 is configured to confirm whether the input location data is reliable based on the difference and a predetermined difference threshold.
  • the location data module 610 may further include: a communication module 611, configured to receive the input location data set by a user through a wireless link.
  • the user can communicate with the remote control device through the communication module 611, and then realize interaction with the reference station.
  • the remote control device establishes a wireless link with the reference station through the communication module 611 to perform communication and data transmission.
  • the user can set the operation mode of the reference station through a remote control device, and input position data of the reference station and send the input position data to the reference station through a wireless link.
  • the wireless link includes: SDR (Software Defined Radio), 4G or WIFI link.
  • SDR Software Defined Radio
  • 4G Wireless Fidelity
  • WIFI Wireless Fidelity
  • the input location data and/or observation location data include altitude, longitude and latitude.
  • the position data module 610 may further include: an observation data module 612, configured to obtain the satellite observation data through a GNSS chip after the reference station is powered on.
  • the observation position data includes an average value of satellite observation data received by the reference station.
  • the position data module 610 may further include: a correction data module (not shown) for correcting the observation position data.
  • a correction data module (not shown) for correcting the observation position data.
  • the reference station includes an inertial measurement unit (Inertial Measurement Unit, IMU), which is used to obtain the deviation of the reference station; based on the inertial measurement data of the IMU, it can be determined whether the reference station has moved or tilted and the position of the base station The correction value of the data.
  • IMU Inertial Measurement Unit
  • the inertial measurement data includes a tilt angle, and the correction value is obtained according to the tilt angle and the height of the base station.
  • RTCM data includes at least the following message types:
  • RTCM data can introduce a message type that represents the status of the base station and a message type that performs position compensation on the status of the base station.
  • the message type of the status of the base station may be Boolean, indicating whether the base station is currently normal.
  • the base station state position compensation is a position compensation value of the output result of the IMU, and the compensation value may include information of latitude, longitude, and altitude.
  • the data of multiple base stations under the CORS station can be corrected.
  • the difference calculation module 620 may further include:
  • the coordinate conversion module 621 is used to convert the input position data and the observation position data to coordinates under the geocentric fixed coordinate system, respectively;
  • the first difference calculation module 622 is configured to calculate the first difference based on the converted input position data and observation position data.
  • the coordinate conversion module 621 is further used to calculate the coordinates (X, Y, Z) in the geocentric fixed coordinate system using the following formula:
  • N a/sqrt[1-e*e*pow(sin(lat), 2)]
  • a is the semi-major axis of the ellipsoid in the geocentric solid coordinate system
  • b is the semi-major axis of the ellipsoid in the geocentric solid coordinate system
  • e is the eccentricity of the ellipsoid
  • hgt is the altitude coordinate
  • lat is the latitude coordinate
  • lon Longitude coordinates.
  • the calculation of the first difference includes: a first difference Among them, x1, y1, z1 are the geocentric geodetic coordinates (ECEF) coordinates converted by the input position data; x2, y2, z2 are the geocentric geodetic coordinates (ECEF) converted from the observation position data Coordinates (ECEF) coordinates.
  • ECEF geocentric geodetic coordinates
  • correction data module may perform correction before the observation position data is converted into data in the geocentric geodetic coordinate system, or may be corrected after the observation position data is converted into data in the geocentric geodetic coordinate system.
  • the data judgment module 630 may be further used to: when the difference is less than or equal to the difference threshold, confirm that the input location data is credible.
  • the difference value is greater than the difference threshold value, it is confirmed that the input position data is not credible.
  • the device 600 further includes:
  • the calibration module 640 is configured to use the trusted input position data as the calibration position data of the reference station.
  • the calibration module 640 is further configured to: configure the trusted input location data on the GNSS receiving chip. Further, the credible input position data is used as the position output data of 1005/1006 in the RTCM data output from the reference station.
  • the user is prompted to succeed in the location calibration of the reference station; when it is confirmed that the input location data is unreliable, a prompt is presented The position calibration of the reference station by the user failed. By feeding back the result of the position calibration to the user, the possibility of the user incorrectly inputting the calibration position is avoided.
  • the device 600 further includes:
  • the saving module 650 saves the input position data. For example, save it to "location calibration file”.
  • the position calibration method of the reference station performs position judgment after restarting. If it is confirmed that the reference station has not moved, the calibration position before restarting is automatically used; if the position changes, the calibration is performed again. In this way, the problem of requiring the user to recalibrate the position after restarting when the base station does not move is avoided.
  • the device 600 further includes:
  • the restarting module 660 is configured to acquire the calibration position data before the restart and the observation position data after the restart after the base station restarts.
  • the difference calculation module 620 further includes:
  • the second difference calculation module 623 is used to calculate the second difference between the calibrated position data before restart and the observed position data after restart.
  • the data judgment module 630 may also be used for:
  • the calibration module 640 may be further configured to: when the second difference is less than or equal to the second difference threshold, use the calibration position data before restart as calibration position data; when the second When the difference is greater than the second difference threshold, the calibration position data before restarting is not used as calibration position data.
  • the device 600 further includes:
  • the query module 670 is configured to send the calibration position data of the reference station when receiving the query request, where the query request includes information for querying the calibration position data of the reference station.
  • the device 600 further includes:
  • the clearing module 680 is configured to clear the calibration position data of the base station when receiving the clearing request, where the clearing request includes information to clear the calibration position data of the reference station.
  • the clearing module 680 is also used to: if the calibration position data before restart is not used as the calibration position data, the calibration position data before restart is clear.
  • the device 700 includes:
  • a mode setting module 710 configured to set the reference station to a handheld mode to obtain a reference mode
  • the data acquisition module 720 is used to acquire RTCM data from the RTK base station or network RTK, and satellite observation data;
  • the data solving module 730 is configured to obtain the position data of the reference point of the reference station in the handheld mode based on the RTCM data and satellite observation data;
  • the position setting module 740 configures the point position data to the GNSS receiving device of the reference station.
  • the mode setting module 710 is further configured to: set the GNSS receiving chip in the reference station to a mobile station mode.
  • the data acquisition module 720 further includes: receiving RTCM data sent by a remote control device, where the RTCM data includes RTCM data sent to the remote control device periodically by an RTK base station or a network RTK.
  • the device 700 is further configured to send the reference point position data to the remote control device for display by the reference station in the handheld mode.
  • the device 700 further includes: a correction module (not shown), configured to correct the satellite observation data or the position data of the guidance point.
  • a correction module (not shown), configured to correct the satellite observation data or the position data of the guidance point.
  • the method, device and system for calibrating the position of the reference value realize that the RTK reference station performs data validity judgment when the user sets the coordinates of the RTK reference station, and directly displays the calibration result to the user to avoid user input I don’t know the wrong data; after the RTK base station restarts, if there is no position movement, the coordinates of the last calibration will be used automatically without the user entering again, which improves the user experience; the user can also query or clear the current RTK reference point used Coordinates increase the ease of use of the base station; users can quickly and easily obtain and set the position of the RTK base station through the one-key calibration function in the handheld mode.
  • FIG. 8 shows a schematic block diagram of a reference station position calibration system 800 according to an embodiment of the present invention.
  • the position calibration system 800 of the reference station includes a storage device 810 and a processor 820,
  • the storage device 810 stores program codes for implementing the corresponding steps in the method for calibrating the position of the reference station according to an embodiment of the present invention.
  • the processor 820 is used to run the program code stored in the storage device 810 to execute the corresponding steps of the position calibration method of the reference station according to the embodiment of the present invention, and to implement the reference station according to the embodiment of the present invention
  • the corresponding module in the position calibration device is used to run the program code stored in the storage device 810 to execute the corresponding steps of the position calibration method of the reference station according to the embodiment of the present invention, and to implement the reference station according to the embodiment of the present invention The corresponding module in the position calibration device.
  • a storage medium is also provided, on which a program instruction is stored, and when the program instruction is executed by a computer or a processor, it is used to execute the reference station of the embodiment of the present invention.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media, for example, one computer-readable storage medium contains computer-readable program code for randomly generating a sequence of action instructions, another computer may The readable storage medium contains computer-readable program code for dog management.

Abstract

本发明提供了一种基准站的位置标定方法及装置,所述方法包括:获取所述基准站的输入位置数据和观测位置数据;计算所述输入位置数据与观测位置数据的差值;基于所述差值与预定的差值阈值确认所述输入位置数据是否可信。本发明的装置和方法,在标定位置时实现坐标判断,确保标定位置坐标的准确度。

Description

一种基准站的位置标定方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及定位方法及装置。
背景技术
RTK(Real-time kinematic,实时动态)载波相位差分技术,是实时处理两个测量站载波相位观测量的差分方法,将基准站采集的载波相位发给用户接收机,进行求差解算坐标。其中,基准站通过数据链将其观测值和坐标位置信息一起传送到RTK移动站,RTK移动站通过数据链路接收基准站的数据,同时采集卫星观测值数据,进行实时处理,进而实现定位。
因此,在使用RTK载波相位差分技术时需要对RTK基准站的位置进行标定。
发明内容
第一方面,本发明实施例提供了一种基准站的位置标定方法,所述方法至少包括:
获取所述基准站的输入位置数据和观测位置数据;
计算所述输入位置数据与观测位置数据的第一差值;
基于所述第一差值与预定的第一差值阈值确认所述输入位置数据是否可信。
可选地,所述输入位置数据和/或观测位置数据包括海拔高、经度和纬度。
可选地,所述观测位置数据包括所述基准站接收的卫星观测数据的均值。
可选地,所述计算所述输入位置与观测位置数据之间的第一差值包括:
将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标;
基于转换后的输入位置数据和观测位置数据计算所述第一差值。
可选地,计算所述第一差值包括:在地心地固坐标(ECEF)地心地固坐标(ECEF)坐标下,计算所述输入位置数据和所述观测位置数据之间的距离。
可选地,基于所述差值与预定的差值阈值确认所述输入位置数据是否可信包括:当所述差值小于或等于所述差值阈值时,确认所述输入位置数据是可信的。
可选地,所述方法还包括:将所述可信的输入位置数据作为标定位置数据。
可选地,所述获取所述输入位置数据包括:通过无线链路接收用户设置的所述输入位置数据。
可选地,当所述基准站重启后,所述方法还包括:
获取基于重启前的标定位置数据,以及重启后的观测位置数据;
计算所述重启前的标定位置数据和重启后的观测位置数据的第二差值;
基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据作为标定位置数据。
可选地,所述基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据包括:当所述第二差值小于或等于所述第二差值阈值时,采用重启前的标定位置数据作为标定位置数据;当所述第二差值大于所述第二差值阈值时,不采用重启前的标定位置数据作为标定位置数据。
可选地,所述方法还包括:当接收到查询请求时,发送所述基准站的标定位置数据,其中,查询请求包括查询所述基准站的标定位置数据的信息。
可选地,所述方法还包括:当接收到清除请求时,清除所述基准站的标定位置数据,其中,清除请求包括清除所述基准站的标定位置数据的信息。
第二方面,本发明实施例提供了一种基准站的位置标定方法,所述方法至少包括:
将所述基准站设置为手持模式;
获取来源于RTK基站或网络RTK的RTCM数据,以及卫星观测数据;
基于所述RTCM数据和卫星观测数据解算得到所述手持模式下的所述基准站的引点位置数据。
可选地,所述方法还包括:将所述基准站的手持模式切换至基准模式,并将所述引点位置数据作为标定位置数据。
可选地,所述获取来源于RTK基站或网络RTK的RTCM数据包括:接收遥控装置发送的RTCM数据,其中,所述RTCM数据包括RTK基站或网络RTK周期发送至所述遥控装置的RTCM数据。
可选地,所述手持模式下的所述基准站将所述引点位置数据发送至遥控装置进行显示。
第三方面,本发明还提供了一种基准站的位置标定系统,至少包括:数据源装置,用于提供RTCM数据;
手持模式下的基准站,用于基于所述RTCM数据和卫星观测数据得到所述基本站的引点位置数据;
遥控装置,用于将所述数据源装置的RTCM数据传输至所述手持模式下的基准站。
可选地,所述数据源装置包括:基准站或由基准站组成的网络。
可选地,所述遥控装置还用于选择所述数据源装置。
可选地,所述遥控装置还用于接收所述基本站的引点位置数据。可选地,所述基准站采用如上述的方法进行所述基准站的位置标定。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的基准站的位置标定方法;
图2是根据本发明实施例的基准站的位置标定方法的示例的流程示意图;
图3是根据本发明实施例的又一种基准站的位置标定方法;
图4是根据本发明实施例的基准站的位置标定方法的示例的流程示意图;
图5是根据本发明实施例的位置标定系统的示意图;
图6是根据本发明实施例的一种基准站的位置标定装置;
图7是根据本发明实施例的又一种基准站的位置标定装置;
图8是根据本发明实施例的基准站的位置标定系统的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例的技术方中案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在传统RTK基准站位置标定过程中,一般通过手簿输入坐标位置设置完成,然而采用这种方式,会存在以下缺点:(1)若输入坐标位置有误,用户无法直接得到反馈结果;(2)基准站重新启动,需要用户再次输入设置;(3)基准站使用过程中,用户无法清楚了解当前基准站使用的标定位置;(4)基准站使用过程中,无法清除当前基准站标定位置;(5)基准站位置获取不方便,需要通过购买或长期测量才能获取。
首先,将参照图1描述根据本发明实施例的基准站的位置标定方法100。
在步骤S110中,获取所述基准站的输入位置数据和观测位置数据;在步骤S120中,计算所述输入位置数据与观测位置数据的第一差值;
最后,在步骤S130中,基于所述第一差值与预定的第一差值阈值确认所述输入位置数据是否可信。
本发明实施例的基准站的位置标定方法通过在标定位置时实现坐标判断,确保了标定位置坐标的准确度。根据本发明实施例,所述步骤S110可以进一步包括:通过无线链路接收用户设置的所述输入位置数据。
其中,用户可以通过遥控装置与所述基准站进行交互。具体来说,遥控装置通过无线链路与所述基准站连接,进行通信和数据传输。例如用户通过遥控装置可以实现对所述基准站的工作模式的设置,以及输入所述基准站的位置数据并通过无线链路将输入位置数据发送至所述基准站。
可选地,所述无线链路包括:SDR(Software Defined Radio,软件无线电)、4G或WIFI链路。
可选地,所述输入位置数据和/或观测位置数据包括海拔高、经度和纬度。
可选地,所述获取观测位置数据包括:所述基准站上电后,通过GNSS芯片获取所述卫星观测数据。
可选地,所述观测位置数据包括所述基准站接收的卫星观测数据的均值。
根据本发明实施例,所述步骤S120可以进一步包括:
所述计算所述输入位置数据与观测位置数据之间的第一差值包括:
将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标;
基于转换后的输入位置数据和观测位置数据计算所述第一差值。
可选地,将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标包括:采用如下公式计算所述地心地固坐标系下的坐标(X,Y,Z):
X=(N+hgt)*cos(lat)*cos(lon);
Y=(N+hgt)*cos(lat)*sin(lon);
Z=[N*(1-e*e)+hgt]*sin(lat);
e=sqrt[1-(b*b)/(a*a)];
N=a/sqrt[1-e*e*pow(sin(lat),2)];
其中,a为地心地固坐标系下椭球体长半轴,b为地心地固坐标系下椭球体短半轴,e为椭球偏心率;hgt为海拔高坐标,lat为纬度坐标,lon为经度坐标。
可选地,所述第一差值的计算包括:第一差值
Figure PCTCN2018122402-appb-000001
其中,x1,y1,z1为输入位置数据转换的地心地固坐标(ECEF)坐标;x2,y2,z2为观测位置数据转换的地心地固坐标(ECEF)坐标。
实际上,基准站的设置过程受人为因素以及外部环境因素等的影响,并不能完全保证基准站一直处于完全竖直且不动的状态,可能会出现轻微的倾斜或移动,这样用于解算的数据也是不准确的;为了保证标定精度则需要对所述输入位置数据和/或观测位置数据中的海拔高、经度和纬度进行修订。所述基准站包括惯性测量单元(Inertial measurement unit,IMU),用于获取所述基准站的偏差;基于所 述IMU的惯性测量数据可以判断所述基准站是否发生移动或倾斜以及基站位置数据的修正值。例如,所述惯性测量数据包括倾斜角度,根据倾斜角度和基站高度得到所述修正值。
可选地,将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标还可以包括:
获取基准站的惯性测量数据得到基站位置修正值;
根据所述基站位置修正值对所述观测位置数据进行修正后转换为地心地固坐标系下的坐标。
可选地,将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标还可以包括:
获取基准站的惯性测量数据得到地心地固坐标系下的基站位置修正值;
根据所述地心地固坐标系下的基站位置修正值对转换为地心地固坐标系下的所述观测位置数据进行修正。
需要说明的是,上述观测位置数据的修正可以在所述基准站内部进行,也可以发送至其他装置计算后再发送至所述基准站。
根据本发明实施例,所述步骤S130可以进一步包括:当所述差值小于或等于所述差值阈值时,确认所述输入位置数据是可信的。
可选地,将所述可信的输入位置数据作为所述基准站的标定位置数据。
可选地,所述将所述可信的输入位置数据作为所述基准站的标定位置数据包括:将所述可信的输入位置数据配置到GNSS接收芯片上。进一步地,将所述可信的输入位置数据作为所述基准站的输出的RTCM数据中1005/1006的位置输出数据。
可选地,将所述输入位置数据进行保存,例如保存至“位置标定文件”中。
可选地,当所述差值大于所述差值阈值时,确认所述输入位置数据是不可信的。
可选地,当将所述可信的输入位置数据作为所述基准站的标定位置数据时,提示用户所述基准站的位置标定成功;当确认所述输入位置数据是不可信的时,提示用户所述基准站的位置标定失败。通过将位置标定的结果反馈给用户,解决了用户无法直接得到反馈结果的问题,避免了用户错误输入标定位置的可能性。
因为现在的基准站重启之后都需要重新进行位置标定,给用户带来了很多不便之处,比如基准站的位置一直没有发生变化,那么每次重启都进行标定极大的增加了用户的工作量。因此,本发明实施例的基准站的位置标定方法,在重启后进行位置判断,如果确认基准站没有发生移动则自动使用重启前的标定位置;如果位置发生了变化则重新进行标定。这样,就避免了在基准站没有发生移动时重启后需要用户重新标定位置的问题。
根据本发明实施例,所述方法100还包括:
当所述基准站重启后,获取基于重启前的标定位置数据,以及重启后的观测位置数据;
计算所述重启前的标定位置数据和重启后的观测位置数据的第二差值;
基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据作为标定位置数据。
可选地,所述基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据包括:当所述第二差值小于或等于所述第二差值阈值时,采用重启前的标定位置数据作为标定位置数据;当所述第二差值大于所述第二差值阈值时,不采用重启前的标定位置数据作为标定位置数据。
可选地,如果不采用重启前的标定位置数据作为标定位置数据则清除重启前的标定位置数据。
根据本发明实施例,所述方法100还包括:当接收到查询请求时,发送所述基准站的标定位置数据,其中,查询请求包括查询所述基准站的标定位置数据的信息。那么,用户可以清楚了解当前基准站使用的标定位置。
根据本发明实施例,所述方法100还包括:当接收到清除请求时,清除所述基准站的标定位置数据,其中,清除请求包括清除所述基准站的标定位置数据的信息。可以方便用户根据需求清除当前基准站标定位置,避免了基准站使用过程中,无法清除当前基准站标定位置的问题。而且,解决了基准站位置获取不方便,需要通过购买或长期测量才能获取的问题,提高了用户的使用效率和降低了用户的使用成本。
通过上述查询和/或显示所述基准站当前使用的标定位置,以及清除所述基准站当前使用的标定位置,增加了所述基准站的易用性和可观操作性,进一步提升了用户体验。
在一个实施例中,基于具体示例进一步说明上述基准站的位置标定方法100。参见图2,图2示出了本发明实施例的基准站的位置标定方法的示例的流程示意图。其中,用户通过遥控器APP实现与所述基准站的交互,遥控器APP对外提供输入输出界面;遥控器可以通过SDR或者4G或WIFI链路,与基准站通信连接。基准站的位置标定方法具体如下:
首先,将基准站通过按键切换到基站模式,与遥控器通过SDR对频连接;用户可以通过遥控器APP“设置RTK基站坐标”选项,输入基准站的经度、纬度、海拔高数据,并点击“设置”进行设置;
然后,遥控器将所述输入基准站的经度、纬度、海拔高数据,以及“位置标定命令”发送至所述基准站;所述基准站收到“位置标定 命令”,以及用户输入的经度、纬度、海拔高数据;
接着,当基准站上电后,计算基准站内部的GNSS接收芯片收敛的100组数据的均值;将用户输入的经度、纬度、海拔高数据、以及基准站收敛的均值坐标分别转换为地心地固坐标(ECEF)(earth-centred earth-fixed)坐标系下的坐标;
基于转换后的用户输入的经度、纬度、海拔高数据以及基准站收敛的均值,计算二者的差值;并判断所述差值是否在5m范围内;
若差值在5m范围内则认为用户输入的坐标可信,将该坐标配置到GNSS接收板卡上,作为RTCM 1005/1006的位置输出,同时保存记录到“位置标定文件”中;遥控器APP向用户提示“标定位置成功”;
若差值不在5m范围内则认为用户输入的坐标不可信,遥控器APP提示“标定位置失败,与基准站位置在5米范围外”,这样用户可以及时知道自己输入的数据是否有效,避免用户误输入数据。
当基准站重启后,内置的GNSS接收芯片收敛100组定位数据,并取均值;同时从“位置标定文件”读取重启前的标定位置;判断二者位置的差值以进一步判断所述基准站是否发生移动,若二者差值在0.5米范围内则认为基准站未发生移动,使用重启前的标定位置;若二者差值不在0.5米范围内则不采用重启前的标定位置,并清除“位置标定文件”记录的坐标。
此外,用户还可以通过遥控器查看或清除当前基准站使用的标定位置:遥控器发送“查询标定位置”命令至基准站,基准站收到查询命令,将使用的标定坐标发送给遥控器APP进行显示;遥控器发送“清除标定位置”命令至基准站;基准站收到清除命令,将使用的标定坐标清除为0,并配置给内置的GNSS接收板卡芯片,并发送清除成功应答至遥控器。
参照图3描述根据本发明实施例的另一种基准站的位置标定方法300。所述方法300包括:
在步骤S310,将所述基准站设置为手持模式;
在步骤S320,获取来源于RTK基站或网络RTK的RTCM数据,以及卫星观测数据;
在步骤S330,基于所述RTCM数据和卫星观测数据解算得到所述手持模式下的所述基准站的引点位置数据。
在一个实施例中,定位基站B和定位移动站A同步观测全球导航卫星系统(Global Navigation Satellite System,GNSS)数据。针对每颗卫星获取伪距观测值和载波相位观测值,以定位移动站A与卫星j为例:
Figure PCTCN2018122402-appb-000002
Figure PCTCN2018122402-appb-000003
其中L是载波相位观测值,P为伪距观测值,ρ为卫星和基站间的距离,c是光速,δ是钟差,T是对流层延迟,I是电离层延迟,N是整周模糊度,ε是随机误差。
当分别对站间和星间观测值做二次差分时,得到:
Figure PCTCN2018122402-appb-000004
Figure PCTCN2018122402-appb-000005
其中分别为载波相位双差值和伪距双差值。
其中由于站间(基站B定位基站B与移动站A定位移动站A之间)距离远远小于等星站间距离(Aj,Bj),可认为Aj,Bj路径上的电离层/对流层效应非常相似,所以通过双差能够消除卫星钟、电离层误差、对流层误差等影响定位精度的主要元素,从而获取厘米级的站间 (基站B定位基站B与移动站A定位移动站A之间)相对位置关系:
(Δx,Δy,Δz)
将定位基站B的观测数据(L B,P B)通过无线实时发送给定位移动站A,并进行联合解算的方式被称为实时动态差分,即计算实时动态定位数据(Real-TimeKinemati,RTK)的差分。
如果能够获取定位基站B在坐标系下的精确定位(x b,y b,z b),即可获取定位移动站A的厘米级的精确定位(X r,Y r,Z r)。
本申请基于上述的差分定位基本原理,使用定位基站的第一GNSS差分数据和定位基站的绝对定位数据,定位移动站可以基于自己的第二GNSS差分数据确定定位移动站的定位信息,实现打点定位。
根据本发明实施例,所述步骤S310可以进一步包括:将所述基准站中的GNSS接收芯片设置为移动站模式。
根据本发明实施例,所述步骤S330可以进一步包括:接收遥控装置发送的RTCM数据,其中,所述RTCM数据包括RTK基站或网络RTK周期发送至所述遥控装置的RTCM数据。
可选地,所述手持模式下的所述基准站将所述引点位置数据发送至遥控装置进行显示。
上述基准站的手持模式下的标定位置引点方法,实现了在手持模式下的基准站接收外部RTCM数据,结合自身收到的卫星观测值解算出厘米级定位,并将该定位位置一键设置为基站模式下的标定位置;在基准站切换到基站模式时将使用该标定位置,极大方便了用户获取和标定RTK基准站坐标位置。
根据本发明实施例,所述方法300还包括:将所述基准站的手持模式切换至基准模式,并将所述引点位置数据作为标定位置数据。
如前所述,基准站在实际工作过程中可能会出现轻微的倾斜或移动,如果RTK基站已被移动或者所述RTK基站处于倾斜状态时,RTK基站提供的GNSS差分数据(RTCM数据)是不准确的,会造成到手持模式下的基准站接收的RTCM数据也是不准确的,从而导致引点标定的准确度不高。同时,手持模式下的基准站包括手持杆,而手持杆比较容易受人为因素以及外部环境因素等的影响,出现轻微的倾斜或移动,这样用于解算的数据也是不准确的;为了保证引点标定精度则需要对所述RTK基准站和/或手持模式下的基准站的位置数据进行修正。
所述RTK基准站和手持模式下的基准站均包括惯性测量单元(Inertial measurement unit,IMU),用于获取所述RTK基准站和手持模式下的基准站偏差;基于所述RTK基准站和手持模式下的基准站的所述IMU的惯性测量数据可以判断各自是否发生移动或倾斜以及位置数据的修正值。例如,所述惯性测量数据包括倾斜角度,根据倾斜角度和基准站或手持杆高度得到所述修正值。
所述RTK基准站的RTCM数据的修正可以在对转换为地心地固坐标系下之前的数据进行,也可以对转换为地心地固坐标系下之后的数据进行。如前述位置标定方法100中的修正方法。
所述手持模式下的基准站的修正可以包括对卫星观测数据或引点位置数据的修正;同样地,对所述手持模式下的基准站的卫星观测数据的修正可以在其转换为地心地固坐标系下之前进行,也可以对转换为地心地固坐标系下之后进行。
需要说明的是,上述RTK基准站的RTCM数据(包括观测位置数据)的修正可以在RTK基准站内进行,也可以将定位数据和惯性测量数据发送其它中转控制设备(如遥控装置,服务器等)进行修正;同样地,所述手持模式下的基准站的修正可以在所述手持模式下的基准站内进行,也可以将定位数据(包括卫星观测数据或引点位置数据) 和惯性测量数据发送其它中转控制设备(如遥控装置,服务器等)进行修正。
可选地,获取卫星观测数据还包括:
获取所述手持模式下的基准站的惯性测量数据,并得到手持基站修正值;
根据所述手持基站修正值对所述卫星观测数据进行修正。
可选地,在步骤S320中,所述RTCM数据为修正后的数据。
在一个实施例中,基于具体示例进一步说明上述基准站的位置标定方法300。参见图4,图4示出了本发明实施例的基准站的位置标定方法的示例的流程示意图。用户通过遥控器APP实现与所述基准站的交互,所述基准站通过无线链路与所述遥控器APP进行数据传输和通信,并接收卫星发送的观测数据;所述遥控器APP还定期通过无线链路接收所述GNSS差分数据源(包括区域内的RTK基准站或网络RTK)。基准站的位置标定方法具体如下:
首先,用户通过遥控器APP将所述基准站设置为手持模式,而所述基准站中的GNSS芯片设置为移动站模式;
然后,通过遥控器APP选择GNSS差分数据源,遥控器APP定期接收区域内的RTK基准站或网络RTK的发送RTCM数据;其中,如果选择区域内的RTK基准站作为数据源,则所述遥控器APP配置RTK选项为RTK基站;如果选择网络RTK作为数据源,则所述遥控器APP配置RTK选项为网络RTK;
接着,所述遥控器APP将接收到的所述RTCM数据发送至手持模式下的基准站;同时,手持模式下的基准站还接收来自卫星的卫星观测数据;其中,可以对所述卫星观测数据进行修正,具体包括根据手持模式下的基准站的惯性测量数据得到手持位置修正值,并基于所述手持位置修正值对卫星观测数据进行修正得到修正后的卫星观测数据;
根据接收到的遥控器APP发送的所述RTCM数据和卫星观测数据进行解算,获取厘米级的引点定位数据;
然后,手持模式下的基准站将厘米级定位数据发送至遥控器APP进行显示;
接着,用户通过遥控器APP将手持模式下的所述引点定位数据标定为所述基准站的标定位置数据;
最后,用户通过遥控器APP将所述基准站的手持模式切换至基站模式,所述引点定位数据作为标定位置数据生效。
参照图5描述根据本发明实施例的一种位置标定系统,所述系统包括:
数据源装置,用于提供RTCM数据;
手持模式下的基准站,用于基于所述RTCM数据和卫星观测数据得到所述基本站的引点位置数据;
遥控装置,用于将所述数据源装置的RTCM数据传输至所述手持模式下的基准站。
可选地,所述数据源装置包括:基准站或由基准站组成的网络。
所述数据源装置均可以提供GNSS差分信号格式数据(又称,RTCM数据),其中,基准站可以设置在已知位置上,也可以设置在未知位置上,而基准站可以采用本发明实施例提供的基准站的位置标定方法进行位置标定;由基准站组成的网络包括利用多基准站网络RTK技术建立的连续运行(卫星定位服务)参考站(Continuously Operating Reference Stations)(简称CORS站),所述CORS站根据各基准站所采集的实时观测数据在区域内进行整体建模解算,自动生成一个对应于流动站点位的虚拟参考站(包括基准站坐标和GPS观测值信息)并通过现有的数据通信网络和/或无线数据通信网络,以国际通用格式提供码相位/载波相位差分修正信息。
可选地,所述数据源装置还用于向所述遥控装置发送RTCM数据。进一步地,所述数据源装置周期性地向所述遥控装置发送RTCM数据。
可选地,所述遥控装置包括遥控器APP。
可选地,所述遥控装置还用于接收所述数据源装置发送的RTCM数据。进一步地,所述遥控装置周期性地接收所述数据源装置发送的RTCM数据。
可选地,所述遥控装置还用于接收所述基本站的引点位置数据。
可选地,所述遥控装置还用于显示所述引点位置数据。
所述遥控装置不仅实现数据源装置与手持模式下的基准站之间的数据通信,还可以实现用户与手持模式下的基准站之间的交互,用户通过遥控装置发送控制信号给手持模式下的基准站,控制基准站在不同的工作模式之间转换,还将所述手持模式下的基准站的定位数据以及其他相关信息显示给用户,有利于用户实时了解所述手持模式下的基准站的工作情况(如标定情况),避免了人为原因造成的误差。
可选地,所述遥控装置还用于选择所述数据源装置。进一步地,所述遥控装置根据所选择的数据源装置进行配置。当选择基准站作为数据源装置时,所述遥控装置将其RTK选项配置为RTK基站;当选择由基准站组成的网络作为数据源装置时,所述遥控装置将其RTK选项配置为网络RTK。
可选地,所述遥控装置通过无线链路与所述数据源装置或手持模式下的基准站进行通信。进一步地,所述无线链路包括SDR(Software Defined Radio,软件无线电)、4G或WIFI链路。
可选地,所述手持模式下的基准站用于接收所述遥控装置发送的所述RTCM数据。
同时,所述手持模式下的基准站还接收卫星通过无线通信网络实时发送的卫星观测数据;所述手持模式下的基准站将接收到的卫星观 测数据和收到所述遥控装置发送的所述RTCM数据实时联合解算,可以得到数据源装置和所述手持模式下的基准站之间的坐标增量(基线向量),进而可以得到所述手持模式下的基准站的引点位置数据。
可选地,当所述手持模式下的基准站切换为基站模式下的基准站之后,所述引点位置数据作为所述基站模式下的基准站的标定位置数据。
因此,本发明实施例的位置标定系统可以进行厘米级的精确测量,不仅仅可以用于手持模式下的基准站自身的位置标定,还可以进一步用于区域测量等场合。例如,选取待测量区域中的若干个关键点,通过本发明实施例的位置标定系统对该若干个关键点进行测量,可以将所述手持模式下的基准站分别设置于该若干个关键点的位置,即可得到若干个手持模式下的基准站的引点位置数据,即为该若干个关键点的位置数据,经过数据处理得到所述待测量区域的边界或面积等测量信息。
在此需要说明的是,所述数据源装置可以是事先存在的基准站或由基准站组成的网络,也可以是实时建立的;而当实时建立所述数据源装置时,可以采用上述本发明实施例的基准站的位置标定方法进行标定。
下面参照图5对本发明实施例的位置标定系统的工作原理进行进一步说明。如图5所示,位置标定系统包括:数据源装置,可以是基准站或CORS站;控制装置包括控制器APP;手持模式下的基准站。GNSS卫星实时向数据源装置和手持模式下的基准站发送卫星观测数据。
数据源装置接收所述GNSS卫星发送的卫星观测数据,并基于所述数据源装置自身的标定位置数据,发送RTCM数据至控制器APP。其中,数据源装置可以定期向所述控制器APP发送RTCM数据。
所述控制器APP接收用户的指令,如“引点标定基准站位置”; 所述控制器APP通过无线链路将所述RTCM数据发送至手持模式下的基准站。
所述手持模式下的基准站接收所述控制器APP发送的RTCM数据,并根据实施接收的卫星发送的卫星观测数据,解算得到所述手持模式下的基准站当前的引点位置数据,所述引点位置数据为厘米级定位数据;所述手持模式下的基准站将厘米级的所述引点位置数据发送至所述控制器APP。
所述控制器APP接收到所述手持模式下的基准站发送的厘米级引点位置数据,并将该数据显示于所述控制器APP上,便于用户获取。
参照图6描述根据本发明实施例的一种基准站的位置标定装置,所述装置600包括:
位置数据模块610,用于获取所述基准站的输入位置数据和观测位置数据;
差值计算模块620,用于计算所述输入位置数据与观测位置数据的差值;
数据判断模块630,用于基于所述差值与预定的差值阈值确认所述输入位置数据是否可信。
根据本发明实施例,所述位置数据模块610可以进一步包括:通信模块611,用于通过无线链路接收用户设置的所述输入位置数据。
其中,用户可以通过通信模块611与遥控装置进行通信,进而实现与所述基准站进行交互。具体来说,遥控装置通过通信模块611与所述基准站建立无线链路,进行通信和数据传输。例如用户通过遥控装置可以实现对所述基准站的工作模式的设置,以及输入所述基准站的位置数据并通过无线链路将输入位置数据发送至所述基准站。
可选地,所述无线链路包括:SDR(Software Defined Radio,软件无线电)、4G或WIFI链路。
可选地,所述输入位置数据和/或观测位置数据包括海拔高、经 度和纬度。
可选地,所述位置数据模块610可以进一步包括:观测数据模块612,用于在所述基准站上电后,通过GNSS芯片获取所述卫星观测数据。
可选地,所述观测位置数据包括所述基准站接收的卫星观测数据的均值。
可选地,所述位置数据模块610还可以包括:修正数据模块(未示出),用于修正所述观测位置数据。
其中,所述基准站包括惯性测量单元(Inertial measurement unit,IMU),用于获取所述基准站的偏差;基于所述IMU的惯性测量数据可以判断所述基准站是否发生移动或倾斜以及基站位置数据的修正值。例如,所述惯性测量数据包括倾斜角度,根据倾斜角度和基站高度得到所述修正值。
作为RTCM数据,其中至少包括如下消息类型:
消息类型 消息描述
1 差分GPS校正
2 Delta差分GPS校正
3 GPS参考站坐标
9 GPS部分校正装置
15 电离层延迟信息
16 信息消息
31 差分GLONASS校正
32 GLONASS参考站坐标
在利用IMU对基站的状态进行监测之后,RTCM数据可以引入表示基站状态的消息类型,以及对基站状态进行位置补偿的消息类型。
可选地,基站状态的消息类型可以是布尔型,表示基站目前是否正常。基站状态位置补偿则是IMU的输出结果的一个位置补偿值,该补偿值可以包含经纬度和高度的信息。
基于该方式,例如CORS站下的多个基站数据可以得到修正。
根据本发明实施例,所述差值计算模块620可以进一步包括:
坐标转换模块621,用于将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标;
第一差值计算模块622,用于基于转换后的输入位置数据和观测位置数据计算所述第一差值。
可选地,所述坐标转换模块621进一步用于:采用如下公式计算所述地心地固坐标系下的坐标(X,Y,Z):
X=(N+hgt)*cos(lat)*cos(lon);
Y=(N+hgt)*cos(lat)*sin(lon);
Z=[N*(1-e*e)+hgt]*sin(lat);
e=sqrt[1-(b*b)/(a*a)];
N=a/sqrt[1-e*e*pow(sin(lat),2)];
其中,a为地心地固坐标系下椭球体长半轴,b为地心地固坐标系下椭球体短半轴,e为椭球偏心率;hgt为海拔高坐标,lat为纬度坐标,lon为经度坐标。
可选地,所述第一差值的计算包括:第一差值
Figure PCTCN2018122402-appb-000006
其中,x1,y1,z1为输入位置数据转换的地心地固坐标(ECEF)地心地固坐标(ECEF)坐标;x2,y2,z2为观测位置数据转换的地心地固坐标(ECEF)地心地固坐标(ECEF)坐标。
可以理解的是,所述修正数据模块可以在观测位置数据转换为地心地固坐标系下的数据之前进行修正,也可以在观测位置数据转换为地心地固坐标系下的数据之后进行修正。
根据本发明实施例,所述数据判断模块630可以进一步用于:当 所述差值小于或等于所述差值阈值时,确认所述输入位置数据是可信的。
可选地,当所述差值大于所述差值阈值时,确认所述输入位置数据是不可信的。
根据本发明实施例,所述装置600还包括:
标定模块640,用于将所述可信的输入位置数据作为所述基准站的标定位置数据。
可选地,所述标定模块640进一步用于:将所述可信的输入位置数据配置到GNSS接收芯片上。进一步地,将所述可信的输入位置数据作为所述基准站的输出的RTCM数据中1005/1006的位置输出数据。
可选地,当将所述可信的输入位置数据作为所述基准站的标定位置数据时,提示用户所述基准站的位置标定成功;当确认所述输入位置数据是不可信的时,提示用户所述基准站的位置标定失败。通过将位置标定的结果反馈给用户避免了用户错误输入标定位置的可能性。
根据本发明实施例,所述装置600还包括:
保存模块650,将所述输入位置数据进行保存。例如保存至“位置标定文件”中。
因为现在的基准站重启之后都需要重新进行位置标定,给用户带来了很多不便之处,比如基准站的位置一直没有发生变化,那么每次重启都进行标定极大的增加了用户的工作量。因此,本发明实施例的基准站的位置标定方法,在重启后进行位置判断,如果确认基准站没有发生移动则自动使用重启前的标定位置;如果位置发生了变化则重新进行标定。这样,就避免了在基准站没有发生移动时重启后需要用户重新标定位置的问题。
根据本发明实施例,所述装置600还包括:
重启模块660,用于当所述基准站重启后,获取基于重启前的标定位置数据,以及重启后的观测位置数据。
可选地,差值计算模块620还包括:
第二差值计算模块623,用于计算所述重启前的标定位置数据和重启后的观测位置数据的第二差值。
可选地,所述数据判断模块630还可以用于:
基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据作为标定位置数据。
可选地,所述标定模块640还可以用于:当所述第二差值小于或等于所述第二差值阈值时,采用重启前的标定位置数据作为标定位置数据;当所述第二差值大于所述第二差值阈值时,不采用重启前的标定位置数据作为标定位置数据。
根据本发明实施例,所述装置600还包括:
查询模块670,用于当接收到查询请求时,发送所述基准站的标定位置数据,其中,查询请求包括查询所述基准站的标定位置数据的信息。
根据本发明实施例,所述装置600还包括:
清除模块680,用于当接收到清除请求时,清除所述基准站的标定位置数据,其中,清除请求包括清除所述基准站的标定位置数据的信息。
可选地,清除模块680还用于:如果不采用重启前的标定位置数据作为标定位置数据则清楚重启前的标定位置数据。
参照图7描述根据本发明实施例的又一种基准站的位置标定装置,所述装置700包括:
模式设置模块710,用于将所述基准站设置为手持模式获基准模 式;
数据获取模块720,用于获取来源于RTK基站或网络RTK的RTCM数据,以及卫星观测数据;
数据解算模块730,用于基于所述RTCM数据和卫星观测数据解算得到所述手持模式下的所述基准站的引点位置数据;
位置设置模块740,将所述引点位置数据配置到所述基准站的GNSS接收装置上。
根据本发明实施例,所述模式设置模块710进一步用于:将所述基准站中的GNSS接收芯片设置为移动站模式。
根据本发明实施例,所述数据获取模块720进一步包括:接收遥控装置发送的RTCM数据,其中,所述RTCM数据包括RTK基站或网络RTK周期发送至所述遥控装置的RTCM数据。
可选地,所述装置700还用于将所述手持模式下的所述基准站将所述引点位置数据发送至遥控装置进行显示。
可选地,所述装置700还包括:修正模块(未示出),用于修正所述卫星观测数据或引点位置数据。
本发明实施例提供的基准值的位置标定方法、装置及系统,在用户设置RTK基准站坐标时,实现了RTK基准站进行了数据有效性判断,并将标定结果直观显示给用户,避免用户输入错误数据而不知晓;RTK基准站重新启动后,若没有发生位置移动,自动使用上次标定的坐标,无需用户再次输入,提高了用户体验;用户还可以查询或清除当前RTK基准点所使用的坐标,增加了基准站的易用性;通过手持模式下的一键引点标定功能,用户可以快速方便获取并设置RTK基准站位置。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和 电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图8示出了根据本发明实施例的基准站的位置标定系统800的示意性框图。基准站的位置标定系统800包括存储装置810、以及处理器820,
所述存储装置810存储用于实现根据本发明实施例的基准站的位置标定方法中的相应步骤的程序代码。
所述处理器820用于运行所述存储装置810中存储的程序代码,以执行根据本发明实施例的基准站的位置标定方法的相应步骤,并且用于实现根据本发明实施例的基准站的位置标定装置中的相应模块。
此外,根据本发明实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本发明实施例的基准站的位置标定方法的相应步骤,并且用于实现根据本发明实施例的基准站的位置标定装置中的相应模块。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合,例如一个计算机可读存储介质包含用于随机地生成动作指令序列的计算机可读的程序代码,另一个计算机可读存储介质包含用于进行犬只管理的计算机可读的程序代码。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (23)

  1. 一种基准站的位置标定方法,其特征在于,所述方法包括:
    获取所述基准站的输入位置数据和观测位置数据;
    计算所述输入位置数据与观测位置数据的第一差值;
    基于所述第一差值与预定的第一差值阈值确认所述输入位置数据是否可信。
  2. 如权利要求1所述的方法,其特征在于,所述输入位置数据和/或观测位置数据包括海拔高、经度和纬度。
  3. 如权利要求2所述的方法,其特征在于,所述观测位置数据包括所述基准站接收的卫星观测数据的均值。
  4. 如权利要求3所述的方法,其特征在于,所述计算所述输入位置与观测位置数据之间的第一差值包括:
    将所述输入位置数据和观测位置数据分别转换为地心地固坐标系下的坐标;
    基于转换后的输入位置数据和观测位置数据计算所述第一差值。
    地心地固坐标系地心地固坐标系地心地固坐标系地心地固坐标系
  5. 如权利要求4所述的方法,其特征在于,计算所述第一差值包括:在地心地固坐标(ECEF)坐标下,计算所述输入位置数据和所述观测位置数据之间的距离。地心地固坐标(ECEF)地心地固坐标(ECEF)。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,基于所 述差值与预定的差值阈值确认所述输入位置数据是否可信包括:当所述差值小于或等于所述差值阈值时,确认所述输入位置数据是可信的。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:将所述可信的输入位置数据作为标定位置数据。
  8. 如权利要求6所述的方法,其特征在于,所述获取所述输入位置数据包括:通过无线链路接收用户设置的所述输入位置数据。
  9. 如权利要求1所述的方法,其特征在于,当所述基准站重启后,所述方法还包括:
    获取基于重启前的标定位置数据,以及重启后的观测位置数据;
    计算所述重启前的标定位置数据和重启后的观测位置数据的第二差值;
    基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据作为标定位置数据。
  10. 如权利要求9所述的方法,其特征在于,所述基于所述第二差值与预定的第二差值阈值确认是否采用重启前的标定位置数据包括:当所述第二差值小于或等于所述第二差值阈值时,采用重启前的标定位置数据作为标定位置数据;当所述第二差值大于所述第二差值阈值时,不采用重启前的标定位置数据作为标定位置数据。
  11. 如权利要求1所述的方法,其特征在于,所述方法还包括:当接收到查询请求时,发送所述基准站的标定位置数据,其中,查询请求包括查询所述基准站的标定位置数据的信息。
  12. 如权利要求1所述的方法,其特征在于,所述方法还包括:当接收到清除请求时,清除所述基准站的标定位置数据,其中,清除请求包括清除所述基准站的标定位置数据的信息。
  13. 一种基准站的位置标定方法,其特征在于,所述方法包括:
    将所述基准站设置为手持模式;
    获取来源于RTK基站或网络RTK的RTCM数据,以及卫星观测数据;
    基于所述RTCM数据和卫星观测数据解算得到所述手持模式下的所述基准站的引点位置数据。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:将所述基准站的手持模式切换至基准模式,并将所述引点位置数据作为标定位置数据。
  15. 如权利要求14所述的方法,其特征在于,所述获取来源于RTK基站或网络RTK的RTCM数据包括:接收遥控装置发送的RTCM数据,其中,所述RTCM数据包括RTK基站或网络RTK周期发送至所述遥控装置的RTCM数据。
  16. 如权利要求15所述的方法,其特征在于,所述手持模式下的所述基准站将所述引点位置数据发送至遥控装置进行显示。
  17. 一种位置标定系统,其特征在于,所述系统包括:
    数据源装置,用于提供RTCM数据;
    手持模式下的基准站,用于基于所述RTCM数据和卫星观测数据得到所述基本站的引点位置数据;
    遥控装置,用于将所述数据源装置的RTCM数据传输至所述手持 模式下的基准站。
  18. 如权利要求17所述的系统,其特征在于,所述数据源装置包括:基准站或由基准站组成的网络。
  19. 如权利要求18所述的系统,其特征在于,所述遥控装置还用于选择所述数据源装置。
  20. 如权利要求19所述的系统,其特征在于,所述遥控装置还用于接收所述基本站的引点位置数据。
  21. 如权利要求18所述的系统,其特征在于,所述基准站采用如权利要求1-16中任一项所述的方法进行所述基准站的位置标定。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,所述计算机指令被执行用于实现权利要求1至12任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,所述计算机指令被执行用于实现权利要求13至16任一项所述的方法。
PCT/CN2018/122402 2018-12-20 2018-12-20 一种基准站的位置标定方法及装置 WO2020124494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122402 WO2020124494A1 (zh) 2018-12-20 2018-12-20 一种基准站的位置标定方法及装置
CN201880069215.5A CN111279221A (zh) 2018-12-20 2018-12-20 一种基准站的位置标定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122402 WO2020124494A1 (zh) 2018-12-20 2018-12-20 一种基准站的位置标定方法及装置

Publications (1)

Publication Number Publication Date
WO2020124494A1 true WO2020124494A1 (zh) 2020-06-25

Family

ID=70999778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122402 WO2020124494A1 (zh) 2018-12-20 2018-12-20 一种基准站的位置标定方法及装置

Country Status (2)

Country Link
CN (1) CN111279221A (zh)
WO (1) WO2020124494A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115209A (zh) * 2021-04-13 2021-07-13 杭州启飞智能科技有限公司 一种rtk基准点的获取方法及获取系统
CN112965087B (zh) * 2021-04-25 2024-03-19 苏州天硕导航科技有限责任公司 用于基准站的数据处理方法、测量系统及rtk接收机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074317A1 (en) * 2006-05-16 2008-03-27 Neil Harper Method and apparatus for determining the geographic location of a device
US20090325592A1 (en) * 2007-04-23 2009-12-31 Samsung Electronics Co. Ltd. Apparatus and method for determining a position of a compact base station by using user supplied location information in a broadband wireless communication system
CN102474370A (zh) * 2009-07-28 2012-05-23 高通股份有限公司 用于毫微微小区自定时和自定位的方法和系统
CN104869638A (zh) * 2015-05-28 2015-08-26 北京嘀嘀无限科技发展有限公司 Gps坐标作弊的检测方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132003A1 (ja) * 2005-06-06 2006-12-14 National University Corporation Tokyo University Of Marine Science And Technology Gps受信装置およびgps測位補正方法
CN102012516A (zh) * 2010-10-26 2011-04-13 上海华测导航技术有限公司 自启动基准站及利用其进行gps实时动态测量的方法
US20150362596A1 (en) * 2013-02-26 2015-12-17 Nec Corporation State detecting method, correction value processing device, positioning system, and state detection program
CN103645482A (zh) * 2013-12-25 2014-03-19 上海华测导航技术有限公司 基于任意点设置的基准站实现gps实时动态测量的方法
CN105717530A (zh) * 2016-02-19 2016-06-29 武汉大学 一种在网络rtk中应用流动基准站来增强定位效果的方法
CN106932796A (zh) * 2017-01-12 2017-07-07 西南电子技术研究所(中国电子科技集团公司第十研究所) Gps移动基准站位置坐标快速标定系统
CN107976702A (zh) * 2017-11-22 2018-05-01 湖南省测绘科技研究所 一种基于cors的位置修正方法、定位终端及定位系统
CN108710140B (zh) * 2018-04-19 2022-07-05 广州南方卫星导航仪器有限公司 固定基准站的位置坐标校正方法及系统、改进型rtk快速测量方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074317A1 (en) * 2006-05-16 2008-03-27 Neil Harper Method and apparatus for determining the geographic location of a device
US20090325592A1 (en) * 2007-04-23 2009-12-31 Samsung Electronics Co. Ltd. Apparatus and method for determining a position of a compact base station by using user supplied location information in a broadband wireless communication system
CN102474370A (zh) * 2009-07-28 2012-05-23 高通股份有限公司 用于毫微微小区自定时和自定位的方法和系统
CN104869638A (zh) * 2015-05-28 2015-08-26 北京嘀嘀无限科技发展有限公司 Gps坐标作弊的检测方法及装置

Also Published As

Publication number Publication date
CN111279221A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN106569239B (zh) 一种广播式网络rtk定位技术
US9042913B2 (en) Transmitter position integrity checking
US7605752B2 (en) Apparatus and method for controlling autonomous and assisted GPS modes in a wireless mobile terminal
WO2020124494A1 (zh) 一种基准站的位置标定方法及装置
KR100984688B1 (ko) 광대역 무선통신 시스템에서 사용자 입력을 통한 소형 기지국의 위치 설정 장치 및 방법
US9274229B2 (en) GNSS architecture
EP1532467B1 (en) A method and system for variable data rate transmission
KR101041157B1 (ko) 쥐피에스 단말기가 에이-쥐피에스 단말기의 보조 데이터를공유하기 위한 장치 및 방법
CN113156471A (zh) 定位系统及定位方法
JP2007333636A (ja) 路側装置、端末装置およびdgps測位システム
TWI434060B (zh) 用以更新使用於全球衛星導航系統中之轉換資訊參數的方法與裝置
US20110305260A1 (en) System and method of reference position determination
CN111356937B (zh) 打点定位的方法、装置、系统及计算机存储介质
US20100127929A1 (en) Position calculating method and position calculating device
JP5874132B2 (ja) 補助されたモードにおいて動作する擬似衛星を用いた位置決定システム
US8532885B1 (en) Automatic GNSS signal allocation between remote and base receivers
US10746881B2 (en) Measuring device and measuring method for testing a location tracking employing real time kinematics
KR101934085B1 (ko) 브이알에스 기반의 정밀 위치 측정 시스템 및 정밀 위치 측정 방법
KR20080065040A (ko) 위성항법 신호보정을 위한 장치 및 방법
KR20080099414A (ko) 3차원 위치 정보를 제공하는 방법 및 이를 수행하는 위치정보 제공 장치
JP4797574B2 (ja) 測位装置、測位演算器及び測位演算方法
US11119223B2 (en) Device and method for improving geographic position accuracy of a global positioning system-based mobile device
JP2006112936A (ja) 移動端末および測位システム
KR102258760B1 (ko) 위성 항법 수신 장치 및 그 장치에서의 보정 메시지 선택적 사용 방법
CN111885483B (zh) 一种自行走设备精确定位的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943519

Country of ref document: EP

Kind code of ref document: A1