WO2020124419A1 - 一种InGaN外延层及其制造方法 - Google Patents

一种InGaN外延层及其制造方法 Download PDF

Info

Publication number
WO2020124419A1
WO2020124419A1 PCT/CN2018/122002 CN2018122002W WO2020124419A1 WO 2020124419 A1 WO2020124419 A1 WO 2020124419A1 CN 2018122002 W CN2018122002 W CN 2018122002W WO 2020124419 A1 WO2020124419 A1 WO 2020124419A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingan
growth
layer
epitaxial layer
active
Prior art date
Application number
PCT/CN2018/122002
Other languages
English (en)
French (fr)
Inventor
内策尔·理查德
王朋
周国富
桑吉内蒂·斯特凡诺
Original Assignee
华南师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学 filed Critical 华南师范大学
Priority to EP18943802.1A priority Critical patent/EP3783639A4/en
Priority to PCT/CN2018/122002 priority patent/WO2020124419A1/zh
Priority to US17/254,102 priority patent/US11521852B2/en
Publication of WO2020124419A1 publication Critical patent/WO2020124419A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers

Definitions

  • the invention relates to the field of optoelectronics and electrochemistry, in particular to an InGaN epitaxial layer and a manufacturing method thereof, in particular, it is directly epitaxially grown on a Si substrate for light-emitting diodes, lasers, solar cells, high-power electronic amplifiers, photoelectrodes and ( Bio) Sensor and other photoelectric / electrochemical devices InGaN epitaxial layer method.
  • InGaN-based materials on silicon (Si) substrates has broad application prospects in the fields of optoelectronics and electrochemistry, such as light-emitting diodes, lasers, solar cells, high-power electronic amplifiers, photoelectrodes, and (bio) sensors.
  • InGaN is an ideal semiconductor material for manufacturing optoelectronics and electrochemical devices.
  • the band gap of InGaN changes from GaN (3.4 eV/365 nm) UV band to InN (0.7 eV/1.7 ⁇ m)
  • the near infrared band is continuously adjustable.
  • InGaN also has the advantages of very high band edge absorption coefficient (10 times that of GaAs), high carrier mobility, radiation resistance, chemical stability, biocompatibility, and completely composed of non-toxic materials/elements.
  • GaN, AlN or the combined buffer layer and Si substrate, and InGaN all have a high degree of lattice mismatch.
  • the degree of lattice mismatch between GaN or AlN and Si is greater than that between InGaN and Si.
  • the degree of lattice mismatch between GaN or AlN and Si increases with decreasing In content.
  • the lattice mismatch between GaN or AlN and InGaN increases with increasing In content. Therefore, GaN, AlN, or the combined buffer layer is neither compatible with the growth on the Si substrate nor with the subsequent growth of the InGaN-based material.
  • the lattice mismatch will introduce dislocations in the buffer layer and the InGaN-based material grown on top of the buffer layer to release the stress accumulated during the growth process.
  • the generation of dislocations greatly reduces the quality of material growth, which has a greater impact on the performance of the device.
  • the present invention provides a method for preparing an InGaN epitaxial layer on a Si substrate, using this method can not only directly grow an InGaN epitaxial layer on a Si substrate, and the prepared InGaN epitaxial layer The quality of the layer is very high, which can effectively solve the problems such as lattice mismatch.
  • the InGaN epitaxial layer includes a first InGaN layer and a subsequently grown second InGaN layer.
  • the InGaN epitaxial layer prepared by the method of the present invention can meet the needs of high-performance optoelectronic and electrochemical applications (such as light-emitting diodes, lasers, solar cells, high-power electronic amplifiers, optoelectronics, and (bio) sensors).
  • high-performance optoelectronic and electrochemical applications such as light-emitting diodes, lasers, solar cells, high-power electronic amplifiers, optoelectronics, and (bio) sensors).
  • An object of the present invention is to provide a method for preparing an InGaN epitaxial layer on a silicon (Si) substrate and a silicon-based InGaN epitaxial layer produced by the method.
  • the present invention provides a method for preparing an InGaN epitaxial layer on a Si substrate, the method includes the following steps: 1) directly growing a first InGaN layer on the Si substrate; and, 2) A second InGaN layer is grown on the first InGaN layer.
  • the first InGaN layer may be obtained by metal modulation or a growth method with a high active N/total metal beam current ratio.
  • the ratio of the active N beam to the total metal beam current of In/Ga may be 2 or higher, preferably 5 or higher, and most preferably It is 5 ⁇ 10.
  • the ratio of the active N beam to the total metal beam current of In/Ga is 5, 6, 7, 8, 9, or 10.
  • the obtained first InGaN layer may include 5 to 15 atomic layers, preferably 8 to 12 atomic layers.
  • the metal-modulated growth may include the following steps: i) providing In, Ga and N beams simultaneously at time t1; ii) maintaining N beams at time t2 while stopping providing In and Ga beams Iii) Repeat steps i) and ii) n times, where time t1 corresponds to the deposition of 0.1 ⁇ 2.0 InGaN atomic layers, preferably 0.4 ⁇ 0.7, more preferably 0.4 ⁇ 0.5 InGaN atomic layers; time t2 corresponds to 2 to 20 seconds, preferably 8 to 12 seconds; n is an integer selected from 10 to 30, preferably an integer selected from 15 to 25. For example, repeat steps i) and ii) 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 times.
  • the active N beam can be continuously supplied by a radio frequency active plasma source or ammonia.
  • the Ga beam and the In beam can be provided to provide a metal beam flow of Ga and In.
  • the Ga source and the In source are preferably pure Ga and In metals, respectively, or their metal organic precursors.
  • the metal organic precursor of Ga may be, for example, triethyl gallium (TEGa), trimethyl gallium (TMGa), or the like.
  • the metal organic precursor of In may be, for example, triethylindium (TEIn), trimethylindium (TMIn), or the like.
  • the In content in the second InGaN epitaxial layer can be changed between 0 and 1.
  • the In content of the InGaN epitaxial layer is 30% or less, and preferably, the growth temperature is 600 to 900°C, and more preferably 700 to 750°C.
  • This relatively high growth temperature is the same as commonly used for InGaN materials with low In content, which can help to obtain high crystal quality.
  • the In content of the InGaN epitaxial layer is higher than 30%, and preferably, the growth temperature is 300 to 500°C, more preferably 420 to 480°C. This lower growth temperature can avoid phase separation, decomposition of InN and desorption of In during the growth of InGaN with high In content, while ensuring higher crystal quality because the surface migration length of In is greater than that of Ga length.
  • the In composition content of the beam InGaN epitaxial layer can be adjusted to the desired value for practical application by adjusting the Ga/In beam ratio.
  • the Ga/In beam ratio is achieved by adjusting the beam source temperature of In and Ga (molecular beam epitaxy) or by adjusting the mass flow controller of the metal organic precursor.
  • the growth of the InGaN epitaxial layer can be achieved by molecular beam epitaxy and metal vapor deposition methods.
  • the total metal beam current of Ga/In may correspond to a growth rate of 0.1-1 ⁇ m/h of the InGaN epitaxial layer.
  • the silicon substrate may be a Si (111) or (100) crystallographic plane or a Si device surface with a specific layered structure.
  • the silicon substrate may be pre-nitrided or not.
  • N active nitrogen
  • metal droplets are formed when the ratio of active nitrogen (N)/metal beam current is low (for example, less than 5).
  • the formation of metal droplets at the initial stage of the direct epitaxial growth of the InGaN layer on the Si substrate is avoided In order to achieve the purpose of improving the quality of the subsequent InGaN epitaxial layer.
  • a higher active N/metal beam current ratio for example, when the ratio of the active N beam current to the total metal beam current of In/Ga is greater than 5, preferably 5-10, may Overcome the defects of low surface reactivity/catalytic activity on the surface of Si substrate, so that Ga and In react with active N, so as to avoid the formation of metal droplets during the initial growth stage of InGaN.
  • the first InGaN layer is periodically grown (as shown in FIG. 1) to avoid the formation of metal droplets in the initial stage of directly epitaxially growing the InGaN layer on the Si substrate.
  • the first InGaN layer is grown at time t1 and stopped at time t2. This is repeated 10 to 30 times, preferably 15 to 30 times. The number of repetitions is sufficient to completely cover the Si surface with InGaN.
  • time t1 may correspond to the deposition of 0.1 to 2.0 InGaN atomic layers, preferably 0.4 to 0.5 InGaN atomic layers; time t2 may correspond to 2 to 20 seconds, preferably 8 to 12 seconds.
  • the active N beam is continuously supplied, while the active N beam is not particularly limited, and can be supplied by a conventional beam.
  • the active N may be continuously supplied by a radio frequency active N plasma source or ammonia, where the active N beam needs to be equal to or greater than the total In and Ga beam sizes within the time period t1.
  • the growth time t1 corresponds to the deposition of 0.7 or less InGaN atomic layers to avoid the formation of metal droplets because the critical deposition of metal droplet formation is about 0.7 monolayers.
  • time t2 only active N is supplied, which is important for Ga/In metal to react with active N on the surface of the Si substrate to form InGaN.
  • the first InGaN layer has high surface reactivity/catalytic activity, the continuous growth of InGaN will no longer form metal droplets, so the conventional active N beam and The metal beam current (that is, the conventional active N/metal beam current ratio) continues the epitaxial growth of InGaN.
  • the setting of the active N beam value of the first InGaN layer and the setting of the active N beam current during the growth of the second InGaN layer may be independent of each other.
  • the active N-beam value used may be the same as the active N-beam setting during the growth of the second InGaN layer.
  • the ratio of the active N beam to the total metal beam of In/Ga can be adjusted for obtaining the desired InGaN structure and morphology, for example, the density of the active N beam/metal beam is close to the stoichiometric ratio to obtain a dense
  • the nanowire is obtained when the layer, or active N/metal beam current ratio is 2-5.
  • the Si-based InGaN epitaxial layer includes a first InGaN layer and a second InGaN layer.
  • the first InGaN layer may be grown using a metal modulation or high active N/total metal beam current ratio growth method.
  • the second InGaN epitaxial layer can be designed with different layered or nano-morphological structures according to specific device requirements.
  • first InGaN layer refers to an InGaN layer grown by metal modulation or a high active N/total metal beam current ratio growth method at the initial stage of starting epitaxial growth on the substrate.
  • the percentage of content appearing in this article is 30%, is the atomic stoichiometric ratio.
  • the silicon-based InGaN epitaxial layer and its production method of the present invention do not require the insertion of GaN, AlN or a combined buffer layer between the silicon substrate and the InGaN layer, and the obtained silicon-based InGaN epitaxial layer has good quality.
  • the silicon-based InGaN epitaxial layer of the present invention and its production method are suitable for the epitaxial growth of the InGaN layer, especially for the growth of the two most widely used epitaxial layers for optoelectronics and electrochemical devices: (i) is a highly active N/metal A one-dimensional array of nanowires formed by a beam ratio (usually between 2 and 5); and, (ii) a dense three-dimensional single crystal layer formed by a near-stoichiometric active N-metal beam ratio.
  • the growth process of the InGaN epitaxial layer is also greatly simplified in the present invention.
  • FIG. 1 is a schematic diagram of InGaN epitaxial layer growth according to an embodiment of the present invention.
  • metal-modulated growth is used in the initial stage of directly growing the first InGaN layer (11) on the Si substrate (12).
  • the upper part of the figure depicts the active N-beam and metal beam as a function of time, and the lower part schematically shows the growing InGaN epitaxial layer.
  • Each growth step indicated corresponds to the deposition of half atomic layer InGaN.
  • the dimensions of different parts are not shown to scale. For example, for clarity, the thickness of the InGaN epitaxial layer is enlarged.
  • FIG. 2 is a schematic diagram of InGaN epitaxial layer growth according to another embodiment of the present invention.
  • the first InGaN layer (11) directly grown on the Si substrate (12) growth at a high active nitrogen/metal beam current ratio is utilized.
  • the upper part of the figure depicts the active N-beam and metal beam as a function of time, and the lower part schematically shows the growing InGaN epitaxial layer.
  • Each growth step indicated corresponds to the deposition of a single layer of InGaN.
  • the dimensions of the different parts are not shown to scale. For example, for clarity, the thickness of the InGaN epitaxial layer is enlarged.
  • FIG. 3 is an X-ray diffraction spectrum of an InGaN epitaxial layer prepared according to an embodiment of the present invention.
  • the solid and dashed lines represent the X-ray diffraction spectrum results of InGaN epitaxial layers grown with and without metal modulation on Si(111) substrates subjected to surface nitriding, respectively.
  • FIG. 4 is an X-ray diffraction spectrum result of an InGaN epitaxial layer prepared according to another embodiment of the present invention.
  • the solid line and the dashed line respectively represent the X-ray diffraction spectrum results of the epitaxially grown InGaN epitaxial layer when the ratio of active N beam/total metal beam is 6 and 3 during the growth of the first InGaN layer, respectively.
  • the InGaN epitaxial layer is prepared by metal modulation growth, and finally a nanowire (pillar) structure is generated.
  • the production method of InGaN epitaxial layer includes the following steps:
  • the growth temperature is 450 o C.
  • the ratio of active N beam/metal beam is about 3, and the first InGaN layer is grown in a metal modulation mode.
  • the growth time t1 is 1s, and the active N beam and the In/Ga beam are simultaneously provided during t1; then the growth time t2 is 9s, and the In/Ga beam source is turned off during t2, keeping the active N beam on, and the above process is repeated 20 times, thereby obtaining the first InGaN layer.
  • the InGaN layer (dense layer) continues to grow for about 1 hour.
  • the In content in InGaN is controlled by adjusting the In/Ga beam ratio, while the active N/metal beam ratio is about 3. This gives a thickness of about 600 nm InGaN layer.
  • a control InGaN epitaxial layer was prepared using the same method as above, but the above step 2) was omitted.
  • the intensity peaks of the InGaN epitaxial layers prepared by two methods are concentrated at 16.07 o .
  • the In content is about 71%.
  • the intensity peak of the InGaN epitaxial layer (shown by the solid line in the figure) prepared by the method of the present invention (the first InGaN layer grown in the metal modulation mode) is about 6 times higher than that of the control InGaN epitaxial layer (shown by the broken line in the figure). This indicates that the quality of the InGaN epitaxial layer prepared by the method of the present invention has been significantly improved.
  • a nanowire (columnar) structure is prepared by using a high-active N/total metal beam current ratio during the initial growth of InGaN. It includes the following steps:
  • the ratio of active N/total metal beam current is 6 and 3 respectively, pure metals Ga and In are used as the metal source materials, and a radio-frequency active N plasma source is used as the active N, through plasma-assisted molecular beam epitaxy technique (PA MBE), grown on a Si substrate treated by nitriding InGaN layer, the growth temperature is 450 o C, the growth time of 1 hour, thereby obtaining a thickness of the InGaN layer at 600 nm.
  • PA MBE plasma-assisted molecular beam epitaxy technique
  • the ratio of active N/total metal beam current for initial growth of InGaN has a great influence on the quality of the InGaN layer, while the active N/total metal beam during subsequent growth
  • the change of the flow ratio mainly affects the epitaxial growth mode, and does not significantly affect the crystal quality of the InGaN epitaxial layer. Therefore, in this embodiment, the change in the active N/total metal beam current ratio at the interface between the substrate and the InGaN layer (InGaN initial growth stage) is regarded as a factor that significantly affects the quality of the InGaN layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种在Si衬底(12)上制备InGaN外延层的方法以及通过该方法生产的硅基InGaN外延层。该方法包括以下步骤:1)在Si衬底(12)上直接生长第一InGaN层(11);和,2)在所述第一InGaN层(11)上生长第二InGaN层。

Description

一种InGaN外延层及其制造方法
技术领域
本发明涉及光电和电化学领域,具体涉及一种InGaN外延层及其制造方法,特别是在Si衬底上直接外延生长用于发光二极管、激光器、太阳能电池、高功率电子放大器、光电极和(生物)传感器等光电/电化学器件InGaN外延层的方法。
背景技术
在硅(Si)衬底上利用外延生长制造InGaN基材料在光电子和电化学领域,例如发光二极管、激光器、太阳能电池、高功率电子放大器、光电极和(生物)传感器等,具有广泛应用前景。InGaN是用于制造光电子和电化学装置的理想的半导体材料。随着In含量的增加,InGaN的禁带宽度从GaN(3.4 eV/365 nm)的紫外波段至InN(0.7 eV/1.7 μm)的近红外波段连续可调。同时,InGaN还具有非常高的带边吸收系数(是GaAs的10倍)、高载流子迁移率、抗辐射性、化学性质稳定、生物兼容性且完全由非毒性材料/元素构成等优点。
由于可以以低成本获得具有晶体和表面质量最高的大尺寸衬底,并且可以直接与成熟的Si基工艺整合,因此在Si衬底上生长InGaN具有较高的经济适用性。为了在Si衬底上获得高品质的外延性InGaN基材料,通常先沉积AlN、GaN或组合缓冲层。但上述方法使得制造工艺非常复杂,不仅需要优化在缓冲层顶部生长的InGaN基材料,还需要单独优化插入的缓冲层。
此外,GaN、AlN或组合缓冲层与Si衬底,以及与InGaN都具有很高的晶格失配度。而且,GaN或AlN与Si的晶格失配度大于InGaN和Si之间的晶格失配。GaN或AlN与Si的晶格失配度随着In含量的降低而增加。GaN或AlN与InGaN的晶格失配度随着In含量的增加而增加。因此,GaN、AlN或组合缓冲层即不与Si衬底上的生长相容,也不与后续InGaN基材料的生长相容。晶格失配会在缓冲层和在缓冲层顶部生长的InGaN基材料中引入位错,以释放在生长过程中积累的应力。位错的产生大大降低了材料生长的质量,从而对器件的性能产生较大的影响。
P. Aseev等人(P. Aseev et al., Applied Physics Letters 106, 072102 2015)报道了经表面氮化处理的Si(111)衬底上直接生长具有不同In含量的InGaN基材料。然而,采用上述制备方法得到的InGaN材料层的质量比采用GaN、AlN或组合缓冲层外延生长的InGaN材料所获得的质量差很多。
因此,为解决晶格失配带来的负面影响,业界迫切需要发展一种避免使用GaN、AlN或组合缓冲层,在Si衬底上直接生长具有任意In组分的InGaN材料的新的工艺方法。
发明内容
为了克服现有技术中的问题,本发明提供了一种在Si衬底上制备InGaN外延层的方法,采用该方法不仅能在Si衬底上直接外延生长InGaN外延层,且制备得到的InGaN外延层的质量非常高,能有效解决晶格失配等问题,其中该InGaN外延层包括第一InGaN层以及后续生长的第二InGaN层。采用本发明的方法制备的InGaN外延层能够满足高性能的光电子和电化学应用(例如发光二极管、激光器、太阳能电池、高功率电子放大器、光电子和(生物)传感器)的需求。
本发明的目的在于提供一种在硅(Si)衬底上制备InGaN外延层的方法以及通过该方法产生的硅基InGaN外延层。
在本发明的一个方面中,本发明提供了一种在Si衬底上制备InGaN外延层的方法,该方法包括以下步骤:1)在Si衬底上直接生长第一InGaN层;和,2)在所述第一InGaN层上生长第二InGaN层。
进一步地,在所述Si衬底上,可以通过金属调制或者高活性N/总金属束流比的生长方式得到所述第一InGaN层。
进一步地,在通过所述高活性N/总金属束流比生长期间,活性N束流与In/Ga的总金属束流的比率可以为2或更高,优选为5或更高,最优选为5~10。例如,在所述高活性N/总金属束流比的生长期间,活性N束流与In/Ga的总金属束流的比率为5、6、7、8、9或10。进一步地,通过所述高活性N/总金属束流比的生长方式,得到的第一InGaN层可包括5~15个原子层,优选8~12个原子层。
进一步地,所述金属调制的生长可以包括以下步骤:i)在时间t1中,同时提供In、Ga和N束流;ii)在时间t2中维持N束流,同时停止提供In、Ga束流;iii)将步骤i)和ii)重复n次,其中,时间t1对应于0.1~2.0个InGaN原子层的沉积,优选对应于0.4~0.7,更优选0.4~0.5个InGaN原子层的沉积;时间t2对应于2~20秒,优选对应于8~12秒;n为选自10至30中的整数,优选为选自15至25中的整数。例如,将步骤i)和ii)重复15、16、17、18、19、20、21、22、23、24或25次。
进一步地,在本发明的上述方法中,可以通过射频活性等离子源或氨持续供应活性N束流。
进一步地,在本发明的上述方法中,可以通过设置Ga源和In源,来提供Ga和In的金属束流。所述Ga源和所述In源优选分别为纯的Ga和In金属,或者它们的金属有机物前驱体。Ga的金属有机物前驱体例如可以为三乙基镓(TEGa)、三甲基镓(TMGa)等。In的金属有机物前驱体例如可以为三乙基铟(TEIn)、三甲基铟(TMIn)等。
进一步地,在本发明的上述方法中,通过调整Ga/In束流比,可以使所述第二InGaN外延层中的In含量在0~1之间变化。
例如,当In/Ga的束流比率为0.4或以下时,所述InGaN外延层的In含量为30%或以下,并且优选地,生长温度为600~900℃,更优选为700~750℃。这一相对较高的生长温度对于低In含量的InGaN材料是同通常所采用的,可以有助于得到高晶体品质。
当In/Ga的束流比率高于0.4时,所述InGaN外延层的In含量高于30%,并且优选地,生长温度为300~500℃,更优选为420~480℃。这一较低的生长温度,可以在高In含量的InGaN生长期间,避免相分离、InN的分解和In的解吸附,同时保证较高的晶体品质,因为In的表面迁移长度大于Ga的表面迁移长度。
进一步地,束流InGaN外延层的In组分含量可以通过调节Ga/In束流比实现实际应用的所需的值。Ga/In束流比通过调节In和Ga的束流源温度(分子束外延),或者通过调节金属有机物前驱体的质量流量控制器来实现束流。
进一步地,在本发明的上述方法中,可以通过分子束外延和金属气相沉积方法实现所述InGaN外延层的生长。
进一步地,Ga/In的总金属束流可以对应于所述InGaN外延层的0.1~1 μm/h的生长速率。
进一步地,所述硅衬底可Si(111)或(100)晶体学平面或特定层状结构的Si器件表面。
进一步地,所述硅衬底可以是预先经过渗氮化处理的或者未经过渗氮化处理的。
本发明人发现,在Si衬底上常规持续生长InGaN外延层的初始阶段,活性氮(N)/金属束流的比率较低(例如小于5)时会形成金属液滴。在InGaN持续外延生长条件下,当Si衬底表面被InGaN完全覆盖时,由于InGaN具有高表面反应活性/催化活性,将不会再形成新的金属液滴,既有的金属液滴甚至也会被消耗掉以形成InGaN。虽然金属液滴在后续的外延生长过程中会被耗尽,但这依然会严重影响InGaN外延层的质量。本发明人经研究发现,InGaN外延生长初始阶段形成金属液滴的原因,是由于Si衬底表面缺乏足够的反应活性和催化活性来促进Ga和In金属原子与活性N束流反应形成InGaN。
在本发明的一个实施方式中,通过提高第一InGaN层生长期间的平均活性N束流(如图2所示),避免了在Si衬底上直接外延生长InGaN层的初始阶段形成金属液滴,从而达到提高后续InGaN外延层质量的目的。具体地,在生长第一InGaN层期间,较高的活性N/金属束流比,例如活性N束流与In/Ga的总金属束流的比率大于5时,优选为5~10时,可以克服Si衬底表面的低表面反应活性/催化活性的缺陷,以使Ga和In与活性N发生反应,从而避免在InGaN初始生长阶段形成金属液滴。
在本发明的另一个实施方式中,通过周期性生长所述第一InGaN层(如图1所示),来避免在Si衬底上直接外延生长InGaN层的初始阶段形成金属液滴。例如,第一InGaN层在时间t1中生长,停止时间t2,如此重复10~30次,优选重复15~30次,重复的次数足以使得InGaN完全覆盖Si表面。优选地,时间t1可以对应于0.1~2.0个InGaN原子层的沉积,优选对应于0.4~0.5个InGaN原子层的沉积;时间t2可以对应于2~20秒,优选对应于8~12秒。在本实施方式中,第一InGaN层的生长期间,持续供应活性N束流,同时对活性N束流没有特别限制,可以通过常规束流来供应。在第一InGaN层周期性生长中,所述活性N可以通过射频活性N等离子源或氨持续供应,其中活性N束流需要等于或大于t1时间段内的In和Ga总束流大小。在本实施方式中,使生长时间t1对应于0.7个以下的InGaN原子层的沉积,以避免形成金属液滴,因为金属液滴形成的临界沉积约为0.7个单层。在时间t2期间,仅供应活性N,这对于Ga/In金属在Si衬底表面上与活性N发生反应形成InGaN来说是很重要的。
当Si衬底表面被第一InGaN层完全覆盖后,由于第一InGaN层具有高表面反应活性/催化活性,因此InGaN持续生长则不再会形成金属液滴,所以可以使用常规的活性N束流和金属束流(即常规的活性N/金属束流比)持续进行InGaN的外延生长。
进一步地,在上述两个实施方式中,第一InGaN层的活性N束流值的设置与第二InGaN层生长过程中的活性N束流设置可以是相互独立的。例如,对于通过金属调制模式生长第一InGaN层,采用的活性N束流值可以与第二InGaN层生长过程中的活性N束流设置相同。在第一InGaN层生长结束之后,持续供应活性N束流和持续的In/Ga的金属束流来持续生长第二InGaN层。可以调节活性N束流与In/Ga的总金属束流的比例,以用于获得期望的InGaN结构和形态,例如活性N束流/金属束流的比率接近于化学计量比的情况下得到致密层,或活性N/金属束流的比率为2~5的情况下得到纳米线。这些束流及其比率都是可以常规设置的。
在本发明的又一方面中,提供了一种通过本发明的上述方法生产的Si基InGaN外延层。
进一步地,所述Si基InGaN外延层包括第一InGaN层以及第二InGaN层。
进一步地,所述第一InGaN层可以采用金属调制或高活性N/总金属束流比的生长方式生长。
进一步地,所述第二InGaN外延层可以根据特定器件需求而设计不同的层状或纳米形貌结构。
在本文中,术语“第一InGaN层”指在衬底上开始进行外延生长的初始阶段,通过金属调制或高活性N/总金属束流比的生长方式生长的InGaN层。
此外,如无特别说明,本文中出现的含量百分比,例如In含量为30%,为原子化学计量比。
本发明的硅基InGaN外延层及其生产方法不需要在硅衬底和InGaN层之间插入GaN、AlN或组合缓冲层,而且得到的硅基InGaN外延层具有很好的品质。另外,本发明的硅基InGaN外延层及其生产方法适用于InGaN层的外延生长,尤其适用于光电子和电化学装置最广泛使用的两种外延层的生长:(i)为高活性N/金属束流比率(通常在2至5之间)形成的一维纳米线阵列;和,(ii)为接近于化学计量的活性N-金属束流比率形成的,致密的三维单晶层。另外,由于不需要GaN、AlN或组合缓冲层,因此本发明的还大大简化了InGaN外延层的生长工艺。
附图说明
下面,参考附图和具体实施方式来进一步描述本发明。在附图中,通过例示的方式来示出本发明的示例性实施方式,其中相似的附图标记指示相同或类似的元件。在附图中:
图1是根据本发明一个实施方式的InGaN外延层生长的示意图。其中在Si衬底(12)上直接生长第一InGaN层(11)的初始阶段中,采用金属调制生长。图的上方,描述了作为时间函数的活性N束流和金属束流,下方示意性示出了正在生长的InGaN外延层。所指示的每一生长步骤对应于半个原子层InGaN的沉积。在附图中,不同部分的尺寸不是按照比例示出的。例如,为了清楚表示,放大了InGaN外延层的厚度。
图2是根据本发明另一个实施方式的InGaN外延层生长的示意图。其中在Si衬底(12)上直接生长第一InGaN层(11)中,利用了在高活性氮/金属束流比率下的生长。图的上方,描述了作为时间函数的活性N束流和金属束流,下方示意性示出了正在生长的InGaN外延层。所指示的每一生长步骤对应于一个InGaN单层的沉积。其中,不同部分的尺寸不是按照比例示出的。例如,为了清楚表示,放大了InGaN外延层的厚度。
图3是根据本发明的一个实施方式制备的InGaN外延层的X-射线衍射光谱图。其中的实线和虚线分别表示在进行表面渗氮化处理的Si(111)衬底上,经金属调制和未经金属调制生长的InGaN外延层的X-射线衍射光谱结果。
图4是根据本发明的另一个实施方式制备的InGaN外延层的X-射线衍射光谱结果。其中的实线和虚线分别表示在第一InGaN层生长期间,活性N束流/总金属束流的比率分别为6和3时外延生长的InGaN外延层的X-射线衍射光谱结果。
具体实施方式
下面通过具体实施方式对本发明进行详细说明。但是,应当理解,本发明并不限定于以下的具体实施方式。本发明的保护范围由权利要求书来定义,在其范围内,可以对本发明的下述实施方式进行任意改变和组合。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。
实施例1
本实施例中,在InGaN基材料的初始生长期间,通过金属调制生长来制备InGaN外延层,最终产生纳米线(柱状)结构。如图1所示,InGaN外延层的生产方法包括以下步骤:
1)选用一Si(111)衬底,在分子束外延反应室中对衬底进行表面氮化处理。
2)使用纯金属Ga和In作为金属源材料,使用射频活性N等离子体源提供活性N束流,通过等离子辅助的分子束外延术(PA MBE),在经渗氮化处理的Si衬底上生长第一InGaN层,生长温度是450oC。其中,活性N束流/金属束流的比率约为3,采取金属调制模式生长第一InGaN层。生长时间t1为1s,在t1期间活性N束流和In/Ga束流同时提供;然后生长时间t2为9s,在t2期间关闭In/Ga束流源,保持活性N束流开启,以上过程重复20次,由此得到第一InGaN层。
3)之后,InGaN层(致密层)持续生长约1小时。
在上述方法中,通过调节In/Ga束流比率来控制InGaN中的In含量,同时活性N/金属束流的比率约为3。由此得到厚度约为600 nm的InGaN层。
作为对照,使用与上述方法相同的方法制备得到对照InGaN外延层,但其中省略了上述步骤2)。
通过ω/2θ X-射线衍射光谱测定本发明的InGaN外延层和对照InGaN外延层,记录在对称(0002)附近的InGaN反射附近的数值。结果示于图3中,其中X射线衍射强度越高表明晶体品质越好。
从图3中可以看出,通过两种方法(分别包括或省略了步骤2))制备的InGaN外延层的强度峰值均集中于16.07o。In含量约为71%。通过本发明的方法(采用金属调制模式生长的第一InGaN层)制备的InGaN外延层的强度峰值(图中实线所示)比对照InGaN外延层(图中虚线所示)高约6倍。这表明了,通过本发明的方法制备的InGaN外延层的品质得到了显著提高。
实施例2
本实施例中,通过在InGaN初始生长期间,使用高活性N/总金属束流的比率,来制备纳米线(柱状)结构。具体包括以下步骤:
1)选用Si(111)衬底,在分子束外延反应室中对衬底进行1分钟表面渗氮化处理;
2)在活性N/总金属束流的比率分别为6和3的情况下,使用纯金属Ga和In作为金属源材料,使用射频活性N等离子体源作为活性N,通过等离子辅助的分子束外延术(PA MBE),在经渗氮化处理的Si衬底上生长InGaN层,生长温度是450oC,生长时间为1小时,由此得到厚度为600 nm的InGaN层。
如本领域技术人员所公知的,在进行InGaN外延生长时,InGaN初始生长的活性N/总金属束流的比率对InGaN层的质量影响较大,而后续生长过程中的活性N/总金属束流的比率变化则主要影响外延生长的模式,而不会对InGaN外延层的结晶质量产生显著影响。因此,在本实施例中,衬底与InGaN层的界面处(InGaN初始生长阶段)的活性N/总金属束流比的变化被视为显著影响InGaN层的质量的因素。
通过ω/2θ X-射线衍射光谱,测定在活性N束流/总金属束流的比例分别为6和3的情况下制备的InGaN层,记录在对称(0002)附近的InGaN反射附近的数值。结果示于图4中,其中X射线衍射强度越高表明晶体品质越好。
从图4中可以看出,在InGaN初始生长期间使用不同的活性N/总金属束流的比率,最终得到类似的纳米线(柱状)结构。得到的InGaN外延层的强度峰值均集中于16.07o。In含量约为71%。在活性N/总金属束流的比率为6的情况下,制备的InGaN外延层的强度峰值(图中实线所示),比活性N/总金属束流的比率为3情况下制备的对照InGaN外延层(图中虚线所示)高约10倍。这一结果表明,在InGaN初始生长期间,使用较高的活性N/总金属束流的比率,显著提高了InGaN外延层的品质。
应理解,以上内容例示了本发明的优选实施方式,但本发明并不局限于这些实施方式。本领域技术人员可以在不偏离本发明范围的情况下,进行各种等同改变或替换。这些等同改变或替换全部落于本发明权利要求书所定义的范围内。

Claims (10)

  1. 一种在Si衬底上制备InGaN外延层的方法,其特征在于,所述方法包括以下步骤:
    1)在Si衬底上直接生长第一InGaN层;和
    2)在所述第一InGaN层上生长第二InGaN层。
  2. 根据权利要求1所述的方法,其特征在于,在所述Si衬底上,通过金属调制或者高活性N/总金属束流比的生长方式得到所述第一InGaN层。
  3. 根据权利要求2所述的方法,其特征在于,所述金属调制的生长包括以下步骤:
    i)在时间t1中,同时提供In、Ga和N束流;
    ii)在时间t2中维持N束流,同时停止提供In、Ga束流;和
    iii)将步骤i)和ii)重复n次,
    其中,
    时间t1对应于0.1~2.0个InGaN原子层的沉积,优选对应于0.4~0.7,更优选0.4~0.5个InGaN原子层的沉积;
    时间t2对应于2~20秒,优选对应于8~12秒;
    n为选自10至30中的整数,优选为选自15至25中的整数。
  4. 根据权利要求2所述的方法,其特征在于,在所述高活性N/总金属束流比的生长期间,活性N束流与In/Ga的总金属束流的比率为2或更高,优选为5或更高,最优选为5~10;
    优选地,所述第一InGaN层包括5~15个原子层,优选8~12个原子层。
  5. 根据权利要求1~4中任一项所述的方法,其特征在于,通过射频活性等离子源或氨持续供应活性N束流。
  6. 根据权利要求1~4中任一项所述的方法,其特征在于,通过设置Ga源和In源,来提供Ga和In的金属束流,所述Ga源和所述In源优选分别为纯的Ga和In金属,或者是它们的金属有机物前驱体。
  7. 根据权利要求1~4中任一项所述的方法,其特征在于,通过In/Ga束流比的调节,使所述InGaN外延层中的In含量在0~1之间变化,其中
    当In/Ga的束流比率为0.4或以下时,所述InGaN外延层的In含量为30%或以下,并且优选地,生长温度为600~ 900℃,更优选为700~750℃;或者
    当In/Ga的束流比率高于0.4时,所述InGaN外延层的In含量高于30%,并且优选地,生长温度为300~ 500℃,更优选为420~480℃。
  8. 根据权利要求1~4所述的方法,其特征在于,通过分子束外延和金属气相沉积方法实现所述InGaN外延层的生长。
  9. 根据权利要求1~4所述的方法,其特征在于,Ga/In的总金属束流对应于所述InGaN外延层的生长速率为0.1~1 μm/h。
  10. 一种通过权利要求1至9中任一项所述的方法生产的硅基InGaN外延层。
PCT/CN2018/122002 2018-12-19 2018-12-19 一种InGaN外延层及其制造方法 WO2020124419A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18943802.1A EP3783639A4 (en) 2018-12-19 2018-12-19 INGAN EPITAXIAL LAYER AND METHOD FOR MANUFACTURING IT
PCT/CN2018/122002 WO2020124419A1 (zh) 2018-12-19 2018-12-19 一种InGaN外延层及其制造方法
US17/254,102 US11521852B2 (en) 2018-12-19 2018-12-19 Ingan epitaxy layer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122002 WO2020124419A1 (zh) 2018-12-19 2018-12-19 一种InGaN外延层及其制造方法

Publications (1)

Publication Number Publication Date
WO2020124419A1 true WO2020124419A1 (zh) 2020-06-25

Family

ID=71102382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122002 WO2020124419A1 (zh) 2018-12-19 2018-12-19 一种InGaN外延层及其制造方法

Country Status (3)

Country Link
US (1) US11521852B2 (zh)
EP (1) EP3783639A4 (zh)
WO (1) WO2020124419A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922015A (zh) * 2010-08-25 2010-12-22 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN106981549A (zh) * 2017-04-19 2017-07-25 华南理工大学 生长在硅衬底上的氮化镓纳米柱led外延片及其制备方法
CN107346728A (zh) * 2016-05-05 2017-11-14 上海芯晨科技有限公司 一种大尺寸硅衬底iii族氮化物外延生长方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507610B1 (ko) * 2002-11-15 2005-08-10 광주과학기술원 질화물 반도체 나노상 광전소자 및 그 제조방법
TWI442455B (zh) 2010-03-29 2014-06-21 Soitec Silicon On Insulator Iii-v族半導體結構及其形成方法
KR20120070881A (ko) * 2010-12-22 2012-07-02 삼성엘이디 주식회사 발광 다이오드 제조방법
TWI547585B (zh) * 2014-02-14 2016-09-01 國立交通大學 氮化鋁銦薄膜的成長方法
CN108336195B (zh) 2018-01-11 2020-02-14 太原理工大学 一种InGaN薄膜的制备方法
CN108807617A (zh) 2018-06-30 2018-11-13 华南理工大学 生长在硅/石墨烯复合衬底上的GaN基纳米柱LED外延片及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922015A (zh) * 2010-08-25 2010-12-22 中国科学院半导体研究所 一种InGaN半导体光电极的制作方法
CN107346728A (zh) * 2016-05-05 2017-11-14 上海芯晨科技有限公司 一种大尺寸硅衬底iii族氮化物外延生长方法
CN106981549A (zh) * 2017-04-19 2017-07-25 华南理工大学 生长在硅衬底上的氮化镓纳米柱led外延片及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHERNS, D. ET AL.: "The Growth of In0.5Ga0.5N and InN Layers on (111)Si Using Nanorod Intermediate Arrays", JOURNAL OF CRYSTAL GROWTH, vol. 384, 18 September 2013 (2013-09-18), XP028766519, DOI: 20190808191541X *
CHERNS, D. ET AL.: "The Growth of In0.5Ga0.5N and InN Layers on (111)Si Using Nanorod Intermediate Arrays", JOURNAL OF CRYSTAL GROWTH, vol. 384, 18 September 2013 (2013-09-18), XP028766519, DOI: 20190808191557Y *
P. ASEEV ET AL., APPLIED PHYSICS LETTERS, vol. 106, 2015, pages 072102
See also references of EP3783639A4
WOO, H. ET AL.: "Correlation between Pit Formation and Phase Separation in Thick InGaN Film on a Si Substrate", CURRENT APPLIED PHYSICS, vol. 18, no. 12, 6 October 2018 (2018-10-06), XP085520646, DOI: 20190808191741Y *

Also Published As

Publication number Publication date
US20210272802A1 (en) 2021-09-02
US11521852B2 (en) 2022-12-06
EP3783639A1 (en) 2021-02-24
EP3783639A4 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US20120225307A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
WO2020140303A1 (zh) 一种纳米线阵列、光电子器件及其制造方法
CN108538707B (zh) 一种二维黑磷晶体制备方法
JPH04223330A (ja) 単結晶珪素基板上への化合物半導体単結晶の作製方法
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
CN108987257B (zh) 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
CN108511322B (zh) 一种在二维石墨衬底上制备GaN薄膜的方法
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
CN116682910B (zh) 一种氮化镓外延片结构及其制备方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
KR20230056686A (ko) 다이아몬드 방열판을 갖는 헤테로에피택셜 구조
WO2020124419A1 (zh) 一种InGaN外延层及其制造方法
JP2004307253A (ja) 半導体基板の製造方法
TW201448272A (zh) 氮化鎵自承式基板的製造方法及製造裝置
CN108878265B (zh) 一种在Si(100)衬底上生长单晶氮化镓薄膜的方法
CN111415858A (zh) AlN或AlGaN薄膜材料的制备方法及应用
KR100643155B1 (ko) 실리콘 기판-단결정 GaN 박막 적층체의 제조방법
JP2015151291A (ja) 窒化物半導体自立基板及びその製造方法並びに半導体デバイス
CN109841500B (zh) 一种InGaN外延层及其制造方法
TW202003894A (zh) Iii族氮化物半導體基板的製造方法
JP3993830B2 (ja) 窒化物系iii−v族化合物半導体の製造方法およびそれを含む半導体装置
JP3962101B2 (ja) 窒化物半導体のヘテロエピタキシャル成長方法
JP2003171200A (ja) 化合物半導体の結晶成長法、及び化合物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018943802

Country of ref document: EP

Effective date: 20201117

NENP Non-entry into the national phase

Ref country code: DE