WO2020124315A1 - 一种天线阵列电磁去耦的方法及结构 - Google Patents

一种天线阵列电磁去耦的方法及结构 Download PDF

Info

Publication number
WO2020124315A1
WO2020124315A1 PCT/CN2018/121513 CN2018121513W WO2020124315A1 WO 2020124315 A1 WO2020124315 A1 WO 2020124315A1 CN 2018121513 W CN2018121513 W CN 2018121513W WO 2020124315 A1 WO2020124315 A1 WO 2020124315A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
antenna
decoupling structure
capacitive
inductive
Prior art date
Application number
PCT/CN2018/121513
Other languages
English (en)
French (fr)
Inventor
张海伟
胡豪涛
张跃江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880099170.6A priority Critical patent/CN112997359B/zh
Priority to PCT/CN2018/121513 priority patent/WO2020124315A1/zh
Publication of WO2020124315A1 publication Critical patent/WO2020124315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present application relates to the field of wireless communication, and in particular to an antenna array decoupling structure.
  • the working frequency band of the antenna array is usually the millimeter wave frequency band, and may also be used in the non-millimeter wave frequency band.
  • the wavelength range of the millimeter wave is from 1 mm to 10 mm, and the frequency range is from 30 gigahertz (GHz) to 300 GHz; in order to meet the performance requirements
  • the distance between adjacent elements of the antenna array is usually less than one-half of the operating frequency wavelength.
  • the smaller vibrator spacing can make the antenna array size smaller, which is convenient for system miniaturization; however, the narrower vibrator spacing will result in stronger electromagnetic energy coupling between the antenna units, also referred to as antenna mutual coupling in engineering.
  • the main effects of antenna mutual coupling are: reduction of unit gain and radiation efficiency, reduction of multiple-input multiple-output (MIMO) channel capacity, unsatisfactory amplitude/phase control of smart antennas and multi-beam shaping, and resulting Deterioration of isolation between antenna elements, etc.
  • MIMO multiple-input multiple-output
  • the embodiments of the present application provide an antenna array decoupling structure, which effectively implements antenna decoupling.
  • a first aspect of the present application provides an antenna array decoupling structure.
  • the decoupling structure is located between two adjacent antenna elements.
  • the decoupling structure includes: a first capacitive branch, a second capacitive branch, and a first inductive Branches, second perceptual branches and connecting branches; the connecting branches are used to connect the first capacitive branches, the second capacitive branches, the first perceptual branches and the second perceptual branches, the first perceptual branches and the first Two inductive branches are grounded.
  • the decoupling structure provided by the embodiments of the present application includes a first capacitive branch and a second capacitive branch equivalent to an electric arm, and a first inductive branch and a second inductive branch equivalent to a magnetic arm.
  • the equivalent magnetic arm is used to generate magnetic coupling.
  • the decoupling structure can support both electrical coupling and magnetic coupling.
  • the decoupling structure can be based on The distribution of electromagnetic field radiation introduces electrical coupling and magnetic coupling in different areas to reduce the original radiation performance of the antenna as much as possible; on the other hand, the decoupling structure itself is a phase-shifting network, which can adjust the coupling phase, so it can The equivalent coupling introduced by the decoupling structure and the spatial coupling between adjacent antennas are inverted in equal amplitude, and broadband coupling is realized on the premise of reducing the impact on the original performance of the antenna as much as possible.
  • the first capacitive branch and the first inductive branch are connected at the first end of the connecting branch, and the second capacitive branch and the second inductive branch are connected at the first of the connecting branch Two ends.
  • the first capacitive branch is connected in series at the first end of the connecting branch
  • the first inductive branch is connected in parallel at the first end of the connecting branch
  • the second capacitive branch The second end of the connecting branch is connected in series
  • the second inductive branch is connected in parallel at the second end of the connecting branch.
  • two capacitive branches and two inductive branches form a ⁇ -type phase shift network to adjust the coupling phase introduced by the decoupling structure.
  • the first capacitive branch and the second capacitive branch extend in a first direction
  • the first sensitive branch and the second sensitive branch extend in a second direction
  • the first direction is perpendicular In this second direction.
  • the first direction is parallel to the extending direction of the connecting branch.
  • the first capacitive branch and the first inductive branch are connected in parallel at the first end of the connecting branch, and the second capacitive branch and the second inductive branch are connected in parallel at The shown second end of the connecting branch, the first capacitive branch and the second capacitive branch are grounded.
  • the first capacitive branch and the second capacitive branch include: an open metal branch or a capacitive device; the first inductive branch and the second inductive branch include: a grounded metal branch or an electric Inductive devices.
  • the connecting branch includes: an inductive device or a capacitive device.
  • connection branch is a microstrip line connection branch
  • first capacitive branch is a first microstrip line open branch
  • second capacitive branch is a second microstrip line open branch
  • the first inductive branch is a first ground via
  • the second inductive branch is a second ground via.
  • the ground via is a straight through hole or a bent via.
  • the first microstrip line open branch extends outward from the first end of the microstrip line connecting branch in the first plane, and the second microstrip line open branch in the first plane
  • the inner extends from the second end of the microstrip line connecting branch to the outside, the first plane is the plane where the microstrip line connecting branch is located; the first ground via and the second ground via are perpendicular to the second plane When the microstrip line is connected to the branch, the second plane is perpendicular to the first plane.
  • the first microstrip line open branch extends outward from the first end of the microstrip line connecting branch in the first plane, and the second microstrip line open branch in the first plane Inner extends from the second end of the microstrip line connecting branch to the outside, the first plane is the plane where the microstrip line connecting branch is located; the first ground via and the second ground via are in the first plane After extending the first length perpendicular to the microstrip line connecting branches, it continues to extend in the second plane, which is perpendicular to the first plane.
  • the first microstrip line open branch and the second microstrip line open branch extend in the first plane perpendicular to the microstrip line connecting branch, the first plane is the microstrip line Connect the plane where the branch is located; after the first ground via and the second ground via extend a first length from both ends of the microstrip line connecting branch in the first plane to the outside, continue to extend in the second plane , The second plane is perpendicular to the first plane.
  • the decoupling structure is a symmetric structure, or the decoupling structure is an asymmetric structure.
  • magnetic coupling is introduced in a region with strong magnetic field radiation, the magnetic field distribution will be disturbed due to the presence of the coupling, which will affect the antenna magnetic field radiation and cause deterioration of the antenna performance.
  • the introduction of electrical coupling in the region of strong electric field will affect the normal electric field radiation of the antenna .
  • electric coupling or magnetic coupling is introduced according to the strength of the magnetic field or electric field radiation. When the magnetic field radiation is strong, the electric coupling is introduced, and when the electric field radiation is strong, the magnetic coupling is introduced, which affects the original magnetic field radiation of the antenna as little as possible. And electric field radiation, so as to avoid affecting the original performance of the antenna and ensure the normal working state of the antenna.
  • the decoupling structure is located between the first antenna unit and the second antenna unit, and the first antenna unit and the second antenna unit are two adjacent antenna units in the antenna array;
  • the first antenna element includes a first boundary and a second boundary, the second antenna element includes a third boundary and a fourth boundary; wherein, the first boundary is parallel to the polarization direction of the first antenna element, and the second boundary Perpendicular to the polarization direction of the first antenna unit, the third boundary is parallel to the polarization direction of the second antenna unit, the fourth boundary is perpendicular to the polarization direction of the second antenna unit; the first capacitive branch Close to the first boundary, the first inductive branch is close to the second boundary, the second capacitive branch is close to the third boundary, and the second inductive branch is close to the fourth boundary.
  • the region with the strongest electric field radiation of the antenna unit is close to the boundary perpendicular to the polarization direction of the antenna unit, and the region with the strongest magnetic field radiation is close to the boundary parallel to the polarization direction of the antenna unit.
  • the capacitive branch is close to the area with the strongest magnetic field radiation to introduce electrical coupling
  • the inductive branch is close to the area with the strongest electric field radiation to introduce magnetic coupling, which can minimize the impact on the original magnetic field radiation and electric field radiation of the antenna unit, thus Avoid affecting the original performance of the antenna and ensure the normal working state of the antenna.
  • a second aspect of the present application provides an antenna array decoupling structure.
  • the decoupling structure is located between two adjacent antenna elements.
  • the decoupling structure includes: a first capacitor branch, a second capacitor branch, and a first ground A branch, a second ground branch, and a connection branch; the connection branch is used to connect the first capacitor branch, the second capacitor branch, the first ground branch, and the second ground branch, wherein, The first capacitor branch and the first ground branch are connected at the first end of the connection branch, and the second capacitor branch and the second ground branch are connected at the second end of the connection branch.
  • the first capacitance branch is connected in series at the first end of the connection branch
  • the first ground branch is connected in parallel at the first end of the connection branch
  • the second The capacitor branch is connected in series at the second end of the connection branch
  • the second ground branch is connected in parallel at the second end of the connection branch.
  • the first capacitive branch and the second capacitive branch extend in a first direction
  • the first ground branch and the second ground branch extend in a second direction
  • the first The direction is perpendicular to the second direction.
  • the first direction is parallel to the extending direction of the connecting branch.
  • connection branch includes: connection inductance or connection capacitance.
  • the first ground branch and the second ground branch include: a grounding inductor or a grounding capacitor.
  • connection branch is a microstrip line connection branch
  • first capacitor branch is a first microstrip line open branch
  • second capacitor branch is a second microstrip line open branch
  • the first ground branch is a first ground branch
  • the second ground branch is a second ground branch.
  • the first ground branch and the second ground branch are ground vias, and the ground vias are straight through holes or bent vias.
  • a third aspect of the present application provides an antenna array decoupling structure.
  • the decoupling structure is located between two adjacent antenna elements.
  • the decoupling structure includes: a first grounding inductor, a second grounding inductor, and a first grounding branch , A second grounding branch and a connecting branch; the connecting branch is used to connect the first grounding inductor, the second grounding inductor, the first grounding branch and the second grounding branch, wherein the first grounding The inductor and the first ground branch are connected to the first end of the connecting branch, and the second ground inductor and the second ground branch are connected to the second end of the connecting branch.
  • first grounding inductor and the first grounding branch are connected in parallel at the first end of the connecting branch, and the second grounding inductor and the second grounding branch are connected in parallel at the Connect the second end of the branch.
  • first grounding inductor and the second inductance are connected in the extending direction of the connecting branch, and the first grounding branch and the second grounding branch are perpendicular to the connecting branch The direction of extension.
  • connection branch includes: connection inductance or connection capacitance.
  • the first ground branch and the second ground branch include: a grounding inductor or a grounding capacitor.
  • connection branch is a microstrip line connection branch
  • first ground branch is a ground capacitance of the first microstrip line open branch
  • second ground branch is a second microstrip
  • the first grounding inductance is a first grounding via
  • the second grounding inductance is a second grounding via
  • the ground via is a straight through hole or a bent via.
  • a fourth aspect of the present application provides an antenna array including: at least two antenna units and a decoupling structure according to the first aspect to the third aspect or any possible implementation manner thereof, the decoupling structure Located between two adjacent antenna elements in the at least two antenna elements.
  • the antenna array further includes: a separation wall including a plurality of metal ground vias surrounding each of the at least two antenna elements.
  • the separation wall is used to block the electromagnetic field coupling in the medium existing between the antenna units.
  • the separation wall is not connected to the decoupling structure.
  • the decoupling structure of the symmetrical structure is located at a symmetrical position in the antenna array, and the at least two antenna elements in the antenna array are symmetrically distributed about the symmetrical position.
  • the decoupling structure of the asymmetric structure is located at an asymmetric position of the antenna array, and the at least two antenna elements in the antenna array are distributed asymmetrically with respect to the asymmetric position.
  • the array form of the antenna array includes: a rectangular array, a circular array, or a polygonal array.
  • the antenna unit in the antenna array includes a single-polarized antenna or a dual-polarized antenna.
  • a fifth aspect of the present application provides a method for decoupling an antenna array.
  • the method includes: introducing electrical coupling and magnetic coupling between a first antenna unit and a second antenna unit based on a decoupling structure, the first antenna unit and the coupling
  • the second antenna unit is two adjacent antenna units in the antenna array
  • the decoupling structure includes: a first capacitive branch, a second capacitive branch, a first inductive branch, a second inductive branch, and a connecting branch; the connecting branch For connecting the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch, wherein the first capacitive branch and the first inductive branch are close to the first antenna unit, The second capacitive branch and the second inductive branch are close to the second antenna unit; the electrical coupling is formed based on the first capacitive branch and the first antenna unit; and formed based on the first inductive branch and the first antenna unit
  • the first antenna unit includes a first boundary and a second boundary
  • the second antenna unit includes a third boundary and a fourth boundary
  • the first boundary is parallel to the first antenna unit
  • the second boundary is perpendicular to the polarization direction of the first antenna unit
  • the third boundary is parallel to the polarization direction of the second antenna unit
  • the fourth boundary is perpendicular to the polarization of the second antenna unit Direction
  • the first capacitive branch is close to the first boundary
  • the first sensitive branch is close to the second boundary
  • the second capacitive branch is close to the third boundary
  • the second sensitive branch is close to the fourth boundary.
  • the forming the electrical coupling with the first antenna unit based on the first capacitive branch includes: forming the electrical coupling on the first boundary of the first antenna unit based on the first capacitive branch; based on the first inductive Forming the magnetic coupling between the branch and the first antenna unit includes: forming the magnetic coupling on the second boundary of the first antenna unit based on the first inductive branch.
  • the method further includes: removing the dielectric coupling between the first antenna unit and the second antenna unit based on a separation wall, the separation wall including a surrounding one of each antenna unit in the antenna array Multiple metal ground vias.
  • the size and position of the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch are adjusted so that the equivalent coupling is coupled with the space Constant amplitude, reverse phase.
  • the antenna array includes a symmetric position and an asymmetric position, antenna elements in the antenna array are symmetrically distributed about the symmetric position, and antenna elements in the antenna array are asymmetrically distributed about the asymmetric position
  • the method further includes: introducing an equivalent coupling between adjacent antenna elements at the symmetrical position based on a symmetric decoupling structure to cancel the spatial coupling between the adjacent antenna elements; or, based on asymmetrical at the asymmetrical position
  • the decoupling structure of introduces equivalent coupling between adjacent antenna elements to counteract the spatial coupling between the adjacent antenna elements.
  • FIG. 1a is a schematic circuit diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • 1b is a schematic circuit diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • 1c is a schematic circuit diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • 1d is a schematic circuit diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • FIG. 2a is a schematic circuit diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • 2b is a schematic circuit diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • 2c is a schematic circuit diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • 2d is a schematic circuit diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • 3a is a schematic diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • 3b is a schematic diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another exemplary decoupling structure provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of an exemplary coupling principle between adjacent antennas provided by an embodiment of the present application.
  • 7b is a schematic diagram of an exemplary distribution of electric field and magnetic field strength provided by an embodiment of the present application.
  • FIG. 8 is an exemplary antenna array including a decoupling structure provided by an embodiment of the present application.
  • FIG. 9 is another exemplary antenna array including two decoupling structures provided by an embodiment of the present application.
  • 10a is a perspective view of an exemplary antenna array including a decoupling structure provided by an embodiment of this application;
  • 10b is a front view of an exemplary antenna array including a decoupling structure provided by an embodiment of this application;
  • FIG. 11 is a schematic diagram of an exemplary isolation simulation result before and after decoupling of an antenna array including a decoupling structure provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of comparison of radiation directions before and after decoupling of an exemplary antenna array including a decoupling structure provided by an embodiment of the present application;
  • 13 is another exemplary antenna array including a decoupling structure provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another exemplary dual-frequency, dual-polarized antenna array provided by an embodiment of the present application.
  • 15 is a schematic diagram of an exemplary simulation result of isolation before and after decoupling of a dual-frequency, dual-polarized antenna array provided by an embodiment of the present application.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: there are only A, only B, and A and B at the same time , Where A and B can be singular or plural.
  • the character “/” generally indicates that the related object is a "or” relationship.
  • At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one (a) of a, b, or c can be expressed as: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be a single or multiple.
  • the embodiment of the present application proposes a structure and method for antenna array decoupling, which realizes broadband decoupling between adjacent antenna units without affecting the original performance of the antenna pattern, gain and the like.
  • the decoupling structure has a simple structure, low requirements on processing accuracy, and is suitable for low-cost applications.
  • the decoupling structure includes a first capacitive branch, a second capacitive branch, a first inductive branch, a second inductive branch, and a connecting branch.
  • the connecting branch is used to connect the first capacitive branch, the second capacitive branch, the first Perceptual branches and second perceptual branches.
  • the first capacitive branch and the first perceptual branch are connected at the first end of the connecting branch
  • the second capacitive branch and the second perceptual branch are connected at the second end of the connecting branch
  • the first perceptual branch and the second The perceptual branches are grounded.
  • the first capacitive branch and the second capacitive branch are used to generate electrical coupling, or the first capacitive branch and the second capacitive branch may also be referred to as an electrical arm, and the electrical arm is used to generate electrical coupling; the first The inductive branch and the second inductive branch are used to generate magnetic coupling, or the first inductive branch and the second inductive branch may be referred to as a magnetic arm, and the magnetic arm is used to generate magnetic coupling.
  • the first inductive branch and the second inductive branch adjust the phase of the electrical coupling; when the first inductive branch and the second inductive branch When magnetic coupling with an external antenna occurs, the first capacitive branch and the second capacitive branch adjust the phase of the magnetic coupling.
  • the first capacitive branch is connected in series at the first end of the connecting branch, the first inductive branch is connected in parallel at the first end of the connecting branch, and correspondingly, the second capacitive branch is connected in series at the connection At the second end of the branch, the second inductive branch is connected in parallel at the second end of the connected branch.
  • the series and parallel mentioned here are relative to the main signal in the decoupling network. If the main signal in the decoupling network flows in from one end of a device and flows out from the other end, the device is considered Connected in series, as shown in Figure 1a, the first capacitive branch C1 and the second capacitive branch C2; if the main signal in the decoupling network only flows through one end of a device, it is considered that the devices are connected in parallel, as shown in the figure The grounded first and second inductive branches shown in 1a.
  • the arrangement of the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch forms a ⁇ -type network, which has a phase shifting effect to adjust the phase of the coupling between adjacent antennas.
  • the first capacitive branch and the second capacitive branch extend in the first direction
  • the first sensitive branch and the second capacitive branch extend in the second direction
  • the first direction is perpendicular to the second direction
  • the first direction and the second direction intersect but are not perpendicular, wherein the first direction is parallel to the extending direction of the connecting branch.
  • the first capacitive branches and the second capacitive branches may include: open circuit branches, such as open circuit microstrip line branches or open circuit metal branches, etc., chip capacitors or other common capacitor devices, interdigitated capacitors or plate capacitors
  • the open metal branch here may be a section of open metal wire or a section of open microstrip line.
  • the first inductive branch and the second inductive branch may include: a ground via, a ground metal branch, a transformer, a spiral inductor, or a ground coil; for example, the material of the ground via may include: a metal, such as copper, Aluminum, gold or tin.
  • the antenna array usually includes multiple metal layers, and there are non-metal dielectric layers between different metal layers, penetrate the non-metal dielectric layers between different metal layers, and fill the metal material to form vias between the metal layers .
  • the non-metal dielectric layer may be the base layer of the antenna array.
  • the base layer of the antenna array may also be said to be a non-metal dielectric layer under the bottom metal layer in the antenna array.
  • a through hole is drilled in the base layer and filled with a metal material to form a via.
  • the connection branch may include: an inductor, a capacitive device, a metal connection line, or a microstrip line.
  • the connecting branch of the decoupling structure shown in FIG. 1b is a capacitor.
  • the capacitive device connecting the branches may be any one of the capacitors in the first capacitive branch and the second capacitive branch
  • the inductance connecting the branches may be any inductance in the first inductive branch and the second inductive branch , And not limited to this.
  • the capacitance between the first capacitive branch and the external antenna is C1
  • the capacitance between the second capacitive branch and the external antenna is C2
  • the first inductive branch and the second inductive branch form a ⁇ -type phase shifter to adjust the phase of the electrical coupling.
  • the first capacitive branch and the first inductive branch are connected in parallel at the first end of the connecting branch, and the second capacitive branch and the second inductive branch are connected in parallel at the second end of the connecting branch.
  • the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch are all grounded, as shown in FIGS. 1c and 1d.
  • the extending directions of the first and second capacitive branches are perpendicular to the extending direction of the connecting branches, optionally, the extending directions of the first and second capacitive branches intersect with the extending direction of the connecting branches But not vertically.
  • the connecting branch may be an inductive device as shown in FIG. 1c or a capacitive device, as shown in FIG. 1d.
  • the decoupling structure provided by the embodiments of the present application includes a first capacitive branch and a second capacitive branch equivalent to an electric arm, and a first inductive branch and a second inductive branch equivalent to a magnetic arm.
  • the equivalent magnetic arm is used to generate magnetic coupling.
  • the decoupling structure can support both electrical coupling and magnetic coupling.
  • the decoupling structure can be based on The distribution of electromagnetic field radiation introduces electrical coupling and magnetic coupling in different areas to reduce the original radiation performance of the antenna as much as possible.
  • the decoupling structure itself is a phase-shifting network, which can adjust the phase of the coupling.
  • the equivalent coupling introduced by the decoupling structure and the spatial coupling between adjacent antennas can be of equal amplitude and phase reversal. Broadband coupling is achieved under the premise of the influence of the original performance of the antenna. Adjusting the size of capacitive branches and inductive branches can adjust the amplitude of electrical coupling and magnetic coupling, so that the equivalent coupling caused by the electrical coupling and magnetic coupling introduced by the decoupling structure is equal to the amplitude of the spatial coupling between adjacent antenna elements; further
  • the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch of the decoupling structure are arranged to form a phase-shifting network, that is, the decoupling structure itself is a phase-shifting network with the function of phase-shifting.
  • the shape and size of the decoupling structure such as adjusting the relative position of the first capacitive branch, the second capacitive branch and the first inductive branch, the second inductive branch, the relative position of the decoupling structure and the antenna unit, the capacitance of the capacitive branch Value and the inductance value of inductive branches, etc., the phase of electrical coupling and magnetic coupling can be adjusted so that the equivalent coupling caused by the electrical coupling and magnetic coupling introduced by the decoupling structure is opposite to the phase of the spatial coupling between adjacent antennas, or The equivalent coupling between the electrical coupling and the magnetic coupling differs from the spatial coupling between adjacent antennas by an odd multiple of 180 degrees. As shown in FIGS.
  • FIG. 2a-2d it is a circuit schematic diagram of four other exemplary decoupling structures provided by the embodiments of the present application.
  • the decoupling structure shown in FIG. 2a includes a first open capacitive branch C1, a second open capacitive branch C2, a first grounded capacitive branch C3, a second grounded capacitive branch C4, and an inductive connection branch, optional
  • the inductance connection branch may also be a capacitance connection branch, as shown in FIG. 2b.
  • the grounded capacitive branches C3 and C4 form a ⁇ -type phase shift network to adjust the phase of the electrical coupling.
  • the decoupling structure shown in FIG. 2c includes a first ground inductive branch, a second ground inductive branch, a third ground inductive branch, a fourth ground inductive branch, and an inductive connection branch, wherein the first ground inductive branch and the second ground
  • the inductive branches are the two grounded branches on the outside, and the third and fourth grounded inductive branches are the two grounded branches on the inside.
  • the inductive connecting branch may also be a capacitive connecting branch, as shown in FIG. 2d.
  • FIG. 3a it is a schematic diagram of an exemplary decoupling structure provided by an embodiment of the present application.
  • the first capacitive branch and the second capacitive branch of the decoupling structure are open branches, the first inductive branch and the second The inductive branch is a ground branch, and the decoupling structure includes: a first open branch, a second open branch, a first ground branch, a second ground branch, and a connecting branch.
  • the first open branch and the second open branch are metal open branches or microstrip line open branches
  • the first ground branch and the second ground branch are ground metal branches or ground vias, optional, grounded
  • the hole may be a through hole or a bent hole. As shown in FIG.
  • the connecting branch extends laterally and is used to connect the first open branch, the second open branch, the first grounding branch, and the second grounding branch.
  • the first open circuit branch and the second open circuit branch can be equivalent to a capacitor, and when the first open circuit branch and the second open circuit branch are close to the antenna, electrical coupling is generated with the antenna, or the first open circuit branch and the second open circuit branch
  • the open branch is called an electric arm, which is used to form an electrical coupling with the antenna.
  • the first ground branch and the second ground branch can be equivalent to inductance. When the first ground branch and the second ground branch are close to the antenna, the first ground branch and the second ground branch form a magnetic coupling with the antenna, or, the A ground branch and a second ground branch are called magnetic arms.
  • the magnetic arms are used to form a magnetic coupling with the antenna.
  • the first open branch and the second open branch are arranged near the region with the strongest magnetic field radiation of the antenna, and the first grounded branch and the second ground branch are located near the region with the strongest electric field radiation of the antenna At this time, the open branch produces electrical coupling with the antenna in the region with the strongest magnetic field radiation, and the ground branch produces magnetic coupling with the antenna in the region with the strongest electric field radiation.
  • the ⁇ -type phase-shifting network has four branches, and the first open-circuit branch, the second open-circuit branch, the first grounding branch and the second grounding branch respectively form four branches of the ⁇ -type phase-shifting network. As shown in FIG.
  • the first open branch and the second open branch extend in the first plane to connect the two ends of the branch, the first plane is the plane where the branch is connected, and the first ground branch and the second ground branch are in the first After extending the first length in the plane perpendicular to the connecting branch, the extension direction is changed, and the second length extends in the second plane, and the second plane is perpendicular to the first plane.
  • the length of the first open branch and the second open branch are L1, and the length L1 can be called the arm length of the electric arm, and the length of the connecting branch is L2.
  • the first ground branch and the second ground branch extend in the first plane
  • the first length of is L3, and the second length extending in the second plane is h.
  • first grounding branch and the second grounding branch extend longitudinally in the second plane, it can also be said that the first grounding branch
  • the height of the second ground branch is h; the width of the first open branch and the second open branch is W1, the width of the connecting branch is W2, and the width of the first ground branch and the second ground branch is W3.
  • L1, L2, L3, W1, W2, W3, and h can be adjusted adaptively according to the coupling situation.
  • W1, W2, and W3 can be equal or different.
  • changing the coupling capacitance between the open branch and the antenna can adjust the amount of electrical coupling. For example, changing the length L1 and width W1 of the first open branch and the second open branch can adjust the amount of electrical coupling.
  • Change the magnetic flux between the first and second ground branches and the antenna to adjust the coupling amount of the magnetic coupling for example, change the L3, h of the first and second ground branches and the distance between the entire decoupling structure and the antenna Adjust the coupling amount of the magnetic coupling; in addition, adjust the phase of the electrical coupling and magnetic coupling through the ⁇ -type phase shift network, for example, adjust the position of the four branches of the ⁇ -type phase shift network, the length and width of each branch , And the distance between the ⁇ -type phase-shifting network and the antenna, you can adjust the phase of electrical coupling and magnetic coupling. It should be understood that the adjustment of the amplitude and phase is not split, and several variables that affect the coupling amplitude also affect the phase.
  • FIG. 3a is only an example of a decoupling structure, and should not be considered as a limitation of the decoupling structure.
  • the first ground branch and the second ground branch of the decoupling structure shown in FIG. 3a extend straight through in the second plane. In an optional case, the first ground branch and the second ground branch are in the second plane The inner can also be bent and extended, as shown in Figure 3b.
  • FIG. 4 provides another exemplary decoupling structure.
  • the first decoupling structure and the second decoupling structure extend in a first plane toward both ends of the decoupling section, and the first plane is the plane where the decoupling section is located.
  • the first grounding branch and the second grounding branch extend vertically in the second plane perpendicular to the connecting branch, and the second plane is perpendicular to the first plane.
  • the first ground branch and the second ground branch directly extend vertically in the second plane, and the first ground branch and the second ground branch are straight-through ground vias.
  • the decoupling structures shown in FIG. 3a, FIG. 3b, and FIG. 4 are all axisymmetric.
  • the decoupling structure can also be designed to be center-symmetric or asymmetric, as shown in FIG. 5, which is another type provided by the embodiments of the present application. Exemplary decoupling structure.
  • first open branch and the second open branch may be different, and the first ground branch extends to a second plane after extending a length in the first plane.
  • the second ground branch directly extends to the second plane. It should be understood that there may be other forms of asymmetric decoupling structures.
  • the positions of the open branch nodes and the ground branch nodes can be replaced, the ground branch nodes are located at both ends of the ⁇ -type network, and the open branch nodes are located in the middle of the ⁇ -type network.
  • FIG. 6 it is an exemplary decoupling structure provided by the embodiment of the present application.
  • the first open branch and the second open branch extend perpendicular to the connecting branch in a first plane, and the first plane is the plane where the connecting branch is located; the first grounding branch and the second ground branch connect to both ends of the branch in the first plane After extending the first length, the extension direction is changed, and the second length is extended in the second plane, the second plane being perpendicular to the first plane.
  • the arrangement of open branches and ground branches in the decoupling structure can be adjusted according to the distribution of magnetic field radiation and electric field radiation.
  • FIG. 7a it is a schematic diagram of a coupling principle between adjacent antennas provided by an embodiment of the present application.
  • FIG. 7a shows a 2 ⁇ 1 binary antenna array.
  • the antenna array includes a first antenna and a first antenna.
  • the first antenna and the second antenna are both disposed on a ground plane.
  • electromagnetic radiation is usually emitted to the outside, and the electric field and the magnetic field always exist at the same time, but generally speaking, the intensity of the magnetic field radiation and the electric field radiation is not uniform, so the first antenna and the second antenna
  • the antennas all have the areas with the strongest magnetic field radiation and the strongest electric field radiation. As shown in FIG.
  • FIG. 7b it is a schematic diagram of an electric field and magnetic field field strength distribution provided by an embodiment of the present application.
  • the direction of the arrow shown in the figure is the polarization direction of the antenna, and this polarization direction may also be referred to as the direction of current flow.
  • the area with the strongest electric field radiation is perpendicular to the polarization direction of the antenna, and the area with the strongest magnetic field radiation is parallel to the polarization direction of the antenna.
  • the antenna unit shown in FIG. 7b includes a total of four boundaries at the upper, lower, left, and right sides. The upper and lower boundaries are parallel to the polarization direction of the antenna.
  • the area near the upper and lower boundaries is the area with the strongest antenna magnetic field radiation; the left boundary The right and right borders are perpendicular to the polarization direction of the antenna, so the area near the left and right borders is the area with the strongest antenna electric field radiation.
  • the capacitive branches of the decoupling structure are close to the area where the upper or lower boundary of the antenna unit is located, and the inductive branches are close to the area where the left and right boundaries of the antenna unit are located.
  • the circular antenna unit includes four upper, lower, left, and right tangents. The two upper and lower tangents correspond to the upper and lower boundaries, and the two left and right tangents correspond to the left and right boundaries.
  • an antenna array can include multiple antennas, or an antenna array can include multiple antenna units.
  • the left and right side regions of the first antenna and the second antenna are the regions with the strongest electric field radiation
  • the upper and lower side regions are the regions with the strongest magnetic field radiation.
  • electrical coupling is introduced in the region with the strongest magnetic field radiation, and magnetic coupling is introduced in the region with the strongest electric field radiation.
  • This coupling method can minimize the There is a performance impact; in another optional case, electrical coupling is introduced in the area where the magnetic field radiation intensity is greater than the preset threshold, and magnetic coupling is introduced in the area where the electric field radiation intensity is greater than the preset threshold, or between the cancellation antennas At the same time, it reduces the impact on the original performance of the antenna.
  • the antenna array 800 is a 2 ⁇ 1 binary antenna array.
  • the antenna array 800 includes a ground plane 801, a first antenna 802, a second antenna 803, and a decoupling structure 804.
  • the decoupling structure 804 may be the decoupling structure shown in FIGS. 1a-6 above, but is not limited to the decoupling structure shown in FIGS. 1a-6.
  • the two lateral branches of the decoupling structure are the first capacitive branch and the second capacitive branch, and the two longitudinal branches are the first sensitive branch and the second sensitive branch, wherein the longitudinal branch near the first antenna is the first sensitive branch
  • the longitudinal branch near the second antenna is the second inductive branch.
  • the first capacitive branch of the decoupling structure is close to the boundary of the first antenna parallel to the polarization direction of the antenna, that is, the first capacitive branch is close to the region where the magnetic radiation of the first antenna is strongest
  • the first inductive branch of the decoupling structure is close to the boundary of the first antenna perpendicular to the polarization direction of the antenna, that is, the first inductive branch is close to the area where the electric field radiation of the first antenna is strongest; correspondingly, the second capacity of the decoupling structure
  • the sexual branch is close to the boundary of the second antenna parallel to the polarization direction of the antenna, that is, the second capacitive branch is close to the region where the magnetic field radiation of the second antenna is strongest
  • the second inductive branch of the decoupling structure is close to the second antenna and is perpendicular to the antenna pole
  • the boundary of the change direction that is, the second inductive branch is close to the area where the electric field radiation of the second antenna is strongest.
  • the decoupling structure 804 introduces an equivalent electromagnetic coupling between the first antenna 802 and the first antenna 803.
  • the equivalent electromagnetic coupling is used to cancel the first antenna 802 and The spatial coupling between the first antennas 803.
  • the spatial coupling and the equivalent electromagnetic coupling will be exemplarily described below: After the electromagnetic waves radiated from the first antenna 802 are partially absorbed by the second antenna 803 through spatial transmission, an induced current is generated on the second antenna 803 to make the first antenna 802 Spatial coupling is formed with the second antenna 803; similarly, a part of the electromagnetic wave radiated by the second antenna 803 is absorbed by the first antenna 802 and an induced current is generated.
  • an induced current is formed on the decoupling structure 804, which generates electromagnetic waves radiated outward, and the electromagnetic waves radiated by the decoupling structure 804 are partially absorbed by the second antenna 803 After that, an induced current is also generated, so that an equivalent electromagnetic coupling is formed between the first antenna 802 and the second antenna 803.
  • the induced current generated by the first antenna 802 on the second antenna 803 through the decoupling structure 804 can cancel the induced current generated on the second antenna 803 by the first antenna 802; in an optional case, the first antenna 802 passes The induced current generated by the decoupling structure 804 on the second antenna 803 and the induced current generated by the first antenna 802 on the second antenna 803 have the same amplitude and opposite phase. It can also be said that the equivalent electromagnetic coupling can cancel out the spatial coupling. In an optional case, the equivalent electromagnetic coupling and the spatial coupling are equal amplitude and anti-phase.
  • two decoupling structures may be provided between adjacent antennas.
  • another antenna array 900 including two decoupling structures is provided in an embodiment of the present application.
  • the antenna array 900 includes a ground plane 901, a first antenna 902, a second antenna 903, a first decoupling structure 904, and a second decoupling structure 905.
  • the first decoupling structure 904 and the second decoupling structure 905 may be the decoupling structures shown in FIGS. 1a to 6 described above, but are not limited to the decoupling structures shown in FIGS. 1a to 6.
  • the equivalent electromagnetic coupling introduced by the first decoupling structure 904 and the second decoupling structure 905 is used to cancel the spatial coupling between the first antenna 902 and the second antenna 903.
  • the positions of the first decoupling structure 904 and the second decoupling structure 905 from the first antenna 902 and the second antenna 903 can be adjusted.
  • 904 and 905 can be symmetrical on both sides of two adjacent antennas Symmetrical.
  • FIGS. 10a and 10b it is another antenna array including a decoupling structure provided by an embodiment of the present application, wherein FIG. 10a is a perspective view of the antenna array, and FIG. 10b is a front view of the antenna array.
  • the antenna array includes M1, M2, and M3 layers, and M1, M2, and M3 are at different heights.
  • the metal layer on the top layer of the antenna is laid on the M1 layer, and a feed network may be provided on the M2 layer, and isolation walls are provided outside the first antenna and the second antenna.
  • the isolation wall includes a plurality of surrounding antennas Ground vias. For example, multiple ground vias surround the antenna to form a separation wall.
  • the separation wall is used to block the electromagnetic field coupling in the medium existing between the antennas.
  • the ground vias shown in FIGS. 10a and 10b communicate from the ground plane to the top metal layer M1 of the antenna. At this time, the height of the ground via is equal to the height of the antenna metal layer. It should be understood that the height of the ground via can be less than The height of the antenna metal layer, for example, the ground via can be selectively connected to the M2 layer or the M3 layer according to the requirements of the antenna working bandwidth.
  • the antenna array includes a decoupling structure. Although two decoupling structures are shown in FIGS. 10a and 10b, there may actually be only one decoupling structure or more than two decoupling structures. The number is not limited.
  • the separation wall is used to block the dielectric coupling between the first antenna and the second antenna, and the decoupling structure is used to further remove the spatial coupling between the first antenna and the second antenna.
  • the decoupling structure is not connected to the isolation wall.
  • the isolation wall formed by the ground via may be hollowed out so that the decoupling structure passes through the isolation wall.
  • the decoupling structure is laid on the M3 layer, and the position and height of the decoupling structure can be adjusted according to the amplitude and phase of the equivalent coupling introduced by the decoupling structure.
  • the decoupling structure It can also be located at some other height between the ground plane and the metal layer M1 on the top layer of the antenna, for example, it can be laid on the height of the M2 layer.
  • FIG. 11 it is a schematic diagram of isolation simulation results before and after decoupling of an antenna array including a decoupling structure according to an embodiment of the present application.
  • the abscissa is the operating frequency
  • the ordinate is the isolation S21. It should be understood that the smaller the value of the isolation S21, the higher the isolation between the antennas and the better the decoupling effect.
  • the isolation of the antenna before decoupling is about -18dB
  • the isolation after decoupling is less than -24dB
  • the isolation is improved by about 6-15dB
  • the isolation between the antennas is significantly improved, and the isolation meets the requirements in the entire frequency range of 57-66GHz (isolation ⁇ 20dB), the working bandwidth supported by the antenna becomes wider, so the decoupling structure can achieve broadband decoupling.
  • FIG. 12 it is a schematic diagram of comparison of radiation directions before and after decoupling of an antenna array including a decoupling structure according to an embodiment of the present application.
  • the radial coordinate of the figure is the directional gain
  • the -180-180 marked on the circumference is the directional angle.
  • the antenna radiation patterns before and after decoupling basically overlap, and the antenna radiation directions before and after decoupling do not change much. Therefore, the decoupling structure provided by the embodiments of the present application has little effect on the directional performance of the antenna.
  • FIG. 13 shows a 4X4 antenna array.
  • the antenna array includes a plurality of antenna elements, a separation wall, and a plurality of decoupling structures.
  • the decoupling structure may be a symmetric structure or an asymmetric structure.
  • the electromagnetic environment of the antenna element near the edge is asymmetrical
  • the electromagnetic environment of the antenna element located in the middle is symmetrical.
  • the decoupling structure in the antenna array needs to be The shape of the position adjustment decoupling structure.
  • the decoupling structure can be designed as either a symmetric structure or an asymmetric structure.
  • the decoupling structure is designed to be symmetric; at an asymmetric position of the antenna array, the decoupling structure is designed to be asymmetric. Choosing a symmetrical or asymmetrical decoupling structure according to the adaptability of the electromagnetic environment of the antenna array can obtain a better decoupling effect.
  • the multiple antenna elements in the antenna array are symmetrically distributed about the symmetrical position, for example, there are four symmetrical positions on the axis 1 in FIG.
  • the asymmetric position marked in Figure 13 has 3 antenna elements on the left side of the asymmetric position, 1 antenna element on the right side, and antenna elements on both sides of the asymmetric position The number is different.
  • the specific form of the antenna may be any form of microstrip antenna, for example, direct feed, coupled feed, differential feed, etc.
  • the antenna array size may also support various array sizes, such as 2 ⁇ 1, 2 ⁇ 2, 4 ⁇ 2, or 4 ⁇ 4, etc., the antenna array may have various forms, for example, a rectangular array, a circular array, a polygonal array, or the like.
  • decoupling can be selectively performed at any position of the antenna array.
  • the decoupling structure and decoupling method provided in the embodiments of the present application can be applied not only to single-frequency and single-polarized antennas, but also to dual-frequency and dual-polarized antennas.
  • FIG. 14 it is a schematic diagram of a dual-frequency, dual-polarized antenna array provided by an embodiment of the present application.
  • the antenna array has a center symmetric structure, and correspondingly, the decoupling structure is also designed as a center symmetric structure.
  • the mutual coupling between the four antenna elements needs to be taken into account at the same time, and the center space of the array is limited, so the four decoupling structures are placed on the sides of the four antennas, or each two adjacent antennas Place a decoupling structure between them.
  • there is also electromagnetic coupling between the four decoupling structures there is also electromagnetic coupling between the four decoupling structures.
  • the electromagnetic coupling between the four decoupling structures and the coupling between the decoupling structure and the antenna are used to cancel the spatial coupling between adjacent antennas.
  • FIG. 15 it is a schematic diagram of the isolation simulation results before and after decoupling based on the dual-frequency, dual-polarized antenna array provided by the embodiment of the present application.
  • the decoupling structure provided in the embodiments of the present application includes an open branch for forming electrical coupling, and a ground branch for forming magnetic coupling, which can simultaneously introduce electrical coupling and magnetic coupling at different positions of the antenna; on the other hand, the decoupling
  • the structure itself is a phase-shifting network with a phase-shifting function. Therefore, the equivalent coupling introduced by the decoupling structure and the spatial coupling between adjacent antennas can be equal amplitude and phase-reversed, reducing the impact on the original performance of the antenna as much as possible.
  • the decoupling structure supports the phase-shifting phase function, it can meet the application of broadband antenna decoupling; the decoupling structure is simple, the processing accuracy is low, and it is suitable for low-cost applications.
  • An embodiment of the present application also provides a method for decoupling an antenna array.
  • the method includes:
  • the decoupling structure Including: the first capacitive branch, the second capacitive branch, the first perceptual branch, the second perceptual branch and the connecting branch;
  • the connecting branch is used to connect the first capacitive branch, the second capacitive branch, the first Inductive branches and the second inductive branches, wherein the first capacitive branches and the first inductive branches are close to the first antenna unit, and the second capacitive branches and the second inductive branches are close to the second antenna unit;
  • the equivalent coupling based on the electrical coupling and the magnetic coupling cancels the spatial coupling between the first antenna unit and the second antenna unit.
  • the first capacitive branch is close to the first area
  • the first inductive branch is close to the second area
  • the first area is parallel to the polarization direction of the first antenna unit
  • the second area Perpendicular to the polarization direction of the first antenna unit
  • the method further includes: removing the dielectric coupling between the first antenna unit and the second antenna unit based on a separation wall, the separation wall including a surrounding one of each antenna unit in the antenna array Multiple metal ground vias.
  • the size and position of the first capacitive branch, the second capacitive branch, the first inductive branch and the second inductive branch are adjusted so that the equivalent coupling is coupled with the space Constant amplitude, reverse phase.
  • the antenna array includes a symmetric position and an asymmetric position, antenna elements in the antenna array are symmetrically distributed about the symmetric position, and antenna elements in the antenna array are asymmetrically distributed about the asymmetric position
  • the method further includes: introducing an equivalent coupling between adjacent antenna elements at the symmetrical position based on a symmetric decoupling structure to cancel the spatial coupling between the adjacent antenna elements; or, based on asymmetrical at the asymmetrical position
  • the decoupling structure of introduces equivalent coupling between adjacent antenna elements to counteract the spatial coupling between the adjacent antenna elements.

Abstract

本申请实施例公开了一种天线阵列去耦结构,该去耦结构位于两个相邻天线单元之间,该去耦结构包括:第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节;该连接枝节用于连接该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节,该第一感性枝节和该第二感性枝节接地;该去耦结构可以同时支持电耦合和磁耦合,且该去耦结构可以根据电磁场辐射的分布情况在不同的区域分别引入电耦合与磁耦合,另一方面,该去耦结构本身是个移相网络,可以调整耦合的相位,在尽可能降低对天线原有性能的影响的前提下实现宽带耦合。

Description

一种天线阵列电磁去耦的方法及结构 技术领域
本申请涉及无线通信领域,尤其涉及一种天线阵列去耦结构。
背景技术
无线通信中,为了弥补路径损耗,实现高增益波束,需要用到天线阵列。天线阵列的工作频段通常为毫米波频段,也可能用于非毫米波频段,其中,毫米波的波长范围从1毫米到10毫米,频率范围从30吉赫(GHz)至300GHz;为了满足性能需求,天线阵列相邻振子之间的间距通常要小于工作频率波长的二分之一。较小的振子间距可以使得天线阵列尺寸较小,便于系统小型化;然而,振子间距缩小会导致天线单元之间存在较强的电磁能量耦合,工程上也简称天线互耦。天线互耦的影响主要有:单元增益及辐射效率降低,多输入多输出(Multiple-Input Multiple-Output,MIMO)信道容量降低,智能天线及多波束赋形的幅度/相位控制不理想,以及导致天线单元间隔离度的恶化等。
因此,如何对天线阵列单元实现去耦有重要意义。
发明内容
本申请的实施例提供一种天线阵列去耦结构,有效实现了天线去耦。
本申请第一方面提供了一种天线阵列去耦结构,该去耦结构位于两个相邻天线单元之间,该去耦结构包括:第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节;该连接枝节用于连接该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节,该第一感性枝节和该第二感性枝节接地。
本申请实施例提供的去耦结构包括等效为电臂的第一容性枝节和第二容性枝节、等效为磁臂的第一感性枝节和第二感性枝节,该等效电臂用于产生电耦合,该等效磁臂用于产生磁耦合,该去耦结构可以同时支持电耦合和磁耦合,另外由于产生电耦合和磁耦合的枝节是分离的,因此该去耦结构可以根据电磁场辐射的分布情况在不同的区域分别引入电耦合与磁耦合,尽可能降低对天线原有的辐射性能;另一方面,该去耦结构本身是个移相网络,可以调整耦合的相位,因此可以使去耦结构引入的等效耦合与相邻天线间的空间耦合等幅反相,在尽可能降低对天线原有性能的影响的前提下实现宽带耦合。
在一种可能的实施方式中,该第一容性枝节和该第一感性枝节连接在该连接枝节的第一端,该第二容性枝节和该第二感性枝节连接在该连接枝节的第二端。
在一种可能的实施方式中,该第一容性枝节串联连接在该连接枝节的该第一端,该第一感性枝节并联连接在该连接枝节的该第一端,该第二容性枝节串联连接在该连接枝节的该第二端,该第二感性枝节并联连接在该连接枝节的该第二端。
本申请实施例提供的去耦结构中,两个容性枝节和两个感性枝节形成π型移相网络,以调整该去耦结构引入的耦合的相位。
在一种可能的实施方式中,该第一容性枝节和该第二容性枝节沿第一方向延伸,该第一感性枝节和该第二感性枝节沿第二方向延伸,该第一方向垂直于该第二方向。
在一种可能的实施方式中,该第一方向与该连接枝节的延伸方向平行。
在一种可能的实施方式中,该第一容性枝节和该第一感性枝节均并联连接在该连接枝节的该第一端,该第二容性枝节和该第二感性枝节均并联连接在该连接枝节的所示第二端,该第一容性枝节和该第二容性枝节接地。
在一种可能的实施方式中,该第一容性枝节和该第二容性枝节包括:开路金属枝节或电容性器件;该第一感性枝节和该第二感性枝节包括:接地金属枝节或电感性器件。
在一种可能的实施方式中,该连接枝节包括:电感性器件或电容性器件。
在一种可能的实施方式中,该连接枝节为微带线连接枝节,该第一容性枝节为第一微带线开路枝节,该第二容性枝节为第二微带线开路枝节,该第一感性枝节为第一接地过孔,该第二感性枝节为第二接地过孔。
在一种可能的实施方式中,该接地过孔为直通过孔或弯折过孔。
在一种可能的实施方式中,该第一微带线开路枝节在第一平面内从该微带线连接枝节的第一端向外部延伸,该第二微带线开路枝节在该第一平面内从该微带线连接枝节的第二端向外部延伸,该第一平面为该微带线连接枝节所在的平面;该第一接地过孔和该第二接地过孔在第二平面内垂直于该微带线连接枝节延伸,该第二平面垂直于该第一平面。
在一种可能的实施方式中,该第一微带线开路枝节在第一平面内从该微带线连接枝节的第一端向外部延伸,该第二微带线开路枝节在该第一平面内从该微带线连接枝节的第二端向外部延伸,该第一平面为该微带线连接枝节所在的平面;该第一接地过孔和该第二接地过孔在该第一平面内垂直于该微带线连接枝节延伸第一长度之后,继续在第二平面内延伸,该第二平面垂直于该第一平面。
在一种可能的实施方式中,该第一微带线开路枝节和该第二微带线开路枝节在第一平面内垂直于该微带线连接枝节延伸,该第一平面为该微带线连接枝节所在的平面;该第一接地过孔和该第二接地过孔在该第一平面内从该微带线连接枝节的两端向外部延伸第一长度之后,继续在第二平面内延伸,该第二平面垂直于该第一平面。
在一种可能的实施方式中,该去耦结构为对称结构,或者,该去耦结构为非对称结构。
如果在磁场辐射强的区域引入磁耦合,则会由于耦合的存在扰动磁场分布,进而影响天线磁场辐射并造成天线性能恶化;同理,在电场强的区域引入电耦合会影响天线正常的电场辐射。本申请实施例根据磁场或电场辐射强弱对应引入电耦合或者磁耦合,当磁场辐射强时则引入电耦合,当电场辐射强时则引入磁耦合,尽可能小的影响天线原有的磁场辐射和电场辐射,从而避免影响天线原本的性能,保证天线的正常工作状态。
在一种可能的实施方式中,该去耦结构位于第一天线单元和第二天线单元之间, 该第一天线单元和该第二天线单元为该天线阵列中的两个相邻天线单元;该第一天线单元包括第一边界和第二边界,该第二天线单元包括第三边界和第四边界;其中,述第一边界平行于该第一天线单元的极化方向,该第二边界垂直于该第一天线单元的极化方向,该第三边界平行于该第二天线单元的极化方向,该第四边界垂直于该第二天线单元的极化方向;该第一容性枝节靠近该第一边界,该第一感性枝节靠近该第二边界,该第二容性枝节靠近该第三边界,该第二感性枝节靠近该第四边界。
本申请实施例中,天线单元电场辐射最强的区域靠近垂直于该天线单元的极化方向的边界,磁场辐射最强的区域靠近平行于该天线单元的极化方向的边界。容性枝节靠近磁场辐射最强的区域以引入电耦合,感性枝节靠近电场辐射最强的区域以引入磁耦合,可以最大程度的减小对天线单元原有的磁场辐射和电场辐射的影响,从而避免影响天线原本的性能,保证天线的正常工作状态。本申请第二方面提供了一种天线阵列去耦结构,该去耦结构位于两个相邻天线单元之间,该去耦结构包括:第一电容支路、第二电容支路、第一接地支路、第二接地支路以及连接支路;该连接支路用于连接该第一电容支路、该第二电容支路、该第一接地支路和该第二接地支路,其中,该第一电容支路和该第一接地支路连接在该连接支路的第一端,该第二电容支路和该第二接地支路连接在该连接支路的第二端。
在一种可能的实施方式中,该第一电容支路串联连接在该连接支路的该第一端,该第一接地支路并联连接在该连接支路的该第一端,该第二电容支路串联连接在该连接支路的该第二端,该第二接地支路并联连接在该连接支路的该第二端。
在一种可能的实施方式中,该第一电容支路和该第二电容支路沿第一方向延伸,该第一接地支路和该第二接地支路沿第二方向延伸,该第一方向垂直于该第二方向。
在一种可能的实施方式中,该第一方向与该连接支路的延伸方向平行。
在一种可能的实施方式中,该连接支路包括:连接电感或连接电容。
在一种可能的实施方式中,该第一接地支路和该第二接地支路包括:接地电感或接地电容。
在一种可能的实施方式中,该连接支路为微带线连接枝节,该第一电容支路为第一微带线开路枝节,该第二电容支路为第二微带线开路枝节,该第一接地支路为第一接地枝节,该第二接地支路为第二接地枝节。
在一种可能的实施方式中,该第一接地枝节和该第二接地枝节为接地过孔,该接地过孔为直通过孔或弯折过孔。
本申请第三方面提供了一种天线阵列去耦结构,该去耦结构位于两个相邻天线单元之间,该去耦结构包括:第一接地电感、第二接地电感、第一接地支路、第二接地支路以及连接支路;该连接支路用于连接该第一接地电感、该第二接地电感、该第一接地支路和该第二接地支路,其中,该第一接地电感和该第一接地支路连接在该连接支路的第一端,该第二接地电感和该第二接地支路连接在该连接支路的第二端。
在一种可能的实施方式中,该第一接地电感和该第一接地支路并联连接在该连接支路的该第一端,该第二接地电感和该第二接地支路并联连接在该连接支路的该第二端。
在一种可能的实施方式中,该第一接地电感和该第二电感连接在该连接支路的延 伸方向上,该第一接地支路和该第二接地支路垂直与该连接支路的该延伸方向。
在一种可能的实施方式中,该连接支路包括:连接电感或连接电容。
在一种可能的实施方式中,该第一接地支路和该第二接地支路包括:接地电感或接地电容。
在一种可能的实施方式中,该连接支路为微带线连接枝节,该第一接地支路为第一微带线开路枝节的对地电容,该第二接地支路为第二微带线开路枝节的对地电容,该第一接地电感为第一接地过孔,该第二接地电感为第二接地过孔。
在一种可能的实施方式中,该接地过孔为直通过孔或弯折过孔。
本申请第四方面提供了一种天线阵列,该天线阵列包括:至少两个天线单元以及根据第一方面至第三方面或者其任一种可能的实施方式中的去耦结构,该去耦结构位于该至少两个天线单元中的相邻两个天线单元之间。
在一种可能的实施方式中,该天线阵列还包括:隔离墙,该隔离墙包括围绕该至少两个天线单元中的每个天线单元的多个金属接地过孔。
本申请实施例中,隔离墙用于阻断天线单元之间存在的介质中的电磁场耦合。
在一种可能的实施方式中,该隔离墙与该去耦结构不相连。
在一种可能的实施方式中,对称结构的去耦结构位于该天线阵列中的对称位置,该天线阵列中的该至少两个天线单元关于该对称位置对称分布。
在一种可能的实施方式中,非对称结构的去耦结构位于该该天线阵列的非对称位置,该天线阵列中的该至少两个天线单元关于该非对称位置非对称分布。
根据天线阵列的电磁环境适应性选择对称的或者非对称的去耦结构,可以得到更好的去耦效果。
在一种可能的实施方式中,该天线阵列的阵列形态包括:矩形阵列、圆形阵列或多边形阵列。
在一种可能的实施方式中,该天线阵列中的天线单元包括单极化天线或双极化天线。
本申请第五方面提供了一种天线阵列去耦的方法,该方法包括:基于去耦结构在第一天线单元和第二天线单元之间引入电耦合与磁耦合,该第一天线单元与该第二天线单元为该天线阵列中两个相邻天线单元,该去耦结构包括:第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节;该连接枝节用于连接该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节,其中,该第一容性枝节和该第一感性枝节靠近该第一天线单元,该第二容性枝节和该第二感性枝节靠近该第二天线单元;基于该第一容性枝节与该第一天线单元形成该电耦合;基于该第一感性枝节与该第一天线单元形成该磁耦合;基于该电耦合与该磁耦合的等效耦合抵消该第一天线单元与该第二天线单元之间的空间耦合。
在一种可能的实施方式中,该第一天线单元包括第一边界和第二边界,该第二天线单元包括第三边界和第四边界;其中,述第一边界平行于该第一天线单元的极化方向,该第二边界垂直于该第一天线单元的极化方向,该第三边界平行于该第二天线单元的极化方向,该第四边界垂直于该第二天线单元的极化方向;该第一容性枝节靠近该第一边界,该第一感性枝节靠近该第二边界,该第二容性枝节靠近该第三边界,该 第二感性枝节靠近该第四边界。该基于该第一容性枝节与该第一天线单元形成该电耦合,包括:基于该第一容性枝节在该第一天线单元的该第一边界形成该电耦合;该基于该第一感性枝节与该第一天线单元形成该磁耦合,包括:基于该第一感性枝节在该第一天线单元的该第二边界形成该磁耦合。
在一种可能的实施方式中,该方法还包括:基于隔离墙去除该第一天线单元和该第二天线单元之间的介质耦合,该隔离墙包括围绕该天线阵列中的每个天线单元的多个金属接地过孔。
在一种可能的实施方式中,调整该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节的尺寸和位置,以使得该等效耦合与该空间耦合等幅、反相。
在一种可能的实施方式中,该天线阵列包括:对称位置和非对称位置,该天线阵列中的天线单元关于该对称位置对称分布,该天线阵列中的天线单元关于该非对称位置非对称分布,该方法还包括:在该对称位置基于对称的去耦结构在相邻天线单元之间引入等效耦合以抵消该相邻天线单元之间的空间耦合;或者,在该非对称位置基于非对称的去耦结构在相邻天线单元之间引入等效耦合以抵消该相邻天线单元之间的空间耦合。
附图说明
图1a为本申请实施例提供的一种示例性的去耦结构电路示意图;
图1b为本申请实施例提供的一种示例性的去耦结构电路示意图;
图1c为本申请实施例提供的一种示例性的去耦结构电路示意图;
图1d为本申请实施例提供的一种示例性的去耦结构电路示意图;
图2a为本申请实施例提供的另一种示例性的去耦结构电路示意图;
图2b为本申请实施例提供的另一种示例性的去耦结构电路示意图;
图2c为本申请实施例提供的另一种示例性的去耦结构电路示意图;
图2d为本申请实施例提供的另一种示例性的去耦结构电路示意图;
图3a为本申请实施例提供的一种示例性的去耦结构示意图;
图3b为本申请实施例提供的一种示例性的去耦结构示意图;
图4为本申请实施例提供的另一种示例性的去耦结构示意图;
图5为本申请实施例提供的另一种示例性的去耦结构示意图;
图6为本申请实施例提供的另一种示例性的去耦结构示意图;
图7a为本申请实施例提供的一种示例性的相邻天线之间耦合原理示意图;
图7b为本申请实施例提供的一种示例性的电场、磁场场强分布示意图;
图8为本申请实施例提供的一种示例性的包含去耦结构的天线阵列;
图9为本申请实施例提供的另一种示例性的包含两个去耦结构的天线阵列;
图10a为本申请实施例提供的一种示例性的包含去耦结构的天线阵列的立体图;
图10b为本申请实施例提供的一种示例性的包含去耦结构的天线阵列的主视图;
图11为本申请实施例提供的一种示例性的包含去耦结构的天线阵列去耦前后隔离度仿真结果示意图;
图12为本申请实施例提供的一种示例性的包含去耦结构的天线阵列去耦前后辐 射方向对比示意图;
图13为本申请实施例提供的另一种示例性的包含去耦结构的天线阵列;
图14为本申请实施例提供的另一种示例性的双频、双极化天线阵列示意图;
图15为本申请实施例提供的一种示例性的双频、双极化天线阵列去耦前后隔离度仿真结果示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请实施例提出一种天线阵列去耦的结构和方法,在不影响天线的方向图、增益等原本性能的前提下实现相邻天线单元之间的宽带去耦。并且该去耦结构结构简单,对加工精度要求低,适合低成本应用。
如图1a所示,为本申请实施例提供的一种示例性的天线阵列去耦结构。该去耦结构包括第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节,该连接枝节用于连接第一容性枝节、第二容性枝节、第一感性枝节和第二感性枝节。其中,第一容性枝节和第一感性枝节连接在该连接枝节的第一端,第二容性枝节和第二感性枝节连接在该连接枝节的第二端,该第一感性枝节和第二感性枝节接地。该第一容性枝节和第二容性枝节用于产生电耦合,或者,也可以将第一容性枝节和第二容性枝节称为电臂,电臂用于产生电耦合;该第一感性枝节和第二感性枝节用于产生磁耦合,或者,也可以将第一感性枝节和第二感性枝节称为磁臂,磁臂用于产生磁耦合。应当理解,当第一容性枝节和第二容性枝节与外界天线产生电耦合时,第一感性枝节和第二感性枝节对电耦合的相位进行调节;当第一感性枝节和第二感性枝节与外界天线产生磁耦合时,第一容性枝节和第二容性枝节对磁耦合的相位进行调节。本申请实施例中,第一容性枝节串联连接在该连接枝节的第一端,第一感性枝节并联连接在该连接枝节的第一端,对应的,第二容性枝节串联连接在该连接枝节的第二端,第二感性枝节并联连接在该连接枝节的第二端。应当理解,这里所说的串联和并联是相对于去耦网络中主路信号而言的,如果去耦网络中的主路信号从某一个器件的一端流入并从另一端流出,则认为该器件串联连接,如图1a所示的第一容性枝节C1和第二容性 枝节C2;如果去耦网络中的主路信号只流经某个器件的一端,则认为该器件并联连接,如图1a中所示的接地的第一感性枝节和第二感性枝节。应当理解,第一容性枝节、第二容性枝节、第一感性枝节和第二感性枝节的排列形成π型网络,具有移相作用,以实现对相邻天线间的耦合的相位进行调节。示例性的,如图1a所示,第一容性枝节和第二容性枝节沿第一方向延伸,第一感性枝节和第二感性枝节沿第二方向延伸,第一方向垂直于第二方向,可选的,第一方向与第二方向相交但并不垂直,其中,第一方向与该连接枝节的延伸方向平行。
示例性的,该第一容性枝节和第二容性枝节可以包括:开路枝节,例如开路微带线枝节或开路金属枝节等,贴片电容或者其他常见的电容器件,交指电容或平板电容等;应当理解,这里的开路金属枝节可以为一段开路的金属导线或者一段开路的微带线。该第一感性枝节和第二感性枝节可以包括:接地过孔、接地金属枝节、变压器、螺旋电感或接地线圈等;示例性的,该接地过孔的材料可以包括:金属,例如可以是铜、铝、金或锡等。应当理解,天线阵列通常包括多层金属层,不同的金属层之间存在非金属介质层,穿透不同金属层之间的非金属介质层,并填充金属材料以形成金属层之间的过孔。在一种可选的情况中,该非金属介质层可以是天线阵列的基底层,天线阵列的基底层也可以说是天线阵列中最底层金属层下面的一层非金属介质层,在天线阵列的基底层中打一个通孔并在该通孔中填充金属材料以形成过孔。该连接枝节可以包括:电感、电容性器件、金属连接线或微带线等。示例性的,图1a所示的去耦结构的连接枝节为电感,图1b所示的去耦结构的连接枝节为电容。应当理解,连接枝节的电容性器件可以是第一容性枝节和第二容性枝节中的任一种电容,连接枝节的电感可以是第一感性枝节和第二感性枝节中的任一种电感,且不限于此。
应当理解,图1a和图1b所示的去耦结构,当第一容性枝节和第二容性枝节与外界天线进行电耦合时,第一容性枝节与外界天线之间的电容为C1,第二容性枝节与外界天线之间的电容为C2,第一感性枝节和第二感性枝节形成π型移相器,对电耦合的相位进行调整。
在一种可选的结构中,第一容性枝节和第一感性枝节均并联在连接枝节的第一端,第二容性枝节和第二感性枝节均并联在连接枝节的第二端,此时,第一容性枝节、第二容性枝节、第一感性枝节和第二感性枝节均接地,如图1c和图1d所示。此时,第一容性枝节和第二容性枝节的延伸方向垂直于连接枝节的延伸方向,可选的,第一容性枝节和第二容性枝节的延伸方向与连接枝节的延伸方向相交但并不垂直。该去耦结构中,连接枝节可以是电感器件如图1c所示,也可以是电容器件,如图1d所示。
应当理解,图1c和图1d所示的去耦结构,当第一感性枝节与第二感性枝节与外界的天线进行磁耦合时,第一容性枝节和第二容性枝节形成π型移相器,对磁耦合的相位进行调整。应当理解,当第一感性枝节与第二感性枝节与外界天线进行磁耦合时,第一容性枝节和第二容性枝节与接地平面之间分别存在等效接地电容:C3和C4。
本申请实施例提供的去耦结构包括等效为电臂的第一容性枝节和第二容性枝节、等效为磁臂的第一感性枝节和第二感性枝节,该等效电臂用于产生电耦合,该等效磁臂用于产生磁耦合,该去耦结构可以同时支持电耦合和磁耦合,另外由于产生电耦合和磁耦合的枝节是分离的,因此该去耦结构可以根据电磁场辐射的分布情况在不同的 区域分别引入电耦合与磁耦合,尽可能降低对天线原有的辐射性能。另一方面,该去耦结构本身是个移相网络,可以调整耦合的相位,因此可以使去耦结构引入的等效耦合与相邻天线间的空间耦合等幅、反相,在尽可能降低对天线原有性能的影响的前提下实现宽带耦合。调整容性枝节和感性枝节的尺寸可以调整电耦合与磁耦合的幅度,以使得去耦结构引入的电耦合和磁耦合产生的等效耦合与相邻天线单元间的空间耦合的幅度相等;进一步的,去耦结构的第一容性枝节、第二容性枝节、第一感性枝节与第二感性枝节排列形成移相网络,也即去耦结构本身是个移相网络具有移相的功能,调整去耦结构的形状和尺寸,例如调节第一容性枝节、第二容性枝节和第一感性枝节、第二感性枝节的相对位置、去耦结构与天线单元的相对位置、容性枝节的电容值与感性枝节的电感值等,可以调整电耦合与磁耦合的相位,以使得去耦结构引入的电耦合和磁耦合产生的等效耦合与相邻天线间的空间耦合的相位相反,或者说电耦合与磁耦合产生的等效耦合与相邻天线间的空间耦合的相位相差180度的奇数倍。如图2a-图2d所示,为本申请实施例提供的另外4种示例性的去耦结构的电路示意图。如图2a所示的去耦结构包括第一开路容性枝节C1、第二开路容性枝节C2、第一接地容性枝节C3、第二接地容性枝节C4以及一个电感连接枝节,可选的,该电感连接枝节还可以是电容连接枝节,如图2b所示。当图2a和图2b所示的去耦结构中开路容性枝节C1和C2与外界天线进行电耦合时,接地容性枝节C3和C4形成π型移相网络,对电耦合的相位进行调整。
如图2c所示的去耦结构包括第一接地感性枝节、第二接地感性枝节、第三接地感性枝节、第四接地感性枝节以及一个电感连接枝节,其中,第一接地感性枝节和第二接地感性枝节为外侧的两个接地枝节,第三接地感性枝节和第四接地感性枝节为内侧的两个接地枝节。可选的,该电感连接枝节还可以是电容连接枝节,如图2d所示。当图2c和图2d所示的去耦结构中外侧的两个接地感性枝节与外界天线进行磁耦合时,内侧的两个接地感性枝节形成π型移相网络,对磁耦合的相位进行调整。
如图3a所示,为本申请实施例提供的一种示例性的去耦结构示意图,该去耦结构的第一容性枝节和第二容性枝节为开路枝节,第一感性枝节和第二感性枝节为接地枝节,该去耦结构包括:第一开路枝节、第二开路枝节、第一接地枝节、第二接地枝节和连接枝节。示例性的,该第一开路枝节和第二开路枝节为金属开路枝节或者微带线开路枝节,该第一接地枝节和第二接地枝节为接地金属枝节或者接地过孔,可选的,接地过孔可以是直通孔或者弯折孔。如图3a所示,该连接枝节横向延伸,并用于连接第一开路枝节、第二开路枝节、第一接地枝节和第二接地枝节。该第一开路枝节和第二开路枝节可以等效为电容,当第一开路枝节和第二开路枝节靠近天线时,与天线之间产生电耦合,或者,也可以将第一开路枝节和第二开路枝节称为电臂,电臂用于与天线之间形成电耦合。第一接地枝节和第二接地枝节可以等效为电感,当第一接地枝节和第二接地枝节靠近天线时,第一接地枝节和第二接地枝节与天线形成磁耦合,或者,也可以将第一接地枝节和第二接地枝节称为磁臂,磁臂用于与天线之间形成磁耦合。在一种可选的情况中,将第一开路枝节和第二开路枝节设置在靠近天线磁场辐射最强的区域,将第一接地枝节和第二接地枝节设置在靠近天线电场辐射最强的区域,此时,开路枝节在磁场辐射最强的区域与天线产生电耦合,接地枝节在电场辐射最强 的区域与天线产生磁耦合。另外,图3a中所示的该去耦结构排列成π型移相网络,可以调整电耦合和磁耦合的相位,以使得电耦合与磁耦合产生的等效耦合与相邻天线间的空间耦合反相,或者说电耦合与磁耦合产生的等效耦合与相邻天线间的空间耦合的相位相差180度的奇数倍。该π型移相网络具有四个支路,第一开路枝节、第二开路枝节、第一接地枝节和第二接地枝节分别形成该π型移相网络的四个支路。如图3a所示,第一开路枝节与第二开路枝节在第一平面内向连接枝节的两端延伸,该第一平面为连接枝节所在的平面,第一接地枝节和第二接地枝节在第一平面内垂直于连接枝节延伸第一长度之后改变延伸方向,在第二平面内延伸第二长度,该第二平面垂直于该第一平面。其中,第一开路枝节与第二开路枝节的长度为L1,该长度L1可以称为电臂的臂长,连接枝节的长度为L2,第一接地枝节与第二接地枝节在第一平面内延伸的第一长度为L3,在第二平面内延伸的第二长度为h,应当理解,由于第一接地枝节与第二接地枝节在第二平面内是纵向延伸的,也可以说第一接地枝节与第二接地枝节的的高度为h;第一开路枝节与第二开路枝节的宽度为W1,连接枝节的宽度为W2,第一接地枝节与第二接地枝节的宽度为W3。L1、L2、L3、W1、W2、W3和h都可以根据耦合情况适应性进行调整,另外,W1、W2和W3可以相等,也可以不等。应当理解,改变开路枝节与天线间的耦合电容可以调节电耦合量,例如改变第一开路枝节和第二开路枝节的长度L1和宽度W1可以调节电耦合的耦合量的大小。改变第一接地枝节和第二接地枝节与天线间的磁通量来调节磁耦合的耦合量,例如改变第一接地枝节和第二接地枝节的L3、h以及整个去耦结构与天线之间的距离来调节磁耦合的耦合量的大小;另外,通过π型移相网络调整电耦合和磁耦合的相位,例如调节π型移相网路的四个支路排列的位置、各支路的长度、宽度、以及π型移相网络与天线之间的距离,都可以调整电耦合、磁耦合的相位。应当理解,对幅度和相位的调节不是割裂的,影响耦合幅度的几个变量同样也会影响相位。
应当理解,图3a只是对去耦结构的一种示例,而不应当认为是对去耦结构的限定。图3a所示的去耦结构的第一接地枝节和第二接地枝节在第二平面内是直通延伸的,在一种可选的情况中,第一接地枝节和第二接地枝节在第二平面内也可以是弯折延伸的,如图3b所示。图4提供了另一种示例性的去耦结构,该去耦结构第一开路枝节与第二开路枝节在第一平面内向连接枝节的两端延伸,该第一平面为连接枝节所在的平面,该第一接地枝节和第二接地枝节在第二平面内垂直于连接枝节纵向延伸,该第二平面垂直于该第一平面。该第一接地枝节和第二接地枝节直接在第二平面内垂直延伸,该第一接地枝节和第二接地枝节为直通的接地过孔。图3a、图3b、图4所示的去耦结构均是轴对称的,去耦结构还可以设计成中心对称或非对称的,如图5所示,为本申请实施例提供的另一种示例性的去耦结构。图5中的该去耦结构是非对称的,其中,第一开路枝节、第二开路枝节的长度可以不同,第一接地枝节在第一平面内延伸了一段长度之后再向第二平面延伸,第二接地枝节直接向第二平面延伸。应当理解,还可以存在其他形式的非对称的去耦结构。
在一种可选的情况中,开路枝节和接地枝节的位置可以更换,接地枝节位于π型网络的两端,开路枝节位于π型网络的中间。如图6所示,为本申请实施例提供的一种示例性的去耦结构。第一开路枝节和第二开路枝节在第一平面内垂直于连接枝节延 伸,该第一平面为连接枝节所在的平面;第一接地枝节和第二接地枝节在第一平面内向连接枝节的两端延伸第一长度之后改变延伸方向,在第二平面内延伸第二长度,该第二平面垂直于该第一平面。在实际应用时,可以根据磁场辐射和电场辐射的分布情况调整去耦结构中开路枝节和接地枝节的排列形式。
如图7a所示,为本申请实施例提供的一种相邻天线之间耦合原理示意图。图7a示出了一种2×1二元天线阵列,该天线阵列包括第一天线和第一天线,该第一天线、第二天线均设置在接地平面(Ground Plane)上。第一天线和第二天线工作时通常都会对外进行电磁辐射,且电场和磁场总是同时存在的,但是通常来说,磁场辐射和电场辐射的强度是不均匀的,因此第一天线和第二天线均存在磁场辐射最强和电场辐射最强的区域,如图7b所示,为本申请实施例提供的一种电场、磁场场强分布示意图。图中示出的箭头方向为天线的极化方向,该极化方向也可以称为是电流的流向。通常来说,电场辐射最强的区域垂直于天线的极化方向,磁场辐射最强的区域平行于天线的极化方向。图7b中示出的天线单元,包括上下左右共四个边界,上边界和下边界平行于天线的极化方向,因此靠近上边界和下边界的区域为天线磁场辐射最强的区域;左边界和右边界垂直于天线的极化方向,因此靠近左边界和右边界的区域为天线电场辐射最强的区域。在一种可选的情况中,去耦结构的容性枝节靠近天线单元的上边界或下边界所在的区域,感性枝节靠近天线单元的左边界和右边界所在的区域。可选的,如果天线单元是圆形的,圆形的天线单元包括上下左右四个切线,上下两个切线对应上边界和下边界,左右两个切线对应左边界和右边界。应当理解,靠近表示去耦结构与天线阵列的边界之间的距离小于预设阈值,该阈值可以根据实验数据获得或由本领域技术人员依照经验获得;另外,本申请实施例中提到的天线单元、天线没有区别,或者可以说天线单元等同于天线,例如可以说一个天线阵列包括多个天线,也可以说一个天线阵列包括多个天线单元。
如图7a所示,第一天线和第二天线左右两个侧边区域为电场辐射最强的区域,上下两个侧边区域为磁场辐射最强的区域。如果在磁场辐射最强的区域引入磁耦合,则会由于耦合的存在扰动磁场分布,进而影响天线磁场辐射并造成天线性能恶化;同理,在电场最强的区域引入电耦合会影响天线正常的电场辐射。本申请实施例根据磁场或电场辐射强弱对应引入电耦合或者磁耦合,当磁场辐射强时则引入电耦合,当电场辐射强时则引入磁耦合,尽可能小的影响天线原有的磁场辐射和电场辐射,从而避免影响天线原本的性能,保证天线的正常工作状态。在一种可选的情况中,如图7a所示,在磁场辐射最强的区域引入电耦合,在电场辐射最强的区域引入磁耦合,这种耦合方式可以最大程度的减小对天线原有性能的影响;在另一种可选的情况中,在磁场辐射强度大于预设阈值的区域引入电耦合,以及在电场辐射强度大于预设阈值的区域引入磁耦合,也可以在抵消天线间的空间耦合的同时减小对天线原有性能的影响。
如图8所示,为本申请实施例提供的一种包含去耦结构的天线阵列800。该天线阵列800为一种2×1二元天线阵列,该天线阵列800包括接地平面801,第一天线802,第二天线803以及去耦结构804。该去耦结构804可以为上述图1a-图6中所示的去耦结构,但是不限于图1a-图6所示的去耦结构。该去耦结构的两个横向枝节为第一容性枝节和第二容性枝节,两个纵向枝节为第一感性枝节和第二感性枝节,其中靠近第一 天线的纵向枝节为第一感性枝节,靠近第二天线的纵向枝节为第二感性枝节。在一种可选的情况中,该去耦结构的第一容性枝节靠近第一天线平行于天线极化方向的边界,也即第一容性枝节靠近第一天线磁场辐射最强的区域,该去耦结构的第一感性枝节靠近第一天线垂直于天线极化方向的边界,也即第一感性枝节靠近第一天线电场辐射最强的区域;对应的,该去耦结构的第二容性枝节靠近第二天线平行于天线极化方向的边界,也即第二容性枝节靠近第二天线磁场辐射最强的区域,该去耦结构的第二感性枝节靠近第二天线垂直于天线极化方向的边界,也即第二感性枝节靠近第二天线电场辐射最强的区域。第一天线802和第二天线803之间存在空间耦合,去耦结构804在第一天线802和第一天线803之间引入等效电磁耦合,该等效电磁耦合用于抵消第一天线802与第一天线803之间的空间耦合。下面对空间耦合和等效电磁耦合进行示例性说明:第一天线802辐射出的电磁波的一部分通过空间传递被第二天线803吸收之后在第二天线803上产生感应电流,使第一天线802和第二天线803之间形成空间耦合;同理,第二天线803辐射出的电磁波的一部分被第一天线802吸收并产生感应电流。第一天线802辐射出的电磁波部分被去耦结构804吸收之后在去耦结构804上形成感应电流,该感应电流产生向外辐射的电磁波,去耦结构804辐射的电磁波部分被第二天线803吸收之后也产生感应电流,使第一天线802与第二天线803之间形成等效电磁耦合。第一天线802通过去耦结构804在第二天线803上产生的感应电流可以抵消第一天线802在第二天线803上产生的感应电流;在一种可选的情况中,第一天线802通过去耦结构804在第二天线803上产生的感应电流与第一天线802在第二天线803上产生的感应电流等幅、反相。也可以说,该等效电磁耦合可以抵消空间耦合,在一种可选的情况中,该等效电磁耦合与空间耦合等幅、反相。
在一种可选的情况中,相邻天线之间可以设置两个去耦结构,如图9所示,为本申请实施例提供的另一种包含两个去耦结构的天线阵列900。该天线阵列900包括接地平面901,第一天线902,第二天线903、第一去耦结构904和第二去耦结构905。第一去耦结构904和第二去耦结构905可以为上述图1a-图6中所示的去耦结构,但是不限于图1a-图6所示的去耦结构。第一去耦结构904与第二去耦结构905共同引入的等效电磁耦合用于抵消第一天线902与第二天线903之间的空间耦合。第一去耦结构904与第二去耦结构905距离第一天线902和第二天线903的位置可以调节,904和905在两个相邻天线两侧可以设置成对称的,也可以设置成非对称的。
如图10a和10b所示,为本申请实施例提供的另一种包含去耦结构的天线阵列,其中图10a为天线阵列的立体图,图10b为天线阵列的主视图。该天线阵列包含M1、M2、M3层,M1、M2、M3所处的高度不同。在该天线阵列中,天线顶层的金属层铺设在M1层上,M2层上可以设置有馈电网络,第一天线和第二天线外侧都设置了隔离墙,该隔离墙包括围绕天线的多个接地过孔,示例性的,多个接地过孔围绕在天线的四周以形成隔离墙,隔离墙用于阻断天线之间存在的介质中的电磁场耦合。图10a和10b中所示的接地过孔从接地平面一直连通到天线顶层金属层M1层,此时,接地过孔的高度等于天线金属层的高度,应当理解,该接地过孔的高度可以小于天线金属层的高度,示例性的,接地过孔根据天线工作带宽的要求可以选择性连通到M2层或M3层。该天线阵列包括去耦结构,虽然图10a和图10b中示出了两个去耦结构,实际也 可以只有一个去耦结构或者有超过两个去耦结构,本申请实施例对去耦结构的个数不做限定。隔离墙用于阻断第一天线和第二天线间的介质耦合,去耦结构用于进一步去除第一天线和第二天线间的空间耦合。去耦结构与隔离墙不相连,例如,可以在接地过孔形成的隔离墙上进行掏空处理,从而使去耦结构穿过隔离墙。在本申请实施例提供的天线阵列中,去耦结构铺设在M3层,可以根据去耦结构引入的等效耦合的幅度和相位调整去耦结构的位置和高度,示例性的,该去耦结构还可以位于接地平面与天线顶层金属层M1层中间的其他某个高度上,例如可以铺设在M2层的高度上。
如图11所示,为基于本申请实施例所提供的包含去耦结构的天线阵列去耦前后隔离度仿真结果示意图。其中,横坐标为工作频率,纵坐标为隔离度S21,应当理解,隔离度S21的值越小,表明天线之间的隔离度越高,去耦效果越好。可以看出,在57-66GHz频段范围内(该频段为可使用的无线频谱资源),去耦前天线隔离度为-18dB左右,去耦后隔离度小于-24dB,隔离度提升约6-15dB,天线之间的隔离度显著提升,并且在57-66GHz整个频段范围内隔离度都满足要求(隔离度<20dB),天线支持的工作带宽变宽,因此该去耦结构可以实现宽带去耦。
如图12所示,为基于本申请实施例所提供的包含去耦结构的天线阵列去耦前后辐射方向对比示意图。该图的径向坐标为方向增益,圆周上标注的-180-180为方向角,方向增益越大,表示该方向上的信号越强。可以看出,去耦前后天线辐射方向图基本重合,去耦前后天线辐射方向变化不大。因此,本申请实施例所提供的去耦结构对天线的方向性能影响不大。
如图13所示,为本申请实施例提供的另一种包含去耦结构的天线阵列。图13所示的为一种4X4的天线阵列,该天线阵列包括多个天线单元、隔离墙、以及多个去耦结构,该去耦结构可以是对称结构也可以是非对称结构。在该天线阵列中,靠近边缘的天线单元的电磁环境是非对称的,而位于中间的天线单元的电磁环境是对称的,为了更好的提升去耦效果,需要根据去耦结构在天线阵列中的位置调整去耦结构的形态,去耦结构既可以设计为对称结构,也可以设计为非对称结构。示例性的,在天线阵列的对称位置处,去耦结构设计成对称的;在天线阵列的非对称位置处,去耦结构设计成非对称的。根据天线阵列的电磁环境适应性选择对称的或者非对称的去耦结构,可以得到更好的去耦效果。天线阵列中的多个天线单元关于该对称位置对称分布,例如图13中在轴线1上有4个对称位置,每个对称位置的两侧分别有两个天线单元,也可以说对称位置两侧的天线单元的个数是相同的;图13中标出的非对称位置,该非对称位置的左侧有3个天线单元,右侧有1个天线单元,非对称位置的两侧的天线单元的个数是不同的。
应当理解,在本申请实施例中,天线的具体形态可以为任意形式的微带天线,例如可以是直馈、耦合馈、差分馈电等,天线阵列大小也可以支持各种阵列大小,如2×1,2×2,4×2或4×4等,天线阵列形态也可以多样,例如可以是矩形阵列、圆形阵列、多边形阵列等。另外根据天线阵列中耦合量的大小和阵列需求,可以选择性的在天线阵列任何位置进行去耦。
本申请实施例所提供的去耦结构和去耦方法不仅可以应用于单频、单极化天线,还可以应用于双频、双极化天线。如图14所示,为本申请实施例提供的一种双频、双 极化天线阵列示意图。该天线阵列为中心对称结构,对应的,去耦结构也设计为中心对称结构。由于在该天线阵列中,需要同时兼顾四个天线单元之间的互耦,且阵列中心空间有限,因此四个去耦结构分别放置在四个天线侧方,或者说,每两个相邻天线之间放置一个去耦结构。应当理解,四个去耦结构之间也存在电磁耦合。四个去耦结构之间的电磁耦合以及去耦结构与天线的耦合共同用于抵消相邻天线之间的空间耦合。
如图15所示,为基于本申请实施例所提供的双频、双极化天线阵列去耦前后隔离度仿真结果示意图。
本申请实施例所提供的去耦结构包括用于形成电耦合的开路枝节、用于形成磁耦合的接地枝节,可以在天线不同的位置同时引入电耦合与磁耦合;另一方面,该去耦结构本身是个移相网路,具有移相功能,因此可以使去耦结构引入的等效耦合与相邻天线间的空间耦合等幅、反相,在尽可能的降低对天线原有性能的影响的前提下抵消空间耦合。另外,由于该去耦结构支持相位移相功能,可以满足宽带天线去耦应用;该去耦结构简单,加工精度要求低,适合低成本应用。
本申请实施例还提供一种天线阵列去耦的方法,该方法包括:
基于去耦结构在第一天线单元和第二天线单元之间引入电耦合与磁耦合,该第一天线单元与该第二天线单元为该天线阵列中两个相邻天线单元,该去耦结构包括:第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节;该连接枝节用于连接该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节,其中,该第一容性枝节和该第一感性枝节靠近该第一天线单元,该第二容性枝节和该第二感性枝节靠近该第二天线单元;
基于该第一容性枝节与该第一天线单元形成电耦合;
基于该第一感性枝节与该第一天线单元形成磁耦合;
基于该电耦合与该磁耦合的等效耦合抵消该第一天线单元与该第二天线单元之间的空间耦合。
在一种可能的实施方式中,该第一容性枝节靠近第一区域,该第一感性枝节靠近第二区域,该第一区域平行于该第一天线单元的极化方向,该第二区域垂直于该第一天线单元的极化方向;基于该第一容性枝节在该第一天线单元的该第一区域形成该电耦合;基于该第一感性枝节在该第一天线单元的该第二区域形成该磁耦合。
在一种可能的实施方式中,该方法还包括:基于隔离墙去除该第一天线单元和该第二天线单元之间的介质耦合,该隔离墙包括围绕该天线阵列中的每个天线单元的多个金属接地过孔。
在一种可能的实施方式中,调整该第一容性枝节、该第二容性枝节、该第一感性枝节和该第二感性枝节的尺寸和位置,以使得该等效耦合与该空间耦合等幅、反相。
在一种可能的实施方式中,该天线阵列包括:对称位置和非对称位置,该天线阵列中的天线单元关于该对称位置对称分布,该天线阵列中的天线单元关于该非对称位置非对称分布,该方法还包括:在该对称位置基于对称的去耦结构在相邻天线单元之间引入等效耦合以抵消该相邻天线单元之间的空间耦合;或者,在该非对称位置基于非对称的去耦结构在相邻天线单元之间引入等效耦合以抵消该相邻天线单元之间的空间耦合。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。例如,装置实施例中的一些具体操作可以参考之前的方法实施例。

Claims (22)

  1. 一种天线阵列去耦结构,其特征在于,所述去耦结构位于两个相邻天线单元之间,所述去耦结构包括:第一容性枝节、第二容性枝节、第一感性枝节、第二感性枝节以及连接枝节;
    所述连接枝节用于连接所述第一容性枝节、所述第二容性枝节、所述第一感性枝节和所述第二感性枝节,所述第一感性枝节和所述第二感性枝节接地。
  2. 根据权利要求1所述的去耦结构,其特征在于,所述第一容性枝节和所述第一感性枝节连接在所述连接枝节的第一端,所述第二容性枝节和所述第二感性枝节连接在所述连接枝节的第二端。
  3. 根据权利要求2所述的去耦结构,其特征在于,所述第一容性枝节串联连接在所述连接枝节的所述第一端,所述第一感性枝节并联连接在所述连接枝节的所述第一端,所述第二容性枝节串联连接在所述连接枝节的所述第二端,所述第二感性枝节并联连接在所述连接枝节的所述第二端。
  4. 根据权利要求1至3任一项所述的去耦结构,其特征在于,所述第一容性枝节和所述第二容性枝节沿第一方向延伸,所述第一感性枝节和所述第二感性枝节沿第二方向延伸,所述第一方向垂直于所述第二方向。
  5. 根据权利要求4所述的去耦结构,其特征在于,所述第一方向与所述连接枝节的延伸方向平行。
  6. 根据权利要求2所述的去耦结构,其特征在于,所述第一容性枝节和所述第一感性枝节均并联连接在所述连接枝节的所述第一端,所述第二容性枝节和所述第二感性枝节均并联连接在所述连接枝节的所示第二端,所述第一容性枝节和所述第二容性枝节接地。
  7. 根据权利要求1至6任一项所述的去耦结构,其特征在于,所述第一容性枝节和所述第二容性枝节包括:开路金属枝节或电容性器件;
    所述第一感性枝节和所述第二感性枝节包括:接地金属枝节或电感性器件。
  8. 根据权利要求1至7任一项所述的去耦结构,其特征在于,所述连接枝节包括:电感性器件或电容性器件。
  9. 根据权利要求1至6任一项所述的去耦结构,其特征在于,所述连接枝节为微带线连接枝节,所述第一容性枝节为第一微带线开路枝节,所述第二容性枝节为第二微带线开路枝节,所述第一感性枝节为第一接地过孔,所述第二感性枝节为第二接地过孔。
  10. 根据权利要求9所述的去耦结构,其特征在于,所述接地过孔为直通过孔或弯折过孔。
  11. 根据权利要求9所述的去耦结构,其特征在于,所述第一微带线开路枝节在第一平面内从所述微带线连接枝节的第一端向外部延伸,所述第二微带线开路枝节在所述第一平面内从所述微带线连接枝节的第二端向外部延伸,所述第一平面为所述微带线连接枝节所在的平面;
    所述第一接地过孔和所述第二接地过孔在第二平面内垂直于所述微带线连接枝节 延伸,所述第二平面垂直于所述第一平面。
  12. 根据权利要求9所述的去耦结构,其特征在于,所述第一微带线开路枝节在第一平面内从所述微带线连接枝节的第一端向外部延伸,所述第二微带线开路枝节在所述第一平面内从所述微带线连接枝节的第二端向外部延伸,所述第一平面为所述微带线连接枝节所在的平面;
    所述第一接地过孔和所述第二接地过孔在所述第一平面内垂直于所述微带线连接枝节延伸第一长度之后,继续在第二平面内延伸,所述第二平面垂直于所述第一平面。
  13. 根据权利要求9所述的去耦结构,其特征在于,所述第一微带线开路枝节和所述第二微带线开路枝节在第一平面内垂直于所述微带线连接枝节延伸,所述第一平面为所述微带线连接枝节所在的平面;
    所述第一接地过孔和所述第二接地过孔在所述第一平面内从所述微带线连接枝节的两端向外部延伸第一长度之后,继续在第二平面内延伸,所述第二平面垂直于所述第一平面。
  14. 根据权利要求1至13任一项所述的去耦结构,其特征在于,所述去耦结构为对称结构,或者,所述去耦结构为非对称结构。
  15. 根据权利要求1至14任一项所述的去耦结构,其特征在于,所述去耦结构位于第一天线单元和第二天线单元之间,所述第一天线单元和所述第二天线单元为所述天线阵列中的两个相邻天线单元,所述第一天线单元包括第一边界和第二边界,所述第二天线单元包括第三边界和第四边界;
    其中,述第一边界平行于所述第一天线单元的极化方向,所述第二边界垂直于所述第一天线单元的极化方向,所述第三边界平行于所述第二天线单元的极化方向,所述第四边界垂直于所述第二天线单元的极化方向;
    所述第一容性枝节靠近所述第一边界,所述第一感性枝节靠近所述第二边界,所述第二容性枝节靠近所述第三边界,所述第二感性枝节靠近所述第四边界。
  16. 一种天线阵列,其特征在于,所述天线阵列包括:至少两个天线单元以及根据权利要求1至15任一项所述的去耦结构,所述去耦结构位于所述至少两个天线单元中的相邻两个天线单元之间。
  17. 根据权利要求16所述的天线阵列,其特征在于,所述天线阵列还包括:隔离墙,所述隔离墙包括围绕所述至少两个天线单元中的每个天线单元的多个金属接地过孔。
  18. 根据权利要求17所述的天线阵列,其特征在于,所述隔离墙与所述去耦结构不相连。
  19. 根据权利要求16至18任一项所述的天线阵列,其特征在于,对称结构的去耦结构位于所述天线阵列中的对称位置,所述天线阵列中的所述至少两个天线单元关于所述对称位置对称分布。
  20. 根据权利要求16至19任一项所述的天线阵列,其特征在于,非对称结构的去耦结构位于所述天线阵列的非对称位置,所述天线阵列中的所述至少两个天线单元关于所述非对称位置非对称分布。
  21. 根据权利要求16至20任一项所述的天线阵列,其特征在于,所述天线阵列 的阵列形态包括:矩形阵列、圆形阵列或多边形阵列。
  22. 根据权利要求16至21任一项所述的天线阵列,其特征在于,所述天线阵列中的天线单元包括单极化天线或双极化天线。
PCT/CN2018/121513 2018-12-17 2018-12-17 一种天线阵列电磁去耦的方法及结构 WO2020124315A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099170.6A CN112997359B (zh) 2018-12-17 2018-12-17 一种天线阵列去耦结构及天线阵列
PCT/CN2018/121513 WO2020124315A1 (zh) 2018-12-17 2018-12-17 一种天线阵列电磁去耦的方法及结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121513 WO2020124315A1 (zh) 2018-12-17 2018-12-17 一种天线阵列电磁去耦的方法及结构

Publications (1)

Publication Number Publication Date
WO2020124315A1 true WO2020124315A1 (zh) 2020-06-25

Family

ID=71100015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121513 WO2020124315A1 (zh) 2018-12-17 2018-12-17 一种天线阵列电磁去耦的方法及结构

Country Status (2)

Country Link
CN (1) CN112997359B (zh)
WO (1) WO2020124315A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563747A (zh) * 2020-11-23 2021-03-26 深圳市睿德通讯科技有限公司 天线结构及电子设备
CN112768920A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种基于非对称共面去耦结构的毫米波天线系统
CN112909541A (zh) * 2021-01-12 2021-06-04 Oppo广东移动通信有限公司 天线装置及电子设备
CN113839174A (zh) * 2021-09-24 2021-12-24 RealMe重庆移动通信有限公司 天线组件及电子设备
CN114284696A (zh) * 2020-09-27 2022-04-05 北京小米移动软件有限公司 一种天线结构和终端设备
US20220209411A1 (en) * 2020-12-30 2022-06-30 South China University Of Technology Coupling-offset path branch and high-isolation millimeter-wave phased array antenna based on the same
CN117498026A (zh) * 2023-12-29 2024-02-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941500A (zh) * 2005-09-30 2007-04-04 西门子(中国)有限公司 射频发射线圈的去耦合方法
US20140159986A1 (en) * 2012-12-06 2014-06-12 Microsoft Corporation Reconfigurable multiband antenna decoupling networks
CN105633575A (zh) * 2016-01-18 2016-06-01 深圳微迎智科技有限公司 天线互耦消除设备、方法以及无线通信装置
CN106571526A (zh) * 2016-04-06 2017-04-19 昆山睿翔讯通通信技术有限公司 移动通讯系统终端mimo天线的解耦方法及解耦网络

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105125A (ja) * 2010-11-11 2012-05-31 Nec Casio Mobile Communications Ltd 携帯端末用アンテナ及びその製造方法
CN102280696A (zh) * 2011-04-28 2011-12-14 上海交通大学 半波传输去耦小间距微带阵列天线
US20130027273A1 (en) * 2011-07-27 2013-01-31 Tdk Corporation Directional coupler and wireless communication device
US9000987B2 (en) * 2012-05-18 2015-04-07 Blackberry Limited Compact multi-band antenna for worldwide mobile handset applications
FR2994342B1 (fr) * 2012-07-31 2016-02-05 Eads Europ Aeronautic Defence Dispositif de decouplage entre antennes - notamment des antennes patchs montees sur un aeronef
CN104756316A (zh) * 2012-10-18 2015-07-01 三菱电机株式会社 去耦电路
TWI497824B (zh) * 2012-11-06 2015-08-21 Wistron Neweb Corp 去耦合電路及天線裝置
WO2015052838A1 (ja) * 2013-10-11 2015-04-16 三菱電機株式会社 減結合回路
TWI539674B (zh) * 2014-09-26 2016-06-21 宏碁股份有限公司 天線系統
US9537210B2 (en) * 2015-03-25 2017-01-03 Intel IP Corporation Antenna card for controlling and tuning antenna isolation to support carrier aggregation
CN106921038A (zh) * 2015-12-24 2017-07-04 华为技术有限公司 多输入多输出天线
US10498030B2 (en) * 2016-06-27 2019-12-03 Intel IP Corporation Frequency reconfigurable antenna decoupling for wireless communication
CN106816698B (zh) * 2016-12-28 2019-04-16 重庆大学 具有高极化隔离度的双极化阵列天线
CN108123224A (zh) * 2018-01-30 2018-06-05 厦门美图移动科技有限公司 天线结构、电子设备背壳及电子设备
CN108923122B (zh) * 2018-06-27 2020-05-22 河南安伏众电子科技有限公司 一种基于电谐振器的具有高隔离度的圆极化微带阵列天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941500A (zh) * 2005-09-30 2007-04-04 西门子(中国)有限公司 射频发射线圈的去耦合方法
US20140159986A1 (en) * 2012-12-06 2014-06-12 Microsoft Corporation Reconfigurable multiband antenna decoupling networks
CN105633575A (zh) * 2016-01-18 2016-06-01 深圳微迎智科技有限公司 天线互耦消除设备、方法以及无线通信装置
CN106571526A (zh) * 2016-04-06 2017-04-19 昆山睿翔讯通通信技术有限公司 移动通讯系统终端mimo天线的解耦方法及解耦网络

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284696A (zh) * 2020-09-27 2022-04-05 北京小米移动软件有限公司 一种天线结构和终端设备
CN112563747A (zh) * 2020-11-23 2021-03-26 深圳市睿德通讯科技有限公司 天线结构及电子设备
CN112563747B (zh) * 2020-11-23 2021-07-27 深圳市睿德通讯科技有限公司 天线结构及电子设备
CN112768920A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种基于非对称共面去耦结构的毫米波天线系统
US20220209411A1 (en) * 2020-12-30 2022-06-30 South China University Of Technology Coupling-offset path branch and high-isolation millimeter-wave phased array antenna based on the same
US11600927B2 (en) * 2020-12-30 2023-03-07 South China University Of Technology Coupling-offset path branch and high-isolation millimeter-wave phased array antenna based on the same
CN112909541A (zh) * 2021-01-12 2021-06-04 Oppo广东移动通信有限公司 天线装置及电子设备
CN112909541B (zh) * 2021-01-12 2023-07-28 Oppo广东移动通信有限公司 天线装置及电子设备
CN113839174A (zh) * 2021-09-24 2021-12-24 RealMe重庆移动通信有限公司 天线组件及电子设备
CN113839174B (zh) * 2021-09-24 2023-08-29 RealMe重庆移动通信有限公司 天线组件及电子设备
CN117498026A (zh) * 2023-12-29 2024-02-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法
CN117498026B (zh) * 2023-12-29 2024-04-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法

Also Published As

Publication number Publication date
CN112997359B (zh) 2022-07-26
CN112997359A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2020124315A1 (zh) 一种天线阵列电磁去耦的方法及结构
KR101533126B1 (ko) 액티브 요소들을 갖는 안테나
CN106856261B (zh) 天线阵列
US10446923B2 (en) Antenna array with reduced mutual coupling effect
CN110114938B (zh) 可重配置径向线缝隙天线阵列
US8259027B2 (en) Differential feed notch radiator with integrated balun
JP5631921B2 (ja) マルチアンテナ及び電子装置
EP2963736A1 (en) Multi-band antenna element and antenna
CN101304121B (zh) 以一定射束宽度在宽频带下动作的缝隙天线装置
US10283856B2 (en) Monopole antenna
WO2020177713A1 (en) Dual-polarized substrate-integrated beam steering antenna
KR20110121792A (ko) 미모 안테나 장치
CN109687129A (zh) 一种滤波天线阵列
US20230020807A1 (en) Antenna, Antenna Module, And Wireless Network Device
JP2013545358A (ja) Lte/gsm帯におけるmimo/ダイバーシティ動作のためのlteアンテナ対
Shao et al. Design and modeling of dual-band dual-mode coupled shorted patch antennas
KR101133343B1 (ko) 위상 변화가 없는 mimo 안테나
JP6014071B2 (ja) 通信装置及びアンテナ装置
TWI533506B (zh) 通訊裝置及其寬頻低耦合雙天線元件
WO2023221651A1 (zh) 一种双极化辐射单元、一种天线以及一种天线系统
KR101792415B1 (ko) 안테나간 아이솔레이션이 개선된 안테나 통신 장치
CN107799888A (zh) 一种双频高增益贴片天线
WO2019238106A1 (en) Reconfigurable radial waveguides with switchable artificial magnetic conductors
CN107896420B (zh) 电路板及其电磁带隙结构
WO2021136187A1 (zh) 一种阵列天线及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943533

Country of ref document: EP

Kind code of ref document: A1