WO2020122152A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2020122152A1
WO2020122152A1 PCT/JP2019/048577 JP2019048577W WO2020122152A1 WO 2020122152 A1 WO2020122152 A1 WO 2020122152A1 JP 2019048577 W JP2019048577 W JP 2019048577W WO 2020122152 A1 WO2020122152 A1 WO 2020122152A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
gas
generation system
separation membrane
less
Prior art date
Application number
PCT/JP2019/048577
Other languages
English (en)
French (fr)
Inventor
尊大 徳山
里奈 飯塚
山田 博之
将弘 木村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US17/311,900 priority Critical patent/US20220029178A1/en
Priority to CN201980080939.4A priority patent/CN113169353A/zh
Priority to EP19896806.7A priority patent/EP3895788A4/en
Priority to CA3122755A priority patent/CA3122755A1/en
Priority to JP2019569864A priority patent/JPWO2020122152A1/ja
Priority to KR1020217017138A priority patent/KR20210097133A/ko
Publication of WO2020122152A1 publication Critical patent/WO2020122152A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0208Other waste gases from fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a highly efficient power generation system using a separation membrane having a selective gas permeability and a fuel cell.
  • a fuel cell has a basic structure called a unit cell having an electrolyte membrane and a negative electrode (fuel electrode) and a positive electrode (air electrode) provided so as to sandwich the electrolyte membrane.
  • a fuel cell can generate electricity from hydrogen supplied to a negative electrode and oxygen supplied to a positive electrode.
  • Hydrogen for fuel cell applications may contain impurities such as hydrocarbons, carbon monoxide, carbon dioxide, sulfur (hydrogen sulfide, sulfurous acid gas), ammonia and water vapor. Further, oxygen is generally supplied from the air, but the air contains various substances other than oxygen. Depending on the type or amount of these impurities, power generation efficiency may be reduced.
  • Patent Documents 1 to 3 In order to effectively use the hydrogen contained in the gas discharged from the negative electrode side, it has been proposed to separate hydrogen from the discharged gas and circulate it again to the negative electrode (Patent Documents 1 to 3).
  • the present invention provides a power generation system that can more efficiently reuse the exhaust gas on the negative electrode side.
  • the power generation system of the present invention is A fuel cell comprising a negative electrode to which a hydrogen-containing gas is supplied and a positive electrode to which an oxygen-containing gas is supplied, and which generates electricity by a chemical reaction between hydrogen and oxygen;
  • a separator having a separation membrane that selectively permeates hydrogen, and a separator that obtains a permeable gas and a non-permeable gas from a mixed gas,
  • a power generation system comprising:
  • the separation membrane has a porous support layer, and a separation functional layer provided on the porous support layer,
  • the separation functional layer contains at least one compound selected from the group consisting of polyamide, graphene, MOF (Metal Organic Framework) and COF (Covalent Organic Framework).
  • the exhaust gas on the negative electrode side can be reused more efficiently.
  • FIG. 1 is a schematic diagram showing an embodiment of a power generation system of the present invention.
  • FIG. 2 is a schematic diagram showing another embodiment of the power generation system of the present invention.
  • FIG. 3 is a cross-sectional view of the separation membrane.
  • FIG. 4 is a partially exploded perspective view showing one form of the separation membrane element.
  • FIG. 5 is a schematic diagram of an apparatus used for a power generation test.
  • FIG. 6 is a schematic diagram of an apparatus used for a power generation test.
  • FIG. 7 is a schematic diagram of an apparatus used for a power generation test.
  • FIG. 8 is a schematic diagram of an apparatus used for a power generation test.
  • FIG. 9 is a schematic diagram of an apparatus for measuring gas permeability of a separation membrane.
  • a fuel cell having a negative electrode and a positive electrode, a circulation path for circulating the gas discharged from the negative electrode side of the fuel cell to the negative electrode again, and arranged in the circulation path and separating hydrogen and other gas
  • a power generation system including a separator that accommodates a separation membrane.
  • Other known techniques may be combined with this embodiment.
  • FIG. 1 is a schematic diagram showing an embodiment of the power generation system of the present invention.
  • the power generation system 11 shown in FIG. 1 includes a negative electrode gas supply pipe 21, a circulation pipe, a negative electrode exhaust gas pipe 28, a non-permeable gas pipe 29, a positive electrode gas supply pipe 31, a positive electrode exhaust gas pipe 32, a fuel cell 4, a separator 5, and hydrogen.
  • a storage tank 6 is provided.
  • the negative electrode gas supply pipe 21 is connected to the negative electrode side inlet of the fuel cell 4 and supplies the negative electrode gas to the negative electrode of the fuel cell 4.
  • the negative electrode gas is also called a fuel gas or a hydrogen-containing gas, and may be a pure hydrogen gas or a mixed gas with other components.
  • the negative electrode gas supply pipe 21 is connected to the hydrogen storage tank 6 in FIG. 1, it may be connected to the infrastructure equipment instead of the hydrogen storage tank 6.
  • the circulation path is at least one of the mixed gas pipe 22 connecting the negative electrode side outlet of the fuel cell 4 and the supply side inlet of the separator 5 and the reflux pipes 23 to 25 connected to the permeate side outlet of the separator 5. Prepare one.
  • the circulation path sends the exhaust gas from the negative electrode side outlet of the fuel cell to the separator 5, and the permeated gas obtained in the separator 5 to the negative electrode inlet.
  • the reflux pipe 23 connects the permeate side outlet of the separator 5 and the negative electrode side inlet of the fuel cell 4.
  • the fuel cell 4 has two or more negative electrode side inlets, and the reflux pipe 23 is connected to a negative electrode side inlet different from the negative electrode side inlet to which the negative electrode gas supply pipe 21 is connected.
  • the reflux pipe 24 is connected to the permeate side outlet of the separator 5 and joins the negative electrode gas supply pipe 21.
  • the reflux pipe 24 is connected to the negative electrode gas supply pipe 21 downstream of the hydrogen storage tank 6.
  • the reflux pipe 25 connects the permeate side outlet of the separator 5 and the supply port of the hydrogen storage tank 6.
  • the negative electrode exhaust gas pipe 28 branches from the reflux pipe downstream of the separator 5, and guides the gas that has permeated the separator 5 to the outside of the system without returning it to the fuel cell 4.
  • “circulating the gas discharged from the negative electrode side of the fuel cell to the negative electrode again” of the circulation pipe may be to directly feed the gas to the negative electrode, or to the pipe or tank upstream of the negative electrode.
  • the gas may be indirectly sent to the negative electrode by sending the gas.
  • the non-permeable gas pipe 29 is connected to the outlet of the separator 5 on the supply side and guides the gas that has not permeated the separator 5 to the outside of the system.
  • the positive electrode gas supply pipe 31 is connected to the positive electrode side inlet of the fuel cell 4.
  • the positive electrode gas supply pipe 31 supplies the positive electrode gas to the positive electrode side of the fuel cell 4.
  • the positive electrode gas may contain oxygen. Therefore, the positive electrode gas may be air, or may be a mixed gas containing oxygen and other components in a specific ratio.
  • the power generation system may include a compressor (not shown), and the positive electrode gas supply pipe 31 may be connected to the compressor.
  • the power generation system may include a gas cylinder (not shown), and the positive electrode gas supply pipe 31 may be connected to the gas cylinder.
  • the positive electrode exhaust gas pipe 32 is connected to the positive electrode side outlet of the fuel cell 4 and guides the positive electrode side exhaust gas to the outside of the system.
  • a well-known fuel cell is applied as the fuel cell 4.
  • a fuel cell has a negative electrode, a positive electrode, a negative electrode side inlet for supplying negative electrode gas to the negative electrode, a negative electrode side outlet for discharging negative electrode side exhaust gas, a positive electrode side inlet for supplying positive electrode gas to the positive electrode, and a positive electrode for discharging positive electrode side exhaust gas. It has a side exit. Details of the fuel cell will be described later.
  • the separator 5 includes a separation membrane, and the permeated gas in which the concentration of the unnecessary component is reduced and the unnecessary component are mixed from the mixed gas of hydrogen and the unnecessary component due to the difference in the permeability of the separation membrane with respect to hydrogen and the unnecessary component. It is only necessary to be able to obtain the non-permeable gas containing. By the separator 5, the hydrogen purity of the circulating exhaust gas can be increased. Details of the separator 5 will be described later.
  • the hydrogen storage tank 6 can store high-pressure gas inside.
  • the hydrogen storage tank 6 is connected to the negative electrode gas supply pipe 21.
  • the hydrogen storage tank 6 may have a supply port for receiving the hydrogen mixed gas from the outside.
  • the hydrogen storage tank 6 may be configured to be able to store a gas to be reused by being connected to a circulation pipe described later. If the power generation system can continuously receive the gas supply from the infrastructure, the hydrogen storage tank 6 can be omitted.
  • the power generation system includes other gas pipes, pressure control valves, temperature and humidity regulators, pipes for discharging unnecessary water, dehydrators, gas diluters, hydrogen concentration sensors, vacuum pumps.
  • a compressor, a heat exchanger, a condenser, a heater, a chiller, a desulfurization device, a dust collecting filter, a humidifier, a facility for cooling a cell stack of a fuel cell, and various controllers, etc. may be provided with appropriately arranged components. ..
  • FIG. 2 is a schematic diagram showing another embodiment of the power generation system of the present invention.
  • the power generation system 12 of FIG. 2 includes a positive electrode exhaust gas recirculation pipe 33 connected to the positive electrode side outlet of the fuel cell 4 and joined to the mixed gas pipe 22 instead of the positive electrode exhaust gas pipe 32.
  • the other configuration is as described for the power generation system 11.
  • the positive electrode exhaust gas recirculation pipe 33 is connected to the circulation pipe (mixed gas pipe 22) downstream of the fuel cell 4 and upstream of the separator 5, and joins the gas discharged from the positive electrode side with the gas discharged from the negative electrode side. According to this configuration, the exhaust gas on the negative electrode side is diluted with the exhaust gas on the positive electrode side and then supplied to the separator.
  • the fuel cell 4 includes a negative electrode to which a hydrogen-containing gas is supplied and a positive electrode to which an oxygen-containing gas is supplied, and generates power by a chemical reaction between hydrogen and oxygen.
  • a known fuel cell such as a solid oxide type (SOFC), a molten carbonate type (MCFC), a phosphoric acid type (PAFC), a solid polymer type (PEFC) can be applied.
  • a fuel cell has a basic structure called a cell having an electrolyte membrane and a negative electrode (fuel electrode) and a positive electrode (air electrode) provided so as to sandwich the electrolyte membrane.
  • the negative electrode and the positive electrode have a carrier and a catalyst.
  • the cell may further include a separator arranged so as to sandwich the negative electrode and the positive electrode from the outside, a gas diffusion layer arranged between the separator and the negative electrode, and between the separator and the positive electrode. Fine grooves are formed on the surface of the separator, and gas is supplied to each electrode through the grooves.
  • a humidifier is preferably provided on the negative electrode gas supply pipe 21 and the positive electrode gas supply pipe 31 so that hydrogen and air are humidified in advance and then supplied to the fuel cell.
  • a fuel cell generally has a cell stack in which a plurality of cells are connected in series, instead of a single cell. According to the cell stack, a high voltage of several tens V or higher can be obtained. Household or vehicle-mounted power generation systems are limited in size and mass, and therefore fuel cells are also required to be downsized.
  • the maximum volumetric power density of the cell stack is preferably 1 kW/L or more and the cell stack capacity is preferably 70 L or less.
  • the maximum volumetric power density of the cell stack is 3 kW/L or more and the cell stack capacity is 40 L or less. Is more preferable.
  • the mass of the cell stack is preferably 100 kg or less, more preferably 60 kg or less.
  • the separator 5 includes a separation membrane, a supply-side flow path that supplies the mixed gas to one surface of the separation membrane, and a permeation-side flow path through which the gas that has permeated the separation membrane flows.
  • the separator 5 obtains the permeated gas and the non-permeated gas from the mixed gas supplied by the separation membrane having the separation membrane that selectively permeates the target component.
  • the mixed gas is a mixture of a target component and an unnecessary component.
  • the concentration of the unnecessary component in the permeable gas is lower than the concentration of the unnecessary component in the mixed gas.
  • the separation membrane has a higher transmittance for the target component than that for the unnecessary component.
  • the target component is hydrogen and the unnecessary components are nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfurous acid gas, hydrocarbons and the like.
  • the separator specifically, a spiral-type element described later, or a cell-type element having a disc-shaped separation membrane and a housing accommodating the separation membrane can be adopted. Further, the separator 5 may include a plurality of elements and a housing that houses them.
  • the separator 5 When the separator 5 has a plurality of elements, they may be arranged in series with each other, arranged in parallel with each other, or a plurality of different kinds of elements may be combined.
  • the downstream element When connected in series, the downstream element may be arranged to receive either an upstream non-permeate gas or a permeate gas. Further, these elements may be arranged so that the non-permeated gas or the permeated gas of the downstream element is supplied to the upstream element.
  • a plurality of separators 5 may be connected in series or in parallel.
  • the configuration of each separator 5 may be the same or different.
  • the capacity of the separation membrane element per cell stack is 50 L or less.
  • the number of separation membrane elements is not particularly limited.
  • the capacity of the separation membrane element is the sum of the capacities of the plurality of separation membrane elements.
  • one spiral type element (capacity: around 45 L) having an outer diameter of 8 inches and a length of 1 meter may be applied, or a plurality of spiral type elements having a capacity less than that may be applied.
  • the capacity of the separation membrane element per cell stack is 25 L or less.
  • one spiral type element (capacity: around 23 L) having an outer diameter of 4 inches and a length of 0.5 meters may be applied, or a plurality of spiral type elements having a capacity less than that may be applied. Good.
  • the fuel cell has a cell stack having a maximum volumetric power density of 3 kW/L or more and a capacity of 40 L or less
  • the capacity of the separation membrane element per cell stack is 5 L or less.
  • one cylindrical element (capacity: around 1.5 L) having an outer diameter of 2 inches and a length of 0.5 meters may be used, or a plurality of spiral elements having a capacity less than that may be applied. May be.
  • the sum of the average value of the capacity per cell stack and the average value of the capacity per separation membrane element is 40 L or less, and one cell stack
  • the sum of the average value of the weight per unit and the average value of the weight per one of the separation membrane elements is preferably 60 kg or less.
  • the membrane area can be increased without increasing the element size, or the element size can be reduced without reducing the membrane area.
  • the power generation systems 11 and 12 are provided as members related to the separator 5 on the mixed gas pipe 22, the non-permeable gas pipe 29, the reflux pipes 23 to 25, and the like, and are valves for adjusting pressure or flow rate. Facilities not shown such as valves, tanks for storing gas, and cylinders may be provided.
  • the power generation systems 11 and 12 may include a sweep gas supply unit that supplies the sweep gas to the permeation side flow path of the separator 5.
  • the sweep gas hydrogen gas, nitrogen gas or oxygen gas generated in the system may be used, or a gas cylinder storing a sweep gas such as argon may be arranged in the system and supplied through a pipe.
  • the gas supplied from the fuel cell 4 through the mixed gas pipe 22 contains a large amount of sulfur, it is preferable to provide a desulfurization device upstream of the separator 5.
  • a desulfurization device upstream of the separator 5.
  • hydrogen that has not been separated remains in the unnecessary gas that has not permeated the separation membrane in the separator 5
  • a diluter for diluting hydrogen is provided before discharging the unnecessary gas to the atmosphere.
  • the positive electrode exhaust gas recirculation pipe 33 is provided as in the embodiment of FIG. 2, the hydrogen concentration can be reduced in advance, and thus the diluter can be omitted.
  • a dehydrator for discharging unnecessary water may be provided upstream or downstream of the separator 5.
  • (1-4) System Operation The operation of the power generation system 11 in FIG. 1 will be described.
  • the negative electrode gas stored in the hydrogen storage tank 6 is supplied to the negative electrode from the negative electrode side inlet of the fuel cell 4 through the negative electrode gas supply pipe 21.
  • Air is supplied to the positive electrode from the positive electrode side inlet of the fuel cell 4 through the positive electrode gas supply pipe 31.
  • Electrons and hydrogen ions are generated from hydrogen by the action of the negative electrode catalyst. Hydrogen ions move through the electrolyte to the positive electrode, and electrons move through the conducting wire to the positive electrode. Oxygen, hydrogen ions, and electrons in the air supplied to the positive electrode react with each other by the action of the catalyst of the positive electrode to generate water.
  • the gas containing water and air thus generated is discharged from the positive electrode side outlet of the fuel cell 4.
  • the exhaust gas is sent to the outside of the system or an apparatus (not shown) through the positive electrode exhaust gas pipe 32.
  • a gas containing unreacted hydrogen is discharged from the negative electrode side outlet of the fuel cell 4.
  • Exhaust gas may also contain nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfurous acid gas, and hydrocarbons.
  • the exhaust gas is sent to the supply side flow path of the separator 5 through the mixed gas pipe 22. Hydrogen in the exhaust gas passing through the supply side flow path of the separator 5 permeates the separation membrane and flows into the permeation side flow path of the separator 5.
  • the gas (permeated gas) that has passed through the permeate-side flow path is supplied to the fuel cell 4 from the second negative electrode side inlet through the recirculation pipe 23 when the recirculation pipe 23 is provided.
  • the permeated gas joins the anode gas passing through the reflux pipe 24 and the anode gas supply pipe 21, and is supplied to the fuel cell 4 from the anode side inlet of the fuel cell 4. .
  • the reflux pipe 25 is provided, the permeated gas is supplied to the hydrogen storage tank 6 through the reflux pipe 25, mixed with the hydrogen gas, and supplied to the fuel cell 4 through the anode gas supply pipe 21. To be done. In this way, the exhaust gas on the negative electrode side is reused.
  • the permeated gas is discharged without flowing back to the fuel cell 4 through the anode exhaust gas pipe 28 branched from the reflux pipe depending on its component (hydrogen concentration or concentration of other components) or depending on the gas amount. ..
  • the gas discharged from the supply side flow path of the separator 5 is sent to the outside of the system or a device (not shown) through the non-permeable gas pipe 29.
  • the gas discharged from the negative electrode side outlet of the fuel cell 4 has the positive electrode exhaust gas recirculation pipe 33 passing through.
  • the exhaust gas joins.
  • the mixture of the negative electrode exhaust gas and the positive electrode exhaust gas is separated into the permeated gas containing hydrogen and the other gas in the separator 5 similarly to the process in the power generation system 11.
  • the permeate gas is recycled as described above.
  • the gas supply pressure to the separator 5 is not particularly limited, but is preferably atmospheric pressure or more and 10 MPa or less. By setting the pressure to atmospheric pressure or higher, the gas permeation rate increases, and by setting the pressure to 10 MPa or lower, deformation of the members in the separator 5 can be prevented.
  • the ratio of the pressure on the supply side to the pressure on the permeation side of the separator 5 is not particularly limited, but it is preferable that the ratio of the pressure on the supply side to the pressure on the permeation side is 2 to 20. By setting this ratio to 2 or more, the gas permeation rate can be increased, and by setting it to 20 or less, the power cost for increasing the pressure on the supply side can be suppressed.
  • the gas sent to the flow passage on the supply side of the separator 5 may be pressurized by a compressor, or the permeate side may be decompressed by a pump. Or both. Further, a valve may be provided before and after the separator 5 and the opening of the valve may be changed to adjust the gas supply amount. The gas pressure can also be controlled by adjusting the gas supply amount.
  • the temperature of the gas supplied to the separator 5 is not particularly limited, but 0°C to 200°C is preferable. The higher the temperature, the higher the gas permeability. Further, the power generation efficiency can be increased by setting the temperature range suitable for the fuel cell.
  • the gas temperature is particularly preferably 70 to 120° C., for example.
  • the negative electrode side exhaust gas is diluted with the positive electrode side exhaust gas and then supplied to the separator.
  • the other gas flows are as described above for the power generation system 11.
  • FIG. 3 is a perspective view showing the spiral type element 50 partially disassembled. As shown in FIG. 3, the spiral element 50 includes a central tube 51, a separation membrane 52, a supply side channel material 53, a permeation side channel material 54, a first end plate 55, and a second end plate 56.
  • the central tube 51 is a hollow cylindrical member having a through hole formed on the side surface.
  • the center tube 51 is preferably made of metal such as SUS (Stainless Used Steel), aluminum, copper, brass and titanium from the viewpoint of pressure resistance and heat resistance, but its material, shape, size, etc. can be changed. is there.
  • the separation membrane 52 is overlapped with the supply-side channel material 53 and the permeation-side channel material 54, and is spirally wound around the central tube 51.
  • One spiral element can include a plurality of separation membranes 52. By including these wound members, the spiral element 50 has a substantially columnar appearance with the longitudinal direction of the central tube 51 as the major axis.
  • the separation membrane 52 has a structure in which a base material 75, a porous support layer 74, and a separation function layer 73 are laminated in this order, the separation membrane faces each other on the separation function layer side. , And the surfaces on the base material side are overlapped so as to face each other.
  • the surface on the base material side is read as “the surface on the porous support layer side”.
  • the supply-side channel material 53 is inserted between the surfaces of the separation membrane 52 on the separation functional layer side, and the permeation-side channel material 54 is inserted between the surfaces of the base material side. Therefore, the surface on the separator functional layer side is called the “supply side surface”, and the surface on the base material side is called the “permeation side surface”.
  • the supply-side channel material 53 and the permeation-side channel material 54 are spacers that secure a channel between the separation membranes.
  • the permeate-side channel material and the supply-side channel material may be the same member or different members.
  • the permeation-side channel material and the supply-side channel material are collectively referred to as “channel material”.
  • a protrusion made of resin or the like may be provided on one side or both sides of the sheet. Further, a protrusion may be directly fixed to the permeable surface of the separation membrane, and the protrusion may be used as the flow path material.
  • the channel material may also have curved or straight walls that control the flow of gas.
  • the material of the flow path material is not particularly limited, and metal such as SUS, aluminum, copper, brass, titanium; or urethane resin, epoxy resin, polyether sulfone, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol , Ethylene-vinyl alcohol copolymer, polyphenylene sulfide, polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, polyacetal, polymethylmethacrylate, methacryl-styrene copolymer, cellulose acetate, polycarbonate, polyethylene terephthalate , Polybutylene terephthalate and fluororesins (polytrifluoroethylene chloride, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer,
  • the separation membrane may be damaged if pressure is applied by loading an element into the pressure vessel or operating for a long time.
  • the average pore diameter of at least one of the supply-side channel material and the permeate-side channel material preferably both, is 1 mm or less, the stress applied to the separation membrane can be dispersed and damage can be reduced.
  • the average pore diameter is more preferably 0.4 mm or less, and particularly preferably 0.1 mm or less.
  • the average pore diameter is an average value of equivalent circle diameters represented by “4 ⁇ area of hole in planar direction of flow path material/perimeter of hole”. The area and circumference of 30 holes on one surface of the channel material are measured to calculate the equivalent circle diameter. An average value R1 of 30 circle equivalent diameters thus obtained is calculated. Similarly, on the other surface of the flow path member, the average value R2 of the equivalent circle diameters is calculated, and the average value of R1 and R2 is calculated.
  • the thickness of at least one of the supply-side channel material and the permeate-side channel material is preferably 150 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 50 ⁇ m or less. Since the flow path member is thin as described above, the rigidity against bending is reduced, and thus it is less likely to break. Moreover, since the flow path member is thin, the area of the separation membrane that can be accommodated can be increased while maintaining the volume of the separation membrane element. That is, it is possible to reduce the size and weight of the power generation system for home and vehicle while maintaining the performance.
  • the lower limit of the thickness of the flow path material is set according to the usage conditions of the spiral type element and is not limited to a specific numerical value.
  • the thickness of the channel material is preferably 5 ⁇ m or more or 10 ⁇ m or more.
  • the thickness of the channel material is calculated by calculating the arithmetic mean value of the thicknesses of 20 points measured at 20 ⁇ m intervals in the surface direction (direction perpendicular to the thickness direction) of the channel material.
  • the supply side flow path is open at both ends of the central tube 51 in the longitudinal direction. That is, a supply side inlet is provided at one end of the spiral type element 50, and a supply side outlet is provided at the other end.
  • the supply-side flow passage is sealed at the inner end in the winding direction, that is, the end on the central tube side. The sealing is formed by folding the separation membranes, bonding the separation membranes with a hot melt or a chemical adhesive, and fusing the separation membranes with a laser or the like.
  • the permeate side flow passage is sealed at both ends of the central tube 51 in the longitudinal direction.
  • the sealing means is the same as that of the supply side channel.
  • the permeation-side flow path is open at the inner end in the winding direction, that is, at the end on the central tube side.
  • the first end plate 55 and the second end plate 56 are disk-shaped members, and are attached to the first end and the second end in the long axis direction of the wound body of the separation membrane, respectively.
  • the first end is an end on the upstream side in the gas flow direction
  • the second end is an end on the downstream side.
  • the first end plate 55 has a hole through which the gas supplied to the supply side flow passage passes. Further, in the case where it is connected in series with another spiral type element, a hole is provided in the first end plate 55 so that gas can flow into the central tube 51.
  • the second end plate 56 has a hole through which gas discharged from the supply-side flow passage passes and a hole through which permeated gas discharged from the central tube 51 passes.
  • the spoke wheel-shaped end plates 55 and 56 shown in FIG. 3 are examples of such end plate shapes.
  • the gas separation in the spiral element 50 will be described with reference to FIG.
  • the gas G1 supplied through the mixed gas pipe 22 enters the supply side flow path from the first end of the spiral type element 50.
  • the permeation gas G2 that has permeated the separation membrane 52 flows through the permeation-side channel, flows into the central tube 51, and accumulates.
  • the permeated gas G2 is discharged from the second end of the spiral element 50 and finally discharged to the reflux pipes 23 to 25 shown in FIGS. Further, as described above, the sweep gas may be caused to flow in the permeate side flow path.
  • the non-permeable gas G3 that has not permeated the separation membrane 52 flows through the flow path on the supply side and is discharged to the non-permeable gas pipe 29 from the second end of the spiral type element 50.
  • the separation membrane applied to the separator 5 includes a porous support layer and a separation functional layer on the porous support layer.
  • a separation membrane including a base material 75, a porous support layer 74 on the base material, and a separation functional layer 73 on the porous support layer will be described. ..
  • the separation membrane described below is in the form of a sheet, that is, a flat membrane.
  • the substrate has substantially no gas separation performance and gives strength to the separation membrane.
  • the base material include polyester-based polymers, polyamide-based polymers, polyolefin-based polymers, polyphenylene sulfides, and mixtures and copolymers thereof.
  • a polyester polymer cloth having high mechanical and thermal stability is particularly preferable.
  • a long fiber non-woven fabric, a short fiber non-woven fabric, or a woven or knitted fabric can be preferably used.
  • the long-fiber nonwoven fabric refers to a nonwoven fabric having an average fiber length of 300 mm or more and an average fiber diameter of 3 to 30 ⁇ m.
  • the substrate preferably has an air flow rate of 0.5 cc/cm 2 /sec or more and 5.0 cc/cm 2 /sec or less.
  • the adhesiveness between the porous support layer and the substrate is improved, and the physical stability of the separation membrane can be increased.
  • the thickness of the substrate is preferably in the range of 10 to 200 ⁇ m, more preferably 30 to 120 ⁇ m.
  • the "thickness" of the separation membrane and its constituent elements is expressed by the arithmetic mean value of 20 points. That is, it can be obtained by obtaining measured values of thickness at 20 points at 20 ⁇ m intervals in the surface direction of the member (direction perpendicular to the thickness direction) and calculating the arithmetic mean value thereof.
  • the porous support layer has substantially no gas separation performance and gives strength to the separation membrane.
  • the size and distribution of pores in the porous support layer are not particularly limited.
  • the pore size in the porous support layer may be uniform from one surface of the porous support layer to the other surface, or gradually increases from the surface on the side where the separation functional layer is formed to the other surface. May be.
  • At least the pore diameter (diameter) of the surface on the separation functional layer side is preferably 0.1 nm or more and 100 nm or less.
  • the porous support layer is selected from the group consisting of homopolymers and copolymers such as, for example, polysulfones, polyether sulfones, polyamides, polyesters, cellulosic polymers, vinyl polymers, polyphenylene sulfides, polyphenylene sulfide sulfones, polyphenylene sulfones, and polyphenylene oxides. At least one polymer. Examples of the cellulose-based polymer include cellulose acetate and cellulose nitrate, and examples of the vinyl polymer include polyethylene, polypropylene, polyvinyl chloride and polyacrylonitrile.
  • homopolymers and copolymers such as, for example, polysulfones, polyether sulfones, polyamides, polyesters, cellulosic polymers, vinyl polymers, polyphenylene sulfides, polyphenylene sulfide sulfones, polyphenylene sulfones
  • the porous support layer preferably contains a homopolymer or copolymer such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone.
  • the porous support layer more preferably contains cellulose acetate, polysulfone, polyether sulfone, polyamide, polyphenylene sulfide sulfone, or polyphenylene sulfone.
  • polysulfone, polyether sulfone, and polyamide are particularly preferable because they are chemically, mechanically, and thermally stable and easy to mold.
  • the main component of the porous support layer is preferably an aromatic polyamide containing an aromatic ring substituted with a chloro group.
  • the gas permeability and selectivity of the separation membrane having the porous support layer having such a composition are less likely to decrease even at high temperatures. The reason is speculated as follows.
  • Aromatic polyamide has a hydrogen bonding site and thus has strong intermolecular interaction. That is, the molecular motion of the aromatic polyamide is limited even at high temperatures.
  • the chloro group forms an additional hydrogen bond due to the high electron-withdrawing effect, thus increasing the intermolecular interaction. As a result, the porous support layer is less likely to melt and can retain its shape even at high temperatures.
  • the porous support layer preferably contains an aromatic polyamide composed of at least one of repeating units represented by the following chemical formulas (1) and (2).
  • Ar 1 , Ar 2 , and Ar 3 are at least one group selected from the group consisting of groups represented by the following formulas (3-1) to (3-5) and formula (4).
  • X, Y, Z is -O -, - CH 2 -, - CO -, - CO 2 -, - S -, - SO 2 -, - C (CH 3) 2 - at least selected from the group consisting of It is one group.
  • the ratio of the number of moles of the groups corresponding to the formulas (3-1) to (3-5) in the total number of moles of Ar 1 , Ar 2 and Ar 3 (molar fraction) Is preferably 60 mol% or more, more preferably 80 mol% or more, still more preferably 98 mol% or more.
  • the aromatic ring has an amide bond as shown in the formulas (1) and (2). It has two substituents involved (ie —NH or —CO—, or both functional groups). The positions of these two substituents on the aromatic ring can be para and meta.
  • the aromatic polyamide molecule preferably contains a para-substituted product in which these substituents are arranged in the para-position.
  • the number of para-substituted aromatic rings is preferably 50% or more, more preferably 80% or more, and more preferably 90% or more of the total number of aromatic rings contained in the aromatic polyamide molecule. Is more preferable.
  • the "number” is paraphrased as "the number of moles”.
  • the meta-substitution has a bent structure, and the para-substitution has a linear structure. It is considered that this difference in structure affects the performance of the membrane.
  • the porous support layer may be formed only of para-aramid.
  • the denominator in the ratio of the para-substituted product is the total number of moles of aromatic rings contained in the aromatic polyamide.
  • the number of aromatic rings is 2, 2, and 3, respectively.
  • naphthalene (formula (3-2)) is one aromatic ring.
  • the number of para-substituted products is 1.
  • the substitution position of naphthalene (formula (3-2)) is not usually called para or meta, but in the present specification, the ana-substituted product and amphi-substituted product are regarded as para-substituted products, and other structures Is considered a meta-substitution.
  • the ratio of the number of moles of the chloro group to the total number of moles of the aromatic ring is preferably 20% or more, more preferably 40% or more, It is more preferably 80% or more.
  • the ratio of the number of moles of chloro groups is within the above range, more excellent gas permeability or separation selectivity is exhibited at high temperature.
  • the contact angle of water in the porous support layer is preferably 75° or less, more preferably 55° or less, further preferably 52° or less, particularly preferably 50° or less. Since the aromatic polyamide contained in the porous support layer is a hydrophilic polymer, the hydrophilicity of the aromatic polyamide realizes a porous support layer having a water contact angle in the above range.
  • the porous support layer preferably contains the above-mentioned polymer as a main component.
  • the ratio of the above-mentioned polymers is 70% by weight or more, 80% by weight or more, or 90% by weight or more.
  • the porous support layer may be composed of only the above-mentioned polymer.
  • the number of pores having a diameter (diameter) of 8 nm or more on the surface of the porous support layer on the side in contact with the separation functional layer is 15% or less of the total number of pores. It is preferably at most 11%, more preferably at most 11%.
  • the hole can be referred to as a “recess”.
  • the concave portion is also a portion sandwiched by the convex portions. That is, the porous support layer has fine irregularities on its surface.
  • the convex portion serves as a scaffold (starting point) for growing the crosslinked polyamide in the polycondensation.
  • the number of pores having a diameter of 8 nm or more is 15% or less of the total number of pores, that is, the distance between the convex portions is 8 nm or more on the surface of the porous support layer, which is a disadvantage in the crosslinked polyamide. Has the effect of being less likely to occur.
  • the maximum pore size on the surface of the porous support layer is preferably 12 nm or less.
  • the maximum pore size on the surface of the porous support layer being 12 nm or less means that the distance between the scaffolds is 12 nm or less, so that the occurrence of defects is further suppressed.
  • the pore size on the surface of the porous support layer is measured as follows. An arbitrary 5 spots on the surface of the porous support layer are photographed by SEM (2,000,000 magnification, 0.3072 ⁇ m 2 ) to obtain 5 images. The pore diameter and the number of pores are measured on 5 SEM photographs.
  • the maximum pore size is the arithmetic mean of the three numerical values obtained by removing the minimum and maximum values from the maximum pore size obtained from each of the five SEM photographs.
  • the ratio of the number of holes having a diameter of 8 nm or more is calculated as follows. First, the ratio of the holes having a diameter of 8 nm is calculated by dividing the number of holes having a diameter of 8 nm or more measured from 5 SEM photographs by the total number of holes in the photographs and multiplying by 100. .. The arithmetic mean of the three values obtained by removing the minimum value and the maximum value from the five values thus obtained is the ratio of the number of pores having a diameter of 8 nm or more in this membrane. Before the measurement of the hole diameter and the number of holes, image correction may be performed so as to remove shadows derived from the surface grain structure instead of the holes from the image.
  • the separation functional layer is removed from the separation membrane to expose the surface of the porous support layer.
  • the removal method include, but are not particularly limited to, immersing the separation membrane in an aqueous solution of sodium hypochlorite.
  • the pore size and the distribution of pores inside the porous support layer are not particularly limited, but for example, the pore size is uniform throughout the porous support layer, or is different from the surface on the side in contact with the separation functional layer in the porous support layer. It may gradually increase toward one side.
  • the thickness of the base material and the porous support layer influences the strength of the separation membrane and the packing density when it is used as an element.
  • the total thickness of the base material and the porous support layer is preferably 30 ⁇ m or more and 300 ⁇ m or less, and more preferably 100 ⁇ m or more and 220 ⁇ m or less.
  • the thickness of the porous support layer is preferably 20 ⁇ m or more and 100 ⁇ m or less. This "thickness" is obtained by calculating the average value of the thicknesses at 20 points measured at 20 ⁇ m intervals in the plane direction (direction perpendicular to the thickness) of the porous support layer.
  • the separation functional layer contains one or more compounds selected from the group consisting of polyamide, graphene, MOF (Metal Organic Framework), and COF (Covalent Organic Framework). These materials have a pore size or affinity suitable for selectively permeating hydrogen from a mixed gas containing hydrogen.
  • the molecular structure and layer structure of the compound constituting the separation functional layer can be changed based on the known technique for the separation membrane depending on the use conditions and the target performance. Further, regardless of its chemical composition, it is preferable to reduce the presence of structural defects of 1 nm or more in the separation functional layer as much as possible.
  • the separation functional layer may contain two or more compounds selected from polyamide, graphene, MOF and COF. By changing the contents of these compounds in the separation functional layer, the hydrogen selective permeability and the strength of the separation functional layer can be adjusted to desired ranges.
  • the separation functional layer preferably contains at least polyamide.
  • the separation functional layer preferably contains a crosslinked polyamide, and preferably has a thin film containing the crosslinked polyamide.
  • the crosslinked polyamide is preferably a polycondensation product of a polyfunctional amine and a polyfunctional acid halide.
  • the proportion of the crosslinked polyamide in the separation functional layer is preferably 50% by weight or more, 70% by weight or more, or 90% by weight or more, and the separation functional layer may be composed of only the crosslinked polyamide. Good.
  • the separation functional layer contains 50% or more of crosslinked polyamide, high performance membrane performance is likely to be exhibited.
  • the separation functional layer contains a crosslinked polyamide
  • the number A of amino groups, the number B of carboxy groups, and the number C of amide groups measured for the separation functional layer are (A+B)/C ⁇ 0.66 It is preferable to satisfy.
  • the ratio of the number A of amino groups, the number B of carboxy groups, and the number C of amide groups can be determined by 13 C solid state NMR measurement of the separation functional layer.
  • the base material is peeled off from the separation membrane 5 m 2 to obtain a laminate of the separation functional layer and the porous support layer.
  • the porous support layer is removed from the laminate to obtain a separation functional layer.
  • the obtained separation functional layer was analyzed by CP/MAS- 13 C solid state NMR method or DD/MAS- 13 C solid state NMR method to find the carbon peak of each functional group or the carbon peak to which each functional group is bound.
  • the number ratio of each functional group can be calculated from the comparison of the integrated values.
  • Amino and carboxy groups are functional groups that have a strong affinity for carbon dioxide. Therefore, the smaller the amount of these functional groups in the separation functional layer, the smaller the affinity between the separation functional layer and carbon monoxide, carbon dioxide, without reducing the permeability of light gases such as hydrogen and helium. Only the permeability of carbon monoxide and carbon dioxide decreases. As a result, the separation selectivity of the light gas with respect to carbon monoxide or carbon dioxide is improved.
  • the fact that the proportion of amide groups among the functional groups in the crosslinked polyamide is large means that many crosslinks are formed in the crosslinked polyamide.
  • the pore size is small, so that the permeability of nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfurous acid gas, and hydrocarbons, which are larger than light gases such as hydrogen and helium, is reduced. That is, when the proportion of the amide group is high, the separation selectivity of the light gas with respect to nitrogen, carbon monoxide, carbon dioxide, hydrocarbon, hydrogen sulfide, or sulfurous acid gas is improved.
  • the molecular sizes of gas are hydrogen, carbon dioxide, carbon monoxide, nitrogen, and sulfur (hydrogen sulfide, sulfurous acid gas) in order from the smallest, and carbon monoxide and nitrogen are almost the same size. Gases with a large difference in molecular size are easier to separate. For example, the separation selectivity of hydrogen to nitrogen, carbon monoxide, hydrocarbons, hydrogen sulfide, and sulfurous acid tends to be higher than the separation selectivity of hydrogen to carbon dioxide.
  • the crosslinked polyamide contained in the separation functional layer may be a wholly aromatic polyamide or a wholly aliphatic polyamide, and may have both an aromatic part and an aliphatic part.
  • the crosslinked polyamide is preferably a wholly aromatic polyamide. That is, the polyfunctional amine and the polyfunctional acid halide, which are the monomer components of the crosslinked polyamide, are at least one of the polyfunctional aromatic amine and the polyfunctional aliphatic amine, and the polyfunctional aromatic acid halide and the polyfunctional aliphatic amine, respectively. It is at least one of acid halides and is optionally combined.
  • a polyfunctional aromatic amine is selected as the polyfunctional amine and a polyfunctional aromatic acid halide is selected as the polyfunctional acid halide.
  • polyfunctional aromatic amine has at least two amino groups of at least one of a primary amino group and a secondary amino group in one molecule, and at least one of the amino groups.
  • One means an aromatic amine which is a primary amino group.
  • polyfunctional aliphatic amine means an aliphatic amine having two or more amino groups of at least one of primary amino group and secondary amino group in one molecule.
  • polyfunctional aromatic amines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, o-xylylenediamine, m-xylylenediamine, p-xylylenediamine, o-diaminopyridine, m-diaminopyridine.
  • polyfunctional aliphatic amine ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, piperazine, 2-methylpiperazine, 2,4-dimethylpiperazine, 2,5 -Dimethylpiperazine, 2,6-dimethylpiperazine and the like can be mentioned.
  • the polyfunctional acid halide which is also referred to as a polyfunctional carboxylic acid derivative, refers to an acid halide having at least two carbonyl halide groups in one molecule.
  • examples of the trifunctional aromatic acid halide include trimesic acid chloride
  • examples of the bifunctional aromatic acid halide include biphenyldicarboxylic acid dichloride, azobenzenedicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and the like. Examples thereof include naphthalenedicarboxylic acid dichloride and oxalyl chloride.
  • the polyfunctional acid halide is preferably a polyfunctional acid chloride.
  • 2 to 4 polyfunctional acid halides are included in one molecule. It is preferable that it is a polyfunctional acid chloride having a carbonyl chloride group. From the viewpoint of easy availability and easy handling, trimesic acid chloride is particularly preferable.
  • One of these polyfunctional amines and acid halides may be used alone, or two or more thereof may be used in combination.
  • the crosslinked polyamide contained in the separation functional layer may have a nitro group.
  • the nitro group may be present in the monomer during the reaction for forming the crosslinked polyamide, or may be introduced by chemical conversion after the formation of the crosslinked polyamide. It is preferable to apply a chemical action.
  • the existence of the nitro group can be confirmed by the N1s peak obtained by X-ray photoelectron spectroscopy (XPS).
  • the N1s peak is due to the core electrons of the nitrogen atom.
  • the N1s peak is considered to be composed of components derived from N—C and components derived from NOx (x ⁇ 2). Components derived from N—C are around 400 eV, and components derived from NOx (x ⁇ 2) are around 406 eV. Appear in.
  • the crosslinked polyamide contained in the separation functional layer preferably has a fluorine atom bonded to a carbon atom.
  • Polyamide has high cohesiveness, and has low cohesiveness and low solubility of light gases such as hydrogen and helium.
  • the introduction of fluorine into the carbon atoms reduces the cohesiveness of the polyamide and improves the solubility of the light gas, thus improving the light gas/nitrogen separation selectivity.
  • the ratio of the number of fluorine atoms to the number of carbon atoms determined by X-ray photoelectron spectroscopy (XPS) is preferably 0.1% or more, and preferably 12% or less. This ratio may be 8% or less or 2% or less. When this ratio is 0.1% or more, the cohesiveness of the crosslinked polyamide is reduced and the separation selectivity is improved. Further, when this ratio is 12% or less, good pressure resistance can be obtained.
  • the fact that fluorine is bonded to a carbon atom means that the fluorine is bonded to a carbon atom of the aromatic ring.
  • the aromatic ring to which the fluorine atom is bonded may be derived from an aromatic amine or an acid halide among the monomers forming the crosslinked polyamide.
  • the ratio of (number of fluorine atoms/number of carbon atoms) is an arithmetic average value of values obtained by XPS at arbitrary 10 positions in the separation membrane. Further, since a peak derived from C—F (carbon-fluorine bond) is observed at 686 eV, it is possible to analyze the presence/absence of a fluorine group bonded to a carbon atom based on the presence/absence of this peak.
  • the separation functional layer preferably includes a thin film containing a crosslinked polyamide having any of the above-mentioned compositions.
  • the separation functional layer may include a thin film containing polyamide as a main component and one or more compounds selected from graphene, MOF and COF supported on the thin film.
  • the separation functional layer having such a structure has high strength. Further, the performance can be controlled by the molecular structure of graphene, MOF or COF, the content in the separation functional layer, and the dispersion state in the separation functional layer.
  • the thin film preferably has a repeating structure of irregularities, that is, a fold structure.
  • the thickness of the separation functional layer is preferably 0.01 ⁇ m to 1 ⁇ m, or 0.1 ⁇ m to 0.5 ⁇ m, although it depends on the target separation performance and gas permeability. ..
  • the method for forming the porous support layer is a step of preparing a polymer solution by dissolving a polymer as a constituent component of the porous support layer in a good solvent for the polymer.
  • the solidified polymer corresponds to the porous support layer.
  • the chemical structure of the polymer that is a constituent of the porous support layer is as described above.
  • NMP NMP or a mixed solvent of NMP and an organic polar solvent other than NMP as the solvent of the polymer solution.
  • NMP has excellent compatibility with the above polymers and is useful for forming a porous support layer. Further, by using the mixed solvent, the rate of the solvent flowing out when forming the porous support layer can be appropriately adjusted, and the distribution and density of the pore size can be adjusted within a desired range.
  • the solubility parameter value of the organic polar solvent is preferably 11.0 or more and 13.2 or less. When the solubility parameter value of the organic polar solvent is within the above numerical range, the affinity of the organic polar solvent with the polymer is relatively inferior to that of NMP, so that the phase separation of the polymer proceeds rapidly.
  • the organic polar solvent may be one selected from the group consisting of acetone, anisole, THF, cyclohexanone, aniline, DMAc, etc., but is not particularly limited. Among them, it is preferable to use acetone.
  • the mixing ratio of the mixed solvent is not particularly limited, but NMP is preferably 60% by weight or more and 99% by weight or less, and more preferably 70% by weight or more and 90% by weight or less. Further, it is more preferable that NMP is 80% by weight or more and 90% by weight or less.
  • NMP is 80% by weight or more and 90% by weight or less.
  • the mixing ratio of NMP in the mixed solvent is greater than 99% by weight, the ratio of the organic polar solvent mixed with NMP is small, and the above effect is not exhibited. If the mixing ratio of NMP is less than 60% by weight, the viscosity of the polymer solution increases, and it becomes difficult to form the porous support layer.
  • the polymer concentration of the solution used for forming the porous support layer is not particularly limited, but is preferably 2% by weight or more and 15% by weight or less, and preferably 4% by weight or more and 12% by weight or less.
  • a content of 2% by weight or more can prevent the internal structure from becoming too empty, and a content of 15% by weight or less can prevent the viscosity of the polymer solution from becoming extremely high.
  • the method for forming the porous support layer may further include a step of polymerizing a monomer to generate a polymer forming the porous support layer.
  • Aromatic polyamide which is an example of a polymer, is obtained by solution polymerization or interfacial polymerization using acid chloride and diamine as monomers.
  • an aprotic organic polar solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAc) or dimethylformamide (DMF) can be used as a solvent.
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • this polymer solution can be used as it is as a film-forming stock solution, or the polymer can be isolated once and then re-dissolved in the above-mentioned organic solvent or an inorganic solvent such as sulfuric acid to prepare a film-forming stock solution. Is also good.
  • the step of forming the separation functional layer containing the crosslinked polyamide uses an aqueous solution containing a polyfunctional amine and an organic solvent solution containing a polyfunctional acid halide to form an interface between the polyfunctional amine and the polyfunctional acid halide on the porous support layer.
  • the step of forming a crosslinked polyamide by polycondensation is included.
  • the step of forming a crosslinked polyamide includes (a) applying an aqueous solution containing a polyfunctional amine to a porous support layer, and (b) thereafter applying an organic solvent solution containing a polyfunctional acid halide to the porous support layer. And the step of applying to.
  • the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably in the range of 0.1% by weight or more and 20% by weight or less, more preferably 0.5% by weight or more and 15% by weight or less. It is within the range. When the concentration of the polyfunctional amine is within this range, sufficient separation selectivity and permeability can be obtained.
  • the polyfunctional amine aqueous solution may contain a surfactant, an organic solvent, an alkaline compound, an antioxidant and the like as long as they do not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide.
  • the surfactant has the effects of improving the wettability of the surface of the porous support layer and reducing the interfacial tension between the polyfunctional amine aqueous solution and the non-polar solvent.
  • the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and if added, the interfacial polycondensation reaction may be performed efficiently.
  • the application of the polyfunctional amine aqueous solution is preferably performed uniformly and continuously on the porous support layer.
  • a method of coating the polyfunctional amine aqueous solution on the porous support layer or a method of immersing the porous support layer in the polyfunctional amine aqueous solution can be mentioned.
  • the coating include dripping, showering, spraying, roller coating and the like.
  • the polyfunctional amine aqueous solution After applying the polyfunctional amine aqueous solution to the porous support layer, drain it so that no droplets remain on the membrane.
  • the portion where the droplets remain may cause a film defect to deteriorate the film performance, but this can be prevented by draining. It is possible to use a method of vertically gripping the support film after contacting the polyfunctional amine aqueous solution and allowing an excessive aqueous solution to flow down naturally, or a method of blowing a stream of nitrogen or the like from an air nozzle to forcibly drain the solution. Further, after draining, the film surface may be dried to partially remove the water content of the aqueous solution.
  • the contact time between the porous support layer and the polyfunctional amine aqueous solution is preferably from 1 second to 10 minutes, more preferably from 10 seconds to 3 minutes.
  • the concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01% by weight or more and 10% by weight or less, and 0.02% by weight or more and 2.0% by weight or less. It is more preferable to be within the range. This is because a sufficient reaction rate can be obtained with an amount of 0.01% by weight or more, and the occurrence of side reactions can be suppressed with an amount of 10% by weight or less. Furthermore, when an acylation catalyst such as DMF is contained in this organic solvent solution, interfacial polycondensation is promoted, which is more preferable.
  • the organic solvent is preferably one that is immiscible with water, dissolves the polyfunctional acid halide and does not destroy the support film, and is inert to the polyfunctional amine compound and the polyfunctional acid halide. I wish I had it.
  • Preferred examples include hydrocarbon compounds such as n-hexane, n-octane, n-decane and isooctane.
  • the method for applying the polyfunctional acid halide solution to the porous support layer may be the same as the method for applying the polyfunctional amine aqueous solution to the porous support layer.
  • the solution of the polyfunctional acid halide is preferably applied only to one surface of the porous support layer, and thus it is preferably applied by coating rather than dipping.
  • the porous support layer coated with the organic solvent solution of polyfunctional acid halide may be heated.
  • the heat treatment temperature is 50° C. or higher and 180° C. or lower, preferably 60° C. or higher and 160° C. or lower.
  • 60° C. or higher it is possible to compensate the decrease in reactivity due to the consumption of monomers in the interfacial polymerization reaction by the effect of accelerating the reaction by heat.
  • 160° C. or lower it is possible to prevent the solvent from being completely volatilized and the reaction efficiency from being significantly lowered.
  • the heat treatment time of each time is preferably 5 seconds or more and 180 seconds or less.
  • the time is 5 seconds or longer, the reaction promoting effect can be obtained, and when the time is 180 seconds or shorter, the solvent can be prevented from completely volatilizing.
  • the molecular weight of the polyamide increases, and the functional group ratio (A+B)/C represented by the number A of amino groups, the number B of carboxy groups, and the number C of amide groups decreases, so that the separation selectivity is improved. ..
  • Fluorine can be introduced into the crosslinked polyamide by forming the crosslinked polyamide in the presence of the fluorine-containing compound having a reactive group.
  • fluorine-containing compound having a reactive group examples include pentafluorobenzoyl chloride and tetrafluoroisophthalic acid chloride.
  • Fluorine can be introduced by chemically treating the obtained crosslinked polyamide. Specifically, it is preferable to bring the fluorinating agent into contact with the separation membrane.
  • the fluorinating agent 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octanebis( Tetrafluoroborate) (Selectfluor (registered trademark)), N-fluorobenzenesulfonimide, 1-fluoropyridinium tetrafluoroborate and the like can be mentioned.
  • the reaction means of the fluorinating agent and the crosslinked polyamide is not particularly limited, but a method of immersing the gas separation composite membrane of the crosslinked polyamide in an aqueous solution of the fluorinating agent is preferable.
  • the concentration of the fluorinating agent is preferably 0.01% by weight to 10% by weight, more preferably 0.1% by weight to 1% by weight.
  • a chemical treatment method it is desirable to treat an aqueous solution containing a water-soluble fluorinating agent at 10°C or higher and 100°C or lower, more preferably 20°C or higher and 80°C or lower.
  • the temperature is 10° C. or higher, the reaction efficiency can be improved, and when the temperature is 100° C. or lower, the decomposition of the fluorinating agent can be suppressed.
  • the contact time between the fluorinating agent aqueous solution and the crosslinked polyamide is preferably 30 seconds to 1 day, and more preferably 1 minute to 30 minutes in consideration of compatibility of practicality and reaction efficiency.
  • the method for producing the separation membrane may include a step of performing a chemical treatment after forming the separation functional layer.
  • the chemical treatment include the above-mentioned introduction of fluorine and oxidation.
  • the amino groups and carboxy groups of polyamide are chemically converted into a nitro group structure.
  • the functional group ratio (A+B)/C can be reduced.
  • the oxidizing agent include water-soluble compounds such as hydrogen peroxide, peracetic acid, sodium perborate and potassium peroxymonosulfate.
  • the reaction means of the oxidizing agent and the polyamide is not particularly limited, but for example, a method of immersing the separation membrane in an aqueous solution of the oxidizing agent is preferable.
  • the concentration of the oxidizing agent is preferably 0.1% by weight to 10% by weight, more preferably 0.5% by weight to 3% by weight.
  • the pH of the aqueous oxidant solution is not particularly limited as long as the oxidizing power of the oxidant can be sufficiently exhibited, but it is preferably in the range of 1.5 to 7.0.
  • an aqueous solution containing an oxidizing agent at 10°C or higher and 100°C or lower, more preferably 20°C or higher and 80°C or lower.
  • the temperature is 10° C. or higher, the reaction efficiency can be improved, and when the temperature is 100° C. or lower, the decomposition of the oxidant can be suppressed.
  • the contact time between the aqueous oxidizing agent solution and the polyamide is preferably 30 seconds to 1 day, and more preferably 1 minute to 30 minutes in consideration of compatibility of practicality and reaction efficiency.
  • the reducing agent is not particularly limited as long as it causes a redox reaction with the oxidizing agent used, but it is preferable to use any one of sodium hydrogen sulfite, sodium sulfite, and sodium thiosulfate from the viewpoint of easy availability and handling. . Further, they are preferably used as an aqueous solution of 0.01% by weight to 1% by weight.
  • the contact time with the reducing agent should be such that the oxidation reaction can be stopped, and normally a dipping time of 1 minute to 20 minutes is preferable.
  • the method for producing a separation membrane may further include a drying step.
  • the method for drying is not particularly limited, but water may be removed by vacuum drying, freeze-drying, high temperature heating, or an alcohol solvent such as ethanol or isopropanol, or immersion in a hydrocarbon solvent to replace water with the solvent. After that, the solvent may be removed under the drying conditions. It is particularly preferable to heat at a high temperature so that a dense functional layer can be easily obtained.
  • the method of high temperature heating is not particularly limited, but it is desirable to heat in an oven at 30°C to 200°C, more preferably 50°C to 150°C for 1 minute or more. By setting the temperature to 30° C. or higher, the water can be efficiently removed, and by setting the temperature to 200° C. or lower, it is possible to prevent the deformation caused by the difference in the heat shrinkage ratio between the functional layer and the base material.
  • the present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
  • the temperature is 25° C. unless otherwise specified.
  • mass% is expressed as wt %.
  • Separation Membrane Having Polyamide Separation Functional Layer [Production Examples of Separation Membrane (1) to (8)] (Formation of porous support layer) A 16.0 wt% DMF solution of polysulfone (PSf) was cast on a non-woven fabric (made of polyester, air permeability 2.0 cc/cm 2 /sec) as a base material at a temperature of 25° C. to a thickness of 200 ⁇ m, and immediately purified water was used. The porous support layer was formed by immersing it in the solution and leaving it to stand for 5 minutes. Thus, a supporting film having the substrate and the porous supporting layer was prepared.
  • PSf polysulfone
  • the supporting film obtained by the above operation was immersed in a 6.0 wt% m-PDA aqueous solution for 2 minutes. Next, the support film was slowly pulled up in the vertical direction, and nitrogen was blown from the air nozzle to remove excess amine aqueous solution from the surface of the porous support layer. Next, a TMC (trimesin chloride) solution having the composition shown in Table 3 below was applied so that the entire surface of the porous support layer was wet, and the solution was allowed to stand for the time shown in Table 3 below. Next, the membrane surface was held vertically for 1 minute to remove excess solution from the surface of the porous support layer.
  • TMC trimesin chloride
  • the mixture was allowed to stand (polycondensation) in an oven under the conditions shown in Table 3 below, and then washed with water at 50° C. for 10 hours. Further, after drying in an oven at 120° C. for 30 minutes, a separation membrane was obtained. For some production examples, post-treatment was performed after washing and before drying.
  • the porous support layer and the separation functional layer were collected by physically peeling the base material from the separation membrane 5 m 2 . After the laminate of the porous support layer and the separation functional layer is left to stand at 25° C. for 24 hours to dry, it is added little by little to a beaker containing dichloromethane and stirred to form a polymer constituting the porous support layer. Was dissolved. The insoluble matter in the beaker was collected with filter paper and washed with dichloromethane.
  • the separated functional layer thus recovered was dried by a vacuum dryer to remove residual dichloromethane.
  • the separation functional layer was freeze-pulverized into a powdery sample, which was enclosed in a sample tube. Using this sample, 13 C solid state NMR measurement by the DD/MAS method was performed.
  • 13 C solid state NMR measurement CMX-300 manufactured by Chemetics can be used. An example of measurement conditions is shown below.
  • ⁇ Effective membrane area of separation membrane 25 cm 2 ⁇ Cell temperature: 80°C ⁇ Supply gas: pure gas of hydrogen or carbon dioxide 1 atm, flow rate 100 cm 3 /min ⁇ Sweep gas: argon, 100 cm 3 /min, 1 atm
  • the permeated gas and the sweep gas flowing out from the test cell 80 were passed through a gas chromatograph 86 having a TCD (thermal conductivity detector) to measure the concentration of hydrogen or carbon dioxide. Further, the gas flow destination was switched from the gas chromatograph 86 to the soap film flowmeter 87 by the valve 85, and the flow rate was measured. The gas permeability (nmol/m 2 /s/Pa) of each separation membrane was determined from the gas concentration and the flow rate.
  • TCD thermo conductivity detector
  • the H 2 /CO 2 separation selectivity was calculated by dividing the hydrogen permeability one hour after the start of gas supply by the carbon dioxide permeability.
  • the reflux pipe 24 is adopted.
  • the power generation system 101 of FIG. 6 is the same as the power generation system 13 except that the separator 5 and the non-permeable gas pipe 29 are not provided, and the reflux pipe 24 and the negative electrode exhaust gas pipe 28 that branch directly from the mixed gas pipe 22 are provided. there were.
  • the gas supplied to the negative electrode side was switched to a hydrogen mixed gas with impurities added (impurities: carbon dioxide gas, carbon monoxide gas, hydrogen sulfide gas, sulfurous acid gas) (condition 2).
  • impurities carbon dioxide gas, carbon monoxide gas, hydrogen sulfide gas, sulfurous acid gas
  • V1 The ratio of the initial voltage V0 to the voltage V1 (V1/V0) is shown in Table 4 as the voltage reduction rate when the separation membrane is not used.
  • Separation Membrane Having Fluorine-Containing Polyamide Separation Functional Layer [Production Examples of Separation Membrane (11) to (17)] A separation membrane was obtained by the same operation as in Production Example (1) except for the conditions shown in Table 5 below. In addition, for some production examples, after polycondensation, after washing with water at 50° C. for 10 hours, post-treatment was performed before drying.
  • the power generation system 102 is a contrast to the power generation system 14, and does not include the separator 5 and the non-permeable gas pipe 29, but includes the reflux pipe 24 and the negative electrode exhaust gas pipe 28 that branch directly from the mixed gas pipe 22. It had a similar configuration.
  • the voltage drop rate V4/V3 is shown in Table 7 as a reference value (value when the separation membrane is not used) of the power generation system 14.
  • a voltage value V5 was obtained by performing a power generation test using the power generation system 14 under the same conditions as the power generation test of I above.
  • V5/V3 was calculated as the voltage reduction rate and is shown in Table 7.
  • Separation Membrane Having Polyamide-Containing Porous Support Layer [Production Examples of Separation Membrane (18) to (27)] (Preparation of Polyamide Forming Porous Support Layer) An amine was dissolved in dehydrated N-methyl-2-pyrrolidone to a concentration shown in Table 8 below, and an acid halide was further added so as to have a concentration shown in Table 8 below, followed by stirring for 2 hours for polymerization. Then, the solution was neutralized with lithium carbonate to obtain a solution of aromatic polyamide having a polymer concentration of 10 wt %.
  • the polyamides of Polymerization Examples a to c were diluted to 6% by weight.
  • the solvents are shown in Table 9 below.
  • the obtained solution was cast on a polyphenylene sulfide non-woven fabric (air permeability of 2.0 cc/cm 2 /sec) as a base material so as to have a thickness of 180 ⁇ m, immediately immersed in pure water and left for 5 minutes.
  • a support film having a base material and a porous support layer formed on the base material was obtained.
  • the supporting film obtained by the above operation was immersed in a 6.0 wt% m-PDA aqueous solution for 2 minutes. Next, the support film was slowly pulled up in the vertical direction, and nitrogen was blown from the air nozzle to remove excess amine aqueous solution from the surface of the porous support layer. Next, a 0.16 wt% TMC solution was applied so that the entire surface of the porous support layer was wet, and left standing for 30 seconds. Next, the membrane surface was held vertically for 1 minute to remove excess solution from the surface of the porous support layer. Then, the mixture was left standing (polycondensation) in a 100° C. oven for the time shown in Table 10 below, and then washed with water at 50° C. for 10 hours. Further, after drying in an oven at 120° C. for 30 minutes, a separation membrane was obtained.
  • the separation functional layer was removed by immersing the separation membrane in an aqueous solution of sodium hypochlorite to expose the surface of the porous support layer.
  • the surface of the porous support layer was photographed by SEM at a magnification of 2,000,000 and a visual field size of 0.3072 ⁇ m 2 .
  • the obtained image was binarized using Microsoft Office 2010, and then Photo Draw was used to remove shadows (level 2) derived from the grain structure of the surface which is not a hole.
  • the image was again corrected to midtone 70 using Microsoft Office 2010 to further remove shadows. From the corrected image, the number of holes and each hole diameter were measured by Inspector 2.2.
  • the ratio of the pores having a pore diameter of 8 nm or more to all the pores was calculated by dividing the number of pores having a pore diameter of 8 nm or more by the total number of pores. Regarding the ratio of the number of pores with a pore size of 8 nm or more to the total number of pores and the maximum pore diameter, the ratio and the maximum pore diameter were measured for each of the five SEM photographs by the above procedure, and the maximum and minimum values were omitted from the obtained five numerical values. Then, the arithmetic mean value was calculated. The results are shown in Table 12 as "maximum pore size".
  • H 2 permeability ratio ie (H 2 permeability after 90 hours/H 2 permeability after 1 hour), H 2 /CO 2 selectivity ratio ((selectivity after 90 hours /Selectivity after 1 hour) was calculated and the results are shown in Table 14.
  • the coating amount was 1 mL/cm 2 per unit area of the support film.
  • the spin chamber, spin table, and support film were preheated to 95°C. The obtained film was heated at 160° C. for 30 minutes to partially reduce graphene oxide to form a graphene layer.
  • Zn (NO 3) 2 ⁇ 6H 2 O and 2-methylimidazole weight ratio 1: 6 and made way, and Zn (NO 3) the sum of the concentrations of 2 ⁇ 6H 2 O and 2-methylimidazole 15 wt% was dissolved in methanol so that The precipitate was collected by filtration, washed and dried.
  • the ZIF-8 thus obtained was added to methanol to a concentration of 0.1 wt% to prepare a suspension.
  • the above-mentioned support film was immersed in this suspension for 10 minutes, then pulled up and dried.
  • a polyimide film was prepared with reference to the method described in Japanese Patent No. 6142730 (Example 1).
  • a polyimide solution was prepared by carrying out a polymerization reaction at a reaction temperature of 210° C. for 30 hours with stirring under the conditions.
  • the obtained polyimide solution is filtered, and the solution is used as a primary coagulating liquid using a spinning device equipped with a spinning nozzle (circular opening outer diameter 900 ⁇ m, circular opening slit width 200 ⁇ m, core opening outer diameter 450 ⁇ m).
  • a spinning device equipped with a spinning nozzle (circular opening outer diameter 900 ⁇ m, circular opening slit width 200 ⁇ m, core opening outer diameter 450 ⁇ m).
  • 3° C., 90 wt% isopropanol aqueous solution was discharged in the form of hollow fibers, and further immersed in a secondary coagulation liquid (1° C., 90 wt% isopropanol aqueous solution) to coagulate.
  • the obtained hollow fiber was washed with isopropanol, then replaced with isooctane, dried by heating at 130° C., and further heat-treated at 380° C. for 20 minutes to obtain a hollow fiber membrane.
  • DSDA 3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene)-bis(phthalic anhydride)
  • BPDA 3,3′,4,4′-biphenyltetracarboxylic dianhydride
  • DABA 3 ,5-diaminobenzoic acid
  • a zeolite membrane was prepared with reference to the method described in Japanese Patent No. 617,000 (Example 1). Specifically, it is as follows. NaOH, KOH, and aluminum hydroxide (containing Al 2 O 3 53.5 wt%, manufactured by Aldrich) were added to ion-exchanged water to dissolve the aluminum hydroxide, and then N,N,N-trimethyl-1-adamantane. An ammonium hydroxide (TMADAOH) aqueous solution was added, and colloidal silica (Snowtec-40 manufactured by Nissan Chemical Co., Ltd.) was further added and stirred to obtain a mixture. The TMADAOH aqueous solution is a solution manufactured by Sechem Co., Ltd.
  • a zeolite having a particle size of 0.5 ⁇ m was obtained.
  • a suspension was obtained by dispersing zeolite at a concentration of 0.4 wt% in distilled water.
  • a porous alumina tube (outer diameter 12 mm, inner diameter 9 mm) as an inorganic porous support was immersed in this suspension for a predetermined time. Then, the porous alumina tube was dried at 120° C. for 24 hours.
  • the treated porous alumina tube was immersed in the above mixture in a Teflon (registered trademark) inner cylinder (800 ml), and heated at 180° C. for 48 hours. Then, the porous alumina tube was dried at 100° C. for 8 hours. The composite of alumina and zeolite thus obtained was fired at 500° C. for 10 hours in an electric furnace.
  • Teflon registered trademark
  • a palladium film was prepared with reference to the method described in International Publication No. 2014/0980038 (Example 1).
  • An ingot composed of 65 mol% Pd and 35 mol% Ag was placed in an arc melting furnace equipped with a water-cooled copper crucible, and arc-melted in an Ar gas atmosphere at atmospheric pressure.
  • the melt was cold-rolled using a two-stage rolling machine with a roll diameter of 100 mm to a thickness of 6 mm to obtain a plate material.
  • the obtained plate material was rolled and put into a glass tube, and both ends were sealed.
  • the inside of the glass tube was depressurized to 4.8 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 7690° C., left for 24 hours, and then cooled to room temperature.
  • the plate material was cold-rolled to a thickness of 100 ⁇ m using a two-stage rolling machine having a roll diameter of 100 mm, and further, the plate material was cold-rolled to a thickness of 25 ⁇ m using a two-stage rolling machine having a roll diameter of 20 mm. Then, the rolled plate material was put into the glass tube, and both ends of the glass tube were sealed.
  • the inside of the glass tube was decompressed to 4.9 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 710° C. and left for 3 hours, and then cooled to room temperature to form a palladium film.
  • the power generation system 102 shown in FIG. 8 generated power under the above condition 1.
  • the permeated gas was collected from the separator and the hydrogen purity was measured.
  • the hydrogen purity decrease rate was calculated from the hydrogen purity immediately after the start of power generation and the hydrogen purity after a lapse of a predetermined time.
  • This operation was performed using the separation membrane shown in Table 19 by changing the channel materials on the supply side and the permeation side as shown in Table 19. All flow path materials are nets. Further, for the separation membrane of Production Example (25), an element having a membrane area tripled to 3 m 2 was also produced.
  • the separation membrane of Production Example (30) is a hollow fiber membrane
  • one end of the separation membrane was closed and the other end was opened, and the element was fixed in the housing to produce an element. Gas was supplied into the housing from the end where the hollow fiber membrane was closed, and permeated gas was obtained from the inside of the hollow fiber membrane.
  • the regeneration efficiency of the fuel cell was improved by regenerating the hydrogen gas with the separation membrane having the selective permeability for hydrogen. Also, the amount of hydrogen used could be reduced.
  • the separation membranes (1) to (4) having the cross-linked polyamide-containing separation functional layer showed hydrogen permeability and H 2 /CO 2 selectivity.
  • the separation membranes (5) to (8) satisfying (A+B)/C ⁇ 0.66 showed high H 2 /CO 2 selectivity of 10 or more. Further, the separation membranes of (1) and (2) showed H 2 /N 2 selectivity of 10 to 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Transplantation (AREA)
  • Geology (AREA)
  • Urology & Nephrology (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

負極側排ガスからポリアミド、グラフェン、MOF(Metal Organic Framework)およびCOF(Covalent Organic Framework)のいずれかを含有する分離膜により水素を分離し、再利用する。

Description

発電システム
 本発明は、ガスの選択透過性を有する分離膜と燃料電池を用いた、高効率な発電システムに関する。
 燃料電池は、電解質膜と、電解質膜を挟むように設けられた負極(燃料極)および正極(空気極)とを有する単セルと呼ばれる基本構造を有する。燃料電池は、負極に供給される水素と正極に供給される酸素から電気を発生させることができる。
 燃料電池用途向けの水素には炭化水素、一酸化炭素、二酸化炭素、硫黄分(硫化水素、亜硫酸ガス)、アンモニアおよび水蒸気などの不純物が混入することがある。また、酸素は、一般に空気から供給されるが、空気中には酸素以外にも様々な物質が含まれている。これらの不純物の種類または量によっては発電効率を低下させる可能性がある。
 また、負極側から排出されるガスに含まれる水素を有効利用するために、排出ガスから水素を分離して再び負極に循環させることが提案されている(特許文献1~3)。
日本国特開第2004-06948号公報 日本国特開第2007-42607号公報 日本国特開第2009-295377号公報
 本発明は、負極側の排出ガスをより効率よく再利用することのできる発電システムを提供する。
 本発明の発電システムは、
 水素含有ガスが供給される負極と、酸素含有ガスが供給される正極とを備え、水素と酸素との化学反応により発電する燃料電池と、
 水素を選択的に透過する分離膜を有し、混合ガスから透過ガスと非透過ガスを得る分離器と、
 前記燃料電池の負極側の排ガスを前記分離器に送ると共に、前記透過ガスを前記負極に供給する循環経路と、
を備える発電システムであって、
 前記分離膜が、多孔性支持層と、前記多孔性支持層上に設けられた分離機能層とを有し、
 前記分離機能層が、ポリアミド、グラフェン、MOF(Metal Organic Framework)およびCOF(Covalent Organic Framework)からなる群より選択される少なくとも1種の化合物を含有する。
 本発明によると、負極側の排出ガスをより効率よく再利用することができる。
図1は、本発明の発電システムの実施の一形態を示す概略図である。 図2は、本発明の発電システムの実施の他の形態を示す概略図である。 図3は、分離膜の断面図である。 図4は、分離膜エレメントの一形態を示す一部展開斜視図である。 図5は、発電試験に使用した装置の概略図である。 図6は、発電試験に使用した装置の概略図である。 図7は、発電試験に使用した装置の概略図である。 図8は、発電試験に使用した装置の概略図である。 図9は、分離膜のガス透過度を測定する装置の概略図である。
 1.発電システム
 以下に、負極および正極を有する燃料電池と、燃料電池の負極側から排出されるガスを再び負極に循環させる循環経路と、循環経路中に配置され、かつ水素と他のガスとを分離する分離膜を収容した分離器とを備える発電システムについて、実施の形態を説明する。本実施形態に他の公知の技術を組み合わせてもよい。
 (1-1)全体構成
 [第一形態]
 図1は、本発明の発電システムの一実施形態を示す概略図である。
 図1に示す発電システム11は、負極ガス供給配管21、循環配管、負極排ガス配管28、非透過ガス配管29、正極ガス供給配管31、正極排ガス配管32、燃料電池4、分離器5、および水素貯蔵タンク6を備える。
 負極ガス供給配管21は燃料電池4の負極側入口に接続され、負極ガスを燃料電池4の負極に供給する。負極ガスは、燃料ガスまたは水素含有ガスとも呼ばれ、水素の純ガスであってもよいし、他の成分との混合ガスであってもよい。図1では負極ガス供給配管21は水素貯蔵タンク6に接続されているが、水素貯蔵タンク6ではなくインフラ設備に接続されていてもよい。
 循環経路は、燃料電池4の負極側出口と分離器5の供給側入口とを接続する混合ガス配管22と、分離器5の透過側出口に接続された還流配管23~25のうちの少なくとも1つを備える。循環経路は、燃料電池の負極側出口からの排出ガスを分離器5に送り、分離器5で得られる透過ガスを負極入口に送る。
 還流配管23は、分離器5の透過側出口と燃料電池4の負極側入口とを接続する。この場合、燃料電池4は2つ以上の負極側入口を有しており、還流配管23は、負極ガス供給配管21が接続される負極側入口とは別の負極側入口に接続される。
 還流配管24は、分離器5の透過側出口に接続され、負極ガス供給配管21に合流する。水素貯蔵タンク6が設けられる場合は、還流配管24は水素貯蔵タンク6より下流で負極ガス供給配管21に接続される。
 還流配管25は、分離器5の透過側の出口と水素貯蔵タンク6の供給口を接続する。
 負極排ガス配管28は、分離器5の下流で還流配管から分岐しており、分離器5を透過したガスを燃料電池4に戻さずにシステム外に誘導する。
 このように、循環配管の「燃料電池の負極側から排出されるガスを再び負極に循環させる」とは、負極にガスを直接送り込むことであってもよいし、負極の上流の配管またはタンクにガスを送ることで、負極に間接的にガスを送り込むことであってもよい。
 非透過ガス配管29は、分離器5の供給側出口に接続され、分離器5を透過しなかったガスをシステム外に誘導する。
 正極ガス供給配管31は燃料電池4の正極側入口に接続される。正極ガス供給配管31は、正極ガスを燃料電池4の正極側に供給する。正極ガスは酸素を含有すればよい。よって、正極ガスは空気であってもよいし、酸素と他の成分とを特定の割合で含む混合ガスであってもよい。発電システムは図示しないコンプレッサを備えてもよく、正極ガス供給配管31はコンプレッサに接続されていてもよい。また、発電システムは図示しないガスボンベを備えてもよく、正極ガス供給配管31はそのガスボンベに接続されていてもよい。
 正極排ガス配管32は、燃料電池4の正極側出口に接続され、正極側の排ガスをシステム外に誘導する。
 燃料電池4としては、公知の燃料電池が適用される。燃料電池は、負極、正極、負極に負極ガスを供給する負極側入口、負極側の排ガスを排出する負極側出口、正極に正極ガスを供給する正極側入口、および正極側の排ガスを排出する正極側出口を有する。燃料電池について詳細は後述する。
 分離器5は、分離膜を備え、分離膜の水素と不要成分とに対する透過性の違いによって、水素と不要成分との混合ガスから、不要成分の濃度が低減された透過ガスと、不要成分を含む非透過ガスとを得ることができればよい。分離器5によって、循環する排ガスの水素純度を高めることができる。分離器5の詳細は後述する。
 水素貯蔵タンク6は、その内部に高圧のガスを貯めることができるようになっている。水素貯蔵タンク6は、負極ガス供給配管21に接続される。水素貯蔵タンク6は、外部から水素混合ガスの供給を受ける供給口を有してもよい。水素貯蔵タンク6は、後述の循環配管に接続されることで、再利用されるガスを貯留できるようになっていてもよい。発電システムがインフラによるガス供給を連続的に受けられる場合は、水素貯蔵タンク6は省略可能である。
 以上に述べた以外にも、発電システムは、他のガス配管、圧力調整弁、温度および湿度調節器、不要な水を排出するための配管、脱水装置、ガス希釈器、水素濃度センサー、真空ポンプ、コンプレッサ、熱交換器、コンデンサー、ヒータ、チラー、脱硫装置、集塵フィルター、加湿器、燃料電池のセルスタックを冷却する設備、並びに各種コントローラーなど、適切に配置された構成要素を備えてもよい。
 [第二形態]
 図2は、本発明の発電システムの実施の他の形態を示す概略図である。図2の発電システム12は、正極排ガス配管32に代えて、燃料電池4の正極側出口に接続され、混合ガス配管22に合流する正極排ガス還流配管33を備える。他の構成は発電システム11について説明したとおりである。
 正極排ガス還流配管33は、燃料電池4の下流かつ分離器5の上流で循環配管(混合ガス配管22)に接続され、正極側から排出されるガスを負極側から排出されるガスに合流させる。この構成によると、負極側の排出ガスが、正極側の排出ガスにより希釈されてから、分離器に供給される。
 (1-2)燃料電池
 燃料電池4は、水素含有ガスが供給される負極と、酸素含有ガスが供給される正極とを備え、水素と酸素との化学反応により発電する。燃料電池4としては、固体酸化物形(SOFC)、溶融炭酸塩形(MCFC)、リン酸形(PAFC)、固体高分子形(PEFC)など公知の燃料電池を適用することができる。
 燃料電池は、電解質膜と、電解質膜を挟むように設けられた負極(燃料極)および正極(空気極)とを有するセルと呼ばれる基本構造を有する。負極および正極は、担体および触媒を有する。セルはさらに、負極および正極を外側から挟むように配置されるセパレータ、セパレータと負極との間、セパレータと正極との間にそれぞれ配置されるガス拡散層を備えてもよい。セパレータの表面には細かい溝が形成されており、ガスはこの溝を通って各電極に供給される。
 電解質膜が高分子膜である場合、水素イオンの高い電導性を保つためには高分子膜を湿潤状態に保つことが好ましい。そのため、水素および空気を予め加湿してから燃料電池に供給するように、負極ガス供給配管21および正極ガス供給配管31上に加湿器が設けられることが好ましい。
 燃料電池は、一般的には、単独のセルではなく、複数のセルを直列に接続したセルスタックを有する。セルスタックによると数十V以上の高電圧を得ることができる。
 家庭用または車載用の発電システムは、大きさおよび質量に制限があるので、燃料電池にも小型化が求められる。セルスタックの最高体積出力密度は1kW/L以上であり、かつセルスタック容量は70L以下であることが好ましく、セルスタックの最高体積出力密度は3kW/L以上であり、かつセルスタック容量は40L以下であることがさらに好ましい。セルスタックの質量は100kg以下であることが好ましく、60kg以下であることがさらに好ましい。
 (1-3)分離器
 分離器5は、分離膜と、分離膜の一方の面に混合ガスを供給する供給側流路と、分離膜を透過したガスが流れる透過側流路とを備える。分離器5は、目的成分を選択的に透過する分離膜を有する分離膜によって、供給される混合ガスから、透過ガスと非透過ガスとを得る。混合ガスは、目的成分と不要成分との混合物である。透過ガスにおける不要成分の濃度は、混合ガスにおける不要成分の濃度より低い。言い換えると、分離膜は、不要成分に対する透過度よりも目的成分に対する透過度が高い。本実施形態において、目的成分は水素であり、不要成分は、窒素、一酸化炭素、二酸化炭素、硫化水素、亜硫酸ガス、炭化水素類等である。
 ここで分離器としては、具体的には、後述のスパイラル型のエレメント、またはディスク状の分離膜とそれを収容する筐体とを有するセル型のエレメント等を採用することができる。また、分離器5は、複数のエレメントと、それらを収容する筐体を備えてもよい。
 分離器5が複数のエレメントを有する場合、それらは互いに直列に配置されてもよく、並列に配置されてもよく、また、異なる種類のエレメントを複数組み合わせてもよい。直列に接続する場合は、下流のエレメントは、上流の非透過ガスまたは透過ガスのいずれの供給を受けるように配置されていてもよい。また、下流のエレメントの非透過ガスまたは透過ガスが、上流のエレメントに供給されるようにこれらのエレメントが配置されていてもよい。
 また、複数の分離器5が直列または並列に接続されていてもよい。各分離器5の構成は同じであってもよいし、異なっていてもよい。
 システム全体を小型かつ軽量にするには、分離器5の容量も最小限にすることが好ましい。
 例えば、燃料電池が最高体積出力密度1kW/L以上かつ容量70L以下のセルスタックを有する場合、1個のセルスタック当たりの分離膜エレメントの容量が50L以下であることが好ましい。分離膜エレメントの数は特に限定されない。1個のセルスタックにつき複数の分離膜エレメントが設けられる場合は、分離膜エレメントの容量は、これら複数の分離膜エレメントの容量の総和である。例えば、外径8インチかつ長さ1メートルの1個のスパイラル型エレメント(容量:45L前後)を適用してもよいし、それ以下の容量を持つ複数のスパイラル型エレメントを適用してもよい。
 また、燃料電池が最高体積出力密度3kW/L以上かつ容量40L以下のセルスタックを有する場合、1個のセルスタック当たりの分離膜エレメントの容量が25L以下であることが好ましい。例えば、外径4インチかつ長さ0.5メートルの1個のスパイラル型エレメント(容量:23L前後)を適用してもよいし、それ以下の容量を持つ複数のスパイラル型エレメントを適用してもよい。
 車載用システムなどのさらなる小型化が求められるシステムでは、より小さい分離膜エレメントを用いることが好ましい。例えば、燃料電池が最高体積出力密度3kW/L以上かつ容量40L以下のセルスタックを有する場合、1個のセルスタック当たりの分離膜エレメントの容量が5L以下であることが好ましい。例えば、外径2インチかつ長さ0.5メートルの1個の円柱型エレメント(容量:1.5L前後)を使用してもよいし、それ以下の容量を持つ複数のスパイラル型エレメントを適用してもよい。
 さらに、発電システムのサイズ低減の観点から、セルスタックの1個当たりの容量の平均値と、分離膜エレメントの1個当たりの容量の平均値の和が40L以下であり、かつセルスタックの1個当たりの重量の平均値と、前記分離膜エレメントの1個当たりの重量の平均値との和が60kg以下であることが好ましい。
 後述するように、高性能の分離膜を適用することでより効率のよい発電が可能になる。さらに、流路材の厚みを調整することにより、エレメントのサイズを増大させずに膜面積を増やすか、または膜面積を減らさずにエレメントのサイズを低減することができる。
 発電システム11および12は、分離器5に関連する部材として、さらに、混合ガス配管22、非透過ガス配管29、還流配管23~25等の配管上に設けられ、圧力または流量を調整する弁またはバルブ、ガスを貯留するタンクまたはボンベ等、図示しない設備を備えてもよい。例えば、発電システム11および12は、分離器5の透過側流路にスイープガスを供給するスイープガス供給部を備えてもよい。スイープガスとして、水素ガス、システム内で発生する窒素ガスまたは酸素ガスを使用してもよいし、別途アルゴンなどのスイープガスを貯蔵したガスボンベをシステム内に配置し、配管を通して供給してもよい。
 また、燃料電池4から混合ガス配管22を通って供給されるガスが硫黄分を多く含む場合、分離器5の上流に脱硫装置を設けることが好ましい。また、分離器5において分離膜を透過しなかった不要ガスには分離されなかった水素が残存しているので、不要ガスを大気に排出する前に、水素を希釈するための希釈器を設けてもよい。ただし、図2の形態のように、正極排ガス還流配管33を設ける場合は、予め水素濃度を低減可能なため、希釈器を省略することができる。分離器5の上流または下流に不要な水分を排出するための脱水装置を設けてもよい。
 (1-4)システムの運転
 図1の発電システム11の運転について説明する。
 発電システム11においては、水素貯蔵タンク6に貯蔵されていた負極ガスは、負極ガス供給配管21を通って、燃料電池4の負極側入口から負極に供給される。空気は、正極ガス供給配管31を通って、燃料電池4の正極側入口から正極に供給される。負極の触媒の作用により水素から電子と水素イオンが生成される。水素イオンは電解質を通って正極に移動し、電子は導線を通って正極に移動する。正極に供給された空気中の酸素、水素イオンおよび電子が、正極の触媒の作用により反応することで、水が生成される。
 燃料電池4の正極側出口からは、こうして生成された水と空気を含むガスが排出される。排ガスは正極排ガス配管32を通って、システム外または図示しない装置に送られる。
 燃料電池4の負極側出口からは、未反応の水素を含むガスが排出される。排ガスは他に、窒素、一酸化炭素、二酸化炭素、硫化水素、亜硫酸ガス、および炭化水素類を含む可能性がある。排ガスは混合ガス配管22を通って分離器5の供給側流路に送られる。分離器5の供給側流路を通る排ガスの中の水素は、分離膜を透過して分離器5の透過側流路に流れ込む。
 透過側流路を通ったガス(透過ガス)は、還流配管23が設けられている場合は、還流配管23を通って第2の負極側入口から燃料電池4に供給される。還流配管24が設けられている場合は、透過ガスは、還流配管24を通って、負極ガス供給配管21を通る負極ガスと合流し、燃料電池4の負極側入口から燃料電池4に供給される。還流配管25が設けられている場合は、透過ガスは、還流配管25を通って、水素貯蔵タンク6に供給され、水素ガスと混合されて、負極ガス供給配管21を通って燃料電池4に供給される。こうして負極側の排ガスが再利用される。
 また、透過ガスは、その成分(水素濃度、または他の成分の濃度)によって、またはガス量によって、還流配管から分岐する負極排ガス配管28を通って、燃料電池4に還流することなく排出される。
 分離器5の供給側流路から排出されるガスは、非透過ガス配管29を通ってシステム外または図示しない装置に送られる。
 図2の発電システム12においては、混合ガス配管22に正極排ガス還流配管33が接続しているので、燃料電池4の負極側出口から排出されたガスに、正極排ガス還流配管33を通ってきた正極排ガスが合流する。負極排ガスと正極排ガスの混合物は、発電システム11における処理と同様に分離器5で水素を含む透過ガスとそれ以外のガスとに分離される。透過ガスは上述のとおり再利用される。
 分離器5へのガスの供給圧力は特に限定されないが、大気圧以上10MPa以下であることが好ましい。大気圧以上とすることでガスの透過速度が大きくなり、10MPa以下とすることで、分離器5における部材の変形を防ぐことができる。
 分離器5の供給側の圧力と透過側の圧力との比は特に限定されないが、透過側の圧力に対する供給側の圧力の比が2~20であることが好ましい。この比を2以上にすることでガスの透過速度を大きくすることができ、20以下とすることで、供給側の圧力を高めるための動力費を抑制することができる。
 分離器5の供給側の圧力を透過側の圧力よりも大きくするためには、分離器5の供給側流路に送られるガスをコンプレッサにより昇圧してもよいし、透過側をポンプで減圧してもよいし、その両方を行ってもよい。また、分離器5の前後に弁を設けて、弁の開度を変更することで、ガスの供給量を調整してもよい。ガスの供給量を調整することで、ガスの圧力を制御することもできる。
 分離器5に供給されるガスの温度は特に限定されないが、0℃~200℃が好ましい。高温ほどガスの透過性が向上する。また、燃料電池にとって好適な温度範囲とすることで、発電効率を高めることができる。ガスの温度は例えば70~120℃が特に好ましい。
 また、図2の発電システム12においては、正極排ガス還流配管33が設けられていることで、負極側の排ガスが、正極側の排ガスにより希釈されてから、分離器に供給される。他のガスの流れは発電システム11について上述したとおりである。
 2.スパイラル型エレメント
 分離膜エレメントの一例として、スパイラル型エレメントについて説明する。図3は、スパイラル型エレメント50を部分的に分解して示す斜視図である。図3に示すように、スパイラル型エレメント50は、中心管51、分離膜52,供給側流路材53、透過側流路材54、第1端板55、第2端板56を備える。
 中心管51は、側面に貫通孔が形成された中空の円筒状部材である。中心管51は、耐圧性や耐熱性の観点からSUS(Stainless Used Steel)、アルミニウム、銅、真鍮、チタン等の金属製であることが好ましいが、その材質、形状、大きさ等は変更可能である。
 分離膜52は、供給側流路材53および透過側流路材54と重ねられ、中心管51の周囲にスパイラル状に巻回されている。1個のスパイラル型エレメントは複数の分離膜52を備えることができる。巻回されたこれらの部材を備えることで、スパイラル型エレメント50は、中心管51の長手方向を長軸とする、概ね円柱状の外観を有する。
 分離膜52が、図4に示すように、基材75、多孔性支持層74、分離機能層73がこの順に積層された構成を有する場合、分離膜は、分離機能層側の面同士が向かい合い、かつ基材側の面同士が向かい合うように重ねられる。なお、基材がない二層構造の場合は、「基材側の面」を「多孔性支持層側の面」と読み替える。
 分離膜52の分離機能層側の面の間には供給側流路材53が挿入され、基材側の面の間には透過側流路材54が挿入される。よって、分離器機能層側の面を「供給側の面」、基材側の面を「透過側の面」と称する。
 供給側流路材53および透過側流路材54は、分離膜間で流路を確保するスペーサである。透過側流路材と供給側流路材とは、同じ部材であってもよいし、異なる部材であってもよい。以下、透過側流路材と供給側流路材とを「流路材」と総称する。
 流路材としては、ネット、不織布、トリコットなどの編み物、フィルム等多孔性のシートが挙げられる。シートの片面または両面に樹脂等で形成された突起を設けてもよい。また、分離膜の透過面に突起を直接固着させて、この突起を流路材としてもよい。また、流路材は、ガスの流れを制御する曲線または直線状の壁を有してもよい。
 流路材の材質としては特に制限はなく、SUS、アルミニウム、銅、真鍮、チタン等の金属;または、ウレタン樹脂、エポキシ樹脂、ポリエーテルスルホン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリフェニレンサルファイド、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体、ポリアセタール、ポリメチルメタクリレート、メタクリル-スチレン共重合体、酢酸セルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレテレフタレートやフッ素樹脂(ポリ三フッ化塩化エチレン、ポリフッ化ビニリデン、ポリ四フッ化エチレン、四フッ化エチレン-六フッ化プロピレン共重合体、四フッ化エチレン-パーフルオロアルコキシエチレン共重合体、四フッ化エチレン-エチレン共重合体など)などのポリマーが選択できる。なお、流路材は、これらの材料のうちの1種類を含有してもよいし、混合された2種類以上の材料を含有してもよい。
 圧力容器へのエレメント装填、または長期間の運転などにより圧力が加わると、分離膜が損傷することがある。供給側流路材および透過側流路材の少なくとも一方、好ましくは両方の平均孔径が1mm以下であることで、分離膜にかかる応力を分散することができ、損傷を低減することができる。平均孔径は0.4mm以下であることがさらに好ましく、0.1mm以下が特に好ましい。平均孔径は、「4×流路材の平面方向における孔の面積/孔の周長」で表される円相当直径の平均値である。流路材の一方の面で30個の孔について面積および周長を測定し、円相当直径を算出する。こうして得られた30個の円相当直径の平均値R1を算出する。流路材の他方の面で同様に円相当直径の平均値R2を算出し、R1とR2との平均値を算出する。
 また、供給側流路材および透過側流路材の少なくとも一方、好ましくは両方の厚みは150μm以下であることが好ましく、80μm以下であることがさらに好ましく、50μm以下であることが特に好ましい。このように流路材が薄いことで、曲げに対する剛性が低減するので、割れにくくなる。また、流路材が薄いことで、分離膜エレメントの体積を維持しながら収容できる分離膜の面積を大きくすることができる。すなわち、性能を維持しながら、家庭用および車載用の発電システムに好適な小型化および軽量化が可能となる。
 流路材の厚みの下限は、スパイラル型エレメントの使用条件等に応じて設定され、具体的な数値には限定されない。例えば、流路材の厚みは、5μm以上または10μm以上であることが好ましい。
 流路材の厚みは、流路材の面方向(厚み方向に垂直な方向)に20μm間隔で測定した20点の厚みの相加平均値を算出することで求められる。
 中心管51の長手方向の両端において、供給側流路は開放されている。つまり、スパイラル型エレメント50の一端には供給側入口が、他端には供給側出口が設けられる。一方で、供給側流路は、巻回方向内側の端部、つまり中心管側の端部において封止されている。封止は、分離膜の折りたたみ、ホットメルトまたは化学的接着剤による分離膜間の接着、レーザー等による分離膜間の融着で形成される。
 中心管51の長手方向の両端において、透過側流路は封止されている。封止手段は供給側流路と同様である。一方で、巻回方向内側の端部において、つまり中心管側の端部において、透過側流路は開放されている。
 第1端板55および第2端板56は、円盤状の部材であり、分離膜の巻回体の長軸方向における第1端および第2端にそれぞれ装着される。第1端はガスの流れる方向において上流側の端部であり、第2端は下流側の端部である。第1端板55は供給側流路に供給されるガスが通る孔を有する。また他のスパイラル型エレメントと直列に接続される場合などにおいては、第1端板55には、中心管51にガスが流入できるように孔が設けられる。第2端板56は、供給側流路から排出されるガスが通る孔と、中心管51から排出される透過ガスが通る孔とを有する。図3のスポークホイール(spoke wheel)状の端板55,56は、このような端板の形状の例である。
 図3を参照して、スパイラル型エレメント50におけるガス分離について説明する。混合ガス配管22を通って供給されるガスG1は、スパイラル型エレメント50の第1端から供給側流路に入る。分離膜52を透過した透過ガスG2は、透過側流路を流れて中心管51に流れ込み、集積する。透過ガスG2はスパイラル型エレメント50の第2端から排出され、最終的には図1,2に示す還流配管23~25に排出される。また、上述したように透過側流路にスイープガスを流してもよい。
 分離膜52を透過しなかった非透過ガスG3は、供給側流路を流れてスパイラル型エレメント50の第2端から非透過ガス配管29に排出される。
 3.分離膜
 上記分離器5に適用される分離膜は多孔性支持層と、多孔性支持層上の分離機能層とを備える。以下では、実施の一形態として、図4に示すように、基材75と、基材上の多孔性支持層74と、多孔性支持層上の分離機能層73とを備える分離膜について説明する。また、以下で説明する分離膜はシート状、つまり平膜である。
 (3-1)基材
 基材は、実質的にガスの分離性能を有さず、分離膜に強度を与える。
 基材としては、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、ポリフェニレンスルフィド、あるいはこれらの混合物や共重合体等が挙げられる。中でも、機械的、熱的に安定性の高いポリエステル系重合体の布帛が特に好ましい。布帛の形態としては、長繊維不織布や短繊維不織布、さらには織編物を好ましく用いることができる。ここで、長繊維不織布とは、平均繊維長300mm以上、かつ平均繊維径3~30μmの不織布のことを指す。
 基材は、通気量が0.5cc/cm/sec以上5.0cc/cm/sec以下であることが好ましい。多孔性支持層と基材との接着性が向上し、分離膜の物理的安定性を高めることができる。
 基材の厚みは10~200μmの範囲内にあることが好ましく、30~120μmの範囲内であることがより好ましい。
 分離膜およびその構成要素の「厚み」は、20点の相加平均値で表される。すなわち、部材の面方向(厚み方向に垂直な方向)に20μm間隔で20点の厚みの測定値を得て、その相加平均値を算出することで求められる。
 (3-2)多孔性支持層
 多孔性支持層は、実質的にガスの分離性能を有さず、分離膜に強度を与える。
 多孔性支持層の孔のサイズおよび分布は特に限定されない。多孔性支持層における孔径は、多孔性支持層の一方の面から他方の面に渡って均一であってもよいし、分離機能層が形成される側の表面からもう一方の面にかけて徐々に大きくなってもよい。少なくとも分離機能層側の表面の孔径(直径)は0.1nm以上100nm以下であることが好ましい。
 多孔性支持層は、例えば、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、およびポリフェニレンオキシドなどのホモポリマー並びにコポリマーからなる群から選択される少なくとも1種のポリマーを含有する。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなどが挙げられ、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが挙げられる。
 多孔性支持層は、ポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーまたはコポリマーを含有することが好ましい。多孔性支持層は、より好ましくは酢酸セルロース、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンを含有する。これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホン、ポリエーテルスルホン、ポリアミドが特に好ましい。
 特に、多孔性支持層の主成分が、クロロ基で置換された芳香環を含む芳香族ポリアミドであることが好ましい。このような組成を持つ多孔性支持層を有する分離膜は、高温下でもガス透過性および選択性が低下しにくい。理由は以下のように推測される。芳香族ポリアミドは水素結合サイトを有しているので分子間相互作用が強い。つまり、芳香族ポリアミドの分子運動は、高温下でも制限される。また、クロロ基は高い電子吸引効果によって更なる水素結合を形成するので、分子間相互作用を増加させる。その結果、多孔性支持層は融解しにくく、高温下でもその形状を保つことができるようになる。
 多孔性支持層は、次の化学式(1)および(2)に示す繰り返し単位の少なくとも一方からなる芳香族ポリアミドを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(ここで、Ar、Ar、Arはそれぞれ下記式(3-1)~(3-5)および式(4)に示される基からなる群から選ばれる少なくとも1つの基である。また、X、Y、Zは-O-,-CH-,-CO-,-CO-,-S-,-SO-,-C(CH-からなる群から選択される少なくとも1つの基である。)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 芳香族ポリアミドにおいて、Ar、ArおよびArのモル数の総和のうち、式(3-1)~(3-5)に当てはまる基のモル数が占める割合(モル百分率(mole fraction))は、60モル%以上であることが好ましく、80モル%以上であることがより好ましく、98モル%以上であることがさらに好ましい。このような化学構造を有する多孔性支持層を用いることで、水素と窒素の分離選択性が向上する。
 Ar、ArおよびArが式(3-1)~(3-5)で表される構造である場合、芳香環は、式(1)、(2)に示すように、アミド結合に関与する2つの置換基(つまり-NH若しくは-CO-、または両方の官能基)を有する。芳香環におけるこれら2つの置換基の位置としては、パラ位とメタ位があり得る。多孔性支持層において、芳香族ポリアミド分子は、これらの置換基がパラ位に配置されたパラ置換体を含むことが好ましい。さらには、パラ置換体である芳香環の数は、芳香族ポリアミド分子に含まれる全芳香環数の50%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。「数」は「モル数」と言い換えられる。メタ置換体は屈曲構造を持ち、パラ置換体は直線構造を持つ。この構造の違いが膜の性能に影響を与えると考えられる。多孔性支持層はパラアラミドのみで形成されてもよい。
 パラ置換体の割合における分母は、芳香族ポリアミドに含まれる芳香環の総モル数である。例えば、式(3-3)、(3-4)、(3-5)の構造では、それぞれ芳香環の数は2、2、3である。またナフタレン(式(3-2))は1つの芳香環である。
 また、パラ置換体の割合における分子数について、例えば、式(3-4-mp)の構造では、パラ置換体の数は1である。また、ナフタレン(式(3-2))の置換位置は通常はパラ、メタとは呼ばないが、本明細書では、ana-置換体、amphi-置換体をパラ置換体とみなし、他の構造はメタ置換体とみなす。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 なお、以上のメタ、パラの配置は、アミド結合に関与する置換基についての説明であり、他の置換基を有していても、パラ置換体には数えない。例えば、式(3-4-mp)の構造におけるメタ置換体の-X-に対するパラの位置がクロロ基で置換されていても、これはパラ置換体としては数えない。
 ここで、芳香環のモル数の総和に対して、クロロ基のモル数が占める割合(モル百分率:mole fraction)は、20%以上であることが好ましく、40%以上であることがより好ましく、80%以上であることがさらに好ましい。クロロ基のモル数が占める割合が上記範囲内の場合、高温下でより優れたガス透過性または分離選択性を発揮する。
 多孔性支持層における水の接触角は、好ましくは75°以下、より好ましくは55°以下、さらに好ましくは52°以下、特に好ましくは50°以下である。多孔性支持層に含まれる芳香族ポリアミドは親水性ポリマーであるので、芳香族ポリアミドの親水性により、上記範囲の水の接触角を示す多孔性支持層が実現される。
 多孔性支持層は、上述したポリマーを主成分として含有することが好ましい。具体的には、多孔性支持層において、上述したポリマーの占める割合(複数のポリマーを含有する場合は各ポリマーの割合の合計)が70重量%以上、80重量%以上または90重量%以上であることが好ましく、さらには、多孔性支持層は、上述したポリマーのみで構成されていてもよい。
 多孔性支持層の孔径および孔の分布は、多孔性支持層の分離機能層と接する側の表面において、8nm以上の径(直径)を有する孔の数が、孔の総数の15%以下であることが好ましく、11%以下であることがさらに好ましい。孔は、「凹部」と言い換えることができる。凹部は凸部に挟まれた部位でもある。つまり、多孔性支持層は、その表面に微細な凹凸を有している。凸部は、重縮合において架橋ポリアミドの成長の足場(起点)になる。8nm以上の径を有する孔の数が孔の総数の15%以下であること、つまり多孔性支持層の表面において、凸部間の距離が8nm以上離れているところが少ないことで、架橋ポリアミドに欠点が生じにくいという効果がある。
 また、多孔性支持層の表面の最大孔径が12nm以下であることが好ましい。多孔性支持層の表面の最大孔径が12nm以下であるということは、足場間の距離が12nm以下であるので、さらに欠点の発生が抑制される。
 多孔性支持層の表面における孔径は、以下のように測定される。多孔性支持層の表面における任意の5箇所をSEMにより撮影(200万倍率、0.3072μm)し、5枚の画像を得る。5枚のSEM写真で、孔径および孔数を測定する。
 最大孔径は、5枚のSEM写真のそれぞれで得られた最大孔径から、最小値と最大値を除いた3つの数値の相加平均である。
 また、8nm以上の径を有する孔数の割合は以下のように算出される。まず、5枚のSEM写真から測定される8nm以上の径を有する孔の数を、その写真における孔の総数で除し、さらに100を乗じることで、8nmの径を有する孔の割合を算出する。こうして得られた5つの値から最小値と最大値を除いた3つの数値の相加平均が、この膜における8nm以上の径を有する孔数の割合である。
 なお、孔径および孔数の測定の前に、画像から孔ではなく表面の粒状構造に由来する影を除くような画像補正を行ってもよい。
 また、分離機能層が設けられている状態の多孔性支持層の表面を観察するには、まず、分離膜から分離機能層を除去し、多孔性支持層の表面を露出させる。上記除去方法については、例えば分離膜を次亜塩素酸ナトリウム水溶液に浸漬させることが挙げられるが、特に限定されない。
 多孔性支持層の内部の孔径および孔の分布は特に限定されないが、例えば、孔径は、多孔性支持層全体で均一であるか、あるいは多孔性支持層において分離機能層と接する側の表面からもう一方の面にかけて徐々に大きくなっていてもよい。
 基材と多孔性支持層の厚みは、分離膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、基材と多孔性支持層の厚みの合計が、30μm以上300μm以下であることが好ましく、100μm以上220μm以下であるとより好ましい。また、多孔性支持層の厚みは、20μm以上100μm以下であることが好ましい。
 この「厚み」は、多孔性支持層の面方向(厚みに垂直な方向)に20μm間隔で測定した20点の厚みの平均値を算出することで求められる。
 (3-3)分離機能層
 分離機能層は、ポリアミド、グラフェン、MOF(Metal Organic Framework)、COF(Covalent Organic Framework)のいずれか1種以上の化合物を含有する。これらの素材は、水素を含む混合ガスから、水素を選択的に透過させるのに好適な孔径または親和性を有する。分離機能層を構成する化合物の分子構造および層構造は、使用条件および目標とする性能に応じて、分離膜についての公知技術に基づいて変更可能である。また、その化学的組成にかかわらず、分離機能層においては、1ナノメートル以上の構造欠陥の存在が可能な限り低減することが好ましい。
 分離機能層は、ポリアミド、グラフェン、MOFおよびCOFから選択される2種以上の化合物を含有してもよい。分離機能層におけるこれら化合物の含有率を変更することで、分離機能層の水素選択透過性および強度を所望の範囲に調節可能である。
 製膜安定性および水素透過性ならびに他のガスの阻止性の観点から、分離機能層は少なくともポリアミドを含有することが好ましい。
 分離機能層は、架橋ポリアミドを含有することが好ましく、架橋ポリアミドを含有する薄膜を有することが好ましい。架橋ポリアミドは、多官能アミンと多官能酸ハロゲン化物との重縮合物であることが好ましい。具体的には、分離機能層において、架橋ポリアミドが占める割合は50重量%以上、70重量%以上または90重量%以上であることが好ましく、分離機能層は、架橋ポリアミドのみで構成されていてもよい。分離機能層が架橋ポリアミドを50%以上含むことにより、高性能な膜性能を発現しやすい。
 分離機能層が架橋ポリアミドを含有する場合、分離機能層について測定されるアミノ基の数A、カルボキシ基の数B、アミド基の数Cは、
(A+B)/C≦0.66
を満たすことが好ましい。
 ここでアミノ基の数A、カルボキシ基の数B、アミド基の数Cの比は、分離機能層の13C固体NMR測定より求めることができる。具体的には、分離膜5mから基材を剥離し、分離機能層と多孔性支持層との積層物を得る。多孔性支持層を溶媒に溶解させることで、積層物から多孔性支持層を除去し、分離機能層を得る。得られた分離機能層について、CP/MAS-13C固体NMR法またはDD/MAS-13C固体NMR法による解析を行い、各官能基の炭素ピークまたは各官能基が結合している炭素ピークの積分値の比較から各官能基の数比を算出することができる。
 アミノ基とカルボキシ基は二酸化炭素との親和性が強い官能基である。よって、分離機能層中のこれらの官能基の量が少ない方が、分離機能層と一酸化炭素、二酸化炭素との親和性が小さくなり、水素およびヘリウムといった軽ガスの透過度を低下させることなく一酸化炭素、二酸化炭素の透過度のみが低下する。その結果、一酸化炭素または二酸化炭素に対する軽ガスの分離選択性が向上する。
 また、架橋ポリアミド中の官能基の中でアミド基の占める割合が大きいということは、架橋ポリアミド中に多くの架橋が形成されていることを意味する。架橋が多いと、孔径が小さくなるので、水素やヘリウムといった軽ガスに比べサイズの大きな窒素、一酸化炭素、二酸化炭素、硫化水素、亜硫酸ガス、炭化水素類の透過度が低下する。つまり、アミド基の割合が大きいと、窒素、一酸化炭素、二酸化炭素、炭化水素、硫化水素、または亜硫酸ガスに対する軽ガスの分離選択性が向上する。
 なお、ガスの分子サイズは、小さい方から順に、水素、二酸化炭素、一酸化炭素、窒素、硫黄分(硫化水素、亜硫酸ガス)であり、一酸化炭素と窒素がほぼ同サイズである。分子サイズの差が大きいガスほど分離し易い。例えば、二酸化炭素に対する水素の分離選択性よりも、窒素、一酸化炭素、炭化水素、硫化水素、亜硫酸ガスに対する水素の分離選択性は高くなる傾向にある。
 分離機能層に含まれる架橋ポリアミドは、全芳香族ポリアミドでもよく、全脂肪族ポリアミドでもよく、芳香族部分と脂肪族部分を併せ持っていてもよい。より高い性能を発現するためには、架橋ポリアミドは全芳香族ポリアミドであることが好ましい。つまり、架橋ポリアミドのモノマー成分である多官能アミンおよび多官能酸ハロゲン化物は、それぞれ、多官能芳香族アミンまたは多官能脂肪族アミンの少なくとも一方、並びに多官能芳香族酸ハロゲン化物または多官能脂肪族酸ハロゲン化物の少なくとも一方であり、任意に組み合わせられる。好ましくは、多官能アミンとして多官能芳香族アミンが、多官能酸ハロゲン化物として多官能芳香族酸ハロゲン化物が選択される。
 本書において、「多官能芳香族アミン」とは、一分子中に第一級アミノ基及び第二級アミノ基のうち少なくとも一方のアミノ基を2個以上有し、かつ、アミノ基のうち少なくとも1つは第一級アミノ基である芳香族アミンを意味する。「多官能脂肪族アミン」とは、一分子中に第一級アミノ基及び第二級アミノ基のうち少なくとも一方のアミノ基を2個以上有しする脂肪族アミンを意味する。
 多官能芳香族アミンとしては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、o-ジアミノピリジン、m-ジアミノピリジン、p-ジアミノピリジン等の2個のアミノ基がオルト位、メタ位またはパラ位のいずれかの位置関係で芳香環に結合した多官能芳香族アミン;並びに1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、4-アミノベンジルアミン、2,4-ジアミノチオアニソール、1,3-ジアミノチオアニソール、1,3-ジアミノ-5-(ジメチルホスフィノ)ベンゼン、(3,5-ジアミノフェニル)ジメチルホスフィンオキシド、(2,4-ジアミノフェニル)ジメチルホスフィンオキシド、1,3-ジアミノ-5-(メチルスルホニル)ベンゼン、1,3-ジアミノ-4-(メチルスルホニル)ベンゼン、1,3-ジアミノ-5-ニトロソベンゼン、1,3-ジアミノ-4-ニトロソベンゼン、1,3-ジアミノ-5-(ヒドロキシアミノ)ベンゼン、1,3-ジアミノ-4-(ヒドロキシアミノ)ベンゼンが例示される。
 また、多官能脂肪族アミンとしては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、ピペラジン、2-メチルピペラジン、2,4-ジメチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジンなどが挙げられる。
 多官能酸ハロゲン化物とは、多官能カルボン酸誘導体とも表され、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能芳香族酸ハロゲン化物としては、トリメシン酸クロリドなどを挙げることができ、2官能芳香族酸ハロゲン化物としては、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸ジクロリド、オキサリルクロリドなどを挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の分離選択性、耐熱性を考慮すると、一分子中に2~4個の塩化カルボニル基を有する多官能酸塩化物であることが好ましい。入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドが特に好ましい。
 これらの多官能アミンおよび酸ハロゲン化物は、一種が単独で用いられてもよいし、2種以上が併用されてもよい。
 さらに分離機能層が含有する架橋ポリアミドはニトロ基を有していてもよい。ニトロ基は架橋ポリアミドの形成反応時にモノマーが有していても、架橋ポリアミドを形成した後に化学変換により導入してもよいが、モノマーの入手のしやすさや取扱の簡便さから架橋ポリアミドに後から化学的作用を加えることが好ましい。
 ニトロ基の存在はX線光電子分光法(XPS)により得られるN1sピークにより確認できる。N1sピークは、窒素原子の内殻電子に起因する。N1sピークは、N-C由来の成分およびNOx(x≧2)由来の成分から構成されると考えられ、N-C由来の成分は400eV付近、NOx(x≧2)由来の成分は406eV付近に現れる。
 さらに、分離機能層が含有する架橋ポリアミドは炭素原子に結合するフッ素原子を有することが好ましい。ポリアミドは凝集性が高く、凝集性が低い水素やヘリウムなどの軽ガスの溶解性が低い。しかし、炭素原子にフッ素が導入されることでポリアミドの凝集性が低下し、軽ガスの溶解性が向上するので、軽ガス/窒素の分離選択性が向上する。
 X線光電子分光法(XPS)により定量される炭素原子数に対するフッ素原子数の比は0.1%以上であることが好ましく、12%以下であることが好ましい。この比は、8%以下または2%以下であってもよい。この比が0.1%以上であることで架橋ポリアミドの凝集性が下がり、分離選択性が向上する。また、この比が12%以下であることで、良好な耐圧性が得られる。
 特に、芳香族ポリアミドでは、フッ素が炭素原子に結合しているということは、そのフッ素は芳香族環の炭素原子に結合している。フッ素原子が結合する芳香族環は、架橋ポリアミドを形成するモノマーのうち、芳香族アミンに由来してもよいし、酸ハロゲン化物に由来してもよい。
 (フッ素原子数/炭素原子数)の比は、分離膜の任意の10カ所でXPSによって得られる値の相加平均値である。また、C-F(炭素-フッ素結合)由来のピークは686eVに観測されるため、このピークの有無により炭素原子に結合したフッ素基の有無を解析することができる。
 分離機能層は、上述したいずれかの組成を有する架橋ポリアミドを含有する薄膜を含むことが好ましい。分離機能層は、ポリアミドを主成分とする薄膜と、その薄膜に担持されたグラフェン、MOFおよびCOFから選ばれる1種以上の化合物を有してもよい。このような構成を有する分離機能層は、高い強度を有する。また、グラフェン、MOFまたはCOFの分子構造、分離機能層における含有量、分離機能層中での分散状態によって、性能を制御することができる。
 また、分離機能層において、薄膜は凹凸の繰り返し構造、つまりひだ構造を有することが好ましい。
 以上に述べたいずれの構成においても、分離機能層の厚みは、目標とする分離性能およびガス透過度によっても異なるものの、0.01μm~1μm、または0.1μm~0.5μmであることが好ましい。
 2.分離膜の製造方法
 分離膜の製造方法の例を以下に説明する。特に以下では、多孔性支持層の形成工程と分離機能層の形成工程について説明する。基材としては市販の上述した布帛を適用すればよい。
 (2-1)多孔性支持層の形成
 多孔性支持層の形成方法は、多孔性支持層の構成成分である高分子をその高分子の良溶媒に溶解させることで、ポリマー溶液を調製する工程、基材にポリマー溶液を塗布する工程、およびポリマー溶液を凝固浴に浸漬させてポリマーを凝固させる工程を含む。凝固したポリマーが多孔性支持層に相当する。
 多孔性支持層の構成要素であるポリマーの化学構造については上述したとおりである。
 ポリマー溶液の溶媒としてはNMP、またはNMPとNMP以外の有機極性溶媒との混合溶媒を用いることが好ましい。NMPは、上記ポリマーとの相溶性に優れ、多孔性支持層の形成に有用である。また、混合溶媒を用いることで、多孔性支持層を形成する際に流出する溶媒の速度を適切に調節し、気孔サイズの分布や密度などを所望とする範囲に調節することができる。上記有機極性溶媒の溶解度パラメータ値は11.0以上13.2以下であることが好ましい。上記有機極性溶媒の溶解度パラメータ値が上記数値範囲である場合、上記有機極性溶媒の上記ポリマーとの親和性は相対的にNMPよりも劣るため、ポリマーの相分離が速く進行する。これにより、相分離の途中で溶媒が流出することによる大孔の形成が抑制されるという効果がある。上記溶解度パラメータ値が13.2より大きい場合、相分離の加速化は起こらず、11.0以上であると、ポリマー溶液中でポリマーが析出しにくいので、均一な構造を有する多孔性支持層を形成することができる。
 上記有機極性溶媒とは、アセトン、アニソール、THF、シクロヘキサノン、アニリン、DMAc、などからなる群より選択された1種であってもよいが、特に制限されない。その中でも、アセトンを用いることが好ましい。
 上記混合溶媒の混合比率は特に制限されないが、NMPが60重量%以上99重量%以下であることが好ましく、70重量%以上90重量%以下であることがより好ましい。更にNMPが80重量%以上90重量%以下であることがより好ましい。上記混合溶媒のNMPの混合比率が99重量%より大きい場合、NMPと混合する上記有機極性溶媒の割合が少なく、上述の効果は発現されない。NMPの混合比率が60重量%未満である場合、ポリマー溶液の粘度が増加し、多孔性支持層の形成が容易でなくなる。
 多孔性支持層の形成に使う溶液のポリマー濃度は特に限定されないが、2重量%以上15重量%以下が好ましく、4重量%以上12重量%以下が好ましい。2重量%以上にすることで内部構造が空虚になりすぎるのを防ぎ、15重量%以下とすることでポリマー溶液の粘度が極端に高くなることを防ぐことができる。
 また、多孔性支持層の形成方法は、モノマーを重合させることで、多孔性支持層を形成するポリマーを生成する工程をさらに含んでよい。
 ポリマーの一例である芳香族ポリアミドは、酸クロリドおよびジアミンをモノマーとして用いる溶液重合または界面重合によって得られる。溶液重合では、溶媒としてN-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)などの非プロトン性有機極性溶媒を用いることができる。また、界面重合では、酸クロリドをこれらの有機溶媒に溶解して得られる溶液と、ジアミンを水系媒体に溶解させて得られる溶液とを使用する。
 単量体として酸クロリドとジアミンを使用してポリアミドを生成すると塩化水素が副生する。塩化水素を中和する場合には水酸化カルシウム、炭酸カルシウム、炭酸リチウムなどの無機の中和剤、またエチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミンなどの有機の中和剤が使用される。
 モノマーを重合してポリマーを生成した場合、ポリマーは溶媒中に溶解した状態で得られる。よって、このポリマー溶液をそのまま製膜原液として使用することもできるし、あるいはポリマーを一度単離してから、上記の有機溶媒または硫酸等の無機溶剤に再溶解することで製膜原液を調製しても良い。
 (2-2)分離機能層の形成
 <架橋ポリアミドの生成>
 架橋ポリアミドを含有する分離機能層の形成工程について、以下に説明する。分離機能層の形成工程は、多官能アミンを含有する水溶液と多官能酸ハロゲン化物を含有する有機溶媒溶液とを用いて、多孔性支持層上で多官能アミンと多官能酸ハロゲン化物との界面重縮合によって、架橋ポリアミドを形成する工程を含む。架橋ポリアミドを形成する工程は、(a)多官能アミンを含有する水溶液を多孔性支持層に塗布する工程と、(b)その後に多官能酸ハロゲン化物を含有する有機溶媒溶液を多孔性支持層に塗布する工程とを含む。
 工程(a)において、多官能アミン水溶液における多官能アミンの濃度は0.1重量%以上20重量%以下の範囲内であることが好ましく、より好ましくは0.5重量%以上15重量%以下の範囲内である。多官能アミンの濃度がこの範囲であると十分な分離選択性および透過性を得ることができる。多官能アミン水溶液には、多官能アミンと多官能酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、酸化防止剤などが含まれていてもよい。界面活性剤は、多孔性支持層表面の濡れ性を向上させ、多官能アミン水溶液と非極性溶媒との間の界面張力を減少させる効果がある。有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重縮合反応を効率よく行える場合がある。
 多官能アミン水溶液の塗布は、多孔性支持層上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能アミン水溶液を多孔性支持層にコーティングする方法、または多孔性支持層を多官能アミン水溶液に浸漬する方法を挙げることができる。コーティングとしては、滴下、シャワー、噴霧、ローラー塗布等が挙げられる。多孔性支持層が基材上に形成されている場合は、基材と多孔性支持層との積層体、つまり支持層を、多官能アミン水溶液に浸漬すればよい。
 多官能アミン水溶液を多孔性支持層に塗布した後は、膜上に液滴が残らないように液切りする。液滴が残存している箇所は膜欠点となって膜性能が低下することがあるが、液切りによってそれを防ぐことができる。多官能アミン水溶液接触後の支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。
 多孔性支持層と多官能アミン水溶液との接触時間、つまり塗布してから液切りするまでの時間は、1秒以上10分間以下であることが好ましく、10秒以上3分間以下であるとさらに好ましい
 工程(b)において、有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01重量%以上10重量%以下の範囲内であると好ましく、0.02重量%以上2.0重量%以下の範囲内であるとさらに好ましい。0.01重量%以上とすることで十分な反応速度が得られ、また、10重量%以下とすることで副反応の発生を抑制することができるためである。さらに、この有機溶媒溶液にDMFのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。
 有機溶媒は、水と非混和性であり、かつ多官能酸ハロゲン化物を溶解し、支持膜を破壊しないものが望ましく、多官能アミン化合物および多官能酸ハロゲン化物に対して不活性であるものであればよい。好ましい例として、n-ヘキサン、n-オクタン、n-デカン、イソオクタンなどの炭化水素化合物が挙げられる。
 多官能酸ハロゲン化物溶液の多孔性支持層への塗布方法は、多官能アミン水溶液の多孔性支持層への塗布方法と同様に行えばよい。ただし、多官能酸ハロゲン化物の溶液は、多孔性支持層の片面のみに塗布することが好ましいので浸漬よりもコーティングにより塗布することが好ましい。
 このとき、多官能酸ハロゲン化物の有機溶媒溶液を塗布した多孔性支持層を加熱してもよい。加熱処理する温度としては50℃以上180℃以下、好ましくは60℃以上160℃以下である。60℃以上で加熱することで、界面重合反応でのモノマー消費に伴う反応性の低下を熱による反応の促進効果で補うことができる。160℃以下で加熱することで溶媒が完全に揮発して反応効率が著しく低下するのを防ぐことができる。
 また、それぞれの時間の加熱処理時間は、5秒以上180秒以下であることが好ましい。5秒以上とすることで反応の促進効果を得ることができ、180秒以下とすることで溶媒が完全に揮発することを防ぐことができる。その結果、ポリアミドの分子量が大きくなり、アミノ基の数A、カルボキシ基の数B、アミド基の数Cで表される官能基比(A+B)/Cが低下するので、分離選択性が向上する。
 <フッ素導入>
 反応性基を有するフッ素含有化合物の存在下で架橋ポリアミドを生成することで、架橋ポリアミドにフッ素を導入することができる。このような化合物として、ペンタフルオロベンゾイルクロリド、テトラフルオロイソフタル酸クロリドが例示される。
 得られた架橋ポリアミドに化学処理を行い、フッ素を導入することもできる。具体的には、フッ素化剤を分離膜に接触させることが好ましく、フッ素化剤としては、1-クロロメチル-4-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタン ビス(テトラフルオロボラート)(Selectfluor(登録商標))、N-フルオロベンゼンスルホンイミド、1-フルオロピリジニウムテトラフルオロボラートなどを挙げることができる。
 フッ素化剤と架橋ポリアミドの反応手段は特に限定されないが、例えばフッ素化剤の水溶液に架橋ポリアミドのガス分離複合膜を浸漬する方法が好ましい。
 フッ素化剤の濃度は0.01重量%~10重量%が好ましく、より好ましくは0.1重量%~1重量%である。
 化学処理の方法としては水溶性のフッ素化剤を含む水溶液を10℃以上100℃以下、より好ましくは20℃以上80℃以下で処理することが望ましい。温度を10℃以上とすることで反応の効率を向上させることができ、100℃以下とすることでフッ素化剤の分解を抑制することができる。
 フッ素化剤水溶液と架橋ポリアミドの接触時間は30秒~1日が好ましく、実用性と反応効率の両立を考慮すると1分~30分がより好ましい。
 (2-3)後処理工程
 分離膜の製造方法は、分離機能層を形成した後に化学的な処理を行う工程を含んでもよい。化学的処理としては、上述のフッ素導入、酸化等が挙げられる。
 酸化処理によると、ポリアミドが有するアミノ基やカルボキシ基を化学変換してニトロ基構造とする。こうして、官能基比(A+B)/Cを低減することができる。酸化剤としては、過酸化水素、過酢酸、過ホウ酸ナトリウム、ペルオキシ一硫酸カリウムなどの水溶性の化合物を挙げることができる。
 酸化剤とポリアミドとの反応手段は特に限定されないが、例えば酸化剤の水溶液に分離膜を浸漬する方法が好ましい。
 酸化剤の濃度は0.1重量%~10重量%が好ましく、より好ましくは0.5重量%~3重量%である。
 酸化剤水溶液のpHは酸化剤の酸化力を十分発揮できる範囲であれば特に限定されないが、1.5~7.0の範囲であることが好ましい。
 化学処理の方法としては酸化剤を含む水溶液を10℃以上100℃以下、より好ましくは20℃以上80℃以下で処理することが望ましい。温度を10℃以上とすることで反応の効率を向上させることができ、100℃以下とすることで酸化剤の分解を抑制することができる。
 酸化剤水溶液とポリアミドの接触時間は30秒~1日が好ましく、実用性と反応効率の両立を考慮すると1分~30分がより好ましい。
 酸化剤との接触後は酸化反応を停止させるため、ポリアミドを還元剤と接触させる。ここで還元剤とは使用する酸化剤と酸化還元反応を起こすものであれば特に限定されないが、入手、取扱の容易さから亜硫酸水素ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウムのいずれかを用いるのが好ましい。また、それらは0.01重量%~1重量%水溶液として用いるのが好ましい。
 還元剤との接触時間は、酸化反応を停止させることができればよく、通常1分~20分の浸漬時間が好ましい。
 還元剤との接触後は、ポリアミド複合膜に残存する還元剤を洗い流すために水でリンスすることが好ましい。
 (2-4)乾燥工程
 分離膜の製造方法は、乾燥工程をさらに含んでいてもよい。乾燥の方法としては特に限定されないが、真空乾燥、凍結乾燥、高温加熱により水を除去してもよいし、エタノールやイソプロパノールなどのアルコール溶媒、炭化水素溶媒に浸漬して水を前記溶媒へと置換した後に前記乾燥条件によって溶媒を除去してもよい。特に簡便に緻密な機能層を得られる高温加熱が好ましい。高温加熱の方法は特に限定されないが、オーブン中で30℃~200℃、より好ましくは50℃~150℃で1分以上加熱することが望ましい。温度を30℃以上とすることで水分の除去が効率よく行われ、200℃以下とすることで機能層と基材の熱収縮率の差に起因する変形を防ぐことができる。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。以下、特に言及しない場合は、温度は25℃である。また、質量%をwt%と表記する。
 I.ポリアミド分離機能層を有する分離膜
 [分離膜の製造例(1)~(8)]
 (多孔性支持層の形成)
 基材である不織布(ポリエステル製、通気量2.0cc/cm/sec)上にポリスルホン(PSf)の16.0wt%DMF溶液を25℃の条件下で200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって多孔性支持層を形成した。こうして基材および多孔性支持層を有する支持膜を作製した。
 (分離機能層の形成)
 上述の操作によって得られた支持膜を、6.0wt%のm-PDA水溶液に2分間浸漬した。次に、支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けることで多孔性支持層表面から余分なアミン水溶液を取り除いた。次に、下記表3の組成のTMC(トリメシン酸クロリド)溶液を多孔性支持層の表面全体が濡れるように塗布して、下記表3の時間静置した。次に、膜面を1分間鉛直に保持して多孔性支持層表面から余分な溶液を除去した。下記表3の条件でのオーブン内で静置(重縮合)し、次いで50℃の水での10時間洗浄した。さらに120℃のオーブンで30分の乾燥を経て分離膜を得た。一部の製造例については、洗浄後、乾燥の前に後処理を行った。
Figure JPOXMLDOC01-appb-T000011
 [官能基比の定量]
 分離膜5mから基材を物理的に剥離することで、多孔性支持層と分離機能層を回収した。多孔性支持層と分離機能層との積層物を25℃で24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収し、ジクロロメタンにより洗浄した。
 こうして回収された分離機能層を真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。分離機能層を凍結粉砕によって粉末状の試料とし、試料管内に封入した。この試料を用いて、DD/MAS法による13C固体NMR測定を行った。13C固体NMR測定には、Chemagnetics社製CMX-300を用いることができる。測定条件例を以下に示す。
 基準物質:ポリジメチルシロキサン(内部基準:1.56ppm)
 試料回転数:10.5kHz
 パルス繰り返し時間:100s
得られたスペクトルから、各官能基が結合している炭素原子由来のピークの面積からアミノ基の数A、カルボキシ基の数Bおよびアミド基の数Cの比(A+B)/Cを得た。
 [水素ガス透過度、選択透過性]
 図9に示す装置を用い、JIS K 7126-2B(2016年)に則って分離膜のガス透過度の測定を行った。供給側セルと透過側セルとを有する試験用セル80の、供給側セルと透過側のセルとの間に分離膜を保持した。ガスボンベ81から供給側セルに供給されるガス流量をマスフローコントローラー82で調節した。またガスボンベ83から透過側セルにスイープガスであるアルゴンを供給した。スイープガスの流量は、マスフローコントローラー84で調節した。
・分離膜の有効膜面積:25cm
・セル温度:80℃
・供給ガス:水素または二酸化炭素の純ガス 1atm、流量100cm/分
・スイープガス :アルゴン、100cm/min、1atm
 試験用セル80から流出する透過ガスおよびスイープガスを、TCD(熱伝導度検出器)を有するガスクロマトグラフ86に流し、水素または二酸化炭素の濃度を測定した。また、バルブ85によりガスの流れる先をガスクロマトグラフ86から石鹸膜流量計87に切り替え、流量を測定した。ガス濃度および流量から、各分離膜におけるガス透過度(nmol/m/s/Pa)を求めた。
 ガス供給開始から1時間後の水素の透過度を二酸化炭素の透過度で除することにより、H/CO分離選択性を算出した。
 [発電試験]
 図5および図6に示す発電システム13,101を用いて、発電試験を行った。
 図5に示す発電システム13では、図1の発電システム11の還流配管23~25のうち、還流配管24を採用した。また、図6の発電システム101は、分離器5および非透過ガス配管29を備えず、混合ガス配管22から直接分岐する還流配管24および負極排ガス配管28を備える以外は、発電システム13と同様であった。
 (対照試験)
 図6の発電システム101において以下の条件で発電を開始し、電圧が一定になったときの電圧値を初期電圧V0として記録した。
・条件1
燃料電池セル:JARI(Japan Automobile Research Institute)標準セル
負極、正極の膜/電極接合体(電解質膜、負極、正極およびガス拡散層の接合体):ジャパンゴアテックス社製PRIMEA(登録商標)5510
負極、正極の触媒:Pt(担持量0.3mg/cm
セル温度:80℃
負極、正極の電極面積:50×50mm
電流密度:1000mA/cm
負極ガスボンベから供給されるガス:純水素(純度>99.999%)、
負極に供給されるガスの流速:1000mL/分
(排ガスを循環させる場合は、循環するガスと新たに供給されるガスとの流速の合計が1000mL/分になるように、ボンベから供給されるガスの量を調整した。)
正極ガスボンベから供給されるガス:酸素混合ガス(酸素/窒素の体積分率=20%/80%)
正極に供給されるガスの流速:1050mL/分
 次に、負極側に供給するガスを、不純物を添加した水素混合ガス(不純物:二酸化炭素ガス、一酸化炭素ガス、硫化水素ガス、亜硫酸ガス)に切り替えた(条件2)。切り替え後、電圧が一定になったところで、その値を電圧値V1として記録した。初期電圧V0と電圧V1の比(V1/V0)を、分離膜を用いなかった場合の電圧低下率として表4に示す。
 (分離器を用いた試験)
 図5のシステム13において、厚み120μmかつ孔径0.8mmのネットを供給側および透過側の流路材として有する、有効膜面積1mのスパイラル型エレメント1個を分離器5として用いて、上記条件1で発電を開始した。電圧が一定になったところでその電圧V2を記録した。各製造例の分離膜について、上述の初期電圧V0と電圧V2との比(V2/V0)を電圧低下率として表4に示す。
Figure JPOXMLDOC01-appb-T000012
 II.フッ素含有ポリアミド分離機能層を有する分離膜
 [分離膜の製造例(11)~(17)]
 以下表5に示す条件以外は製造例(1)と同様の操作により分離膜を得た。また、一部の製造例については、重縮合後に50℃の水で10時間洗浄した後、乾燥の前に後処理を行った。
Figure JPOXMLDOC01-appb-T000013
 [フッ素原子数と炭素原子数の比]
 分離機能層のフッ素原子数と炭素原子数を、X線光電子分光法(XPS)による下記の測定条件で得られた結果から算出した。
 測定装置:Quantera SXM(PHI社製)
 励起X線:monochromatic Al Kα1,2線(1486.6eV)
 X線径:0.2mm
 フッ素の1sピークと炭素の1sピークの強度比から、フッ素(F)原子数と炭素(C)原子数の比を求めた。この値が0.001未満である場合は検出限界以下として「0」とした。
 [水素ガス透過度、選択透過性]
 供給ガスとしてさらに窒素の純ガスを使用した以外は、上記Iと同様の操作により各ガスの透過度を測定した。水素の透過度を二酸化炭素の透過度または窒素の透過度で除することにより、H/CO分離選択性、H/N分離選択性を算出した。
 [耐圧性試験]
 供給側セルと透過側セルとを有する試験用セルを用い、供給側セルと透過側のセルとの間に分離膜を保持した。分離膜に、供給側から水素ガスを1MPaの圧力で印可し、透過側からガスを排出した。
 圧力印可後の分離膜について、水素と二酸化炭素の透過度を上述のとおり測定し、H/CO分離選択性を算出した。
Figure JPOXMLDOC01-appb-T000014
 [発電試験]
 上記Iの発電試験と同様、発電システム13を用いた発電試験を行って、各製造例の分離膜について電圧低下率を測定した。
 さらに、図7の発電システム14を用いて、試験を行った。発電システム14では、図2の発電システム12の還流配管23~25のうち還流配管24が採用された。つまり、発電システム14では、正極側の排ガスを負極側の排ガスに混合し、そこから分離器5で水素ガスを分離して、負極で再利用した。
 また、対照として図8のシステム102を用いた。発電システム102は、発電システム14の対照であり、分離器5および非透過ガス配管29を備えず、混合ガス配管22から直接分岐する還流配管24および負極排ガス配管28を備える以外は発電システム14と同様の構成を有した。
 発電システム102を用いて、上記Iの発電システム101用いた試験と同様に、初期電圧V3と、負極ガスを混合ガスに切り替えたときの電圧V4とを測定した。電圧低下率V4/V3を、発電システム14の対照値(分離膜を使用しなかった場合の値)として表7に示す。
 また、発電システム14を用いて、上記Iの発電試験と同様の条件で発電試験を行うことで、電圧値V5を得た。V5/V3を電圧低下率として算出し、表7に示す。
Figure JPOXMLDOC01-appb-T000015
 III.ポリアミド含有多孔性支持層を有する分離膜
 [分離膜の製造例(18)~(27)]
 (多孔性支持層を形成するポリアミドの作製)
 脱水したN-メチル-2-ピロリドンに、下記表8の濃度になるようにアミンを溶解させ、さらに下記表8の濃度になるよう酸ハロゲン化物を添加して、2時間攪拌により重合した。この後、炭酸リチウムで中和を行い、ポリマー濃度10wt%の芳香族ポリアミドの溶液を得た。
Figure JPOXMLDOC01-appb-T000016
 (多孔性支持層の形成)
 重合例a~cのポリアミドを6重量%となるように希釈した。溶媒は下記表9のとおりである。得られた溶液を、基材であるポリフェニレンスルフィド不織布(通気量2.0cc/cm/sec)上に、厚み180μmとなるようにキャストし、ただちに純水中に浸漬して5分間放置した。こうして基材と基材上に形成された多孔性支持層とを有する支持膜を得た。
Figure JPOXMLDOC01-appb-T000017
 (分離機能層の形成)
 上述の操作によって得られた支持膜を、6.0重量%のm-PDA水溶液に2分間浸漬した。次に、支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けることで多孔性支持層表面から余分なアミン水溶液を取り除いた。次に、0.16重量%のTMC溶液を多孔性支持層の表面全体が濡れるように塗布して、30秒間静置した。次に、膜面を1分間鉛直に保持して多孔性支持層表面から余分な溶液を除去した。その後、100℃オーブン内で下記表10の時間静置(重縮合)し、次いで50℃の水での10時間洗浄した。さらに120℃のオーブンで30分の乾燥を経て分離膜を得た。
Figure JPOXMLDOC01-appb-T000018
 [多孔性支持層と水の接触角の測定]
 分離膜を次亜塩素酸ナトリウム水溶液に浸漬させることで分離機能層を除去して、多孔性支持層表面を露出させた。支持膜を120℃のオーブンで30分間静置することで乾燥させた。その後、1.5μLの蒸留水を多孔性支持層に滴下し、滴下してから1秒後の画像を元に、協和界面科学社製Drop Master DM500を用いて、θ/2法にて水との静的接触角をコンピュータでの画像解析により算出した。結果を表11に示す。
 [多孔性支持層の表面の孔径]
 分離膜を次亜塩素酸ナトリウム水溶液に浸漬させることで分離機能層を除去して、多孔性支持層表面を露出させた。SEMにより、200万倍率、視野サイズ0.3072μmで、多孔性支持層表面を撮影した。得られた画像をMicrosoft Office 2010を用いて二値化し、次にPhoto Drawを用いて、孔ではない表面の粒状構造由来の影の除去(レベル2)を行った。この画像を再度Microsoft Office 2010を用いて中間トーン70に補正することで、影をさらに除去した。
 補正後のイメージからInspector2.2によって孔数とそれぞれの孔径を測定した。孔径8nm以上の孔の全孔に対する割合は、孔径8nm以上の孔の数を全孔数で除することで算出した。孔径8nm以上の孔の全孔数に対する割合と最大孔径については、5枚のSEM写真に対しそれぞれ上記手順で割合および最大孔径を測定し、得られた5つの数値から最大値と最小値を省いて相加平均値を算出した。結果を「最大孔径」として表12に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 [水素ガス透過度、選択透過性]
 上記IIと同様に分離選択性を測定した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000021
 [長時間運転試験]
 以下の条件で、上記Iと同様に分離膜のガス透過性を測定した。
・分離膜の有効膜面積:25cm
・セル温度:130℃
・供給ガス:水素と二酸化炭素との流量比7:3、合計流量100cm/分、1atm
・スイープガス :アルゴン、100cm/分、1atm
 ただし、試験は90時間行い、試験開始後1時間および90時間の水素並びに二酸化炭素の透過度をそれぞれ測定した。得られた値に基づいて、H透過度比つまり(90時間後のH透過度/1時間後のH透過度)、H/CO選択性比((90時間後の選択性/1時間後の選択性)を算出した。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000022
 [発電試験]
 上記IIと同様に、発電システム13および発電システム14を用いて電圧低下率を測定した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000023
 IV.非ポリアミド分離機能層を有する分離膜
 [分離膜の製造例28]
 (多孔性支持層の形成)
 上記製造例(27)と同様に基材上の多孔性支持層を形成することで、支持膜を得た。
 (分離機能層の形成)
 支持膜上に、米国特許出願公開第2015/0273403号明細書に記載の方法を参考に、グラフェンの層を形成した。具体的には以下のとおりである。
 単層酸化グラフェンのアセトン/水(体積分率=2:8)混合溶液(0.1wt%、平均粒径:800nm)を、最大回転数:8000rpm、回転数上昇速度:100rpm/秒、最大回転数における回転時間:60秒でスピンコートすることで、単層酸化グラフェン層を形成した。塗布量は支持膜の単位面積当たり1mL/cmとした。また、スピン室、スピン台、支持膜は95℃に予備加温した。
 得られた膜を160℃で30分間加熱し、酸化グラフェンを部分的に還元することで、グラフェンの層を作製した。
 [分離膜の製造例29]
 ・多孔性支持層の形成
 上記製造例(27)と同様に基材上の多孔性支持層を形成することで、支持膜を得た。
 ・分離機能層の形成
 支持膜上に、日本国特開2019-118859号公報に記載の方法(実施例4)を参考に、ZIF-8の層を形成した。具体的には以下のとおりである。
 Zn(NO・6HOと2-メチルイミダゾールを重量比率1:6となるように、かつZn(NO・6HOと2-メチルイミダゾールの濃度の和が15重量%となるようにメタノールに溶解させた。沈殿物をろ過により回収し、洗浄した後乾燥させた。こうして得られたZIF-8を濃度0.1wt%となるようにメタノールに加え、懸濁液を作製した。この懸濁液に上記の支持膜を10分浸漬させた後、引き上げて乾燥させた。
 その後、得られた膜をZn(NO・6HOと2-メチルイミダゾールを重量比率1:20となるように、かつZn(NO・6HOと2-メチルイミダゾールの濃度の和が10重量%となるようにイオン交換水1000mLに溶解させた。この溶液に、上記処理を経た支持膜を25℃で24時間浸漬させた後、イオン交換水で洗浄した。
 [分離膜の製造例30]
 日本国特許第6142730号公報に記載の方法(実施例1)を参考に、ポリイミド膜を作製した。
 モノマー混合物(DSDA:6FDA:s-BPDA:TSN:DABA=3:4:3:6:4(モル比))を、濃度が18重量%となるようにパラクロロフェノールに溶解し、窒素ガス雰囲気下で撹拌しながら反応温度210℃で30時間重合反応をおこなうことで、ポリイミド溶液を調製した。得られたポリイミド溶液をろ過し、紡糸用ノズル(円形開口部外径900μm、円形開口部スリット幅200μm、芯部開口部外径450μm)を備えた紡糸装置を使用して、溶液を一次凝固液(3℃、90重量%イソプロパノール水溶液)に中空糸状に吐出し、さらに二次凝固液(1℃、90重量%イソプロパノール水溶液)に浸漬することで凝固させた。得られた中空糸をイソプロパノールで洗浄した後、イソオクタンで置換し、130℃で加熱することで乾燥させ、更に380℃で20分間加熱処理して、中空糸膜を得た。
 化合物の略語は以下のとおりである。
DSDA:3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)-ビス(無水フタル酸)
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
TSN:3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン=5,5-ジオキシドを主成分とし、メチル基の位置が異なる異性体3,7-ジアミノ-2,6-ジメチルジベンゾチオフェン=5,5-ジオキシド、3,7-ジアミノ-4,6-ジメチルジベンゾチオフェン=5,5-ジオキシドを含む混合物
DABA:3,5-ジアミノ安息香酸
 [分離膜の製造例31]
 日本国特許第6107000号に記載の方法(実施例1)を参考に、ゼオライト膜を作製した。具体的には以下のとおりである。
 NaOH、KOH、水酸化アルミニウム(Al 53.5wt%含有、アルドリッチ社製)をイオン交換水に添加し、水酸化アルミニウムを溶解させた後、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液を加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)を加えて撹拌し、混合物とした。TMADAOH水溶液は濃度25wt%のセイケム社製溶液である。各成分のモル比は、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.07/0.12/0.1/100/0.05とした。
 この混合物を170℃、50時間水熱合成することで、粒径0.5μmのゼオライトを得た。ゼオライトを蒸留水に0.4wt%の濃度で分散させることで懸濁液を得た。この懸濁液に無機多孔質支持体である多孔質アルミナチューブ(外径12mm、内径9mm)を所定時間浸した。その後、多孔質アルミナチューブを120℃で24時間乾燥させた。
 テフロン(登録商標)製内筒(800ml)に入った上記混合物に、処理後の多孔質アルミナチューブを浸漬して、180℃で48時間加熱した。その後、多孔質アルミナチューブを100℃で8時間乾燥させた。こうして得られたアルミナとゼオライトとの複合体を、電気炉で、500℃で10時間焼成した。
 [分離膜の製造例32]
 国際公開第2014/098038号に記載の方法(実施例1)を参考に、パラジウム膜を作製した。
 65モル%Pd、35モル%Agから成るインゴットを、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧、Arガス雰囲気中でアーク溶解した。ロール径100mmの2段圧延機を用いて厚さ6mmになるまで溶解物を冷間圧延して板材を得た。得られた板材を圧延してガラス管の中に入れ、両端を封止した。ガラス管内部を室温で4.8×10-4Paまで減圧し、その後7690℃まで昇温して24時間放置し、その後室温まで冷却した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmに冷間圧延し、さらにロール径20mmの2段圧延機を用いて板材を厚さ25μmに冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で4.9×10-4Paまで減圧し、その後710℃まで昇温して3時間放置し、その後室温まで冷却し、パラジウム膜を作製した。
 [選択透過性]
 二酸化炭素に変えて窒素を用いた以外は上記Iと同様の方法で、それぞれの分離膜の分離選択性を測定した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000024
 [発電試験]
 上記IIと同様に、図7に示す発電システム14を用いて電圧低下率を測定した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000025
 [水素使用量測定]
 図8に示す発電システム102により、上記条件1で発電を行い、負極ボンベからの純水素ガスの量M1(L:リットル)を測定した。
 また、図7に示す発電システム14により、同条件で同時間運転を行い、純水素ガスの使用量M2を測定した。
 表18に示す各分離膜について測定した(M1-M2)/M1を水素ガス使用量低減率として示す。
Figure JPOXMLDOC01-appb-T000026
 [運転安定性]
 図8に示す発電システム102により、上記条件1で発電を行った。発電開始直後と、発電開始から所定時間経過時の2回、分離器から透過ガスを採集し、水素純度を測定した。発電開始直後の水素純度と所定時間経過時の水素純度から、水素純度低下率を算出した。この操作を表19に示す分離膜で、供給側および透過側の流路材を表19のとおり変更して行った。流路材は全てネットである。また製造例(25)の分離膜については、膜面積を三倍の3mにしたエレメントも作製した。
 なお、製造例(30)の分離膜は中空糸膜であるので、その一端を閉塞し、他端を開放した状態で筐体内に固定することでエレメントを作製した。中空糸膜が閉塞された方の端部から筐体内にガスを供給し、中空糸膜の内側から透過ガスを得た。
Figure JPOXMLDOC01-appb-T000027
 [まとめ]
 以上に示すように、水素に対する選択的な透過性を持つ分離膜によって水素ガスの再生を行うことで、燃料電池の発電効率が向上した。また、水素の使用量を減らすことができた。
 架橋ポリアミド含有分離機能層を有する(1)~(4)の分離膜は、水素透過性とH/CO選択性とを示した。(A+B)/C≦0.66を満たす(5)~(8)の分離膜は10以上の高いH/CO選択性を示した。また、(1)~(2)の分離膜は、10~20のH/N選択性を示した。
 (11)~(17)の分離膜は、架橋ポリアミドを形成後に芳香族環上にフッ素を導入する、あるいはフッ素が芳香族環に導入された酸クロリドを界面重合の反応時に添加することにより、架橋ポリアミドにフッ素が導入されており、結果として、(1)および(2)よりもH/CO選択性、およびH/N選択性が向上した。さらに、フッ素原子数/炭素原子数が0.001~0.080の膜は、1MPaの圧力印加後も性能の変化が小さかった。
 特に、クロロ基を含むポリアミドを含有する多孔性支持層を適用することで、良好な選択性が得られ、さらには連続運転での透過度、選択性の低下を抑制できた。さらに、多孔性支持層表面に存在する孔径8nm以上の孔が全孔の15%以上である場合、選択性が向上した。さらに、最大孔径が12nm以下である場合、選択性が向上した。
 また、表19に示すように、製造例(30)以外の膜では、発電前後での透過ガスの水素純度の低下が抑えられており、高い運転安定性を有していた。また、製造例(30)では、膜面積が小さいと糸切れが起き、膜面積を大きくすると分離器の下流で水の凝集により結露が起こったことで、運転を停止せざるを得なかった。ポリイミド膜は高い水蒸気透過性を有するので、膜面積を大きくすることで、透過ガスに含まれる水分が過多となり、水の凝集および結露が起こったものと推定される。一方で、製造例(25)の膜によると、膜面積を増やしてもこのような問題は起きなかった。
 製造例(6)、(19)の分離膜を比較すると、分離膜の支持膜素材の耐熱性が高い場合、より高い運転安定性を示すことが分かった。
 製造例(14)、製造例(25)の分離膜を用い、流路材を変更したところ、流路材を薄くすることで巻囲時の曲げによる構造破壊または発電運転時の振動による割れを軽減するか、流路材の孔径を小さくして膜の落ち込みによる欠点発生を低減させることで、より高い運転安定性が得られた。
 製造例(28)、(29)では、非ポリアミドの分離機能層を使用したことで、高い運転安定性が得られた。これは、分離機能層自身の物理的強度が優れているためと推定される。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2018年12月11日付で出願された日本特許出願(特願2018-231444)に基づいており、その全体が引用により援用される。
4 燃料電池
5 分離器
6 水素貯蔵タンク
11,12,13,14,101,102 発電システム
21 負極ガス供給配管
22 混合ガス配管
23,24,25 還流配管
28 負極排ガス配管
29 非透過ガス配管
31 正極ガス供給配管
32 正極排ガス配管
33 正極排ガス還流配管
50 スパイラル型エレメント
51 中心管
52 分離膜
53 供給側流路材
54 透過側流路材
55 第1端板
56 第2端板
73 分離機能層
74 多孔性支持層
75 基材
80 試験用セル
81,83 ガスボンベ
82,84 マスフローコントローラー
85 バルブ
86 ガスクロマトグラフ
87 石鹸膜流量計

Claims (24)

  1.  水素含有ガスが供給される負極と、酸素含有ガスが供給される正極とを備え、水素と酸素との化学反応により発電する燃料電池と、
     水素を選択的に透過する分離膜を有し、混合ガスから透過ガスと非透過ガスを得る分離器と、
     前記燃料電池の負極側の排ガスを前記分離器に送ると共に、前記透過ガスを前記負極に供給する循環経路と、
    を備える発電システムであって、
     前記分離膜が、多孔性支持層と、前記多孔性支持層上に設けられた分離機能層とを有し、
     前記分離機能層が、ポリアミド、グラフェン、MOF(Metal Organic Framework)およびCOF(Covalent Organic Framework)からなる群より選択される少なくとも1種の化合物を含有する、
    発電システム。
  2.  前記燃料電池の下流かつ前記分離器の上流で前記循環経路に接続され、正極側の排ガスを、前記負極側の排ガスに合流させる配管をさらに備える、
    請求項1に記載の発電システム。
  3.  水素貯蔵タンクと、前記水素貯蔵タンクと前記燃料電池とを接続する負極ガス供給配管と、をさらに備え、
    前記水素貯蔵タンクが、発電システム外から水素含有ガスの供給を受けるように構成された、
    請求項1または2に記載の発電システム。
  4.  前記循環経路が、前記負極ガス供給配管または前記水素貯蔵タンクに透過ガスを送るようになっている、
    請求項3に記載の発電システム。
  5.  前記分離機能層が、多官能アミンと多官能酸ハロゲン化物との重縮合物である架橋ポリアミドを含有する、
    請求項1~4のいずれかに記載の発電システム。
  6.  前記架橋ポリアミドのアミノ基の数A、カルボキシ基の数B、アミド基の数Cが、
    (A+B)/C≦0.66
    を満たす請求項5に記載の発電システム。
  7.  前記架橋ポリアミドが全芳香族ポリアミドである、
    請求項5または6に記載の発電システム。
  8.  前記架橋ポリアミドがニトロ基を有する、
    請求項5~7のいずれかに記載の発電システム。
  9.  前記架橋ポリアミドがフッ素原子を有する、
    請求項5~8のいずれかに記載の発電システム。
  10.  前記分離機能層において、X線光電子分光法(XPS)により定量される炭素原子数に対してフッ素原子数が0.1%~12%の範囲にある、
    請求項9に記載の発電システム。
  11.  前記多孔性支持層が、前記架橋ポリアミドとして、置換基としてクロロ基を有する芳香環を含む芳香族ポリアミドを含有する、
    請求項5~10のいずれかに記載の発電システム。
  12.  前記架橋ポリアミドが下記式(1)および式(2)の少なくとも一方に示す構造を有する全芳香族ポリアミドである、
    請求項11に記載の発電システム。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (ここで、Ar、Ar、Arはそれぞれ下記式(3-1)~(3-5)および式(4)に示される基からなる群から選ばれる少なくとも1つの基である。また、X、Y、Zは-O-,-CH-,-CO-,-CO-,-S-,-SO-,-C(CH-からなる群から選択される少なくとも1つの基である。)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  13.  Ar、Ar、Arはそれぞれ前記式(3-1)~(3-5)に示される基からなる群から選ばれる少なくとも1つの基であり、かつ置換基がパラ位に配置されている、
    請求項12に記載の発電システム。
  14.  前記多孔性支持層表面において、孔径8nm以上の孔が全孔の15%以下である、
    請求項11~13のいずれかに記載の発電システム。
  15.  前記多孔性支持層表面の最大孔径が12nm以下である、
    請求項11~14のいずれかに記載の発電システム。
  16.  前記分離器が、
     透過ガスを集積する中心管と、
     前記中心管の周りにスパイラル状に巻囲された複数の前記分離膜と、
     前記分離膜間に配置された供給側流路材および透過側流路材とを備える、
    請求項1~15のいずれかに記載の発電システム。
  17.  前記供給側流路材の平均孔径が0.1mm以下である、
    請求項16に記載の発電システム。
  18.  前記透過側流路材の平均孔径が0.1mm以下である、
    請求項16または17に記載の発電システム。
  19.  前記供給側流路材の厚みが50μm以下である、
    請求項16~18のいずれかに記載の発電システム。
  20.  前記透過側流路材の厚みが50μm以下である、
    請求項16~19のいずれかに記載の発電システム。
  21.  前記燃料電池が、最高体積出力密度が1kW/L以上、かつ容量が70L以下のセルスタックを1個以上有し、1個のセルスタック当たりの分離膜エレメントの容量が50L以下である、
    請求項16~20のいずれかに記載の発電システム。
  22.  前記燃料電池が、最高体積出力密度が3kW/L以上、かつ容量が40L以下のセルスタックを1個以上有し、1個のセルスタック当たりの分離膜エレメントの容量が25L以下である、
    請求項16~20のいずれかに記載の発電システム。
  23.  前記燃料電池が、最高体積出力密度が3kW/L以上、かつ、容量が40L以下のセルスタックを1個以上有し、1個のセルスタック当たりの分離膜エレメントの容量が5L以下である、
    請求項16~20のいずれかに記載の発電システム。
  24.  前記セルスタックと分離膜エレメントを各々1個以上有し、
     前記セルスタックの容量の平均値と、前記分離膜エレメントの容量の平均値との和が40L以下であり、かつ、
     前記セルスタックの重量の平均値と、前記分離膜エレメントの重量の平均値との和が60kg以下である、
    請求項23に記載の発電システム。
PCT/JP2019/048577 2018-12-11 2019-12-11 発電システム WO2020122152A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/311,900 US20220029178A1 (en) 2018-12-11 2019-12-11 Power generation system
CN201980080939.4A CN113169353A (zh) 2018-12-11 2019-12-11 发电系统
EP19896806.7A EP3895788A4 (en) 2018-12-11 2019-12-11 ENERGY GENERATION SYSTEM
CA3122755A CA3122755A1 (en) 2018-12-11 2019-12-11 Power generation system
JP2019569864A JPWO2020122152A1 (ja) 2018-12-11 2019-12-11 発電システム
KR1020217017138A KR20210097133A (ko) 2018-12-11 2019-12-11 발전 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-231444 2018-12-11
JP2018231444 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020122152A1 true WO2020122152A1 (ja) 2020-06-18

Family

ID=71077349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048577 WO2020122152A1 (ja) 2018-12-11 2019-12-11 発電システム

Country Status (7)

Country Link
US (1) US20220029178A1 (ja)
EP (1) EP3895788A4 (ja)
JP (1) JPWO2020122152A1 (ja)
KR (1) KR20210097133A (ja)
CN (1) CN113169353A (ja)
CA (1) CA3122755A1 (ja)
WO (1) WO2020122152A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006948A (ja) 1994-01-13 2004-01-08 Rohm Co Ltd 誘電体キャパシタおよびその製造方法
JP2007042607A (ja) 2005-06-29 2007-02-15 Toyota Motor Corp 燃料電池システムと移動体
JP2009295377A (ja) 2008-06-04 2009-12-17 Toyota Boshoku Corp 燃料電池システム
WO2012105397A1 (ja) * 2011-01-31 2012-08-09 東レ株式会社 水処理用分離膜およびその製造方法
WO2014098038A1 (ja) 2012-12-17 2014-06-26 日東電工株式会社 水素排出膜
US20150273403A1 (en) 2013-02-14 2015-10-01 University Of South Carolina Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Separations Along with Their Methods of Formation and Use
JP2016029183A (ja) * 2010-08-30 2016-03-03 住友化学株式会社 ポリマーコンポジット変性物
JP6107000B2 (ja) 2012-03-30 2017-04-05 三菱化学株式会社 ゼオライト膜複合体
JP6142730B2 (ja) 2012-09-25 2017-06-07 宇部興産株式会社 非対称中空糸ガス分離膜、及びガス分離方法
WO2018079729A1 (ja) * 2016-10-28 2018-05-03 東レ株式会社 ガス分離膜、ガス分離膜エレメント及びガス分離方法
JP2018162184A (ja) * 2017-03-24 2018-10-18 三菱重工業株式会社 ガス製造システム及びガス製造方法
WO2018221684A1 (ja) * 2017-06-01 2018-12-06 東レ株式会社 ガス分離膜、ガス分離膜エレメント、ガス分離装置及びガス分離方法
JP2019118859A (ja) 2017-12-28 2019-07-22 旭化成株式会社 希ガス分離膜、及びこれを用いた、実用に適用可能な純度の希ガスの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675005A1 (en) * 2012-06-11 2013-12-18 HTceramix S.A. Gas distribution element for a fuel cell
DE102014202574A1 (de) * 2014-02-12 2015-08-13 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006948A (ja) 1994-01-13 2004-01-08 Rohm Co Ltd 誘電体キャパシタおよびその製造方法
JP2007042607A (ja) 2005-06-29 2007-02-15 Toyota Motor Corp 燃料電池システムと移動体
JP2009295377A (ja) 2008-06-04 2009-12-17 Toyota Boshoku Corp 燃料電池システム
JP2016029183A (ja) * 2010-08-30 2016-03-03 住友化学株式会社 ポリマーコンポジット変性物
WO2012105397A1 (ja) * 2011-01-31 2012-08-09 東レ株式会社 水処理用分離膜およびその製造方法
JP6107000B2 (ja) 2012-03-30 2017-04-05 三菱化学株式会社 ゼオライト膜複合体
JP6142730B2 (ja) 2012-09-25 2017-06-07 宇部興産株式会社 非対称中空糸ガス分離膜、及びガス分離方法
WO2014098038A1 (ja) 2012-12-17 2014-06-26 日東電工株式会社 水素排出膜
US20150273403A1 (en) 2013-02-14 2015-10-01 University Of South Carolina Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Separations Along with Their Methods of Formation and Use
WO2018079729A1 (ja) * 2016-10-28 2018-05-03 東レ株式会社 ガス分離膜、ガス分離膜エレメント及びガス分離方法
JP2018162184A (ja) * 2017-03-24 2018-10-18 三菱重工業株式会社 ガス製造システム及びガス製造方法
WO2018221684A1 (ja) * 2017-06-01 2018-12-06 東レ株式会社 ガス分離膜、ガス分離膜エレメント、ガス分離装置及びガス分離方法
JP2019118859A (ja) 2017-12-28 2019-07-22 旭化成株式会社 希ガス分離膜、及びこれを用いた、実用に適用可能な純度の希ガスの製造方法

Also Published As

Publication number Publication date
CN113169353A (zh) 2021-07-23
US20220029178A1 (en) 2022-01-27
EP3895788A4 (en) 2022-11-23
JPWO2020122152A1 (ja) 2021-10-21
EP3895788A1 (en) 2021-10-20
KR20210097133A (ko) 2021-08-06
CA3122755A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US11000800B2 (en) Gas separation membrane, gas separation membrane element, and gas separation method
WO2018221684A1 (ja) ガス分離膜、ガス分離膜エレメント、ガス分離装置及びガス分離方法
WO2020122153A1 (ja) 発電システム
CN111491720B (zh) 气体分离膜、气体分离膜元件及气体分离方法
WO2020122151A1 (ja) 発電システム
WO2020122152A1 (ja) 発電システム
WO2023112803A1 (ja) 分離機能層、分離膜、及び分離機能層の製造方法
JP2023144363A (ja) ガス分離膜、ガス分離膜モジュール、及びガス製造方法
JP2022054573A (ja) ガス分離用複合分離膜、ガス分離用複合分離膜エレメント及びガス製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569864

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3122755

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896806

Country of ref document: EP

Effective date: 20210712